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QUANTIZED SLOW BLOW-UP DYNAMICS FOR THE COROTATIONAL
ENERGY-CRITICAL HARMONIC HEAT FLOW

PIERRE RAPHAËL AND REMI SCHWEYER

We consider the energy-critical harmonic heat flow from R2 into a smooth compact revolution surface of
R3. For initial data with corotational symmetry, the evolution reduces to the semilinear radially symmetric
parabolic problem

∂t u− ∂2
r u−

∂r u
r
+

f (u)
r2 = 0

for a suitable class of functions f . Given an integer L ∈ N∗, we exhibit a set of initial data arbitrarily
close to the least energy harmonic map Q in the energy-critical topology such that the corresponding
solution blows up in finite time by concentrating its energy

∇u(t, r)−∇Q
(

r
λ(t)

)
→ u∗ in L2

at a speed given by the quantized rates

λ(t)= c(u0)(1+ o(1))
(T − t)L

|log(T − t)|2L/(2L−1) ,

in accordance with the formal predictions of van den Berg et al. (2003). The case L = 1 corresponds to the
stable regime exhibited in our previous work (CPAM, 2013), and the data for L ≥ 2 leave on a manifold
of codimension L−1 in some weak sense. Our analysis is a continuation of work by Merle, Rodnianski,
and the authors (in various combinations) and it further exhibits the mechanism for the existence of the
excited slow blow-up rates and the associated instability of these threshold dynamics.

1. Introduction

The parabolic heat flow. The harmonic heat flow between two embedded Riemannian manifolds (N , gN ),
(M, gM) is the gradient flow associated to the Dirichlet energy of maps from N → M :{

∂tv = PTvM(1gN v),

v|t=0 = v0,
(t, x) ∈ R× N , v(t, x) ∈ M, (1-1)

where PTvM is the projection onto the tangent space to M at v. The special case N = R2, M = S2

corresponds to the harmonic heat flow to the 2-sphere

∂tv =1v+ |∇v|
2v, (t, x) ∈ R×R2, v(t, x) ∈ S2, (1-2)

and is related to the Landau–Lifschitz equation of ferromagnetism; we refer to [van den Berg et al. 2003;

MSC2010: 35K58.
Keywords: blow-up heat flow.
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1714 PIERRE RAPHAËL AND REMI SCHWEYER

Angenent et al. 2009; Guan et al. 2009; Gustafson et al. 2010] for a complete introduction to this class of
problems. We shall from now on restrict our discussion to the case

N = R2.

Smooth initial data yield unique local-in-time smooth solutions which dissipate the Dirichlet energy

d
dt

{∫
R2
|∇v|2

}
=−2

∫
R2
|∂tv|

2.

An essential feature of the problem is that the scaling symmetry

u 7→ uλ(t, x)= u(λ2t, λx), λ > 0,

leaves the Dirichlet energy unchanged, and hence the problem is energy-critical.

Corotational flows. We restrict our attention in this paper to flows with so-called corotational symmetry.
More precisely, let us consider a smooth closed curve in the plane parametrized by arclength

u ∈ [−π, π] 7→
∣∣∣ g(u)

z(u),
(g′)2+ (z′)2 = 1,

where

(H)


g ∈ C∞(R) is odd and 2π periodic,
g(0)= g(π)= 0, g(u) > 0 for 0< u < π,
g′(0)= 1, g′(π)=−1.

(1-3)

Then the revolution surface M with parametrization

(θ, u) ∈ [0, 2π ]× [0, π] 7→

∣∣∣∣∣
g(u) cos θ
g(u) sin θ
z(u)

is a smooth 1 compact revolution surface of R3 with metric (du)2+g2(u)(dθ)2. Given a homotopy degree
k ∈ Z∗, the k-corotational reduction to (1-1) corresponds to solutions of the form

v(t, r)=

∣∣∣∣∣
g(u(t, r)) cos(kθ)
g(u(t, r)) sin(kθ)
z(u(t, r)),

(1-4)

which leads to the semilinear parabolic equation{
∂t u− ∂2

r u−
∂r u
r
+ k2 f (u)

r2 = 0,

ut=0 = u0,
f = gg′. (1-5)

The k-corotational Dirichlet energy becomes

E(u)=
∫
+∞

0

[
|∂r u|2+ k2 (g(u))

2

r2

]
r dr (1-6)

1See [Gallot et al. 2004], for example.
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and is minimized among maps with boundary conditions

u(0)= 0, lim
r→+∞

u(r)= π (1-7)

onto the least energy harmonic map Qk , which is the unique, up-to-scaling solution to

r∂r Qk = kg(Qk) (1-8)

satisfying (1-7); see for example [Côte 2005]. In the case of S2 target g(u)= sin u, the harmonic map is
explicitly given by

Qk(r)= 2 tan−1(r k). (1-9)

The blow-up problem. The question of the existence of blow-up solutions and the description of the
associated concentration of energy scenario has attracted considerable attention for the past thirty years.
In the pioneering works of Struwe [1985], Ding and Tian [1995], and Qing and Tian [1997] (see [Topping
2004] for a complete history of the problem), it was shown that if occurring, the concentration of energy
implies the bubbling off of a nontrivial harmonic map at a finite number of blow-up points

v(ti , ai + λ(ti )x)→ Qi , λ(ti )→ 0 (1-10)

locally in space. In particular, this shows the existence of a global in time flow on negatively curved
targets where no nontrivial harmonic map exists.

For corotational data and homotopy number k ≥ 2, Guan, Gustaffson, Nakanishi, and Tsai [Guan et al.
2009; Gustafson et al. 2010] proved that the flow is globally defined near the ground state harmonic
map. In fact, Qk is asymptotically stable for k ≥ 3, and in particular no blow-up will occur. Eternally
oscillating solutions and infinite time grow up solutions are exhibited for k = 2.

In contrast, for k = 1, the existence of finite time blow-up solutions has been proved in various
geometrical settings strongly using the maximum principle; see in particular the work of Chang, Ding,
and Ye [Chang et al. 1992], Coron and Ghidaglia [1989], Qing and Tian [1997], and Topping [2004].
Despite some serious efforts and the use of the maximum principle (see in particular [Angenent et al.
2009]), very little was known until recently about the description of the blow-up bubble and the derivation
of the blow-up speed, in particular due to the critical nature of the problem.

For the rest of the paper, we focus on the degree

k = 1

case, which generates the least energy, nontrivial harmonic map Q ≡ Q1. For D2 initial manifold and
S2 target, van den Berg, Hulshof, and King [van den Berg et al. 2003], in continuation of [Herrero
and Velázquez 1994], implemented a formal analysis based on the matched asymptotics techniques and
predicted the existence of blow-up solutions of the form

u(t, r)∼ Q
(

r
λ(t)

)
(1-11)
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with blow-up speed governed by the quantized rates

λ(t)∼
(T − t)L

|log(T − t)|2L/(2L−1) , L ∈ N∗.

We will further discuss the presence of quantized rates which is reminiscent of the classification of type
II blow-up for the supercritical nonlinear heat equation [Mizoguchi 2007].

We completely revisited the blow-up analysis in [Raphaël and Schweyer 2013] by adapting the strategy
developed in [Raphaël and Rodnianski 2012; Merle et al. 2011] for the study of wave and Schrödinger
maps, with two main new approaches:

• We completely avoid the formal matched asymptotics approach and replace it by an elementary
derivation of an explicit and universal system of ODE’s which drives the blow-up speed. A similar
simplification further occurred in related critical settings; see in particular [Raphaël and Schweyer
2014].

• We designed a robust universal energy method to control the solution in the blow-up regime, which
applies both to parabolic and dispersive problems. In particular, we aim to make no use of the
maximum principle.

These techniques led to [Raphaël and Schweyer 2013] the construction of an open set of corotational
initial data arbitrarily close to the ground state harmonic map in the energy-critical topology such that the
corresponding solution to (1-5) bubbles off a harmonic map according to (1-11) at the speed

λ(t)∼
T − t

|log(T − t)|2
, that is, L = 1.

This is the stable2 blow-up regime.

Statement of the result. Our main claim in this paper is that the analysis in [Raphaël and Schweyer 2013]
can be further extended to exhibit the unstable modes which are responsible for a discrete sequence of
quantized slow blow-up rates.

Theorem 1.1 (excited slow blow-up dynamics for the 1-corotational heat flow). Let k = 1 and g satisfy
(1-3). Let Q be the least energy harmonic map. Let L ∈ N∗. Then there exists a smooth corotational
initial data u0(r) such that the corresponding solution to (1-5) blows up in finite time T = T (u0) > 0 by
bubbling off a harmonic map

∇u(t, r)−∇Q
(

r
λ(t)

)
→∇u∗ in L2 as t→ T (1-12)

at the excited rate

λ(t)= c(u0)(1+ ot→T (1))
(T − t)L

|log(T − t)|2L/(2L−1) , c(u0) > 0. (1-13)

Moreover, u0 can be taken arbitrarily close to Q in the energy-critical topology.

2In the presence of corotational symmetry, blow-up dynamics are expected to be unstable by rotation under general
perturbations; see [Merle et al. 2011].
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Comments on the result. 1. Regularity of the asymptotic profile. Arguing as in [Raphaël and Schweyer
2013] and using the estimates of Proposition 3.1, one can directly relate the rate of blow-up (1-13) to the
regularity of the remaining excess of energy, in the sense that u∗ exhibits an H L+1 regularity is some
suitable Sobolev sense; see Remark 4.1. See also [Merle and Raphaël 2005b] for a related phenomenon
in the dispersive setting.

2. Stable and excited blow-up rates. The case L = 1 is treated in [Raphaël and Schweyer 2013] and
corresponds to stable blow-up. For L ≥ 2, the set of initial data leading to (1-13) is of codimension (L−1)
in the following sense: there exist fixed directions (ψi )2≤i≤L such that, for any suitable perturbation ε0 of
Q, there exist (ai (ε0))2≤i≤L ∈ RL−1 such that the solution to (1-5) with data

Q+ ε0+

L∑
i=2

ai (ε0)ψi

blows up in finite time with the blow-up speed (1-13). Building a smooth manifold would require proving
local uniqueness and smoothness of the flow ε0 7→ ai (ε0))2≤i≤L , which is a separate problem; see, for
example, [Krieger and Schlag 2009] for an introduction to this kind of issue. The control of the unstable
modes relies on a classical soft and powerful Brouwer type topological argument in continuation of [Côte
et al. 2011; Côte and Zaag 2013; Hillairet and Raphaël 2012].

3. On quantized blow-up rates. There is an important formal and rigorous literature on the existence of
quantized blow-up rates for parabolic problems. In the pioneering works [Herrero and Velázquez 1994;
Filippas et al. 2000], the authors predicted the existence of a sequence of quantized blow-up rates for the
supercritical power nonlinearity heat equation

∂t u =1u+ u p, x ∈ Rd , p > p(d), d < 7,

and this sequence is in one to one correspondence with the spectrum of the linearized operator close to
the explicit singular self similar solution. After this formal work, and using the a priori bounds on radial
type II blow-up solutions of Matano and Merle [2009; 2004], Mizogushi completely classified the radial
data type II blow-up according to these quantized rates. Note that Mizogushi finishes the classification
using the Matano–Merle a priori estimates on threshold dynamics, which heavily rely on the maximum
principle, but the argument is not constructive. One of the main points of our work is to revisit the formal
derivation of the sequence of blow-up rates and to relate it not to a spectral problem, but to the structure of
the resonances of the linearized operator H close to Q and of its iterates, that is, the growing solutions to

H k Tk = 0, k ∈ N∗.

In particular, we show how the dynamics of tails as initiated in [Raphaël and Rodnianski 2012; Merle et al.
2011] lead to a universal dynamical system driving the blow-up speed, which admits unstable solutions
(1-13) corresponding to a codimension (L − 1) set of initial data. Another by-product of this analysis is
the first explicit construction of type II blow-up for the energy-critical nonlinear heat equation [Schweyer
2012].
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4. Classification of the flow near Q. The question of the classification of the flow near the harmonic map,
and more generally near the ground state solitary wave in nonlinear evolution problems, has attracted
considerable attention recently; see, for example, [Raphaël 2013]. This program has been concluded for
the mass-critical (gKdV) equation in [Martel et al. 2012a; 2012b; 2012c], where it is shown that, provided
the data is taken close enough to the ground state in a suitable topology which is strictly smaller than
the energy norm, the blow-up dynamics are completely classified. In contrast, arbitrarily slow blow-up
can be achieved for large deformations of the ground state in this restricted sense. The existence of
such slow blow-up regimes remains however open in many important instances, in particular for the
mass-critical NLS equation; see [Merle et al. 2013] for a further introduction to this delicate problem. For
energy-critical problems like wave or Schrödinger maps, Krieger et al. [2008] showed that arbitrarily slow
blow-up can be achieved, but the known examples so far are never C∞ smooth. The structure of the flow
near Q is also somewhat mysterious, and various new kinds of global dynamics have been constructed;
see [Donninger and Krieger 2013; Bejenaru and Tataru 2014]. One of the new results of our analysis
in this paper is to show the essential role played by the control of higher order Sobolev norms, which
provide a new topology to measure the distance to the solitary wave which is sharp enough to see all
the blow-up regimes (1-13). The control of these norms acts in the energy method as a replacement of
the counting of the number of intersections of the solution with the ground state, which, in the parabolic
setting, plays an essential role for the classification of the blow-up dynamics [Mizoguchi 2007], but relies
in an essential way on maximum principle techniques. We believe that the blow-up solutions we construct
in this paper are the building blocks to classify the blow-up dynamics near the ground state in a suitable
topology.

5. Extension to dispersive problems. We treat in this paper the parabolic problem, but the robustness
of our approach has been shown in [Raphaël and Rodnianski 2012; Merle et al. 2011], which treat
the dispersive wave and Schrödinger maps with S2 target. We expect that similar constructions can be
performed there as well to produce arbitrarily slow C∞ blow-up solutions with quantized rate, hence
completing the analysis of these excited regimes, which started in the seminal work [Krieger et al. 2008].

Notations. We introduce the differential operator

3 f = y · ∇ f (energy-critical scaling).

Given a parameter λ > 0, we let
uλ(r)= u(y) with y =

r
λ
.

Given a positive number b1 > 0, we let

B0 =
1
√

b1
, B1 =

|log b1|
√

b1
. (1-14)

We let χ be a positive nonincreasing smooth cut-off function with

χ(y)=
{

1 for y ≤ 1,
0 for y ≥ 2.
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Given a parameter B > 0, we denote

χB(y)= χ
(

y
B

)
. (1-15)

We shall systematically omit the measure in all radial two dimensional integrals and note that∫
f =

∫
+∞

0
f (r)r dr.

Given a p-uplet J = ( j1, . . . , jp) ∈ Np, we introduce the norms

|J |1 =
p∑

k=1

jk, |J |2 =
p∑

k=1

k jk . (1-16)

We note that

Bd(R)=
{

x ∈ Rd , |x | =
( d∑

i=1

x2
i

)1
2

≤ R
}
.

Strategy of the proof. Let us give brief insight into the strategy of the proof of Theorem 1.1.

(i). Renormalized flow and iterated resonances. Let us look for a modulated solution u(t, r) of (1-5) in
renormalized form

u(t, r)= v(s, y), y =
r
λ(t)

,
ds
dt
=

1
λ2(t)

, (1-17)

which leads to the self-similar equation

∂sv−1v+ b13v+
f (v)
y2 = 0, b1 =−

λs

λ
. (1-18)

We know from theoretical ground that if blow-up occurs, v(s, y)= Q(y)+ε(s, y) for some small ε(s, y),
and hence the linear part of the ε flow is governed by the Schrödinger operator

H =−1+
f ′(Q)

y2 .

The energy-critical structure of the problem induces an explicit resonance

H(3Q)= 0,

where from explicit computation,

3Q ∼ 2
y

as y→∞. (1-19)

More generally, the iterates of the kernel of H computed iteratively through the scheme

H Tk+1 =−Tk, T0 =3Q, (1-20)

display a nontrivial tail at infinity:

Tk(y)∼ y2k−1(ck log y+ dk) for y� 1. (1-21)
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(ii). Tail dynamics. We now generalize the approach developed in [Raphaël and Rodnianski 2012; Merle
et al. 2011] and claim that (Tk)k≥1 correspond to unstable directions which can be excited in a universal
way. To see this, let us look for a slowly modulated solution to (1-18) of the form v(s, y) = Qb(s)(y)
with

b = (b1, . . . , bL), Qb = Q(y)+
L∑

i=1

bi Ti (y)+
L+2∑
i=2

Si (y) (1-22)

and with a priori bounds
bi ∼ bi

1, |Si (y)|. bi
1 yCi ,

so that Si is in some sense homogeneous of degree i in b1. Our strategy is the following: choose the
universal dynamical system driving the modes (bi )1≤i≤L which generates the least growing in space
solution Si . Let us illustrate the procedure.

O(b1). We do not adjust the law of b1 for the first term.3 We therefore obtain from (1-18) the equation

b1(H T1+3Q)= 0.

O(b2
1, b2). We obtain

(b1)s T1+ b2
13T1+ b2 H T2+ H S2 = b2

1 N L(T1, Q),

where N L(T1, Q) corresponds to nonlinear interaction terms. When considering the far away tail (1-21),
we have, for y large,

3T1 ∼ T1, H T2 =−T1,

and thus
(b1)s T1+ b2

13T1+ b2 H T2 ∼ ((b1)s + b2
1− b2)T1.

Hence the leading order growth is canceled by the choice

(b1)s + b2
1− b2 = 0. (1-23)

We then solve for
H S2 =−b2

1(3T1− T1)+ N L(T1, Q)

and check that S2� b2
1T1 for y large.

O(bk+1
1 , bk+1). At the k-th iteration, we obtain an elliptic equation of the form

(bk)s Tk + b1bk3Tk + bk+1 H Tk+1+ H S1 = bk+1
1 N Lk(T1, . . . , Tk, Q).

From (1-21), we have, for tails,
3Tk ∼ (2k− 1)Tk,

and therefore

(bk)s Tk + b1bk3Tk + bk+1 H Tk+1 ∼ ((bk)s + (2k− 1)b1bk − bk+1)Tk .

3If (b1)s =−c1b1, then −λs/λ∼ b1 ∼ e−c1s , and hence after integration in time, |log λ|. 1 and there is no blow-up.
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The cancellation of the leading order growth occurs for

(bk)s + (2k− 1)b1bk − bk+1 = 0.

We then solve for the remaining Sk+1 term and check that Sk+1� bk+1
1 Tk+1 for y large.

(iii). The universal system of ODE’s. The above approach leads to the universal system of ODE’s which
we stop after the L-th iterate:

(bk)s + (2k− 1)b1bk − bk+1 = 0, 1≤ k ≤ L , bL+1 ≡ 0, −
λs

λ
= b1. (1-24)

It turns out, and this is classical for critical problems, that an additional logarithmic gain related to the
growth (1-21) can be captured, and this turns out to be essential for the analysis.4 This leads to the sharp
dynamical system

(bk)s +

(
2k− 1+

2
|log b1|

)
b1bk − bk+1 = 0, 1≤ k ≤ L , bL+1 ≡ 0,

−
λs

λ
= b1,

ds
dt
=

1
λ2 .

(1-25)

It is easily seen (see Lemma 2.14) that (1-25) rewritten in the original t time variable admits solutions such
that λ(t) touches 0 in finite time T with the asymptotic (1-13). Equivalently in renormalized variables,

λ(s)∼
(log s)|d1|

sc1
, b(s)∼

c1

s
with c1 =

L
2L − 1

, d1 =
−2L

(2L − 1)2
. (1-26)

Moreover (see Lemma 2.15), the corresponding solution is stable for L = 1. This is the stable blow-up
regime, and unstable with (L − 1) directions of instabilities for L ≥ 2.

(iv). Decomposition of the flow and modulation equations. Let the approximate solution Qb be given by
(1-22), which by construction generates an approximate solution to the renormalized flow (1-18):

9b = ∂s Qb−1Qb+ b3Qb+
f (Qb)

y2 =Mod(t)+ O(b2L+2),

where, roughly,

Mod(t)=
L∑

i=1

[
(bi )s +

(
2i − 1+

2
|log b1|

)
b1bi − bi+1

]
Ti .

We localize Qb in the zone y ≤ B1 to avoid the irrelevant growing tails for y� 1/
√

b1. We then pick an
initial data of the form

u0(y)= Qb(y)+ ε0(y), |ε0(y)| � 1

4See, for example, [Raphaël and Rodnianski 2012] for further discussion.
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in some suitable sense where b(0) is chosen initially close to the exact excited solution to (1-24). From
standard modulation argument, we dynamically introduce a modulated decomposition of the flow

u(t, r)= (Qb(t)+ ε)

(
t,

r
λ(t)

)
= (Qb(t))

(
t,

r
λ(t)

)
+w(t, r), (1-27)

where the L + 1 modulation parameters (b(t), λ(t)) are chosen in order to manufacture the orthogonality
conditions

(ε(t), H k8M)= 0, 0≤ k ≤ M. (1-28)

Here 8M(y) is some fixed direction depending on some large constant M which generates an approxima-
tion of the kernel of the iterates of H ; see (3-7). This orthogonal decomposition, which, for each fixed
time t, directly follows from the implicit function theorem, now allows us to compute the modulation
equations governing the parameters (b(t), λ(t)). The Qb construction is precisely manufactured to
produce the expected ODE’s:5∣∣∣∣λs

λ
+ b1

∣∣∣∣+ L∑
i=1

∣∣∣∣(bi )s +

(
2i − 1+

2
|log b1|

)
b1bi − bi+1

∣∣∣∣. ‖ε‖loc+ b
L+ 3

2
1 , (1-29)

where ‖ε‖loc measures a local-in-space interaction with the harmonic map.

(v). Control of the radiation and monotonicity formula. According to (1-29), the core of our analysis
is now to show that local norms of ε are under control and do not perturb the dynamical system (1-24).
This is achieved using high order Sobolev norms adapted to the linear flow, and in particular we claim
that the orthogonality conditions (1-28) ensure the Hardy type coercivity of the iterated operator

E2k+2 =

∫
|H k+1ε|2 &

∫
|ε|2

(1+ y4k+4)(1+ |log y|2)
, 0≤ k ≤ L .

We now claim the we can control theses norms thanks to an energy estimate seen on the linearized
equation in original variables, that is, by working with w in (1-27) and not ε, as initiated in [Raphaël and
Rodnianski 2012; Merle et al. 2011]. Here the parabolic structure of the problem simplifies the analysis
and displays a repulsive property of the renormalized linearized operator; see the proof of (3-48). The
outcome is an estimate of the form

d
ds

{
E2k+2

λ4k+2

}
.

b2k+3
1

λ4k+2 |log b1|
ck , (1-30)

where the right hand side is controlled by the size of the error in the construction of the approximate
blow-up profile. Integrating this in time yields two contributions, one from data and one from the error:

E2k+2(s). λ4k+2(s)E2k+2(0)+ λ4k+2(s)
∫ s

s0

b2k+3
1

λ4k+2 |log b1|
ck dσ.

5See Lemma 3.3.
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The second contribution is estimated in the regime (1-26) using the fundamental algebra

(2k+ 3)− c1(4k+ 2)= 1+
2(L − k− 1)

2L − 1

{
≥ 1 for k ≤ L − 1,
< 1 for k = L .

(1-31)

Hence data dominates for k ≤ L − 1 up to a logarithmic error

λ4k+2(s)
∫ s

s0

b2k+3
1

λ4k+2 |log b1|
ck dσ ∼ λ4k+2(log s)C

∫ s

s0

dσ
σ 2k+3−c1(4k+2) ∼ λ

4k+2(log s)C ,

which yields the bound

E2k+2 . λ
4k+2
|log s|C , 0≤ k ≤ L − 1, (1-32)

which simply expresses the boundedness up to a log of w in some Sobolev type H k+1 norm. On the other
hand, for k = L , we can first derive a sharp logarithmic gain in (1-30),

d
ds

{
E2L+2

λ4k+2

}
.

b2L+3
1

λ4L+2|log b1|2
, (1-33)

and then the integral diverges from (1-31) and

λ4k+2(s)
∫ s

s0

b2L+3
1

λ4L+2|log b1|2
dσ ∼ λ4k+2(s)

∫ s

s0

1
σ

b2L+2
1

λ4L+2|log b1|2
dσ ∼

b2L+2
1

|log b1|2
� λ4k+2.

We therefore obtain

E2L+2 .
b2L+2

1

|log b1|2
. (1-34)

The difference between the controls (1-32) for 0≤ k ≤ L − 1 and the sharp control (1-34) is an essential
feature of the analysis and explains the introduction of an exactly order L + 1 Sobolev energy.

We can now reinject this bound into (1-29) and, thanks to the logarithmic gain in (1-33), show that
ε does not perturb the system (1-25), modulo the control of the associated unstable L − 1 modes by a
further adjusted choice of the initial data. This concludes the proof of Theorem 1.1.

This paper is organized as follows. In Section 2, we construct the approximate self-similar solutions
Qb and obtain sharp estimates on the error term 9b. We also exhibit an explicit solution to the dynamical
system (1-25) and show that it displays (L − 1) directions of instability. In Section 3, we set up the
bootstrap argument in Proposition 3.1 and derive the fundamental monotonicity of the Sobolev-type norm
‖H L+1ε‖2L2 in Proposition 3.6, which is the heart of the analysis. In Section 4, we close the bootstrap
bounds, which easily imply the blow-up statement of Theorem 1.1.

2. Construction of the approximate profile

This section is devoted to the construction of the approximate Qb blow-up profile and the study of the
associated dynamical system for b = (b1, . . . , bL).
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The linearized Hamiltonian. Let us start by recalling the structure of the harmonic map Q, which is the
unique up-to-scaling solution to

3Q = g(Q), Q(0)= 0, lim
r→+∞

Q(r)= π. (2-1)

This equation can be integrated explicitly.6 Q is smooth Q ∈C∞([0,+∞), [0, π)) and using (1-3) admits
a Taylor expansion7 to all order at the origin,

Q(y)=
p∑

i=0

ci y2i+1
+ O(y2p+3) as y→ 0, (2-2)

and at infinity,

Q(y)= π −
2
y
−

p∑
i=1

di

y2i+1 + O
(

1
y2p+3

)
as y→+∞. (2-3)

The linearized operator close to Q displays a remarkable structure. Indeed, let the potentials

Z = g′(Q), V = Z2
+3Z = f ′(Q), Ṽ = (1+ Z)2−3Z , (2-4)

which, from (2-2),(2-3), satisfy the following behavior at 0,+∞:

Z(y)=


1+

∑p

i=1
ci y2i
+ O(y2p+2) as y→ 0,

−1+
∑p

i=1

ci

y2i + O
(

1
y2p+2

)
as y→+∞,

(2-5)

V (y)=


1+

∑p

i=1
ci y2i
+ O(y2p+2) as y→ 0,

1+
∑p

i=1

ci

y2i + O
(

1
y2p+2

)
as y→+∞,

(2-6)

Ṽ (y)=


4+

∑p

i=1
ci y2i
+ O(y2p+2) as y→ 0,∑p

i=1

ci

y2i + O
(

1
y2p+2

)
as y→+∞,

(2-7)

where (ci )i≥1 stands for some generic sequence of constants which depend on the Taylor expansion of g
at (0, π). The linearized operator close to Q is the Schrödinger operator

H =−1+
V
y2 . (2-8)

and admits the factorization
H = A∗A (2-9)

with

A =−∂y +
Z
y
, A∗ = ∂y +

1+ Z
y

, Z(y)= g′(Q).

6See [Raphaël and Schweyer 2013] for more details.
7up to scaling
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Observe that, equivalently,

Au =−3Q
∂

∂y

(
u
3Q

)
, A∗u =

1
y3Q

∂

∂y
(uy3Q), (2-10)

and thus the kernels of A and A∗ on R∗
+

are explicit:

Au = 0 if and only if u ∈ Span(3Q), A∗u = 0 if and only if u ∈ Span
(

1
y3Q

)
. (2-11)

Hence the kernel of H on R∗
+

is

Hu = 0 if and only if u ∈ Span(3Q, 0) (2-12)

with

0(y)=3φ
∫ y

1

dx
x(3φ(x))2

=


O
(1

y

)
as y→ 0,

y
4
+ O

(
log y

y

)
as y→+∞.

(2-13)

In particular, H is a positive operator on Ḣ 1
rad with a resonance 3Q at the origin induced by the energy-

critical scaling invariance. We also introduce the conjugate Hamiltonian

H̃ = AA∗ =−1+
Ṽ
y2 , (2-14)

which is definite positive by construction and (2-11); see Lemma B.2.

Admissible functions. Explicit knowledge of the Green’s functions allows us to introduce the formal
inverse

H−1 f =−0(y)
∫ y

0
f3Qx dx +3Q(y)

∫ y

0
f 0x dx . (2-15)

Given a function f , we introduce the suitable derivatives of f by considering the sequence

f0 = f, fk+1 =

{
A∗ fk for k odd,
A fk for k even,

k ≥ 0. (2-16)

We shall introduce the formal notation
fk =Ak f.

We define a first class of admissible functions which display a suitable behavior both at the origin and
infinity.

Definition 2.1 (admissible functions). We say a smooth function f ∈ C∞(R+,R) is admissible of degree
(p1, p2) ∈ N×Z if

(i) f admits a Taylor expansion at the origin to all order

f (y)=
p∑

k=p1

ck y2k+1
+ O(y2p+3); (2-17)
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(ii) f and its suitable derivatives admit a bound, for y ≥ 2,

for all k ≥ 0, | fk(y)|.
{

y2p2−k−1(1+ |log y|) for 2p2− k ≥ 1,
y2p2−k−1 for 2p2− k ≤ 0.

(2-18)

H naturally acts on the class of admissible functions in the following way.

Lemma 2.2 (action of H and H−1 on admissible functions). Let f be an admissible function of degree
(p1, p2). Then

(i) for all l ≥ 1, H l f is admissible of degree

(max(p1− l, 0), p2− l), (2-19)

(ii) for all l, p2 ≥ 0, H−l f is admissible of degree

(p1+ l, p2+ l). (2-20)

Proof of Lemma 2.2. This a simple consequence of the expansions (2-2), (2-3).
Let us first show that H f is admissible of degree at least (max(p1−1, 1), p2−1), which yields (2-19)

by induction. We inject the Taylor expansions (2-17), (2-18) into (2-8). Near the origin, the claim directly
follows from the Taylor expansion (2-6) and the cancellation H(y)= cy+O(y3) at the origin. The claim
at infinity directly follows from the relation uk = fk+2 by definition.

Now let p2 ≥ 0 and u = H−1 f be given by (2-15), and let us show that u is admissible of degree at
least (p1+ 1, p2+ 1), which yields (2-20) by induction. From the relation uk = fk−2 for k ≥ 2, we need
only consider k = 0, 1. We first observe from the Wronskian relation 0′(3Q)− (3Q)′0 = 1/y that

A0 =−0′+
Z
y
0 =−0′+

(3Q)′

3Q
0 =−

1
y3Q

.

Thus, using the cancellation A3Q = 0, we compute

Au =−A0
∫ y

0
f3Qx dx =

1
y3Q

∫ y

0
f3Qx dx . (2-21)

Moreover, we may invert A using (2-10) and the boundary condition u = O(y3) from (2-15), which
yields

u =−3Q
∫ y

0

Au
3Q

dx =−3Q(y)
∫ y

0

dx
x(3Q(x))2

∫ x

0
f (z)3Q(z)z dz. (2-22)

Using (2-2), this yields the Taylor expansion near the origin:

Au =
p∑

k=p1

c(1)k y2k+2
+ O(y2p+4), u =−3Q

∫ y

0

Au
3Q

dx =
p∑

k=p1

c(2)k y2k+3
+ O(y2p+5),
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and hence u is of degree at least p1+1 near the origin. For y ≥ 1, from (2-21), (2-22), (2-18), we estimate
by brute force, for p2 ≥ 1,

|Au| = |u1|.
∫ y

0
τ 2p2−1(1+ |log τ |) dτ . y2p2(1+ |log y|),

|u|.
1
y

∫ y

0
τ 2p2(1+ |log τ |)τ dτ . y2p2+1(1+ |log y|),

and, for p2 = 0,

|Au| = |u1|.
∫ y

1
τ−1 dτ . 1+ |log y|,

|u|.
1
y

∫ y

0
(1+ |log τ |)τ dτ . y(1+ |log y|).

Hence u satisfies (2-18) with p2→ p2+ 1 and k = 0, 1. �

Let us give an explicit example of admissible functions which will be essential for the analysis. From
(2-2) and the cancellation A3Q = 0, 3Q is admissible of degree (0, 0), and hence Lemma 2.2 ensures
the following.

Lemma 2.3 (generators of the kernel of H i ). Let the sequence of profiles for i ≥ 1 be

Ti = (−1)i H−i3Q. (2-23)

Then Ti is admissible of degree (i, i).

b1-admissible functions. We will need an extended notion of admissible functions for the construction
of the blow-up profile. In the sequel, we consider a small enough 0< b1� 1 and let B0, χB0 be given by
(1-14), (1-15). Given l ∈ Z, we let

gl(b1, y)=


1+ |log(

√
b1 y)|

|log b1|
1y≤3B0 for l ≥ 1,

1y≤3B0

|log b1|
for l ≤ 0,

(2-24)

and, similarly,

g̃l(b1, y)=


1+ |log y|
|log b1|

1y≤3B0 for l ≥ 1,

1y≤3B0

|log b1|
for l ≤ 0.

(2-25)

We then define the extended class of b1-admissible functions.

Definition 2.4 (b1-admissible functions). We say a smooth function f ∈C∞(R∗
+
×R+,R) is b1-admissible

of degree (p1, p2) ∈ N×Z if the following hold:

(i) For y ≤ 1, f admits a representation

f (b1, y)=
J∑

j=1

h j (b1) f̃ j (y) (2-26)
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for some finite order J ∈ N∗, some smooth functions f̃ j (y) with a Taylor expansion at the origin to
all order, for all y ≤ 1,

f̃ j (y)=
p∑

k=p1

ck, j y2k+1
+ O(y2p+3), (2-27)

and some smooth functions h j (b1) away from the origin with

for all l ≥ 0,
∣∣∣∣∂ lh j

∂bl
1

∣∣∣∣. 1
bl

1
. (2-28)

(ii) The function f and its suitable derivatives (2-16) satisfy a uniform bound for some constant cp2 > 0:
for all y ≥ 2 and all k ≥ 0,

| fk(b1, y)|. y2p2−k−1g2p2−k(b1, y)+ y2p2−k−3
|log y|cp2 + Fp2,k,0(b1)y2p2−k−31y≥3B0, (2-29)

and, for all l ≥ 1,∣∣∣∣ ∂ l

∂bl
1

fk(b1, y)
∣∣∣∣

.
1

bl
1|log b1|

{
y2p2−k−1g̃2p2−k(b1, y)+ y2p2−k−3

|log y|cp2
}
+ Fp2,k,l(b1)y2p2−k−31y≥3B0, (2-30)

where, for all l ≥ 0,

Fp2,k,l(b1)=

{
0 for 2p2− k− 3≤−1,
1/(bl+1

1 |log b1|) for 2p2− k− 3≥ 0.
(2-31)

Remark 2.5. Let us consider the solution T1 to

H T1 =−3Q.

An explicit computation reveals the growth for y large

3Q ∼ 1
y
, T1(y)∼ y log y.

The b1-admissibility corresponds to a log b1 gain on the growth at∞, which is an essential feature of the
slowly growing tails in the construction of the modulated blow-up profile in Proposition 2.12. Observe for
example that (2-29), (2-31) imply the rough bound

| fk |. (1+ y)2p2−1−k,

∣∣∣∣∂ l fk

∂bl
1

∣∣∣∣. (1+ y)2p2−1−k

|log b1|
, k ≥ 0, l ≥ 1, (2-32)

and hence a logarithmic improvement with respect to (2-18). This gain will be measured in a sharp way
through the computation of suitable weighted Sobolev bounds; see Lemma 2.8.

We claim that H, H−1 and the scaling operators naturally act on the class of b1-admissible functions
in the following way.
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Lemma 2.6 (action of H , H−1 and scaling operators on b1-admissible functions). Let f be a b1-admissible
function of degree (p1, p2). Then we get:

(i) For all l ≥ 1, H l f is b1-admissible of degree

(max(p1− l, 0), p2− l). (2-33)

(ii) For all l, p2 ≥ 1, H−l f is b1-admissible of degree

(p1+ l, p2+ l). (2-34)

(iii) 3 f = y∂y f is admissible of degree (p1, p2).

(iv) b1∂ f/(∂b1) is admissible of degree (p1, p2).

Proof of Lemma 2.6. Proof of (i). We show that u=H f is b1-admissible of degree (max(p1−1, 0), p2−1),
which yields (2-33) by induction. Near the origin, the claim directly follows from the Taylor expansion
(2-27) with (2-26) and the cancellation H(y)= cy+ O(y3) at the origin. For y ≥ 1, H is independent of
b1 so that, by definition,

for all l ≥ 0,
∂ luk

∂bl
1
=
∂ l fk+2

∂bl
1
,

which satisfies (2-29), (2-30), (2-31) with p2→ p2−1 and Fp2−1,k,l(b1)= Fp2,k+2,l(b1). Equation (2-33)
follows.

Proof of (ii). Now let p2 ≥ 1 and let us show that u = H−1 f is admissible of degree (p1+ 1, p2+ 1),
which yields (2-34) by induction. Observe that, for k ≥ 2 and all l ≥ 0,

∂ luk

∂bl
1
=
∂ l fk−2

∂bl
1
,

which satisfies (2-29), (2-30), (2-31) with p2→ p2+ 1 and Fp2+1,k,l(b1) = Fp2,k−2,l(b1). It thus only
remains to estimate u, Au, and their derivatives in b1.

Estimate for u near the origin. The inversion formulas (2-21), (2-22) ensure the decomposition of variables
near the origin

u(b1, y)=
J∑

j=1

h j (b1)ũ j (y),

where, using (2-2) the Taylor expansion near the origin,

Aũ j =

p∑
k=p1

c(1)k, j y2k+2
+ O(y2p+4), ũ j =−3Q

∫ y

0

Aũ j

3Q
dx =

p∑
k=p1

c(2)k, j y2k+3
+ O(y2p+5).

Hence u is of degree at least p1+ 1 near the origin.
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Estimate for u1 = Au for y ≥ 1. We use the formula (2-21) and the assumption p2 ≥ 1 to estimate, for
1≤ y ≤ 3B0,

|Au|.
∫ y

0
| f | dτ .

∫ y

0
[τ 2p2−1g2p2−1(b1, τ )+ τ

2p2−3
|log τ |cp2 ] dτ

.
1

bp2
1 |log b1|

∫ √b1 y

0
σ 2p2−1(1+ |log σ |) dσ + O(y2p2−2

|log y|1+cp2 )

. y2p2
1+ |log(

√
b1 y)|

|log b1|
+ y2p2−2

|log y|1+cp2

= y2(p2+1)−2g2(p2+1)−1(b1, y)+ y2(p2+1)−4
|log y|1+cp2 ,

and, for y ≥ 3B0,

|Au|.
∫ y

0
| f | dτ .

∫ 3B0

0
τ 2p2−1g1(b1, τ ) dτ +

∫ y

3B0

Fp2,0,0(b1)τ
2p2−3 dτ + O(y2p2−2

|log y|1+cp2 )

.
1

bp2
1 |log b1|

+

∫ y

3B0

Fp2,0,0(b1)τ
2p2−3 dτ + O(y2p2−2

|log y|1+cp2 ).

If p2 = 1, which is the borderline case 2p2− 3=−1, then Fp2,0,0 = 0, and we thus get the bound, for all
p2 ≥ 1, y ≥ 3B0,

|Au|. y2p2−2
(

1
b1|log b1|

+ Fp2,0,0(b1)

)
+ y2p2−2

|log y|1+cp2

.
1

b1|log b1|
y2p2−2

+ y2(p2+1)−4
|log y|1+cp2 ,

and (2-31) is satisfied for (p2→ p2+ 1, k = 1) thanks to 2(p2+ 1)− 1− 3≥ 0.
We now pick l ≥ 1. H is independent of b1, so

H
(
∂ lu
∂bl

1

)
=
∂ l f
∂bl

1
,

and therefore, from (2-21), we compute

∂ lu1

∂bl
1
=

1
y3Q

∫ y

0
3Q

∂ l f
∂bl

1
x dx .

This yields the bound, for |y| ≤ 3B0,∣∣∣∣∂ lu1

∂bl
1

∣∣∣∣. ∫ y

0

1
bl

1|log b1|
{y2p2−1g̃2p2−1(b1, y)+ y2p2−3

|log y|cp2 } dy

.
1

bl
1|log b1|

[y2p2 g̃1(b1, y)+ y2p2−2
|log y|cp2+1

]

=
1

bl
1|log b1|

[y2(p2+1)−2g̃2(p2+1)−1(b1, y)+ y2(p2+1)−4
|log y|cp2+1

],
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and, for |y| ≥ 3B0,∣∣∣∣∂ lu1

∂bl
1

∣∣∣∣. 1
bl

1|log b1|

[
1

bp2
1
+ y2p2−2

|log y|cp2+1
]
+

∫ y

3B0

Fp2,0,l(b1)y2p2−3 dy.

Again, if p2 = 1, then Fp2,0,l = 0, and we therefore obtain the bound, for all p2 ≥ 1,∣∣∣∣∂ lu1

∂bl
1

∣∣∣∣. y2p2−2
[

1

bl+1
1 |log b1|

+ Fp2,0,l(b1)

]
+

y2p2−2
|log y|cp2+1

bl
1|log b1|

.
y2(p2+1)−1−3

bl+1
1 |log b1|

+
1

bl
1|log b1|

y2(p2+1)−1−3
|log y|cp2+1,

and (2-31) is satisfied for (p2→ p2+ 1, k = 1) thanks to 2(p2+ 1)− 1− 3≥ 0.

Estimate for u. Now, from the above bounds and (2-22), for 1≤ y ≤ 3B0 we estimate

|u|.
1
y

∫ y

0
|Au|τ dτ .

1
y

∫ y

0
[τ 2p2+1g2p2+1(b1, τ )+ τ

2p2−1
|log τ |1+cp2 ] dτ

. y2p2+1 1+ |log(
√

b1 y)|
|log b1|

+ y2p2−1
|log y|2+cp2

= y2(p2+1)−1g2(p2+1)(b1, y)+ y2(p2+1)−3
|log y|2+cp2

and for y ≥ 3B0 we estimate

|u|.
1
y

[∫ 3B0

0
τ 2p2+1g(b1, τ ) dτ +

∫ y

3B0

Fp2+1,1,0(b1)τ
2p2−1 dτ

]
+ y2(p2+1)−3

|log y|2+cp2

. y2p2−1
[

1
b1|log b1|

]
+ y2(p2+1)−3

|log y|2+cp2 ,

which satisfies (2-29) for (p2 → p2 + 1, k = 0) thanks to 2(p2 + 1)− 3− 1 ≥ 0. Finally, for l ≥ 1,
1≤ y ≤ 3B0,∣∣∣∣ ∂ lu

∂bl
1

∣∣∣∣. 1
y

∫ y

0

∣∣∣∣∂ lu1

∂bl
1

∣∣∣∣τ dτ .
1

ybl
1|log b1|

∫ y

0
[τ 2p2+1g̃2p2+1(b1, τ )+ τ

2p2−1
|log τ |1+cp2 ] dτ

.
1

bl
1|log b1|

[y2(p2+1)−1g̃2(p2+1)(b1, y)+ y2(p2+1)−3
|log y|cp2+1

],

and, for y ≥ 3B0,∣∣∣∣ ∂ lu
∂bl

1

∣∣∣∣. 1
y

[∫ 3B0

0

τ 2p2+1g̃1(b1, τ )

bl
1|log b1|

dτ +
∫ y

3B0

Fp2+1,1,l(b1)τ
2p2−1 dτ

]
+

y2(p2+1)−3
|log y|2+cp2

bl
1|log b1|

.
y2(p2+1)−3

bl+1
1 |log b1|

+
y2(p2+1)−3

|log y|2+cp2

bl
1|log b1|

.

Hence u is b1-admissible of degree (p1+ 1, p2+ 1).
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Proof of (iii) and (iv). The property (iv) is a direct consequence of the definition of b1 admissible functions
(Definition 2.4) and the trivial bound

g̃l(b1, y)
|log b1|

|. gl(b1, y).

We now turn to the proof of (iii). First we rewrite the scaling operator as

3= y∂y =−I d − y A+ (1+ Z).

Near the origin, the existence of the decomposition (2-26) follows directly from the even parity of the
Taylor expansion of Z at the origin (2-5). Far out, let

3 f =− f − y f1+ (1+ Z) f.

A simple induction argument similar to Lemma D.1 yields the expansion for k ≥ 1,

(y f1)k = ck+1 y fk+1+ ck+2 fk +

k∑
i=1

Pk,i (y) fi , (2-35)

with the improved decay

|∂ l
y Pk,i (y)|.

1
1+ y2+l+k−i for all l ≥ 0, y ≥ 1. (2-36)

We therefore obtain from (2-32), (2-35), (2-36), (2-5) the bound

|(3 f )k |. |y fk+1| + | fk | +

k∑
i=0

1
y2+k−i y2p2−i−1

. y2p2−k−1(g2p2−(k+1)+ g2p2−k)+ y2p2−k−3
|log y|cp2 + (Fp2,k,0+ Fp2,k+1,0)y2p2−k−31y≥3B0 .

We now observe the monotonicity g2p2−k−1 . g2p2−k from (2-24) and Fp2,k+1,0 . Fp2,k,0 from (2-31),
and thus (3 f )k satisfies (2-30), (2-31) for l = 0. Similarly, for k ≥ 0, l ≥ 1, we use the bound, for y & B0,

y2p2−k−5
|Fp2,i,l(b1)|.

y2p2−k−5

bl+1
1 |log b1|

.
y2p2−k−3

bl
1|log b1|

,

to estimate∣∣∣∣∂ l(3 f )k
∂bl

1

∣∣∣∣. ∣∣∣∣y ∂ l fk+1

∂bl
1

∣∣∣∣+ ∣∣∣∣∂ l fk

∂bl
1

∣∣∣∣
+

k∑
i=0

1
yk−i+2

{
1

bl
1|log b1|

[y2p2−i−1
+ y2p2−i−3

|log y|cp2 ] + Fp2,i,l(b1)y2p2−i−31y≥3B0

}
.

1
bl

1|log b1|
[y2p2−k−1g̃2p2−(k+1)+ g̃2p2−k)+ y2p2−k−3

|log y|cp2 ]

+ (Fp2,k,l + Fp2,k+1,l)y2p2−k−31y≥3B0,

and the bounds g̃2p2−k−1 . g̃2p2−k , Fp2,k+1,l . Fp2,k,l now ensure (2-30), (2-31) for l ≥ 1. �
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Slowly growing tails. Let us give an example of admissible profiles which will be central in the con-
struction of the leading order slowly modulated blow-up profile. Given b1 > 0 small enough, we let the
radiation be

6b1 = H−1
{−cb1χB0/43Q+ db1 H [(1−χB0)3Q]} (2-37)

with

cb1 =
4∫

χB0/4(3Q)2
, db1 = cb1

∫ B0

0
χB0/43Q0y dy. (2-38)

Lemma 2.7 (slowly growing tails). Let (Ti )i≥1 be given by (2-23). Then the sequence of profiles for i ≥ 1

2i =3Ti − (2i − 1)Ti − (−1)i+1 H−i+16b1 (2-39)

is b1-admissible of degree (i, i).

Proof of Lemma 2.7. Step 1: Structure of T1. Let us consider T1 = −H−13Q, which is admissible of
degree (1, 1) from Lemma 2.3. For y ≥ 1, explicit computation using the expansion (2-3) into (2-15)
yields

T1(y)= y log y+ e0 y+ O
(
|log y|2

y

)
, 3T1 = y log y+ (1+ e0)y+ O

(
|log y|2

y

)
(2-40)

for some universal constant e0. Hence we get the essential cancellation

3T1− T1 = y+ O
(
|log y|2

y

)
. (2-41)

We now prove that 2i is of order (i, i) by induction on i .

Step 2: i = 1. By definition,

6b1 = 0(y)
∫ y

0
cb1χB0/4(3Q)2x dx −3Q(y)

∫ y

0
cb1χB0/403Qx dx + db1(1−χB0)3Q(y), (2-42)

and thus, by the definition of cb1 , db1 in (2-38),

6b1 =

{
cb1 T1 for y ≤ B0/4,
40 for y ≥ 3B0.

(2-43)

In particular,6b1 admits a representation (2-26) near the origin with J =1, h1(b1)=cb1 , and f̃1(y)=T1(y),
and thus an expansion (2-27) of order p1 = 1 from the first step. A direct computation on the formula
(2-38) yields the bounds

cb1 =
2

|log b1|

[
1+ O

(
1

|log b1|

)]
, |db1 |.

1
b1|log b1|

, (2-44)

and ∣∣∣∣∂ lcb1

∂bl
1

∣∣∣∣. 1
bl

1|log b1|2
,

∣∣∣∣∂ ldb1

∂bl
1

∣∣∣∣. 1

bl+1
1 |log b1|

for all l ≥ 1, (2-45)

which imply (2-28).
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For y ≥ 3B0, from (2-13), (2-43), we estimate

6b1(y)= y+ O
(

log y
y

)
, (2-46)

and, for 2≤ y ≤ 3B0,

6b1(y)= cb1

(
y
4
+ O

(
log y

y

))[∫ y

0
χB0/4(3Q)2x dx

]
− cb13Q(y)

∫ y

1
O(1)x dx

= y

∫ y
0 χB0/4(3Q)2∫
χB0/4(3Q)2

+ O
(

1+ y
|log b1|

)
. (2-47)

We thus conclude from (2-41), (2-47) that, for y ≤ 3B0,

21(y)= y− y

∫ y
0 χB0/4(3Q)2∫
χB0/4(3Q)2

+ O
(

1+ y
|log b1|

)
+ O

(
|log y|2

1+ y

)
= O

(
1+ y
|log b1|

(1+ |log(y
√

b1)|)

)
,

which, together with the bounds (2-40), (2-46) for y ≥ 3B0, yields the bound, for y ≥ 2,

|21(y)|. yg2(b1, y)+ O
(
|log y|2

y

)
. (2-48)

Now, from (2-21), (2-37), we compute

A6b1 =
1

y3Q

∫ y

0
3Q[−cb1χB0/43Q+ db1 H [(1−χB0)3Q]]x dx,

and from (2-44) we estimate, for y ≤ 3B0,

A6b1 =−
4

y3Q
+

cb1

y3Q

∫ B0

y
(3Q)2x dx + O

(
db1

B2
0

1B0≤y≤3B0

)
=−2+ O(g1(b1, y)) (2-49)

and, for y ≥ 3B0,

A6b1 =−
4

y3Q
=−2+ O

(
1
y2

)
. (2-50)

Moreover, a simple rescaling argument yields the formula

A(3u)= Au+3Au−
3Z

y
u

and thus, using (2-40), (2-5),

A(3T1− T1)=3AT1−
3Z

y
T1 =3AT1+ O

(
log y

y2

)
.

Now, from (2-21), (2-3), we estimate

AT1 =−

[
1

y3Q

∫ y

0
(3Q)2x dx

]
=−2 log y+ O

(
log y

y2

)
,

and, similarly,

3AT1 =−2+ O
(

log y
y2

)
,
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from which

A(3T1− T1)=−2+ O
(

log y
y2

)
. (2-51)

We thus conclude from (2-48), (2-49), (2-50), (2-51) that

|A21|. g1(b1, y)+ O
(

log y
y2

)
.

We now turn to the control of H21. First, from a simple rescaling argument, we compute

H(3u)= 2Hu+3Hu−
3V
y2 u, (2-52)

which implies

H(3T1− T1)=−3Q−32 Q+ O
(

log y
y3

)
= O

(
log y

y3

)
.

Hence, according to (2-24), we get the desired cancellation

|H21|. |H(3T1− T1)| + |H6b1 |.
1

(1+ y)|log b1|
1y≤3B0 + O

(
log y

y3

)
.

The control of higher order suitable derivatives in y now follows by iteration using (2-3), (2-6). Hence
21 satisfies the bound (2-29) with p2 = 1, l = 0.

We now take derivatives in b1, in which case from (2-42), for l ≥ 1,

∂ l21

∂ lb1
=−

∂ l6b1

∂bl
1
= 0(y)

∫ y

0

∂ l

∂bl
1
{cb1χB0/4}(3Q)2x dx

−3Q(y)
∫ y

0

∂ l

∂bl
1
{cb1χB0/4}03Qx dx +

∂ l

∂bl
1
{db1(1−χB0)}3Q(y),

and from (2-43),
∂ l21

∂ lb1
=−

∂ l6b1

∂bl
1
(y)= 0 for y ≥ 3B0.

From (1-14), we estimate by brute force ∣∣∣∣∂ lχB0

∂bl
1

∣∣∣∣. 1B0≤y≤2B0

bl
1

and thus, from the Leibniz rule and (2-45), for y ≤ 3B0, we obtain∣∣∣∣∂ l21

∂bl
1

∣∣∣∣. y
bl

1|log b1|2
(1+ |log y|)+

[ l∑
k=1

1

bl−k
1 bk

1|log b1|2

]
y1B0/2≤y≤3B0

+

[ l∑
k=0

1

bl−k
1 bk+1

1 |log b1|

]
1B0/2≤y≤3B0

y

.
y(1+ |log y|)

bl
1|log b1|2

.
yg̃1

bl
1|log b1|

.
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The control of higher suitable derivatives (∂ lAk21/(∂bl
1))l,k≥1 follows similarly using the explicit formula

(2-37). This concludes the proof of the estimate (2-30) with p2 = 1, and thus 21 is b1-admissible of
degree (1, 1).

Step 3: i→ i + 1. We assume the claim for 2i and prove it for 2i+1. From (2-23), (2-39), (2-52),

H2i+1 = H(3Ti+1)− (2i + 1)H Ti+1− (−1)i H−i+16b1

=3H Ti+1− (2i − 1)H Ti+1+ (−1)i+1 H−i+16b1 −
3V
y2 Ti+1

=−[(3Ti − (2i − 1)Ti − (−1)i+1 H−i+16b1] −
3V
y2 Ti+1

=−2i −
3V
y2 Ti+1.

The induction hypothesis ensures that 2i is b1-admissible of order (i, i). Moreover, near the origin, Ti+1

is from Lemma 2.3 of degree i + 1 and hence the development (2-6) ensures that (3V/y2)Ti+1 is of
degree i + 1 near the origin. For y ≥ 1, (2-6) ensures the improved bound∣∣∣∣ ∂ p

∂y p

(
3V
y2

)∣∣∣∣. 1
y p+4 , p ≥ 0,

and since Ti+1 is of degree i + 1, we obtain from the Leibniz rule the rough bound, for all k ≥ 0,∣∣∣∣Ak
[
3V
y2 Ti+1

]∣∣∣∣. k∑
p=0

1
yk−p+4 y2(i+1)−p−1

|log y|ci . y2i−k−3
|log y|ci .

Hence (3V/y2)Ti+1, which is independent of b1, satisfies (2-29) and is b1-admissible of degree (i, i).
We conclude from Lemma 2.6 that 2i+1 is admissible of order (i + 1, i + 1). �

Sobolev bounds on b1-admissible functions. The property of b1-admissibility leads to simple Sobolev
bounds with sharp logarithmic gains. We let B1 be given by (1-14).

Lemma 2.8 (estimate of b1-admissible function). Let i ≥ 1 and f be a b1-admissible function of degree
(i, i). Then ∫

y≤2B1

|H k f |2 .
|log b1|

4(i−k−1)

b2(i−k)
1 |log b1|2

for 0≤ k ≤ i − 1, (2-53)∫
y≤2B1

|H k f |2 . 1 for k ≥ i, (2-54)

and ∫
y≤2B1

1+ |log y|2

1+ y4 |H k f |2+
∫

y≤2B1

1+ |log y|2

1+ y2 |AH k f |2 . |log b1|
3 for k ≥ i − 1. (2-55)
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Remark 2.9. The boundedness of the Sobolev norm (2-54) in the borderline case k = i is a consequence
of the definition (2-24). Indeed, ∫

y≤3B0

∣∣∣∣1+ |log
√

b1 y|
(1+ y)|log b1|

∣∣∣∣2 ∼ |log b1|,

but ∫
y≤3B0

∣∣∣∣ 1
(1+ y)|log b1|

∣∣∣∣2 . 1. (2-56)

Proof of Lemma 2.8. Let k ≥ 0. Near the origin, the cancellation A(y) = y2
+ O(y) and the Taylor

expansion (2-27) ensure that H k f is bounded uniformly in y ≤ 1, |b1| ≤
1
2 . For y ≥ 1, from (2-29) we

estimate∫
y≤2B1

|H k f |2 =
∫
| f2k |

2 .
∫

3B0≤y≤2B1

|Fi,2k,0(b1)y2i−2k−31y≥3B0 |
2

+

∫
1≤y≤2B1

|y2i−2k−1g2i−2k(b,y)+ y2i−2k−3
|log y|ci |

2.

For k ≥ i , Fi,2k,0 = 0 and from (2-24) we estimate (2-56)∫
y≤2B1

|H k f |2 . 1+
∫

1≤y≤2B1

∣∣∣∣y2(i−k)−1 1y≤3B0

|log b1|
+ y2i−2k−3

|log y|ci

∣∣∣∣2 . 1.

For k ≤ i−1, the growth can be controlled in a sharp way. Indeed, using Fi,2k,0= 0 for k = i−1 precisely
to avoid an additional logarithmic error, we estimate∫

y≤2B1

|H k f |2 .
B4i−4k−4

1

b2
1|log b1|2

+
1

|log b1|2

∫
y≤3B0

y4(i−k)−2(1+ |log
√

b1 y|2)+ B4(i−k)−4
1 |log b1|

2cp2+1

. 1+
B4(i−k)

0

|log b1|2
+
|log b1|

4(i−k−1)

b2(i−k)
1 |log b1|2

.
|log b1|

4(i−k−1)

b2(i−k)
1 |log b1|2

.

Finally, for k ≥ i − 1, using the rough bound (2-32), we estimate∫
y≤2B1

1+ |log y|2

1+ y4 |H k f |2+
∫

y≤2B1

1+ |log y|2

1+ y2 |AH k f |2

.
∫

y≤2B1

1+ |log y|2

1+ y4 |(1+ y)2i−2k−1
|
2
+

∫
y≤2B1

1+ |log y|2

1+ y2 |(1+ y)2i−2(k+1)−1
|
2

. |log b1|
3. �

Slowly modulated blow-up profiles. In this section we construct the approximate modulated blow-up
profile. Let us start by introducing the notion of homogeneous admissible functions.
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Definition 2.10 (homogeneous functions). Given parameters b= (bk)1≤k≤L and (p1, p2, p3)∈N×Z×N,
we say a function S(b, y) is homogeneous of degree (p1, p2, p3) if it is of the form

S(b, y)=
∑

J=( j1,..., jL ), |J |2=p3

[
cJ

( L∏
k=1

b jk
k

)
S̃J (b1, y)

]
,

where

J = ( j1, . . . , jL) ∈ Z×NL−1, |J |2 =
L∑

k=1

k jk,

and for some b1-admissible profiles S̃J of degree (p1, p2) in the sense of Definition 2.4. We note that

deg(S)= (p1, p2, p3).

Remark 2.11. We allow for negative powers of b1 only in the above definition. This ensures from
Lemma 2.6 that the space of homogeneous functions of a given degree is stable by application of the
operator b1∂/(∂b1). It is also stable by multiplication by cb1 from (2-44), (2-45).

We may now proceed to the construction of the slowly modulated blow-up profiles.

Proposition 2.12 (construction of the approximate profile). Let M > 0 be a large enough universal
constant. Then there exists a small enough universal constant b∗(M) > 0 such that the following holds
true. Let there be a C1 map

b = (bk)1≤k≤L : [s0, s1] 7→ (−b∗(M), b∗(M))L

with a priori bounds on [s0, s1]

0< b1 < b∗(M), |bk |. bk
1 for 2≤ k ≤ L . (2-57)

Let B1 be given by (1-14) and (Ti )1≤i≤L be given by (2-23). Then there exist homogeneous profiles{
Si (b, y), 2≤ i ≤ L + 2,
S1 = 0

with 
deg(Si )= (i, i, i),
∂Si

∂b j
= 0 for 2≤ i ≤ j ≤ L

(2-58)

such that

Qb(s)(y)= Q(y)+αb(s)(y), αb(y)=
L∑

i=1

bi Ti (y)+
L+2∑
i=2

Si (y) (2-59)

generates an approximate solution to the renormalized flow

∂s Qb−1Qb+ b13Qb+
f (Qb)

y2 =9b+Mod(t) (2-60)
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with

Mod(t)=
L∑

i=1

[(bi )s + (2i − 1+ cb1)b1bi − bi+1]

[
Ti +

L+2∑
j=i+1

∂S j

∂bi

]
. (2-61)

Here we used the convention

bL+1 = 0, T0 =3Q,

and 9b satisfies

(i) the global weighted bounds

for all 1≤ k ≤ L ,
∫

y≤2B1

|H k9b|
2 . b2k+2

1 |log b1|
C , (2-62)∫

y≤2B1

1+ |log y|2

1+ y4 |H L9b|
2
+

∫
y≤2B1

1+ |log y|2

1+ y2 |AH L9b|
2 .

b2L+3
1

|log b1|2
, (2-63)∫

y≤2B1

|H L+19b|
2 .

b2L+4
1

|log b1|2
; (2-64)

and

(ii) for all 0≤ k ≤ L + 1,
∫

y≤2M
|H k9b|

2 . MC b2L+6
1 (2-65)

for some universal constant C = C(L) > 0 (improved local control).

Proof of Proposition 2.12. Step 1: Computation of the error. From (2-59), (2-60) we compute

∂s Qb−1Qb+ b13Qb+
f (Qb)

y2 = A1+ A2

with

A1 = b13Q+
L∑

i=1

[(bi )s Ti + bi H Ti + b1bi3Ti ] +

L+2∑
i=2

[∂s Si + H Si + b13Si ],

A2 =
1
y2 [ f (Q+αb)− f (Q)− f ′(Q)αb].

Let us rearrange the first sum using the definition (2-23):

A1 = b13Q+ ∂s SL+2+ b13SL+2+

L∑
i=1

[(bi )s Ti − bi Ti−1+ b1bi3Ti ]+

L+1∑
i=2

[∂s Si + b13Si ]+

L+1∑
i=1

H Si+1

= [∂s SL+2+ b13SL+2] + [H SL+2+ ∂s SL+1+ b13SL+1] +

L∑
i=1

[(bi )s + (2i − 1+ cb1)b1bi − bi+1]Ti

+

L∑
i=1

[H Si+1+ ∂s Si + b1bi (3Ti − (2i − 1+ cb1)Ti )+ b13Si ],

where cb1 is given by (2-38). We now treat the time dependence using the anticipated approximate
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modulation equation

∂s Si =

L∑
j=1

(b j )s
∂Si

∂b j
=

L∑
j=1

((b j )s+(2 j−1+cb1)b1b j−b j+1)
∂Si

∂b j
−

L∑
j=1

((2 j−1+cb1)b1b j−b j+1)
∂Si

∂b j
,

and thus, using (2-58),

A1 =

{
b13SL+2−

L∑
i=1

((2i−1+cb1)b1bi−bi+1)
∂SL+2

∂bi

}
+

{
H SL+2+b13SL+1−

L∑
i=1

((2i−1+cb1)b1bi−bi+1)
∂SL+1

∂bi

}

+

L∑
i=1

[
H Si+1+b1bi (3Ti−(2i−1+cb1)Ti )+b13Si−

i−1∑
j=1

((2 j−1+cb1)b1b j−b j+1)
∂Si

∂b j

]

+

L∑
i=1

[(bi )s+(2i−1+cb1)b1bi−bi+1]

[
Ti+

L+2∑
j=i+1

∂S j

∂bi

]
.

We now expand A2 using a Taylor expansion:

A2 =
1
y2

{L+2∑
j=2

f ( j)(Q)
j !

α
j
b + R2

}
with

R2 =
αL+3

b

(L + 2)!

∫ 1

0
(1− τ)L+2 f (L+3)(Q+ ταb) dτ. (2-66)

Using the notation (1-16) for the 2L+1 uplet J = (i1, . . . , iL , j2, . . . , jL+2) ∈N2L+1, we sort the Taylor
polynomial8

|J |1 =
L∑

k=1

ik +

L+2∑
k=2

jk, |J |2 =
L∑

k=1

kik +

L+2∑
k=2

k jk,

and thus
L+2∑
j=2

f ( j)(Q)
j !

α
j
b =

L+2∑
j=2

f ( j)(Q)
j !

∑
|J |1= j

cJ

L∏
k=1

bik
k T ik

k

L+2∏
k=2

S jk
k =

L+2∑
i=2

Pi + R1,

where

Pi =

L+2∑
j=2

f ( j)(Q)
j !

∑
|J |1= j,|J |2=i

cJ

L∏
k=1

bik
k T ik

k

L+2∏
k=2

S jk
k , (2-67)

R1 =

L+2∑
j=2

f ( j)(Q)
j !

∑
|J |1= j,|J |2≥L+3

cJ

L∏
k=1

bik
k T ik

k

L+2∏
k=2

S jk
k . (2-68)

8Remember that bi is order bi
1 from (2-57).
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We finally use the definitions (2-23), (2-39), (2-61) to rewrite

3Ti − (2i − 1+ cb1)Ti =2i + (−1)i+1 H−i+16b1 − cb1 Ti =2i + (−1)i+1 H−i+1(6b1 − cb1 T1),

which, together with (2-60), yields the following expression for the error:

9b =

L∑
i=1

(−1)i+1b1bi H−i+1(6b1 − cb1 T1)

+

{
b13SL+2−

L∑
i=1

((2i − 1+ cb1)b1bi − bi+1)
∂SL+2

∂bi
+

1
y2 [R1+ R2]

}
+

{
H SL+2+ b13SL+1+

PL+2

y2 −

L∑
i=1

((2i − 1+ cb1)b1bi − bi+1)
∂SL+1

∂bi

}

+

L∑
i=1

[
H Si+1+ b1bi2i + b13Si +

Pi+1

y2 −

i−1∑
j=1

((2 j − 1+ cb1)b1b j − b j+1)
∂Si

∂b j

]
. (2-69)

We now construct iteratively the sequence of profiles (Si )1≤i≤L+2 through the scheme{
S1 = 0,
Si =−H−18i , 2≤ i ≤ L + 2,

(2-70)

where, for 1≤ i ≤ L ,

8i+1 = b1bi2i + b13Si +
Pi+1

y2 −

i−1∑
j=1

((2 j − 1+ cb1)b1b j − b j+1)
∂Si

∂b j
, (2-71)

8L+2 = b13SL+1+
PL+2

y2 −

L∑
i=1

((2i − 1+ cb1)b1bi − bi+1)
∂SL+1

∂bi
. (2-72)

Step 2: Control of 8i , Si . We claim by induction on i that 8i is homogeneous with

deg(8i )= (i − 1, i − 1, i) for 2≤ i ≤ L + 2 (2-73)

and
∂8i

∂b j
= 0 for 2≤ i ≤ j ≤ L + 2. (2-74)

This implies from Lemma 2.6 that Si given by (2-70) is homogeneous and satisfies (2-58) for 2≤ i ≤ L+2.

Case 1: i = 1. We compute explicitly

82 = b2
121+ b2

1
f ′′(Q)
2y2 T 2

1 ,

which satisfies (2-74). Recall from (1-3) that f = gg′ is odd and π periodic so that the expansions (2-2),
(2-3) yield, at the origin,

f ( j)(Q)
y2 =

{∑p
k=−1 y2k+1

+ O(y2p+3) for j even,∑p
k=−1 y2k

+ O(y2p+2) for j odd
(2-75)
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and, at infinity,

f ( j)(Q)
y2 =

{∑p
k=1 y−2k−1

+ O(y−2p−3) for j even,∑p
k=1 y−2k

+ O(y−2p−2) for j odd.
(2-76)

From Lemmas 2.3 and 2.7, T1 and 21 are respectively admissible and b1-admissible of order (1, 1). In
particular, we have the Taylor expansion near the origin

f ′′(Q)
2y2 T 2

1 =

p∑
k=1

ck y2k+1
+ O(y2p+3), p ≥ 1,

and the bound at infinity∣∣∣∣Ak
(

f ′′(Q)
2y2 T 2

1

)∣∣∣∣. 1
y3+k y2

|log y|2 . y2−k−3
|log y|2, k ≥ 0.

Hence ( f ′′(Q)/2y2)T 2
1 is b1-admissible of degree (1, 1). We conclude that 82 is homogeneous with

deg(82)= (1, 1, 2).

Case 2: i→ i + 1. We estimate all terms in (2-71). Equation (2-74) holds by direct inspection. From
Lemma 2.7, b1bi2i is homogeneous of degree (i, i, i + 1). From Lemma 2.6, b13Si is homogeneous of
degree (i, i, i + 1) by induction. For j ≥ 2, by definition and induction we have that

((2 j − 1+ cb1)b1b j − b j+1)
∂Si

∂b j

is homogeneous of degree (i, i, i + 1). For j = 1, we rewrite the term

((1+ cb1)b
2
1− b2)

∂Si

∂b1
=

(
(1+ cb1)b1−

b2

b1

)(
b1
∂Si

∂b1

)
and, recalling Remark 2.11, conclude that this term is also homogeneous of degree (i, i, i + 1). It thus
remains to estimate the nonlinear term Pi+1/y2 in (2-71), which, from (2-67), is a linear combination of
monomials of the form9

MJ (y)=
f ( j)(Q)

y2

i∏
k=1

bik
k T ik

k

i∏
k=2

S jk
k , |J |1 = j, |J |2 = i + 1, 2≤ j ≤ i + 1.

Using (2-75), (2-76), we conclude that MJ is admissible with the following development at the origin:
for j = 2l,

MJ (y)= y−1 y
∑

k≥1 ik(2k+1)+ jk(2k+1)(c0+ c2 y2
+ · · ·+ cp y2p

+ o(y2p+1))

= y2|J |2+ j−1(c0+ c2 y2
+ · · ·+ cp y2p

+ o(y2p+1))

= y2(i+l)+1(c0+ c2 y2
+ · · ·+ cp y2p

+ o(y2p+1)),

9Observe that terms involving k ≥ i + 1 are indeed forbidden in the last product from the constraint |J |1 ≥ 2, |J |2 = i + 1.
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and, for j = 2l + 1,

MJ (y)= y−2 y
∑

k≥1 ik(2k+1)+ jk(2k+1)(c0+ c2 y2
+ . . .+ cp y2p

+ o(y2p+1))

= y2|J |2+ j−2(c0+ c2 y2
+ . . .+ cp y2p

+ o(y2p+1))

= y2(i+l)+1(c0+ c2 y2
+ . . .+ cp y2p

+ o(y2p+1)).

Now j ≥ 2 ensures l ≥ 1, and hence MJ admits a Taylor expansion (2-27) at the origin with p1 = i + 1.
For y ≥ 1, the rough bound (2-32) and (2-18) imply

|S j |. b j
1 y2 j−1, |T j |. y2 j−1

|log y|C ,

which, together with (2-76), yields the control

MJ (y). |log y|C
{

y2|J |2− j−3
= y2(i−l)−1 for j = 2l ≥ 2,

y2|J |2− j−2
= y2(i−l)−1 for j = 2l + 1≥ 3

. y2i−3
|log y|C , (2-77)

which is compatible with the degree i control at infinity (2-29). The control of further derivatives in
(y, b1) follows from (2-32) and the Leibniz rule. This concludes the proof of (2-73).

Step 3: Estimate on the error. From (2-69), we compute

9b =9
(0)
b +9

(1)
b , (2-78)

9
(0)
b =

L∑
i=1

(−1)i+1b1bi H−i+16̃b1 with 6̃b1 =6b1 − cb1 T1, (2-79)

9
(1)
b = b13SL+2−

L∑
i=1

((2i − 1+ cb1)b1bi − bi+1)
∂SL+2

∂bi
+

1
y2 [R1+ R2]. (2-80)

Estimates for 9(0)
b . First observe from (2-43), (2-79) that

Supp 6̃b1 ⊂

{
y ≥

B0

4

}
. (2-81)

We extract from (2-42) the rough bound for k ≥ 0 and B0/4≤ y ≤ 2B1

|H−k6̃b1 |. 1+ y2k+1.

Thus ∫
y≤2B1

|H−k6̃b1 |
2 . b−2k−2

1 |log b1|
C , 0≤ k ≤ L .

On the other hand, from (2-37) and the cancellation H3Q = 0, we have

|H6̃b1 |.
1

|log b1|

(
1

1+ y

)
1y≥B0/4, (2-82)

|H k6̃b1 |.
1

B2(k−1)
0 |log b1|

(
1

1+ y

)
1B0≤y≤3B0 for k ≥ 2. (2-83)
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This leads to the bound∫
y≤2B1

|H6̃b1 |
2 .

1
|log b1|

,

∫
|H k6̃b1 |

2 .
b2k−2

1

|log b1|2
for k ≥ 2.

Thus from (2-57), for 0≤ k ≤ L , we estimate∫
y≤2B1

|H k9
(0)
b |

2 . |log b1|
C

L∑
i=1

b2+2i
1 b2(k−i+1)−2

1 . b2k+2
1 |log b1|

C

and the sharp logarithmic gain∫
|H L+19

(0)
b |

2 .
L∑

i=1

b2+2i
1 ‖H L+2−i 6̃b1‖

2
L2 .

1
|log b1|2

L∑
i=1

b2+2i
1 b2(L+1−i+1)−2

1 .
b2L+4

1

|log b1|2
.

Similarly, using (2-82), (2-83),∫
y≤2B1

1+ |log y|2

1+ y4 |H L9
(0)
b |

2 .
L∑

i=1

b2+2i
1

∫
y≤2B1

1+ |log y|2

1+ y4 |H L−i+16̃b1 |
2

.
L∑

i=1

b2+2i
1

∫
y≥B0/4

1+ |log y|2

1+ y4

b2(L−i+1−1)
1

|log b1|2(1+ y2)
. b2L+4

1 ,

and ∫
y≤2B1

1+ |log y|2

1+ y2 |AH L9
(0)
b |

2 .
L∑

i=1

b2+2i
1

∫
y≤2B1

1+ |log y|2

1+ y2 |AH L−i+16̃b1 |
2

.
L∑

i=1

b2+2i
1 b2(L−i)

1

∫
y≥B0/4

1+ |log y|2

y4(1+ y2)

. b2L+4
1 |log b1|

C .

Estimates for 9(1)
b . By construction, SL+2 is homogeneous of degree (L+2, L+2, L+2) and thus so is

3SL+2. We therefore estimate from (2-53), (2-57), for all 0≤ k ≤ L + 1,∫
y≤2B1

|b1 H k3SL+2|
2 .

b2
1b2L+4

1 |log b1|
4(L+2−k−1)

b2(L+2−k)
1 |log b1|2

=
b2k+2

1

|log b1|2
|log b1|

4(L+1−k),

and, using the rough bound (2-32),∫
y≤2B1

(1+ |log y|2)
[
|b1 H L3SL+2|

2

1+ y4 +
|b1 AH L3SL+2|

2

1+ y2

]
. b2

1b2L+4
1

∫
y≤2B1

1+ |log y|2

1+ y4 (1+ y2)2(L+2)−1−2L . b2L+4
1 |log b1|

C .
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We now turn to the control of R1, which, from (2-68), is a linear combination of terms of the form

M̃J =
f ( j)(Q)

y2

L∏
k=1

bik
k T ik

k

L+2∏
k=2

S jk
k , |J |1 = j, |J |2 ≥ L + 3, 2≤ j ≤ L + 2.

At the origin, the homogeneity of Si and the admissibility of Ti ensure the bound, for y ≤ 1,

|M̃J (y)|. bL+3
1

{
y2|J |2+ j−1

= y2(|J |2+l)−1 for j = 2l,
y2|J |2+ j−2

= y2(|J |2+l)−1 for j = 2l + 1
. bL+3

1 y2L+6,

and similarly for (2-77), for 1≤ y ≤ 2B1,

|M̃J (y)|. b|J |21 |log b1|
C
{

y2|J |2− j−3
= y2(|J |2−l)−3 for j = 2l

y2|J |2− j−2
= y2(|J |2−l)−3 for j = 2l + 1

. b|J |21 y2|J |2−5
|log b1|

C ,

where we used j ≥ 2, and similarly for higher derivatives. This ensures the control at the origin

|H k M̃J (y)|. bL+3
1 for 0≤ k ≤ L + 1, y ≤ 1

and, for y ≥ 1,
|H k M̃J (y)|. b|J |21 y2(|J |2−k)−5, 0≤ k ≤ L + 1.

Thus, for all 0≤ k ≤ L + 1,∫
y≤2B1

|H k M̃J |
2 . b2L+6

1 + b2|J |2
1 |log b1|

C
∫

y≤2B1

y4(|J |2−k)−10 . b2L+6
1 + b2|J |2

1 B4(|J |2−k)−8
1 |log b1|

C

. b2L+6
1 + b2k+4

1 |log b1|
C . b2k+3

1 .

Similarly,∫
y≤2B1

(1+ |log y|2)
[
|H L M̃J |

2

1+ y4 +
|AH L M̃J |

2

1+ y2

]
. b2L+6

1 + |log b1|
C
∫

1≤y≤2B1

1+ |log y|2

1+ y4 |b|J |21 y2(|J |2−L)−5
|
2

. b2L+6
1 + b2|J |2

1 B4(|J |2−L)−12
1 |log b1|

C . b2L+6
1 |log b1|

C .

It remains to estimate the R2 term given by (2-66). Near the origin y ≤ 1, by construction, we have
|αb|. b1 y3, and thus, for 0≤ k ≤ L + 1, y ≤ 1,∣∣∣∣H k

(
R2

y2

)∣∣∣∣. bL+3
1 y3(L+3)−2−2k . bL+3

1 .

For y ≥ 1, we use the rough bound by construction, for 1≤ y ≤ 2B1,

|αb|. b1 y|log y|C ,

which yields the bound, for 0≤ k ≤ L + 1, 1≤ y ≤ 2B1,∣∣∣∣H k
(

R2

y2

)∣∣∣∣. bL+3
1 |log b1|

C yL+3−2−2k,
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from which, for 0≤ k ≤ L + 1,∫
y≤2B1

|H k
(

R2

y2

)
|
2 . b2L+6

1 + b2L+6
1 |log b1|

C
∫

1≤y≤2B1

y2L+2−4k

.

{
b2L+6

1 for 2L + 2− 4k <−1,
b2L+6

1 B2L+4−4k
1 |log b1|

C
= b2k+L+4

1 |log b1|
C

. b2k+5
1 |log b1|

C .
Similarly, ∫

y≤2B1

(1+ |log y|2)
[

1
1+ y4 |H

L
(

R2

y2

)
|
2
+

1
1+ y2 |AH L

(
R2

y2

)
|
2
]
. b2L+5

1 .

The collection of above estimates yields (2-62), (2-64).
Finally, the local control (2-65) is a simple consequence of the support localization (2-81) and the fact

that 9(1)
b given by (2-80) satisfies by construction a bound on compact sets:

|H k9
(1)
b (y)|. MC bL+3

1 for all y ≤ 2M � B0 and all 0≤ k ≤ L + 1.

This concludes the proof of Proposition 2.12. �

Localization of the profile. We now proceed to a simple localization procedure of the profile Qb to avoid
some irrelevant growth in the region y ≥ 2B1.

Proposition 2.13 (localization). Under the assumptions of Proposition 2.12, assume the a priori bound

|(b1)s |. b2
1. (2-84)

Consider the localized profile

Q̃b(s)(y)= Q(y)+ α̃b(s)(y), α̃b(y)=
L∑

i=1

bi T̃i (y)+
L+2∑
i=2

S̃i (y), (2-85)

with
T̃i = χB1 Ti , S̃i = χB1 Si . (2-86)

Then

∂s Q̃b−1Q̃b+ b13Q̃b+
f (Q̃b)

y2

= 9̃b+

L∑
i=1

[(bi )s + (2i − 1+ cb1)b1bi − bi+1]

[
T̃i +χB1

L+2∑
j=i+1

∂S j

∂bi

]
, (2-87)

where 9̃b satisfies

(i) the weighted bounds

for all 1≤ k ≤ L ,
∫
|H k9̃b|

2 . b2k+2
1 |log b1|

C , (2-88)∫
y≤2B1

1+ |log y|2

1+ y4 |H L9b|
2
+

∫
1+ |log y|2

1+ y2 |AH L9̃b|
2 .

b2L+3
1

|log b1|2
, (2-89)∫

|H L+19̃b|
2 .

b2L+4
1

|log b1|2
, (2-90)
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and

(ii) for all 0≤ k ≤ L + 1,
∫

y≤2M
|H k9̃b|

2 . MC b2L+6
1 (2-91)

for some universal constant C = C(L) > 0 (improved local control).

Proof of Proposition 2.13. From localization we compute

∂s Q̃b−1Q̃b+ b13Q̃b+
f (Q̃b)

y2

= χB1

{
∂s Qb−1Qb+ b13Qb+

f (Qb)

y2

}
+ (∂sχB1)αb− 2∂yχB1∂yαb−αb1χB1 + b1αb3χB1

+ b1(1−χB1)3Q+
1
y2 { f (Q̃b)− f (Q)−χB1( f (Qb)− f (Q))}

so that

9̃b = χB19b+ 9̃
(0)
b

with

9̃
(0)
b =

1
y2 { f (Q̃b)− f (Q)−χB1( f (Qb)− f (Q))}

+ (∂sχB1)αb− 2∂yχB1∂yαb−αb1χB1 + b1αb3χB1 + b1(1−χB1)3Q. (2-92)

Note that all terms on the right hand side above are localized in B1 ≤ y ≤ 2B1 except the last one, for
which Supp((1−χB1)3Q)⊂ {y ≥ B1}. Hence (2-65) implies (2-91). The bounds (2-88), (2-89), (2-90)
for χB19b follow verbatim as in the proof of (2-62), (2-63), (2-64).

To estimate the second error induced by localization in (2-92), first observe from (2-84) the bound

|∂sχB1 |.
|(b1)s |

b1
|yχ ′B1

|. b11B1≤y≤2B1 .

Moreover, from the admissibility of Ti and the b1-admissibility of Si , Ti terms dominate for y ∼ B1 in αb,
and we estimate from (2-18), for all k ≥ 0 and B1 ≤ y ≤ 2B1,∣∣∣∣ ∂k

∂yk αb

∣∣∣∣. L∑
i=1

bi
1 y2i−k−1(1+ |log b1|).

|log b1|

Bk+1
1

. (2-93)

This yields, for all 1≤ k ≤ L ,∫ ∣∣∣∣H k
(
(∂sχB1)αb− 2∂yχB1∂yαb−αb1χB1 + b1αb3χB1

)∣∣∣∣2
.
∫

B1≤y≤2B1

∣∣∣∣b1|log b1|

B2k+1
1

+
|log b1|

B2k+1+2
1

∣∣∣∣2 . b2
1

B4k
1

|log b1|
C

. b2k+2
1 |log b1|

C (2-94)
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and∫ ∣∣∣∣H L+1
(
(∂sχB1)αb− 2∂yχB1∂yαb−αb1χB1 + b1αb3χB1

)∣∣∣∣2
.
∫

B1≤y≤2B1

∣∣∣∣ b1|log b1|

B2(L+1)+1
1

+
|log b1|

B2(L+1)+1+2
1

∣∣∣∣2 . b2L+4
1

|log b1|2
. (2-95)

We next estimate by brute force ∣∣∣∣ dk

dyk [(1−χB1)3Q]
∣∣∣∣. 1

yk+1 1y≥B1,

from which, for all 1≤ k ≤ L + 1,∫
|H k(b1(1−χB1)3Q)|2 . b2

1

∫
B1≤y≤2B1

1
y4k+2 .

b2k+2
1

|log b1|4k .

It remains to estimate the nonlinear term, for which, using (2-93) and | f ′|. 1, we estimate∣∣∣∣ ∂k

∂yk

{
1
y2 [ f (Q̃b)− f (Q)−χB1( f (Qb)− f (Q))]

}∣∣∣∣. |log b1|

Bk+1
1

.

The corresponding terms are estimated as in (2-94), (2-95). �

Study of the dynamical system for b = (b1, . . . , bL). The essence of the construction of the Qb profile
is to generate according to (2-61) the finite dimensional dynamical system (1-25) for b = (b1, . . . , bL):

(bk)s +

(
2k− 1+

2
log s

)
b1bk − bk+1 = 0, 1≤ k ≤ L , bL+1 ≡ 0. (2-96)

We show in this section that (2-96) admits exceptional solutions, and that the linearized operator close to
these solutions is explicit.

Lemma 2.14 (approximate solution for the b system). Let L ≥ 2 and let s0 � 1 be a large enough
universal constant. We write the sequences

c1 =
L

2L − 1
,

ck+1 =−
L − k

2L − 1
ck, 1≤ k ≤ L − 1,

(2-97)


d1 =−

2L
(2L − 1)2

,

dk+1 =−
L − k

2L − 1
dk +

4L(L − k)
(2L − 1)2

ck, 1≤ k ≤ L − 1.
(2-98)

Then the explicit choice

be
k(s)=

ck

sk +
dk

sk log s
, 1≤ k ≤ L , be

L+1 ≡ 0 (2-99)
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generates an approximate solution to (2-96) in the sense that

(be
k)s +

(
2k− 1+

2
log s

)
be

1be
k − be

k+1 = O
(

1
sk+1(log s)2

)
, 1≤ k ≤ L . (2-100)

The proof of Lemma 2.14 is an explicit computation which is left to the reader. We now claim that this
solution corresponds to a codimension (L − 1) exceptional manifold.

Lemma 2.15 (linearization). 1. Computation of the linearized system. Let

bk(s)= be
k(s)+

Uk(s)
sk(log s)5/4

, 1≤ k ≤ L , bL+1 =UL+1 ≡ 0, (2-101)

and note U = (U1, . . . ,UL). Then

(bk)s +

(
2k− 1+

2
log s

)
b1bk − bk+1

=
1

sk+1(log s)5/4

[
s(Uk)s − (ALU )k + O

(
1√

log s
+
|U | + |U |2

log s

)]
, (2-102)

where

AL = (ai, j )1≤i, j,≤L with



a11 =−1/(2L − 1),
ai,i+1 = 1, 1≤ i ≤ L − 1,
a1,i =−(2i − 1)ci , 2≤ i ≤ L ,
ai,i = (L − i)/(2L − 1), 2≤ i ≤ L ,
ai, j = 0 otherwise.

(2-103)

2. Diagonalization of the linearized matrix. AL is diagonalizable:

AL = P−1
L DL PL , DL = diag

{
−1,

2
2L − 1

,
3

2L − 1
, . . . ,

L
2L − 1

}
. (2-104)

Proof of Lemma 2.15. Step 1: Linearization. A simple computation from (2-99) ensures

(bk)s +

(
2k− 1+

2
log s

)
b1bk − bk+1

=
1

sk+1(log s)5/4

[
s(Uk)s − kUk + O

(
|U |

log s

)]
+ O

(
1

sk+1(log s)2

)
+

1
sk+1(log s)5/4

[
(2k− 1)ckU1+ (2k− 1)c1Uk −Uk+1+ O

(
|U | + |U |2

log s

)]
,

and then the relation
(2k− 1)c1− k =

(2k− 1)L
2L − 1

− k =−
L − k

2L − 1
ensures

(bk)s +

(
2k− 1+

2
log s

)
b1bk − bk+1

=
1

sk+1(log s)5/4

[
s(Uk)s + (2k− 1)ckU1−

L − k
2L − 1

Uk −Uk+1+ O
(

1√
log s
+
|U | + |U |2

log s

)]
,
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which is equivalent to (2-102), (2-103).

Step 2 Diagonalization. The proof follows by computing the characteristic polynomial. The cases
L = 2, 3 are done by direct inspection. Let us assume L ≥ 4. We compute

PL(X)= det(AL − X Id)

by developing on the last row. This yields

PL(x)= (−1)L+1(−1)(2L − 1)cL

+(−X)
{
(−1)L(−1)(2L−3)cL−1+

(
1

2L − 1
−X

)[
(−1)L−1(−1)(2L−5)cL−2+

(
2

2L − 1
−X

)
· · ·

]}
.

We use the recurrence relation (2-97) to compute explicitly

(−1)L+1(−1)(2L − 1)cL

+ (−X)
{
(−1)L(−1)(2L − 3)cL−1+

(
1

2L − 1
− X

)
[(−1)L−1(−1)(2L − 5)cL−2]

}
= (−1)L

{
(2L − 3)cL−1

(
X −

1
2L − 3

)
+ (2L − 5)cL−2

(
X −

1
2L − 1

)
X
}
.

We now compute from (2-97), for 1≤ k ≤ L − 2,

(2L − (2k+ 1))cL−k

(
X −

1
2L − (2k+ 1)

)
+ (2L − (2k+ 3))cL−(k+1)X

(
X −

1
2L − 1

)
= (2L − (2k+ 3))cL−(k+1)

[
X
(

X −
1

2L − 1

)
−

2L − (2k+ 1)
2L − (2k+ 3)

k+ 1
2L − 1

(
X −

1
2L − (2k+ 1)

)]
= (2L − (2k+ 3))cL−(k+1)

(
X −

k+ 1
2L − 1

)(
X −

1
2L − (2k+ 3)

)
. (2-105)

We therefore obtain inductively

PL(X)= (−1)L
{
(2L−3)cL−1

(
X −

1
2L−3

)
+ (2L−5)cL−2

(
X −

1
2L−1

)
X
}

+ (−X)
(

1
2L−1

− X
)(

2
2L−1

− X
)[
(−1)L−2(−1)(2L−7)cL−3+

(
3

2L−1
− X

)
· · ·

]
= (−1)L

(
X −

2
2L−1

){
(2L−5)cL−2

(
X −

1
2L−5

)
+ (2L−7)cL−3 X

(
X −

1
2L−1

)}
+ (−X)

(
1

2L−1
− X

)(
2

2L−1
− X

)(
3

2L−1
− X

)
[(−1)L−3(−1)(2L−9)cL−4 · · · ]

= (−1)L
(

X −
2

2L−1

)
· · ·

(
X −

L−2
2L−1

)
×

{
3c2

(
X −

1
3

)
+ X

(
X −

1
2L−1

)(
c1+ X −

L−1
2L−1

)}
.
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We use (2-105) with k = L − 2 to compute the last polynomial:

3c2

(
X −

1
3

)
+ X

(
X −

1
2L − 1

)(
c1+ X −

L − 1
2L − 1

)
=

{
3c2

(
X −

1
3

)
+ c1 X

(
X −

1
2L − 1

)}
+ X

(
X −

1
2L − 1

)(
X −

L − 1
2L − 1

)
= c1

(
X −

L − 1
2L − 1

)
(X − 1)+ X

(
X −

1
2L − 1

)(
X −

L − 1
2L − 1

)
=

(
X −

L − 1
2L − 1

)[
L

2L − 1
(X − 1)+ X

(
X −

1
2L − 1

)]
=

(
X −

L − 1
2L − 1

)(
X −

L
2L − 1

)(
X + 1

)
.

We have therefore computed

PL(x)= (−1)L
(

X −
2

2L − 1

)
· · ·

(
X −

L − 2
2L − 1

)(
X −

L − 1
2L − 1

)(
X −

L
2L − 1

)(
X + 1

)
and (2-104) is proved. �

3. The trapped regime

In this section, we introduce the main dynamical tools at the heart of the proof of Theorem 1.1. We start
with describing the bootstrap regime in which the blow-up solutions of Theorem 1.1 will be trapped. We
then exhibit the Lyapounov type control of H k norms, which is the heart of our analysis.

Modulation. We describe in this section the set of initial data leading to the blow-up scenario of
Theorem 1.1. Let there be a smooth 1-corotational initial data

v(0, x)=

∣∣∣∣∣
g(u0(r)) cos θ
g(u0(r)) sin θ
z(u0(r))

with ‖∇u0−∇Q‖L2 � 1, (3-1)

and let v(t, x) be the corresponding smooth solution to (1-1) with life time 0< T <+∞. From (A-1),
we may decompose on a small time interval

v(t, x)=

∣∣∣∣∣
g(u(t, r)) cos θ
g(u(t, r)) sin θ
z(u(t, r)),

(3-2)

where

ε̃(t, r)= u(t, r)− Q(r) satisfies (A-4). (3-3)

Moreover, from a standard argument,

T <+∞ implies ‖1v(t)‖L2 →+∞ as t→ T . (3-4)
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We now modulate the solution and introduce from a standard argument10 using the initial smallness (3-1)
the unique decomposition of the flow defined on a small time t ∈ [0, t1]:

u(t, r)= (Q̃b(t)+ ε(t, r))λ(t), λ(t) > 0, b = (b1, . . . , bL), (3-5)

where ε(t) satisfies the L + 1 orthogonality conditions

(ε, H k8M)= 0, 0≤ k ≤ L (3-6)

and the smallness

‖∇ε(t)‖L2 +

∥∥∥∥ε(t)y

∥∥∥∥
L2
+ |b(t)| � 1.

Here, given M > 0 large enough, we define

8M =

L∑
p=0

cp,M H p(χM3Q), (3-7)

where

c0,M = 1, ck,M = (−1)k+1

∑k−1
p=0 cp,M(χM H p(χM3Q), Tk)

(χM3Q,3Q)
, 1≤ k ≤ L ,

is manufactured to ensure the nondegeneracy

(8M ,3Q)= (χM3Q,3Q)= 4 log M(1+ o(1)) as M→+∞ (3-8)

and the cancellation, for all 1≤ k ≤ L ,

(8M , Tk)=

k−1∑
p=0

cp,M(H p(χM3Q), Tk)+ ck,M(−1)k(χM3Q,3Q)= 0. (3-9)

In particular,
(H i T j ,8M)= (−1) j (χM3Q,3Q)δi, j , 0≤ i, j ≤ L . (3-10)

Observe also by induction that

for all 1≤ p ≤ L , |cp,M |. M2p, (3-11)

from which ∫
|8M |

2 .
∫
|χM3Q|2+

L∑
p=1

c2
p,M

∫
|H p(χM3Q)|2 . log M. (3-12)

The existence of the decomposition (3-5) is a standard consequence of the implicit function theorem and
the explicit relations∣∣∣∣( ∂

∂λ
(Q̃b)λ,

∂

∂b1
(Q̃b)λ, . . . ,

∂

∂bL
(Q̃b)λ

)∣∣∣∣
λ=1, b=0

= (3Q, T1, . . . , TL),

10See, for example, [Martel and Merle 2000; Merle and Raphaël 2005a; Raphaël and Rodnianski 2012] for a further
introduction to modulation.
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which, using (3-9), imply the nondegeneracy of the Jacobian∣∣∣∣( ∂

∂(λ, b j )
(Q̃b)λ, H i8M

)
1≤ j≤L , 0≤i≤L

∣∣∣∣
λ=1, b=0

= (χM3Q,3Q)L+1
6= 0.

The decomposition (3-5) exists as long as t < T and ε(t, r) remains small in the energy topology. Observe
also from (3-3), (3-5), and the explicit structure of Q̃b that ε satisfies (A-4), and in particular Lemma B.5
applies. In other words, we may measure the regularity of the map through the following coercive norms
of ε: the energy norm

‖ε‖2H =

∫
|∂yε|

2
+

∫
|ε|2

y2 , (3-13)

and higher order Sobolev norms adapted to the linearized operator

E2k =

∫
|H kε|2, 1≤ k ≤ L + 1. (3-14)

Setting up the bootstrap. We now choose our set of initial data in a more restricted way. More precisely,
we pick a large enough time s0� 1 and rewrite the decomposition (3-5) as

u(t, r)= (Q̃b(s)+ ε)(s, y), (3-15)

where we introduce the renormalized variables

y =
r
λ(t)

, s(t)= s0+

∫ t

0

dτ
λ2(τ )

(3-16)

and measure time in s, which will be proved to be a global time. We introduce a decomposition (2-101):

bk = be
k +

Uk

sk(log s)5/4
, 1≤ k ≤ L , bk+1 =Uk+1 ≡ 0. (3-17)

We consider the variable
V = PLU, (3-18)

where PL refers to the diagonalization (2-104) of AL . We assume that initially

|V1(0)| ≤ 1, (V2(0), . . . , VL(0)) ∈BL−1(2). (3-19)

We also assume the explicit initial smallness of the data:∫
|∇ε(0)|2+

∫ ∣∣∣∣ε(0)y

∣∣∣∣2 ≤ b2
1(0), (3-20)

|E2k(0)| ≤ [b1(0)]10L+4, 1≤ k ≤ L + 1. (3-21)

Note also that, up to a fixed rescaling, we may always assume

λ(0)= 1. (3-22)

Proposition 3.1 (bootstrap). There exists

(V2(0), . . . , VL(0)) ∈BL−1(2)
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such that the following bounds hold for all s ≥ s0:

• Control of the radiation:∫
|∇ε(s)|2+

∫ ∣∣∣∣ε(s)y

∣∣∣∣2 ≤ 10(b1(0))
1
4 , (3-23)

|E2k(s)| ≤ b(2k−1)2L/(2L−1)
1 (s)|log b1(s)|K , 1≤ k ≤ L , (3-24)

|E2L+2(s)| ≤ K
b2L+2

1 (s)
|log b1(s)|2

. (3-25)

• Control of the unstable modes:

|V1(s)| ≤ 2, (V2(s), . . . , VL(s)) ∈BL−1(2). (3-26)

Remark 3.2. Note that the bounds (3-24) easily imply11 the control of the H 2 norm of the full map (3-2)∫
|1v(s)|2 < C(s) <+∞, s < s∗,

and therefore the blow-up criterion (3-4) ensures that the map is well defined on [s, s∗).

Equivalently, given (ε(0), V (0)) as above, we introduce the time

s∗ = s∗(ε(0), V (0))= sup{s ≥ s0 such that (3-23), (3-24), (3-25), (3-26) hold on [s0, s]}.

Observe that the continuity of the flow and the initial smallness (3-20), (3-21) ensure that s∗ > 0. We
then assume by contradiction that

for all (V2(0), . . . , VL(0)) ∈BL−1(2), s∗ <+∞, (3-27)

and look for a contradiction. Our main claim is that the a priori control of the unstable modes (3-26)
is enough to improve the bounds (3-23), (3-24), (3-25), and then the claim follows from the (L − 1)
codimensional instability (2-104) of the system (2-96) near the exceptional solution be through a standard
topological argument à la Brouwer.

The rest of this section is devoted to the derivation of the key lemmas for the proof of Proposition 3.1.
We will make a systematic implicit use of the interpolation bounds of Lemma C.1, which are a consequence
of the coercivity of the E2k+2 energy given by Lemma B.5.

Equation for the radiation. Recall the decomposition of the flow

u(t, r)= (Q̃b(t)+ ε)(s, y)= (Q+ α̃b(t))λ(s)+w(t, r).

We use the rescaling formulas

u(t, r)= v(s, y), y =
r
λ(t)

, ∂t u =
1

λ2(t)

(
∂sv−

λs

λ
3v

)
λ

11See [Raphaël and Schweyer 2013] for the full computation.
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to derive the equation for ε in renormalized variables,

∂sε−
λs

λ
3ε+ Hε = F − M̃od= F. (3-28)

Here H is the linearized operator given by (2-8), M̃od(t) is given by

M̃od(t)=−
(
λs

λ
+ b1

)
3Q̃b+

L∑
i=1

[(bi )s + (2i − 1+ cb1)b1bi − bi+1]

[
T̃i +χB1

L+2∑
j=i+1

∂S j

∂bi

]
, (3-29)

and

F =−9̃b+ L(ε)− N (ε), (3-30)

where L is the linear operator corresponding to the error in the linearized operator from Q to Q̃b

L(ε)=
f ′(Q)− f ′(Q̃b)

y2 ε, (3-31)

and the remainder term is the purely nonlinear term

N (ε)=
f (Q̃b+ ε)− f (Q̃b)− ε f ′(Q̃b)

y2 . (3-32)

We also need to write the flow (3-28) in original variables. For this we use the rescaled operators

Aλ =−∂r +
Zλ
r
, A∗λ = ∂r +

1+ Zλ
r

,

Hλ = A∗λAλ =−1+
Vλ
r2 , H̃λ = AλA∗λ =−1+

Ṽλ
r2 , (3-33)

and the renormalized function

w(t, r)= ε(s, y).

Then (3-28) becomes

∂tw+ Hλw =
1
λ2 Fλ. (3-34)

Observe from (2-99) that, for s < s∗,

|bk |. bk
1, 0< b1� 1, (3-35)

and hence the a priori bound (2-57) holds.

Modulation equations. Let us now compute the modulation equations for (b, λ) as a consequence of the
choice of orthogonality conditions (3-6).



1756 PIERRE RAPHAËL AND REMI SCHWEYER

Lemma 3.3 (modulation equations). We have the bound on the modulation parameters∣∣∣∣λs

λ
+ b1

∣∣∣∣+ L−1∑
k=1

|(bk)s + (2k− 1+ cb1)b1bk − bk+1|. b
L+ 3

2
1 , (3-36)∣∣∣∣(bL)s + (2L − 1+ cb1)b1bL

∣∣∣∣. 1√
log M

(√
E2L+2+

bL+1
1

|log b1|

)
. (3-37)

Remark 3.4. Note that this implies in the bootstrap the rough bound

|(b1)s | ≤ 2b2
1, (3-38)

and, in particular, (2-84) holds.

Proof of Lemma 3.3. Step 1: Law for bL . Let

D(t)=
∣∣∣∣λs

λ
+ b1

∣∣∣∣+ L∑
k=1

|(bk)s + (2k− 1+ cb1)b1bk − bk+1|. (3-39)

We take the inner product of (3-28) with H L8M and, using the orthogonality (3-6), obtain

(M̃od(t), H L8M)=−(9̃b, H L8M)− (H Lε, H8M)−

(
−
λs

λ
3ε− L(ε)+ N (ε), H L8M

)
. (3-40)

First, from the construction of the profile, (3-29), the localization Supp(8M)⊂ [0, 2M] from (3-7), and
the identities (3-8), (3-9), (3-10), we compute

(H L(M̃od(t)),8M)

=−

(
b1+

λs

λ

)
(H L3Q̃b,8M)+

L∑
i=1

[(bi )s+(2i−1+cb1)b1bi−bi+1]

(
T̃i+χB1

L+2∑
j=i+1

∂S j

∂bi
, H L8M

)
= (−1)L(3Q,8M)((bL)s+(2L−1+cb1)b1bL)+O(MC b1|D(t)|).

The linear term in (3-40) is estimated12 from (3-24), (3-12):

|(H Lε, H8M)|. ‖H L+1ε‖L2

√
log M =

√
log ME2L+2.

The remaining nonlinear term is estimated using the Hardy bounds of Appendix A:∣∣∣∣(−λs

λ
3ε+ L(ε)+ N (ε), H L8M

)∣∣∣∣. MC b1(
√

E2L+2+ |D(t)|).

12Observe that we do not use the interpolated bounds of Lemma C.1, but directly the definition (3-14) of E2L+2, and hence
the dependence of the constant in M is explicit. This will be crucial for the analysis.
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We inject these estimates into (3-40) and conclude from (3-8) and the local estimate (2-91) that

|(bL)s + (2L − 1+ cb1)b1bL | =

√
log ME2L+2

log M
+MC b1|D(t)| +MC b

L+ 3
2

1

.
1√

log M

(√
E2L+2+

bL+1
1

|log b1|

)
+MC b1|D(t)|. (3-41)

Step 2: Degeneracy of the law for λ and (bk)1≤k≤L−1. We now take the inner product of (3-28) with
H k8M , 0≤ k ≤ L − 1 and obtain

(M̃od(t), H k8M)=−(9̃b, H k8M)− (H k+1ε, H8M)−

(
−
λs

λ
3ε− L(ε)+ N (ε), H k8M

)
. (3-42)

Note first that the choice of orthogonality conditions (3-6) gets rid of the linear term in ε:

for all 0≤ k ≤ L − 1, (H k+1ε,8M)= 0.

Next, from (3-29), the localization Supp(8M)⊂ [0, 2M] from (3-7), and the identities (3-8), (3-9), (3-10),
we compute

(H k(M̃od(t)),8M)

=−

(
b+

λs

λ

)
(H k3Q̃b,8M)+

L∑
i=1

[(bi )s+(2i−1+cb1)b1bi−bi+1]

(
T̃i+χB1

L+2∑
j=i+1

∂S j

∂bi
, H k8M

)

= (3Q,8M)

{
−(λs/λ+b1) for k = 0,
(−1)k((bk)s+(2k−1+cb1)b1bk−bk+1) for 1≤ k ≤ L−1

+O(MC b1|D(t)|).

Nonlinear terms are easily estimated using the Hardy bounds∣∣∣∣(−λs

λ
3ε+ L(ε)+ N (ε), H k8M

)∣∣∣∣. MC b1(
√

E2L+2+ |D(t)|). b
L+ 3

2
1 + b1 MC

|D(t)|.

Injecting this bound into (3-42) together with the local bound (2-91) yields the first bound,

D(t). b
L+ 3

2
1 , (3-43)

and (3-36) is proved. Injecting this bound into (3-41) yields (3-37). �

Improved modulation equation for bL . Observe that (3-37), (3-25) yield the pointwise bound

|(bL)s + (2L − 1+ cb1)b1bL |.
1√

log M

(√
E2L+2+

bL+1
1

|log b1|

)
.

bL+1
1

|log b1|
,

which is worse than (3-36) and critical to close (3-26). We claim that a |log b1| is easily gained up to an
oscillation in time.

Lemma 3.5 (improved control of bL ). Let Bδ = Bδ0 and

b̃L = bL +
(−1)L(H Lε, χBδ3Q)

4δ|log b1|
. (3-44)
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Then

|b̃L − bL |. b
L+ 1

2
1 (3-45)

and b̃L satisfies the pointwise differential equation

|(b̃L)s + (2L − 1+ cb1)b1b̃L |.
C(M)√
|log b1|

[√
E2L+2+

bL+1
1

|log b1|

]
. (3-46)

Proof of Lemma 3.5. We commute (3-28) with H L and take the scalar product with χBδ3Q for some
small enough universal constant 0< δ� 1. This yields

d
ds
{(H Lε, χBδ3Q)}− (H Lε,3Q∂s(χBδ ))

=−(H L+1ε, χBδ3Q)+
λs

λ
(H L3ε, χBδ3Q)+ (F − M̃od, H LχBδ3Q).

The linear term is estimated by Cauchy–Schwarz:

|(H L+1ε, χBδ3Q)|. C(M)
√
|log b1|

√
E2L+2.

Using (3-36), we similarly estimate

|(H Lε,3Q∂s(χBδ ))| +

∣∣∣∣λs

λ
(H L3ε, χBδ3Q)

∣∣∣∣
. C(M)

|(b1)s |

b1

1
bCδ

1

√
E2L+2+

b1

bCδ
1

C(M)
√

E2L+2 .
√
|log b1|

√
E2L+2.

The estimate on the error terms easily follows from the Hardy bounds

|(L(ε), H LχBδ3Q)| + (N (ε), H LχBδ3Q)|.
b1

bCδ
1

C(M)
√

E2L+2 .
√
|log b1|

√
E2L+2.

From (2-91) we further estimate

|(H Lε, 9̃b)|.
bL+3

1

bCδ
1

C(M)
√

E2L+2 .
√
|log b1|

√
E2L+2.

From (3-36), (3-29), we now compute

−(M̃od, H LχBδ3Q)

= O
(

bL+3/2
1

bCδ
1

)
+ [(bL)s + (2L − 1+ cb1)b1bL ]

(
H L T̃L +

L+2∑
j=L+1

H L
[
χB1

∂S j

∂bL

]
, χBδ3Q

)

= (−1)L
[(bL)s + (2L − 1+ cb1)b1bL ]

[
(3Q, χBδ3Q)+ O(b1−Cδ

1 )

]
+ O

(
bL+3/2

1

bCδ
1

)
= (−1)L

[(bL)s + (2L − 1+ cb1)b1bL ]4δ|log b1| + O(
√
|log b1|

√
E2L+2+ bL+1

1 ).
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The collection of above bounds yields the preliminary estimate∣∣∣∣ d
ds
{(H Lε, χBδ3Q)}+ (−1)L[((bL)s + (2L − 1+ cb1))b1bL

]
4δ|log b1|

∣∣∣∣
. C(M)

√
|log b1|

[√
E2L+2+

bL+1
1

|log b1|

]
(3-47)

By brute force, from (3-44) we estimate

|b̃L − bL |. |log b1|
C bL+1−Cδ

1 . b
L+ 1

2
1

and we therefore rewrite (3-47) using (3-38) as

|(b̃L)s+(2L−1+cb1)b1b̃L |. |(H Lε,χBδ3Q)|
∣∣∣∣ d
ds

{
1

4δ logb1

}∣∣∣∣+C(M)
√
|logb1|

|logb1|

[√
E2L+2+

bL+1
1

|logb1|

]
. b1−Cδ

1

√
E2L+2+

C(M)√
|logb1|

[√
E2L+2+

bL+1
1

|logb1|

]
and (3-46) is proved. �

The Lyapounov monotonicity. We now turn to the core of the argument which is the derivation of a
suitable Lyapounov functional for the E2L+2 energy.

Proposition 3.6 (Lyapounov monotonicity). We have

d
dt

{
1

λ4L+2

[
E2L+2+ O

(
b

4
5
1

b2L+2
1

|log b1|2

)]}
≤ C

b1

λ4L+4

[
E2L+2√
log M

+
b2L+2

1

|log b1|2
+

bL+1
1
√

E2L+2

|log b1|

]
(3-48)

for some universal constant C > 0 independent of M and of the bootstrap constant K in (3-23), (3-24).

Proof of Proposition 3.6. Step 1: Suitable derivatives. We define the derivatives of w associated with the
linearized Hamiltonian Hλ by

w1 = Aλw, wk+1 =

{
A∗λwk for k odd,
Aλwk for k even,

1≤ k ≤ 2L + 1

and we define its renormalized version by

ε1 = Aε, εk+1 =

{
A∗εk for k odd,
Aεk for k even,

1≤ k ≤ 2L + 1.

From (3-34), we compute

∂tw2L + Hλw2L = [∂t , H L
λ ]w+ H L

λ

(
1
λ2 Fλ

)
(3-49)

∂tw2L+1+ H̃λw2L+1 =
∂t Zλ

r
w2L + Aλ([∂t , H L

λ ]w)+ AλH L
λ

(
1
λ2 Fλ

)
. (3-50)

We recall the action of time derivatives on rescaling:

∂tvλ =
1
λ2

(
∂sv−

λs

λ
3v

)
λ

. (3-51)
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Step 2: Modified energy identity. We compute the energy identity on (3-50) using (3-51):

1
2

d
dt

E2L+2 =
1
2

d
dt

{∫
H̃λw2L+1w2L+1

}
=

∫
H̃λw2L+1∂tw2L+1+

∫
∂t Ṽλ
2r2 w

2
2L+1

=−

∫
(H̃λw2L+1)

2
+ b1

∫
(3Ṽ )λ
2λ2r2 w

2
2L+1−

(
λs

λ
+ b1

)∫
(3Ṽ )λ
2λ2r2 w

2
2L+1

+

∫
H̃λw2L+1

[
∂t Zλ

r
w2L + Aλ([∂t , H L

λ ]w)+ AλH L
λ

(
1
λ2 Fλ

)]
. (3-52)

From (3-49), (3-50) we further compute

d
dt

{∫
b1(3Z)λ
λ2r

w2L+1w2L

}
=

∫
d
dt

(
b1(3Z)λ
λ2r

)
w2L+1w2L

+

∫
b1(3Z)λ
λ2r

w2L

[
−H̃λw2L+1+

∂t Zλ
r
w2L + Aλ([∂t , H L

λ ]w)+ AλH L
λ

(
1
λ2 Fλ

)]
+

∫
b1(3Z)λ
λ2r

w2L+1

[
−A∗λw2L+1+ [∂t , H L

λ ]w+ H L
λ

(
1
λ2 Fλ

)]
.

We now integrate by parts using (2-4) to compute∫
b1(3Z)λ
λ2r

w2L+1 A∗λw2L+1 =
b1

λ4L+4

∫
3Z

y
ε2L+1 A∗ε2L+1

=
b1

λ4L+4

∫
2(1+ Z)3Z −32 Z

2y2 ε2
2L+1

=
b1

λ4L+4

∫
3Ṽ
2y2 ε

2
2L+1 = b1

∫
(3Ṽ )λ
2λ2r2 w

2
2L+1.

Injecting this into the energy identity (3-52) yields the modified energy identity

1
2

d
dt

{
E2L+2+ 2

∫
b1(3Z)λ
λ2r

w2L+1w2L

}
=−

∫
(H̃λw2L+1)

2
−

(
λs

λ
+ b1

)∫
(3Ṽ )λ
2λ2r2 w

2
2L+1+

∫
d
dt

(
b1(3Z)λ
λ2r

)
w2L+1w2L

+

∫
H̃λw2L+1

[
∂t Zλ

r
w2L + Aλ([∂t , H L

λ ]w)+ AλH L
λ

(
1
λ2 Fλ

)]
+

∫
b1(3Z)λ
λ2r

w2L

[
−H̃λw2L+1+

∂t Zλ
r
w2L + Aλ([∂t , H L

λ ]w)+ AλH L
λ

(
1
λ2 Fλ

)]
+

∫
b1(3Z)λ
λ2r

w2L+1

[
[∂t , H L

λ ]w+ H L
λ

(
1
λ2 Fλ

)]
. (3-53)
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We now aim at estimating all terms in the right hand side of (3-53). Throughout the proof, we shall make
implicit use of the coercivity estimates of Lemma B.2 and Lemma C.1.

Step 3: Lower order quadratic terms. We treat the lower order quadratic terms in (3-53) using dissipation.
Indeed, from (2-5), (2-6), (3-38), we have the bounds

|∂t Zλ| + |∂t Vλ|.
b1

λ2 (|3Z | + |3V |)λ .
b1

λ2

y2

1+ y4 . (3-54)

We moreover claim the bound∫
([∂t , H L

λ ]w)
2

λ2(1+ y2)
+

∫
|Aλ([∂t , H L

λ ]w)|
2 . C(M)

b2
1

λ4L+4 E2L+2, (3-55)

which is proved in Appendix E. From Cauchy–Schwartz, the rough bound (3-38), and Lemma C.1, we
conclude∫ ∣∣∣∣H̃λw2L+1

[
∂t Zλ

r
w2L +

∫
Aλ([∂t , H L

λ ]w)

]∣∣∣∣+ ∫ |H̃λw2L+1|

∣∣∣∣b(3Z)λ
λ2r

w2L

∣∣∣∣
≤

1
2

∫
|H̃λw2L+1|

2
+

b2
1

λ4L+4

[∫
ε2

2L

1+ y6 +C(M)E2L+2

]
≤

1
2

∫
|H̃λw2L+1|

2
+

b1

λ4L+4 C(M)b1E2L+2.

All other quadratic terms are lower order by a factor b1 again using (3-38), (3-55), (3-36), and Lemma C.1:∣∣∣∣λs

λ
+ b1

∣∣∣∣ ∫ ∣∣∣∣(3Ṽ )λ
2λ2r2 w

2
2L+1

∣∣∣∣+ ∫ ∣∣∣∣b1(3Z)λ
λ2r

w2L

[
∂t Zλ

r
w2L + Aλ([∂t , H L

λ ]w)

]∣∣∣∣
+

∫ ∣∣∣∣b1(3Z)λ
λ2r

w2L+1[∂t , H L
λ ]w

∣∣∣∣+ ∣∣∣∣∫ d
dt

(
b1(3Z)λ
λ2r

)
w2L+1w2L

∣∣∣∣
.

b2
1

λ4L+4

[∫
ε2

2L+1

1+ y4 +

∫
ε2

2L

1+ y6 +C(M)E2L+2

]
.

b1

λ4L+4 C(M)b1E2L+2.

We similarly estimate the boundary term in time using (C-10):∣∣∣∣∫ b1(3Z)λ
λ2r

w2L+1w2L

∣∣∣∣. b1

λ4L+2

[∫
ε2

2L+1

1+ y2 +

∫
ε2

2L

1+ y4

]
.

b1

λ4L+2 |log b1|
C b2L+2

1 .

We inject these estimates into (3-53) to derive the preliminary bound

1
2

d
dt

{
1

λ4L+2

[
E2L+2+ O

(
b

4
5
1

b2L+2

|log b|2

)]}
≤−

1
2

∫
(H̃λw2L+1)

2
+

∫
H̃λw2L+1 AλH L

λ

(
1
λ2 Fλ

)
+

∫
H L
λ

(
1
λ2 Fλ

)[
b1(3Z)λ
λ2r

w2L+1+ A∗λ

(
b1(3Z)λ
λ2r

w2L

)]
+

b1

λ4L+4

√
b1b2L+2

1 (3-56)

with constants independent of M for |b|< b∗(M) small enough.
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We now estimate all terms in the right hand side of (3-56).

Step 4: Further use of dissipation. Let us introduce the decomposition from (3-28), (3-30),

F= F0+F1, F0 =−9̃b− M̃od(t), F1 = L(ε)− N (ε). (3-57)

The first term in the right hand side of (3-56) is estimated after an integration by parts:∣∣∣∣∫ H̃λw2L+1 AλH L
λ

(
1
λ2 Fλ

)∣∣∣∣
≤

C
λ4L+4 ‖A∗ε2L+1‖L2‖H L+1F0‖L2 +

1
4

∫
|H̃λw2L+1|

2
+

C
λ4L+4

∫
|AH LF1|

2

≤
C

λ4L+4

[
‖H L+1F0‖L2

√
E2L+2+‖AH LF1‖

2
L2

]
+

1
4

∫
|H̃λw2L+1|

2 (3-58)

for some universal constant C > 0 independent of M .
The last two terms in (3-56) can be estimated by brute force from Cauchy–Schwarz:∣∣∣∣∫ H L

λ

(
1
λ2 Fλ

)
b1(3Z)λ
λ2r

w2L+1

∣∣∣∣. b1

λ4L+4

(∫
1+ |log y|2

1+ y4 |H LF|2
)1

2
(∫

ε2
2L+1

y2(1+ |log y|2)

)1
2

.
b1

λ4L+4

√
E2L+2

(∫
1+ |log y|2

1+ y4 |H LF|2
)1

2

, (3-59)

where constants are independent of M thanks to the estimate (B-2) for ε2L+1. Similarly,∣∣∣∣∫ H L
λ

(
1
λ2 Fλ

)
A∗λ

(
b1(3Z)λ
λ2r

w2L

)∣∣∣∣
.

b1

λ4L+4

(∫
1+ |log y|2

1+ y2 |AH LF|2
)1

2
(∫

ε2
2L

(1+ y4)(1+ |log y|2)

)1
2

.
b1

λ4L+4 C(M)
√

E2L+2

(∫
1+ |log y|2

1+ y2 |AH LF0|
2
+

∫
|AH LF1|

2
)1

2

. (3-60)

We now claim the bounds ∫
1+ |log y|2

1+ y4 |H LF|2 .
b2L+2

1

|log b1|2
+

E2L+2

log M
, (3-61)∫

1+ |log y|2

1+ y2 |AH LF0|
2 . δ(α∗)

[
b2L+2

1

|log b1|2
+E2L+2

]
, (3-62)∫

|H L+1F0|
2 . b2

1

[
b2L+2

1

|log b1|2
+

E2L+2

log M

]
, (3-63)∫

|AH LF1|
2 . b1

[
b2L+2

1

|log b1|2
+

E2L+2

log M

]
(3-64)
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with all . constants independent of M for |b|< α∗(M) small enough, and where

δ(α∗)→ 0 as α∗(M)→ 0.

Injecting these bounds together with (3-58), (3-59), (3-60) into (3-56) concludes the proof of (3-48). We
now turn to the proof of (3-61), (3-62), (3-63), (3-64).

Step 5: 9̃b terms. The contribution of 9̃b terms to (3-61), (3-62), (3-63) is estimated from (2-89), (2-90),
which are at the heart of the construction of Q̃b and yield the desired bounds.

Step 6: M̃od(t) terms. Recall (3-29),

M̃od(t)=−
(
λs

λ
+ b1

)
3Q̃b+

L∑
i=1

[(bi )s + (2i − 1+ cb1)b1bi − bi+1]

[
T̃i +χB1

L+2∑
j=i+1

∂S j

∂bi

]
,

and the notation (3-39).

Proof of (3-63) for M̃od. We recall that

|bk |. bk
1,

and, from Lemma 2.8, we estimate∫
|H L+13Q̃b|

2 .
L∑

i=1

∫
|H L+1bi3T̃i |

2
+

L+2∑
i=2

∫
|H L+13S̃i |

2

.
L∑

i=1

b2i
1

∫
y≤2B1

∣∣∣∣(1+ |log y|C)y2i−1

1+ y2L+2

∣∣∣∣2+ L+1∑
i=2

b2i
1 +

b2L+4
1

b2
1|log b1|2

. b2
1.

We then use the cancellation H L+1Ti = 0 for 1≤ i ≤ L to estimate

L∑
i=1

∫
|H L+1T̃i |

2 .
L∑

i=1

∫
B1≤y≤2B1

∣∣∣∣ y2i−1

y2L+2

∣∣∣∣2 . b2
1.

Then, using Lemma 2.8 again,13 for 1≤ i ≤ L ,

L+2∑
j=i+1

∫ ∣∣∣∣H L+1
[
χB1

∂S j

∂bi

]∣∣∣∣2 . L+1∑
j=i+1

b2( j−i)
1 +

b2(L+2−i)
1

b2
1|log b1|2

. b2
1.

We thus obtain from Lemma 3.3 the expected bound:∫
|H L+1M̃od|2 . b2

1|D(t)|
2 . b2

1

[
E2L+2

|log M |
+

b2L+2
1

|log b1|2

]
. �

13This is where we used the logarithmic gain (2-54) induced by (2-24).
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Proof of (3-61) for M̃od. We use Lemma 2.8 to derive the rough bound∫
1+|log y|2

1+ y4 |H L3Q̃b|
2

.
L∑

i=1

∫
1+|log y|2

1+ y4 |H Lbi3T̃i |
2
+

L+2∑
i=2

∫
1+|log y|2

1+ y4 |H L3S̃i |
2

.
L∑

i=1

b2i
1

∫
y≤2B1

1+|log y|C

1+ y4

∣∣∣∣ y2i−1

1+ y2L

∣∣∣∣2+ L+1∑
i=2

b2i
1 |log b1|

3
+b2L+4

1

∫
y≤2B1

1+|log y|2

1+ y4

∣∣∣∣1+ y2(L+2)−1

1+ y2L

∣∣∣∣2
. 1.

Next,
L∑

j=1

1+ |log y|2

1+ y4 |H L T̃i |
2 .

L∑
j=1

∫
y≤2B1

1+ |log y|C

1+ y4

∣∣∣∣ y2i−1

1+ y2L

∣∣∣∣2 . 1,

and finally, again using Lemma 2.8, for 1≤ i ≤ L ,

L+2∑
j=i+1

∫
1+ |log y|2

1+ y4

∣∣∣∣H L
[
χB1

∂S j

∂bi

]∣∣∣∣2
.

L+1∑
j=i+1

b2( j−i)
1 |log b1|

2
+ b2(L−i)+4

1

∫
y≤2B1

1+ |log y|2

1+ y4

∣∣∣∣1+ y2(L+2)−1

1+ y2L

∣∣∣∣2 . 1.

We thus obtain from Lemma 3.3 the expected bound:∫
1+ |log y|2

1+ y4 |H LM̃od|2 . |D(t)|2 .
E2L+2

|log M |
+

b2L+2
1

|log b1|2
. �

Proof of (3-62) for M̃od. We use Lemma 2.8 to estimate∫
1+|log y|2

1+y2 |AH L3Q̃b|
2

.
L∑

i=1

∫
1+|log y|2

1+y2 |H Lbi3T̃i |
2
+

L+2∑
i=2

∫
1+|log y|2

1+y2 |AH L3S̃i |
2

.
L∑

i=1

b2i
1

∫
y≤2B1

1+|log y|2

1+y2

∣∣∣∣ y2i−1

1+y2L

∣∣∣∣2+L+1∑
i=2

b2i
1 |logb1|

3
+b2L+4

1

∫
B1≤y≤2B1

1+|log y|2

1+y2

∣∣∣∣1+y2(L+2)−1

1+y2L+1

∣∣∣∣2
. b2

1.

Next, using the cancellation AH L Ti = 0, 1≤ i ≤ L ,

L∑
j=1

1+ |log y|2

1+ y2 |AH L T̃i |
2 .

L∑
j=1

∫
B1≤y≤2B1

1+ |log y|C

1+ y2

∣∣∣∣ y2i−1

1+ y2L

∣∣∣∣2 . b1|log b1|
C ,
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and finally using Lemma 2.8 again, for 1≤ i ≤ L , we have

L+2∑
j=i+1

∫
1+ |log y|2

1+ y2

∣∣∣∣AH L
[
χB1

∂S j

∂bi

]∣∣∣∣2
.

L+1∑
j=i+1

b2( j−i)
1 |log b1|

C
+ b2(L−i)+4

1

∫
y≤2B1

1+ |log y|2

1+ y2

∣∣∣∣1+ y2(L+2)−1

1+ y2L+1

∣∣∣∣2 . b1.

We thus obtain from Lemma 3.3 the desired bound:∫
1+ |log y|2

1+ y2 |AH LM̃od|2 ≤
√

b1|D(t)|2 . δ(α∗)
[

E2L+2+
b2L+2

1

|log b1|2

]
. �

Step 7: Nonlinear term N (ε). Control near the origin y ≤ 1. From (3-32) and a Taylor Lagrange formula,
we rewrite

N (ε)= zN0(ε), z = y
( ε

y

)2
, N0(ε)=

1
y

∫ 1

0
(1− τ) f ′′(Q̃b+ τε) dτ. (3-65)

First observe from (C-2) and the Taylor expansion at the origin of Ti given by (2-39) that

z = 1
y

[L+1∑
i=1

ci TL+1−i + rε

]2

=

L∑
i=0

c̃i y2i+1
+ r̃ε, (3-66)

where, from (C-3), (C-4),

|c̃i |. C(M)E2L+2,

|∂k
y r̃ε|. y2L+1−k

|log y|C(M)E2L+2, 0≤ k ≤ 2L + 1. (3-67)

We now let τ ∈ [0, 1] and
vτ = Q̃b+ τε,

and obtain from Proposition 2.12 and (C-2) the Taylor expansion at the origin

vτ =

L∑
i=0

ĉi y2i+1
+ r̂ε (3-68)

with
|ĉi |. 1, |∂k

y r̂ε|. y2L+1−k
|log y|, 0≤ k ≤ 2L + 1. (3-69)

Recall that f ∈ C∞ with f 2k(0)= 0, k ≥ 0. We therefore obtain a Taylor expansion

f ′′(vτ )=
L+1∑
i=1

f (2i+1)(0)
i !

v2i−1
τ +

v2L+2

(2L + 1)!

∫ 1

0
(1− σ)2L+1 f (2L+4)(σvτ ) dσ,

which, together with (3-68), ensures an expansion

N0(ε)=

L∑
i=0

ˆ̂ci y2i
+ ˆ̂rε, | ˆ̂ci |. 1, |∂k

y
ˆ̂rε|. y2L−k

|log y|, 0≤ k ≤ 2L + 1.
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Combining this with (3-66) ensures the expansion

N (ε)= zN0(ε)=

L∑
i=0

˜̃ci y2i+1
+ ˜̃rε (3-70)

with
| ˜̃ci |. C(M)E2L+2, |∂

k
y
˜̃rε|. y2L+1−k

|log y|C(M)E2L+2, 0≤ k ≤ 2L + 1.

Observe that from a direct check this implies the bound

|Ak ˜̃rε|.
k∑

i=0

∂ i
y
˜̃rε

yk−i . C(M)E2L+2

k∑
i=0

|log y|y2L+1−i

yk−i . y2L+1−k
|log y|C(M)E2L+2, 0≤ k ≤ 2L + 1.

We now compute using a simple induction based on the expansions (2-5), (2-6) and the cancellation
A(y)= O(y2) that, for y ≤ 1,

A2k+1
( L∑

i=0

˜̃ci y2i+1
)
=

L∑
i=k+1

ci,2k+1 y2(i−k)
+ O(y2(L−k)+2),

A2k+2
( L∑

i=0

˜̃ci y2i+1
)
=

L∑
i=k+1

ci,2k+2 y2(i−k)−1
+ O(y2(L−k)+1).

(3-71)

From (3-70), we conclude

‖Ak N (ε)‖L∞(y≤1) . C(M)E2L+2, 0≤ k ≤ 2L + 1, (3-72)

and thus, in particular, we get the control near the origin∫
y≤1

1+ |log y|2

1+ y4 |H L N (ε)|2+
∫

y≤1
|AH LN(ε)|2 . C(M)(E2L+2)

2 . b2
1b2L+2

1 .

Control for y ≥ 1. We give a detailed proof of (3-64). The proof of (3-61) follows the exact same lines
(with more room in fact) and is left to the reader. Let

ζ =
ε

y
, N1(ε)=

∫ 1

0
(1− τ) f ′′(Q̃b+ τε) dτ so that N (ε)= ζ 2 N1. (3-73)

We first estimate from (C-14): for (i, j) ∈ N×N with 1≤ i + j ≤ 2L + 1,∥∥∥∥ ∂ i
yζ

y j−1

∥∥∥∥2

L∞(y≥1)
.

i∑
k=0

∥∥∥∥ ∂k
yε

y j+i−k

∥∥∥∥2

L∞(y≥1)
. |log b1|

C


b(i+ j)2L/(2L−1)

1 for 1≤ i + j ≤ 2L − 1,
b2L+1

1 for i + j = 2L ,
b2L+2

1 for i + j = 2L + 1.
(3-74)

Similarly, from (C-12), for (i, j) ∈ N×N∗ with 2≤ i + j ≤ 2L + 2,∫
y≥1

1+ |log y|C

1+ y2 j−2 |∂
i
yζ |

2 .
i∑

k=0

∫
y≥1

1+ |log y|C

1+ y2 j+2(i−k) |∂
k
yε|

2

. |log b1|
C


b(i+ j−1)2L/(2L−1)

1 for 2≤ i + j ≤ 2L ,
b2L+1

1 for i + j = 2L + 1,
b2L+2

1 for i + j = 2L + 2.
(3-75)
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Moreover, from the energy bound (3-23), ∫
y≥1
|ζ |2 . 1. (3-76)

We now claim the pointwise bound, for y ≥ 1,

for all 1≤ k ≤ 2L + 1, |∂k
y N1(ε)|. |log b1|

C
[

1
yk+1 + bak/2

1

]
, (3-77)

with

ak =


k2L/(2L − 1) for 1≤ k ≤ 2L − 1
2L + 1 for k = 2L ,
2L + 2 for k = 2L + 1,

(3-78)

which is proved below. For k = 0, we simply need the obvious bound

‖N1(ε)‖L∞(y≥1) . 1. (3-79)

Then, by brute force, from (3-73), (3-77), (3-79), we estimate

|AH L N (ε)|.
2L+1∑
k=0

|∂k
y N (ε)|

y2L+1−k .
2L+1∑
k=0

1
y2L+1−k

k∑
i=0

|∂ i
yζ

2
||∂k−i

y N1(ε)|

.
2L+1∑
k=0

|∂k
yζ

2
|

y2L+1−k +

2L+1∑
k=1

1
y2L+1−k

k−1∑
i=0

|∂ i
yζ

2
||log b1|

C
[

1
yk−i+1 + b(ak−i )/2

1

]

.
2L+1∑
k=0

|∂k
yζ

2
|

y2L+1−k + |log b1|
C

2L∑
i=0

|∂ i
yζ

2
|

y2L+2−i + |log b1|
C

2L+1∑
k=1

k−1∑
i=0

b(ak−i )/2
1

|∂ i
yζ

2
|

y2L+1−k

. |log b1|
C
[2L+1∑

k=0

|∂k
yζ

2
|

y2L+1−k +

2L+1∑
k=1

k−1∑
i=0

b(ak−i )/2
1

|∂ i
yζ

2
|

y2L+1−k

]
,

and hence∫
y≥1
|AH L N (ε)|2

. |log b1|
C

2L+1∑
k=0

k∑
i=0

∫
y≥1

|∂ i
yζ |

2
|∂k−i

y ζ |2

y4L+2−2k + |log b1|
C

2L+1∑
k=1

k−1∑
i=0

i∑
j=0

bak−i
1

∫
y≥1

|∂
j
y ζ |

2
|∂

i− j
y ζ |2

y4L+2−2k .

We now claim the bounds
2L+1∑
k=0

k∑
i=0

∫
y≥1

|∂ i
yζ |

2
|∂k−i

y ζ |2

y4L+2−2k . |log b1|
C bδ(L)1 b2L+3

1 , (3-80)

|log b1|
C

2L+1∑
k=1

k−1∑
i=0

i∑
j=0

bak−i
1

∫
y≥1

|∂
j
y ζ |

2
|∂

i− j
y ζ |2

y4L+2−2k . |log b1|
C bδ(L)1 b2L+3

1 (3-81)

for some δ(L) > 0, and this concludes the proof of (3-64) for N (ε).
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Proof of (3-77). We first extract from Proposition 2.12 the rough bound

|∂k
y Q̃b|. |log b1|

C
[

1
yk+1 +

2L+2∑
i=1

bi
1 y2i−1−k1y≤2B1

]
.
|log b1|

C

yk+1 . (3-82)

Then let τ ∈ [0, 1] and vτ = Q̃b+ τε. From (3-82), (C-14), (3-78), we conclude

|∂k
yvτ |. |log b1|

C
[

1
yk+1 + bak/2

1

]
, 1≤ k ≤ 2L + 1, y ≥ 1. (3-83)

We therefore estimate N1 through the formula (3-73) using the rough bound |∂ i
v f | . 1 and the Faa di

Bruno formula: for 1≤ k ≤ 2L + 1,

|∂k
y N1(ε)|.

∫ 1

0

∑
m1+2m2+···+kmk=k

|∂m1+···+mk
v f (vτ )|

k∏
i=1

|∂ i
yvτ |

mi dτ

. |log b1|
C

∑
m1+2m2+···+kmk=k

|

k∏
i=1

[
1

yi+1 + bai/2
1

]mi

. |log b1|
C
[

1
yk+1 + bαk/2

1

]
.

To estimate αk from the definition (3-78), we observe that for k ≤ 2L − 1, i ≤ 2L − 1, and thus

αk ≥

k∑
i=0

2i L
L − 1

mi =
2kL
L − 1

= ak .

For k = 2L , we have to treat the boundary term i = k, (m1, . . . ,mk−1,mk)= (0, . . . , 0, 1)= 1, which
yields

α2L ≥min
{

2L(2L)
2L − 1

; 2L + 1
}
= 2L + 1.

For k = 2L + 1, we have the two boundary terms (m1,m2, . . . ,mk−2,mk−1,mk) = (1, 0, . . . , 0, 1, 0),
(m1, . . . , ,mk−1,mk)= (0, . . . , 0, 1), which yield

α2L+1 ≥min
{

2L(2L + 1)
2L − 1

; 2L + 1+
2L

2L − 1
; 2L + 2

}
= 2L + 2,

and (3-77) is proved. �

Proof of (3-80). Let 0≤ k ≤ 2L+1, 0≤ i ≤ k. Let I1 = k− i , I2 = i . Then we can pick J2 ∈N∗ such that

max{1; 2− i} ≤ J2 ≤min{2L + 3− k; 2L + 2− i}

and define

J1 = 2L + 3− k− J2.
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Then, from direct inspection,

(I1, J1, I2, J2) ∈ N3
×N∗,

{
1≤ I1+ J1 ≤ 2L + 1, 2≤ I2+ J2 ≤ 2L + 2,
I1+ I2+ J1+ J2 = 2L + 3.

Thus

Ai =

∫
y≥1

|∂ i
yζ |

2
|∂k−i

y ζ |2

y4L+2−2k =

∫
y≥1

|∂ I1
y ζ |

2
|∂ I2

y ζ |
2

y2J1−2+2J2−2 .

∥∥∥∥ ∂ I1
y ζ

y J1−1

∥∥∥∥2

L∞(y≥1)

∫
y≥1

|∂ I2
y ζ |

2

y2J2−2 . |log b1|
C bdi,k

1 ,

where we now compute the exponent di,k using (3-74), (3-75):

• for I1+ J1 ≤ 2L − 1, I2+ J2 ≤ 2L ,

di,k =
2L

2L − 1
(I1+ J1+ I2+ J2− 1)=

2L(2L + 2)
2L − 1

> 2L + 3;

• for I1+ J1 = 2L , I2+ J2 = 3,

di,k = 2L + 1+
2L

2L − 1
(3− 1) > 2L + 3;

• for I1+ J1 = 2L + 1, I2+ J2 = 2,

di,k = 2L + 2+
2L

2L − 1
> 2L + 3;

• for I2+ J2 = 2L + 1, I1+ J1 = 2,

di,k =
2(2L)
2L − 1

+ 2L + 1> 2L + 3;

• for I2+ J2 = 2L + 2, I1+ J1 = 1,

di,k = 2L + 2+
2L

2L − 1
> 2L + 3;

and (3-80) is proved. �

Proof of (3-81). Let 1≤ k ≤ 2L + 1, 0≤ j ≤ i ≤ k− 1. For k = 2L + 1 and 0≤ i = j ≤ 2L , we use the
energy bound (3-76) to estimate

bak−i
1

∫
y≥1

|∂
j
y ζ |

2
|∂

i− j
y ζ |2

y4L+2−2k = ba2L+1−i
1

∫
y≥1
|∂ i

yζ |
2
|ζ |2 . ba2L+1−i

1 ‖ζ‖2L∞(y≥1)

∫
y≥1
|∂ i

yζ |
2 . bdi,2L+1

1

with

di,2L+1 =



2L
2L−1

+ 2L + 2 for i = 0,

2L
2L−1

+ 2L + 2+ 2L
2L−1

for i = 1,

2L
2L−1

+
2L

2L−1
(i + 1− 1)+ 2L

2L−1
(2L + 1− i) for 2≤ i ≤ 2L

> 2L + 3.
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This exceptional case being treated, we let I1 = j , I2 = i − j , and pick J2 ∈ N∗ with

max{1; 2− (i − j); 2− (k− j)} ≤ J2 ≤min{2L + 3− k; 2L + 2− (k− j); 2L + 2− (i − j)}.

Let
J1 = 2L + 3− k− J2.

Then we can directly check that

(I1, J1, I2, J2) ∈ N3
×N∗,

{
1≤ I1+ J1 ≤ 2L + 1, 2≤ I2+ J2 ≤ 2L + 2,
I1+ I2+ J1+ J2 = 2L + 3− (k− i).

Hence

bak−i
1

∫
y≥1

|∂
j
y ζ |

2
|∂

i− j
y ζ |2

y4L+2−2k = bak−i
1

∫
y≥1

|∂ I1
y ζ |

2
|∂ I2

y ζ |
2

y2J2−2+2J1−2 . bak−i
1

∥∥∥∥ ∂ I1
y ζ

y J1−1

∥∥∥∥2

L∞(y≥1)

∫
y≥1

|∂ I2
y ζ |

2

y2J2−2

. |log b1|
C bdi, j,k

1 ,

where we now compute the exponent di,k using (3-74), (3-75), (3-78):

• for I1+ J1 ≤ 2L − 1, I2+ J2 ≤ 2L , k− i ≤ 2L − 1,

di, j,k = (k− i)
2L

2L − 1
+ (2L + 3− (k− i)− 1)

2L
2L − 1

=
2L(2L + 2)

2L − 1
> 2L + 3;

• for I1+ J1 ≤ 2L − 1, I2+ J2 ≤ 2L , k− i = 2L ,

di, j,k = 2L + 1+ (2L + 3− 2L − 1)
2L

2L − 1
> 2L + 3;

• for I1+ J1 = 2L , I2+ J2 = 3− (k− i)≥ 2 and thus k− i = 1, I2+ J2 = 2,

di, j,k =
2L

2L − 1
+ 2L + 1+

2L
2L1

> 2L + 3;

• for I2+ J2 = 2L + 1, I1+ J1 = 2− (k− i)≥ 1 and thus k− i = 1. I1+ J1 = 1,

di, j,k =
2L

2L − 1
+ 2L + 1+

2L
2L − 1

> 2L + 3.

This concludes the proof of (3-81). �

Step 8: small linear term L(ε). Let us rewrite from a Taylor expansion

L(ε)=−εN2(α̃b), N2(α̃b)=
f ′(Q+ α̃b)− f ′(Q)

y2 =
α̃b

y2

∫ 1

0
f ′′(Q+ τ α̃b) dτ. (3-84)

Control for y≤ 1. We use a Taylor expansion with the cancellation f 2k(0)= 0, k≥ 0, and Proposition 2.12
to ensure, for y ≤ 1, a decomposition

N2(α̃b)= b1

[ L∑
i=0

c̃i y2i
+ r

]
, |c̃i |. 1, |∂k

yr |. y2L+2−k, 0≤ k ≤ 2L + 1.



DYNAMICS FOR THE COROTATIONAL ENERGY-CRITICAL HARMONIC HEAT FLOW 1771

We combine this with (C-2) and obtain the representation, for y ≤ 1,

L(ε)=
[L+1∑

i=1

ci TL+1−i + rε

]
b1

[ L∑
i=0

ci y2i
+ r

]
= b1

[ L∑
i=1

ĉi y2i−1
+ r̂ε

]
(3-85)

with bounds

|ĉi |. C(M)
√

E2L+2, (3-86)

|∂k
y r̂ε|. y2L+1−k

|log y|C(M)
√

E2L+2, 0≤ k ≤ 2L + 1, y ≤ 1. (3-87)

We now apply (Ak)0≤k≤2L+1 to (3-85) and conclude using (3-71) that

‖Ak L(ε)‖L∞(y≤1) . b1C(M)
√

E2L+2, (3-88)

from which∫
y≤1

1+ |log y|2

1+ y4 |H L L(ε)|2+
∫

y≤1
|AH L L(ε)|2 . C(M)b2

1E2L+2 . C(M)b2
1b2L+2

1 .

Control for y ≥ 1. We give a detailed proof of (3-64). The proof of (3-61) follows the exact same lines
and is left to the reader. We claim the pointwise bound, for y ≥ 1,

for all 0≤ k ≤ 2L + 1, |∂k
y N2(α̃b)|.

b1|log b1|
C

yk+1 , (3-89)

which is proved below. From the Leibniz rule, this yields

|∂k
y L(ε)|.

k∑
i=0

b1|log b1|
C
|∂ i

yε|

yk−i+1 , (3-90)

and thus

|AH L L(ε)|.
2L+1∑
k=0

|∂k
y L(ε)|

y2L+1−k .
2L+1∑
k=0

1
y2L+1−k

k∑
i=0

b1|log b1|
C
|∂ i

yε|

yk−i+1

. b1|log b1|
C

2L+1∑
i=0

|∂ i
yε|

y2L+2−i .

Therefore, from (C-11) with k = L , we conclude∫
y≥1
|AH L L(ε)|2 . b2

1|log b1|
C

2L+1∑
i=0

∫
y≥1

|∂ i
yε|

2

y4L+4−2i . |log b1|
C b2L+4

1 ,

and (3-64) is proved.

Proof of (3-89). Let

N3 =

∫ 1

0
f ′′(Q+ τ α̃b) dτ.
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Letting ṽτ = Q+ τ α̃b, 0≤ τ ≤ 1, from Proposition 2.12 we estimate

|∂k
y ṽτ |.

|log b1|
C

yk+1 , 1≤ k ≤ 2L + 1, y ≥ 1,

and hence, using the Faa di Bruno formula,

|∂k
y N3(α̃b)|.

∫ 1

0

∑
m1+2m2+···+kmk=k

|∂m1+···+mk
v f (ṽτ )|

k∏
i=1

|∂ i
y ṽτ |

mi dτ

. |log b1|
C

∑
m1+2m2+···+kmk=k

k∏
i=1

[
1

yi+1

]mi

.
|log b1|

C

yk+1 .

This yields in particular the rough bound

|∂k
y N3(α̃b)|.

|log b1|
C

yk , y ≥ 1, 0≤ k ≤ 2L + 1,

and hence, from the Leibniz rule,∣∣∣∣∂k
y

(
N3(α̃b)

y2

)∣∣∣∣. |log b1|
C

yk+2 , y ≥ 1, 0≤ k ≤ 2L + 1. (3-91)

From Proposition 2.12, we extract the rough bound

|∂k
y α̃b|.

|log b1|
C b1

yk−1 , 0≤ k ≤ 2L + 1

and, from the Leibniz rule, we conclude

|∂k
y N2|.

k∑
i=0

|log b1|
C b1

yi+2 yk−i−1 .
b1|log b1|

C

yk+1 ,

which proves (3-89). �

This concludes the proofs of (3-61), (3-62), (3-63), (3-64), and thus of Proposition 3.6. �

4. Closing the bootstrap and proof of Theorem 1.1

We are now in position to close the bootstrap bounds of Proposition 3.1. The proof of Theorem 1.1 will
easily follow.

Proof of Proposition 3.1.

Proof. Our aim is first to show that for s < s∗, the a priori bounds (3-23), (3-24), (3-25) can be improved,
and then the unstable modes (Uk)2≤k≤L will be controlled through a standard topological argument.

Step 1: improved Ḣ 1 bound. First observe from (3-17) and the a priori bound on Uk for s < s∗ that

|bk(s)|. |bk(0)|. (4-1)
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The energy bound (3-23) is now a straightforward consequence of the dissipation of energy and the
bounds (4-1), (3-26). Indeed, let

ε̃ = ε+ α̂.

Then

E0=

∫
|∂y(Q+ε̃)|2+

∫
g2(Q+ ε̃)

y2 = E(Q)+(H ε̃, ε̃)+
∫

1
y2 [g

2(Q+ε̃)−2 f (Q)ε̃− f ′(Q)ε̃2
]. (4-2)

We first use the bound on the profile which is easily extracted from Proposition 2.12∫
|∂yα̂|

2
+

∫
|α̂|2

y2 . b1|log b1|
C
≤

√
b1(0)

using (4-1). Using Lemma B.1 ensures the coercivity

(H ε̃, ε̃)≥ c(M)
[∫
|∂y ε̃|

2
+

∫
|ε̃|2

y2

]
−

1
c(M)

(ε̃, 8M)
2
≥ c(M)

[∫
|∂yε|

2
+

∫
|ε|2

y2

]
−

√
b1(0).

The nonlinear term is estimated from a Taylor expansion:∣∣∣∣∫ 1
y2 [g

2(Q+ ε̃)− 2 f (Q)ε̃− f ′(Q)ε̃2
]

∣∣∣∣. ∫ |ε̃|3y2 .

(∫
|∂y ε̃|

2
+

∫
|ε̃|2

y2

)3
2

,

where we used the Sobolev bound

‖ε̃‖2L∞ . ‖∂y ε̃‖L2

∥∥∥ ε̃y ∥∥∥L2
.

We inject these bounds into the dissipation of energy (4-2) together with the initial bound (3-20) to
estimate ∫

|∂yε|
2
+

∫
|ε|2

y2 .
∫
|∂y ε̃|

2
+

∫
|ε̃|2

y2 + b1|log b1|
C
≤ c(M)

√
b1(0)≤ (b1(0))

1
4 (4-3)

for |b1(0)| ≤ b∗1(M) small enough.

Step 2: integration of the scaling law. Let us compute explicitly the scaling parameter for s < s∗. From
(3-36), (3-26), (2-101), (2-99), we have the rough bound

−
λs

λ
=

c1

s
−
|d1|

log s
+ O

(
1

s(log s)5/4

)
,

which we rewrite as ∣∣∣∣ d
ds

{
sc1λ(s)
(log s)|d1|

}∣∣∣∣. 1
s(log s)5/4

. (4-4)

We integrate this using the initial value λ(0)= 1 and conclude

sc1λ(s)
(log s)|d1|

=
sc1

0

(log s0)|d1|
+ O

(
1

(log s0)1/4

)
. (4-5)
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Together with the law for b1 given by (3-26), (2-101), (2-99), this implies

b1(0)c1 |log b1(0)||d1| .
bc1

1 (s)|log b1|
|d1|

λ(s)
. b1(0)c1 |log b1(0)||d1|. (4-6)

Step 3: improved control of E2L+2. We now improve the control of the high order E2L+2 energy (3-25)
by reintegrating the Lyapounov monotonicity (3-48) in the regime governed by (4-5), (2-101). Indeed,
we inject the bootstrap bound (3-25) into the monotonicity formula (3-48) and integrate in time s:
for all s ∈ [s0, s∗),

E2L+2(s)≤ 2
(
λ(s)
λ(0)

)4L+2[
E2L+2(0)+Cb

4
5
1 (0)

b2L+2
1 (0)
|log b1(0)|2

]
+

b2L+2
1 (s)
|log b1(s)|2

+C
[

1+
K

log M
+
√

K
]
λ2L+4(s)

∫ s

s0

b1

λ4L+2

b2L+2
1

|log b1|2
dσ (4-7)

for some universal constant C > 0 independent of M . We now observe from (4-6) that the integral in the
right hand side of (4-7) is divergent, since

b1

λ4L+2

b2L+2
1

|log b1|2
& C(b0)

b2L+3
1

b(4L+2)c1
1 |log b1|C

&
C(b0)

(log s)C s2L+3−(4L+2)L/(2L−1) =
C(b0)

(log s)C s(2L−3)/(2L−1) ,

and therefore, from (4-6) and 1/s . b1 . 1/s,

λ4L+2(s)
∫ s

s0

b1

λ4L+2

b2L+2
1

|log b1|2
dσ .

b2L+2
1 (s)
|log b1(s)|2

.

We now estimate the contribution of the initial data using (4-6) and the initial bounds (3-21), (3-22):(
λ(s)
λ(0)

)4L+2[
E2L+2(0)+Cb

4
5
1 (0)

b2L+2
1 (0)
|log b1(0)|2

]
. λ4L+2(s)b

4
5
1 (0)

b2L+2
1 (0)
|log b1(0)|2

. (b1(s))(4L+2)L/(2L−1)
|log b1(s)|C(b1(0))

4
5+2L+2−(4L+2)L/(2L−1)

|log b1(0)|C .
b2L+2

1 (s)
|log b1(s)|2

,

where we used the algebra, for L ≥ 2,

0<
L(4L + 2)

2L − 1
− (2L + 2)=

2
2L − 1

<
4
5
.

Injecting these bounds into (4-7) yields

E2L+2(s).
b2L+2

1 (s)
|log b1(s)|2

[
1+

K
log M

+
√

K
]
≤

K
2

b2L+2
1 (s)
|log b1(s)|2

(4-8)

for K large enough independent of M .
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Step 4: Improved control of E2k+2, 0≤ k ≤ L − 1. We now claim the improved bound on the intermediate
energies

E2k+2 ≤ b(2k+1)2L/(2L−1)
1 |log b1|

C+
√

K . (4-9)

This follows from the monotonicity formula, for 0≤ k ≤ L − 1,

d
dt

{
1

λ4k+2

[
E2k+2+ O

(
b

1
2
1 b(4k+2)2L/(2L−1)

1

)]}
.
|log b1|

C

λ4k+4

[
b2k+3

1 + b1+δ+(2k+1)2L/(2L−1)
1 +

√
b2k+4

1 E2k+2

]
(4-10)

for some universal constants C, δ > 0 independent of the bootstrap constant K . The proof is similar to
that of (4-8) and in fact simpler since we allow for logarithmic losses; details are given in Appendix F.

Using (4-5), we now estimate

λ4k+2(s)
∫ s

s0

b2k+3
1

λ4k+2 |log b1|
C .

(log s)|d1|

s(4k+2)c1

∫ s

s0

(log σ)C

σ 2k+3−c1(4k+2) dσ.

From (2-97), we compute

(2k+ 3)− c1(4k+ 2)= 1+
2(L − k− 1)

2L − 1
, (4-11)

and hence

λ4k+2(s)
∫ s

s0

b2k+3
1

λ4k+2 |log b1|
C .

(log s)|d1|+C

s(4k+2)c1
. b(4k+2)c1

1 |log b1|
C .

Similarly, from (4-6),

λ4k+2(s)
∫ s

s0

b1+δ+(2k+1)2L/(2L−1)
1

λ4k+2 |log b1|
C dσ .

(log s)|d1|+C

s(4k+2)c1

∫ s

s0

(log σ)C

σ 1+δ dσ . b(4k+2)c1
1 |log b1|

C ,

and, using (4-11), (3-24),

λ4k+2(s)
∫ s

s0

|log b1|
C

λ4k+2

√
b2k+4

1 E2k+2 dσ

.
(log s)|d1|+C

s(4k+2)c1

∫ s

s0

(log σ)C+
√

K
√

s2k+4−(2k+1)2L/(2L−1)
dσ

. |log b1|
C+
√

K b(4k+2)c1
1

∫ s

s0

dσ
σ 1+(L−k−1)/(2L−1) . |log b1|

C+
√

K b(4k+2)c1
1 .

Using the initial smallness (3-21) and (4-6), the time integration of (4-10) from s = s0 to s therefore yields

E2k+2(s). λ4k+2(s)b1(0)10L+4
+ |log b1(s)|C+

√
K b4k+2

1 (s). |log b1(s)|C+
√

K b(4k+2)c1
1 (s),

and (4-9) is proved.

Remark 4.1. For 0≤ k ≤ L − 2, the above argument shows the bound

E2k+2 . λ
4k+2,
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which equivalently corresponds to a uniform high order Sobolev control w. The logarithmic loss for
k = L − 1 could be gained as well with a little more work; see [Raphaël and Schweyer 2013] for the case
L = 1. This shows that the limiting excess of energy u∗ in (1-12) enjoys some suitable high order Sobolev
regularity.

Step 5 contradiction through a topological argument. Let us consider

b̃k = bk for 1≤ k ≤ L , b̃L given by (3-44)

and the associated variables

b̃k = be
k +

Ũk

sk(log s)5/4
, 1≤ k ≤ L , b̃k+1 = Ũk+1 ≡ 0, Ṽ = PLŨ .

From (3-45),

|V − Ṽ |. sL
|log s|C b

L+ 1
2

1 .
1

s1/4 . (4-12)

Let the associated control of the unstable models be

|Ṽ1(s)| ≤ 2, (Ṽ2(s), . . . , ṼL(s)) ∈BL−1
(1

2

)
, (4-13)

and the slightly modified exit time

s̃∗ = sup{s ≥ s0 such that (3-23), (3-24), (3-25), (4-13) hold on [s0, s]}.

Then (4-12) and the assumption (3-27) imply

for all (Ṽ2(0), . . . , ṼL(0)) ∈BL−1
( 1

2

)
, s̃∗ <+∞. (4-14)

We claim that this contradicts Brouwer’s fixed point theorem.
Indeed, first, from (2-102), we estimate

(b̃k)s +

(
2k− 1+

2
log s

)
b̃1b̃k − b̃k+1 =

1
sk+1(log s)5/4

[
s(Ũk)s − (ALŨ )k + O

(
1√

log s

)]
,

and thus, from (3-37), (3-46), (4-8), and (2-44),

|s(Ũk)s − (ALŨ )k |.
1√

log s
+ sk+1(log s)

5
4

∣∣∣∣(b̃k)s +

(
2k− 1+

2
log s

)
b̃1b̃k − b̃k+1

∣∣∣∣
.

1√
log s
+ sk+1(log s)

5
4

[
b

L+ 3
2

1 +
1

sk+1(log s)2
+

bL+1
1

|log b1|3/2

]
.

1
(log s)1/4

.

Hence, using the diagonalization (2-104),

s(Ṽ )s = DL Ṽs + O
(

1
(log s)1/4

)
. (4-15)
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This first implies the control of the stable mode Ṽ1 from (2-104),

|(sṼ1)s |.
1

(log s)1/4
,

and thus, from (3-19),

|Ṽ1(s)|.
1
s
+

1
s

∫ s

s0

dτ
(log τ)1/4

≤
1
10 . (4-16)

Now, from (4-3), (4-8), (4-9), (4-16), and a standard continuity argument,

L∑
i=2

Ṽ 2
i (s
∗)= 1

4 . (4-17)

We then compute from (4-15) the fundamental strict outgoing condition at the exit time s̃∗ defined by
(4-17):

1
2

d
ds

{ L∑
i=2

Ṽ 2
i

}
|s=s̃∗
=

L∑
i=2

(Ṽi )s Ṽi =
1
s̃∗

[ L∑
i=2

i
2L − 1

Ṽ 2
i (s
∗)+ O

(
1

(log s̃∗)1/4

)]
≥

1
s∗

[
2

2L − 1
1
4
+ O

(
1

(log s̃∗)1/4

)]
> 0.

This implies from a standard argument the continuity of the map

(Ṽi )2≤i≤L ∈BL−1
( 1

2

)
7→ s̃∗[(Ṽi )2≤i≤L ],

and hence the continuous map

BL−1
( 1

2

)
→BL−1

( 1
2

)
,

(Ṽi )2≤i≤L 7→ {Ṽi [s̃∗((Ṽi )2≤i≤L)]}

is the identity on the boundary sphere SL−1
( 1

2

)
, a contradiction to Brouwer’s fixed point theorem. This

concludes the proof of Proposition 3.1. �

Proof of Theorem 1.1.

Proof. We pick initial data satisfying the conclusions of Proposition 3.1. In particular, (4-4) implies the
existence of c(u0) > 0 such that

λ(s)= c(u0)
(log s)|d1|

sc1

[
1+ O

(
1

(log s)1/4

)]
,

and then, from (3-36), (2-101),

−λλt =−
λs

λ
= b1+ O

(
1
sL

)
=

c1

s

[
1+ O

(
1

log s

)]
=

c(u0)λ
1/c1

|log λ||d1|/c1

[
1+ O

(
1

(log s)1/4

)]
.

Hence we get the pointwise differential equation

−λ(−(L−1))/L
|log λ|2/(2L−1)λt = c(u0)(1+ o(1)).
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We easily conclude that λ touches zero at some finite time T = T (u0) <+∞ with near blow-up time

λ(t)= c(u0)(1+ o(1))
(T − t)L

|log(T − t)|2L/(2L−1) (1+ o(1)).

The strong convergence (1-12) now follows as in [Raphaël and Schweyer 2013]. This concludes the proof
of Theorem 1.1. �

Appendix A: Regularity in corotational symmetry

We detail in this appendix the regularity of smooth maps with 1-corotational symmetry.

Lemma A.1 (regularity in corotational symmetry). Let v be a smooth 1-corotational map

v(y, θ)=

∣∣∣∣∣
g(u(y)) cos θ
g(u(y)) sin θ
z(u(y))

(A-1)

with
v(0)= ez, lim

y→+∞
v(x)→−ez. (A-2)

Assume that v is smooth in the Sobolev sense:
N∑

i=1

∫
|(−1)i/2v|2 <+∞

for some N � L. Then:

(i) u is a smooth function of y with a Taylor expansion at the origin for p ≤ 10L:

u(y)=
p∑

k=0

ck y2k+1
+ O(y2p+3). (A-3)

(ii) Assume that u(y)= Q(y)+ ε(y) with

‖∇ε‖L2 +

∥∥∥ εy ∥∥∥L2
� 1, (A-4)

and consider the sequence of suitable derivatives εk =Akε. Then, for all 1≤ k ≤ L ,∫
|ε2k+2|

2
+

∫
|ε2k+1|

2

y2(1+ y2)

+

k∑
p=0

∫ [
|ε2p−1|

2

y6(1+ |log y|2)(1+ y4(k−p))
+

|ε2p|
2

y4(1+ |log y|2)(1+ y4(k−p))

]
<+∞. (A-5)

Proof of Lemma A.1. Let us consider the rotation matrix

R =

 0 −1 0
1 0 0
0 0 0

 , (A-6)
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and rewrite (A-1) as

v(r, θ)= eθRw with w(r)=

∣∣∣∣∣
w1 = g(u)
0
w3 = z(u).

(A-7)

Step 1: Control at the origin. We compute the energy density

|∇v|2 = |∂yw|
2
+
|w|2

y2 , (A-8)

which is bounded from the smoothness of v, from which∣∣∣∣w1

y

∣∣∣∣+ |∂yw1|. 1. (A-9)

Similarly,

1v = eθR
(
1w+ R2 w

y2

)
= eθR

∣∣∣∣∣
−Hw1

0
1w3,

(A-10)

where
Hw1 =−1w1+

w1

y2 = A∗Aw1

with
A =−∂y +

1
y
, A∗ = ∂y +

2
y
.

The regularity of v implies
|Hw1|. 1

near the origin, which, together with (A-9), yields

Aw1(y)=
1
y2

∫ r

0
(Hw1)τ

2 dτ = O(y). (A-11)

We now observe that
Hw1 =−∂yyw1+

1
y

Aw1

and conclude
|∂2

yyw1|. 1.

We now iterate this argument once on (A-10). Indeed, at the origin,

|∂yHw1|
2
+
|Hw1|

2

y2 . |∇1v|2 . 1, |H2w1|. |1
2v|. 1,

and hence
|Hw1|. y, |AHw1|. y, |H2w1|. 1.

This yields the C3-regularity of w1 at the origin and, from (A-11), the improved bound

Aw1(y)=
1
y2

∫ y

0
(Hw1)τ

2 dτ = O(y2).
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A simple induction now yields for all k ≥ 1 the Ck-regularity of w1, and that the sequence

(w1)0 = w1, (w1)k+1 =

{
A∗(w1)k for k odd,
A(w1)k for k even,

k ≥ 1

satisfies the bound

|(w1)k |.

{
y for k even,
y2 for k odd.

(A-12)

We therefore let a Taylor expansion at the origin

w1(y)=
p∑

i=1

ci yi
+ O(y p+1)

apply successively the operator A,A∗ and conclude from the relations

A(r k)=−(k− 1)yk−1, A∗(yk)= (k+ 2)yk−1

and (A-12) that

c2k = 0 for all k ≥ 1.

We now recall from (A-7) that w1 = g(u) and the Taylor expansion (A-3) now follows from the odd
parity of g at the origin.

We now claim that this implies the bound (A-5) at the origin. Indeed, ε admits a Taylor expansion (A-3)
from (2-2) to which we apply successively the operators A, A∗. We observe from (2-5) the cancellation

A(y)= cy2
+ O(y3),

which ensures the bound near the origin

|ε2k |. y, |ε2k+1|. y2, (A-13)

and hence the finiteness of the norms (A-5) at the origin.

Step 2: control for r ≥ 1. We first claim∫
ε2

y2 +

L+2∑
k=1

∫
(∂k

yε)
2 <+∞. (A-14)

Indeed, from (A-4),

‖ε‖L∞ . ‖∇ε‖L2 +

∥∥∥ εy ∥∥∥L2
� 1. (A-15)

From (A-8), ∫
|1g(u)|2 .

∫
|1v|2 <+∞.

Now

1g(u)= g′(u)1u+ (∂yu)2g′(u)g′′(u)
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and, using Sobolev and the L∞ control (A-15), we estimate∫
((∂yε)

2g′(u)g′′(u))2 .
∫
|1ε|2

∫
|∇ε|2�

∫
|1ε|2.

Moreover, from the smallness (A-15) and the structure of Q,

|g′(u)|& 1 as r→+∞,

from which
1+

∫
|1v|2 &

∫
|1ε|2.

The control of higher order Sobolev norms (A-14) now follows similarly by induction using the Faa di
Bruno formula for the computation of ∂k

y g(u). This is left to the reader. Now (A-14) easily implies

L+2∑
i=1

∫
y≥1
|εk |

2 <+∞,

and the bound (A-5) is proved far out. �

Appendix B: Coercivity bounds

Given M ≥ 1, we let 8M be given by (3-7). Let us recall the coercivity of the operator H , which is a
standard consequence of the knowledge of the kernel of H and the nondegeneracy (3-8).

Lemma B.1 (coercivity of H ). Let M ≥ 1 be large enough. Then there exists C(M) > 0 such that, for all
radially symmetric u with ∫ [

|∂yu|2+
|u|2

y2

]
<+∞

satisfying
(u,8M)= 0,

we have

(Hu, u)≥ C(M)
[∫
|∂yu|2+

|u|2

y2

]
.

We now recall the coercivity of H̃ , which is a simple consequence of (2-11) and is proved in [Raphaël
and Rodnianski 2012].

Lemma B.2 (coercivity of H̃ ). Let u be such that∫
|∂yu|2+

∫
|u|2

y2 <+∞. (B-1)

Then

(H̃u, u)= ‖A∗u‖2L2 ≥ c0

[∫
|∂yu|2+

∫
|u|2

y2(1+ |log y|2)

]
(B-2)

for some universal constant c0 > 0.

We now claim the following weighted coercivity bound on H .
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Lemma B.3 (coercivity of E2). There exists C(M) > 0 such that, for all radially symmetric u with∫
|u|2

y4(1+ |log y|2)
+

∫
|Au|2

y2(1+ y2)
<+∞ (B-3)

and
(u,8M)= 0,

we have ∫
|Hu|2 ≥ C(M)

[∫
|u|2

y4(1+ |log y|2)
+

∫
|Au|2

y2(1+ |log y|2)

]
. (B-4)

Proof of Lemma B.3. This lemma is proved in [Raphaël and Rodnianski 2012] in the case of the sphere
target. Let us briefly recall the argument for the sake of completeness.

Step 1: conclusion using a subcoercivity lower bound. For any u satisfying (B-10), we claim the subco-
ercivity lower bound∫
|Hu|2

&
∫

|∂2
y u|2

(1+ |log y|2)
+

∫
(∂yu)2

y2(1+ |log y|2)
+

∫
|u|2

y4(1+ |log y|2)
−C

[∫
(∂yu)2

1+ y3 +

∫
|u|2

1+ y5

]
. (B-5)

Let us assume (B-5) and conclude the proof of (B-4). By contradiction, let M > 0 be fixed and consider a
normalized sequence un , ∫

|un|
2

y4(1+ |log y|2)
+

∫
|Aun|

2

y2(1+ |log y|2)
= 1, (B-6)

satisfying the orthogonality condition
(un,8M)= 0 (B-7)

and the smallness ∫
|Hun|

2
≤

1
n
. (B-8)

Note that the normalization condition implies∫
|un|

2

y4(1+ |log y|2)
+

∫
|∂yun|

2

y2(1+ |log y|2)
. 1,

and thus, from (B-5), the sequence un is bounded in H 2
loc. Hence there exists u∞ ∈ H 2

loc such that, up to a
subsequence and for any smooth cut-off function ζ vanishing in a neighborhood of y = 0, the sequence
ζun is uniformly bounded in H 2

loc and converges to ζu∞ in H 1
loc. Moreover, (B-8) implies

Hu∞ = 0,

and by lower semicontinuity of the norm and (B-6),∫
|u∞|2

y4(1+ |log y|2)
<+∞,
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which implies from (2-12) that
u = α3Q for some α ∈ R.

We may moreover pass to the limit in (B-7) from (B-6) and the local compactness of Sobolev embeddings,
and thus

(u∞,3Q)= 0, from which α = 0,

where we used the nondegeneracy (3-8). Hence u∞ = 0. Now the subcoercivity lower bound (B-5)
together with (B-6), (B-8), and the H 2

loc uniform bound imply the existence of ε, c > 0 such that∫
ε≤y≤1/ε

[
|∂yu∞|2

1+ y3 +
|u∞|2

1+ y5

]
≥ c > 0,

which contradicts the established identity u∞ = 0. Thus (B-4) is proved.

Step 2: proof of (B-5). Let us first apply Lemma B.2 to Au, which satisfies (B-1) by assumption, and
estimate ∫

(Hu)2 = (H̃ Au, Au)&
∫
|∂y(Au)|2+

∫
|Au|2

y2(1+ y2)
. (B-9)

Near the origin, we now recall the logarithmic Hardy inequality∫
y≤1

|v|2

y2(1+ |log y|2)
.
∫

1≤y≤2
|v|2+

∫
y≤1
|∂yv|

2,

and thus, using (2-10),∫
|Au|2

y2 =

∫
1
y2

∣∣∣∣3Q∂y

(
u
3Q

)∣∣∣∣2 & ∫
y≤1

∣∣∣∣ u
3Q

∣∣∣∣2 dy
y2(1+ |log y|2)

−

∫
y≤1
(|∂yu|2+ |u|2),

which, together with (B-9), yields∫
|Hu|2 &

∫
y≤1

[
(∂yu)2

y2(1+ |log y|2)
+

∫
|u|2

y4(1+ |log y|2)

]
−C

∫
y≤1
(|∂yu|2+ |u|2).

To control the second derivative, we rewrite near the origin

Hu =−∂2
y u+

1
y

(
−∂yu+

u
y

)
+

V − 1
y2 u =−∂2

y u+
Au
y
+
(V − 1)+ (1− Z)

y2 u

and (B-5) follows near the origin.
Away from the origin, let ζ(y) be a smooth cut-off function with support in y ≥ 1

2 and equal to 1 for
y ≥ 1. We use the logarithmic Hardy inequality∫

y≥1

|u|2

y2(1+ |log y|2)
.
∫

1≤y≤2
|u|2+

∫
|∂yu|2

to conclude from (B-9) that∫
(Hu)2 &

∫
ζ

|Au|2

y2(1+ |log y|2)
−C

∫
1≤y≤2

(|u|2+ |∂yu|2).
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Now, from (2-5), we estimate

∫
ζ

|Au|2

y2(1+ |log y|2)
=

∫
ζ
| − ∂yu− u

y |
2

y2(1+ |log y|2)
−C

∫
ζ

|u|2

y6(1+ |log y|2)

&
∫

ζ

y2(1+ |log y|2)

[
|∂yu|2+

|u|2

y2

]
−C

∫ [
|u|2

y5 +
|∂yu|2

y3

]
,

where we integrated by parts in the last step. The control of the second derivative follows from the explicit
expression of H . This concludes the proof of (B-5). �

We now aim at generalizing the coercivity of the E2 energy of Lemma B.3 to higher order energies.
This first requires a generalization of the weighted estimate (B-4).

Lemma B.4 (weighted coercivity bound). Let L ≥ 1, 0≤ k ≤ L , and M ≥ M(L) be large enough. Then
there exists C(M) > 0 such that, for all radially symmetric u with∫

|u|2

y4(1+ |log y|2)(1+ y4k+4)
+

∫
|Au|2

y6(1+ |log y|2)(1+ y4k+4)
<+∞ (B-10)

and

(u,8M)= 0,

we have∫
|Hu|2

y4(1+ |log y|2)(1+ y4k)

≥ C(M)
{∫

|u|2

y4(1+ |log y|2)(1+ y4k+4)
+

∫
|Au|2

y6(1+ |log y|2)(1+ y4k)

}
. (B-11)

Proof of Lemma B.4. Step 1: subcoercivity lower bound. For any u satisfying (B-10), we claim the
subcoercivity lower bound∫

|Hu|2

y4(1+ |log y|)2(1+ y4k)

&
∫

|∂2
y u|2

y4(1+ |log y|2)(1+ y4k)
+

∫
(∂yu)2

y2(1+ |log y|)2(1+ y4k+4)

+

∫
|u|2

y4(1+ |log y|2)(1+ y4k+4)
−C

[∫
(∂yu)2

1+ y4k+8 +

∫
|u|2

1+ y4k+10

]
. (B-12)

Control near the origin. Recall from the finiteness of the norm (B-10) and the formula (2-21) that

Au(y)=
1

y3Q(y)

∫ y

0
τ3Q(τ )Hu(τ ) dτ.
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Then from Cauchy–Schwarz and Fubini we estimate∫
y≤1

|Au|2

y5(1+ |log y|2)
dy .

∫
0≤y≤1

∫
0≤τ≤y

y5

y9(1+ |log y|2)
|Hu(τ )|2 dy dτ

.
∫

0≤τ≤1
|Hu(τ )|2

[∫
τ≤y≤1

dy
y4(1+ |log y|2)

]
dτ .

∫
τ≤1

|Hu(τ )|2

τ 3(1+ |log τ |2)
dτ,

and thus ∫
y≤1

|Au|2

y6(1+ |log y|2)
.
∫

y≤1

|Hu|2

y4(1+ |log y|2)
. (B-13)

We now invert A and get from (2-10) the existence of c(u) such that

u(y)= c(u)3Q(y)−3Q(y)
∫ y

0

Au(τ )
3Q(τ )

dτ.

We estimate from Cauchy–Schwarz and (B-13), for 1≤ y ≤ 1,∣∣∣∣∫ y

0

Au(τ )
3Q(τ )

dτ
∣∣∣∣2 . y4(1+ |log y|2)

∫ y

0

|Au|2

τ 5(1+ |log τ |2)
dτ . y3

∫
y≤1

|Hu|2

y4(1+ |log y|2)
,

from which

|c(u)|2 .
∫

y≤1
|u|2+

∫
y≤1

|Hu|2

y4(1+ |log y|2)

and ∫
y≤1

|u|2

y4(1+ |log y|2)
.
∫

y≤1

|Hu|2

y4(1+ |log y|2)
+

∫
1≤y≤2

|u|2. (B-14)

The control of the first derivative follows from (B-13), (B-14), and the definition of A:∫
y≤1

|∂yu|2

y2(1+ |log y|2)
.
∫

y≤1

|Au|2

y2(1+ |log y|2)
+

∫
y≤1

|u|2

y4(1+ |log y|2)

.
∫

y≤1

|Hu|2

y4(1+ |log y|2)
+

∫
1≤y≤2

|u|2.

To control the second derivative, we rewrite near the origin

Hu =−∂2
y u+

1
y

(
−∂yu+

u
y

)
+

V − 1
y2 u =−∂2

y u+
Au
y
+
(V − 1)+ (1− Z)

y2 u,

which using (B-13), (B-14) and (2-5), (2-6) implies∫
y≤1

|∂2
y u|2

y4(1+ |log y|2)
.
∫

y≤1

|Hu|2

y4(1+ |log y|2)
+

∫
1≤y≤2

|u|2.

This concludes the proof of (B-12) near the origin.
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Control away from the origin. Let ζ(y) be a smooth cut-off function with support in y ≥ 1
2 and equal to 1

for y ≥ 1. We compute∫
ζ

|Hu|2

y4k+4(1+ |log y|)2

=

∫
ζ
| − ∂y(y∂yu)+ V

y u|2

y4k+6(1+ |log y|)2

=

∫
ζ
|∂y(y∂yu)|2

y4k+6(1+ |log y|)2
− 2

∫
ζ

∂y(y∂yu) · V u
y4k+7(1+ |log y|)2

+

∫
ζ

V 2
|u|2

y4k+8(1+ |log y|)2

=

∫
ζ
|∂y(y∂yu)|2

y4k+6(1+ |log y|)2
+ 2

∫
ζ

V (∂yu)2

y4k+6(1+ |log y|)2
+

∫
ζ

V 2
|u|2

y4k+8(1+ |log y|)2

−

∫
|u|21

(
ζV

y4k+6(1+ |log y|)2

)
. (B-15)

We now use the two dimensional logarithmic Hardy inequality with best constant:14 for all γ > 0,

γ 2

4

∫
y≥1

|v|2

y2+γ (1+ |log y|)2
≤ Cγ

∫
1≤y≤2

|v|2+

∫
y≥1

|∂yv|
2

yγ (1+ |log y|)2
(B-16)

with γ = 4k+ 6. We estimate∫
ζ
|∂y(y∂yu)|2

y4k+6(1+ |log y|)2
≥
(4k+ 6)2

4

∫
y≥1

|∂yu|2

y4k+6(1+ |log y|)2
−Ck

∫
1≤y≤2

|∂yu|2

≥
(4k+ 6)4

16

∫
y≥1

|u|2

y4k+8(1+ |log y|)2
−Ck

∫
1≤y≤2

[|∂yu|2+ |u|2].

We now observe that, for k ≥ 0 and y ≥ 1,

∂k
y V (y)= ∂k

y (1)+ O(y−2−k).

We compute

1

(
1

y4k+6

)
=
(4k+ 6)2

y4k+8 .

Injecting these bounds into (B-15) yields the lower bound∫
ζ

|Hu|2

y4k+4(1+ |log y|)2

≥

[
(4k+ 6)4

16
− (4k+ 6)2

] ∫
y≥1

|u|2

y4k+8(1+ |log y|)2
−Ck

∫ [
|∂yu|2

1+ y4k+8 +
|u|2

1+ y4k+10

]
.

Note that we can always keep the control of the first two derivatives in these estimates, and the control
(B-12) follows away from the origin.

14which can be obtained by a simple integration by parts; see [Merle et al. 2011].
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Step 2: proof of (B-11). By contradiction, let M > 0 be fixed and consider a normalized sequence un ,∫
|un|

2

y4(1+ |log y|2)(1+ y4k+4)
+

∫
|Aun|

2

y6(1+ |log y|2)(1+ y4k)
= 1, (B-17)

satisfying the orthogonality condition
(un,8M)= 0 (B-18)

and the smallness ∫
|Hun|

2

y4(1+ |log y|2)(1+ y4k)
≤

1
n
. (B-19)

Note that the normalization condition implies∫
|un|

2

y4(1+ |log y|2)(1+ y4k+4)
+

∫
|∂yun|

2

y2(1+ |log y|2)(1+ y4k+4)
. 1, (B-20)

and thus, from (B-12), the sequence un is bounded in H 2
loc. Hence, there exists u∞ ∈ H 2

loc such that, up to
a subsequence and for any smooth cut-off function ζ vanishing in a neighborhood of y = 0, the sequence
ζun is uniformly bounded in H 2

loc and converges to ζu∞ in H 1
loc. Moreover, (B-19) implies

Hu∞ = 0,

and, by lower semicontinuity of the norm and (B-17),∫
|u∞|2

y4(1+ |log y|2)(1+ y4k+4)
<+∞,

which implies from (2-12) that
u = α3Q for some α ∈ R.

We may moreover pass to the limit in (B-18) from (B-17) and the local compactness embedding, and thus

(u∞,3Q)= 0, from which α = 0,

where we used the nondegeneracy (3-8). Hence u∞ = 0.
Now from (B-13), (B-14), (B-19), and (B-17),∫

y≥1

|un|
2

y4(1+ |log y|2)(1+ y4k+4)
+

∫
y≥1

|∂yun|
2

y6(1+ |log y|2)(1+ y4k)
& 1,

and hence, from (B-12), (B-19),
|∂yun|

2

1+ y4k+8 +
|un|

2

1+ y4k+10 & 1,

which, from the local compactness of Sobolev embeddings and the a priori bound (B-20), ensures∫
|∂yu∞|2

1+ y4k+8 +

∫
|u∞|2

1+ y4k+10 & 1.

This contradicts the established identity u∞ = 0. �
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We are now in a position to prove the coercivity of the higher order (E2k+2)0≤k≤L energies under
suitable orthogonality conditions. Given a radially symmetric function ε, we recall the definition of
suitable derivatives:

ε−1 = 0, ε0 = ε, εk+1 =

{
A∗εk for k odd,
Aεk for k even,

0≤ k ≤ 2L + 1.

Lemma B.5 (coercivity of E2k+2). Let L ≥ 1, 0≤ k ≤ L , and M ≥ M(L) be large enough. Then there
exists C(M) > 0 such that, for all ε with∫
|ε2k+2|

2
+

∫
|ε2k+1|

2

y2(1+ y2)

+

k∑
p=0

∫ [
|ε2p−1|

2

y6(1+ |log y|2)(1+ y4(k−p))
+

|ε2p|
2

y4(1+ |log y|2)(1+ y4(k−p))

]
<+∞ (B-21)

satisfying
(ε, H p8M)= 0, 0≤ p ≤ k, (B-22)

we have

E2k+2(ε)=

∫
(H k+1ε)2 ≥ C(M)

{∫
|ε2k+1|

2

y2(1+ |log y|2)

+

k∑
p=0

∫ [
|ε2p−1|

2

y6(1+ |log y|2)(1+ y4(k−p))
+

|ε2p|
2

y4(1+ |log y|2)(1+ y4(k−p))

]}
. (B-23)

Proof of Lemma B.1. We argue by induction on k. The case k = 0 is Lemma B.3. We assume the claim for
k and prove it for 1≤ k+ 1≤ L . Indeed, let v = Hε. Then vp = εp+2, and thus v satisfies (B-21) and15

for all 0≤ p ≤ k, (v, H p8M)= (ε, H p+18M)= 0.

We may thus apply the induction claim for k to v and estimate∫
(H k+2ε)2

=

∫
(H k+1v)2

≥ C(M)
{∫

|ε2k+3|
2

y2(1+|log y|2)
+

k∑
p=0

∫ [
|ε2p+1|

2

y6(1+|log y|2)(1+ y4(k−p))
+

|ε2p+2|
2

y4(1+|log y|2)(1+ y4(k−p))

]}

≥ C(M)
{∫

|ε2k+3|
2

y2(1+|log y|2)

+

k+1∑
p=1

∫ [
|ε2p−1|

2

y6(1+|log y|2)(1+ y4(k+1−p))
+

|ε2p|
2

y4(1+|log y|2)(1+ y4(k+1−p))

]}
. (B-24)

15from k ≤ L + 1
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The orthogonality condition (ε,8M)= 0 and (B-21) allow us to use Lemma B.4 and to deduce from the
weighted bound (B-11) the control∫

|ε2|
2

y4(1+ |log y|2)(1+ y4k)
&
∫

|ε|2

y4(1+ |log y|2)(1+ y4k+4)
,

which together with (B-24) concludes the proof of Lemma B.1. �

Appendix C: Interpolation bounds

We derive in this section interpolation bounds on ε in the setting of the bootstrap proposition 3.1, and
which are a consequence of the coercivity property of Lemma B.5.

Lemma C.1 (interpolation bounds). (i). Weighted Sobolev bounds for εk . For 0≤ k ≤ L ,

2k+1∑
i=0

∫
|εi |

2

y2(1+ y4k−2i+2)(1+ |log y|2)
+

∫
|ε2k+2|

2
≤ C(M)E2k+2. (C-1)

(ii). Development near the origin. ε admits a Taylor–Lagrange-like expansion

ε =

L+1∑
i=1

ci TL+1−i + rε (C-2)

with bounds

|ci |. C(M)
√

E2L+2, (C-3)

|∂k
yrε|. y2L+1−k

|log y|C(M)
√

E2L+2, 0≤ k ≤ 2L + 1, y ≤ 1. (C-4)

(iii). Bounds near the origin for εk . For |y| ≤ 1
2 ,

|ε2k |. C(M)y|log y|
√

E2L+2, 0≤ k ≤ L , (C-5)

|ε2k−1|. C(M)y2
|log y|

√
E2L+2, 1≤ k ≤ L , (C-6)

|ε2L+1|. C(M)
√

E2L+2. (C-7)

(iv). Bounds near the origin for ∂k
yε. For |y| ≤ 1

2 ,

|∂2k
y ε|. C(M)y|log y|

√
E2L+2, 0≤ k ≤ L , (C-8)

|∂2k−1
y ε|. C(M)|log y|

√
E2L+2, 1≤ k ≤ L + 1. (C-9)

(v). Lossy bound.

2k+1∑
i=0

∫
1+ |log y|C

1+ y4k−2i+4 |εi |
2 . |log b1|

C
{

b(4k+2)L/(2L−1)
1 , 0≤ k ≤ L − 1,

b2L+2
1 for k = L ,

(C-10)

2k+1∑
i=0

∫
1+ |log y|C

1+ y4k−2i+4 |∂
i
yε|

2 . |log b1|
C
{

b(4k+2)L/(2L−1)
1 , 0≤ k ≤ L − 1,

b2L+2
1 for k = L .

(C-11)
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(vi). Generalized lossy bound. Let (i, j) ∈ N×N∗ with 2≤ i + j ≤ 2L + 2. Then

∫
1+ |log y|C

1+ y2 j |∂
i
yε|

2 . |log b1|
C


b(i+ j−1)2L/(2L−1)

1 for 2≤ i + j ≤ 2L ,
b2L+1

1 for i + j = 2L + 1,
b2L+2

1 for i + j = 2L + 2.
(C-12)

Moreover, ∫
|∂ i

yε|
2

1+ |log y|2
. |log b1|

C
{

b(i−1)2L/(2L−1)
1 , 2≤ i ≤ 2L + 1,

b2L+2
1 for i = 2L + 2,

(C-13)

(vii). Pointwise bound far away. Let (i, j) ∈ N×N with 1≤ i + j ≤ 2L + 1. Then∥∥∥∥∂ i
yε

y j

∥∥∥∥2

L∞(y≥1)
. |log b1|

C


b(i+ j)2L/(2L−1)

1 for 1≤ i + j ≤ 2L − 1,
b2L+1

1 for i + j = 2L ,
b2L+2

1 for i + j = 2L + 1.
(C-14)

Proof. Step 1: proof of (i). The estimate (C-1) follows from (B-23) with 0≤ k ≤ L .

Step 2: adapted Taylor expansion. Initialization. Recall the boundary condition origin at the origin
(A-13), which implies |ε2L+1(y)| ≤ Cε2L+1 y2 as y→ 0. Together with (2-10) and the behavior 3Q ∼ y
near the origin, this implies

r1 = ε2L+1(y)=
1

y3Q

∫ y

0
ε2L+23Qx dx, (C-15)

and this yields the pointwise bound, for y ≤ 1,

|r1(y)|.
1
y2

(∫
y≤1
|ε2L+2|

2x dx
)1

2
(∫ y

0
x2x dx

)1
2

. C(M)
√

E2L+2. (C-16)

We now remark that there exists 1
2 < a < 2 such that

|ε2L+1(a)|2 .
∫
|y|≤1
|ε2L+1|

2 . C(M)E2L+2

from (C-1). We then define

r2 =−3Q
∫ y

a

r1

3Q
dx

and obtain from (C-16) the pointwise bound, for y ≤ 1,

|r2|. y|log y|C(M)
√

E2L+2. (C-17)

Now observe that, by construction, using (2-10),

Ar2 = r1 = ε2L+1, Hr2 = A∗ε2L+1 = ε2L+2 = Hε2L . (C-18)

Now, from (B-24), ∫
y≤1

|ε2L |
2

y4(1+ |log y|2)
y dy <+∞,
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and hence |ε2L(yn)|<+∞ on some sequence yn→ 0, and from (C-17), (C-18), the explicit knowledge
of the kernel of H , and the singular behavior (2-13), we conclude that there exists c2 ∈ R such that

ε2L = c23Q+ r2. (C-19)

Moreover, there exists 1
2 < a < 2 such that

|ε2L(a)|2 .
∫
|y|≤1
|ε2L |

2 . C(M)E2L+2

from (C-1), and thus, from (C-17), (C-19),

|c2|. C(M)
√

E2L+2, |ε2L |. y|log y|C(M)
√

E2L+2. (C-20)

Induction. We now build by induction the sequence

r2k+1 =
1

y3Q

∫ y

0
r2k3Qx dx, r2k+2 =−3Q

∫ y

0

r2k+1

3Q
dx, 1≤ k ≤ L .

We claim by induction that, for all 1≤ k ≤ L + 1, ε2L+2−2k admits a Taylor expansion at the origin

ε2L+2−2k =

k∑
i=1

ci,k Tk−i + r2k, 1≤ k ≤ L + 1, (C-21)

with the bounds, for |y| ≤ 1,

|ci,k |. C(M)
√

E2L+2, (C-22)

|Air2k |. |log y|y2k−1−i C(M)
√

E2L+2, 0≤ i ≤ 2k− 1. (C-23)

This follows from (C-19), (C-20), (C-17), (C-18) for k = 1. We now let 1≤ k ≤ L , assume the claim for
k, and prove it for k+ 1.

By construction, using (2-10),

Ar2k+2 = r2k+1, Hr2k+2 = r2k, (C-24)

and thus Air2k = r2k−i . In particular, for i ≥ 2, Ai−2r2k+2 = r2k−i , and therefore the bounds (C-23) for
k+ 1 and 2≤ i ≤ 2k+ 1 follow from the induction claim. We now estimate by definition and induction,
for |y| ≤ 1,

|Ar2k+2| = |r2k+1(y)| =
∣∣∣∣ 1
y3Q

∫ y

0
r2k3Qx dx

∣∣∣∣. C(M)
√

E2L+2

y2 y3+2k−1

|r2k+2| =

∣∣∣∣3Q
∫ y

0

r2k+1

3Q
dx
∣∣∣∣. yy2kC(M)

√
E2L+2,

and (C-23) is proved for k = 1 and i = 0, 1. From the regularity at the origin (A-13), (C-24), the relation

Hε2L+2−2(k+1) = ε2L+2−2k =

k∑
i=1

ci,k Tk−i + r2k,
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and the bound (C-23), there exists c2k+2 such that

ε2L+2−2(k+1) =

k∑
i=1

ci,k Tk+1−i + c2k+23Q+ r2k+2.

We now observe that there exists 1
2 < a < 2 such that

|ε2L−2k(a)|2 .
∫
|y|≤1
|ε2L−2k |

2 . C(M)E2L+2

from (C-1), and thus, using (C-23),

|c2k+2|. C(M)
√

E2L+2.

This completes the induction claim.

Step 3: proof of (ii), (iii), and (iv). We obtain from (C-21), (C-3) with k = L + 1 the Taylor expansion

ε =

L+1∑
i=1

ci,k Tk−i + rε, rε = r2L+2, |ci,k |. C(M)
√

E2L+2,

where, from (C-23),

|Airε|. |log y|y2L+1−i C(M)
√

E2L+2, 0≤ i ≤ 2L + 1.

A brute force computation using the expansions (2-5), (2-6) near the origin ensure that, for any function f ,

∂k
y f =

k∑
i=0

Pi,kAi f, |Pi,k |.
1

yk−i , (C-25)

and we therefore estimate, for 0≤ k ≤ 2L + 1,

|∂k
yrε|. C(M)

√
E2L+2

k∑
i=0

|log y|y2L+1−i

yk−i . y2L+1−k
|log y|C(M)

√
E2L+2.

This concludes the proof of (ii). The estimates of (iii), (iv) now directly follow from (ii) using the Taylor
expansion of Ti at the origin given by Lemma 2.3, and (C-16) for (C-7).

Step 4: proof of (v). We first claim that, for 0≤ k ≤ L ,

2k+2∑
i=0

∫
|∂ i

yε|
2

(1+ |log y|2)(1+ y4k−2i+4)
. C(M)(E2k+2+E2L+2). (C-26)

Observe that this implies (C-13) by taking i = 2k+ 2.
Indeed, from (C-8), (C-9), we estimate

2k+1∑
i=0

∫
y≤1

1+ |log y|C

1+ y4k−2i+4 |∂
i
yε|

2 . C(M)E2L+2. (C-27)
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For y ≥ 1, we recall from the brute force computation (C-25) that

|∂k
yε|.

k∑
i=0

|εi |

yk−i , (C-28)

and thus, using (C-1), for 0≤ k ≤ L ,

2k+2∑
i=0

∫
y≥1

|∂ i
yε|

2

(1+ |log y|2)(1+ y4k−2i+4)
.

2k+2∑
i=0

i∑
j=0

∫
y≥1

|ε j |
2

(1+ |log y|2)(1+ y4k−2i+4+2i−2 j )

.
2k+2∑
j=0

∫
|ε j |

2

(1+ |log y|2)(1+ y4k+4−2 j )
. C(M)E2k+2,

and (C-26) is proved. In particular, together with the energy bound (3-23), this yields the rough Sobolev
bound ∫

|ε|2

y2 +

2L+2∑
k=1

∫
|∂k

yε|
2

1+ |log y|2
. 1.

Therefore, again using (C-26), we estimate

2k+1∑
i=0

∫
1+ |log y|C

1+ y4k−2i+4 |∂
i
yε|

2 .
2k+1∑
i=0

[∫
y≤B100L

0

1+ |log y|C

1+ y4k−2i+4 |∂
i
yε|

2
+

∫
y≥B100L

0

1+ |log y|C

y2 |∂ i
yε|

2
]

. |log b1|
C E2k+2+

1
B10L

0

, (C-29)

and (C-11) follows. The estimate (C-10) now follows from (C-5), (C-6), (C-7) for y ≤ 1 with also (1-31),
and (C-11) for y ≥ 1.

Step 5: proof of (vi). Let i ≥ 0, j ≥ 1 with 2≤ i + j ≤ 2L + 2.

Case 1: i + j even. We have

i + j = 2(k+ 1), 0≤ k ≤ L .

For k ≤ L − 1, from (C-11) and 0≤ i = 2k+ 2− j ≤ 2k+ 1, we estimate∫
1+ |log y|C

1+ y2 j |∂
i
yε|

2
=

∫
1+ |log y|C

1+ y4k+4−2i |∂
i
yε|

2 . b(4k+2)L/(2L−1)
1 |log b1|

C . b(i+ j−1)2L/(2L−1)
1 |log b1|

C .

For k = L , from (C-11), we have∫
1+ |log y|C

1+ y2 j |∂
i
yε|

2
=

∫
1+ |log y|C

1+ y4k+4−2i |∂
i
yε|

2 . b2L+2
1 |log b1|

C .
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Case 2: i + j odd. We have i + j = 2k + 1, 1 ≤ k ≤ L . Assume k ≤ L − 1. If j ≥ 2, then
i ≤ 2k+ 1− j ≤ 2(k− 1)+ 1, and thus, from (C-11),∫

1+ |log y|C

1+ y2 j |∂
i
yε|

2
=

∫
1+ |log y|C

1+ y4k+2−2i |∂
i
yε|

2

.

(∫
1+ |log y|C

1+ y4k+4−2i |∂
i
yε|

2
)1

2
(∫

1+ |log y|C

1+ y4(k−1)+4−2i |∂
i
yε|

2
)1

2

. |log b1|
C bL/(2(2L−1))(4k+2+4(k−1)+2)

1 = b(i+ j−1)2L/(2L−1)
1 |log b1|

C .

For the extremal case j = 1, i = 2k, 1≤ k ≤ L − 1, we estimate, from (C-10), (C-26),∫
1+ |log y|C

1+ y2 |∂2k
y ε|

2 .

(∫
1+ |log y|C

1+ y4 |∂2k
y ε|

2
)1

2
(∫

|∂2k
y ε|

2

1+ |log y|2

)1
2

. |log b1|
C bL/(2(2L−1))(4k+2+4(k−1)+2)

1 = b(i+ j−1)2L/(2L−1)
1 |log b1|

C .

If k = L , then for j ≥ 2, we have i ≤ 2k+ 1− j ≤ 2(k− 1)+ 1, and thus, from (C-11),∫
1+ |log y|C

1+ y2 j |∂
i
yε|

2
=

∫
1+ |log y|C

1+ y4k+2−2i |∂
i
yε|

2

.

(∫
1+ |log y|C

1+ y4k+4−2i |∂
i
yε|

2
)1

2
(∫

1+ |log y|C

1+ y4(k−1)+4−2i |∂
i
yε|

2
)1

2

. |log b1|
C b

1
2

(
2L+2+(4(k−1)+2)L/(2L−1)

)
1 = b2L+1

1 |log b1|
C ,

and for j = 1, i = 2L , from (C-10), (C-13),∫
1+ |log y|C

1+ y2 |∂2L
y ε|2 .

(∫
1+ |log y|C

1+ y4 |∂2L
y ε|2

)1
2
(∫

|∂2L
y ε|2

1+ |log y|2

)1
2

. |log b1|
C b

1
2

(
2L+2+(4(L−1)+2)L/(2L−1)

)
1 = b2L+1

1 |log b1|
C .

Step 6: proof of (vii). From Cauchy–Schwarz we estimate

∥∥∥ εy ∥∥∥2

L∞(y≥1)
.
∫

y≥1
|ε∂yε| dy .

∫
(1+ |log y|2)|ε|2

y2 +

∫
|∂yε|

2

1+ |log y|2
.

Let i, j ≥ 0 with 1≤ i+ j ≤ 2L+1. Then 2≤ i+ j +1≤ 2L , and we conclude from (C-12), (C-13) that∥∥∥∥∂ i
yε

y j

∥∥∥∥2

L∞(y≥1)
.
∫

y≥1

(1+ |log y|2)|∂ i
yε|

2

y2 j+2 +

∫
y≥1

|∂ i+1
y ε|2

y2 j (1+ |log y|2)

. |log b1|
C


b(i+ j)2L/(2L−1)

1 for 2≤ i + j + 1≤ 2L ,
b2L+1

1 for i + j + 1= 2L + 1,
b2L+2

1 for i + j + 1= 2L + 2.
�
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Appendix D: Leibniz rule for H k

Given a smooth function 8, we prove the following Leibniz rule.

Lemma D.1 (Leibniz rule for H k). Let k ≥ 1. Then

A2k−1(8ε)=

k−1∑
i=0

82i,2k−1ε2i +

k∑
i=1

82i−1,2k−1ε2i−1,

A2k(8ε)=

k∑
i=0

82i,2kε2i +

k∑
i=1

82i−1,2kε2i−1,

(D-1)

where 8i,k is computed through the recurrence relation

80,1 =−∂y8, 81,1 =880,2 =−∂yy8−
1+ 2Z

y
∂y8, 81,2 = 2∂y8, 82,2 =8, (D-2)

82k+2,2k+2 =82k+1,2k+1,

82i,2k+2 =82i−1,2k+1+ ∂y82i,2k+1+ ((1+ 2Z)/y)82i,2k+1 1≤ i ≤ k,
80,2k+2 = ∂y80,2k+1+ (1+ 2Z)/y80,2k+1,

82i−1,2k+2 =−82i−2,2k+1+ ∂y82i−1,2k+1, 1≤ i ≤ k+ 1,

(D-3)


82k+1,2k+1 =82k,2k,

82i−1,2k+1 =82i−2,2k + ((1+ 2Z)/y)82i−1,2k − ∂y82i−1,2k, 1≤ i ≤ k,
82i,2k+1 =−∂y82i,2k −82i−1,2k, 1≤ i ≤ k,
80,2k+1 =−∂y80,2k .

(D-4)

Proof. We compute

A(8ε)=8ε1− (∂y8)ε,

H(8ε)= A∗Aε =8ε2+ ∂y8ε1−

(
−A+

1+ 2Z
y

)
(∂y8ε)

=8ε2+ 2∂y8ε1+

[
−∂yy8−

1+ 2Z
y

∂y8

]
ε.

and

A2k+1(8ε)

=

k∑
i=0

A[82i,2kε2i ] +

k∑
i=1

(
−A∗+

1+ 2Z
y

)
82i−1,2kε2i−1

=

k∑
i=0

{82i,2kε2i+1− ∂y82i,2kε2i }+

k∑
i=1

{
−82i−1,2kε2i +

[
1+ 2Z

y
82i−1,2k − ∂y82i−1,2k

]
ε2i−1

}

=−∂y80,2kε+

k∑
i=1

(−∂y82i,2k −82i−1,2k)ε2i +

k∑
i=1

{
82i−2,2k +

1+ 2Z
y

82i−1,2k − ∂y82i−1,2k

}
ε2i−1,

+82k,2kε2k+1,
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which is (D-4). We then compute

A2k+2(8ε)

=

k∑
i=0

[
−A+

1+2Z
y

]
{82i,2k+1ε2i }+

k+1∑
1=i

A∗(82i−1,2k+1ε2i−1)

=

k∑
i=0

{
−82i,2k+1ε2i+1+

[
∂y82i,2k+1+

1+2Z
y

82i,2k+1

]
ε2i

}
+

k+1∑
i=1

{82i−1,2k+1ε2i+∂y82i−1,2k+1ε2i−1}

=

[
∂y80,2k+1+

1+2Z
y

80,2k+1

]
ε+82k+1,2k+1ε2k+2

+

k∑
i=1

[
82i−1,2k+1+∂y82i,2k+1+

1+2Z
y

82i,2k+1

]
ε2i+

k+1∑
i=1

[
−82i−2,2k+1+∂y82i−1,2k+1

]
ε2i−1,

which is (D-3). �

Appendix E: Proof of (3-55)

A simple induction argument ensures the formula

[∂t , H L
λ ]w =

L−1∑
k=0

H k
λ [∂t , Hλ]H

L−(k+1)
λ w.

We therefore renormalize and explicitly compute

[∂t , H L
λ ]w =

1
λ2L+2

L−1∑
k=0

H k
(
−
λs

λ

3V
y2 H L−(k+1)ε

)
. (E-1)

We now apply the Leibniz rule Lemma D.1 with 8 =3V/y2. In view of the expansion (2-6) and the
recurrence formula (D-3), we have an expansion at the origin to all orders, for even k ≥ 2,

82i,2k(y)=
N∑

p=0

ci,k,p y2p
+ O(y2N+2), 0≤ i ≤ k,

82i+1,2k(y)=
N∑

p=0

ci,k,p y2p+1
+ O(y2N+3), 1≤ i ≤ k− 1.

and, for odd k ≥ 1, 
82i−1,2k+1(y)=

N∑
p=0

ci,k,p y2p
+ O(y2N+2), 1≤ i ≤ k+ 1,

82i,2k+1(y)=
N∑

p=0

ci,k,p y2p+1
+ O(y2N+3), 1≤ i ≤ k− 1.
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We also have a bound, for y ≥ 1,

|8i,k |.
1

1+ y4+(2k−i) , 0≤ i ≤ 2k.

Therefore, from (D-1), we estimate

for all k ≥ 0,
∣∣∣∣H k

(
3V
y2 ε

)∣∣∣∣≤ 2k∑
i=0

ci,k
|εi |

1+ y4+(2k−i) . (E-2)

Similarly, ∣∣∣∣AH k
(
3V
y2 ε

)∣∣∣∣. 2k∑
i=0

ci,k
1

1+ y4+(2k−i)

[
|∂yεi | +

|εi |

y

]
.

2k+1∑
i=0

ci,k
|εi |

y(1+ y4+(2k−i))
.

We now inject (E-2) into (E-1) and obtain using (3-36) the pointwise bound on the commutator

|[∂t , H L
λ ]w|.

|b1|

λ2L+2

L−1∑
k=0

2k∑
i=0

ci,k
|ε2(L−k−1)+i |

1+ y4+(2k−i) .
|b1|

λ2L+2

2L−2∑
m=0

|ε2L−2−m |

1+ y4+m =
|b1|

λ2L+2

2L−2∑
m=0

|εm |

1+ y2+2L−m .

Hence, after a change of variables in the integral, and using (C-1), we have∫
|[∂t , H L

λ ]w|
2

λ2(1+ y2)
.
|b1|

2

λ4L+4

2L−2∑
m=0

∫
ε2

m

(1+ y2)(1+ y4+4L−2m)
.

C(M)b2
1

λ4L+4 E2L+2,

and, similarly, ∫
|Aλ[∂t , H L

λ ]w|
2 .
|b1|

2

λ4L+4

2L−1∑
m=0

∫
ε2

m

y2(1+ y4+4L−2m)
.

C(M)b2
1

λ4L+4 E2L+2,

which is (3-55).

Appendix F: Proof of (4-10)

We claim the following Lyapounov monotonicity functional for the E2k+2 energy.

Proposition F.1 (Lyapounov monotonicity for E2k+2). Let 0≤ k ≤ L − 1. Then we have

d
dt

{
1

λ4k+2

[
E2k+2+ O

(
b

1
2
1 b(4k+2)2L/(2L−1)

1

)]}
.
|log b1|

C

λ4k+4

[
b2k+3

1 + b1+δ+(2k+1)2L/(2L−1)
1 +

√
b2k+4

1 E2k+2

]
(F-1)

for some universal constants C, δ > 0 independent of M and of the bootstrap constant K in (3-23), (3-24).



1798 PIERRE RAPHAËL AND REMI SCHWEYER

Proof of Proposition F.1. Step 1: modified energy identity. We follow verbatim the algebra of (3-48) with
L→ k and obtain the modified energy identity

1
2

d
dt

{
E2k+2+ 2

∫
b1(3Z)λ
λ2r

w2k+1w2k

}
=−

∫
(H̃λw2k+1)

2
−

(
λs

λ
+ b1

)∫
(3Ṽ )λ
2λ2r2 w

2
2k+1+

∫
d
dt

(
b1(3Z)λ
λ2r

)
w2k+1w2k

+

∫
H̃λw2k+1

[
∂t Zλ

r
w2k + Aλ([∂t , H k

λ ]w)+ AλH k
λ

(
1
λ2 Fλ

)]
+

∫
b1(3Z)λ
λ2r

w2k

[
−H̃λw2k+1+

∂t Zλ
r
w2k + Aλ([∂t , H k

λ ]w)+ AλH k
λ

(
1
λ2 Fλ

)]
+

∫
b1(3Z)λ
λ2r

w2L+1

[
[∂t , H k

λ ]w+ H k
λ

(
1
λ2 Fλ

)]
.

(F-2)

We now estimate all terms in the right hand side of (F-2).

Step 3: Lower order quadratic terms. We treat the lower order quadratic terms in (F-2) using dissipation.
The bound ∫

([∂t , H k
λ ]w)

2

λ2(1+ y2)
+

∫
|Aλ([∂t , H k

λ ]w)|
2 . C(M)

b2
1

λ4k+4 E2k+2 (F-3)

follows from (3-55) with L→ k. From (3-54), the rough bound (3-38), and Lemma C.1, we estimate∫ ∣∣∣∣H̃λw2k+1

[
∂t Zλ

r
w2k +

∫
Aλ

(
[∂t , H k

λ ]w

)]∣∣∣∣+ ∫ |H̃λw2k+1|

∣∣∣∣b(3Z)λ
λ2r

w2k

∣∣∣∣
≤

1
2

∫
|H̃λw2k+1|

2
+

b2
1

λ4k+4

[∫
ε2

2k

1+ y6 +C(M)E2k+2

]
≤

1
2

∫
|H̃λw2k+1|

2
+

b1

λ4k+4 C(M)b1E2k+2.

All other quadratic terms are lower order by a factor b1, again using (3-38), (3-55), (3-36), and Lemma C.1:∣∣∣∣λs

λ
+ b1

∣∣∣∣ ∫ ∣∣∣∣(3Ṽ )λ
2λ2r2 w

2
2k+1

∣∣∣∣+ ∫ ∣∣∣∣b1(3Z)λ
λ2r

w2k

[
∂t Zλ

r
w2k + Aλ

(
[∂t , H k

λ ]w

)]∣∣∣∣
+

∫ ∣∣∣∣b1(3Z)λ
λ2r

w2k+1[∂t , H L
λ ]w

∣∣∣∣+ ∣∣∣∣∫ d
dt

(
b1(3Z)λ
λ2r

)
w2k+1w2k

∣∣∣∣
.

b2
1

λ4k+4

[∫
ε2

2k+1

1+ y4 +

∫
ε2

2k

1+ y6 +C(M)E2k+2

]
.

b1

λ4k+4 C(M)b1E2k+2.

We similarly estimate the boundary term in time using (C-10):∣∣∣∣∫ b1(3Z)λ
λ2r

w2k+1w2k

∣∣∣∣. b1

λ4k+2

[∫
ε2

2k+1

1+ y2 +

∫
ε2

2k

1+ y4

]
.

b1

λ4k+2 |log b1|
C b(4k+2)2L/(2L−1)

1 .
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We inject these estimates into (3-53) to derive the preliminary bound

1
2

d
dt

{
1

λ4k+2

[
E2k+2+O

(
b

1
2
1 b(4k+2)2L/(2L−1)

1

)]}
≤−

1
2

∫
(H̃λw2k+1)

2
+

∫
H̃λw2k+1 AλH k

λ

(
1
λ2 Fλ

)
+

∫
H k
λ

(
1
λ2 Fλ

)[
b1(3Z)λ
λ2r

w2k+1+ A∗λ

(
b1(3Z)λ
λ2r

w2k

)]
+

b1

λ4k+4 bδ1E2k+2 (F-4)

with constants independent of M for |b|< b∗(M) small enough. We now estimate all terms in the right
hand side of (F-4).

Step 4: further use of dissipation. Recall the decomposition (3-57). The first term in the right hand side
of (F-4) is estimated after an integration by parts∣∣∣∣∫ H̃λw2k+1 AλH k

λ

(
1
λ2 Fλ

)∣∣∣∣≤ C
λ4k+4 ‖A∗ε2k+1‖L2‖H k+1F0‖L2+

1
4

∫
|H̃λw2k+1|

2
+

C
λ4k+4

∫
|AH kF1|

2

≤
C

λ4k+4

[
‖H k+1F0‖L2

√
E2k+2+‖AH kF1‖

2
L2

]
+

1
4

∫
|H̃λw2k+1|

2 (F-5)

for some universal constant C > 0 independent of M . The last two terms in (F-4) can be estimated by
brute force from Cauchy–Schwarz∣∣∣∣∫ H k

λ

(
1
λ2 Fλ

)
b1(3Z)λ
λ2r

w2k+1

∣∣∣∣. b1

λ4k+4

(∫
1+ |log y|2

1+ y4 |H kF|2
)1

2
(∫

ε2
2k+1

y2(1+ |log y|2)

)1
2

.
b1

λ4k+4

√
E2k+2

(∫
1+ |log y|2

1+ y4 |H kF|2
)1

2

, (F-6)

where constants are independent of M thanks to the estimate (B-2) for ε2k+1. Similarly,∣∣∣∣∫ H k
λ

(
1
λ2 Fλ

)
A∗λ

(
b1(3Z)λ
λ2r

w2k

)∣∣∣∣
.

b1

λ4k+4

(∫
1+ |log y|2

1+ y2 |AH kF|2
)1

2
(∫

ε2
2k

(1+ y4)(1+ |log y|2)

)1
2

.
b1

λ4k+4 C(M)
√

E2k+2

(∫
1+ |log y|2

1+ y2 |AH kF0|
2
+

∫
|AH kF1|

2
)1

2

. (F-7)

We now claim the bounds∫
1+ |log y|2

1+ y4 |H kF|2 ≤ b2k+2
1 |log b1|

C , (F-8)∫
1+ |log y|2

1+ y2 |AH kF0|
2
≤ b2k+2

1 |log b1|
C , (F-9)∫

|H k+1F0|
2
≤ b2k+4

1 |log b1|
C , (F-10)∫

|AH kF1|
2
≤ b2k+3

1 |log b1|
C
+ b1+δ+(2k+1)2L/(2L−1)

1 (F-11)
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for some universal constants δ,C > 0 independent of M and of the bootstrap constant K in (3-23), (3-24).
Injecting these bounds together with (F-5), (F-6), (F-7) into (F-4) concludes the proof of (F-1). We now
turn to the proofs of (F-8), (F-9), (F-10), (F-11).

Step 5: 9̃b terms. From (2-88) we estimate∫
1+ |log y|2

1+ y4 |H k9̃b|
2 .

∫
|H k9̃b|

2 . b2k+2
1 |log b1|

C ,∫
1+ |log y|2

1+ y2 |AH k9̃b|
2 .

∫
|AH k9̃b|

2
=

∫
H k9̃b H k+19̃b . b2k+3

1 |log b1|
C ,∫

|H k+19̃b|
2 . b2(k+1)+2

1 |log b1|
C ,

and (F-8), (F-9), (F-10) are proved for 9̃b.

Step 6: M̃od(t) terms. Recall (3-29),

M̃od(t)=−
(
λs

λ
+ b1

)
3Q̃b+

L∑
i=1

[(bi )s + (2i − 1+ cb1)b1bi − bi+1]

[
T̃i +χB1

L+2∑
j=i+1

∂S j

∂bi

]
,

and the notation (3-39). We will need only the rough bound for b1-admissible functions (2-32).

Proof of (F-10) for M̃od. We estimate from (2-32), for y ≤ 2B1,

|H k+1Si | + |H k+13Si | + |H k+1bi3T̃i |. bi
1(1+ y)2i−1−(2k+2) . b1bi−1

1 (1+ y)2i−2k−3 .
b1|log b1|

C

1+ y2k+1 ,

and thus, using H3Q = 0,∫
|H k+13Q̃b|

2 .
∫

y≤2B1

b2
1|log b1|

C

1+ y4k+2 . b2
1|log b1|

C .

We also have the rough bound, for 1≤ i ≤ L , i + 1≤ j ≤ L2, y ≤ 2B1,

|T̃i | +

∣∣∣∣χB1

L+2∑
j=i+1

∂S j

∂bi

∣∣∣∣. |log b1|
C[y2i−1

+ y2 j−1b j−i
1 |log b1|

C]. |log b1|
C y2i−1, (F-12)

and similarly for suitable derivatives, and hence the bound

L∑
i=1

∫ ∣∣∣∣H k+1
[

T̃i +χB1

L+2∑
j=i+1

∂S j

∂bi

]∣∣∣∣2 . |log b1|
C
∫

y≤2B1

|y2L−1−(2k+2)
|
2

. |log b1|
C B4(L−k)−4

1 .
|log b1|

C

b2(L−k)−2
1

.

We therefore obtain from Lemma 3.3 the control∫
|H k+1M̃od(t)|2 . C(K )|log b1|

C b2L+2
1

[
b2

1+
1

b2(L−k)−2
1

]
. C(K )b2k+4

1 |log b1|
C . |log b1|

C b2k+4
1
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for b1 < b∗1(M) small enough.

Proof of (F-8), (F-9). We estimate

|H k Si | + |H k3Si | + |H kbi3T̃i |. bi
1(1+ y)2i−1−2k .

|log b1|
C

1+ y2k+1 ,

and thus∫
1+ |log y|2

1+ y4 |H k3Q̃b|
2
+

∫
1+ |log y|2

1+ y2 |AH k3Q̃b|
2 . |log b1|

C
∫

1
1+ y4k+2 . |log b1|

C .

Then, from (F-12), we estimate

L∑
i=1

∫
1+ |log y|2

1+ y4

∣∣∣∣H k
[

T̃i +χB1

L+2∑
j=i+1

∂S j

∂bi

]∣∣∣∣2+ L∑
i=1

∫
1+ |log y|2

1+ y2

∣∣∣∣AH k
[

T̃i +χB1

L+2∑
j=i+1

∂S j

∂bi

]∣∣∣∣2
. |log b1|

C
∫

y≤2B1

|y2L−1−2k−2
|
2 .
|log b1|

C

b2(L−k)−2
1

,

and hence, using Lemma 3.3, we have∫
1+ |log y|2

1+ y4 |H kM̃od|2+
∫

1+ |log y|2

1+ y2 |AH kM̃od|2. |log b1|
CC(K )b2L+2

1

[
1+

1

b2(L−k)−2
1

]
.b2k+2

1 .

Step 7: nonlinear term N (ε). Control near the origin y ≤ 1. The control near the origin follows directly
from (3-72).

Control for y ≥ 1. We detail the proof of the most delicate bound (F-11). The proofs of (F-8) and (F-9)
follow similar lines and are left to the reader.

Recall the notations (3-73) and the bounds (3-74), (3-75), (3-76) on ζ . We then have the bounds (3-77),
(3-78), (3-79) on N1(ε), which yield

|AH k N (ε)|.
2k+1∑
p=0

|∂
p
y N (ε)|

y2k+1−p .
2k+1∑
p=0

1
y2k+1−p

p∑
i=0

|∂ i
yζ

2
||∂ p−i

y N1(ε)|

.
2k+1∑
p=0

|∂k
yζ

2
|

y2k+1−p +

2k+1∑
p=1

1
y2k+1−p

p−1∑
i=0

|∂ i
yζ

2
||log b1|

C
[

1
y p−i+1 + bap−i/2

1

]

.
2k+1∑
p=0

|∂
p
y ζ

2
|

y2k+1−p + |log b1|
C

2k∑
i=0

|∂ i
yζ

2
|

y2k+2−i + |log b1|
C

2k+1∑
p=1

p−1∑
i=0

bap−i/2
1

|∂ i
yζ

2
|

y2k+1−p

. |log b1|
C
[2k+1∑

p=0

|∂
p
y ζ

2
|

y2k+1−p +

2k+1∑
p=1

p−1∑
i=0

bap−i/2
1

|∂ i
yζ

2
|

y2k+1−p

]
,

and hence∫
y≥1
|AH k N (ε)|2

. |log b1|
C

2k+1∑
p=0

p∑
i=0

∫
y≥1

|∂ i
yζ |

2
|∂

p−i
y ζ |2

y4L+2−2p + |log b1|
C

2k+1∑
p=1

p−1∑
i=0

i∑
j=0

bap−i
1

∫
y≥1

|∂
j
y ζ |

2
|∂

i− j
y ζ |2

y4L+2−2p .
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We now claim the bounds
2k+1∑
p=0

p∑
i=0

∫
y≥1

|∂ i
yζ |

2
|∂

p−i
y ζ |2

y4k+2−2p ≤ b1bδ1b(2k+1)2L/(2L−1)
1 , (F-13)

|log b1|
C

2k+1∑
p=1

p−1∑
i=0

i∑
j=0

bap−i
1

∫
y≥1

|∂
j
y ζ |

2
|∂

i− j
y ζ |2

y4k+2−2p ≤ b1bδ1b(2k+1)2L/(2L−1)
1 (F-14)

for some δ > 0, and this concludes the proof of (F-11) for N (ε).

Proof of (3-80). Let 0≤ k ≤ L − 1, 0≤ p ≤ 2k+ 1, 0≤ i ≤ p. Let I1 = p− i , I2 = i . Then we can pick
J2 ∈ N∗ such that

max{1; 2− i} ≤ J2 ≤min{2k+ 3− p; 2k+ 2− i}

and define
J1 = 2k+ 3− p− J2.

Then, from direct inspection,

(I1, J1, I2, J2) ∈ N3
×N∗,

{
1≤ I1+ J1 ≤ 2k+ 1≤ 2L − 1, 2≤ I2+ J2 ≤ 2k+ 2≤ 2L ,
I1+ I2+ J1+ J2 = 2k+ 3.

Hence, from (3-74), (3-75),∫
y≥1

|∂ i
yζ |

2
|∂

p−i
y ζ |2

y4k+2−2p .

∥∥∥∥ ∂ I1
y ζ

y J1−1

∥∥∥∥2

L∞(y≥1)

∫
y≥1

|∂ I2
y ζ |

2

y2J2−2

. |log b1|
C(K )b(I1+J1+I2+J2−1)2L/(2L−1)

1 = |log b1|
C(K )b(2k+2)2L/(2L−1)

1

≤ b1bδ1b(2k+1)2L/(2L−1)
1 . �

Proof of (3-81). Let 0≤ k ≤ L−1, 1≤ p≤ 2k+1, 0≤ j ≤ i ≤ p−1. For p= 2k+1 and 0≤ i = j ≤ 2k,
we use the energy bound (3-76) to estimate

bap−i
1

∫
y≥1

|∂
j
y ζ |

2
|∂

i− j
y ζ |2

y4k+2−2p = ba2k+1−i
1 ‖ζ‖2L∞(y≥1)

∫
y≥1
|∂ i

yζ |
2

. b2L/(2L−1)((2k+1−i)+1+i)
1 |log b1|

C(K )
≤ b1bδ1b(2k+1)2L/(2L−1)

1 .

This exceptional case being treated, we let I1 = j , I2 = i − j and pick J2 ∈ N∗ with

max{1; 2− (i − j); 2− (p− j)} ≤ J2 ≤min{2k+ 3− p; 2k+ 2− (p− j); 2k+ 2− (i − j)}.

Let
J1 = 2k+ 3− p− J2.

Then we can directly check that

(I1, J1, I2, J2) ∈ N3
×N∗,

{
1≤ I1+ J1 ≤ 2k+ 1, 2≤ I2+ J2 ≤ 2k+ 2,
I1+ I2+ J1+ J2 = 2k+ 3− (p− i),
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and thus

bap−i
1

∫
y≥1

|∂
j
y ζ |

2
|∂

i− j
y ζ |2

y4k+2−2p . bap−i
1

∥∥∥∥ ∂ I1
y ζ

y J1−1

∥∥∥∥2

L∞(y≥1)

∫
y≥1

|∂ I2
y ζ |

2

y2J2−2

. |log b1|
C(K )b(p−i+I1+J1+I2+J2−1)2L/(2L−1)

1 = |log b1|
C(K )b(2k+2)2L/(2L−1)

1

≤ b1bδ1b(2k+1)2L/(2L−1)
1 . �

Step 8: small linear term L(ε). We recall the decomposition (3-84).

Control for y ≤ 1. The control near the origin directly follows from (3-88).

Control for y ≥ 1. We give a detailed proof of (F-11) and leave (F-8) to the reader. We recall the bound
(3-90):

|∂k
y L(ε)|.

k∑
i=0

b1|log b1|
C
|∂ i

yε|

yk−i+1 .

This implies

|AH k L(ε)|.
2k+1∑
p=0

|∂
p
y L(ε)|

y2k+1−p .
2k+1∑
p=0

1
y2k+1−p

p∑
i=0

b1|log b1|
C
|∂ i

yε|

y p−i+1 . b1|log b1|
C

2k+1∑
i=0

|∂ i
yε|

y2k+2−i .

We therefore conclude from (C-11) that∫
y≥1
|AH k L(ε)|2 . b2

1|log b1|
C

2k+1∑
i=0

∫
y≥1

|∂ i
yε|

2

y4k+4−2i

. |log b1|
C(K )b2+(2k+1)2L/(2L−1)

1 ≤ b1+δ+(2k+1)2L/(2L−1)
1 ,

and (3-64) is proved.
This concludes the proof of (F-8), (F-9), (F-10), (F-11), and thus of Proposition 3.6. �
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EXISTENCE AND ORBITAL STABILITY OF THE GROUND STATES
WITH PRESCRIBED MASS FOR THE L2-CRITICAL AND SUPERCRITICAL NLS

ON BOUNDED DOMAINS

BENEDETTA NORIS, HUGO TAVARES AND GIANMARIA VERZINI

Given ρ > 0, we study the elliptic problem

find (U, λ) ∈ H 1
0 (B1)×R such that

{
−1U + λU =U p,∫

B1
U 2 dx = ρ,

U > 0,

where B1 ⊂ RN is the unitary ball and p is Sobolev-subcritical. Such a problem arises in the search for
solitary wave solutions for nonlinear Schrödinger equations (NLS) with power nonlinearity on bounded
domains. Necessary and sufficient conditions (about ρ, N and p) are provided for the existence of
solutions. Moreover, we show that standing waves associated to least energy solutions are orbitally stable
for every ρ (in the existence range) when p is L2-critical and subcritical, i.e., 1< p ≤ 1+ 4/N , while
they are stable for almost every ρ in the L2-supercritical regime 1+ 4/N < p < 2∗ − 1. The proofs
are obtained in connection with the study of a variational problem with two constraints of independent
interest: to maximize the L p+1-norm among functions having prescribed L2- and H 1

0 -norms.

1. Introduction

In this paper, we study standing wave solutions of the nonlinear Schrödinger equation (NLS){
i ∂8
∂t
+18+ |8|p−18= 0, (t, x) ∈ R× B1,

8(t, x)= 0, (t, x) ∈ R× ∂B1

(1-1)

with B1 the unitary ball of RN , N ≥ 1, and 1< p< 2∗−1, where 2∗=∞ if N = 1, 2 and 2∗= 2N/(N−2)
otherwise. In what follows, p is always subcritical for the Sobolev immersion while criticality will be
understood in the L2-sense; see below. The main tool in our investigation will be the analysis of the
variational problem

max
{∫

�

|u|p+1 dx : u ∈ H 1
0 (�),

∫
�

u2 dx = 1,
∫
�

|∇u|2 dx = α
}

and in particular of its asymptotic properties in dependence of the parameter α. As we will show, when
the bounded domain �⊂ RN is chosen to be B1, the two problems are strongly related.

NLS on bounded domains appear in different physical contexts. For instance, in nonlinear optics,
with N = 2 and p = 3, they describe the propagation of laser beams in hollow-core fibers [Agrawal

MSC2010: 35B35, 35J20, 35Q55, 35C08.
Keywords: Gagliardo–Nirenberg inequality, constrained critical points, Ambrosetti–Prodi-type problem, singular perturbations.
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2013; Fibich and Merle 2001]. In Bose–Einstein condensation, when N ≤ 3 and p = 3, they model
the presence of an infinite well-trapping potential [Bartsch and Parnet 2014]. When considered in the
whole space RN , this equation admits the L2-critical exponent p = 1+ 4/N ; indeed, in the subcritical
case 1< p < 1+ 4/N , ground state solutions are orbitally stable while in the critical and supercritical
one they are always unstable [Cazenave and Lions 1982; Cazenave 2003]. Notice that the exponent p= 3
is subcritical when N = 1, critical when N = 2 and supercritical when N = 3. In the case of a bounded
domain, only a few papers analyze the effect of boundary conditions on stability, namely [Fibich and
Merle 2001] and the more recent [Fukuizumi et al. 2012] by Fukuizumi, Selem and Kikuchi. In these
papers, it is proved that also in the critical and supercritical cases there exist standing waves that are
orbitally stable (even though a full classification is not provided, even in the subcritical range). This
shows that the presence of the boundary has a stabilizing effect.

As is well known, two quantities are conserved along trajectories of (1-1): the energy

E(8)=

∫
B1

(1
2
|∇8|2−

1
p+1
|8|p+1

)
dx

and the mass

Q(8)=

∫
B1

|8|2 dx .

A standing wave is a solution of the form 8(t, x)= eiλtU (x), where the real-valued function U solves
the elliptic problem {

−1U + λU = |U |p−1U in B1,

U = 0 on ∂B1.
(1-2)

In (1-2), one can either consider the chemical potential λ ∈ R to be given or to be an unknown of the
problem. In the latter case, it is natural to prescribe the value of the mass so that λ can be interpreted as a
Lagrange multiplier.

Among all possible standing waves, typically the most relevant are ground state solutions. In the
literature, the two points of view mentioned above lead to different definitions of ground state; see for
instance [Adami et al. 2013]. When λ is prescribed, ground states can be defined as minimizers of the
action functional

Aλ(8)= E(8)+ 1
2λQ(8)

among its nontrivial critical points (recall that Aλ is not bounded from below); see for instance [Berestycki
and Lions 1983, p. 316]. Equivalently, they can be defined as minimizers of Aλ on the associated Nehari
manifold. Even though these solutions of (1-2) are sometimes called least energy solutions, we will
refer to them as least action solutions. In case λ is not given, one may define the ground states as the
minimizers of E under the mass constraint Q(U )= ρ for some prescribed ρ > 0 [Cazenave and Lions
1982, p. 555]. It is worth noticing that this second definition is fully consistent only in the subcritical case

p < 1+
4
N

since in the supercritical case E|{Q=ρ} is unbounded from below [Cazenave 2003]; see also Appendix A.
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Remark 1.1. When working on the whole space RN , the two points of view above are in some sense
equivalent. Indeed, in such a situation, it is well known [Kwong 1989] that the problem

−1Z + Z = Z p, Z ∈ H 1(RN ), Z > 0

admits a solution Z N ,p that is unique (up to translations), radial and decreasing in r . Therefore, both the
problem with fixed mass and the one with given chemical potential can be uniquely solved in terms of a
suitable scaling of Z N ,p. On the other hand, NLS on RN with a nonhomogeneous nonlinearity cannot be
treated in this way, and the fixed mass problem becomes hard to tackle [Bellazzini et al. 2013; Bartsch
and de Valeriola 2013; Jeanjean 1997; Jeanjean et al. 2014].

When working on bounded domains, the two papers [Fibich and Merle 2001; Fukuizumi et al. 2012]
mentioned above deal with least action solutions. In this paper, we make a first attempt to study the case
of prescribed mass. Since we consider p also in the critical and supercritical ranges, we have to restrict
the minimization process to constrained critical points of E.

Definition 1.2. Let ρ > 0. A positive solution of (1-2) with prescribed L2-mass ρ is a positive critical
point of E|{Q=ρ}, that is, an element of the set

Pρ = {U ∈ H 1
0 (B1) : Q(U )= ρ, U > 0, there exists λ such that −1U + λU =U p

}.

A positive least energy solution is a minimizer of the problem

eρ = inf
Pρ

E.

Remark 1.3. When p is subcritical, as we mentioned, the above procedure is equivalent to the mini-
mization of E|{Q=ρ} with no further constraint. On the other hand, when p is supercritical, the set Pρ on
which the minimization is settled may be strongly irregular. Contrary to what happens for least action
solutions, no natural Nehari manifold seems to be associated to least energy solutions. Furthermore, since
we work on a bounded domain, the dependence of Pρ on ρ cannot be understood in terms of dilations.
As a consequence, no regularized version of the minimization problem defined above seems available.

Remark 1.4. Since Aλ and the corresponding Nehari manifold are even, one can immediately see that
least action solutions do not change sign so that they can be chosen to be positive. On the other hand,
since U ∈ Pρ does not necessarily imply |U | ∈Pρ , in the previous definition, we require the positivity
of U . Nonetheless, this condition can be removed in some cases, for instance when p is subcritical or
when it is critical and ρ is small (see also Remark 5.10).

Our main results deal with the existence and orbital stability of the least energy solutions of (1-2) (the
definition of orbital stability is recalled at the beginning of Section 6 below).

Theorem 1.5. Under the above notations, the following hold:

(1) If 1< p < 1+ 4/N , then for every ρ > 0, the set Pρ has a unique element, which achieves eρ .

(2) If p = 1+ 4/N , for 0 < ρ < ‖Z N ,p‖
2
L2(RN )

, the set Pρ has a unique element, which achieves eρ ;
for ρ ≥ ‖Z N ,p‖

2
L2(RN )

, we have Pρ =∅.
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(3) If 1+ 4/N < p < 2∗ − 1, there exists ρ∗ > 0 such that eρ is achieved if and only if 0 < ρ ≤ ρ∗.
Moreover, Pρ =∅ for ρ > ρ∗ whereas

#Pρ ≥ 2 for 0< ρ < ρ∗.

In this latter case, Pρ contains positive solutions of (1-2) that are not least energy solutions.

Remark 1.6. As a consequence, we have that, for p and ρ as in case (3) of the previous theorem, the
problem

find (U, λ) ∈ H 1
0 (B1)×R :

{
−1U + λU =U p,∫

B1
U 2 dx = ρ

admits multiple positive radial solutions.

Concerning the stability, following [Fukuizumi et al. 2012], we apply the abstract results in [Grillakis
et al. 1987], which require the local existence for the Cauchy problem associated to (1-1). Since this is
not known to hold for all the cases we consider, we take it as an assumption and refer to [Fukuizumi et al.
2012, Remark 1] for further details.

Theorem 1.7. Suppose that for each 80 ∈ H 1
0 (B1,C) there exist t0 > 0, only depending on ‖80‖, and a

unique solution 8(t, x) of (1-1) with initial datum 80 in the interval I = [0, t0).
Let U denote a least energy solution of (1-2) as in Theorem 1.5, and let 8(t, x)= eiλtU (x).

(1) If 1< p ≤ 1+ 4/N , then 8 is orbitally stable.

(2) If 1+ 4/N < p < 2∗− 1, then 8 is orbitally stable for a.e. ρ ∈ (0, ρ∗].

In case (2) of the previous theorem, we expect orbital stability for every ρ ∈ (0, ρ∗) and instability
for ρ = ρ∗; see Remark 6.4 ahead.

As we mentioned, [Fibich and Merle 2001; Fukuizumi et al. 2012] consider least action solutions, that
is, minimizers associated to

aλ = inf{Aλ(U ) :U ∈ H 1
0 (B1), U 6≡ 0, A′λ(U )= 0}.

In this situation, the existence and positivity of the least energy solution is not an issue. Indeed, it is well
known that problem (1-2) admits a unique positive solution Rλ if and only if λ ∈ (−λ1(B1),+∞), where
λ1(B1) is the first eigenvalue of the Dirichlet Laplacian. Such a solution achieves aλ. Concerning the
stability, in the critical case [Fibich and Merle 2001] and in the subcritical one [Fukuizumi et al. 2012], it
is proved that eiλt Rλ is orbitally stable whenever λ∼−λ1(B1) and λ∼+∞. Furthermore, stability for all
λ ∈ (−λ1(B1),+∞) is proved in the second paper in dimension N =1 for 1< p≤5 whereas in the first pa-
per numerical evidence of it is provided in the critical case. In this context, our contribution is the following:

Theorem 1.8. Let us assume local existence as in Theorem 1.7, and let Rλ be the unique positive solution
of (1-2). If 1< p ≤ 1+ 4/N , then eiλt Rλ is orbitally stable for every λ ∈ (−λ1(B1),+∞).

Remark 1.9. In [Fukuizumi et al. 2012], it is also shown that, in the supercritical case p > 1+ 4/N , the
standing wave associated to Rλ is orbitally unstable for λ∼+∞. In view of Theorem 1.7(2), this marks
a substantial qualitative difference between the two notions of ground state.
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Remark 1.10. Working in B1 allows one to obtain radial symmetry, uniqueness properties and nonde-
generacy of solutions (which in turn implies smooth dependence of the solutions on suitable parameters).
These properties are not necessary for the existence results of Theorem 1.5, most of which hold also in
general bounded domains, but they are crucial in our proof of stability.

As we mentioned, we will prove the above results as a byproduct of the analysis of a different variational
problem that we think is of independent interest. The main feature of such a problem is due to the fact
that it involves an optimization with two constraints. Let �⊂ RN be a general bounded domain. For any
fixed α > λ1(�), we consider the maximization problem

Mα = sup
{∫

�

|u|p+1 dx : u ∈ H 1
0 (�),

∫
�

u2 dx = 1,
∫
�

|∇u|2 dx = α
}
, (1-3)

which is related to the validity of Gagliardo–Nirenberg type inequalities (Appendix A).

Theorem 1.11. Given α > λ1(�), Mα is achieved by a positive function uα ∈ H 1
0 (�), and there exist

µα > 0 and λα >−λ1(�) such that

−1uα + λαuα = µαu p
α ,

∫
�

u2
α dx = 1,

∫
�

|∇uα|2 dx = α. (1-4)

Moreover, as α→ λ1(�)
+,

uα→ ϕ1, µα→ 0+, λα→−λ1(�)

(ϕ1 denotes the first positive eigenfunction, normalized in L2).
As α→+∞,

α

λα
→

N (p− 1)
N + 2− p(N − 2)

,

and

(1) if 1< p < 1+ 4/N , then µα→+∞,

(2) if p = 1+ 4/N , then µα→‖Z N ,p‖
p−1
L2(RN )

and

(3) if 1+ 4/N < p < 2∗− 1, then µα→ 0.

Furthermore, as α → +∞, uα is a one-spike solution, and a suitable scaling of uα approaches the
function Z N ,p defined in Remark 1.1.

More detailed asymptotics are provided in Sections 3 and 4. This problem is related to the previous
one in the following way. Taking u > 0 and µ> 0 as in (1-4), the function U = µ1/(p−1)u belongs to Pρ

for ρ = µ2/(p−1). Incidentally, if one considers the minimization problem

mα = inf
{∫

�

|u|p+1 dx : u ∈ H 1
0 (�),

∫
�

u2 dx = 1,
∫
�

|∇u|2 dx = α
}
,

then one obtains a solution of (1-4) with µ < 0 and λ <−λ1(�). This allows one to recover the well-
known theory of ground states for the defocusing Schrödinger equation i∂8/∂t +18− |8|p−18= 0;
see Appendix B. Moreover, when α ∼ λ1(�), there exist exactly two solutions (u, µ, λ) of (1-4) that
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achieve Mα and mα , respectively. More precisely, in the context of Ambrosetti–Prodi theory [1972; 1993],
we prove that (u, µ, λ)= (ϕ1, 0,−λ1(�)) is an ordinary singular point for a suitable map, which yields
sharp asymptotic estimates as α→ λ1(�)

+. On the other hand, the estimates on Mα as α→+∞ lean on
suitable pointwise a priori controls [Esposito and Petralla 2011]: controls of this kind were initiated and
performed for the first time for critical nonlinear elliptic problems by Druet, Hebey and Robert [Druet
et al. 2004] (see also [Druet et al. 2012]).

We stress that these results about the two-constraints problem hold for a general bounded domain �.
Going back to the case �= B1, positive solutions for (1-2) have been the object of an intensive study by
a number of authors, in particular regarding uniqueness issues; among others, we refer to [Gidas et al.
1979; Kwong 1989; Kwong and Li 1992; Zhang 1992; Kabeya and Tanaka 1999; Korman 2002; Tang
2003; Felmer et al. 2008]. In our framework, we can exploit the synergy with such uniqueness results in
order to fully characterize the positive solutions of (1-4). We do this in the following statement, which
collects the results of Proposition 5.4 and of Appendix B below:

Theorem 1.12. Let �= B1 and

S= {(u, µ, λ, α) ∈ H 1
0 (�)×R3

: u > 0 and (1-4) holds}.

Then

S= S+ ∪S− ∪ {(ϕ1, 0,−λ1(B1), λ1(B1))},

where both S+ and S− are smooth curves parametrized by α ∈ (λ1(B1),+∞), corresponding to
S∩ {µ > 0} and S∩ {µ < 0}, respectively. In addition, (u, µ, λ, α) ∈ S+ (S−) if and only if u achieves
Mα (mα).

Remark 1.13. As a consequence of the previous theorem, we have that the smooth set S+ defined through
the maximization problem Mα can be used as a surrogate of the Nehari manifold in order to “regularize”
the minimization procedure introduced in Definition 1.2.

To conclude, we mention that in [Noris et al. 2014], by exploiting part of the strategy we have described,
we were able to find stable solutions with small mass for the cubic Schrödinger system with trapping
potential on RN .

This paper is structured as follows. In Section 2, we address the preliminary study of the two-constraint
problems associated to Mα and mα. Afterwards, in Section 3, we focus on the case where α ∼ λ1(�),
seen as an Ambrosetti–Prodi-type problem. Section 4 is devoted to the asymptotics as α→+∞ for Mα ,
which concludes the proof of Theorem 1.11. In Section 5, we restrict our attention to the case �= B1,
proving all the existence results (in particular Theorem 1.5), qualitative properties and more precise
asymptotics for the map α 7→ (u, µ, λ) that parametrizes S+. In particular, we show that µ′(α) > 0
whenever p ≤ 1+ 4/N whereas it changes sign in the supercritical case. Relying on such monotonicity
properties, the stability issues are addressed in Section 6, which contains the proofs of Theorems 1.7
and 1.8. Finally, in Appendix A, we collect some known results for the reader’s convenience, whereas
Appendix B is devoted to the study of S−, which concludes the proof of Theorem 1.12.
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2. A variational problem with two constraints

Let � ⊂ RN be a bounded domain, N ≥ 1. For every α ≥ λ1(�) fixed, we consider the variational
problems

mα = inf
u∈Uα

∫
�

|u|p+1 dx, Mα = sup
u∈Uα

∫
�

|u|p+1 dx,

where

Uα =

{
u ∈ H 1

0 (�) :

∫
�

u2 dx = 1,
∫
�

|∇u|2 dx ≤ α
}
.

As we will see, these definitions of Mα and mα are equivalent to the ones given in the introduction. To
start with, we state the following straightforward properties:

Lemma 2.1. For every fixed α ≥ λ1(�),

(i) Uα 6=∅,

(ii) Uα is weakly compact in H 1
0 (�),

(iii) the functional u 7→
∫
�
|u|p+1 dx is weakly continuous and bounded in Uα and

(iv) ‖u‖L p+1(�) ≥ |�|
−(p−1)/2(p+1) for every u ∈Uα.

Lemma 2.2. For every fixed α > λ1(�), the set

Ũα =

{
u ∈ H 1

0 (�) :

∫
�

u2 dx = 1,
∫
�

|∇u|2 dx = α,
∫
�

uϕ1 dx 6= 0
}

is a submanifold of H 1
0 (�) of codimension 2.

Proof. Setting F(u)=
(∫
�

u2 dx − 1,
∫
�
|∇u|2 dx

)
, it suffices to prove that, for every u ∈ Ũα, the range

of F ′(u) is R2. We have

1
2 F ′(u)[u] = (1, α), 1

2 F ′(u)[ϕ1] =

∫
�

uϕ1 dx · (1, λ1(�)),

which are linearly independent as α > λ1(�). �

Lemma 2.3. For every fixed α > λ1(�), there exists u ∈ Ũα, with u ≥ 0, such that mα =
∫
�

u p+1 dx.
Moreover, there exist λ,µ ∈ R, with µ 6= 0, such that

−1u+ λu = µu p in �. (2-1)

A similar result holds for Mα.

Proof. Let us prove the result for mα . First, the infimum is attained by a function u ∈Uα by Lemma 2.1;
by possibly taking |u|, we can suppose that u ≥ 0. Let us show that u ∈ Ũα. Notice that, with u ≥ 0
and u 6≡ 0, it holds that

∫
�

uϕ1 dx 6= 0. Assume by contradiction that
∫
�
|∇u|2 dx < α; then we have∫

�

u p+1 dx = inf
{∫

�

|v|p+1 dx : v ∈ H 1
0 (�),

∫
�

v2 dx = 1,
∫
�

|∇v|2 dx < α
}
,
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and there exists a Lagrange multiplier µ ∈ R so that∫
�

u pz dx = µ
∫
�

uz dx for all z ∈ H 1
0 (�).

Hence, µ≡ u p−1
∈ H 1

0 (�), which contradicts the fact that
∫
�

u2 dx = 1. Therefore u ∈ Ũα so that, by
Lemma 2.2, the Lagrange multiplier theorem applies, thus providing the existence of k1, k2 ∈ R such that∫

�

u pz dx = k1

∫
�

∇u · ∇z dx + k2

∫
�

uz dx for all z ∈ H 1
0 (�).

By the previous argument, we see that k1 6= 0; hence, setting µ= 1/k1 and λ= k2/k1, the proposition
is proved. �

Proposition 2.4. Given α > λ1(�), the Lagrange multipliers µ and λ associated to mα as in Lemma 2.3
satisfy µ < 0 and λ <−λ1(�). Similarly, in the case of Mα, it holds that µ > 0 and λ >−λ1(�).

Proof. Let (u, λ, µ) be any triplet associated to mα as in Lemma 2.3. We will prove that µ < 0. Set

w(t)= tu+ s(t)ϕ1,

where t ∈ R is close to 1, s(1)= 0 and s(t) is such that

1=
∫
�

w(t)2 dx = t2
+ 2ts(t)

∫
�

uϕ1 dx + s(t)2. (2-2)

Since

∂s

(
t2
+ 2ts

∫
�

uϕ1 dx + s2
)∣∣∣∣
(t,s)=(1,0)

= 2
∫
�

uϕ1 dx 6= 0,

then the implicit function theorem applies, and the map t 7→w(t) is of class C1 in a neighborhood of t = 1.
Differentiating (2-2) with respect to t at t = 1, we obtain

0=
∫
�

w′(1)w(1) dx =
∫
�

w′(1)u dx = 1+ s ′(1)
∫
�

uϕ1 dx,

which implies s ′(1)=−1/
∫
�

uϕ1 dx and w′(1)= u−ϕ1/
∫
�

uϕ1 dx . Thus,

1
2

d
dt

∫
�

|∇w(t)|2 dx
∣∣∣∣
t=1
=

∫
�

∇u · ∇w′(1) dx

=

∫
�

|∇u|2 dx −

∫
�
∇u · ∇ϕ1 dx∫
�

uϕ1 dx
= α− λ1(�) > 0. (2-3)

In particular, this implies the existence of ε > 0 such that w(t) ∈Uα for t ∈ (1− ε, 1]. Therefore, by the
definition of mα, ‖w(1)‖p+1 ≤ ‖w(t)‖p+1 for every t ∈ (1− ε, 1], and

d
dt

∫
�

|w(t)|p+1 dx
∣∣∣∣
t=1
≤ 0. (2-4)
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On the other hand, using (2-1) and the fact that
∫
�

uw′(1) dx = 0, we have

µ

p+ 1
d
dt

∫
�

|w(t)|p+1 dx
∣∣∣∣
t=1
= µ

∫
�

u pw′(1) dx =
∫
�

(−1u+ λu)w′(1) dx

=

∫
�

∇u · ∇w′(1) dx =
1
2

d
dt

∫
�

|∇w(t)|2 dx
∣∣∣∣
t=1

> 0

by (2-3). By comparing with (2-4), we obtain that µ < 0.
The case of Mα can be handled in the same way, obtaining that in such situation µ > 0. Finally, by

multiplying (2-1) by ϕ1, we obtain

(λ1(�)+ λ)

∫
�

uϕ1 dx = µ
∫
�

u pϕ1 dx .

As u, ϕ1 ≥ 0, we deduce that λ1(�)+ λ has the same sign as µ. �

We conclude this section with the following boundedness result, which we will need later on:

Lemma 2.5. Take a sequence {(un, µn, λn)}n such that∫
�

u2
n dx = 1,

∫
�

|∇un|
2 dx =: αn is bounded

and
−1un + λnun = µnu p

n . (2-5)

Then the sequences {λn}n and {µn}n are bounded.

Proof. By multiplying (2-5) by un , we see that

αn + λn = µn

∫
�

u p+1
n dx;

thus, if one of the sequences {λn}n or {µn}n is bounded, the other is also bounded. Recall that, by
assumption, un is bounded in H 1

0 (�); hence, it converges in the L p+1-norm to some u ∈ H 1
0 (�) up to a

subsequence. Moreover, u 6≡ 0 as
∫
�

u2 dx = 1.
For concreteness, suppose without loss of generality that µn→+∞ and that λn→+∞. From the

previous identity, we also have that

λn

µn
=

∫
�

u p+1
n dx −

αn

µn
→

∫
�

u p+1 dx =: γ 6= 0

up to a subsequence. Now take any ϕ ∈ H 1
0 (�) and use it as test function in (2-5). We obtain∫

�

∇un · ∇ϕ dx = µn

∫
�

u p
nϕ dx − λn

∫
�

unϕ dx

= µn

(∫
�

u p
nϕ dx −

λn

µn

∫
�

unϕ dx
)
.

As µn→+∞, we must have ∫
�

u p
nϕ dx −

λn

µn

∫
�

unϕ dx→ 0.
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On the other hand, ∫
�

u p
nϕ dx −

λn

µn

∫
�

unϕ dx→
∫
�

u pϕ dx − γ
∫
�

uϕ dx .

Thus, we have u p
≡ γ u, which is a contradiction. �

3. Asymptotics as α → λ1(�)
+

In this section, we will completely describe the solutions of the problem

−1u+ λu = µu p, u ∈ H 1
0 (�), u > 0,

∫
�

u2 dx = 1 (3-1)

for α :=
∫
�
|∇u|2 dx in a (right) neighborhood of λ1(�). For that, we will follow the theory presented in

[Ambrosetti and Prodi 1993, §3.2], which we now briefly recall.

Definition 3.1. Let X and Y be Banach spaces, U ⊆ X an open set and 8 ∈ C2(U, Y ). A point x ∈U is
said to be ordinary singular for 8 if

(a) Ker(8′(x)) is one-dimensional, spanned by a certain φ ∈ X ,

(b) R(8′(x)) is closed and has codimension 1 and

(c) 8′′(x)[φ, φ] /∈ R(8′(x)),

where Ker(8′(x)) and R(8′(x)) denote respectively the kernel and the range of the map 8′(x) : X→ Y .

We will need the following result:

Theorem 3.2 [Ambrosetti and Prodi 1993, §3.2, Lemma 2.5]. Under the previous notations, let x∗ ∈U
be an ordinary singular point for 8. Take y∗ =8(x∗) and φ ∈ X such that Ker(8′(x∗))= Rφ, 9 ∈ Y ∗

such that R(8′(x∗))=Ker(9) and consider z ∈ Z such that 9(z)= 1, where Y = Z ⊕Ker(9). Suppose

9(8′′(x∗)[φ, φ]) > 0.

Then there exist ε∗, δ > 0 such that the equation

8(x)= y∗+ εz, x ∈ Bδ(x∗),

has exactly two solutions for each 0< ε < ε∗ and no solutions for all −ε∗ < ε < 0. Moreover, there exists
σ > 0 such that the solutions can be parametrized with a parameter t ∈ (−σ, σ ), t 7→ x(t) is a C1 map
and

x(t)= x∗+ tφ+ o(
√
ε) with t =±

√
2ε

9(8′′(x∗)[φ, φ])
. (3-2)

Let us now set the framework that will allow us to apply the previous results. Given k > N , consider
X = {w ∈ W 2,k(�) : w = 0 on ∂�}, Y = Lk(�) and U = {w ∈ X : w > 0 in � and ∂νw < 0 on ∂�}.
Take 8 : X ×R2

→ Lk(�)×R2 defined by

8(u, µ, λ)=
(
1u− λu+µu p,

∫
�

u2 dx − 1,
∫
�

|∇u|2 dx
)
. (3-3)
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Remark 3.3. Note that 8 ∈ C2(U, Y ). This is immediate when p ≥ 2 while for 1 < p < 2 it can be
proved, for instance, along the lines of [Ortega and Verzini 2004, Lemma 4.1].

We start with the following result:

Lemma 3.4. Let αn→λ1(�)
+, and suppose there exists (un, µn, λn) such that8(un, µn, λn)= (0, 0, αn)

with un ≥ 0. Then un→ ϕ1 in H 1
0 (�), µn→ 0 and λn→−λ1(�). In particular,

8(u, µ, λ)= (0, 0, λ1(�)), u ≥ 0, if and only if (u, µ, λ)= (ϕ1, 0,−λ1(�)).

Proof. As un is bounded in H 1
0 (�), up to a subsequence, we have that un ⇀u weakly in H 1

0 (�). Moreover,∫
�

u2 dx = 1, u ≥ 0, and by the Poincaré inequality, λ1(�) ≤
∫
�
|∇u|2 ≤ lim inf

∫
�
|∇un|

2 dx = λ1(�),
whence u = ϕ1 and the whole sequence un converges strongly to ϕ1 in H 1

0 (�). By Lemma 2.5, we have
that µn and λn are bounded. Denote by µ∞ and λ∞ limits of subsequences of each. Then

−1ϕ1+ λ∞ϕ1 = µ∞ϕ
p
1 ,

which shows that µ∞ = 0 and λ∞ =−λ1(�). �

Lemma 3.5. The point (ϕ1, 0,−λ1(�)) ∈ U is ordinary singular for 8. More precisely, for L :=
8′(ϕ1, 0,−λ1(�)) : X ×R2

→ Lk(�)×R2, we have:

(i) Ker(L)= span{(ψ, 1,
∫
�
ϕ

p+1
1 dx)} =: span{φ}, where ψ ∈ X is the unique solution of

−1ψ − λ1(�)ψ = ϕ
p
1 −ϕ1

∫
�

ϕ
p+1
1 dx such that

∫
�

ψϕ1 dx = 0. (3-4)

(ii) R(L)= Ker(9) with 9 : Lk(�)×R2
→ R defined by 9(ξ, h, k)= k− λ1(�)h.

(iii) 9(8′′(ϕ1, 0,−λ1(�))[φ, φ]) > 0.

Proof. (i) We recall that −1− λ1(�) Id is a Fredholm operator of index 0 with

Ker(−1− λ1(�) Id)= span{ϕ1},

R(−1− λ1(�) Id)=
{
v ∈ Lk(�) :

∫
�

vϕ1 dx = 0
}
.

Therefore, by the Fredholm alternative, there exists a unique ψ ∈ X solution of (3-4). Let us check that
Ker(L)= span{(ψ, 1,

∫
�
ϕ

p+1
1 dx)}. We have

L(v,m, l)=
(
1v+ λ1(�)v− lϕ1+mϕ p

1 , 2
∫
�

ϕ1v dx, 2
∫
�

∇ϕ1 · ∇v dx
)
;

thus, (v,m, l) ∈ Ker(L) if and only if l = m
∫
�
ϕ

p+1
1 ,

∫
�
ϕ1v dx =

∫
�
∇ϕ1 · ∇v dx = 0 and

−1v− λ1(�)v = m
(
ϕ

p
1 −ϕ1

∫
�

ϕ
p+1
1 dx

)
for some m ∈ R.

By the uniqueness of ψ in (3-4), we obtain v = mψ .
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(ii) Let us prove that R(L)= {(ξ, h, λ1(�)h) : ξ ∈ Lk(�), h ∈ R}. Recalling the expression for L found
in (i), it is clear that L(v,m, l) = (ξ, h, k) implies k = λ1(�)h. As for the other inclusion, given any
ξ ∈ Lk(�), let w ∈ X be the solution of

−1w− λ1(�)w = ϕ1

∫
�

ξϕ1 dx − ξ with
∫
�

wϕ1 dx = 0,

which exists and is unique again by the Fredholm alternative. Then L(hϕ1/2 + w, 0,
∫
�
ξϕ1 dx) =

(ξ, h, λ1(�)h).

(iii) We have that

8′′(ϕ1, 0,−λ1(�))[φ, φ] = 2
(

pϕ p−1
1 ψ −ψ

∫
�

ϕ
p+1
1 dx,

∫
�

ψ2 dx,
∫
�

|∇ψ |2 dx
)

with φ and ψ defined in (i). Hence,

9(8′′(ϕ1, 0, λ1(�))[φ, φ])=

∫
�

2(|∇ψ |2− λ1(�)ψ
2) dx > 0 (3-5)

since ψ satisfies (3-4). �

Proposition 3.6. There exists ε∗ such that the equation

8(u, µ, λ)= (0, 0, λ1(�)+ ε), (u, µ, λ) ∈U ×R2,

has exactly two positive solutions for each 0< ε < ε∗ (one with µ > 0 and one with µ < 0). Moreover,
such solutions satisfy the asymptotic expansion

(u, µ, λ)= (ϕ1, 0,−λ1(�))±

√
ε∫

�
ϕ

p
1ψ dx

(
ψ, 1,

∫
�

ϕ
p+1
1 dx

)
+ o(
√
ε),

where ψ is defined in (3-4). In addition, the L p+1-norm of one of the solutions is equal to mλ1(�)+ε and
the other is equal to Mλ1(�)+ε.

Proof. We apply Theorem 3.2 with8 defined in (3-3), x∗= (ϕ1, 0,−λ1(�)) and z= (0, 0, 1). By the previ-
ous lemma, x∗ is ordinary singular for8, and, moreover, using the notation therein, 9(8′′(x∗)[φ, φ]) > 0
and 9(z)= 1. Therefore, the assumptions of Theorem 3.2 are satisfied, and there exist ε∗, δ > 0 such
that the problem

8(u, µ, λ)= (0, 0, λ1(�)+ ε), (u, µ, λ) ∈ Bδ(ϕ1, 0,−λ1(�)),

has exactly two solutions for each 0<ε<ε∗, which can be parametrized using a map t 7→ (u(t), µ(t), λ(t))
of class C1 in U ×R2. The asymptotic expansion is obtained by combining (3-2) with the fact (see (3-5))

9(8′′(ϕ1, 0, λ1(�))[φ, φ])= 2
∫
�

ϕ
p
1ψ dx .

Finally, by possibly choosing a smaller ε∗, (u(t), µ(t), λ(t)) are the unique positive solutions in U ×R2

for 0 < ε < ε∗, as a consequence of Lemma 3.4, and the statement concerning
∫
�

u(t)p+1 dx follows
from Lemma 2.3 and Proposition 2.4. �
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Remark 3.7. From the proof of Proposition 3.6, we deduce an alternative proof of [Fukuizumi et al.
2012, Theorem 17(ii)]; namely, we can show that

(µ2)′(λ1(�)
+) > 0.

This result is relevant when facing stability issues; see Corollary 6.2 ahead.

4. Asymptotics as α → +∞

In this section, we consider the case when α is large in order to conclude the proof of Theorem 1.11.
Since in that case the problems Mα and mα exhibit different asymptotics, here we only address the study
of Mα , and we postpone to Appendix B the complete description of the minimizers corresponding to mα .

Define, for any µ, λ ∈ R, the action functional associated to (2-1), namely Jµ,λ : H 1
0 (�)→ R:

Jµ,λ(u)=
1
2

∫
�

(|∇u|2+ λu2) dx −
µ

p+ 1

∫
�

|u|p+1 dx . (4-1)

Lemma 4.1. For every µ > 0 and λ ∈ R, we have that

u ∈ Ũα,

∫
�

|u|p+1 dx = Mα =⇒ Jµ,λ(u)= inf
Ũα

Jµ,λ.

Proof. By the definition of Mα,

µ

p+ 1
Mα = sup

w∈Ũα

{
µ

p+ 1

∫
�

|w|p+1 dx +
1
2

(
α−

∫
�

|∇w|2 dx
)
+
λ

2

(
1−

∫
�

w2 dx
)}
,

and hence,

Jµ,λ(u)=
α+ λ

2
−

µ

p+ 1
Mα = inf

w∈Ũα

Jµ,λ(w). �

Lemma 4.2. Fix α > λ1(�), and let (u, µ, λ) ∈ Ũα ×R+ × (−λ1(�),+∞) be any triplet associated
to Mα as in Lemma 2.3. Then the Morse index of J ′′µ,λ(u) is either 1 or 2.

Proof. If (u, µ, λ) is a triplet associated to Mα, then µ > 0 by Proposition 2.4. Equation (2-1) implies

J ′′µ,λ(u)[u, u] = −(p− 1)µ
∫
�

u p+1 dx < 0,

so that the Morse index is at least 1. Next we claim that, for such (u, µ, λ),

J ′′µ,λ(u)[φ, φ] ≥ 0 for every φ ∈ H 1
0 (�) with

∫
�

∇u · ∇φ dx =
∫
�

uφ dx = 0,

which implies that the Morse index is at most 2. Indeed, any such φ belongs to the tangent space of Ũα

at u; hence, there exists a C∞ curve γ (t) satisfying, for some ε > 0,

γ : (−ε, ε)→ Ũα, γ (0)= u, γ ′(0)= φ.
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Lemma 4.1 implies that Jµ,λ(γ (t))− Jµ,λ(γ (0))≥ 0. Hence,

0≤ Jµ,λ(γ (t))− Jµ,λ(u)= J ′µ,λ(u)[φ]t + J ′′µ,λ(u)[φ, φ]
t2

2
+ J ′µ,λ(u)[γ

′′(0)]
t2

2
+ o(t2).

Finally, (2-1) implies that J ′µ,λ(u)≡ 0, which concludes the proof. �

Lemma 4.3. Let αn→+∞, and let un ∈ H 1
0 (�), un > 0, satisfy

−1un + λnun = µnu p
n in �,

∫
�

|∇un|
2 dx = αn,

∫
�

u2
n dx = 1

for some µn > 0 and λn >−λ1(�). Then λn→+∞.

Proof. Set

Ln := ‖un‖L∞(�) = un(xn).

Since 1un(xn)≤ 0, from the equation for un , we obtain µn L p
n − λn Ln ≥ 0, i.e.,

−
λ1(�)

µn L p−1
n

<
λn

µn L p−1
n
≤ 1

(recall that λ >−λ1(�)). In particular, since µn L p−1
n ≥ µn

∫
�

u p+1
n dx ≥ αn + λn→+∞, we have (up

to subsequences)
λn

µn L p−1
n
→ λ∗ ∈ [0, 1]. (4-2)

In order to prove that λn→+∞, it only remains to show that λ∗ 6= 0. To this aim, we define

vn(x) :=
1

Ln
un

(
xn +

x

(µn L p−1
n )1/2

)
so that vn satisfies

−1vn +
λn

µn L p−1
n

vn = v
p
n in �n := (µn L p−1

n )1/2(�− xn).

Using (4-2) and reasoning as in [Gidas and Spruck 1981b, pp. 887–889], we have that vn → v in
(W 2,p

∩C1,β)loc(R
N ) for every β ∈ (0, 1). Moreover, v ≥ 0, v(0)= 1 and

−1v+ λ∗v = v p in H ,

where H is either RN or a half-space of RN and v = 0 on ∂H in case H is the half-space. Since v 6≡ 0,
the nonexistence results in [Gidas and Spruck 1981a] imply that λ∗ > 0, and this concludes the proof. �

Next, we use some results from [Esposito and Petralla 2011] in order to show that a suitable rescaling
of the solutions converges to the function Z N ,p defined in Remark 1.1. Such results rely on pointwise
estimates that take fundamental inspiration from the monograph [Druet et al. 2004] (see also [Druet et al.
2012]).
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Lemma 4.4. With the same assumptions as the previous lemma, suppose moreover that the Morse index
of J ′′µn,λn

(un) is equal to k ∈ N for every n. Then uk admits k local maxima P i
n ∈ �, i = 1, . . . , k, such

that, defining

vi,n(x)=
(
µn

λn

)1/(p−1)

un

(
x
√
λn
+ P i

n

)
(4-3)

for x ∈�i,n =
√
λn(�− Pn

i ), we have

vi,n→ Z N ,p in C1
loc(R

N ) as n→+∞ for every i .

As a consequence, for every q ≥ 1,(
µn

λn

)q/(p−1)

λN/2
n

∫
�

uq
n dx→ k

∫
RN

Zq
N ,p dx as n→+∞. (4-4)

Proof. Since λn→+∞ by the previous lemma, we can apply [Esposito and Petralla 2011, Theorem 3.2]
to Un := µ

1/(p−1)
n un , inferring the existence of k local maxima P i

n , i = 1, . . . , k, such that, for every
i 6= j , √

λn dist(P i
n, ∂�)→+∞,

√
λn|P i

n − P j
n | → +∞, (4-5)

and for some C, γ > 0, the following pointwise estimate holds:

un(x)= µ−1/(p−1)
n Un(x)≤ C

(
λn

µn

)1/(p−1) k∑
i=1

e−γ
√
λn |x−P i

n | for all x ∈�.

Furthermore, since vi,n solves −1vi,n + vi,n = v
p
i,n in �i,n , [Esposito and Petralla 2011, Theorem 3.1]

yields that vi,n→ Z N ,p in C1
loc(R

N ), so the only thing that remains to be proved is estimate (4-4).
To this aim, let R > 0 be fixed and rn = R/

√
λn . Then, if n is sufficiently large, (4-5) implies that, for

every i 6= j ,
Brn (P

i
n)⊂�, Brn (P

i
n)∩ Brn (P

j
n )=∅.

We obtain∣∣∣∣(µn

λn

)q/(p−1)

λN/2
n

∫
�

uq
n dx −

k∑
j=1

∫
BR(0)

v
q
j,n dx

∣∣∣∣= (µn

λn

)q/(p−1)

λN/2
n

∣∣∣∣∫
�

uq
n dx −

k∑
j=1

∫
Brn (P

j
n )

uq
n dx

∣∣∣∣
=

(
µn

λn

)q/(p−1)

λN/2
n

∫
�\
⋃k

j=1 Brn (P
j

n )

uq
n dx

≤ CλN/2
n

k∑
i=1

∫
�\
⋃k

j=1 Brn (P
j

n )

e−qγ
√
λn |x−P i

n | dx

≤ CλN/2
n

k∑
i=1

∫
RN \Brn (P i

n )

e−qγ
√
λn |x−P i

n | dx

= Ck
∫

RN \BR(0)
e−qγ |y| dy ≤ C1e−C2 R
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for some positive C1 and C2. As n→+∞, we have, up to subsequences,∣∣∣∣limn
(
µn

λn

)q/(p−1)

λN/2
n

∫
�

uq
n dx − k

∫
BR(0)

Zq
N ,p dx

∣∣∣∣≤ C1e−C2 R,

and (4-4) follows by taking R→+∞. �

Finally, the previous lemma allows us to study the asymptotic behavior of µ as α→+∞.

Lemma 4.5. With the same assumptions as the previous lemma, we have that

(1) if 1< p < 1+ 4/N , then µn→+∞,

(2) if p = 1+ 4/N , then µn→ k2/N
‖Z N ,p‖

4/N
L2(RN )

and

(3) if 1+ 4/N < p < 2∗− 1, then µn→ 0.

Furthermore,
αn

λn
→

N (p− 1)
N + 2− p(N − 2)

.

Proof. Exploiting (4-4) with q = 2 and q = p+ 1 as well as the relations ‖un‖
2
L2 = 1, ‖∇un‖

2
L2 = αn and

αn + λn = µn‖un‖
p+1
L p+1 , we can write

µ2/(p−1)
n λN/2−2/(p−1)

n → k
∫

RN
Z2

N ,p dx,

µ(p+1)/(p−1)
n λN/2−(p+1)/(p−1)

n

∫
�

u p+1
n dx→ k

∫
RN

Z p+1
N ,p dx,

αn

λn
µ2/(p−1)

n λN/2−2/(p−1)
n → k

∫
RN
|∇Z N ,p|

2 dx .

(4-6)

Now, since λn → +∞ (Lemma 4.3) and the exponent N/2− 2/(p − 1) is negative, zero or positive
respectively in the subcritical, critical and supercritical cases, the first relation in (4-6) immediately
provides the properties for µn .

On the other hand, dividing the third relation by the first one, we have

αn

λn
→

‖∇Z N ,p‖
2
L2(RN )

‖Z N ,p‖
2
L2(RN )

=
N (p− 1)

N + 2− p(N − 2)
.

The explicit evaluation of this constant can be obtained by the relations{
‖∇Z N ,p‖

2
L2(RN )

+‖Z N ,p‖
2
L2(RN )

= ‖Z N ,p‖
p+1
L p+1(RN )

,

N−2
2 ‖∇Z N ,p‖

2
L2(RN )

+
N
2 ‖Z N ,p‖

2
L2(RN )

=
N

p+1‖Z N ,p‖
p+1
L p+1(RN )

,

i.e., by testing the equation for Z N ,p either with Z N ,p itself or with x · ∇Z N ,p (recall that Z N ,p decays
exponentially at∞). The second relation is the well-known Pohozaev identity; see for instance [Berestycki
and Lions 1983, §2]. �
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End of the proof of Theorem 1.11. The fact that Mα is achieved by a triplet (u, µ, λ) with µ > 0 and
λ > −λ1(�) is a consequence of Lemma 2.3 and Proposition 2.4. Lemma 3.4 implies the asymptotic
behavior as α→ λ1(�)

+ while the results as α→+∞ follow from Lemmas 4.3, 4.4 and 4.5, recalling
that u has Morse index k, with k being either 1 or 2, by Lemma 4.2. The only thing that remains to be
proved is that both in Lemma 4.4 and in Lemma 4.5(2) k must be equal to 1; in other words, we are left
to show that, if un achieves Mαn , with αn large, then its Morse index must be 1 (and not 2).

For easier notation, in the following, we write Z = Z N ,p. Since un achieves Mαn , from (4-6), we infer
(up to subsequences)

µn ∼ k(p−1)/2
‖Z‖p−1

L2 λ1−N (p−1)/4
n , αn ∼

‖∇Z‖2L2

‖Z‖2L2

λn

and
Mαn

α
N (p−1)/4
n

=

∫
�

u p+1
n dx

α
N (p−1)/4
n

∼ k‖Z‖p+1
L p+1

λ
(p+1)/(p−1)−N/2
n

µ
(p+1)/(p−1)
n α

N (p−1)/4
n

→ k−(p−1)/2 ‖Z‖p+1
L p+1

‖∇Z‖N (p−1)/2
L2 ‖Z‖p+1−N (p−1)/2

L2

, (4-7)

where either k = 1 or k = 2. On the other hand, let us fix x0 ∈ � and η ∈ C∞0 (�) such that η(x) = 1
around x0. It is always possible to find a sequence an→ 0+ such that

wn(x) := η(x)Z N ,p

( x − x0

an

)
, w̃n :=

wn

‖wn‖L2

satisfy
∫
�

|∇w̃n|
2 dx = αn

(indeed αn→+∞ and
∫
�
|∇w̃n|

2 dx is of order a−2
n as an→ 0). Then direct calculation yields

Mαn

α
N (p−1)/4
n

≥

∫
�
w̃

p+1
n dx

α
N (p−1)/4
n

→
‖Z‖p+1

L p+1

‖∇Z‖N (p−1)/2
L2 ‖Z‖p+1−N (p−1)/2

L2

,

which, together with (4-7), forces k = 1. �

Remark 4.6. The previous argument shows that, when α is large, Mα is achieved by a single-peak
solution having Morse index 1. This was actually suggested to us by the anonymous referee in his/her
report. This also implies the sharper estimate for the asymptotics of µ:

µα ∼ Cα1−N (p−1)/4,

where C is a constant depending only on N and p (through Z N ,p).

5. Least energy solutions in the ball

From now on, we will focus on the case
� := B1.

To start with, we collect in the following theorem some well-known results about uniqueness and
nondegeneracy of positive solutions of (1-2) on the ball:
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Theorem 5.1 [Gidas et al. 1979; Kwong 1989; Kwong and Li 1992; Korman 2002; Aftalion and Pacella
2003]. Let λ ∈ (−λ1(B1),+∞) and µ > 0 be fixed. Then the problem

−1u+ λu = µu p in B1, u = 0 on ∂B1

admits a unique positive solution u, which is nondegenerate, radially symmetric and decreasing with
respect to the radial variable r = |x |.

Proof. The existence easily follows from the mountain pass lemma. The radial symmetry and monotonicity
of positive solutions is a direct consequence of [Gidas et al. 1979].

The uniqueness in the case λ > 0 was proved by Kwong [1989] for N ≥ 2. For λ ∈ (−λ1(B1), 0), the
uniqueness in dimension N ≥ 3 was proved by Kwong and Li [1992, Theorem 2] (see also [Zhang 1992])
whereas in dimension N = 2 it was proved by Korman [2002, Theorem 2.2]. The case λ= 0 is treated in
Section 2.8 of [Gidas et al. 1979].

As for the nondegeneracy, for λ > 0, this follows from [Aftalion and Pacella 2003, Theorem 1.1] since
we know that u has Morse index 1 as it is a mountain pass solution for Jµ,λ (recall that such a functional
is defined as in (4-1)). As for λ ∈ (−λ1(B1), 0], we could not find a precise reference, and for this reason,
we present here a proof, following some ideas of [Kabeya and Tanaka 1999].

Assume by contradiction that u is a degenerate solution for some λ ∈ (−λ1(B1), 0]. This means that
there exists a solution 0 6= w ∈ H 1

0 (B1) of

−1w+ λw = pu p−1w;

hence, w ∈ H 1
0,rad(B1) and J ′′µ,λ(u)[w, ξ ] = 0 for all ξ ∈ H 1

0 (B1). Moreover, we have that J ′′µ,λ(u)[u, u] =
−(p− 1)µ

∫
B1

u p+1 dx < 0, and thus,

J ′′µ,λ(u)[h, h] ≤ 0 for all h ∈ H := span{u, w}.

For δ > 0, consider the perturbed functional

Iδ(w)=
∫

B1

(
|∇w|2

2
+
λ+ δu p−1

2
w2
−
µ+ δ

p+ 1
(w+)p+1

)
dx . (5-1)

On the one hand, this functional satisfies, for every h ∈ H \ {0},

I ′′δ (u)[h, h] = J ′′µ,λ(u)[h, h] +
∫

B1

(δu p−1h2
− pδu p−1h2) dx

≤−(p− 1)δ
∫

B1

u p−1h2 dx < 0. (5-2)

On the other hand, Iδ has a mountain pass geometry for δ sufficiently small; hence, it has a critical point of
mountain pass type. Every nonzero critical point of Iδ is positive (by the maximum principle), and it solves

−1w = Vδ(r)w+ (µ+ δ)w p in B1,

w > 0 in B1,

w ∈ H 1
0 (B1)
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for Vδ(r) := −λ − δu p−1. Now this problem has a unique radial solution, which is u itself, which
is in contradiction to (5-2). The uniqueness of this perturbed problem follows from [Korman 2002,
Theorem 2.2] in case λ < 0 (in fact, Vδ(r) > 0 and d

dr [r
2n(1/2−1/(p+1))Vδ(r)] ≥ 0) while in case λ = 0

we can reason exactly as in [Felmer et al. 2008, Proposition 3.1] (the proof there is for the annulus, but
the argument also works in the case of a ball). �

Remark 5.2. As we already mentioned, the Morse index of u> 0 as a critical point of Jµ,λ is 1. Recalling
the definition of Iδ in (5-1), we have that also the Morse index of I ′′δ (u) is 1 at least if λ >−λ1(B1) and
if δ > 0 is small enough. When λ < 0, this was shown in the proof of the previous result, where we have
dealt also with the case λ= 0. The proof for λ > 0 is the same as in the latter case.

Given k > N , as before, let us take X = {w ∈ W 2,k(B1) : w = 0 on ∂B1}. Let us introduce the map
F : X ×R3

→ Lk(B1)×R2 defined by

F(u, µ, λ, α)=
(
1u− λu+µu p,

∫
B1

u2 dx − 1,
∫

B1

|∇u|2 dx −α
)

and its null set restricted to positive u,

S= {(u, µ, λ, α) ∈ X ×R3
: u > 0, F(u, µ, λ, α)= (0, 0, 0)}.

It is immediate to check that S∩ {α ≤ λ1(B1)} = {(ϕ1, 0,−λ1(B1), λ1(B1)} so that

S± := S∩ {±µ > 0} ⊂ {α > λ1(B1)}.

We are going to show that S+ can be parametrized in a smooth way on α, thus proving the part of
Theorem 1.12 regarding focusing nonlinearities. As we mentioned, the (easier) study of S− is postponed
to Appendix B. In view of the application of the implicit function theorem, we have the following:

Lemma 5.3. Let (u, µ, λ, α) ∈ S+. Then the linear bounded operator

F(u,µ,λ)(u, µ, λ, α) : X ×R2
→ Lk(B1)×R2

is invertible.

Proof. The lemma is a direct consequence of the Fredholm alternative and of the closed graph theorem
once we show that the operator above is injective. Let us suppose by contradiction the existence of
(v,m, l) 6= (0, 0, 0) such that F(u,µ,λ)(u, µ, λ, α)[v,m, l] = (0, 0, 0). This explicitly gives

−1u+ λu = µu p,

∫
B1

u2 dx = 1,
∫

B1

|∇u|2 dx = α,

−1v+ λv+ lu = pµu p−1v+mu p,

∫
B1

uv dx = 0,
∫

B1

∇u · ∇v dx = 0.
(5-3)

By testing the two differential equations by v, we obtain∫
B1

u pv dx = 0,
∫

B1

|∇v|2 dx + λ
∫

B1

v2 dx = pµ
∫

B1

u p−1v2 dx (5-4)
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so that
J ′′µ,λ(u)[u, u]< 0, J ′′µ,λ(u)[u, v] = 0, J ′′µ,λ(u)[v, v] = 0.

This implies that J ′′µ,λ(u)[h, h] ≤ 0 for every h ∈ H = span{u, v}. By defining Iδ as in (5-1), for δ > 0
small, we obtain I ′′δ (u)[h, h]< 0 for every 0 6= h ∈ H . Since H has dimension 2 (v = cu would imply
c
∫
�

u2
= 0), this contradicts Remark 5.2. �

Proposition 5.4. S+ is a smooth curve, parametrized by a map

α 7→ (u(α), µ(α), λ(α)), α ∈ (λ1(B1),+∞).

In particular, u(α) is the unique maximizer of Mα (as defined in (1-3)).

Proof. To start with, Lemma 2.3 and Proposition 2.4 imply that, for every fixed α∗ > λ1(B1), there exists
at least a corresponding point in S+. If (u∗, µ∗, λ∗, α∗) denotes any such point (not necessarily related
to Mα∗), then by Lemma 5.3, it can be continued, by means of the implicit function theorem, to an arc
(u(α), µ(α), λ(α)), defined on a maximal interval (α, α) 3 α∗, chosen in such a way that µ(α) > 0 on
this interval. Since u(α) solves the equation, standard arguments involving the maximum principle and
Hopf lemma allow one to obtain that u(α) > 0 (recall that we are using the W 2,k-topology) along the arc,
which consequently belongs to S+. We want to show that (α, α)= (λ1(B1),+∞).

Let us assume by contradiction α >λ1(�). For αn→α+, Lemma 2.5 implies that, up to a subsequence,

un ⇀ u in H 1
0 (�), λn→ λ, µn→ µ.

Thus,
−1u+ λu = µu p in �,

and the convergence un→ u is actually strong in H 2(�). Then
∫
�
|∇u|2 dx = α > λ1(�) so that µ > 0.

Thus, Lemma 5.3 allows us to reach a contradiction with the maximality of α, and therefore, α = λ1(�).
Analogously, we can show that α =+∞.

Once we know S+ is the disjoint union of smooth curves, each parametrized by α ∈ (λ1(B1),+∞),
it only remains to show that the curve of solutions is indeed unique. Suppose by contradiction that,
for αn→ λ1(B1), there exist (u1(αn), µ1(αn), λ1(αn)) 6= (u2(αn), µ2(αn), λ2(αn)) for every n. Then by
Lemma 3.4, both triplets converge to (ϕ1, 0,−λ1(B1)) in contradiction to Proposition 3.6. �

Corollary 5.5. Writing
d

dα
(u(α), µ(α), λ(α))= (v(α), µ′(α), λ′(α)),

we have
−1v+ λ′u+ λv = pµu p−1v+µ′u p, v ∈ H 1

0 (B1)

and ∫
B1

uv dx = 0,
∫

B1

∇u · ∇v dx = 1
2 , (5-5)

µ

∫
B1

u pv dx = 1
2 , µ′

∫
B1

u p+1 dx = λ′−
p− 1

2
. (5-6)
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Proof. Direct computations (by differentiating F(u(α), µ(α), λ(α), α) = 0 and testing the differential
equations by u and v) give the result. �

In the following, we address the study of the monotonicity properties of the map

α 7→ (u(α), µ(α), λ(α))

introduced above, v always denoting the derivative of u with respect to α:

Lemma 5.6. We have λ′(α) > 0 for every α > λ1(B1).

Proof. Let (h, k) ∈ R2, and let us consider the quadratic form

J ′′µ,λ(u)[hu+ kv, hu+ kv] =: ah2
+ 2bhk+ ck2.

Using Corollary 5.5, we obtain

a = J ′′µ,λ(u)[u, u] =
∫

B1

[
|∇u|2+ λu2

− pµu p+1] dx =−(p− 1)µ
∫

B1

u p+1 dx,

b = J ′′µ,λ(u)[u, v] =
∫

B1

[
∇u · ∇v+ λuv− pµu pv

]
dx =−

p− 1
2

,

c = J ′′µ,λ(u)[v, v] =
∫

B1

[
|∇v|2+ λv2

− pµu p−1v2] dx =
µ′

2µ
.

Since J ′′µ,λ(u) has (large) Morse index equal to 1 (Remark 5.2) and a < 0, we have that b2
− ac > 0, i.e.,

µ′
∫

B1

u p+1 dx >−
p− 1

2
.

The lemma follows by comparing to (5-6). �

Lemma 5.7. If ωN = |∂B1|, then

µ′
∫

B1

u p+1 dx =
p+ 1

2(p− 1)

[(
−p+ 1+

4
N

)
−

4ωN

N
ur (1)vr (1)

]
.

Proof. Recall that both u and v are radial. Since
∫

B1
u2 dx = 1, the standard Pohozaev identity gives(

N
2
− 1

)∫
B1

|∇u|2 dx +
1
2

∫
∂B1

|∇u|2(x · ν) dσ +
λN
2
=

µN
p+ 1

∫
B1

|u|p+1 dx .

Inserting the information that u is radial and the equalities α =
∫

B1
|∇u|2 dx and α+ λ= µ

∫
B1

u p+1 dx ,
we obtain

λ=
2
N

p+ 1
p− 1

α−α−
ωN

N
p+ 1
p− 1

ur (1)2.

Differentiating with respect to α, we have

λ′ =
2
N

p+ 1
p− 1

− 1−
2ωN

N
p+ 1
p− 1

ur (1)vr (1).

The result follows by recalling relation (5-6). �
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The following crucial lemma shows that, if p is subcritical or critical, then µ is an increasing function
of α:

Lemma 5.8. If p ≤ 1+ 4/N , then µ′(α) > 0 for every α > λ1(B1).

Proof. The proof goes by contradiction: suppose that µ′(α)≤ 0 for some α > λ1(B1). In the rest of the
proof, all quantities are evaluated at such α.

Step 1. Let v := d
dαu|α=α; then vr (1) < 0 in case p < 1+ 4/N and vr (1)≤ 0 if p = 1+ 4/N . This is an

immediate consequence of Lemma 5.7, since ur (1) < 0 by the Hopf lemma.

Step 2. We claim that, if r is sufficiently close to 1−, then v(r) > 0. Since v(1) = 0, this is obvious
if vr (1) < 0. Hence, it only remains to consider the case p = 1+ 4/N and vr (1)= 0.

From the equation for v written in the radial coordinate

−vrr −
N − 1

r
vr + λv+ λ

′u = pµu p−1v+µ′u p, r ∈ (0, 1),

we know (by letting r→ 1−) that vrr (1)= 0. Differentiating both sides of the above equation, we can write

−vrrr +
N − 1

r2 vr −
N − 1

r
vrr + λvr + λ

′ur = p(p− 1)µu p−2urv+ pµu p−1vr + pµ′u p−1ur ;

now, if p ≥ 2, the limit as r→ 1− yields

−vrrr (1)+ λ′ur (1)= 0.

On the other hand, if p < 2, the same identity holds since by the l’Hôpital’s rule

lim
r→1−

u p−2urv = lim
r→1−

urrv+ urvr

(2− p)u1−pur
=

urr (1)v(1)+ ur (1)vr (1)
(2− p)ur (1)

u(1)p−1
= 0.

Thus, vrrr (1) < 0 by Lemma 5.6, and the claim follows.

Step 3. Let r := inf{r : v > 0 in (r, 1)} (r > 0 since
∫

B1
uv dx = 0). We claim that v ≤ 0 in Br . If not,

there would be 0≤ r1 < r2 ≤ r with the property that v > 0 in (r1, r2) and riv(ri )= 0. Defining

v1 := v|Br2\Br1
, v2 := v|B1\Br ,

we have that vi ∈ H 1
0 (B1) and vi ≥ 0 for i = 1, 2, and v1 and v2 are linearly independent. One can use

the equation for v in order to evaluate

J ′′µ,λ(u)[v, vi ] =

∫
B1

(∇v · ∇vi + (λ− pµu p−1)vvi ) dx =
∫

B1

(µ′u pvi − λ
′uvi ) dx < 0

and obtain

J ′′µ,λ(u)[t1v1+ t2v2, t1v1+ t2v2]< 0 whenever t2
1 + t2

2 6= 0

in contradiction to the fact that the Morse index of u is 1 (Remark 5.2).
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Step 4. Once we know that v ≤ 0 in Br and that v > 0 in B1 \ Br , we can combine the first equations
in (5-5) and (5-6), together with the fact that u is monotone decreasing with respect to r , to write

1
2µ
=

∫
B1

u pv dx =
∫

B1\Br

u pv dx +
∫

Br

u pv dx

≤

(
max
B1\Br

u p−1
) ∫

B1\Br

uv dx +
(

min
Br

u p−1
) ∫

Br

uv dx

= u p−1(r)
∫

B1\Br

uv dx + u p−1(r)
∫

Br

uv dx = 0,

a contradiction. �

Remark 5.9. When 1+4/N < p< 2∗−1, Lemma 4.5 implies µ(+∞)= 0. Since also µ(λ1(B1)
+)= 0,

we deduce that µ′ must change sign in the supercritical regime. Numerical experiments suggest that
this should happen only once so that µ should have a unique global maximum and be strictly monotone
elsewhere; see Remark 6.4 ahead.

We are ready to prove the existence of least energy solutions for (1-2).

Proof of Theorem 1.5. Recalling Definition 1.2, let ρ > 0 be fixed, and let U ∈ Pρ . Then∫
B1

U 2 dx = ρ, U > 0, −1U + λU =U p

for some λ. Then, setting u = ρ−1/2U, direct calculations yield∫
B1

u2 dx = 1, u > 0, −1u+ λu = ρ(p−1)/2u p.

Writing
∫

B1
|∇u|2 dx = α, this amounts to saying that (u, ρ(p−1)/2, λ, α) ∈ S+. Equivalently,

U ∈ Pρ ⇐⇒ ρ = µ2/(p−1), U = µ1/(p−1)u for some (u, µ, λ, α) ∈ S+.

We divide the end of the proof into three cases.

Case 1: 1< p < 1+ 4/N . By Lemmas 4.5 and 5.8 and Proposition 5.4, we have that, for every ρ, there
exists exactly one point in S+ satisfying µ2/(p−1)

= ρ.

Case 2: p = 1+4/N . The same as the previous case, taking into account that, by Lemma 4.5, Pµ2/(p−1) is
not empty if and only if µ < ‖Z N ,p‖

p−1
L2(RN )

.

Case 3: 1+ 4/N < p < 2∗− 1. Since in this case µ(λ1(B1))= µ(+∞)= 0 (by Lemma 4.5), then

µ∗ = max
(λ1(B1),+∞)

µ

is well defined and achieved. Furthermore, Pµ2/(p−1) is empty for µ > µ∗, and it contains at least two
points for 0< µ< µ∗. It remains to prove that, if 0< ρ ≤ ρ∗ = (µ∗)(p−1)/2, then eρ is achieved. This is
immediate whenever Pρ is finite. Otherwise, let un = u(αn), with µ(αn)= ρ

(p−1)/2, denote a minimizing
sequence. Then Lemma 4.5 implies that αn is bounded, and by continuity, the same is true for λn . We
deduce that, up to subsequences, un→ u∗ ∈ Pµ, and Jµ,0(u∗)= eρ . �
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Remark 5.10. By comparing Theorem 1.5 and Proposition A.1, we have that, when p ≤ 1+ 4/N and
positive least energy solutions exist, the condition U > 0 may be safely removed from Definition 1.2
without altering the problem (in fact, also the condition −1U +λU =U p+1 for some λ is not necessary).
On the other hand, in other cases, it is essential. For instance, when p is critical, then the set of not
necessarily positive solutions with fixed mass

P′ρ = {U ∈ H 1
0 (B1) : Q(U )= ρ, there exists λ such that −1U + λU =U p

}

is not empty also when ρ ≥ ‖Z N ,p‖
2
L2(RN )

, as illustrated in [Fibich and Merle 2001, Figure 1].

6. Stability results

In this section, we discuss orbital stability of standing wave solutions eiλtU (x) for the NLS (1-1). We
recall that such solutions are called orbitally stable if for each ε > 0 there exists δ > 0 such that, whenever
80 ∈ H 1

0 (B1,C) is such that ‖80−U‖H1
0 (B1,C)

< δ and 8(t, x) is the solution of (1-1) with 8(0, · )=80

in some interval [0, t0), then 8(t, · ) can be continued to a solution in 0≤ t <∞ and

sup
0<t<∞

inf
s∈R
‖8(t, · )− eiλsU‖H1

0 (B1,C)
< ε;

otherwise, they are called unstable. To do this, we lean on the following result, which expresses in our
context the abstract theory developed in [Grillakis et al. 1987]:

Proposition 6.1 [Fukuizumi et al. 2012, Proposition 5]. Let us assume local existence as in Theorems 1.7
and 1.8, and let Rλ be the unique positive solution of (1-2).

• If ∂λ‖Rλ‖2L2 > 0, then eiλt Rλ is orbitally stable.

• If ∂λ‖Rλ‖2L2 < 0, then eiλt Rλ is unstable.

Corollary 6.2. Let (u(α), µ(α), λ(α), α)∈S+ with U (α)=µ1/(p−1)(α)u(α) denoting the corresponding
solution of (1-2) (with λ= λ(α)).

• If µ′(α) > 0, then eiλ(α)tU (α) is orbitally stable.

• If µ′(α) < 0, then eiλ(α)tU (α) is unstable.

Proof. Taking into account Proposition 5.4 and Lemma 5.6, and reasoning as in the proof of Theorem 1.5,
we have that Rλ(α) = µ1/(p−1)(α)u(α) so that

∂λ‖Rλ‖2L2 =
(µ2/(p−1))′(α)

λ′(α)
=

2µ(3−p)/(p−1)(α)

(p− 1)λ′(α)
µ′(α). �

We recall that µ′ may be negative only when p is supercritical. This case is enlightened by the following
lemma:

Lemma 6.3. Let p>1+4/N , and consider the map α 7→ (u(α), µ(α), λ(α)) defined as in Proposition 5.4.
If α1 < α2 are such that

µ(α) > µ(α1)= µ(α2)=: µ for every α ∈ (α1, α2),
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then
Jµ,0(u(α1)) < Jµ,0(u(α2)).

Proof. Writing M(α)= Mα =
∫

B1
u p+1(α) dx , we have that

2Jµ,0(αi )= αi −
2µ

p+ 1
M(αi ).

Now, (5-6) yields M ′(α)= (p+1)
∫

B1
u pv dx = (p+1)/(2µ(α)), where as usual v := d

dαu. The Lagrange
theorem applied to M forces the existence of α∗ ∈ (α1, α2) such that

M(α2)−M(α1)

α2−α1
=

p+ 1
2µ(α∗)

<
p+ 1
2µ

,

which is equivalent to the desired statement. �

We are ready to give the proofs of our stability results.

Proof of Theorems 1.7 and 1.8. The proof in the subcritical and critical cases is a direct consequence
of Lemma 5.8 and Corollary 6.2 (recall that in this case there is a full correspondence between least
energy solutions and least action ones). To show Theorem 1.7(2), we prove stability for any ρ > 0 such
that µ= ρ(p−1)/2 is a regular value of the map α 7→ µ(α), the conclusion following by the Sard lemma.
Recalling that µ(λ1(B1))=µ(+∞)= 0, we have that, if µ is regular, then its counterimage {α :µ(α)=µ}
is the union of a finite number of pairs {αi,1, αi,2}, each of which satisfies the assumptions of Lemma 6.3,
and moreover, µ′(αi,1)> 0>µ′(αi,2). Since such a counterimage is in 1-to-1 correspondence with Pρ and

E(U (αi, j ))= E(µ1/(p−1)u(αi, j ))= µ
2/(p−1) Jµ,0(u(αi, j )),

we deduce from Lemma 6.3 that the least energy solution corresponds to αi,1, for some i , and the
conclusion follows again by Corollary 6.2. �

Remark 6.4. In the supercritical case p > 1+ 4/N , we expect orbital stability for every ρ ∈ (0, ρ∗) and
instability for ρ = ρ∗. Indeed, in case N = 3 and p = 3, we have plotted numerically the graph of µ(α)
in Figure 1. The picture suggests that µ has a unique local maximum µ∗, associated to the maximal value
of the mass ρ∗ = (µ∗)(p−1)/2. For any µ < µ∗, we have exactly two solutions, and the least energy one
corresponds to µ′(α) > 0; hence, it is associated with an orbitally stable standing wave. For µ= µ∗, we
have exactly one solution; in that case, the abstract theory developed in [Grillakis et al. 1987] predicts the
corresponding standing wave to be unstable.

Appendix A: Gagliardo–Nirenberg inequalities

It is proved in [Weinstein 1983] that the sharp Gagliardo–Nirenberg inequality

‖u‖p+1
L p+1(RN )

≤ CN ,p‖u‖
p+1−N (p−1)/2
L2(RN )

‖∇u‖N (p−1)/2
L2(RN )

(A-1)

holds for every u ∈ H 1(RN ) and that the best constant CN ,p is achieved by (any rescaling of) Z N ,p.
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Figure 1. Numerical graph of α 7→ µ(α) in the supercritical case N = 3 and p = 3
(continuous line) and of the map α 7→ α−1/2

·
√

3
∫

R3 Z2
3,3 dx (dashed line). The latter is

the theoretical asymptotic expansion of µ(α) as α→+∞ as predicted by Lemmas 4.4
and 4.5.

When dealing with H 1
0 (�), � 6= RN , one can prove that the identity holds with the same best constant:

in fact, one inequality is trivial, and the other is obtained by constructing a suitable competitor of the form
u(x)= (h Z N ,p(kx)− j)+, for suitable h, k and j , and exploiting the exponential decay of Z . Contrary
to the previous case, now such a constant cannot be achieved; otherwise, we would contradict [Weinstein
1983]. This is related to the maximization problem (1-3) since

CN ,p = sup
H1

0 (�)\{0}

‖u‖p+1
L p+1(�)

‖u‖p+1−N (p−1)/2
L2(�)

‖∇u‖N (p−1)/2
L2(�)

= sup
α≥λ1(�)

Mα

αN (p−1)/4 .

By the above considerations, we deduce that

Mα < CN ,pα
N (p−1)/4 for every α, lim

α→+∞

Mα

αN (p−1)/4 = CN ,p (A-2)

in perfect agreement with the estimates at the end of Section 4.
For the reader’s convenience, we deduce the following well-known result:

Proposition A.1. Let ρ > 0 be fixed. The infimum

inf{E(U ) :U ∈ H 1
0 (�) and Q(U )= ρ}

(i) is achieved by a positive function if either 1< p<1+4/N or p=1+4/N and ρ<‖Z N ,p‖
2
L2(RN )

, and

(ii) equals −∞ if either 1+ 4/N < p < 2∗− 1 or p = 1+ 4/N and ρ > ‖Z N ,p‖
2
L2(RN )

.

Proof. As usual, writing u = ρ−1/2U and µ= ρ(p−1)/2, we have that the above minimization problem is
equivalent to

inf{Jµ,0(u) : u ∈ H 1
0 (�) and ‖u‖L2(�) = 1},
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where Jµ,λ is defined in (4-1). In turn, this problem can be written as

inf
α≥λ1(�)

1
2α−

µ

p+ 1
Mα.

The proposition follows from (A-2), recalling that, when p = 1+ 4/N ,

CN ,p =

(
1+

2
N

)(∫
RN

Z2
N ,p dx

)−2/N

by the Pohozaev identity. �

Appendix B: The defocusing case µ < 0

In this case, it is not necessary to restrict to spherical domains; therefore, in this appendix, we consider
a generic smooth, bounded domain �. As in Section 5, we work in the space X = {w ∈ W 2,k(�) :

w = 0 on ∂�}, for some k > N , and with the map F : X ×R3
→ Lk(�)×R2 defined by

F(u, µ, λ, α)=
(
1u− λu+µu p,

∫
�

u2 dx − 1,
∫
�

|∇u|2−α
)
.

We aim to provide a full description of the set

S− = {(u, µ, λ, α) ∈ X ×R3
: u > 0, µ < 0, F(u, µ, λ, α)= (0, 0, 0)},

thus concluding the proof of Theorem 1.12.

Lemma B.1. Let (u, µ, λ, α) ∈ S−. Then the linear bounded operator

F(u,µ,λ)(u, µ, λ, α) : X ×R2
→ Lk(�)×R2

is invertible.

Proof. As in the proof of Lemma 5.3, it is sufficient to prove injectivity.
As in that proof, we assume the existence of a nontrivial (v,m, l) such that (5-3) and (5-4) hold. Since

∂νu < 0 on ∂�, we can test the equation for u by v2/u ∈ H 1
0 (�), obtaining∫

�

(µu p−1v2
− λv2) dx =

∫
�

∇u · ∇
(
v2

u

)
dx =

∫
�

∇u ·
(

2
v

u
∇v−

v2

u2∇u
)

dx

=−

∫
�

∣∣∣v
u
∇u−∇v

∣∣∣2 dx +
∫
�

|∇v|2 dx

≤

∫
�

(pµu p−1v2
+mu pv− luv− λv2) dx

=

∫
�

(pµu p−1v2
− λv2) dx .

Therefore, with µ < 0 and p > 1, we must have v ≡ 0. Finally, by testing the equation for v by u, we
deduce that l = m

∫
�

u p+1 dx , concluding the proof. �
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Proposition B.2. S− is a smooth curve, and it can be parametrized by a unique map

α 7→ (u(α), µ(α), λ(α)), α ∈ (λ1(�),+∞).

In particular, u(α) is the unique minimizer associated to mα (as defined in (1-3)). Furthermore, µ′(α) < 0
and λ′(α) < 0 for every α.

Proof. One can use Lemma B.1 and reason as in the proof of Proposition 5.4 in order to prove that S−

consists of a unique, smooth curve parametrized by α ∈ (λ1(�),+∞) so that u(α) must achieve mα.
Moreover, all the relations contained in Corollary 5.5 are true also in this case.

In order to show the monotonicity of µ and λ, we remark that one can also prove, in a standard way, that
u is the global unique minimizer of the related functional Jµ,λ, which is bounded below and coercive since
µ < 0. Since u is nondegenerate (by virtue of Lemma B.1), we obtain that J ′′µ,λ(u)[w,w]> 0 for every
nontrivial w. But then one can reason as in the proof of Lemma 5.6: using the corresponding notation,
we have that in this case both c > 0 and b2

− ac < 0. This, together with (5-6), concludes the proof. �

Remark B.3. By the above results, it is clear that S− may be parametrized also with respect to λ (or µ).
Under this perspective, uniqueness and continuity for the case p= 3 were proved in [Berger and Fraenkel
1970] (for the problem without mass constraint).

We conclude by showing some asymptotic properties of S− as α→+∞ (the case α→ λ1(�)
+ has

been considered in Section 3). Such properties are well known in the case p = 3 since they have been
studied in a different context (among others, we cite [Berger and Fraenkel 1970; Bethuel et al. 1993;
André and Shafrir 1998; Serfaty 2001]) and the proof can be adapted to general p.

Proposition B.4. Under the notation of Proposition B.2, we have that, as α → +∞, µ→ −∞ and
λ→−∞. Furthermore, if ∂� is smooth, then

u→ |�|−1/2 strongly in L p+1(�),
λ

µ
→ |�|−(p−1)/2,

α

λ
→ 0

as α→+∞.

Proof. Since we know that µ is decreasing and that for each µ < 0 there exists a solution, we must have
µ(α)→−∞. Moreover, λ≤−α→−∞.

Next we are going to show that, under the assumption that ∂� is smooth,∫
�

u p+1
→ |�|−(p−1)/2. (B-1)

To this aim, notice that, by the uniqueness proved in the previous proposition, u satisfies

Jµ,0(u)=min
{

Jµ,0(ϕ) : ϕ ∈ H 1
0 (�),

∫
�

ϕ2 dx = 1
}
.

For x ∈�, setting d(x) := dist(x, ∂�), we construct a competitor function for the energy Jµ,0(u) as

ϕµ(x)=
{

k−1
|�|−1/2 if d(x)≥ (−µ)−1/2,

k−1
|�|−1/2(−µ)1/2d(x) if 0≤ d(x)≤ (−µ)−1/2,
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where k is such that ‖ϕµ‖L2(�) = 1. With the aid of the coarea formula, and using the fact that ∂� is
smooth, it is possible to check that k = 1+O((−µ)−1/2), and thus,∫

�

|∇ϕµ|
2 dx = O(

√
−µ),

∫
�

(ϕq
µ− |�|

−q/2) dx = O((−µ)−1/2) (B-2)

for every q > 1. By rewriting Jµ,0 in the form

Jµ,0(ϕ)=
∫
�

{
|∇ϕ|2

2
−

µ

p+ 1
(|ϕ|p+1

− |�|−(p+1)/2)

}
dx −

µ

p+ 1
|�|−(p−1)/2,

and by using the estimates (B-2) with q = p+ 1, we obtain

Jµ,0(u)≤ Jµ,0(ϕµ)= O(
√
−µ)−

µ

p+ 1
|�|−(p−1)/2

so that

0≤
∫
�

(u p+1
− |�|−(p+1)/2) dx ≤ O((−µ)−1/2)→ 0

(by using Lemma 2.1(iv)) so that (B-1) is proved.
Now, for each L2-normalized ϕ, we rewrite Jµ,0(ϕ) as

Jµ,0(ϕ)=
∫
�

{
|∇ϕ|2

2
−

µ

p+ 1
(|ϕ|(p+1)/2

− |�|−(p+1)/4)2
}

dx

−
2µ

p+ 1
|�|−(p+1)/4

∫
�

(|ϕ|(p+1)/2
− |�|−(p+1)/4) dx −

µ

p+ 1
|�|−(p−1)/2.

Reasoning as before (using this time (B-2) for q = (p+ 1)/2), one shows that∫
�

(|u|(p+1)/2
− |�|−(p+1)/4)2 dx + 2|�|−(p+1)/2

∫
�

(|u|(p+1)/2
− |�|−(p+1)/2) dx ≤ O((−µ)−1/2).

If p ≥ 3, by the Hölder inequality, we have that the second integral in the left-hand side above is
nonnegative while for p < 3 it tends to 0 as α→+∞. The latter statement is a consequence of both the
Hölder and interpolation inequalities, which yield∫

�

u(p+1)/2 dx ≤ |�|(3−p)/4, ‖u‖L(p+1)/2(�) ≥ ‖u‖
(p−3)/(p−1)
L p+1(�)

,

as well as of (B-1). Thus, we have concluded that

u(p+1)/2
→ |�|−(p+1)/4 in L2(�).

In particular, up to a subsequence, u→ |�|−1/2 a.e., and there exists h ∈ L2 (independent of α) so that
|u|(p+1)/2

≤ h. We can now conclude by applying Lebesgue’s dominated convergence theorem.
To proceed with the proof, notice that, from the equality α+ λ= µ

∫
�

u p+1 dx and Lemma 2.1(iv),
we deduce

λ≤ µ|�|−(p−1)/2. (B-3)
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On the other hand, we have

−λ≤ (p+ 1)Jµ,0(u)≤ (p+ 1)Jµ,0(ϕµ)≤ C(−µ)1/2−µ|�|−(p−1)/2.

Dividing the last inequality by −µ and letting µ→−∞, we obtain

lim sup
λ

µ
≤ |�|−(p−1)/2,

which together with (B-3) provides the convergence of µ.
The last part of the statement is obtained by combining the previous asymptotics with the identity

α/µ=−µ+
∫
�

u p+1 dx . �
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BOUNDARY BLOW-UP UNDER SOBOLEV MAPPINGS

AAPO KAURANEN AND PEKKA KOSKELA

We prove that for mappings in W 1,n(Bn,Rm), continuous up to the boundary and with modulus of
continuity satisfying a certain divergence condition, the image of the boundary of the unit ball has zero
n-Hausdorff measure. For Hölder continuous mappings we also prove an essentially sharp generalised
Hausdorff dimension estimate.

1. Introduction

Throughout this paper Bn denotes the unit ball in Rn and W 1,n(Bn,Rm) is the Sobolev space of
Ln(Bn,Rm)-functions f :Bn

→ Rm with weak first-order derivatives in Ln(Bn).
If f : B2

→ � ⊂ R2 is a conformal mapping, then the boundary of � can have positive Lebesgue
measure even if f extends continuously up to the boundary of the disk. If one requires more, for example
uniform Hölder continuity, then ∂� is necessarily of Lebesgue measure zero. In fact, Jones and Makarov
proved [1995, Theorem C.1] that ∂� has measure zero if f satisfies | f (z)− f (w)| ≤ ψ(|z−w|) in B2

for ψ : [0,∞)→ [0,∞) with ∫
0

∣∣∣∣ logψ(t)
log t

∣∣∣∣2 dt
t
=∞. (1)

This condition is very sharp: if the integral in (1) converges then [Jones and Makarov 1995, Section 6]
provides us with a simply connected domain � and a conformal mapping f : B2

→ � such that the
boundary of � has positive Lebesgue measure and f has the modulus of continuity ψ .

Our first result gives a surprisingly general extension of the conformal setting; notice that each uniformly
continuous conformal mapping f :B2

→� belongs to W 1,2(B2,R2).

Theorem 1.1. Let f ∈W 1,n(Bn,Rm) be a continuous mapping that satisfies

| f (z)− f (w)| ≤ ψ(|z−w|) (2)

for all z, w ∈Bn , where ψ : (0,∞)→ (0,∞) is an allowable modulus of continuity with∫
0

∣∣∣∣ logψ(t)
log t

∣∣∣∣n dt
t
=∞. (3)

Then Hn( f (∂Bn))= 0.
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Recall that every uniformly continuous map defined on Bn has a continuous extension to all of Bn . In
the above, f on ∂Bn refers to this extension, Hn(A) denotes the n-dimensional Hausdorff measure of a
set A, and the definition of an allowable modulus of continuity is given in Definition 2.2 of Section 2. For
example, both ψ(t)= Ctγ , 0< γ ≤ 1, and

ψl,s(t)= exp
(
−C

(log(Cl/t))(n−1)/n

(log(l)(Cl/t))s/n
(∏l−1

k=2 log(k)(Cl/t)
)1/n

)
are allowable, where l ≥ 2 is an integer and s > 0. Notice that ψl,s satisfies (3) if and only if s ≤ 1. Here
C > 0, log(k) t is the k-times iterated logarithm and Cl can be any constant with log(l)(Cl/2)≥ 1.

Let us look at the special case n=m = 2 of Theorem 1.1 in the Hölder continuous setting: ψ(t)=Ctγ ,
where 0 < γ ≤ 1. Consider a space-filling (Peano) curve, i.e., a continuous mapping g from the unit
circle onto a square. In one of the standard constructions, g is Hölder continuous with exponent γ = 1

2 ;
see, for example, [Buckley 1996, Theorem 3]. If one takes, say, the Poisson extension f of g to the unit
disk, then f is also Hölder continuous. It is easy to check by hand that the partial derivatives of f do
not belong to L2(B2). By Theorem 1.1, no Hölder continuous (or even continuous with control function
satisfying (3)) extension f of a space filling curve can satisfy |D f | ∈ L2(B2).

In the Hölder continuous case, Jones and Makarov actually proved that the Hausdorff dimension of
f (∂B2) is strictly less than two for conformal f . Contrary to the area zero results, this dimension estimate
is truly conformal in the following sense:

Example 1.2. Let p > 1. There exists a locally Hölder continuous homeomorphism f : R2
→ R2

with f ∈ W 1,2
loc (B

2,R2), which maps ∂B2 onto a set of positive Hg-measure for the gauge function
g(t)= t2(log(1/t))p.

This construction can be found in Section 4. Here Hg denotes the generalised Hausdorff measure with
the function g as the dimension gauge. The precise definitions are given in Section 2.

Our second result gives a rather optimal positive result.

Theorem 1.3. Fix γ ∈ (0, 1], C > 0, and let g(t)= tn log(1/t). Suppose that f ∈W 1,n(Bn,Rm) satisfies

| f (z)− f (w)| ≤ C |z−w|γ

for all z, w ∈Bn . Then Hg( f (∂Bn))= 0.

Jones and Makarov proved their result via harmonic measure and hence this technique does not work
in the setting of Theorem 1.1. An alternate approach, relying on the conformal (quasi)invariance of the
(quasi)hyperbolic metric, was given in [Koskela and Rohde 1997]; see also [Nieminen 2006]. Furthermore,
Malý and Martio [1995] established Theorem 1.1 in the Hölder continuous case via a technique that we
have not been able to push further.

Let us briefly describe the idea of the proof of Theorem 1.1. We consider a Whitney decomposition
W of Bn and assign to each Q ∈W a vector fQ ∈ Rm and a radius rQ . The vector fQ will simply be
the “average” of f over Q and rQ the maximum of | fQ − f Q̃ | over all neighbours Q̃ of Q. Then the
n-integrability of the weak derivatives of f guarantees, via the Poincaré inequality, that the sequence
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{rQ}Q∈W belongs to ln . We realise f (∂Bn) as (a part of) the closure of { fQ}Q∈W in Rm . Those f (ω),
ω ∈ ∂Bn , for which one can find a sequence of Q ∈W with | fQ − f (ω)|. rQ are easily handled. For
the remaining ω ∈ ∂Bn we modify our centres fQ and radii rQ , while still retaining the ln-condition, so
that suitably blown-up balls cover these points sufficiently many times. This is where the nonintegrability
condition (3) kicks in. One cannot fully follow the above idea, and so our proof, given below in Section 3,
is more complicated.

Our approach is flexible and applies to many related problems. In order to avoid extra technicalities
we do not record such applications here. Let us simply mention that the dimension gap phenomenon
from [Hencl et al. 2012] can be shown to extend from conformal mappings to general Sobolev mappings
[Koskela and Zapadinskaya 2014].

2. Preliminaries

Let us first agree on some basic notation. Given a number a > 0, we write bac for the largest integer
less than or equal to a. Similarly, dae is the smallest integer greater than or equal to a. If A is a
finite set, ]A is the number of elements in A. If A ⊂ Rn has finite and strictly positive Lebesgue
measure and f : Rn

→ R is a Lebesgue integrable function, we denote the average (1/|A|)
∫

A f
of f over the set A by −

∫
A f or f A, where |A| is the n-dimensional Lebesgue measure of the set A.

For f : Rn
→ Rm , f A is then defined via the component functions of f . Given a point x ∈ Rn

and a nonnegative number r , B(x, r) denotes the open ball with centre x and radius r and Q(x, r)
denotes the cube {y ∈ Rn

: max{|xi − yi |}i=1,2,...,n ≤ r}. If B = B(x, r) is a ball and a is a positive
number, the notation aB stands for the ball B(x, ar). We denote the radius of a ball B by r(B).
When we write L = L( · ), we mean that the positive constant L depends only on the parameters
listed inside the parentheses. Finally, C denotes a positive constant, which may depend only on n
and m, the dimensions of the domain space and the image space, and may differ from occurrence to
occurrence.

We write Hh(A) for the generalised Hausdorff measure of a set A ⊂ Rn , given by

Hh(A)= lim
δ→0

Hh
δ (A), where Hh

δ (A)= inf
{ ∞∑

i=1

h(diam Ui ) : A ⊂
∞⋃

i=1

Ui , diam Ui ≤ δ

}
and h is a dimension gauge (a nondecreasing function with limt→0+ h(t)= h(0)= 0 and with h(t) > 0
for all t > 0). If h(t) = ta for some a ≥ 0 we simply write Ha for Hh and call it the a-dimensional
Hausdorff measure.

A sequence of pairs (ci ,Ui )
∞

i=1, where ci ≥ 0 and Ui ⊂ Rn , that satisfies χA(x)≤
∑
∞

i=1 ciχUi (x) for
all x ∈Rn is called a weighted cover of the set A. We also need a generalised weighted Hausdorff content
of a set A ⊂ Rn , given by

λh
∞
(A)= inf

{ ∞∑
i=1

ci h(diam Ui ) : (ci ,Ui )
∞

i=1 is a weighted cover of A
}
.

Here also h is a gauge function. Again we write λh
∞
= λa
∞

if h(t)= ta .
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Lemma 2.1. Let E ⊂ Rn be bounded. Let h be a continuous gauge function with h(2t)≤ ch(t) for some
c > 0. Then Hh

∞
(E)≤ cλh

∞
(E).

Proof. The lemma follows from Corollary 8.2 and the proof of Theorem 9.7 of [Howroyd 1994]; see also
[Federer 1969, 2.10.24]. �

Recall that for each open subset U of Rn there exists a Whitney decomposition W given by U=
⋃
∞

i=1 Qi ,
where Qi ∈W are cubes with mutually parallel sides, pairwise disjoint interiors and each of edge-length 2k

for some integer k, such that the relation

1
4
≤

diam Qi

dist(Qi , ∂�)
≤ 1 (4)

holds for all i = 1, 2, . . . . We write Q1 v Q2 if the Whitney cubes Q1 6= Q2 share at least one point (the
so-called neighbour cubes). We have

1
4
≤

diam Q
diam Q̃

≤ 4

whenever Q v Q̃. Therefore, the total number ]{Q̃ : Q̃ v Q} of all neighbours of a fixed cube Q does
not exceed C . See [Stein 1970] for details.

Let ω ∈ ∂Bn . By (Q j (ω))
∞

j=1 we mean the sequence of all Whitney cubes in a fixed Whitney
decomposition of Bn intersecting the radius [0, ω]. This sequence starts with a central cube and tends
to ω. For a point x ∈ [0, ω], we denote the number of Whitney cubes intersecting the segment [0, x] by
]q(0, x). It is easy to see that

c1 ≤
]q(0, x)

log(1/(1− |x |))
≤ c2 (5)

whenever ]q(0, x) > c3, where ci > 0, i = 1, 2, 3 are constants that may depend on n.
Finally, we define the allowable moduli of continuity:

Definition 2.2. A continuously differentiable increasing bijection ψ : (0,∞)→ (0,∞) is an allowable
modulus of continuity if there exists t0 < 1 and β > 0 such that for every t ≤ t0 the following conditions
hold:

log
1

ψ−1(t)
is differentiable and

(ψ−1)′(t)
ψ−1(t)

t is a decreasing function; (6)

log
1

ψ−1(t)
≤ β log

1
ψ−1(
√

t)
; (7)

(logψ(t))′t log t
logψ(t)

is a monotone function. (8)

Remark 2.3. (i) One could replace the monotonicity conditions in (6) and (8) with a pseudomonotonicity
condition (e.g., there exists a constant C > 0 such that u(t)≤Cu(s) if t ≤ s). This would only affect
the constants in the proofs.

(ii) The conditions (6) and (7) mean that the function log(1/ψ−1(t)) is a function of logarithmic type in
the sense of [Nieminen 2006, Definition 4.2].
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3. Proofs

Proof of Theorem 1.1. We may assume that m, n ≥ 2. Let f ∈W 1,n(Bn,Rm) and ψ be as in the statement
of Theorem 1.1. Denote ψ−1(t) by u(t). It follows from our assumptions (3), (6), (7), (8) and [Nieminen
2006, Remark 5.3.] that ∫

0

(
u(t)
u′(t)

)n−1 dt
tn =∞. (9)

We define α(t)= u(t)/u′(t) and λ(k)= 2−k/α(2−k) for k ∈N. By (6), λ is increasing for large k. For
simplicity we assume λ to be increasing.

Let W be a fixed Whitney decomposition of Bn . For each cube Q ∈W we define a corresponding
centre fQ and a corresponding radius rQ =max{| fQ − f Q̃ | : Q v Q̃}, which determine a family of balls
on the image side indexed by W:

B= {(Q, B( fQ, rQ)) : Q ∈W, rQ > 0}.

To simplify our notation we abbreviate (Q, B( fQ, rQ)) to B( fQ, rQ) in what follows.
We assign two new weighted collections of balls to each element in B. Given B = B(x, r) ∈ B,

we define concentric subballs Si (B) = B(x, r/2i ) for all i ∈ N and assign the weight wSi (B) = 2i to
each Si (B). We set SB = {Si (B) : i ∈ N}. Then∑

B ′∈SB

wB ′r(B ′)n =
∞∑

i=1

wSi (B)r(Si (B))n =
∞∑

i=1

2i r(B)n

2ni ≤ r(B)n.

The second collection is defined in a similar way. If B = B(x, r) is a ball in B, we choose the
smallest number k0(r) ∈ N such that 2−k0(r) ≤ r . Next, for each k = k0(r), k0(r)+ 1, . . . , we choose
Rk(B) = B(x, α(2−k)) and set RB = {Rk(B) : k = k0(r), k0(r)+ 1, . . . }. The weights we assign this
time are wRk(B) = λ(k) for all k = k0(r), k0(r)+ 1, . . . . Similarly to the above,

∑
B ′∈RB

wB ′r(B ′)n =
∞∑

k=k0(r)

wRk(B)r(Rk(B))n =
∞∑

k=k0(r)

(α(2−k))nλ(k)

≤

∞∑
k=k0(r)

(α(2−k))n
λ(k)n

λ(0)n−1 =
1

λ(0)n−1

∞∑
k=k0(r)

2−nk
≤

2 · 2−nk0(r)

λ(0)n−1 ≤
2

λ(0)n−1 r(B)n.

Finally, we define our weighted collection of balls by setting F=
⋃

B∈B

(
SB ∪RB

)
.

Let us now estimate the weighted sums of the n-th powers of the radii of the balls in F. Let
N (Q)= Q ∪

⋃
Q̃vQ Q̃ be the union of Q ∈W and all neighbours Q̃ of Q. For neighbouring cubes Q

and Q̃, we obtain, via the Hölder and Poincaré inequalities, that

| fQ − f Q̃ | ≤ −

∫
Q
| f − fN (Q)| +−

∫
Q′
| f − fN (Q)| ≤ C−

∫
N (Q)
| f − fN (Q)| ≤ C

(
−

∫
N (Q)
| f − fN (Q)|

n
)1/n

≤ C
(
−

∫
N (Q)
|D f |n

)1/n

.
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Hence, we have the estimate

rn
Q =max{| fQ − f Q̃ |

n
: Q v Q̃} ≤ C

∫
N (Q)
|D f |n

for each Q ∈W and some constant C > 0. Next, using the fact that the inequality
∑

Q∈W χN (Q)(y)≤ C
holds for every y ∈ Rn , we estimate∑

B∈F

wBr(B)n ≤ C(λ(0))
∑
B∈B

r(B)n = C(λ(0))
∑
Q∈W

rn
Q ≤ C(λ(0))

∑
Q∈W

∫
N (Q)
|D f |n

≤ C1

∫
⋃

Q∈W N (Q)
|D f |n ≤ C1

∫
Bn
|D f |n <∞, (10)

where C1 > 0 is some constant depending on n, m and λ(0) only.
We may assume that there is at least one Q ∈ W with rQ > 0; otherwise f (∂Bn) is a singleton.

Let ω ∈ ∂Bn . We consider the radius [0, ω] and the sequence (Q j (ω))
∞

j=1. We fix a large integer
l0 = l0(ω, f ) ∈ N so that there are elements of the sequence ( fQ j (ω))

∞

j=1 outside B( f (ω), 2−l0+1) if
( fQ j (ω))

∞

j=1 contains at least one element different from f (ω). If such an integer does not exist there
necessarily is some Q = Qw ∈W with fQ = f (ω) and rQ > 0. In this case, we choose l0 = l0(ω, f ) ∈N

so that 2−l0 < rQω
. In both cases we also require that 2−l0+1 < t0. This allows us to use the properties (6)

and (7).
For the purposes of our “porosity argument”, we would like to make the number l0 independent of the

point ω. This is done by considering the decomposition

∂Bn
=

⋃
l∈N

El, where El = {ω ∈ ∂Bn
: l0(ω, f )≤ l}.

Setting Fl = f (El), we then have f (∂Bn)=
⋃

i∈N Fl .
Let us fix l0 ∈ N. Our aim is to prove that Hn

∞
(Fl0)= 0.

Fix x ∈ Fl0 . Take any ω ∈ El0 such that x = f (ω) and define the sequence of concentric annuli
Al(x) = B(x, 2−l+1) \ B(x, 2−l) with l = l0, l0+ 1, . . . . Next, we assign a suitable set Pl(x) of cubes
from W to each annulus Al(x), l = l0, l0+ 1, . . . . If fQ j (ω) = x for all j ∈ N, we put Pl(x)= {Qω} for
each l≥ l0, where Qω is the cube defined earlier. Otherwise, all the sets Pl(x)with l≥ l0 consist of elements
from (Q j (ω))

∞

j=1. If an annulus Al(x) with some l ≥ l0 contains no centres from ( fQ j (ω))
∞

j=1 we define
Pl(x)={Qm(ω)}, where an integer m ∈N is chosen so that fQm−1(ω) 6∈ B(x, 2−l+1) but fQm(ω)∈ B(x, 2−l);
if, in contrast, there is at least one centre fQ j (ω) in Al(x) we take Pl(x) = {Qk(ω) : k = m1, . . . ,m2},
where m1, m2 ∈ N are such that fQm1−1(ω) 6∈ B(x, 2−l+1), fQm2+1(ω) ∈ B(x, 2−l) and fQk(ω) ∈ Al(x) for
all k = m1, . . . ,m2. Moreover, it is possible to choose the sets Pl(x) above so that the inequality k1 ≤ k2

is valid whenever Qk1(ω) ∈ Pl1(x), Qk2(ω) ∈ Pl2(x) and l1 < l2.
Denoting

θl(x)=
{

1 if ]Pl(x)≤ c̃0λ(l),
0 otherwise
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for l ≥ l0 and a constant c̃0 > λ
−1(0), which we will specify later, we would like to prove that there exists

an integer l1 ≥ 2l0 such that
l∑

k=l0

θk(x)≥
l
2

(11)

for each l ≥ l1. In other words, at least half of the annuli do not contain too many centres from ( fQ j (ω))
∞

j=1.
There is nothing to prove if fQ j (ω) = x for all j ∈ N; otherwise, the proof is by contradiction:

Let us assume that (11) does not hold for some l ≥ 2l0. Take the smallest number J ∈ N such that
fQ j (ω) ∈ B(x, 2−l) for all j > J and let ω′ ∈ [0, ω] be the point of Q J (ω)∩ [0, ω] which is closest to ω.
Now, the assumption on the continuity of f and the properties of our Whitney decomposition imply

2−l
≤ | fQ J (ω)− x | = | fQ J (ω)− f (ω)| ≤ −

∫
Q J

| f (y)− f (ω)| dy ≤ ψ(2(1− |ω′|)).

That is,
u(2−l)

2
≤ 1− |ω′|.

Next, we connect this estimate to the number of Whitney cubes that precede Q J in (Q j (ω))
∞

i=1.
Using (5), we observe that

log
2

u(2−l)
≥ log

1
1− |ω′|

≥
1
c2
]q(0, ω′).

In the calculation above we may have to adjust the choice of l0 to ensure ]q(0, ω′) > c3 (see (5)).
Finally, we obtain a lower bound for ]q(0, ω′) using the assumption that we have at least bl/2c− l0+ 2
annuli Ak(x) with θk(x) = 0. We notice that the sets Pk(x) with θk(x) = 0 contain different cubes for
different k, and if k ≤ l then the cubes in Pk(x) precede Q J (ω) in (Q j (ω))

∞

j=1. We have

c2 log
2

u(2−l)
≥ ]q(0, ω′)≥

∑
k=l0,...,l
θk(x)=0

]Pk(x)≥
bl/2c+1∑

k=l0

c̃0λ(k)≥ c̃0

bl/2c+1∑
k=l0

2−ku′(2−k)

u(2−k)

≥ c̃0

(
log

1
u(2−l/2)

− log
1

u(2−l0)

)
≥ c̃0β

−1 log
1

u(2−l)
− c̃0 log

1
u(2−l0)

.

Choosing c̃0 > c2β, this cannot hold when l is large enough. Thus there is a number l1 = l1(c̃0, l0, u)
such that (11) holds for all l ≥ l1.

Our next step is to prove that, if θk(x)= 1 for some k and Pk(x)= {Q1, . . . , Qm}, then it is possible
to find a collection of balls {B1, . . . , Bm′} from the families SB( fQi ,rQi )

or RB( fQi ,rQi )
having radii at least

a constant times α(2−k) and such that
∑m′

i=1wBi is at least a constant times λ(k). Moreover, we choose
different balls for different k.

Let us fix k ≥ l0 such that θk(x)= 1. Suppose first that the annulus Ak(x) contains no centres from
( fQ j (ω))

∞

j=1. Then the set Pk(x) consists of a single cube Q ∈W with fQ ∈ B(x, 2−k). The definitions of
rQ and l0 imply that rQ > 2−k and hence k≥ k0(rQ). Thus, we may choose the ball Rk(B( fQ, rQ)), which,
by definition, has radius α(2−k) and weight λ(k). In addition, the centre of this ball lies in B(x, 2−k).
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Assume now that the annulus Ak(x) contains at least one of the centres from ( fQ j (ω))
∞

j=1. Then, by
the definitions of Pk(x) and rQ , ∑

Q∈Pk(x)

2rQ ≥ 2−k .

Since ]Pk(x)≤ c̃0λ(k), we observe that ∑
Q∈Pk(x)

2rQ≥α(2−k)/2c̃0

2rQ ≥
2−k

2
.

For each Q ∈ Pk(x) with 2rQ ≥ α(2−k)/2c̃0 we choose a number nQ ∈ N so that

2nQ−1α(2
−k)

2c̃0
≤ 2rQ < 2nQ

α(2−k)

2c̃0

and pick a ball B̃ = SnQ (B( fQ, rQ))= B( fQ, rQ/2nQ ) ∈ SB( fQ ,rQ). By the definition of Si (B), we have
wB̃ = 2nQ and

r(B̃)=
rQ

2nQ
≥
α(2−k)

8c̃0
.

For the sum of the weights
∑

Q 2nQ of all the balls obtained in such a manner, we observe that

α(2−k)

2c̃0

∑
Q∈Pk(x)

2rQ≥α(2−k)/2c̃0

2nQ >
∑

Q∈Pk(x)
2rQ≥α(2−k)/2c̃0

2rQ ≥
2−k

2
.

Hence, we have a collection of balls {B1, . . . , Bm} ⊂ F with weights sum
∑m

i=1wBi > c̃0λ(k) and of
radii at least α(2−k)/8c̃0. Moreover, all these balls have their centres in the annulus Ak(x) and hence in
the ball B(x, 2−k+1).

We have proved that there exists a number l1 = l1(l0, c̃0) such that, for each ω ∈ El0 and l ≥ l1, among
the numbers l0, . . . , l there are at least dl/2e integers k ∈ {l0, . . . , l} such that θk(x)= 1. For these k we
are able to find a finite collection of balls {Bi }i∈I ⊂ F with weight-sum

∑
i∈I wBi at least λ(k) and of

radii at least α(2−k)/8c̃0, so that the centres of the balls Bi , i ∈ I , lie in the ball B(x, 2−k+1). Here c̃0 is a
positive constant depending only on β, n and λ(0), and the balls are different for a fixed ω and different k.

Fix l ≥ l1. We modify our family F according to l. If B ∈ F and there is k ∈ {l0 + 1, . . . , l}
such that α(2−k)/8c̃0 ≤ r(B) < α(2−k+1)/8c̃0, we replace B with the ball B̃ = (λ(k)/λ(l))B and set
wB̃ = (λ(l)/λ(k))

nwB . The radius of B̃ satisfies r(B̃) ≥ (λ(k)/λ(l))α(2−k)/8c̃0 = 2−k/8c̃0λ(l) and
the equality wB̃r(B̃)n = wBr(B)n holds. Similarly, we replace a ball B with r(B) ≥ α(2−l0)/8c̃0 with
the ball B̃ = (λ(l0)/λ(l))B and set wB̃ = (λ(l)/λ(l0))

nwB . Again, we have r(B̃) ≥ 2−l0/8c̃0λ(l) and
wB̃r(B̃)n = wBr(B)n . Finally, Fl is the collection of balls obtained in this manner from the balls in F.
For this family of balls, we notice (see (10)) that∑

B∈Fl

wBr(B)n ≤
∑
B∈F

wBr(B)n <∞. (12)
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If ω∈ El0 , x= f (ω) and k ∈{l0, . . . , l} is such that θk(x)=1, then there is a collection {Bi }i∈I ⊂F with
the properties mentioned above. If for some i ∈ I the ball Bi is replaced by the ball B̃i = (λ(ki )/λ(l))Bi

while creating Fl , we necessarily have ki ≤ k. Therefore, the inequalities∑
i∈I

wB̃i
=

∑
i∈I

(
λ(l)
λ(ki )

)n

wBi ≥

(
λ(l)
λ(k)

)n ∑
i∈I

wBi ≥

(
λ(l)
λ(k)

)n

λ(k)= λ(l)n
1

λ(k)n−1

and r(B̃i ) ≥ 2−ki /(8c̃0λ(l)) ≥ 2−k/(8c̃0λ(l)) hold (by (6), λ is increasing). Since, for each i ∈ I , the
centre of a ball B̃i is contained in B(x, 2−k+1), we have x ∈ 16c̃0λ(l)B̃i . Hence, we observe that∑

B∈Fl

wBχ16c̃0λ(l)B(y)≥
∑

k=l0,...,l
θk(y)=1

λ(l)n
1

λ(k)n−1 ≥
λ(l)n

4

l∑
k=l1

1
λ(k)n−1 ≥

λ(l)n

4
Gl

for each y ∈ Fl0 , where Gl =
∑l

k=l1
1/λ(k)n−1. That is, (4wB/(λ(l)nGl), 16c̃0λ(l)B)B∈Fl is a weighted

cover of the set Fl0 . We observe also that the diameters of all balls in this cover are at least 2−l . This
information will be used in the proof of Theorem 1.3 below.

Finally, using the weighted cover obtained above and (12), we estimate the weighted Hausdorff
n-content λn

∞
(Fl0):

λn
∞
(Fl0)≤

4
λ(l)nGl

∑
B∈Fl

wB
(
diam(16c̃0λ(l)B)

)n
≤

42n+1c̃n
0

Gl

∑
B∈Fl

wB(diam B)n

≤
25n+2c̃n

0

Gl

∑
B∈Fl

wBr(B)n ≤
A

Gl
,

where the constant A depends on β, n, m, ‖ f ‖W 1,n(Bn,Rm) and λ(0) but not on l0 or l.
Now Lemma 2.1 implies Hn

∞
(Fl0)≤ C A/Gl . Here C depends only on the dimension n. Hence, we

are done as soon as we can show that Gl→∞ as l→∞. Towards this end, we have

Gl =

l∑
k=l1

1
λ(k)n−1 =

l∑
k=l1

u(2−k)n−1

2−k(n−1)u′(2−k)n−1 ≥

∫ 2−l1

2−l

(
u(t)
u′(t)

)n−1 dt
tn ,

and the right-hand side diverges as l→∞ by the assumptions on the modulus of continuity. �

The proof of Theorem 1.3 is similar to the proof of Theorem 1.1. We only point out the required
changes.

Proof of Theorem 1.3. Let f be as in statement of the theorem. Our notation will be the same as in
previous proof. That is, α(t)= γ t and λ(k)= 1/γ .

Fix a small ε > 0. Then there exists a δ > 0 such that∫
Bn\B(0,1−δ)

|D f |n ≤ ε. (13)

Let W δ be the set of the cubes in W which are contained in Bn
\ B(0, 1− δ) and whose neighbour cubes

are also contained in Bn
\B(0, 1−δ). We define our collection of balls to be B δ

= {B( fQ, rQ) : Q ∈W δ
}.
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Then, proceeding as in the previous proof, we define F δ analogously to F and obtain the estimate
(see (10)) ∑

B∈F δ

wBr(B)n ≤ C1ε. (14)

Let ω ∈ ∂Bn . We define the number l0 = l0(ω, f, δ) as in the previous proof, but instead of all cubes
in (Q j (ω))

∞

j=1 we consider only those which are contained in W δ. Again, we split ∂Bn into sets
El = {ω ∈ ∂Bn

: l0(ω) ≤ l} and consider a fixed f (El ′). With the same method as earlier we find for
large l a collection of balls F δ

l with weights such that (8wBγ /(l − l1), (16c̃0/γ )B)B∈F δ
l

is a weighted
cover of the set f (El ′), the radii of the balls (16c̃0/γ )B are at least 2−l and∑

B∈F δ
l

wBr(B)n ≤ C1ε.

We may assume that our ε > 0 is so small that all balls in our weighted cover have radii smaller than 1
2 .

With this weighted cover, we obtain

λg
∞
( f (El ′))≤

4γ
l − l1

∑
B∈F δ

l

wB

(
diam

(
16c̃0

γ
B
))n

log
1

diam((16c̃0/γ )B)

≤
4γ

l − l1

∑
B∈F δ

l

wB

(
diam

(
16c̃0

γ
B
))n

log 2l
≤

22+5n c̃n
0

γ n−1

l
l − l1

∑
B∈F δ

l

wBr(B)n ≤
23+5n c̃n

0C1

γ n−1 ε.

Here we assumed l to be so large that l/(l − l1) ≤ 2. Lemma 2.1 implies H
g
∞( f (El ′)) ≤ Aε. Here A

depends on γ , n and m but not on l ′ or l; therefore, we have H
g
∞( f (∂Bn)) ≤ Aε; see [Howroyd 1994,

Corollary 8.2] or [Federer 1969, 2.10.22]. Letting ε tend to zero gives H
g
∞( f (∂Bn))= 0, which implies

Hg( f (∂Bn))= 0. �

4. Example

In this section, we work in R2 and use the notation ‖x‖ =max{|x1|, |x2|}. Let p > 1
2 . We will construct a

locally Hölder continuous mapping f : R2
→ R2 that belongs to W 1,2

loc (R
2,R2) and maps ∂B2 onto a set

of positive Hg-measure, where g(t)= t2(log(1/t))2p.
The mapping is a composition of two locally Hölder continuous mappings. The second mapping is

defined in [Herron and Koskela 2003, Proposition 5.1]. It is a homeomorphism h : R2
→ R2 that is

the identity mapping outside [0, 1]2 and maps a small Cantor set C ⊂ [0, 1]2 onto a large Cantor set
C′ ⊂ [0, 1]2 with positive Hg-measure. It was checked in [Koskela et al. 2009] that this mapping belongs
to W 1,2

loc (R
2,R2) if p > 1

2 .
Next, we elaborate on the construction of h and prove that it is Hölder continuous in [0, 1]2. Let σ < 1

2 .
We use the notation 2rk = σ

k and 2Rk =
1
2σ

k−1 for k ∈ N. The set C is defined as follows: In the first
generation we have one square Q0= [0, 1]2 with side length 2r0. We split this square into four subsquares
P1i , i = 1, 2, 3, 4, of side length 2R1. We define Q1i to be the square of side length 2r1 centred at the
centre of P1i . Then P1i and Q1i generate the frame A1i = P1i \ Q1i . Next, we divide all squares Q1i into
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squares P2 j , j = 1, . . . , 42. Then we define Q2 j and A2 j as in the first step. We proceed inductively.
Thus, we obtain for all k ∈ N sets Qki , Pki and Aki , where i = 1, . . . , 22k , and we set C=

⋂
k
⋃

i Qki .
The set C′ and sets Q′ki , P ′ki and A′ki with k ∈ N and i = 1, . . . , 22k are defined in the same way,

using 2r ′1 =
1
2(log 4)−p, 2R′2 = r ′1, and 2r ′k = (log 4)−p2−kk−p and 2R′k = (log 4)−p2−k(k − 1)−p for

other k ∈ N.
The mapping h is defined so that it maps the frame Aki to the frame A′ki via a “radial” stretching and is

continuous in [0, 1]2. The radial stretching which maps A={x : rk ≤‖x‖≤ Rk} to A′={x : r ′k ≤‖x‖≤ R′k}
is

ρ(x)= (a‖x‖+ b)
x
‖x‖

, where a =
R′k − r ′k
Rk − rk

and b =
Rkr ′k − R′krk

Rk − rk
.

If x , y ∈ A then ‖x − y‖ ≤ 2Rk =
1
2σ

k−1 and

a ≤
4σ

1− 2σ
(2σ)−k

≤ C(σ )σ−(1−β)k ≤ C(σ )‖x − y‖β−1,

where β = log 2/ log (1/σ). Similarly,

|b|
|rk |
≤

4
1− 2σ

(2σ)−k
≤ C(σ )‖x − y‖β−1.

The mapping ρ is Hölder continuous with exponent β, as

‖ρ(x)− ρ(y)‖ ≤ Ca‖x − y‖+ 2
|b|
|rk |
‖x − y‖ ≤ C(σ )‖x − y‖β .

If x ∈ Aki and y ∈ Qk+1, j ⊂ Pki , then ‖x−y‖≥ Rk+1−rk+1=C(σ )σ k and ‖h(x)−h(y)‖≤ 2R′k ≤ 2−k .
These imply

‖h(x)− h(y)‖
‖x − y‖β

≤ C(σ ).

The β-Hölder continuity of h easily follows from the continuity estimates obtained above.
The first mapping G : R2

→ R2 is a (locally Hölder continuous) quasiconformal mapping for which
C⊂ G(∂B2). Such a mapping was constructed in [Gehring and Väisälä 1973].

Finally, the composition h ◦G : R2
→ R2 is a homeomorphism with h ◦G(∂B2)⊃ C′. Moreover, it

is locally Hölder continuous and h ◦G ∈ W 1,2
loc (R

2,R2) by quasiconformality of G and the change of
variable formula; see, for example, [Astala et al. 2009, Section 3.8].
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We consider the problem of extending functions � WSn!Sn to functions u WBnC1!Sn for nD 2; 3. We
assume � belongs to the critical space W 1;n and we construct a W 1;.nC1;1/-controlled extension u. The
Lorentz–Sobolev space W 1;.nC1;1/ is optimal for such controlled extension. Then we use these results to
construct global controlled gauges for L4-connections over trivial SU.2/-bundles in 4 dimensions. This
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1. Introduction

The use of Hodge decomposition is by now one of the classical tools in the study of elliptic systems and
is related to important breakthroughs such as the famous “div–curl”-type theorems [Coifman et al. 1993].
More recently, in [Rivière 2007], such use allowed the solution of S. Hildebrandt’s [1982] conjecture. At
the same time, it has helped establish important links to apparently unrelated fields of geometry, such as
the study of conformally invariant geometric problems in 2 dimensions [Hélein 1996] and the study of
Yang–Mills bundles and gauge theory [Uhlenbeck 1982b], with the introduction of controlled Coulomb
gauges.

The study of 2-dimensional problems using controlled gauges has already given its fruits, and in
connection to the discovery of H. Wente’s inequality (which gave the basis for introducing the Lorentz
spaces L.2;1/ in geometric problems) allowed the successful use of controlled moving frames in the
study of harmonic maps and prescribed mean curvature surfaces [Hélein 1996; Müller and Šverák 1995].
We come back to this in Section 2H. Techniques and function spaces related to the moving frame method
also apply to the study of the Willmore functional [Rivière 2012] for immersed surfaces.
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The use of controlled gauges especially in relation to Lorentz spaces in dimensions higher than 2 is far
less developed. We attempt here a first attack of this completely new area of research, and we obtain
some extensions of previous results for the case of Yang–Mills fields on 4-dimensional manifolds.

1A. Yang–Mills theory and controlled gauges. Yang–Mills theory for 4-manifolds is often associated
to the famous result of S. Donaldson [1983] who, using the moduli spaces of anti-selfdual connections,
described new invariants of smooth manifolds.

The study of moduli spaces used by Donaldson [1983] starts from the result of K. Uhlenbeck [1982b],
who proved that one can find a gauge in which the W 1;2-norm of the local coordinate expression of the
connection is controlled by the L2-norm of the curvature. Moreover the connection 1-form A can be also
made to satisfy the Coulomb condition d�AD 0.

It is easy to construct a Coulomb gauge in which we have just an L2-control in terms of the curvature
(see [Petrache 2013] or [Petrache and Rivière � 2014]). This is done by first obtaining any gauge in
which

kAkL2 � CkFkL2

and then finding the smallest norm coefficients with respect to that gauge on our manifold M :

min
�Z

M

jg�1dgCg�1Agj2 dx W g 2W 1;2.M;SU.2//
�
:

A unique minimizer will exist by convexity, and it will satisfy the Coulomb equation d�AD 0.
The control of A in the higher norm W 1;2 is more difficult. A smallness hypothesis on kFkL2.M / is

required in order for the control to be achievable:

Theorem 1.1 (controlled Coulomb gauge under assumption of small energy [Uhlenbeck 1982b]). There
exists a constant �0> 0 such that if the curvature satisfies

R
M jF j

2� �0 then there exists a Coulomb gauge
� 2W 2;2.M;SU.2// such that in that gauge the connection satisfies kA�kW 1;2.M / � CkFkL2.M / with
C > 0 depending only on the dimension.

The reason the smallness of the curvature is necessary is that kFkL2.M / being above a certain threshold
allows the second Chern number of the bundle to be nontrivial:

c2.E/D
1

8�2

Z
M

tr.F ^F /¤ 0:

If, for such F , the controlled gauge were global, i.e., if we had a global trivialization in which the
connection of the above F is expressed as d CA with

kAkW 1;2.M / � C;

then by the Sobolev and Hölder inequalities we would have enough control on the quantities involved to
prove the following formal identity for our A:

tr
�
.dAC ŒA;A�/^ .dAC ŒA;A�/

�
D d tr

�
A^ dAC 2

3
A^A^A

�
:
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Now the right side, being an exact form, would have integral equal to zero over the boundaryless
manifold M , which would contradict c2.E/¤ 0.

M. Atiyah, N. Hitchin, I. Singer [Atiyah et al. 1978] and C. Taubes [1982] constructed instantons
with nontrivial Chern numbers behaving as in the above heuristic. To exemplify the phenomena at
work consider the simplest instanton, having c2.E/D 1 over M D S4 (see [Freed and Uhlenbeck 1984,
Chapter 6] for notations and details). Recall that we may use quaternion notation due to the isomorphisms
SU.2/� Sp.1/ and su.2/� Im H, under which Pauli matrices correspond to quaternion imaginary units.
We then have the following local expression of A over R4 (identified by stereographic projection with
S4 n fpg) in a trivialization:

AD Im
�

x d Nx

1Cjxj2

�
:

If ‰ is the inverse stereographic projection then ‰�A is smooth away from the pole p, but near p we
have j‰�Aj.q/� distS4.p; q/�1, which is not L4 in any neighborhood of p.

Such behavior like 1=jxj shows that we are in any space Lp for p < 4 but not in L4. The natural
space is the weak-L4 space L4;1, which is strictly contained between all Lp, p < 4, and L4:

Definition 1.2 [Grafakos 2008]. Let X; � be a measure space. The space Lp;1.X; �/ (also called
weak-Lp or Marcinkiewicz space) is the space of all measurable functions f such that

kf k
p
Lp;1 WD sup

�>0

�p�fx W jf .x/j> �g

is finite.

We note immediately that the function f .x/D1=jxj belongs to L4;1 on R4 and the above global gauge
gives an L4;1 1-form‰�A on S4. Spaces Lp;1 arise naturally in dealing to the critical exponent estimates
for elliptic equations. Indeed, the Green kernel Kn.x/ of the Laplacian on Rn satisfies rK 2Ln=.n�1/;1

but not rK 2Ln=.n�1/. Thus �uD f with f 2L1 implies ruDrK�f 2Ln=.n�1/;1 by an extended
Young inequality (see [Grafakos 2008]). This is unlike the higher exponent case f 2Lp, p > 1, which
gives the stronger result ru 2Lp.

1B. Controlled global gauges. As shown heuristically by the explicit case of the instanton A above, it
is known how to construct L4;1 global gauges. Our main effort in this work is to obtain norm-controlled
gauges, mirroring Theorem 1.1 by Uhlenbeck. The main result is the following:

Theorem A. Let M 4 be a Riemannian 4-manifold. There exists a function f W RC ! RC with the
following property: Let r be a W 1;2-connection over an SU.2/-bundle over M . Then there exists a
global W 1;.4;1/-section of the bundle (possibly allowing singularities) over the whole M 4 such that in
the corresponding trivialization r is given by d CA with the bound

kAkL.4;1/ � f .kFkL2.M //;

where F is the curvature form of r.
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This theorem is related to a second main result of this work, namely the introduction of Lorentz–Sobolev
extension theorems for nonlinear maps. This result takes most of our efforts and can be stated as follows:

Theorem B. There exists a function f1 W R
C! RC with the following property: Let � 2W 1;3.S3;S3/.

Then there exists an extension u 2W 1;.4;1/.B4;S3/ of � such that

krukL4;1.B4/ � f1.kr�kL3/:

The originality of Theorem B with respect to the previous results [Bethuel and Demengel 1995; Mucci
2010] is that, whereas the previous works were concerned with the existence of an extension, in our case
a control is provided in terms of the boundary value. We show below that, even under the hypothesis
deg.�/D0 — so that a W 1;4-extension surely exists — no energy control will be available in the (stronger)
W 1;4-norm.

Controlled global gauges as above will probably have many applications in the analysis of gauge theory,
for example in simplifying compactness results; see [Petrache 2013]. Controlled global gauges could
allow a global control on the Yang–Mills flow provided we obtain also the Coulomb condition, which is
however an open question:

Open Problem 1.3. Prove that it is possible to find L4;1-controlled global Coulomb gauges as in
Theorem A. In other words, prove that it is possible to find a gauge as in Theorem A, but with the further
requirement that d�AD 0.

1C. Strategy of gauge construction. The link between Theorems A and B is given by the well-known
identification SU.2/' S3. Therefore, Theorem B can be rephrased as follows:

Theorem B0. Fix a trivial SU.2/-bundle E over the ball B4. There exists a function f1 W R
C! RC with

the following property: if g 2W 1;3.S3;SU.2// gives a trivialization of the restricted bundle Ej@B4 , then
there exists an extension of g to a trivialization Qg 2W 1;.4;1/.B4;SU.2// such that

kr QgkL4;1.B4/ � f1.krgkL3.S3//:

The proof of Theorem A is by a sequence of gauge extensions along the simplices of a suitable
triangulation. We use simplices where Uhlenbeck’s Theorem 1.1 holds, i.e., F has energy . �0. To ensure
a lower bound on the size of simplices we cut areas of energy concentration and use induction on the
energy; see the graphical summary (5-1).

1D. Extension of Sobolev maps into manifolds. We discuss the relevance of our theorem, several possi-
ble extensions and related phenomena in Section 2.

Here we point out the main open questions in the area of controlled nonlinear extensions and some
analogues of Theorem B. The fundamental group �m.N / is a useful tool to control the topology of N .
It is a quotient of C 0.Sm;N/. To say that any map in this space is continuously extendable to BmC1

amounts to asserting that �m.N /D 0.
We consider here the controlled extension problem for maps Sm ! Sn. As is usually the case,

interesting new features appear when smooth maps are not dense in W 1;p.Sm;Sn/, in which case we
expect topological obstructions to gradually disappear as p decreases. The first facts to note are:
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� For extensions of maps from W 1;p.Sm;Sn/ to BmC1 the natural space given by continuous Sobolev
and trace embeddings is W 1;p.mC1/=m.BmC1;Sn/ (see Section 2A and 2B).

� For p <m.nC 1/=.mC 1/ the controlled extensions exist (see Section 2A).

� For p >m the extension question reduces to a purely topological problem (see Section 2B).

The open cases when p <m are thus among the following ones:

Open Problem 1.4. Assume that m.nC 1/=.mC 1/� p <m and m> n. For which such choices of m,
n, p does there exist a finite function fm;n;p W R

C! RC such that for every � 2W 1;p.Sm;Sn/ there
exists an extension u 2W 1;p.mC1/=m.BmC1;Sn/ for which the estimate

kukW 1;p.mC1/=m.BmC1;Sn/ � fm;n;p.k�kW 1;p.Sm;Sn//

holds? Does the estimate hold for p Dm for the norm W 1;.mC1;1/.BmC1;Sn/?

Open Problem 1.4 is partially understood or solved just in some cases:

� Due to a relation between extension problems and lifting problems, we answer the above problem
for nD 2<m and 3m=.mC 1/� p < 4m=.mC 1/; see Proposition 1.7 and Section 2D.

� In particular, we cover all p for the dimensions mD 3; nD 2.

� For nD 1, m� 3 and 3m=.mC 1/� p <m, it was shown by F. Bethuel and F. Demengel [1995]
that no extension exists.

It will be interesting in the future to look at the link between extension and lifting problems in detail.
It is possible to do this also in the case of S1-valued maps and in nonlocal Sobolev spaces, e.g., using the
results of J. Bourgain, H. Brezis and P. Mironescu [Bourgain et al. 2000].

In the critical case p Dm, left aside in Open Problem 1.4, we have the following results:

� Using the Hopf lifts as in the works of R. Hardt and T. Rivière [2003; 2008], we prove Theorem C,
which is the solution to the case p DmD nD 2 (see Section 3).

� The extension in that case exists but cannot be controlled in the above Sobolev norm, making the
Lorentz–Sobolev weakening of Theorem B and of Theorem C below optimal (see Section 2E). This
is analogous to the case of global gauges in 4 dimensions pointed out in the introduction.

� We also prove an analogous result for p D m D n D 1 (see Theorem 2.5). However this is not
the natural space to look at, unlike in higher dimensions. In this case, indeed, the trace space
H 1=2.S1;S1/ is the natural space to look at, because W 1;1.S1;S1/ does not continuously embed
in it (we recall a counterexample in Section 2C).

These theorems leave open higher-dimensional cases:

Open Problem 1.5. Assume n� 4. Prove that there exists a finite function fn W R
C! RC such that, for

each � 2W 1;n.Sn;Sn/, we can find an extension u 2W 1;.nC1;1/.BnC1;Sn/ for which

kukW 1;.nC1;1/.BnC1;Sn/ � fn.k�kW 1;n.Sn;Sn//:
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Unlike in linear Sobolev spaces, not only the topology of the domain must be compared to the Sobolev
exponent p, but also the dimension and structure of the constraint (i.e., the target manifold) plays a critical
role. This is also related to the topological global obstructions to density results for smooth functions
between manifolds found by F. Hang and F.-H. Lin [2001; 2003] and discussed by T. Isobe [2006].

A general tool allowing extensions is the projection trick of Section 2A, which works well for Sobolev
exponents smaller than the target dimension plus one. Lifting theorems allow us to increase this dimension
and thus to apply the projection trick with higher exponents.

Using the Hopf fibration H WS3!S2 we construct controlled lifts and apply a version of the projection
trick obtaining the following theorem with much less effort than for the 3-dimensional case of Theorem B:

Theorem C (see Section 3). Suppose � 2W 1;2.S2;S2/ is given. Then there exists u2W 1;.3;1/.B3;S2/

such that, in the sense of traces, uj@B3 D � and such that the following estimate holds, for a constant
independent of �:

kukW 1;.3;1/.B3/ � Ck�kW 1;2.S2/.1Ck�kW 1;2.S2//:

The Hopf fibration has a natural structure of U.1/-bundle with nontrivial characteristic class, P ! S2.
Lifting a map � W X ! S2 to a map Q� W X ! S3 for which H ı Q� D � corresponds to giving the
trivialization of the pullback bundle ��P . Analogous lifts are interesting to study for general principal
G-bundles, using universal connections. The next case after the one with target S2 is the SU.2/-bundle
of the introduction, which corresponds to the Hopf fibration S7! S4.

The Hopf lift idea seems to be much more difficult to extend to the case where the target is S3. We
cannot use principal bundles because �2.G/D 0 for all compact Lie groups G. For other fibrations, the
following question is open:

Open Problem 1.6. Is it possible to find a fibration � WE! S3 with compact fiber M and a constant
C > 0 such that, for each � 2 W 1;3.R3;S3/, there exists a lift Q� W R3 ! E satisfying the estimate
kr Q�kL.3;1/ � Cf .kr�kL3/ for some finite function f W RC! RC?

The controlled Hopf lift result for S2 yields also an answer to Open Problem 1.4 for dimensions mD 3,
nD 2:

Theorem D. Assume � 2W 1;3.S3;S2/. Then there exists a controlled extension u 2W 1;.4;1/.B4;S2/

with the control
kukW 1;.4;1/.B4;S2/ � Ck�kW 1;3.S3;S2/.1Ck�kW 1;3.S3;S2//:

If instead we have � 2W 1;p.S3;S2/ for 9
4
� p < 3, then there exists an extension u 2W 1; 4

3
p.B4;S2/

with
kuk

W
1; 4

3
p
.B4;S2/

� Ck�kW 1;p.S3;S2/.1Ck�kW 1;p.S3;S2//:

The same proof allows us to also answer Open Problem 1.4 for nD 2<m for some exponents p:

Proposition 1.7. Assume nD 2, m� 3 and 3m=.mC1/� p < 4m=.mC1/ and let � 2W 1;p.Sm;S2/.
Then there exists a controlled extension u 2W 1;p.mC1/=m.BmC1;S2/ with

kukW 1;p.mC1/=m.B4;S2/ � Ck�kW 1;p.S3;S2/.1Ck�kW 1;p.S3;S2//:



GLOBAL GAUGES AND GLOBAL EXTENSIONS IN OPTIMAL SPACES 1857

1E. Ingredients used in the construction of W 1;.4;1/.B4; S3/-extensions. The starting new idea was
to the use of implicit function theorems and of a limit on the integrability exponent as done in [Uhlenbeck
1982a] for the extension result. Note that the procedure of Appendix A is generalizable to other contexts
with no new ingredients, at least as long as a Lie group structure is present.

For the implicit function theorems above, we needed here a new product estimate valid in Sobolev
spaces, which is presented in Appendix B, extending partially the results of [Brézis and Mironescu 2001];
cf. [Runst and Sickel 1996; Triebel 1995].

The second idea was to use L.4;1/ functions such that the L4-estimate would fail just near a controlled
number of points. Such singular points (where “singular” is meant with respect to the L4-estimates) are
introduced via Lemma 4.6 and Theorem 4.3.

The uniform L.4;1/-control is obtainable just in the case where the boundary value has no large energy
“hot spots”. To deal with the case where energy concentrates, we use two tools which are available in the
particular case of S3 ' SU.2/: (1) the group operation of SU.2/, which gives a continuous product on
W 1;3.X;S3/; (2) the Möbius group of S3 coupled with the conformal invariance of the L3-norm of the
gradient on S3.

Under a balancing condition on the boundary value �, we can write � D �1�2, where the product is
taken in SU.2/, and the energies of �i , i D 1; 2, are strictly less than that of �, allowing an induction on
the energy. If the balancing is not valid, we apply a Möbius transformation Fv to S3 and either reduce to
a balanced situation for Fv ı� for some v or provide a substitute v 2 B4 7!

R
S3 � ıFv to the harmonic

extension of �, to which we can now apply the projection trick. The natural parametrization of the Möbius
group of S3 via vectors in B4 fits very well in this setting, and we were inspired to use it by the similar
use of it in [Marques and Neves 2014].

1F. Plan of the paper. Section 2 contains a list of positive and negative results concerning phenomena
parallel to ours, showing that our results are optimal. Section 3 contains the proof of Theorem C. In
Section 4 we prove Theorem B, and in Section 5 we prove Theorem A. Appendix A deals with our new
“extension” version of Uhlenbeck’s gauge construction and in Appendix B we prove the needed new
product inequality. Appendix C contains computations and notation for the Möbius groups of BnC1

and Sn.

2. Controlled and uncontrolled nonlinear Sobolev extensions

Classical Sobolev space theory features optimal extension theorems in natural trace norms. For example,
if � � Rn is a bounded smooth domain and u W @�! R is a W 1;n�1-function, then there exists an
extension Nu W�! R such that Nu 2W 1;n and the estimate

k NukW 1;n � CkukW 1;n�1

holds (with C independent of u). This extension theorem is optimal in the sense that for dimensions
n> 2 the natural trace operator Nu 2W 1;n.�/ 7! Nuj@� sends W 1;n to the optimal space W 1�1=n;n (see
[Tartar 2007, Chapter 40] for the natural appearance of this space), and we have the optimal Sobolev
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continuous embedding W 1�1=n;n!W 1;n�1 (see [Tartar 2007]) which brings us back to the original
space. A similar result still holds if we replace the codomain R by Rm.

However, for nD 2, the space W 1;1.S1;S1/ does not continuously embed in H 1=2.S1;S1/, making
the above reasoning less effective; see Section 2C.

A construction of Nu is possible by imitating the model, valid for �D Rn
C WD f.x1; : : : ;xn/jxn � 0g,

Nu.x1; : : : ;xn�1; �/ WD .�� �u/.x1; : : : ;xn�1/;

where �� is a standard family of radial smooth compactly supported mollifiers.
An equivalent construction of Nu in terms of function spaces is by harmonic extension. The optimal

result is the following:

Proposition 2.1 (harmonic extension; cf. [Gazzola et al. 2010, Chapter 10]). Assume q > 1 and
u2W 1�1=q;q.@BmC1;RnC1/. Then there exists a harmonic extension Nu2W 1;q.BmC1;RnC1/ such that

k NukW 1;q.BmC1;RnC1/ � Cm;n;qkukW 1�1=q;q.@BmC1;RnC1/:

By Sobolev embedding, we have the controlled inclusion W 1;p ,!W 1�1=q;q on an m-dimensional
bounded open domain (or a compact manifold like @BmC1) for q � p.mC 1/=m; therefore, this q is the
largest exponent where we can hope to have a control for the extension.

If u is a constrained function with values in a subset of RnC1 (e.g., a curved n-dimensional submanifold
like Sn) then averaging even on a very small scale could push the values of Nu quite far from the
constraint obeyed by u. This happens in particular for Sobolev exponents that make the dimension
“supercritical”, i.e., exponents such that W 1;q.BmC1/ is not constituted of continuous functions. We
now describe some cases where directly projecting back to Sn does not destroy the norm control of
Proposition 2.1.

2A. Projection from a well-chosen center. We present in this section a trick which probably appeared
for the first time in relation to nonlinear Sobolev extensions in R. Hardt, D. Kinderlehrer and F.-H. Lin’s
works [Hardt et al. 1986; Hardt and Lin 1987]. For a Lorentz space version see Proposition 3.4.

Proposition 2.2 (projection trick). If f 2 W 1;q.�;BnC1/ with q < nC 1 and � is a bounded open
simply connected domain of RmC1, then there exists a 2 BnC1

1=2
and a constant C depending only on q, m,

n such that if fa.x/D �a.f .x//, where �a W B
nC1 n fag ! Sn is the projection which is constant along

the segments Œa; !�, ! 2 Sn, then

kfakW 1;q.�;Sn/ � Ckf kW 1;q.�;BnC1/:

Proof. We just have to estimate the gradient of fa in terms of that of f since in any case the functions
themselves are bounded and � is assumed of finite measure. We first note that, since a 2 BnC1

1=2
is away

from the boundary of BnC1, we have the pointwise estimate

jrfaj.x/.
jrf j.x/

jf .x/� aj
;
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where the implicit constant depends only on n. We next consider the following “average” on a:Z
B

nC1
1=2

�Z
�

jrfaj
q.x/ dx

�
da.

Z
�

jrf jq.x/

�Z
B

nC1
1=2

da

jf .x/� ajq

�
dx:

We note that the inner integral is of the form

I.y/ WD

Z
B

nC1
1=2

da

jy � ajq
;

and

max
y

I.y/D I.0/D Cn

Z 1=2

0

rnCq dr D Cn;q <1 since q < nC 1I

therefore, we obtain Z
B

nC1
1=2

krfak
q
Lq da� Cn;qkrf k

q
Lq ;

and the proof is easily concluded. �

The above proposition together with Proposition 2.1 and the remark on Sobolev exponents following it
give the following:

Theorem 2.3 (corollary of the projection trick; cf. [Hardt and Lin 1987, Theorem 6.2]). Let m; n 2N�.
If 1 � p < m.nC 1/=.mC 1/ then for any � 2 W 1;p.@BmC1;Sn/ there exists a nonlinear extension
u 2W 1;p.mC1/=m.BmC1;Sn/ satisfying the control

kukW 1;p.mC1/=m.BmC1;Sn/ � Cm;n;pk�kW 1;p.@BmC1;Sn/:

Remark 2.4. Note that from the same ingredients we obtain also the stronger estimate where for
q WD p.mC 1/=m < m the weaker space W 1�1=q;q.@BmC1;Sn/ replaces W 1;p.@BmC1;Sn/. This
was done in [Bethuel and Demengel 1995; Hardt and Lin 1987]. We stated Theorem 2.3 as above to
emphasize the connection with our Theorems B and C. Indeed, taking mD n we see that those theorems
cover the critical exponent p D n for which the projection trick stops working.

2B. Large integrability exponents. We now consider functions in W 1;p.Sm;Sn/ with p > m; there
is a continuous embedding of C 0;1�m=p.Sm;Sn/ into this space. The candidate extension space
W 1;p.mC1/=m.BmC1;Sn/ is also composed of C 0;1�m=p-functions. As described in Section 1D, the
extension problem is guaranteed to have a solution as long as �m.S

n/D 0. This is true for m < n but
false for many choices of m> n and for mD n.

When an extension exists for � representing the identity of the (nontrivial) group �m.S
n/, a controlled

extension can be constructed based on the fact that a bound on the C 0;˛-norm for ˛ > 0 implies a control
on the modulus of continuity.
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2C. Extension for maps in W 1;1.@S1; S1/. For maps with values in S3, we are helped by the existence
of a well-behaved product structure on S3, i.e., the one which gives the identification S3' SU.2/. This is
enough to get the analogous result for nD 1, as we will see now. It is however well known (see [Hatcher
2009, Section 2.3]) that this is a very unusual case: a group operation exists on Sk only for k D 1; 3.

We can state a similar extension problem in the 1-dimensional case. This kind of controlled extension
result is related to the recent work on Ginzburg–Landau functionals in [Serfaty and Tice 2008].

Here the main structural ingredients present for S3 are again present: namely, we have a group operation
on S1 (in this case it is the abelian group U.1/� R=Z) and a Möbius structure on D2 restricting to one
on S1. We follow the strategy of proof described in Section 1D. The result is:

Theorem 2.5 (1-dimensional version of the extension). There exists a function g W RC! RC with the
following property: if � 2W 1;1.S1;S1/ then there exists u 2W 1;.2;1/.D2;S1/ with uj@D2 D � in the
sense of traces and we have the norm control

kukW 1;.2;1/.D2;S1/ � g.k�kW 1;1.S1;S1//:

We will explain the changes which occur with respect to the proof of Theorem B (see Section 4).

Sketch of proof. The procedure is as in Section 4 and Appendix A; we have just to replace exponents
and dimensions 3; 4 with 1; 2. For the analogue of Proposition 4.9 the biharmonic equation (4-36) is
replaced by a harmonic equation, while the resulting estimates persist. Perhaps the only significant
change is Lemma B.1 of Appendix B. It should be replaced by the following product estimate, valid for
f 2W 1;1.D2/, g 2L1\W 1;2.D2/:

kfgkW 1;1 � kf kW 1;1.kgkL1 CkgkW 1;2/: �

We must however note that the naturality of the space W 1;1.S1;S1/ in Theorem 2.5 is less evident,
since the trace space H 1=2.S1;S1/ does not continuously embed in it, unlike what happens in higher
dimensions. This is seen by considering

u�.�/D exp
�
i min

˚
1; ��1 distS1

�
�;
�
�

1
2
�; 1

2
�
��	�

:

It is then clear that kru�kL1.S1/D 2, while we estimate the double integral in � , � 0 giving the H 1=2-norm
by the contribution of the regions � 2

�
0; 1

2
�
�
, � 0 2

�
1
2
� C �; � C �

�
. Under these choices, u�.�/D e0,

u�.�
0/D ei , and their distance in S1 is 1. Thus,

ku�k
2
H 1=2.S1;S1/

D

Z
S1

Z
S1

distS1.u�.�/;u�.�
0//2

distS1.�; � 0/2
d� d� 0

�

Z 1

0

Z 1

0

1

jxC 2�=� �yj2
dx dy

. jlog �jC 1:
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2D. Using controlled liftings to obtain controlled extensions. The control obtained for extensions of
maps in W 1;3.S3;S3/ and W 1;1.S1;S1/ is exponential in the norms of these maps. In Section 3
we describe an approach, which works for � 2 W 1;2.S2;S2/, which is completely different than in
dimensions 1 and 3 and yields a faster proof and a better control. Such an approach was first considered
in [Hardt and Rivière 2003]. This is based on the existence of controlled Hopf lifts. The result (see
Corollary 3.3) is that there exists an L2;1-controlled lifting Q� W S2 ! S3, i.e., a function such that
H ı Q� D �, where H W S3! S2 is the Hopf fibration and we have the control

kr Q�kL2;1 � Ckr�kL2.1Ckr�kL2/:

The analogous controlled lift exists also for � 2W 1;3.S3;S2/, whereas for 2� p < 3 we have a control
on the Lp-norm of the lift instead of the Lp;1 one; cf. Proposition 1.7. This lift allows us to prove,
along the same lines, Theorems C and D.

The gist of the proof is the following: Once we have the controlled lift, the lifted map takes values
into a sphere of a higher dimension. This allows a wider range of application for the projection trick of
Proposition 2.2 or of its Lorentz space analogue of Proposition 3.4.

Having extended the lift, reprojecting the extension to S2 via the Hopf map maintains the gradient
estimates. This is due to the fact that the Hopf fibration is a submersion (cf. (3-4)) and our lift can be
taken so that the “vertical” component � is also controlled.

Work on the existence of nonlinear liftings has been very active regarding S1-valued maps (see, e.g.,
[Bourgain et al. 2000; 2004; Bethuel and Zheng 1988] and the references therein). Looking also at
higher-dimensional analogues seems very promising in relation to extension results.

2E. Small energy extension with estimate. As for the case of curvatures over bundles with a compact
Lie group, the small energy regime allows a kind of linearization of the problem and gives estimates
which are better than what is expected in general. We obtain in particular an estimate in W 1;4 instead
of W 1;.4;1/ for the extension, provided that the norm of the boundary trace is small:

Proposition 2.6 (see Theorem 4.4). There is a constant �0 > 0 and a finite constant C such that, ifZ
S3

jr�j3 � �0; � W S3
! S3;

then there exists u 2W 1;4.B4;S3/ such that

uD � on @B4 in the sense of traces and krukL4.B4/ � Ckr�kL3.S3/:

This is part of our proof of Theorem B and is proved in Section 4B using a method developed in
Appendix A in the spirit of [Uhlenbeck 1982b].

2F. Existence of W 1;4-extension without norm bounds. As for the case of global gauges, we can in
general obtain W 1;4.B4;S3/-extensions once we give up the requirement to have a norm control of the
extension such as in Theorem B. This phenomenon represents one example of situations in which function
spaces have behavior which is more complex than what can be detected by only looking at their norms.
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Proposition 2.7. If � 2 W 1;3.S3;S3/, then its topological degree is well defined; cf. [Schoen and
Uhlenbeck �1980; White 1988]. Suppose that deg� D 0. Then there exists u 2W 1;4.B4;S3/ such that

uD � on @B4 in the sense of traces.

Proof. We use the extension as in Section 4A. The construction using Lemma 4.5 is done on a series of
domains B.xi ; �i/\B4, where xi 2 @B

4, �i 2 Œ�F
; 2�

F
� for the choice

�F WD inf
�
� > 0 W 9x0 2 @B

4;

Z
B.x0;2�/\@B4

jr�j3 � �0

�
:

Note that we have no a priori control on how small �
F

could get, but (by absolute continuity of jr�j3dx

and compactness of @B4) it cannot be zero for a fixed �. Then a Lipschitz extension u WR! S3 to a
Lipschitz region R included between B4 nB1�2�

F
and B4 nB1��

F
exists as in Section 4A and such a

u will also be Lipschitz (with constant bounded by ��1
F

) and will have degree zero (the preservation of
degree follows because the extension used in the construction preserves the homotopy type; cf. [White
1988]). In particular we can do a further Lipschitz (thus W 1;4) extension to the interior of B4 nR. This
provides the desired u. �

The proof of the above proposition is constructive, and no hint that the construction is optimal is
available. In the next section we prove that actually no general bound in W 1;4 can be achieved, because
of the intervention of the topological degree, much as in the case of SU.2/-instantons.

2G. Impossibility of W 1;4 bounds for an extension.

Proposition 2.8. There exists no finite function f WRC!RC such that for each � 2W 1;3.S3;S3/ there
exists a function u 2W 1;4.B4;S3/ satisfying

uD � on @B4 in the sense of traces and krukL4.B4/ � f .kr�kL3.S3//:

Proof. We recall the robustness of degree under strong convergence in W 1;3.S3;S3/ (see [Schoen and
Uhlenbeck �1980; White 1988; Brézis and Nirenberg 1995; 1996]). Consider � D idS3 , which has
degree 1. Suppose an extension u W B4! S3 to � were to exist with kukW 1;4 � C 0. It would then be
possible to approximate u in W 1;4-norm by functions ui 2 C1.B4;S3/, since smooth functions are
dense in W 1;4.B4;S3/. In particular the degrees deg.�i/ of �i D ui j@B4 would have to be zero. This
contradicts the fact that �i ! � in W 1;3-norm because the degree of the boundary trace is preserved
under strong W 1;3-convergence.

This proves the absence of a continuous extension operator. To show that boundedness is also impossible,
we use a slightly different argument.

Consider �0 2W 1;3 \C1.S3;S3/ that is a perturbation of the identity equal to the south pole S

in a neighborhood NS of S . Then consider a Möbius transformation F W S3! S3 such that F�1.NS /

includes the lower hemisphere, and let �0 D �0 ıF , �00 D �0 ı .�F /. Then, identifying S3 � SU.2/ so
that S � idSU.2/, use the group operation to define � D �0�00. Note that k�kW 1;3 � 2k�0kW 1;3 , since the
conformal maps F , �F preserve the energy; moreover, � has zero degree.



GLOBAL GAUGES AND GLOBAL EXTENSIONS IN OPTIMAL SPACES 1863

Let Fn be a family of Möbius transformations symmetric about S that concentrate more and more
near S (with the notation of Appendix C we may take Fn WDFvn

for vnD .1�1=n/S ). Define �0n WD�
0ıFn

and �n WD �
0
n�
00. It is clear by conformal invariance of the W 1;3-energy that the �n have constant energy.

They converge weakly to �00 and have degree zero.
Call un the extension of �n and suppose that kunkW 1;4 � C independent of n. We may suppose that,

in W 1;4-norm, un * u1 2W 1;4.B4;S3/ and we obtain u1j@B4 D �00 in the sense of traces. We then
apply the result of [White 1988] (see also [Schoen and Uhlenbeck �1980]), which in this case says that
the 3-dimensional homotopy class passes to the limit under bounded sequential weak-W 1;4.B4;S3/

limits. We again obtain a contradiction to boundedness, since deg.�00/D�1 whereas the same degree is
zero for the maps �n. �

2H. Moving frames and their gauges. We describe here a lifting problem arising in the theory of moving
frames on 2-dimensional surfaces, where the Lorentz spaces appear again in the optimal estimates. The
model question is as follows:

Question 2.9. Given a map (representing the normal vector of an immersed surface) En 2W 1;2.D2;S2/,
does there exist a W 1;2-controlled trivialization Ee D .Ee1; Ee2/ of the pullback bundle En�1T S2? A
trivialization is defined by two vector fields Ee1, Ee2 2W 1;2.D2;S2/ such that the pointwise constraints
jEe1j D jEe2j D 1, Ee1 � Ee2 D 0 are satisfied almost everywhere and EnD Ee1 � Ee2.

This problem behaves like the one of global controlled gauges; namely for small energy a lift exists
and is controlled, and, for large energy, lifts can be found but with no general control. Uhlenbeck’s
�-regularity estimate is mirrored in the following theorem. This result was proved initially by F. Hélein
[1996, Lemma 5.1.4] under the hypothesis krEnkL2 �C and improved by Y. Bernard and T. Rivière, who
proved that it is enough to assume a smallness condition in weak-L2:

Theorem 2.10 [Bernard and Rivière 2014, Lemma IV.3]. There exists �0 such that, if krEnkL2;1 � �0,
then there exists a trivialization with the controls

krEe1kL2 CkrEe2kL2 � CkrEnkL2 and krEe1kL2;1 CkrEe2kL2;1 � CkrEnkL2;1 :

Note that, for the improvement above, the L2-energy might blow up yet still control the energy of the
trivialization, as long as we stay small in Lorentz norm. It would be interesting to explore this kind of
phenomenon also for curvatures in higher dimensions, like in our setting.

The bad behavior in large energy regimes starts at the energy level 8� (and this is optimal; see [Kuwert
and Li 2012]). This number has an evident topological significance because, if En is homotopically non-
trivial, i.e., parametrizes a noncontractible 2-cell of S2, then 4� D jS2j �

R
D2 u�d VolS2 �

1
2

R
D2 jrEnj

2,
so 8� is the smallest energy of a topologically nontrivial En.

We also have the following lemma, similar to Section 2G:

Lemma 2.11. For
R
jrEnj2 > 8� there can be no controlled W 1;2-trivialization Ee.

Sketch of proof:. We choose En mapping a neighborhood D2 nBr WDN1 for small r to the south pole of
S2 that has degree 1 and equals a conformal map outside a small neighborhood N2 cN1. Such En exists
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with energy as close as desired to 8� , independently of r , by conformal invariance of the energy.
Supposing a trivialization EeD .Ee1; Ee2/ exists, on N1 it will span the “horizontal” 2-plane of R3 which is

perpendicular to S D .0; 0;�1/. On circles @B�, � > r , by Fubini’s theorem, for almost all � we will have
that Eei , i D 1; 2 will be W 1;2 and thus C 0 and they have values in the equator of S2. By well-posedness
of the topological degree and since En is nontrivial in homotopy, we obtain that each ei will make a full
turn on each @Br . This gives that

R
@Br
jrEei j � 1 on @Br and by Jensen’s inequality we obtainZ

D2nBr

jrEei j
2
� C

Z 1

r

1

�2
� d� � C

ˇ̌̌̌
log

1

r

ˇ̌̌̌
I

since there is no positive lower bound for r > 0, we see that we cannot have a controlled trivialization. �

There is an analogue also of our W 1;.4;1/-extension result here, and it corresponds to taking the
so-called “Coulomb frames”. The result is a general estimate with no restriction on En, but with the Lorentz
norm L.2;1/ instead of the L2-norm (this estimate follows from Wente’s [1969] inequality using [Adams
1975]):

Proposition 2.12 [Rivière 2012, VII.6.3]. Let En 2W 1;2.D2;S2/. Then a trivialization Ee belonging to
W 1;.2;1/ exists which satisfies the Coulomb condition

divhEe1;rEe2i D 0

and the control

krEe1kL.2;1/ CkrEe2kL.2;1/ . krEnkL2 CkrEnk2L2 :

3. The Hopf lift extension

We now prove Theorem C. We consider a fixed � 2W 1;2.S2;S2/ and we need to construct an extension
u 2W 1;.3;1/.B3;S2/ such that

kukW 1;.3;1/.B3/ . k�kW 1;2.S2/.1Ck�kW 1;2.S2//;

where the implicit constant is independent of �:
The strategy of proof uses a construction based on the Hopf fibration which has been introduced in

[Hardt and Rivière 2003]. The same strategy was later used in [Bethuel and Chiron 2007] for proving
similar lifting results as in [Hardt and Rivière 2003]. In the smooth case we will first lift � W S2! S2

to Q� W S2! S3 such that H ı Q� D �, where H W S2! S3 is the Hopf fibration. Then we will extend
Q� by using a Lorentz analogue of Proposition 2.2, working with similar conditions on dimensions and
exponents. Projecting back to S2 via H will keep the estimates.

Before the proof, we recall some properties of the map H .

3A. Facts about the Hopf fibration. Identifying S3 with the unit sphere of C2 with complex coordinates
.Z;W /, the Hopf projection is H.Z;W /DZ=W and its fibers are great circles. This gives a function
with values in C[f1g'S2. If we look at S3 �R4 with the inherited coordinates .x1;x2;x3;x4/, then
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we can identify

H�!S2 D d˛ for ˛ D 1
2
.x1dx2�x2dx1Cx3dx4�x4dx3/: (3-1)

Here !S2 is a constant multiple of the volume form of S2. Since S1 �U.1/, we can regard S3 H
!S2 as a

principal U.1/-bundle P ! S2.
Let � W C! S2 be a smooth function. Then d.��!S2/ D 0, because �3.R2 ' C/ D f0g. Since

H 2
dR
.C/D 0, there exists a 1-form � such that

d�D ��!S2 : (3-2)

We also note that for a smooth � W C! S2 the pullback of the U.1/-bundle P is trivial, since R2 is
contractible. A trivialization of the bundle ��P ! C can be identified with a lift Q� of �. From (3-1) we
can deduce that d�D Q��H�!S2 D Q��d˛ D d. Q��˛/ and again there exists a 1-form Q� as in (3-2), defined
by

Q�D Q��˛: (3-3)

Note that Q� coincides with � up to adding an exact form d� : we have Q��˛� �D d�. If we come back
to the bundle point of view then d� represents the effect of change of coordinates of the trivialization
giving Q�, i.e., of a change of gauge. We then have �D Q��˛�d� D .e�i� Q�/�˛, where the action of e�i�

is intended as a U.1/-gauge change and � W C! R is determined up to a constant. Moreover, since DH
is an isometry between the orthogonal complement of the tangent space of the fiber TpH�1.H.p// and
TpS2, we also obtain the norm identity

jD Q�j2 D jQ�j2CjD�j2: (3-4)

3B. Hopf lift with estimates. We start the proof of Theorem C:

Proposition 3.1. Suppose � 2W 1;2.C;S2/. Then there exists a lifting Q� W C! S3 such that H ı Q� D �

and there exists a universal constant C such that

kr Q�kL2;1 � Ckr�kL2.1Ckr�kL2/:

Proof. The proof is divided into two steps.

Step 1 (constructions in the smooth case). We have seen that, at least in the smooth case, constructing a
1-form � as in (3-2) is equivalent to constructing a lift Q� W C! S3. We now observe that such a 1-form
can in turn be easily constructed by inverting the Laplacian on C via its Green kernel, which is of the
form K.x/D�
 log jxj. In particular, K 2W 1;.2;1/, which is the reason why this norm appears. First
note that dd�.K �ˇ/D 0 for a smooth L1-integrable 2-form ˇ on C. We can then use this formula for
ˇ D ��!S2 and, taking into account the fact that rK is in L2;1, by the Lorentz-space Young inequality
(see [Grafakos 2008]), we obtain that the 1-form � defined as

� WD d�ŒK � .��!S2/�; �! 0 at infinity; (3-5)
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satisfies (3-2) and the estimates

k�kL2;1 . k��!S2kL1 . kD�k2L2k�kL1 ' kD�k
2
L2 : (3-6)

We have mentioned where to find the proof that � corresponds up to a unitary transformation to a lift Q�,
and from (3-4) and (3-6) we also obtain the estimate for Q�,

kD Q�kL2;1 . k�kL2;1 CkD�kL2 . kD�kL2.1CkD�kL2/: (3-7)

Step 2 (extending the constructions to W 1;2). The results obtained so far hold for � 2 C1.C;S2/. We
use the well-known fact that, while not dense in the strong topology, the functions in C1.C;S2/ are
instead dense with respect to weak sequential convergence (see [Bethuel 1991; Hang and Lin 2003]). The
constraint of un having values in S2, as well as the constraint Q�n ıH D �n for the Q�n, are pointwise
constraints (note indeed that the function H is smooth), so they are preserved under weak convergence
�n *� 2W 1;2. Now we state the only less classical point in the proof in the following lemma:

Lemma 3.2. L2;1-estimates are preserved under weak convergence in L2. In other words, if fn 2L2

are weakly convergent to f 2L2, then kf kL2;1 � lim infn!1kfnkL2;1 .

Proof. We observe that a positive answer to this question cannot directly and trivially be obtained by
interpolation, since the L1-norm is not lower semicontinuous with respect to weak convergence in L2.
We thus proceed by duality; namely, we note that

L.2;1/ D .L.2;1//0 and L.2;1/ �L2:

Therefore hfn; �i ! hf; �i for all � 2L.2;1/, and by usual Banach space theory we obtain the thesis. �

Applying the lemma, we obtain the desired estimate to conclude the proof of Proposition 3.1 via
Bethuel’s weak density result [1991]. �

We observe that, given a map � 2W 1;2.S2;S2/, we can obtain a map u W C! S2 having the same
norm by composing with the inverse stereographic projection ‰�1 W C! S2; we use the facts that the
exponent 2 is equal to the dimension and that ‰ is conformal. In a similar way, having constructed a lift
Qu W C! S3, we obtain automatically a lift Q� of � by composing back with S . The same reasoning using
conformality also shows that the L2;1-norm of the gradient of Q� is preserved. This proves:

Corollary 3.3. Suppose � 2W 1;2.S2;S2/. Then there exists a lifting Q� W S2! S3 such that H ı Q� D �

and there exists a universal constant C such that

kr Q�kL2;1 � Ckr�kL2.1Ckr�kL2/:

3C. Projection and wise choice of the point. To proceed in our strategy for the proof of Theorem C, we
use a version of the projection trick of Section 2A.

Proposition 3.4 (projection trick 2). Suppose that Q� 2W 1;.2;1/.S2;S3/. Then there exists a function
Qu W B3! S3 such that Quj@B3nS2 D Q� satisfying the following bound for some universal constant C :

k QukW 1;.3;1/.B3/ � Ck Q�kW 1;.2;1/.S2/:
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Proof. We proceed in two steps: the first one introduces the W 1;.3;1/-norm estimate, and the second one
ensures that the constraint of having values in S3 can be preserved.

Step 1 (harmonic extension). Consider a solution Qu of the equation�
� QuD 0 on B3;

QuD Q� on @B3:
(3-8)

By using the Poisson kernel estimates, we obtain that Qu 2W 1;.3;1/.B3;B4/ and

kr QukL.3;1/ . kr Q�kL.2;1/ : (3-9)

Step 2 (projection in the target). We now correct the fact that Qu has values not in S3 but in its convex
hull B4. For a 2 B4

1=2
we define the radial projection �a W B

4! S3 of center a, i.e.,

�a.x/ WD aC ta;x.x� a/; where ta;x � 0 is chosen so that j�a.x/j D 1:

In order to estimate the norm of ua WD �a ı Qu we note that

jr.�a ı Qu/j.x/.
jr Qu.x/j

ju.x/� aj

with an implicit constant bounded by 4 as long as a 2 B4
1=2

. We just estimate the Lp-norm of rua for
p 2 Œ1; 4Œ. We note that

R
B1=2
j Qu.x/� aj�p da is bounded for all such p by a number Cp independent

of x; therefore, by changing the order of integration and applying Fubini, we obtainZ
B1=2

Z
B1

jrua.x/j
p dx da� Cp

Z
B1

jr Qu.x/jp
Z

B1=2

j Qu.x/� aj�p da� Cpkr Quk
p
p :

In other words, the assignment a 7! ua gives a map whose L1
a.B1=2;W

1;p
x .B3;S3//-norm is bounded

by the Lp-norm of r Qu for p 2 Œ1; 4Œ. First observe that, by Lions–Peetre reiteration (see [Tartar 2007,
Chapter 26]), L.3;1/ is an interpolation between Lp0 and Lp1 with 3 2 �p0;p1Œ� �1; 4Œ. We now use
the nonlinear interpolation theorem of Tartar [2007, Chapter 28]. Call U.a;x/ WD r Qu.x/=j Qu.x/� aj. We
know that the map u 7! U is bounded between W 1;pi and Lpi for i D 0; 1. In order to show that it also
satisfies

sup
�>0

�3

ˇ̌̌̌�
.x; a/ 2 B1 �B1=2 W

jru.x/j

ju.x/� aj
> �

�ˇ̌̌̌
D kU k3

L.3;1/
. k Quk3

W 1;.3;1/ ; (3-10)

we will check the local estimate



 ru.x/

ju.x/� aj
�
rv.x/

jv.x/� aj






Lp1

. ku� vkLp1 :

This follows sinceZ
B1

Z
B1=2

ˇ̌̌̌
ru.x/

ju.x/� aj
�
rv.x/

jv.x/� aj

ˇ̌̌̌p1

.
Z

B1

jru�rvjp1

Z
B1=2

�
ju.x/� aj�p1 Cjv.x/� aj�p1

�
da dx
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and the same estimates as before apply to the second factor, uniformly in x. Thus (3-10) holds. From
(3-10) it easily follows that there exists a 2 B1=2 for which

kruakL.3;1/.B1/
. k QukW 1;.3;1/ : (3-11)

Combining (3-9) and (3-11), we obtain the claim of the proposition for Ou WD ua. �

3D. End of proof.

Proof of Theorem C. Apply consecutively Corollary 3.3 and Proposition 3.4. For Ou as in Proposition 3.4,
we can then consider u WDH ıua W B

3! S2. Since H is Lipschitz, we obtain the pointwise estimate

jruj. jruaj: (3-12)

Combining this with the estimates of Corollary 3.3 and Proposition 3.4, we obtain the thesis. �

3E. Modification of proof in the case of W 1;p.Sm; S2/. In this section we prove Theorem D and
Proposition 1.7.

Proof of Theorem D and of Proposition 1.7. We consider nD 2<m and 3m=.mC1/� p < 4m=.mC1/

as in Proposition 1.7. We will use the fact that such p is always greater than 2. The construction of the
1-form � satisfying (3-3) and (3-4) can be done in a completely analogous way if the domain is Rm,
m � 3. The only difference is that in that case the Laplacian on 2-forms such as ��!S2 has the form
ı D d�d C dd�, where the first part does not vanish anymore. In this case however we may still solve8<:

d�D ��!S2 ;

d��D 0;

�.x/! 0 as jxj !1:

If � 2W 1;p.Rm;S2/ and since p > 2, we then have

kd�kLp=2.Rm/ � Ck��!S2kLp=2.Rm/ � Ckd�k2Lp.Rm/:

As before, we have (3-4), from which we also obtain jD Q�jp . j�jpCjD�jp . Passing to Sm and noting
that in dimension m�p we have W 1;p=2.Sm;S2/ ,!Lmp=.2m�p/.Sm;S2/ ,!Lp.Sm;S2/, we obtain

kD Q�kLp.Sm;S2/ . kD�k2Lp.Sm;S2/
CkD�kLp.Sm;S2/:

Harmonic extension and Proposition 2.2 allow us then to obtain an extension Qu W BmC1! S2 of Q� such
that

kr QukLp.mC1/=m.BmC1;S3/ . kD Q�kLp.Sm;S3/

provided p.mC1/=m< 4 (which is the condition appearing in Proposition 2.2. Composing with the Hopf
map H at most decreases the norm; thus we obtain that u WDH ı Qu is the desired controlled extension as
in Proposition 1.7 and in Theorem D (note that for mD 3 the condition p.mC1/=m< 4 is equivalent to
p < 3). �
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4. The extension theorem for W 1;3 maps S3 ! S3

This section is devoted to the proof of the following theorem:

Theorem B00. There is a constant C > 0 such that, if � 2W 1;3.S3;S3/, then there exists an extension
u 2W 1;.4;1/.B4;S3/ of � such that

krukL4;1.B4/ � C.e
Ckr�k9

L3 Ckr�kL3/: (4-1)

4A. Modulus of integrability estimates. In general, during our estimates we indicate by C a positive
constant, which may change from line to line and also within the same line. We start by fixing the notation
for the main quantity which will be used control the energy concentration of our maps.

Definition 4.1. If D�R4 and f WD!R is measurable then let E.f; �;D/ denote the (possibly infinite)
modulus of integrability of f , which is defined as

E.f; �;D/D sup
x2D

Z
B�.x/\D

jf j:

The modulus of integrability fits into a sort of elliptic estimate as follows:

Proposition 4.2 (integrability modulus estimates). Let � 2 W 1;3.@B4;S3/ and assume that u is the
solution to the equation �

�uD 0 on B4;

uD � on @B4:

Then there exists a constant C1 independent of �; � such that, when � 2
�
0; 1

4

�
,

E.jruj4; �;B4/� C1E.jr�j3; 2�; @B4/1=3
Z
@B4

jr�j3: (4-2)

Proof. We have to prove that, for all x0 2 B4,Z
B�.x0/\B4

jruj4 � C1E.jr�j3; 2�; @B4/

Z
@B4

jr�j3: (4-3)

Step 1 (the case x0 2 @B
4). Let � W S3! Œ0; 1� be a cutoff function such that �� 1 on B2�.x0/\S3,

�� 0 on S3 nB4�.x0/, and jr�j. ��1. Then write � D �1C�2 with �1 D ��, �2 D .1� �/�, and let
uD u1Cu2 with �

�ui D 0 on B4;

ui D �i on @B4

for i D 1; 2. It suffices to prove (4-3) for each ui separately. By elliptic theory and by the definition of �,Z
B�.x0/\B4

jru1j
4 .

�Z
S 0
jr�j3

�4=3

:

Poisson’s formula gives

u2.x/D C.1� jxj2/

Z
@B4

�2.y/

jx�yj4
dyI
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thus, for x 2 B�.x0/\B4, � < 1
4

,

jru2j.x/. �
Z

S3nB2�.x0/

jr�j

jx�yj4
dyC

Z
S3nB2�.x0/

j�j

jx�yj4
dy . �

Z
S3nB2�.x0/

jr�j

jx�yj4
dy:

Patching together the estimates obtained so far, we writeZ
B�.x0/\B4

jruj4 .
�Z

S 0
jr�j3

�4=3

C �8

�Z
S 00

jr�j

jx�yj4

�4

; (4-4)

where the factor �8 comes from the pointwise estimate for ru2, keeping in mind that jB�.x0/\B4j. �4.
Let the summands on the right side of (4-4) be I and II respectively. Note that

I �

�Z
B2�.x0/\@B4

jr�j3
�1=3 Z

S3

jr�j3 �E.jr�j3; 2�; @B4/

Z
S3

jr�j3: (4-5)

To estimate II, cover S3 nB2�.x0/ by (finitely many) geodesic balls B3
2�
.xi/ so that xi form a maximal

2�-net and they are at distance at least 2� from x0. ThenZ
B3

2�
.xi /

jr�j � jB3
2�j

�
�

Z
B3

2�
.xi /

jr�j3
�1=3

:

For y 2 B3
2�
.xi/, x 2 B2�.x0/\B4, we have jx�yj � dist.xi ;x0/. Thus

II . �8

�X
i

dist�4.xi ;x0/�
3a

1=3
i

�4

;

where ai D �
R

B3
2�
.xi /
jr�j3. By Hölder’s inequality we easily obtain

II . �20
�
sup

i

a
1=3
i

��X
i

ai

��X
i

dist�16=3.xi ;x0/

�3

:

Now, the first parenthesis is estimated by ��1E.jr�j3; 2�; @B4/1=3, the second one by ��3
R

S3 jr�j
3,

and the last one by ��16=3. Thus we obtain

II . �20��1E.jr�j3; 2�; @B4/1=3��16��3

Z
S3

jr�j3 .E.jr�j3; 2�; @B4/1=3
Z

S3

jr�j3: (4-6)

By (4-5) and (4-6), we obtain (4-3) for x0 2 @B
4.

Step 2. If jx0j< 1� 2� then we can directly apply the estimates for the term II of (4-4), since now the
denominator jx�yj in the Poisson formula will be at least � for all x 2 B�.x0/.

The estimate of Step 1 also holds for � > 1
4

with the same constant. We can cover the case
jx0j 2 �1� 2�; 1Œ with � < 1

4
by noticing that if x0

0
D x0=jx0j then B3�.x

0
0
/ � B�.x0/, and that the

measures jr�j3d� , jruj4dx are doubling with constants bounded by the packing constants of S3 and of
B4 respectively, while the function E.f; �;D/ is increasing in �. Therefore the inequality (4-3) also holds
for this last choice of x0 up to changing C0 by a factor depending only on the above packing constants. �
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4B. Extension in the case of small energy concentration. In small energy concentration regions we
utilize the following:

Theorem 4.3 (small concentration extension). There exists a constant ı 2
�
0; 1

4

�
with the following

property: for each � 2W 1;3.S3;S3/ such that the local estimate

E.jr�j3; 2�;S3/�
ı

C1E
(4-7)

holds with kr�k3
L3.S3/

DE, there exists a function Qu 2W 1;.4;1/.B4;S3/ which equals � on S3 in the
sense of traces and satisfies

kr QukL4;1 .
kr�k2

L3

�
Ckr�kL3 : (4-8)

Theorem 4.3 follows from several ingredients, the proofs of which are postponed to Appendix A and
to the end of Section 4B.

Theorem 4.4 (Uhlenbeck analogue). There exist two constants ı > 0, C > 0 with the following property:
Suppose 2W 1;3.S3;S3/ is such that kr kL3.S3/�ı. Then there exists an extension v2W 1;4.B4;S3/

satisfying the estimate
kvkW 1;4.B4/ � Ckr kL3.S3/:

Proof. See Theorem A.2. �

If u 2W 1;4.B4;R4/ and � 2
�
0; 1

2

�
, x0 2 @B

4, then by a mean value argument there exists N� 2 Œ�; 2��
such that

N�

Z
int.B4/\@B N�.x0/

jruj4 � C

Z
B4\B�.x0/

jruj4: (4-9)

In this case the following lemma will prove useful:

Lemma 4.5 (Courant–Lebesgue analogue). Fix N� 2 �0; 1Œ. There exists a constant C > 0 such that, if
u 2W 1;4.B4;R4/ is the extension of � 2W 1;3.S3;S3/ and

N�

Z
int.B4/\@B N�.x0/

jruj4 � C

with x0 2 @B
4, then for almost every x 2 @.B4\B N�.x0// we have

dist.u.x/;S3/� 1
8
: (4-10)

The restriction of u to a smaller ball B1��, being harmonic, is smooth. Then we may utilize the
following result:

Lemma 4.6 (interior estimate). Given u 2W 1;4\C 1.B4;B4/, there exists a constant C independent of
u such that, for half of the points a 2 B4,



 1

ju� aj





4

L4;1.B4/

� C

Z
B4

jruj4:
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Proof of Theorem 4.3. Step 1. We first observe that the harmonic extension u of � satisfies

jruj.x/.
k�kW 1;3.S3/

�
for x 2 B1�� :

A direct way to see this is by estimating via the Poisson formula together with Poincaré’s inequality and
a good covering by �-balls Bj � S3:

jruj.x/. �
�Z

S3

r�

jx�yj4
dyC

Z
S3

j�j

jx�yj4
dy

�
.
X

j

�
R

Bj
jr�jC j�j

d4
j

�4; where dj � dist.Bj ;x/

.
X

j

�
�

dj

�4
�

Z
Bj

jr�jC 1; by Poincaré

.
�X

j

�
�

dj

�6�2=3�X
j

�
�

Z
Bj

jr�j

�3

C 1

�1=3

; by Hölder

.
k�kW 1;3.S3/

�
:

To justify the last step we observe that Cardfj W dj � 2j�g � 24j and thus the first factor in the

penultimate line is bounded by
�P

j�0 2�2j
�2=3, while for the second factor we use Jensen’s inequality.

Step 2. We now use Lemma 4.6 and observe that if �a WB
4 n fag ! S3 is the retraction of center a then

jr.�a ıu/j � C
jruj

ju� aj
:

In particular, using Step 1 and Lemma 4.6 we obtain

kr.�a ıu/kL4;1 � krukL1





 1

ju� aj






L4;1

� C
kr�kL3

�
krukL4 : (4-11)

Step 3. Consider a maximal cover fBig of S3 D @B4 by 4-dimensional balls of radius � and centers
on @B4. It is possible to find a constant C , depending only on the dimension, such that the collection of
balls of doubled radius f2Big can be written as a union of C families of disjoint balls F1; : : : ;FC .

Then apply (4-9) to each ball Bi 2 F1. This will give a new family of balls fB0i W Bi 2 F1g with
radii between � and 2� to which it will be possible to apply Lemma 4.5. Thus dist.u.x/; @B4/ < 1

8
on

@.B4\B0i/ for all B0i . Because of the choice of F1 it also follows that the balls B0i are disjoint.
If we choose a projection �a from Step 2 so that dist.a; @B4/ > 1

4
, then

ui
1 WD �a ı .uj@..B4\B0

i
// satisfies jrui

1j � C jruj on @B0i \B4

by the estimates of Step 2. Note that a will be fixed during the whole construction.
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We extend ui
1

(denoting the extension again by ui
1
) inside B0i \B4 via Theorem 4.4, obtaining a new

function

u1 WD

�
�a ıu on B4 n

S
B0i ;

ui
1

on B0i :

Theorem 4.4 implies that u1 satisfies

kru1kL4.B0
i
/ � C

�Z
@B0

i

jru1j
3

�1=3

:

We can rewrite this as follows:Z
Bi\B4

jru1j
4
� C

�Z
Bi\@B

jr�j3C

Z
int.B/\@Bi

jrui
1j

3

�4=3

.
�Z

Bi\@B

jr�j3
�4=3

C

�Z
int.B/\@Bi

jrui
1j

3

�4=3

: (4-12)

We note that (using Lemma 4.5)�Z
@Bi\int.B/

jrui
1j

3

�4=3

�H3.@Bi/
1=3

Z
@Bi\int.B/

jrui
1j

4

. �
Z
@Bi\int.B/

jruj4

.
Z

Bi\B4

jruj4I (4-13)

therefore, u1 still satisfies (4-2) with a constant C1 which is now changed by a universal factor.

Step 4. It is possible to repeat the same operation starting from the function u1 and using the balls of the
family F2 to obtain a function u2, and then do the same iteratively for all the families F2; : : : ;FC .

Denote by R the union of all the perturbed balls B0i corresponding to the families F1; : : : ;FC . Recall
that the number of families is equal to the maximal number of overlaps of balls of different families and
depends only on the dimension. Then, iterating the estimates (4-12) using (4-13) for all families Fi , we
obtain for the last function uC thatZ

R
jruC j

4 .E.jr�j3; 2�;S3/1=3
X

i

Z
Bi\@B

jr�j3C

Z
R
jruj4

� kr�k3
L3.S3/

�
E.jr�j3; 2�;S3/1=3Ckr�kL3.S3/

�
; (4-14)

where for the last inequality we also used the elliptic estimates for u in terms of �.

Step 5. We now combine the estimate (4-11) for the part B nR � B1�� and (4-14). Observe that in
general kf kL4;1 . kf kL4 and that the L4;1-norm satisfies the triangle inequality. We obtain

kr QukL4;1 .
kr�k2

L3

�
Ckr�kL3 Ckr�k

3=4

L3 E.jr�j3; 2�;S3/1=12: (4-15)

Using the trivial estimate E.jr�j3; 2�;S3/�
R

S3 jr�j
3, the desired estimate follows. �
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We now proceed to prove the above lemmas.

Proof of Lemma 4.5. The hypotheses x0 2 @B
4, N� < 1 have the following two geometric consequences:

(1) @B4\ @B N�.x0/ has positive measure; (2) B4\B N�.x0/ is 2-bi-Lipschitz equivalent to B N�. Therefore,
we may just prove that (4-10) holds true on @B� for a function u such that�

N�
R
@B N�
jruj4 < C;

jfx W juj.x/D 1gj> 0:

To do this note that, by definition, u.x/ 2 S3 for a.e. x 2 @B4, then use the Sobolev inequality

kuk4
C 0;1=4.@B N�/

. N�
Z
@B N�

jruj4;

which is valid in dimension 3. For C small enough we obtain (4-10). �

Proof of Lemma 4.6. By the coarea formula we have

jfx W ju.x/� aj�1 >ƒgj D ju�1.Bƒ�1.a//j D

Z
B
ƒ�1 .a/

Card.u�1.x// dx � C

Z
B4

jruj4:

We then observe that the measurable positive function Fu.x/ WD Card.u�1.x// belongs to L1.B4/. The
maximal function MFu has L1;1-norm bounded by the L1-norm of Fu, and in particular there exists a
constant C independent of u such that for at least half of the points a 2 B4 we have

sup
�

1

�4

Z
B�.a/

Fu � C

Z
B4

Fu � C

Z
B4

jruj4:

For such a we have, after the change of notation �Dƒ�1, the desired estimate

jfx W ju.x/� aj�1 >ƒgjƒ4
� C

Z
B4

jruj4: �

4C. The case of large energy concentration. Following Theorem 4.3, we are led to divide the set of
boundary value functions W 1;3.S3;S3/ into two classes, based on whether or not the energy concentrates.
Let LE WD f� 2W 1;3.S3;S3/ W kr�k3

L3 � Eg and for � 2 LE define E� WD E.jr�j3; �
E
;S3/. We

distinguish between the following two classes of “good” and “bad” boundary value functions:

GE
WDLE \f� WE� � Nıg;

BE
WDLE \f� WE� > Nıg:

(4-16)

We will fix the constants

�E D e�C maxf1;E3g and Nı

at the end of Section 4D.
The precise steps of our extension construction are as follows (see also the graphical summary (4-17)):

(1) Theorem 4.3 gives a good estimate for the boundary values in GE .
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(2) If � 2BE has average close to zero, i.e.,ˇ̌̌̌Z
S3

�

ˇ̌̌̌
�

1

4
;

then it is possible to write � D �1�2 withZ
S3

jr�i j
3
�E �

Nı

2

(the product of S3-valued functions is pointwise the product on S3 ' SU.2/).

(3) If we are not in the two cases above, we use the functions

Fv.x/ WD �vC .1� jvj
2/.x�� v/�;

where a�D a=jaj2, v 2 B4, which form a subset of the Möbius group of B4. We have two cases:

(a) For all v 2 B4, we have
ˇ̌R

S3 � ıFv
ˇ̌
> 1

4
; in which case

Qu.v/ WD �S3

�Z
S3

� ıFv

�
gives an extension of � with values in S3 that satisfies

kukW 1;4 . k�kW 1;3 :

(b) There exists v 2 B4 such that
ˇ̌R

S3 � ıFv
ˇ̌
�

1
4
; in which case we can apply the reasoning of

cases (1), (2) above to Q� WD � ıFv. Since Fv is conformal and j�j D j Q�j D 1, we have

kr�kL3 D kr Q�kL3 ; k�kW 1;3 D k Q�kW 1;3 :

Again we reason differently in the two cases Q� 2 GE and Q� 2BE :

(4) If, in case (3b), Q� 2BE , then we apply case (2) to Q� and we can express

Q� D Q�1
Q�2 and � D . Q�1 ıF�1

v /. Q�2 ıF�1
v /:

Then �i WD
Q�i ıF�1

v are as in case (2).

(5) If, in case (3b), Q� 2 GE , then we apply case (1) to Q�. With a careful study of the relation between
the position of v 2 B4 relative to @B4 and the parameter �

E
, we construct

u 2W 1;.4;1/.B4;S3/ extending � D Q� ıF�1
v ;

starting from the extension Qu of Q� given in case (1).
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� 2BE

�� ""

� 2 GE

��

Extend

ˇ̌R
S3 �

ˇ̌
�

1
4

��

ˇ̌R
S3 �

ˇ̌
> 1

4

{{ ##

9v
ˇ̌R

S3 � ıFv
ˇ̌
�

1
4

}} ##

8v
ˇ̌R

S3 � ıFv
ˇ̌
> 1

4

��
Q� 2BE

��

Q� 2 GE

��

Extend

� D �1�2

E.�i/�E �
Nı
2

��

Extend

Iterate

(4-17)

Proposition 4.7 (balancing) splitting). There exists a constant C with the following property: Suppose
that � 2 BE with the notation of (4-16), and assume Nı � C and �

E
� e�C maxf1;E3g. Further assume

that, as a function in W 1;3.S3;R4/, � satisfiesˇ̌̌̌
�

Z
S3

�

ˇ̌̌̌
�

1

4
:

Then, identifying S3 � SU.2/, there exists a decomposition

� D �1�2 (4-18)

such that, for i D 1; 2, Z
S3

jr�i j
3 <E �

Nı

2
: (4-19)

Proof. Step 1. Fix a concentration ball B D BS3

.�
E
;x0/ such thatZ

B

jr�j3 > Nı: (4-20)

Step 2. Consider dyadic rings in S3 defined as Ri WD2iC1Bn2iB, where we denote 2iBDBS3

.2i�
E
;x0/.

For an easily computed constant C we can fix NE D C jlog2 �E
j such that, for i � NE , it follows

that 2iC1�
E
< 1

4
. Since

NEX
iD1

Z
Ri

jr�j3 <E;
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by the pigeonhole principle there exists i0 2 f1; : : : ;NEg such thatZ
Ri0

jr�j3 <
E

NE
:

Again by the pigeonhole principle (using the fact that the cubes are dyadic), there therefore exists
t 2 Œ2i0C1�

E
; 2i0�

E
� such that

t

Z
@BS3

.t;x0/

jr�j3 < C
E

NE
; (4-21)

where C is a constant depending only on the geometry of S3.

Step 3. Denote Bt DBS3

.t;x0/ as in Step 2. We define the function Q�1 via a suitable harmonic extension
outside of Bt by �

Q�1 D � on @Bt ;

�. Q�1 ı‰/D 0 on BR3

1
;

where ‰ W R3 ! S3 n fx0g is a stereographic projection composed with a dilation of R3 such that
‰.BR3

.1; 0//D S3 nBt . On Bt we define Q�1 � �. By Hölder’s inequality, using elliptic estimates and
the conformality of dilations and inverse stereographic projections, we have

t

Z
@Bt

jr Q�1j
3
� C

�Z
@Bt

jr Q�1j
2

�3=2

D C

�Z
@BR3

1

jr Q�1 ı‰j
2

�3=2

� C

Z
BR3

1

jr Q�1 ı‰j
3

D C

Z
S3nBt

jr Q�1j
3: (4-22)

Step 4. We define

�1 D �S3 ı Q�1:

As in Lemma 4.5, there exists a universal constant C such that if

E

NE
� C (4-23)

then

dist. Q�1;S
3/� 1

2
:

This implies, like in Theorem 4.3, that pointwise a.e. we have the estimate

jr�1j � C jr Q�1j:

By (4-23) it follows that, extending via �1 D � on Bt , we obtain �1 2W 1;3.S3;S3/ such thatZ
S3nBt

jr�1j
3
� C

E

NE
: (4-24)
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Step 5. We now estimate from below the energy of �jS3nBt
. Denote by N�� the average of � on a domain

�� S3. First we use the Poincaré inequality on S3 nBt and the fact that j�j � 1 almost everywhere:Z
S3nBt

jr�j3 &
Z

S3nBt

j� � N�S3nBt
j
3 &

�Z
S3nBt

j� � N�S3nBt
j

�3

&
�
jS3
nBt j.1� j N�S3nBt

j/
�3
: (4-25)

Using the fact that j N�S3 j �
1
4

, j N�Bt
j � 1 and the triangle inequality, we have

jS3
nBt jj

N�S3nBt
j � j N�S3 jjS

3
jC jBt jj

N�Bt
j �

1
4
jS3
jC jBt j: (4-26)

Now, (4-25) and (4-26) and the estimate t < 1
4

from Step 2 giveZ
S3nBt

jr�j3 &
�

3
4
jS3
j � 2jBt j

�3
� C: (4-27)

From this inequality, if Nı is small enough then we obtainZ
S3nBt

jr�j3 � Nı: (4-28)

Step 6. We now define �2 WD�
�1
1
�, where the pointwise product uses the group operation on S3�SU.2/.

Observe that, since j�j D j�1j D 1 a.e.,

jr.��1
1 �/j D j��1

r�1�
�1
1 �C��1

1 r�j � jr�jC jr�1j:

Thus, if C=NE < 1 in (4-24) (i.e., if �
E
D e�CNE is small enough), thenZ

S3nBt

jr�2j
3
�

Z
S3nBt

jr�j3C 7

�Z
S3nBt

jr�1j
3

�1=3�Z
S3nBt

jr�j3
�2=3

:

By using (4-28), (4-24) and (4-20) we then obtainZ
S3nBt

jr�2j
3
�

Z
S3nBt

jr�j3CC
E

N
1=3
E

�E � NıCC
E

N
1=3
E

: (4-29)

Step 7. It is now possible to conclude the proof. The estimate (4-19) for �2 follows from (4-29) if

NE � CE3 Nı3: (4-30)

Similarly, by construction �1 � � on Bt , andZ
S3

jr�1j
3
D

Z
Bt

jr�j3C

Z
S3nBt

jr�1j
3
�E � NıCC

E

NE

:

Thus we reach (4-19) if
NE � CE Nı : (4-31)

Recall from Step 2 that NE D �C log2 �E
, so (4-30) and (4-31) translate into the requirement that

�
E
� e�C maxfE Nı;.E Nı/3g, which is implied by our hypothesis since Nı is bounded. �
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Remark 4.8. The proof of (4-27) in Step 5 gives the following general estimate, valid for bounded
Sobolev functions on a compact manifold M and for any Poincaré domain ��M :

kr�kLp.�/ � C�
�
jM j.k�kL1.M /� j

N�M j/� 2k�kL1.M /jM n�j
�
; (4-32)

where C� is the Poincaré constant of �.

Consider now the conformal transformations of the unit ball B4

Fv.x/D�vC .1� jvj
2/.x�� v/�; where v 2 B4 and a�D

a

jaj2
:

Proposition 4.9 (balancing) extension). Let � 2W 1;3.S3;S3/. Suppose that, for all v 2 B4,ˇ̌̌̌
�

Z
S3

� ıFv

ˇ̌̌̌
�

1

4
: (4-33)

Then the following function u W B4! S3 extends �:

u.v/ WD �S3

�
�

Z
S3

� ıFv

�
; where �S3.a/D

a

jaj
for a 2 R4

n f0g: (4-34)

Moreover, there exists a constant C independent of � such that

krukL4.B4/ � Ckr�kL3.S3/: (4-35)

Proof. Step 1. After a change of variable,

�

Z
S3

� ıFv.x/ dx D �

Z
S3

�.y/j.F�1
v /0j3.y/ dy;

where j.F�1
v /0j is the conformal factor of DF�1

v . From Lemma C.1,

j.F�1
v /0j.y/D jF 0�vj.y/D

1� jvj2

jyC vj2
I

therefore,

�

Z
S3

� ıFv D �

Z
S3

�.y/

�
1� jvj2

jyC vj2

�3

dy:

From [Nicolesco 1936], the function

K.x;y/D jS3
j
�1

�
1� jyj2

jx�yj2

�3

is the Poisson kernel for the equation 8̂<̂
:
�2uD 0 on B4;
@u

@�

ˇ̌̌
@B4
D 0;

uj@B D �:

(4-36)

Therefore, the function Qu.v/ WD �
R

S3 � ıFv satisfies (4-36).
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Step 2. The following classical estimate holds for (4-36) (see [Gazzola et al. 2010, Chapter 2] for the
stronger estimate kukW 1;4.�/ � k�kW 1�1=4;4.@�/):

krukL4.B4/ � Ckr�kL3.B3/:

Step 3. We note that
1
4
� j Qu.x/j � C for all v 2 B4

because of our hypothesis (4-33), j�j�1 and by the elementary estimate
R

S3..1�jvj
2/=jyCvj2/3 dy�C .

As in Step 2 of the proof of Theorem 4.3 (with notation �S3 D �a for aD 0), we obtain the pointwise
estimate

jr.�S3 ı Qu/j � jr Quj:

The estimate (4-35) follows via Step 2. �

Consider now the case in which the hypothesis of Proposition 4.9 is false, i.e., that there exists v 2 B4

with ˇ̌̌̌
�

Z
S3

� ıFv

ˇ̌̌̌
�

1

4
: (4-37)

FvjS3 is conformal and bijective (see Appendix C); thus, for A� S3,Z
A

jr Q�j3 D

Z
F�1
v .A/

jr�j3I

in particular, Q� WD � ıFv has energy at most E, like �. We observe that Proposition 4.7 applies to Q�
directly due to our hypotheses. Therefore, we can find Q�1, Q�2 2W 1;3.S3;SU.2// such that

Q� D Q�1
Q�2;

Z
S3

jr Q�i j
3
�E �

Nı

2
for i D 1; 2:

We then precompose with F�1
v , which preserves the pointwise product and the L3-energy of the gradients,

obtaining the same decomposition for �.
The case Q� 2 GE is a bit more difficult:

Proposition 4.10. Under the assumption (4-37) and with Q� WD � ıFv, suppose that Q� 2 GE . Then there
exists an extension u 2W 1;.4;1/.B4;S3/ of � such that

krukL4;1.B4/ �
C

�
E

kr�k2
L3.S3/

Ckr�kL3.S3/ (4-38)

under the assumption that

�E �
1
4
: (4-39)

Proof. To simplify notations, let �D �
E

during this proof. We divide the domain B4 into

A WD F�1
v .B.0; 1� �//; A0 WD B4

nA:
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By Lemma C.2, there exists a constant C dependent only on the dimension and a function h.v/ such that,
for x 2A and under the condition (4-39),

h.v/

C
� jF 0vj.x/� C h.v/: (4-40)

Therefore, we have

jfx 2A W jruj.x/ > ƒgj D
ˇ̌˚

x 2A W jr Quj.Fv.x// jF
0
vj.x/ > ƒ

	ˇ̌
�

ˇ̌̌n
x 2A W jr Quj.Fv.x// >

ƒ

C h.v/

oˇ̌̌
D

Z
Fv.A/\fyWjr Quj.y/>ƒ=.C h.v//g

jF 0vj
�4 dy

� C 4h�4.v/
ˇ̌̌n

y 2 B1�� W jr Quj>
ƒ

C h.v/

oˇ̌̌
� C 8ƒ�4

kr Quk4
L4;1.B1��/

:

By bringing ƒ to the other side, it follows that

ƒ4
jfx 2A W jruj.x/ > ƒgj � C 8

kr QukL4;1.B.0;1��//: (4-41)

By conformal invariance, the invertibility of Fv and the usual estimate between L4;1 and L4, we have

ƒ4
jfx 2A0 W jruj.x/ > ƒgj � Ckruk4

L4.A0/
D Ckr QukL4.BnB1��/

/: (4-42)

We now sum (4-41) and (4-42) and we take the supremum on ƒ> 0. It follows that, up to increasing C ,

Œru�L4;1.B4/ � C.kr QukL4;1.B1��/
Ckr QukL4.BnB1��/

/: (4-43)

The estimate (4-43) together with Theorem 4.3 applied to Qu gives the desired estimate for the first
summand, while for the second summand we proceed as in Step 3 of the proof of Theorem 4.3. On
the small concentration regions Bi for Q� we apply Courant’s Lemma 4.5, due to which we may project
the values of u WD Qu ıF�1

v on S3 with little change of the gradient of u. Since F�1
v is conformal, the

L3-energy of Qu on @Bi is the same as the L3-energy of u on @F�1
v .Bi/. By Theorem 4.4 applied to Qu as

in Step 3 of the proof of Theorem 4.3, we obtain

krukL4.F�1
v .BnB1��//

D kr QukL4.BnB1��/
� Ckr Q�kL3.S3/ D Ckr�kL3.S3/:

This and (4-43) conclude the proof. �

4D. End of the proof of Theorem B00. We refer to the scheme (4-17) for the idea of the proof.

Choice of Nı. In (4-16), take Nı � ı=C1 with the notations of Theorem 4.3 and with ı is as in Theorem 4.4.
If necessary, shrink Nı so that the bound of Proposition 4.7 is also satisfied.

Choice of �
E

. From Proposition 4.7 with the above choices of Nı, we get �
E
. e�C max.1;E3/.
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Estimates for extensions. Consider again the scheme (4-17). Each time we extend some boundary
datum � obtained during our constructions via a function u WB4!S3, we do so with one of the following
estimates:

� In the case of the extensions of Theorem 4.3 or of Proposition 4.10 (which in turn actually depends
on Theorem 4.3) we have

krukL4;1 .
kr�k2

L3

�
E

Ckr�kL3 :

� In the case of the biharmonic extension of Proposition 4.9, we have the much better

krukL4 . kr�kL3 :

The number of iterations to be made when we apply the procedure described in scheme (4-17) is bounded
by

E
ı

1
2
Nı �E:

Since each iteration creates two new boundary value functions out of one, in the end we may have a
decomposition into no more than

eCE boundary value functions.

By the triangle inequality we see that, in this case, there exists an extension of the initial � satisfying

krukL4;1 . e
Ckr�k9

L3kr�k2
L3 Ckr�kL3 : (4-44)

This gives the estimate (4-1) of Theorem B00, finishing the proof. �

5. Controlled global gauges

In this section we prove Theorem A.

5A. Scheme of the proof. We indicate here the sketch of the proof, before going through the details.

Proof. We will denote the L2-norm of F by E. We may assume that a first guess for A (i.e., a fixed
trivialization) is already given and belongs to W 1;2 (if the bound by �0 on the energy of F is available,
we may assume more by Uhlenbeck’s result stated above, namely that one controls the W 1;2-norm of A

by the energy).
It can be seen from the formula of change of gauge that it is equivalent to estimate either the gradient

of the trivialization g or the gradient of the connection A in that gauge.
We define f by iteration on the energy bound E. The main steps are as follows (see the scheme (5-1)):

� Uhlenbeck’s theorem [1982b] already gives a gauge with an L4-estimate of the gradient of the
trivialization if the energy of F is smaller than �0.

� Let �
F

be the largest scale at which no more than 1
2
�0 of the L2-norm of F concentrates.
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� In the case �
F
� �

E
WD C�inj.M /2�E=�1 , we iteratively extend our gauge on the small simplices of

a triangulation using Theorem B00; see Section 5B. The estimates depend only on M 4.

� The alternative is �
F
� �

E
. Then, consider a point x0 at which jF j concentrates and look at the

geodesic dyadic rings

Rk WD B.x0; 2
kC1�F / nB.x0; 2

k�F /; k 2
˚
0; : : : ; blog2.C�inj=�F /c

	
:

By the pigeonhole principle and by the choice of �1, we ensure the existence of a small energy slice
along a geodesic sphere of radius t � 2k0�

F
. We have extensions of the connections with curvatures

of energy smaller than E� 1
2
�0. We use Lemma 5.4. To avoid subtleties about traces, we will ensure

that these two connections coincide on an open set. The choice of slice is described in Section 5D.

� Then we separately trivialize these two connections. By iterative assumption we then define f .E/
based on f

�
E � 1

2
�0

�
and on the function f1 of Theorem B. The detailed bounds are given in

Section 5E.

energyDE

vv &&
�

F
< �

E

��

�
F
� �

E

��

dyadic balls until � �inj

��

Extend gauge

small energy slice at � �1

((uu

A1;A2 of energy�E � 1
2
�0

��

A1;A2 of energy� �0

��

Iterate Extend gauge

(5-1)

5B. Iterations based on a suitable triangulation. Define, for �0 as in Theorem 5.1, the radius

�F WD inf
�
� > 0 W

Z
B�.x0/

jF j2 D 1
2
�0 for some x0 2M

�
; (5-2)

where �
E
WD C�inj.M /2�E=�1 and �inj.M / is the injectivity radius of M . The constant �1 will be fixed

later. Fix a triangulation on M with in-radius & �
E

and size . �
E

, with implicit constants bounded by 4.
We choose C < 1 in the definition of �

E
so that each simplex of the triangulation is contained in a ball of

radius 1
2
�inj.M /. In particular, all k-simplices of the triangulation are bi-Lipschitz equivalent to Sk for

k D 1; : : : ; 4.
We recall here the main result of [Uhlenbeck 1982b]:
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Theorem 5.1 (Uhlenbeck gauge). There exists �0 > 0 such that, if the curvature satisfies
R

B1
jF j2 � �0,

then there is a gauge �2W 2;2.B1;SU.2// in which the connection satisfies kA�kW 1;2.B1/
�CkFkL2.B1/

with C > 0 depending only on the dimension.

Theorem 5.1 gives a trivialization �i associated to each 4-simplex Ci such that the expression of A in
those coordinates,

Ai D �
�1
i d�i C�

�1
i A�i on Ci ; (5-3)

satisfies
kAikW 1;2.Ci /

� CkFkL2.Ci /
: (5-4)

If we call
gij WD �

�1
j �i ; (5-5)

then gij gjk D gik , so in particular g�1
ij D gji ; moreover,

Aj D gij dgji Cgij Aigji on @Ci \ @Cj : (5-6)

It follows that gij 2W 1;3.@Ci \ @Cj ;SU.2//.

Lemma 5.2 (extension on a sphere). Let S3
C be the upper hemisphere, S3 \ fx3 � 0g. For any

g 2W 1;3.S3
C;SU.2//, there exists Qg 2W 1;3.S3;SU.2// such that Qg D g on S3

C and

kr QgkL3.S3/ � CkrgkL3.S3
C
/:

Proof. Let S3
� be a spherical cap of height t 2

�
1
2
; 3

2

�
such that

gj@S3

�




W 1;2.@S3

�/
� CkgkW 1;3.S3

C
/: (5-7)

We observe that gj@S3
C
'S2 2W 1;2.S2;SU.2//, and we desire to extend this trace inside B3 ' S3

� with
a good norm estimate. Let �

� Og D 0 on B3;

Og D g on @B3:

Then we have, by the usual elliptic estimates,

k OgkW 1;3.S3
�/
� C



gj@S3
�




W 1;2.@S3

�/
: (5-8)

For a 2 B4
1=2

, if ga is the radial projection of the values of Og on the boundary with center a, then (as in
the projection trick of Section 2A)

jrgaj � C
jr Ogj

j Og� aj
and

Z
a2B4

1=2

Z
B3

jrgaj
3
� C

Z
B3

jr Ogj3: (5-9)

Therefore, there exists a 2 B4
1=2

such that

krgakL3.B3'S3
�/
� Ckr OgkL3.B3'S3

�/
: (5-10)

Combining the inequalities (5-7), (5-8), (5-9) and (5-10), we obtain the thesis for Qg D ga with a as
above. �
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Corollary 5.3 (iteration step). Suppose that on our 4-manifold M a connection A is fixed and an
Uhlenbeck gauge �j is defined on a 4-simplex Cj , i.e., (5-4) holds with notation (5-3). Suppose that a
global gauge �I is defined on a finite union of simplices CI WD

S
˛2I Ci˛ and that @Cj \C

.3/
I

(where

C
.3/
I

is the simplicial 3-skeleton of CI ) contains some, but not all, 3-faces of Cj . It is then possible to
extend the gauge change gij of (5-5) to Qgij defined on the whole of @Cj with

kr QgijkL3.@Cj /
� CkrgijkL3.@Cj\C

.3/

I
/
;

where C depends only on M .

Proof. H WD .@Cj nC
.3/
I
/ı is bi-Lipschitz to a ball for ı equal to two-thirds of the smallest in-radius

of a face of Cj . Here, Aı is a ı-neighborhood of A inside @Cj . Let H 0 WD .@Cj nC
.3/
I
/2ı. The triple

.@Cj ;H;H
0/ is C -bi-Lipschitz to .S3;S3

�;K/ where K is the spherical cap of height 3
4

extending S3
�.

We apply Lemma 5.2 in order to “fill the hole” H extending the gauge gij with estimates. The bi-Lipschitz
constant is bounded by the geometric constraints on our triangulation only. �

Given Lemma 5.2 and Corollary 5.3, we proceed iteratively on the triangulation as follows (the indices
labeling the simplices are redefined during the whole procedure in a straightforward way):

� Suppose that we already defined the gauge Q�j�1 on a set of j � 1 simplices C1; : : : ;Cj�1 whose
union forms a connected set.

� Consider a new simplex Cj extending this connected set. Use Corollary 5.3 to extend gij to Qgij .

� We apply Theorem B00 and extend Qgij to a gauge change hij defined inside Cj so that

krhijkL.4;1/.Cj /
� f .kr QgijkL3.Cj /

/� C0; (5-11)

with C0 depending only on universal constants and on �0.

� On
S

i<j Ci let Q�j D
Q�j�1, while on Cj we define Q�j D �j hij .

Let zAj be the local expression corresponding to the gauge Q�j . Then

k zAjkL.4;1/.Cj /
. kAjkL4.Cj /

CkrhijkL.4;1/.Cj /
� �0CC0:

Iterating this gauge extension strategy, we obtain a global gauge zA on the whole of M such that

k zAkL.4;1/.M / � C.number of simplices/.C0C �0/� C
Vol.M /

�4
E

: (5-12)

The above bound depends on the geometry of M and on the energy E of the curvature only. Note that
the above reasoning works only as long as �

F
. �

E
. We next consider the case �

F
� �

E
.

5C. Extending the connection with small curvature changes. Let �0 be as in Theorem 5.1.

Lemma 5.4 (finding good slices). There exists a constant �1 with the following properties: If M is a fixed
4-manifold with a W 1;2-connection A and if B2t .x0/�M is a geodesic ball such that

t

Z
@ zBt

jF j2 � �1;
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then there exists OA 2W 1;2
�V1

M; su.2/
�

such that OADA on Bt andZ
MnBt

jF OAj
2
�
�0

4
:

Proof. Up to a change of gauge, which does not increase the norm, we may assume the Neumann condition

hA; �i � 0 on @Bt : (5-13)

This is obtained, for example, by minimizing kg�1dgCg�1AgkL2.Bt /
among g 2W 2;2.Bt ;SU.2//.

Extend A to B2t nBt by zA WD ��i�@Bt
A, where �.x/D tx=jxj and i@Bt

is the inclusion. Using the
hypothesis, we obtain Z

B2tnBt

ˇ̌
d zAC 1

2
Œ zA; zA�

ˇ̌2
� C�1:

We apply a change of gauge g D g.�/ depending only on the angular variable � 2 @B4 and such that

d�@Bt
Ag

ˇ̌
@Bt
D 0:

This preserves (5-13) and gives, as s! 0,

C�1 �

Z
Bs\@Bt

ˇ̌
dAgC

1
2
ŒAg;Ag�

ˇ̌2
�

Z
Bs\@Bt

jdAj2� o.s/

Z
Bs\@Bt

jrAj2:

Therefore, Ag 2W 1;2.^1@Bt ; su.2//, zAg 2W 1;2.^1B2t nBt ; su.2//, and Ag, zAg satisfy (5-13). There-
fore, zAg extends by Ag in a neighborhood of @Bt , giving still a W 1;2 gauge. Observe that, by Sobolev
embedding, Z

@Bt

jŒA;A�j2 .
�Z

@Bt

jrAj2
�2

and, by Hodge decomposition and using d�@Bt
AD 0,Z

@Bt

jrAj2 .
Z
@Bt

.jdAj2Cjd�Aj2/.
Z
@Bt

jFAj
2
C

�Z
@Bt

jrAj2
�2

:

For X D krAk2
L2.@Bt /

we get X � �1CX 2, and thus we may assume that

t

Z
@Bt

jrAj2 � C t

Z
@Bt

jF j2:

Define OA WD �tA for a smooth Œ0; 1�-valued cutoff function �t such that �t � 1 on Bt and �t � 0 outside
B2t . We obtain Z

B2t

jF OAj
2
�

Z
Bt

jFAj
2
CC�1

and we can extend OA� 0 outside B2t , obtaining the desired estimate for �1 small enough. �
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5D. Cutting M by a small energy slice. Suppose for this subsection that �
F
< �

E
. Let C be as in the

definition of �
E

and define

�1 WD

�
inf
˚
� � �

F
W
R

B2�nB�
jF j2 � 1

4
�1

	
if this is less than C�inj.M /;

C�inj otherwise.

Since �
F
<�

E
and by the choice of �1, �1 is rather small and B2�1

is bi-Lipschitz to B1. Thus Lemma 5.4
applies. More precisely, let t1 2

�
�1;

5
4
�1

�
; t2 2

�
7
4
�1; 2�1

�
. There exist ti , i D 1; 2, such that

ti

Z
@Bti

jF j2 � �1:

5E. Strategies after cutting. Let �0 be as in Theorem 5.1. We pursue different strategies depending on
the energy of F outside B2�1

.

The case
R

MnB2�1

jF j2 � 1
2
�0. Split to the regions Bt2

and M nBt1
and do induction on the energy in

order to separately find gauges satisfying our estimates. Lemma 5.4 gives extensions(
OA1 �A on Bt2

s.t.
R

M jF OA1
j2 �

R
Bt2

jFAj
2CC�1;

OA2 �A on M nBt1
s.t.

R
M jF OA2

j2 �
R

Bt1

jFAj
2CC�1:

(5-14)

In particular, OA1; OA2 are equivalent on B 7
4
�1
nB 5

4
�1

andZ
jF OAi
j
2
�

Z
jFAj

2
�

1
4
�0:

If we can find global gauges g1i , i D 1; 2, in which OAi have expressions OA1i with L.4;1/ bounds as in
Theorem B, then it is enough to apply

g112 WD .g
1
1 /
�1g12

on R WD B 7
4
�1
nB 5

4
�1

in order to obtain

A12 D g112A11 .g
1
12/
�1
Cg112d.g112/

�1 and krg112kL.4;1/.R/ � f
�
E � 1

4
�0

�
:

Then there exists t3 2
�

5
4
�1;

7
4
�1

�
such thatZ

@Bt3

jrg112j
3
� f

�
E � 1

4
�0

�
:

By Theorem B we can find a W 1;.4;1/-extension h1
12

of g1
12

to a map from Bt3
to SU.2/. Thus, if we

call f1 the function of Theorem B, then

krh112kL.4;1/.Bt3
/ � f1

�
f
�
E � 1

4
�0

��
:

If we define

g1 WD

�
g1

2
on M 4 nBt3

;

h1
12

g1
1

on Bt3
;

(5-15)
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then rg1 is estimated by an universal constant times

f1

�
f
�
E � 1

4
�0

��
Cf

�
E � 1

4
�0

�
:

The case
R

MnB2�1

jF j2 � 1
2
�0. Outside B�1

we apply directly Theorem 5.1, while on B2�1
we extend

the so-obtained gauge via Theorem B00. If we call A1, A2 the so-obtained connections on B2�1
, M nB�1

respectively, then there exists t 2 Œ�1; 2�1� such thatZ
@Bt

.jA1j
3
CjA2j

3/� C.f1.�0/C �0/:

As above, the same bound is true also for the gradient of the change of gauge rg12. Theorem B gives
the extension h12 to a gauge in W 1;.4;1/.Bt ;SU.2// with

krh12kL4;1.Bt3
/ � f1.C.f1.�0/C �0//:

Then choose

g1 WD

�
g2 on M 4 nBt3

;

h12g1 on Bt3
:

(5-16)

This g1 satisfies an estimate independent on E and dependent only on �0, again allowing us to define
f .E/ inductively. �

Appendix A: Uhlenbeck small energy extension

We use the strategy from [Uhlenbeck 1982a] to prove Theorem 4.4. The analogy is in the method of
proof more than in the result.

First recall that W 1;2.X;S3/ DW 1;2.X;R4/\ fu W u.x/ 2 S3 a.e.g and observe that we attain the
infimum

inf
�Z

B4

jrP j2 W P 2W 1;2.B4;S3/; P D P0 on @B4

�
: (A-1)

Indeed, a minimizing sequence will have a W 1;2-weakly convergent subsequence, which thus converges
pointwise everywhere. By weak lower semicontinuity a minimizer exists, and by convexity it is unique.
The minimizer P distributionally verifies

div.P�1
rP /D 0: (A-2)

Lemma A.1 (a priori estimates). There exists � > 0 with the following property: Let P be an extension
of P0 2W 1;3.S3;S3/ with kP � IkW 1;4.B4/ � � that satisfies (A-2). We identify S3 with the Lie group
SU.2/. Then there exists a constant C� such that

kP � IkW 4=3;3.B4/ � C�krP0kL3.S3;S3/: (A-3)

Proof. By L2-Hodge decomposition,

P�1dP D dU C d�V; (A-4)
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where V is the unique minimizer of

min
�Z

B4

jd�V �P�1dP j2; �V j@B4 D 0; dV D 0

�
I

thus, 8<:
�V D dd�V D dP�1 ^ dP;

dV D 0;

�V D 0:

We claim that
krV kL3.@B4/ . �kP � IkW 1;4.B4/: (A-5)

To see this, observe that d.P�1/ D P�1 dP P�1 and P , P�1 2 L1 with norm equal to 1 so, by the
elliptic, Hölder and Poincaré estimates,

krV kW 1;2.B4/ . kdP�1
^ dPkL2.B4/ . kd.P�1/kL4.B4/kdPkL4.B4/

. kdPkL4.B4/kP
�1
k

8
L1krPkL4.B4/

. �kP � IkW 1;4.B4/: (A-6)

The trace and Sobolev embedding inequalities

kV kLp.@B4/ . kV kW 1�1=q;q.@B4/ . kV kW 1;q.B4/

are valid for q D 2, p D 3. Therefore, we obtain (A-5).
Using the trace of the Hodge decomposition formula (A-4) on the boundary, we obtain from (A-5) that

kdU �P�1
0 dP0kL3.@B4/ . �kP � IkW 1;4.B4/: (A-7)

Like for V , for U we have
�U D d�dU D d�.P�1dP /D 0:

We apply the elliptic estimates for U to obtain

kdU kW 1=3;3.B4/ . krU kL3.@B4/; (A-8)

while (A-7), the triangle inequality and the fact that kP0kL1 D 1 give

kU kL3.@B4/ . kdU �P�1
0 dP0kL3.@B4/CkP

�1
0 dP0kL3.@B4/

. �kP � IkW 1;4.B4/CkdP0kL3.@B4/: (A-9)

Using (A-4), the triangle inequality and (A-6), (A-8), (A-9) we obtain

kP�1dPkW 1=3;3.B4/ . kd�V kW 1=3;3.B4/CkdU kW 1=3;3.B4/

. �kP � IkW 1;4.B4/CkdP0kL3.@B4/: (A-10)

Write dP DPP�1dP and observe that P 2L1\W 1;4 since S3 is bounded, while P�1dP 2W 1=3;3

by (A-10). We now use Lemma B.1 for the product fg with f D P , g D P�1dP and we obtain

kdPkW 1=3;3.B4/ . kP�1dP jkW 1=3;3.kPkL1 CkP � IkW 1;4.B4//: (A-11)
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Note again that kPkL1 D 1 and deduce then from (A-10), Lemma B.1 and the Poincaré inequality that

kP � IkW 4=3;3.B4/ � CkdP0kL3.S3/CC�kP � IkW 1;4.B4/: (A-12)

By the Sobolev inequality we can absorb the kP � Ik term to the left, and we obtain the thesis. �

We are now ready for the proof of Theorem 4.4. We restate the same result with a slight change of
notation and more details.

Theorem A.2 (small energy extension). There exist two constants ı > 0, C > 0 with the following
property: Suppose Q 2 W 1;3.S3;S3/ is such that kdQkL3.S3/ � ı. Then there exists an extension
P 2W 1;4.B4;S3/ satisfying

kP � IkW 1;4.B4/ � CkdQkL3.S3/: (A-13)

Proof. Define the following two sets, with K > 0 fixed later:

G˛� D fQ 2W 1;3C˛.S3;SU.2// W krQkL3 � �g;

F˛�;C D
˚
Q 2 G˛� W 9P 2W 1;4C˛.B4;SU.2//; div.P�1

rP /D 0 on B4;P DQ on @B4;

kP � IkW 1;4.B4/ �KkrQkL3.@B4/kP � IkW 1;4C˛.B4/ � CkrQkL3C˛.@B4/

	
: (A-14)

The claim of our theorem states that a P 2 F0
�;C

can be constructed to extend any Q 2 G0
ı

when ı is
small enough. The strategy of the proof is to use the supercritical spaces G˛� , ˛ > 0 to approximate G0

ı
.

We divide the proof into five steps, paralleling Uhlenbeck [1982a].

Claim 1. G˛� is connected for all �, ˛ � 0.

Claim 2. F˛
�;C

is closed (in G˛� ) with respect to the W 1;3C˛-norm for ˛ � 0 and for any C > 0.

Claim 3. For � > 0 small enough and ˛ > 0, there exists C D C˛ such that the set F˛
�;C

is open in G˛�
with respect to the W 1;3C˛-topology.

Claim 4. G0
� is contained in the W 1;3-closure of

S
˛>0 G˛

2�
.

Proof of Claim 1. This is straightforward, since G˛� embeds in C 0;
 .S3;SU.2//. �

Proof of Claim 2.. Consider a family Qj 2 F˛
�;C

with associated Pj as in (A-14) which converge to Q in
W 1;3C˛ . We extract a weakly convergent subsequence of the Pj and the estimate passes to the limit by
weak lower semicontinuity (and by convergence of the Qj ). Similarly, the equations pass to weak limits,
since they are intended in the weak sense. �

Ideas for Claim 3. For the proof we need to study the behavior of solutions to div.P�1rP /D 0, which
is regarded here as an equation N˛.P /D 0 with P close to the constant I , which is a zero of N˛. The
equation considered is elliptic. The proof of the claim is thus done by linearization of N near I and by the
implicit function theorem. Ellipticity of the equation translates into invertibility of this linearized operator.
The estimate of the W 1;4-norm follows from the a priori estimate of Lemma A.1 once we choose, for
example, K � 1

2
C�. See Lemma A.3 for the complete proof. �
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Proof of Claim 4. Consider Q 2G0
� . There exists a sequence Qi 2 C1.S3;SU.2// such that Qi!Q

in W 1;3.S3;SU.2//; see [Bethuel 1991; Hang and Lin 2003] — by the density proofs of these works it
follows that we may also assume Qi 2 G˛i

�i
for some sequence ˛i! 0C. The L3-norm of a function f

can be obtained as

lim
q!3C

kf kLq ;

so in particular we may assume up to extracting a subsequence that �i � 2�. �

To conclude the proof, consider Q2G0
ı
. We use Claim 4 to approximate Q in W 1;3-norm by Qi 2G˛i

2ı

with ˛i > 0. From Claims 1–3 it follows that there exist functions Pi 2W 1;4C˛i .B4;SU.2// such that

kPi � IkW 1;4.B4/ �KkdQikL3.S3/ � 2Kı:

The Pi have a weakly convergent subsequence whose limit P satisfies

kP � IkW 1;4.B4/ � 2Kı and
�

div.P�1rP /D 0 on B4

P DQ on S3:

Choose ı > 0 such that 2Kı � � for � as in Lemma A.1. We can then apply that lemma and obtain that

kP � IkW 1;4.B4/ � ckP � IkW 4=3;3.B4/ � cC�kQkL3.S3/: �

We now complete the details of the proof of Claim 3:

Lemma A.3. There exist � > 0, K > 0 such that for all ˛ > 0 there exists C˛ > 0 with the following
property: Let Q0 2W 1;3C˛.S3;SU.2// and let P0 2W 1;4C˛.B4;SU.2// be an extension of Q0 which
satisfies div.P�1

0
rP0/D 0. If the estimates

kdQ0kW 1;3.S3/ < �; (A-15)

kP0� IkW 1;4.B4/ �KkdQ0kW 1;3.S3/; (A-16)

kP0� IkW 1;4C˛.B4/ � C˛kdQ0kW 1;3C˛.S3/ (A-17)

hold then, for some ı > 0 depending on Q0, for all Q satisfying

kQ�Q0kW 1;3C˛.S3;SU.2// < ı (A-18)

there exists an extension P of Q satisfying the same equation div.P�1rP /D 0 and such that (A-15),
(A-16), (A-17) hold with P , Q in place of P0, Q0.

Proof. We fix Q satisfying (A-18) and (A-15). The proof is divided into two parts:

Claim 3.1. For ı > 0 small enough and for Q satisfying (A-18), there exists an extension P of Q solving
div.P�1rP /D 0 and such that (A-17) holds.

Claim 3.2. The function P of Claim 3.1 satisfies (A-16).

Proof of Claim 3.2. This follows directly from Lemma A.1. �
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Proof of Claim 3.1. First note that V D exp�1.Q�1
0

Q/ is well defined for ˛ > 0, because in that case we
have an estimate of the form

kQ�Q0kW 1;3C˛ � c˛kQ�Q0kL1()kQ
�1
0 Q� IkL1 �

�

c˛

and exp�1 is well defined in a neighborhood of the identity.
We consider the problem of extending Q0 exp.V / inside B4 to a function P D P0 exp.U /. Extend V

to zV such that � zV D 0 inside B4.
We look for a P of the form P0 exp. zV / exp.U /. We thus consider the equation

N.U;V / WD d�
�
exp.�U / exp.� zV /P�1

0 d.P0 exp. zV / exp.U //
�
D 0: (A-19)

In order to solve (A-19) it is useful to look at the operator

N.V;U / WW 1;4C˛
0

.B4; su.2//!W �1;4C˛.B4; su.2//: (A-20)

We have to show that for ı > 0 small enough, for each Q satisfying (A-18) (i.e., for each small enough V ),
there exists a unique U such that N.V;U /D 0. We prove that N.U;V / is C 1 near .U;V /D .0; 0/ and
that @N=@U.0; 0/ is an isomorphism, given the existence of ı > 0 as desired.

A simple calculation gives

@N

@U
� �D

@

@t

ˇ̌̌̌
tD0

N.U C t�;V /D d�d�� d�
�
�; exp.�U / exp.� zV /P�1

0 d.P0 exp. zV // exp.U /
�

:D���L�:

We observe that d�d D� is an isomorphism between the spaces above, so it will be enough to show that
for U , zV small enough in the W 1;4C˛-norm the commutator term L� is just a small perturbation of �
(with respect to the norms present in (A-20)). First note that we can write

L�D Œr�;X �C Œ�; div X �; where X :D exp.�U / exp.� zV /P�1
0 d.P0 exp. zV // exp.U /:

Estimate for Œr�;X �. First note that by the Sobolev, Hölder and triangle inequalities,

kŒr�;X �kW �1;4C˛ . kŒr�;X �kLp˛ . kr�kL4C˛kXkL4 ;

where
1

p˛
D

1

4C˛
C

1

4
:

We then observe
X D exp.�U / exp.� zV /P�1

0 d.P0
zV / exp. zV / exp.U /

and note jexp Aj D 1; therefore,

kXkL4 D kd.P0
zV /kL4 . kdP0kL4 Ckd zV kL4 . �C ı:

We thus have the first desired estimate,

kŒr�;X �kW �1;4C˛ . .�C ı/k�kW 1;4C˛ :
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Estimate for Œ�; div X �. Here we start with

kŒ�; div X �kW �1;4C˛ . k�kL1k div XkLp˛ :

Note that k�kL1 . k�kW 1;4C˛ by the Sobolev embedding. We start the computations for the second fact
or above. Note that

r.P0 exp zV /D .rP0/ exp zV CP0r.exp zV /

and then expand:

div X D divŒexp.�U / exp.� zV /P�1
0 r.P0 exp zV / exp U �

Dr.exp.�U // exp.� zV /P�1
0 r.P0 exp zV / exp U

C exp.�U /r.exp.� zV //P�1
0 r.P0 exp zV / exp U

C exp.�U / exp.� zV / div
�
P�1

0 rP0

�
exp zV / exp U

C exp.�U / exp.� zV /P�1
0 P0 divr.exp zV / exp U

C exp.�U / exp.� zV /P�1
0 rP0r.exp zV / exp U

C exp.�U / exp.� zV /P�1
0 r.P0 exp zV /r.exp U /

We have div.P�1
0
rP0/ D 0 and divr.exp. zV // D 0, so two terms cancel. Note also the fact that

kP�1
0
rP0kL4 �krP0kL4 � �. For estimating r.exp.˙ zV // observe that zV satisfies a Dirichlet boundary

value problem, therefore we assume the estimate k zV kW 1;4C˛ . ı, and kU kW 1;4C˛ . ı, which, by the
smoothness of exp, imply kr.exp.˙ zV //kL4C˛ . ı and kr.exp.˙U //kL4C˛ . ı. From all this it follows
that we can estimate

k div XkLp˛ . kr.exp.�U //kL4C˛kr.P0 exp zV /kL4 Ckr.exp.� zV //kL4C˛kr.P0 exp zV /kL4

CkrP0kL4kr.exp. zV //kL4C˛ Ckr.exp.U //kL4C˛kr.P0 exp zV /kL4

. ıkr.P0 exp zV /kL4 C �ı

. ı.�C ı/:

We combine all the estimates and obtain the desired smallness result,

kŒ�; div X �kW �1;4C˛ . ı.�C ı/k�kW 1;4C˛ : �

End of proof. We now have that

kL�kW �1;4C˛ . .ıC 1/.�C ı/k�kW 1;4C˛ ;

while
k��kW �1;4C˛ & k�kW 1;4C˛ :

Therefore, for small enough �, ı we have also

k.��L/�kW �1;4C˛ & k�kW 1;4C˛ :

This concludes the proof. �
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Appendix B: A product estimate with only one bounded factor

Lemma B.1 (cf. [Brézis and Mironescu 2001]). Let� be a smooth compact 4-manifold. If f 2W 1=3;3.�/

and g 2W 1;4\L1.�/, then we have the following estimate, with the implicit constant depending only
on �:

kfgkW 1=3;3.�/ . kf kW 1=3;3.�/.kgkL1.�/CkgkW 1;4.�//:

Proof. The estimates for the nonhomogeneous part of the norms are trivial, so we concentrate on the
homogeneous part.

We use the Littlewood–Paley decompositions f D
P1

jD0 fj , g D
P1

kD0 gk , and we recall that the
W s;p-norm is equivalent to the Triebel–Lizorkin PF1

4;2
-norm and the W �;4-norm is equivalent to the

PF s
p;2

-norm, where in general the following definition holds:

kf k PF s
p;q
D


j2ksfk.x/j`q




Lp :

We use different notations k � k, j � j for the different norms just to facilitate the reading of formulas. As
is usual in the theory of paraproducts, we estimate separately the following three contributions (where
gk WD

Pk
iD0 gk , and similarly for f k)

fg D
X

i

fig
i�4
C

X
jk�lj<4

fkgl C

X
i

f i�4gi DW I C IIC III:

The support of .2figi�4/ is included in B2iC2 nB2i�2 ; thus,

kIkW 1=3;3 D





X
i

fig
i�4






W 1=3;3

�

� Z
�

�X
i

22i=3
jfig

i�4
j
2

�3=2�1=3

(B-1)

and analogously for III D
P

i f
i�4gi . Regarding the term II, we will estimate only II0 WD

P
i figi

because the same estimate will apply also to the finitely many contributions of the form
P

i figiCl with
0< jl j< 4.

We start with the most difficult term, III. From above we have

kIIIkW 1=3;3 �

� Z �X
i

22i=3
jf i�4gi j

2

�3=2�1=3

�

� Z �X
i

2�4i=3
jf i�4

j
2

�3=2�X
i

22i
jgi j

2

�3=2�1=3

�

� Z �X
i

2�4i=3
jf i�4

j
2

�6�1=12� Z �X
i

22i
jgi j

2

�2�1=4

� kf kW �2=3;12kgkW 1;4

� kf kW 1=3;3kgkW 1;4 :
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For the term I we have

kIkW 1=3;3 �

� Z �X
i

22i=3
jfig

i�4
j
2

�3=2�1=3

. kgkL1kf kW 1=3;3

because of the estimate kgi�4kL1 . kgkL1 . Finally, we estimate II0, as promised. We prove it by
duality; namely, we prove that II0 is bounded as a linear functional on the unit ball of the dual W �1=3;3=2.
Consider therefore h in this ball. The support of .bfigi/ is included in B2iC2 , so some terms cancel:Z

h � II0 �
X
k;i

Z
hkfigi D

X
k�iC4

Z
hkfifj D

X
i

Z
hiC4figi

�

ˇ̌̌̌X
i

Z
2�i=3hiC42i=3figi

ˇ̌̌̌

� kgkB0
1;1

Z �X
i

2�2i=3
jhiC4

j
2

�1=2�X
i

22i=3
jfi j

2

�1=2

� kgkW 1;4khkW �1=3;3=2kf kW 1=3;3 :

The last estimate follows, recalling that

kgkB0
1;1
WD sup

i

kgikL1

and that in dimension 4 we have continuous embeddings

W 1;4 ,! BMO ,! B0
1;1 :

Summing up the different terms, we are done. �

Appendix C: The Möbius group of Bn

We call the Möbius group of Rn the group M.Rn/ generated by all similarities and the inversion with
respect to the unit sphere. Recall that a similarity is an affine map of the form

x 7! �KxC b with � > 0; K 2O.n/; b 2 Rn;

and the inversion ic;r with respect to the sphere @B.c; r/ is the map

x 7! cC r2 x� c

jx� cj2
:

The formula ic;r D .r
2 idCc/ ı i0;1 ı .id�c/ shows that all inversions belong to M.Rn/. We use the

abridged notation

x� WD i1;0.x/D
x

jxj2
:

The Möbius group of BnC1 is the subgroup M.BnC1/ of all transformations belonging to M.RnC1/

which preserve BnC1. Similarly, we define the Möbius group M.Sn/ of the unit sphere Sn �RnC1. The
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general form of an element 
 2M.BnC1/ is


 DK ıFv with K 2O.n/; v 2 BnC1; Fv WD �vC .1� jvj
2/.x�� v/�:

We use the following basic properties of the functions Fv , which can be found in [Ahlfors 1981, Chapter 2]:

Lemma C.1. � We have

jFvj.x/D
1� jvj2

Œx; v�
;

where Œx;y�D jxjjx��yj D jyjjy��xj.

� Fv is conformal. We have F�1
v D F�v, Fv.0/D�v and Fv.v/D 0.

� The conformal factor jF 0vj.x/ is explicitly computed as

jF 0vj.x/D
1� jvj2

1Cjxj2jvj2� 2x � v
D
jv�j2� 1

jx� v�j2
:

� The restriction FvjSn belongs to M.Sn/; in particular, FvjSn is a conformal involution and

j.FvjSn/0j.x/D
1� jvj2

jx� vj2
:

The next lemma gives the estimate needed for the case when v is close to @BnC1:

Lemma C.2. Suppose that

� � 1
4
:

Then, on F�1
v .B1��/, the following estimate holds with a constant C dependent only on the dimension:

h.v/

C
� jF 0vj.x/� C h.v/:

Proof. We will calculate

maxfjF 0vj.y/ W y 2 F�1
v .B1��/g

minfjF 0vj.y0/ W y0 2 F�1
v .B1��/g

Dmax
�
jF 0vj.y/

jF 0vj.y
0/
W y;y0 2 F�1

v .B1��/

�
and we show that this quantity is bounded. The following equalities hold:

max
�
jF 0vj.x/

jF 0vj.x
0/
W x;x0 2 B1��

�
Dmax

�
jF 0�vj.x/

jF 0�vj.x
0/
W x;x0 2 B1��

�
Dmax

�
j.F�1

v /0j.x/

j.F�1
v /0j.x0/

W x;x0 2 B1��

�
Dmin

�
jF 0vj.F

�1
v .x0//

jF 0vj.F
�1
v .x//

W x;x0 2 B1��

�
Dmin

�
jF 0vj.y

0/

jF 0vj.y/
W y;y0 2 F�1

v .B1��/

�
:
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From the formula of the previous lemma it follows that

rxjF
0
vj.x/D 2

jv�j2� 1

jv��xj4
.v��x/I

therefore, jF 0vj achieves its extrema on B1�� at ˙.1� �/v=jvj. The maximum M and the minimum m

of jF 0vj satisfy

M D
1� jvj2

1Cjvj2.1� �/2� 2.1� �/jvj
D

1� jvj2

.1� .1� �/jvj/2
;

mD
1� jvj2

1Cjvj2.1� �/2C 2.1� �/jvj
D

1� jvj2

.1C .1� �/jvj/2
;

M

m
D

�
1C .1� �/jvj

1� .1� �/jvj

�2

� .1� .1� �/jvj/�2
� 1;

which finishes the proof. �
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CONCENTRATION OF SMALL WILLMORE SPHERES
IN RIEMANNIAN 3-MANIFOLDS

PAUL LAURAIN AND ANDREA MONDINO

Given a three-dimensional Riemannian manifold (M, g), we prove that, if (8k) is a sequence of Willmore
spheres (or more generally area-constrained Willmore spheres) having Willmore energy bounded above
uniformly strictly by 8π and Hausdorff converging to a point p ∈ M , then Scal(p)= 0 and ∇ Scal(p)= 0
(respectively, ∇ Scal(p) = 0). Moreover, a suitably rescaled sequence smoothly converges, up to sub-
sequences and reparametrizations, to a round sphere in the euclidean three-dimensional space. This
generalizes previous results of Lamm and Metzger. An application to the Hawking mass is also established.

1. Introduction

Let 6 be a closed two-dimensional surface and (M, g) a three-dimensional Riemannian manifold. Given
a smooth immersion 8 :6 ↪→ M , W (8) denotes the Willmore energy of 8 defined by

W (8) :=

∫
6

H 2 dvolg, (1)

where g :=8∗(g) is the pullback metric on 6 (i.e., the metric induced by the immersion), dvolg is the
associated volume form, and H is the mean curvature of the immersion 8 (we adopt the convention that
H = 1

2 gi j Ai j , where Ai j is the second fundamental form; or in other words, H is the arithmetic mean of
the two principal curvatures).

In case the ambient manifold is the euclidean three-dimensional space, the topic is classical and goes
back to the works of Blaschke and Thomsen in 1920–1930, who were looking for a conformal invariant
theory that included minimal surfaces; the functional was later rediscovered by Willmore [1993] in the
1960s, and from that moment, there has been a flourishing of results (let us mention the fundamental paper
of Simon [1993], the work of Kuwert and Schätzle [2001; 2004; 2007], the more recent approach by
Rivière [2008; 2014; 2013], etc.) culminating in the recent proof of the Willmore conjecture by Marques
and Neves [2014] by min–max techniques (let us mention that partial results towards the Willmore
conjecture were previously obtained by Li and Yau [1982], Montiel and Ros [1986], Ros [1999], Topping
[2000], etc., and that a crucial role in the proof of the conjecture is played by a result of Urbano [1990]).

On the other hand, the investigation of the Willmore functional in nonconstantly curved Riemannian
manifolds is a much more recent topic started in [Mondino 2010] (see also [Mondino 2013] and the
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more recent joint work [Carlotto and Mondino 2014]), where the second author studied existence and
nonexistence of Willmore surfaces in a perturbative setting.

Smooth minimizers of the L2-norm of the second fundamental form among spheres in compact
Riemannian 3-manifolds were obtained in collaboration with Kuwert and Schygulla in [Kuwert et al.
2014], where the full regularity theory for minimizers was settled, taking inspiration from the approach
of Simon [1993] (see also [Mondino and Schygulla 2014] for minimization in noncompact Riemannian
manifolds).

Let us finally mention the work in collaboration with Rivière [Mondino and Rivière 2014; 2013],
where using a “parametric approach” inspired by the euclidean theory of [Rivière 2008; 2014; 2013], the
necessary tools for studying the calculus of variations of the Willmore functional in Riemannian manifolds
(i.e., the definition of the weak objects and related compactness and regularity issues) are settled together
with applications; in particular, the existence and regularity of Willmore spheres in homotopy classes is
established.

Since — as usual in the calculus of variations — the existence results are obtained by quite general
techniques and do not describe the minimizing object, the purpose of the present paper is to investigate
the geometric properties of the critical points of W .

More precisely, we investigate the following natural questions. Let 8k : S
2 ↪→ M be a sequence of

smooth critical points of the Willmore functional W (or more generally we will also consider critical
points under area constraint) converging to a point p ∈ M in Hausdorff distance sense; what can we say
about 8k? Are they becoming more and more round? Does the limit point p have some special geometric
property?

These questions have already been addressed in recent articles — below the main known results are
recalled for the reader’s convenience — but in the present paper we are going to obtain the sharp answers.

Before describing the known and the new results in this direction, let us recall that a critical point of
the Willmore functional is called a Willmore surface and it satisfies

1g H + H |A◦|2+ H Ric(En, En)= 0, (2)

where 1g is the Laplace–Beltrami operator corresponding to the metric g, (A◦)i j := Ai j − H gi j is the
trace-free second fundamental form, En is a normal unit vector to 8, and Ric is the Ricci tensor of the
ambient manifold (M, g). Notice that (2) is a fourth-order nonlinear elliptic PDE in the parametrization
map 8.

Throughout the paper, we will consider more generally area-constrained Willmore surfaces, i.e., critical
points of the Willmore functional under area constraint; the immersion 8 is an area-constrained Willmore
surface if and only if it satisfies

1g H + H |A◦|2+ H Ric(En, En)= λH (3)

for some λ ∈ R playing the role of Lagrange multiplier.
The first result in the direction of the above questions was achieved in the master degree thesis of

Mondino [2010], where it was proved that, if (8k) is a sequence of Willmore surfaces obtained as normal
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graphs over shrinking geodesic spheres centered at a point p, then the scalar curvature at p must vanish:
Scal(p)= 0.

In subsequent papers, Lamm and Metzger [2010; 2013] proved that, if 8k : S
2 ↪→ M is a sequence of

area-constrained Willmore surfaces converging to a point p in Hausdorff distance sense and such that1

W (8k)≤ 4π + ε for some ε > 0 small enough, (4)

then ∇ Scal(p)= 0 and, up to subsequences, 8k is W 2,2-asymptotic to a geodesic sphere centered at p.
Moreover in [Lamm and Metzger 2013], using the regularity theory developed in [Kuwert et al. 2014],
they showed that, if (M, g) is any compact Riemannian 3-manifold and ak is any sequence of positive
real numbers such that ak ↓ 0, then there exists a smooth minimizer 8k of W under the area constraint
Area(8k)= ak ; moreover, such a sequence (8k) satisfies (4) and therefore W 2,2-converges to a round
critical point of the scalar curvature. Let us mention that the existence of area-constrained Willmore
spheres was generalized in [Mondino and Rivière 2013] to any value of the area.

The goal of this paper is multiple. The main achievement is the improvement of the perturbative
bound (4) above to the global bound

lim sup
k

W (8k) < 8π. (5)

Secondly, we improve the W 2,2-convergence above to smooth convergence towards a round critical point
of the scalar curvature; i.e., we show that, if we rescale (M, g) around p in such a way that the sequence of
surfaces has fixed area equal to 1 (for more details, see Section 2), then the sequence converges smoothly, up
to subsequences, to a round sphere centered at p and p is a critical point of the scalar curvature of (M, g).

Finally we give an application of these results to the Hawking mass.
We believe that the bound (5) is sharp in order to have smooth convergence to a round point (in the

sense specified above); indeed, if (5) is violated, then the sequence (8k) may degenerate to a couple of
bubbles, each one costing almost 4π in terms of Willmore energy.

Now let us state the main results of the present article. The first theorem below concerns the case of
a sequence of Willmore immersions and is a consequence of the second more general theorem about
area-constrained Willmore immersions.

Theorem 1.1. Let (M, g) be a three-dimensional Riemannian manifold, and let 8k : S2 ↪→ M be a
sequence of Willmore surfaces satisfying the energy bound (5) and Hausdorff converging to a point p ∈ M.

Then Scal(p)= 0 and ∇ Scal(p)= 0; moreover, if we rescale (M, g) around p in such a way that the
rescaled immersions 8̃k have fixed area equal to 1, then 8̃k converges smoothly, up to subsequences and
up to reparametrizations, to a round sphere in the three-dimensional euclidean space.

Actually, we prove the following more general result about sequences of area-constrained Willmore
immersions:

1The normalization of the Willmore functional used in [Lamm and Metzger 2010; 2013] differs from our convention by a
factor of 2.



1904 PAUL LAURAIN AND ANDREA MONDINO

Theorem 1.2. Let (M, g) be a three-dimensional Riemannian manifold, and let 8k : S2 ↪→ M be a
sequence of area-constrained Willmore surfaces satisfying the energy bound (5) and Hausdorff converging
to a point p ∈ M.

Then ∇ Scal(p) = 0; moreover, if we rescale (M, g) around p in such a way that the rescaled
immersions 8̃k have fixed area equal to 1, then 8̃k converges smoothly, up to subsequences and up to
reparametrizations, to a round sphere in the three-dimensional euclidean space.

Of course, Theorem 1.2 implies Theorem 1.1 except the property Scal(p)= 0. This fact follows by
the aforementioned [Mondino 2010, Theorem 1.3] holding for Willmore graphs over geodesic spheres
together with the smooth convergence to a round point ensured by Theorem 1.2.

Now we pass to discuss an application to the Hawking mass m H , defined for an immersed sphere
8 : S2 ↪→ (M, g) by

m H (8)=
Areag(8)

16π3/2 (4π −W (8)). (6)

Of course, the critical points of the Hawking mass under area constraint are exactly the area-constrained
Willmore spheres (see [Lamm et al. 2011] and the references therein for more material about the Hawking
mass); moreover, it is clear that the inequality m H (8)≥ 0 implies that W (8)≤ 4π .

Therefore, combining this easy observations with Theorem 1.2, we obtain the following corollary:

Corollary 1.3. Let (M, g) be a three-dimensional Riemannian manifold, and let 8k : S
2 ↪→ M be a

sequence of critical points of m H under area constraint having nonnegative Hawking mass and Hausdorff
converging to a point p ∈ M.

Then ∇ Scal(p) = 0; moreover, if we rescale (M, g) around p in such a way that the rescaled
immersions 8̃k have fixed area equal to 1, then 8̃k converges smoothly, up to subsequences and up to
reparametrizations, to a round sphere in the three-dimensional euclidean space.

First of all, let us mention that Corollary 1.3 also follows by the analysis performed in [Lamm and
Metzger 2010] with the only difference that here we improved the W 2,2 convergence to the smooth one.
Now let us briefly comment on the relevance of Corollary 1.3 despite the triviality of its proof. Recall
that, from the note of Christodoulou and Yau [1988], if (M, g) has nonnegative scalar curvature then
isoperimetric spheres (and more generally stable CMC spheres) have positive Hawking mass; on the other
hand, it is known (see for instance [Druet 2002] or [Nardulli 2009]) that, if M is compact, then small
isoperimetric regions converge to geodesic spheres centered at a maximum point of the scalar curvature
as the enclosed volume converges to 0 (see also [Mondino and Nardulli 2012] for the noncompact case).
Therefore, a link between regions with positive Hawking mass and critical points of the scalar curvature
was already present in literature, but Corollary 1.3 expresses this link precisely.

We end the introduction by outlying the structure of the paper and the main ideas of the proof. First
of all, as already noticed, it is enough to prove Theorem 1.2 in order to get all the stated results. To
prove it, we adopt the blow-up technique taking inspiration from [Laurain 2012], where the first author
analyzed the corresponding questions in the context of CMC-surfaces; such technique was introduced in
the analysis of the Yamabe problem, which is a second-order scalar problem (for a detailed overview of
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the method including applications see [Druet et al. 2004]). The technical novelty of [Laurain 2012] was
that a second-order vectorial problem was considered; the technical originality of the present paper from
the point of view of the blow-up method is that we study a fourth-order vectorial problem.

More precisely, in Section 2, we consider normal coordinates centered at the limit point p and we
rescale appropriately the metric g such that the rescaled surfaces all have diameter 1 (or thanks to the
monotonicity formula, it is equivalent to fix the area of the rescaled surfaces equal to 1); notice that the
rescaled ambient metrics gk are becoming more and more euclidean.

In Section 2A, by exploiting the divergence form of the Willmore equation established in [Mondino
and Rivière 2013], we give a decay estimate on the Lagrange multipliers as k goes to infinity.

Section 3 is devoted to the proof of Theorem 1.2; we start in Section 3A by establishing a fundamental
technical result that, under the above working assumptions, the sequence (8k) converges smoothly to a
round sphere, up to subsequences and reparametrizations. Let us remark that in the proof we exploit in a
crucial way the assumption (5); otherwise, it may be possible for the sequence to degenerate to a couple
of bubbles. Once we have smooth convergence to a round sphere ω, we study the remainder given by the
difference between 8k and ω: in Section 3C, we use the linearized Willmore operator (recalled in the
Appendix) in order to give precise asymptotics of such a remainder term, and in the final Section 3D, we
refine these estimates and conclude the proof.

2. Notation and preliminaries

Throughout the paper, (M, g) is a Riemannian 3-manifold and S2 is the round 2-sphere of unit radius
in R3. The Greek indexes α, β, γ , µ, and ν will run from 1 to 3 and will denote quantities in M ; Latin
indexes will run from 1 to 2 and will denote quantities on8k(S

2); we will always use Einstein notation on
summation over indexes. Given a smooth immersion 8 : S2 ↪→ (M, g), we call g =8∗(g) the pullback
metric, dvolg the induced area form, and Hg,8 the mean curvature and

Wg(8) :=

∫
S2
|Hg,8|

2 dvolg

is the Willmore functional.
Now let (8k) be a sequence of smooth immersions from S2 into M . Under our working assumptions,

where diamg(�) is the diameter of the subset � of M with respect to the metric g, we will always have

εk := diamg(8k(S
2))→ 0, (7)

Wg(8k) :=

∫
S2
|Hg,8k |

2 dvolgk ≤ 8π − 2δ for some δ > 0 independent of k, (8)

where dvolgk is the area form on S2 associated to the pullback metric gk =8
∗

k(g) and Hg,8k is the mean
curvature of 8k .

Notice that in case M is compact then (7) is sufficient to ensure that, up to subsequences, 8k(S
2)

converges to a point p ∈ M in Hausdorff distance sense; but since there is no further reason to restrict
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to a compact ambient manifold, we assume the convergence to p in the hypothesis of our main results
instead of a compactness assumption on M .

In order to efficiently handle the geometric quantities, we need good coordinates; let us now introduce
them. Take coordinates (xµ), µ = 1, 2, 3, around p, and let pk = (p1

k , p2
k , p3

k ) be the center of mass
of 8k(S

2):

pµk =
1

Areag(8k)

∫
S2
8
µ
k dvolgk , µ= 1, 2, 3,

where Areag(8k)=
∫

S2 dvolgk is the area of 8k(S
2). Clearly, up to subsequences, pk→ p.

For every k ∈N, consider the exponential normal coordinates centered in pk and rescale this chart by a
factor 1/εk with respect to the center of these coordinates. Hence, we get a new sequence of immersions
8̃k : S

2 ↪→ (R3, gεk ), in the following simply denoted by 8k , where the metric gεk is defined by

gεk (y)(u, v) := g(εk y)(ε−1
k u, ε−1

k v). (9)

Notice that now we have

Wgεk (8k)≤ 8π − 2δ, diamgεk (8k(S
2))= 1, and 8k(S

2)⊂ Bgεk

(
0, 3

2

)
, (10)

where the first inequality is a consequence of the invariance under rescaling of the Willmore functional
and Bgεk

(
0, 3

2

)
is the metric ball in (R3, gεk ) of center 0 and radius 3

2 . By the classical expression of the
metric in normal coordinates, we get that (see Appendix B in [Laurain 2012])

(gεk )µν(y)= δµν +
1
3ε

2
k Rαµνβ(pk)yα yβ + 1

6ε
3
k Rαµνβ,γ (pk)yα yβ yγ + o(ε3

k ), (11)

the inverse metric is

(gεk )
µν(y)= δµν − 1

3ε
2
k Rαµνβ(pk)yα yβ − 1

6ε
3
k Rαµνβ,γ (pk)yα yβ yγ + o(ε3

k ), (12)

the volume form of gεk can be written as√
|gεk |(y)= 1− 1

6ε
2
k Ricαβ(pk)yα yβ − 1

12ε
3
k Ricαβ,γ (pk)yα yβ yγ + o(ε3

k ), (13)

and the Christoffel symbols of gεk can be expanded as

(0εk )
γ

αβ(y)= Aαβγµ(pk)yµε2
k + Bαβγµν(pk)yµyνε3

k + o(ε3
k ), (14)

where Aαβγµ(pk)=
1
3(Rβµαγ (pk)+ Rαµβγ (pk)) and Bαβγµν(pk)=

1
12(2Rβµαγ,ν(pk)+ 2Rαµβγ,ν(pk)+

Rβµνγ,α(pk)+ Rαµνγ,β(pk)− Rαµνβ,γ (pk)).

Since by (11) the metric gεk is close to the euclidean metric in the C∞-norm on Bg0(0, 2), where
Bg0(0, 2) is the euclidean ball in R3 of center 0 and radius 2, recalling (10), we get the following lemma:

Lemma 2.1. Let gεk be the metric defined in (9) having the form (11); let 8k : S
2 ↪→ (R3, gεk ) be smooth

immersions with 8k(S
2)⊂ Bgεk (0, 2) satisfying

Wgεk (8k)≤ 8π − 2δ for some δ > 0.
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Then, for k large enough, we have

Wg0(8k)≤ 8π − δ, 1
2 ≤ diamg0(8k(S

2))≤ 2, and 8k(S
2)⊂ Bg0(0, 2), (15)

where g0 is the euclidean metric on R3, Wg0 is the euclidean Willmore functional, and Bg0(0, 2) is the
euclidean ball of center 0 and radius 2 in R3. It follows that, for large k, 8k : S

2 ↪→ (R3, gεk ) is a smooth
embedding and that there exist constants C1,C2 > 0 such that

0<
1

C1
≤

1
C2

Areag0(8k)≤ Areagεk (8k)≤ C2 Areag0(8k)≤ C1 <∞. (16)

Proof. The properties expressed in (15) follow from (10) by a direct estimate of the remainders given by
the curvature terms of the metric gεk ; for such estimates, we refer to Lemmas 2.1–2.4 in [Mondino and
Schygulla 2014].

It is classically known that, if the Willmore functional of an immersed closed surface in (R3, g0) is
strictly below 8π , then the immersion is actually an embedding (see [Li and Yau 1982] or [Simon 1993]),
so our second statement follows.

In order to prove (16), let us recall Lemma 1.1 in [Simon 1993] stating that√
Areag0(8k)

Wg0(8k)
≤ diamg0 8k(S

2)≤ C
√

Areag0(8k)Wg0(8k) for some universal C > 0,

which, combined with the bound on diamg0(8k(S
2)) and Wg0(8k) expressed in (15), gives that there

exists a constant C0 > 0 such that

0<
1

C0
≤ Areag0(8k)≤ C0 <∞;

the desired chain of inequalities (16) follows then by estimating the remainders as in Lemma 2.2 in
[Mondino and Schygulla 2014]. �

2A. The area-constrained Willmore equation and an estimate of the Lagrange multiplier. In the rest
of the paper, we will work with area-constrained Willmore immersions, i.e., critical points of the Willmore
functional under the constraint that the area is fixed. If 8 : S2 ↪→ (M, g) is a smooth area-constraint
Willmore immersion, then it satisfies the following PDE (see for instance Section 3 in [Lamm et al. 2011]
for the derivation of the equation)

4g Hg,8+ Hg,8|A◦g,8|
2
g + Hg,8 Ricg(Eng,8, Eng,8)= λHg,8 (17)

for some λ ∈ R, where Eng,8 is a normal unit vector to 8(S2)⊂ (M, g), (A◦g,8)i j is the traceless second
fundamental form (A◦g,8)i j = (Ag,8)i j − gi j Hg,8 (of course (Ag,8)i j is the second fundamental form
of 8 in (M, g)), and |A◦g,8|

2
g = gik g jl(A◦g,8)i j (A◦g,8)kl is its norm with respect to the metric g =8∗g.

Now let (8k) be a sequence of smooth area-constrained Willmore immersions of S2 into (M, g)
satisfying (7)–(8); perform the rescaling procedure described above, and obtain the immersions (8̃k)

of S2 into (R3, gεk ) (for simplicity denoted again with 8k from now on), where gεk is defined in (9),
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satisfying (10). Since the Willmore functional is scale invariant, the rescaled surfaces are still area-
constrained Willmore surfaces, so they satisfy the equation

4gεk Hgεk ,8k + Hgεk ,8k |A
◦

gεk ,8k
|
2
gεk
+ Hgεk ,8k Ricgεk (Engεk ,8k , Engεk ,8k )= λk Hgεk ,8k . (18)

The first step in our arguments is to show that the Lagrange multipliers λk are controlled by ε2
k . Let us

mention that this was already proved in [Lamm and Metzger 2013], the idea being to use the invariance
under rescaling of the Willmore functional. Here we slightly modify the proof in [Lamm and Metzger
2013] by exploiting the divergence structure of the Willmore equation in Riemannian manifolds discovered
in [Mondino and Rivière 2013] (let us stress that the divergence structure of the Willmore equation in
euclidean setting was a breakthrough by Rivière [2008]).

Lemma 2.2. Let (8k) be a sequence of smooth area-constrained Willmore immersions of S2 into (R3, gεk ),
where gεk has the form (11) with εk → 0 and 8k(S

2) ⊂ Bg0(0, 2), the euclidean ball of center 0 and
radius 2.

Then the Lagrange multipliers λk appearing in (18) satisfy

sup
k∈N

|λk |

ε2
k
<∞. (19)

Proof. Since (8k) are area-constrained Willmore immersions, for every variation vector field EX on R3,
we have that

δ EX Wgεk (8k)= λkδ EX Areagεk (8k), (20)

where δ EX W and δ EX Area are the first variations of the Willmore and the Area functionals corresponding
to the vector field EX . Observe that the vector field corresponding to the dilations in R3 is the position
vector field Ex , so the first variation of the euclidean Willmore functional in R3 with respect to Ex is null:
δEx Wg0 = 0; on the other hand, the first variation of euclidean area with respect to the Ex variation is easy
to compute using the tangential divergence formula:

δEx Areag0(8)=−2
∫

S2
〈 EH , Ex〉g0 dvolg0 =

∫
S2

div8,g0 Ex dvolg0 = 2 Areag0(8),

where div8,g0 is the tangential divergence on 8(S2) with respect to the euclidean metric. The two
euclidean formulas give the well known fact that every area-constraint Willmore surface is actually a
Willmore surface.

In the present framework, the ambient metric gεk is a perturbation of order ε2
k of the euclidean metric g0,

so it is natural to expect that the Lagrange multiplier maybe does not vanish but at least is of order ε2
k .

Let us prove it. First of all, by the expansion of the Christoffel symbols (14), it follows that the covariant
derivative in metric gεk of the position vector field Ex has the form

∇
gεk Ex = Id+O(ε2

k ). (21)
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It follows that the tangential divergence of Ex on 8k(S
2) with respect to the metric gk is div8,gεk Ex =

2+ O(ε2
k ), and by the tangential divergence formula, we obtain as before

δEx Areagεk (8)=−2
∫

S2
〈 EH8k ,gεk , Ex〉gεk dvolgεk =

∫
S2

div8k ,gεk Ex dvolgεk = [2+ O(ε2
k )]Areagεk (8k);

recalling the uniform area bound given in (16), we get that there exists C > 0 such that

0≤
1
C
≤ δEx Areagεk (8)≤ C <∞. (22)

Now let us compute the variation of the Willmore functional with respect to the variation Ex :

δEx Wgεk (8k)=

∫
S2
〈Ex, En〉gεk (4gεk H + H |A◦|2+ H Ric(En, En)) dvolgεk , (23)

where of course all the quantities are computed on 8k and with respect to the metric gεk . In order to
continue the computations, it is useful to rewrite the first variation of W in divergence form. Up to
a reparametrization, we can assume that 8k are conformal so that the following identity holds (see
Theorem 2.1 in [Mondino and Rivière 2013]):

[4gεk H En+ EH |A◦|2− R⊥8(T8)] dvolgεk = D∗
[
∇H En− 1

2 H DEn+ 1
2 H ?gεk (En ∧ D⊥En)

]
, (24)

where EH = H En is the mean curvature vector of the immersion 8k , ?gεk is the Hodge operator associated
to metric gεk , D · := (∇∂x18k · ,∇∂x28k · ) and D⊥ · := (−∇∂x28k · ,∇∂x18k · ), and D∗ is an operator acting
on couples of vector fields ( EV1, EV2) along (8k)∗(T S2) defined as

D∗( EV1, EV2) := ∇∂x18k
EV1+∇∂x28k

EV2.

Finally R⊥8k
(T8k) := (Riem(Ee1, Ee2) EH)⊥= ?gεk (En∧Riemh(Ee1, Ee2) EH), where Eei = ∂xi8/|∂xi8| for i = 1, 2.

Plugging (24) into (23) and integrating by parts, we obtain

δEx Wgεk (8k)=

∫
S2

〈
−DEx,∇H En− 1

2 H DEn+ 1
2 H ?gεk (En ∧ D⊥En)

〉
gεk

dvolS2

+

∫
S2
〈Ex, R⊥8(T8k)+ EH Ric(En, En)〉gεk dvolgεk . (25)

Since the Riemannian curvature tensor of the metric gεk is of order O(ε2
k ) and both the curvature terms

are linear in H , using Schwartz inequality, the integral in the second line can be estimated as∫
S2
〈Ex, R⊥8k

(T8k)+ EH Ric(En, En)〉gεk dvolgεk = O(ε2
k )(Wgεk (8k)Areagεk (8k))

1/2
= O(ε2

k ). (26)

The first line of the right hand side of (23) can be written explicitly as∫
S2

〈
−∂x18k − E0

gεk
αβ (∂x18αk )8

β, (∂x1 H)En+ 1
2 H A j

1(∂x j8k)+
1
2 H A j

2 ?gεk (En ∧ ∂x j8k)
〉
gεk

dvolS2

+

∫
S2

〈
−∂x28k − E0

gεk
αβ (∂x28αk )8

β, (∂x2 H)En+ 1
2 H A j

2(∂x j8k)−
1
2 H A j

1 ?gεk (En∧ ∂x j8k)
〉
gεk

dvolS2 . (27)
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Recalling that ?gεk (En∧ ∂x18k)= ∂x28k and ?gεk (En∧ ∂x28k)=−∂x18k , we obtain that all terms obtained
doing the scalar product with−∂x18k in the first line and with−∂x28k in the second line simplify and just
the terms containing the Christoffel symbols remain; since 8k ⊂ Bγεk (0, 2) and the Christoffel symbols
are of order O(ε2

k ) by (14), (27) can be written as∫
S2
−

2∑
i=1

〈E0
gεk
αβ (∂x i8αk )8

β, (∂x i H)En〉 dvolS2 + O(ε2
k )

∫
S2
|H8k ,gεk ||A8k ,gεk | dvolgεk ; (28)

using Schwartz inequality, of course, the second summand can be bounded by

O(ε2
k )

(∫
S2
|H8k ,gεk |

2 dvolgεk

)1/2(∫
S2
|A8k ,gεk |

2 dvolgεk

)1/2

= O(ε2
k ), (29)

where we used the Gauss equations, Gauss–Bonnet theorem, and area bound (16) to infer that∫
S2
|A8k ,gεk |

2 dvolgεk ≤ C(Wgek
(8k)+ 1)≤ C1.

In order to estimate the first integral of (28), we integrate by parts the derivative on H and we recall (14),
obtaining∫

S2
−

2∑
i=1

〈E0
gεk
αβ (∂x i8αk )8

β, (∂x i H)En〉 dvolS2 = O(ε2
k )

∫
S2
(|H8k ,gεk | + |H8k ,gεk ||A8k ,gεk |) dvolgεk

= O(ε2
k )(Wgεk (8k))

1/2
[
(Areagεk (8k))

1/2
+

(∫
S2
|A8k ,gεk |

2 dvolgεk

)1/2]
= O(ε2

k ). (30)

Collecting (25)–(30), we obtain that

δEx Wgεk (8k)= O(ε2
k ).

Combining the last equation with (22) and (20), we obtain that λk = O(ε2
k ) as desired. �

3. The blow-up analysis and the proof of the main theorem

3A. Existence of just one bubble and convergence.

Lemma 3.1. Let gεk be the metrics on R3 defined in (9) having the expression (11), and let (8k) be
area-constrained Willmore immersions of S2 into (R3, gεk ) satisfying (10); without loss of generality, we
can assume 8k to be conformal with respect to the euclidean metric g0. Up to a rotation in the domain,
we can also assume that, for every k ∈ N, the north pole N ∈ S2 is the maximum point of the quantity
|∇8k |

2
+ |∇

28k |:

µk := |∇8k |
2
h(N )+ |∇

28k |h(N )=max
S2
|∇8k |

2
h + |∇

28k |h,

where h is the standard round metric of S2 of constant Gauss curvature equal to 1 and |∇8k |h and
|∇

28k |h are the norms evaluated in the h metric.
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With S ∈ S2 the south pole and P : S2
\ {S} → R2 the stereographic projection, consider the new

parametrizations 8̃k , in the following simply denoted with 8k , defined by

8̃k(P−1(z)) :=8k

(
P−1

(
z

µ
1/2
k

))
for all z ∈ R2.

Then 8̃k , a priori just defined on S2
\ {S}, extend to smooth conformal immersions of S2 into (R3, g0)

and converge to a conformal parametrization of a round sphere in the C l(S2, h)-norm for every l ∈ N.

Proof. Step a. There exists a smooth conformal parametrization 8∞ : S2
→ (R3, g0) of a round

sphere in R3 endowed with the euclidean metric g0 such that, up to subsequences, 8̃k → 8∞ in the
C l

loc(S
2
\ {S})-norm for every l ∈ N.

Denote by uk the conformal factor associated to 8̃k , i.e.,

8̃∗k(g0)= e2uk h,

where g0 is the euclidean metric in R3. Observe that, by construction, for any compact subset of the form

K := S2
\ Bh

δ (S) for some δ > 0,

there holds
sup
k∈N

sup
K
(|∇8̃k |

2
h + |∇

28̃k |h) <∞. (31)

Then for every compact subset, there exists a constant CK depending just on K such that, for every x0 ∈ K
and every ρ ∈ (0, dist(K , S)/2),

sup
k∈N

sup
Bh
ρ (x0)

|∇
28̃k |

2
≤ CK ,

where Bh
ρ (x0) is the ball of center x0 and radius ρ in the metric h. By the conformal invariance of the

Dirichlet energy, with π
Ẽnk

the projection on the normal space to 8̃k , we infer that for every ε0 > 0 there
exists ρε0,K > 0 (small enough) depending just on K and on ε0 but not on k ∈ N such that, for every
ρ ∈ (0, ρε0,K ) and x0 ∈ K ,∫

Bh
ρ (x0)

|∇ Ẽnk |
2
8̃∗k (g0)

dvol8̃∗k (g0)
=

∫
Bh
ρ (x0)

|∇ Ẽnk |
2
h dvolh =

∫
Bh
ρ (x0)

|π
Ẽnk
(∇28̃k)|

2
h dvolh

≤

∫
Bh
ρ (x0)

|∇
28̃k |

2
h dvolh ≤ CKρ

2
≤ ε0. (32)

Taking ε0 ≤
8
3π , for any x0 ∈ K and ρ < ρε0,K , we can apply the Hélein moving frame method based on

Chern construction of conformal coordinates (for more details, see [Rivière 2013, Section 3]) and infer
that, up to a reparametrization of 8̃k on Bρ(x0), with uk the mean value of uk on Bh

ρ (x0),

‖uk − uk‖L∞(Bh
ρ (x0)) ≤ C̃

for some C̃ > 0 independent of k ∈ N. Covering K by finitely many balls as above, the connectedness
of K implies that any two balls of the finite covering are connected by a chain of balls of the same
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covering and therefore there exists constants ck,K ∈ R and k ∈ N such that

sup
k∈N

‖uk − ck,K‖L∞(K ) <∞. (33)

Observe that supk∈N ck,K < +∞; indeed, if lim supk ck,K = +∞, then lim supk Area(8̃k(K )) = +∞,
contradicting the area bound (16) (here we use that K has positive h-volume). Now let us consider
separately the cases supk |ck,K |<∞ and lim infk ck,K =−∞.

Case 1: supk |ck,K |<∞. Estimate (33) yields a uniform bound on the conformal factors uk on the subset K .
Since by assumption the immersions 8̃k are area-constrained Willmore immersions satisfying (32) with
arbitrarily small Lagrange multipliers thanks to Lemma 2.2, then by ε-regularity,2 we infer that for every
l ∈ N there exists Cl such that

|e−luk∇
l8̃k |L∞(Bh

ρ/2(x0))
≤ Cl

(∫
Bh
ρ (x0)

|∇ Ẽnk |
2
h dvolh + 1

)1/2

≤ Ĉl,

and therefore, by the assumed uniform bound on |uk | and by covering K by finitely many balls, we get

sup
k∈N

|∇
l8̃k |L∞(K ) <∞ for all l ∈ N. (34)

By the Arzelà–Ascoli theorem and by the estimate on the Lagrange multipliers given in Lemma 2.2,
up to subsequences, the maps 8̃k converge in the C l(K )-norm, for every l ∈ N, to a limit Willmore
immersion 8̃∞ of K into (R3, g0); repeating the above argument to K = S2

\ Bh
δ (S), for every δ > 0,

we get that, up to subsequences, the maps 8̃k converge in the C l
loc(S

2
\ {S})-norm, for every l ∈ N, to a

limit Willmore immersion 8∞ : S2
\ {S}→ R3, a smooth Willmore conformal immersion with finite area

and L2-bounded second fundamental form; therefore, by Lemma A.5 in [Rivière 2014] (let us mention
that this result was already present in [Müller and Šverák 1995]; see also [Kuwert and Li 2012]), the
map 8∞ can be extended up to the south pole S to a possibly branched immersion; i.e., the south pole S
is a possible branch point for 8∞ and the following expansion around S holds:

(C − o(1))|z|n−1
≤

∣∣∣∂8∞
∂z

∣∣∣≤ (C + o(1))|z|n−1, (35)

where z is a complex coordinate around the south pole and n− 1 is the branching order. We claim that
the branching order is 0 or in other words that 8∞ is unbranched; indeed, by the strong convergence
of 8̃k to 8∞ and the smooth convergence of gεk to the euclidean metric g0, we have that

Wg0(8∞)≤ lim inf
k

Wgεk (8̃k) < 8π; (36)

2 Note that ε-regularity for Willmore immersions was first proved by Kuwert and Schätzle [2001]. Here we use the ε-
regularity theorem proved by Rivière (see Theorem I.5 in [Rivière 2008]; see also Theorem I.1 in [Bernard and Rivière 2014]);
to this aim, observe that the ε-regularity theorem was stated for Willmore immersions, but the proof can be repeated verbatim
to area-constrained Willmore immersions in metric gεk : indeed the Lagrange multiplier λ EH and the Riemannian terms are
lower-order terms that can be absorbed in the already present error terms Eg1 and Eg2 in the proof of Theorem I.5 at pp. 24–26 in
[Rivière 2008]. Of course, ε-regularity is a consequence of the ellipticity of the equation.



CONCENTRATION OF SMALL WILLMORE SPHERES IN RIEMANNIAN 3-MANIFOLDS 1913

therefore, by the Li–Yau inequality [1982], we get that n− 1= 0, i.e., 8∞ is an immersion also at the
south pole S. Since 8∞ is a smooth Willmore immersion of S2 into R3 with energy less than 8π , by the
classification of Willmore spheres by Bryant [1984], 8∞ is a smooth conformal parametrization of a
round sphere in R3.

Case 2: lim infk ck,K = −∞. This cannot happen. In this case, up to subsequences, we have that
8̃k(K )→ x ∈ M in Hausdorff distance sense. Consider then the rescaled immersions

8̂k := e−ck,K 8̃k (37)

of K , and observe that by construction supk |ûk,K | < ∞, where ûk,K is the conformal factor of 8̂k .
Moreover, since the integrals appearing in (32) are invariant under rescaling, estimate (32) holds for 8̂k as
well. Therefore, up to a diagonal extraction, 8̂k→8∞ in the C l

loc(S
2
\ {S})-norm. In particular, 8̃k→ 0

in the C2
loc(S

2
\ {S})-norm, which contradicts the fact that

|∇8̃k |
2
h(N )+ |∇

28̃k |h(N )= 1.

Step b. 8̃k→8∞ in C l(S2) for every l ∈ N; namely, the convergence of Step a is on the whole S2.
Observe that, if there exists ρ > 0 such that supk supBh

ρ (S)
|∇8̃k |

2
+ |∇

28̃k |<∞, then in Step a, we
can choose as compact subset K the whole S2 and the claim of Step b follows by the same arguments as
Step a. So assume by contradiction that there exists a sequence ρk ↓ 0 such that, for

µk := sup
Bh
ρk
(x)
|∇8̃k |

2
+ |∇

28̃k |,

one has

lim sup
k

µk =+∞.

By a small rotation in the domain S2, we can assume that, for every k ∈ N, the maximum of |∇8̃k |
2
+

|∇
28̃k | on Bh

ρk
(S) is attained at the south pole S and that, up to subsequences in k,

lim
k
µk := lim

k
|∇8̃k |

2(S)+ |∇28̃k |(S)=+∞. (38)

Analogously to the above, with PN : S
2
\ {N } → R2 the stereographic projection centered at the north

pole N , we consider the reparametrized immersions

8k(P−1
N (z)) := 8̃k

(
P−1

N

(
z

µ
1/2
k

))
.

Observe that, in this way, the compact subsets K considered above are shrinking towards the north pole N
and, by the arguments above, their 8k-images are converging to a round sphere; repeating the arguments
above to compact subsets this time containing the south pole S and avoiding the north pole N , we infer
that, up to subsequences, 8k (or a further rescaling of it) converges smoothly, away the north pole N , to
a round sphere, namely a second bubble. Combining the bubble formed in Step a and this second bubble,
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since each bubble contributes 4π of Willmore energy, we infer that

lim sup
k

Wgεk (8k)≥ 8π, (39)

contradicting the assumption (10). This concludes the proof of the Step b and of the lemma. �

3B. Expansion of the equation. Recalling that 8k : S
2 ↪→ (R3, gεk ) is a smooth immersion satisfying

the area-constrained Willmore equation in metric gεk and that gεk smoothly converge to the euclidean
metric g0, in the present section, we expand this differential equation with respect to εk . Without loss of
generality, we can assume that 8k is conformal with respect to the metric gεk . We will see that curvature
terms appear at ε2

k order while the derivatives of the curvature appear at ε3
k order.

From now on, in order to make the notation a bit lighter, we replace εk by ε.
Recall that the area-constrained Willmore equation in metric gε has the form

4gε Hε + Hε|A◦ε|
2
gε +Ricgε(Enε, Enε)Hε = λεHε. (40)

Since 4gε = (2/|∇8ε|
2
gε)1, where 1 is the flat laplacian in R2, multiplying (40) by |∇8ε|2gε/2, we get

1Hε + 1
2 |∇8ε|

2
gε Hε|A◦ε|

2
gε +

1
2 |∇8ε|

2
gε Hε Ricgε(Enε, Enε)=

1
2λε|∇8ε|

2
gε Hε. (41)

First of all, recalling that Hε = gε(4gε8ε, Enε)/2, we expand Hε as

Hε =
1

|∇8ε|2gε
(gε)αβ48αε

√
|gε|gβγε (Eνε)γ =

√
|gε|

|∇8ε|2gε
48αε Eνεα, (42)

where Eνε is the inward-pointing unit normal with respect to g0. Using (11) and (13), we get

|∇8ε|
2
gε =|∇8ε|

2
+

1
3ε

2 Rαβγ η(pk)8
β
ε8

γ
ε 〈∇8

α
ε ,∇8

η
ε〉+

1
6ε

3 Rαβγ η,µ(pk)8
β
ε8

γ
ε8

µ
ε 〈∇8

α
ε ,∇8

η
ε〉+O(ε4)

so that

1
|∇8ε|2gε

=
1

|∇8ε|2

(
1−

ε2

3|∇8ε|2
Rαβγ η(pk)8

β
ε8

γ
ε 〈∇8

α
ε ,∇8

η
ε〉

−
ε3

6|∇8ε|2
Rαβγ η,µ(pk)8

β
ε8

γ
ε8

µ
ε 〈∇8

α
ε ,∇8

η
ε〉+ O(ε4)

)
; (43)

moreover, √
|gε| = 1− 1

6ε
2 Ricαβ(pk)8

α
ε8

β
ε −

1
6ε

3 Ricαβ,γ (pk)8
α
ε8

β
ε8

γ
ε + O(ε4). (44)

Combining (42) with (43) and (44), we can write

Hε =
48αε Eνεα

|∇8ε|2
(1+ ε2Sε + ε3Tε + O(ε4)), (45)

where

Sε := −
1

3|∇8ε|2
Rαβγ η(pk)8

β
ε8

γ
ε 〈∇8

α
ε ,∇8

η
ε〉−

1
6 Ricαβ(pk)8

α
ε8

β
ε

and

Tε := −
1

6|∇8ε|2
Rαβγ η,µ(pk)8

β
ε8

γ
ε8

µ
ε 〈∇8

α
ε ,∇8

η
ε〉−

1
6 Ricαβ,γ (pk)8

α
ε8

β
ε8

γ
ε .
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The combination of (44) and (45) gives

Ricgε(Enε, Enε)Hε = ε
248

α
ε Eνεα

|∇8ε|2
Ricg(pk)(Eνε, Eνε)+ O(ε4). (46)

Finally, using (45), (46), and (19), we expand (41) up to ε2 order (the term Hε|A◦ε|
2
gε will be expanded in

the next subsection) as

1Hε + 1
2 |∇8ε|

2
gε Hε|A◦ε|

2
gε +

1
2 |∇8ε|

2
gε Hε Ricgε(Enε, Enε)− λεHε 1

2 |∇8ε|
2
gε

=1

(
18αε Eνεα

|∇8ε|2

)
+ ε2

(
1

(
18αε Eνεα

|∇8ε|2

)
Sε + 2

〈
∇

(
18αε Eνεα

|∇8ε|2

)
,∇Sε

〉
+
18αε Eνεα

|∇8ε|2
1Sε

)
+

1
2 |∇8ε|

2
gε Hε|A◦ε|

2
gε +

1
2ε

218αε Eνεα Ricg(p)(Eνε, Eνε)− 1
2λε18

α
ε Eνεα + o(ε2). (47)

3C. Approximated solutions to the area-constrained Willmore equation. In this section, we solve (47)
up to the ε2 order. For this, let ω be the inverse of the stereographic projection with respect to the north
pole and notice that ω is a solution of the equation when ε = 0. We make the ansatz of looking for a
solution up to the order ε2 of the form ω+ε2ρ for some function ρ. Since |A◦|2 = 0 for ω, it is clear that

Hε|A◦ε|
2
gε = O(ε4); (48)

in particular, since for our arguments it is enough to expand the equation up to ε3 order, this term will
never play a role and therefore will be neglected.

Observing that 1ωαωα/|∇ω|2 ≡−1, (47) implies that ρ must solve

Lω(ρ)=1
( 1

3|∇ω|2
Rαβγµ(pk)ω

βωγ 〈∇ωα,∇ωµ〉+ 1
6 Ricαβ(pk)ω

αωβ
)

−
1
2 |∇ω|

2 Ricαβ(pk)ω
αωβ +

λε

2ε2 |∇ω|
2, (49)

where Lω is the linearized Willmore operator at ω; see the Appendix for more details. Using the identity

〈∇ωα,∇ωβ〉 = (δαβ −ω
αωβ) 1

2 |∇ω|
2, (50)

(49) reduces to

Lω(ρ)= 1
31(Ricαβ(pk)ω

αωβ)− 1
2 |∇ω|

2 Ricαβ(pk)ω
αωβ +

λε

2ε2 |∇ω|
2

=

(
−Ricαβ(pk)ω

αωβ +
( λε

2ε2 +
1
3 Scal(pk)

))
|∇ω|2.

(51)

Hence, we easily check that

ρε =
1
3 Ricαβ(pk)ω

β
+
λε

ε2 f (r)ω (52)

with

f (r)=
r2 ln(r2/(1+ r2))− 1− ln(1+ r2)

1+ r2 ,
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where r2
= x2
+ y2, is the desired function. Moreover, it is not difficult to check that this perturbed ω

satisfies the conformal conditions up to ε2 order, that is to say{
gε((ω+ ε2ρε)x , (ω+ ε

2ρε)x)− gε((ω+ ε2ρε)y, (ω+ ε
2ρε)y)= O(ε3),

gε((ω+ ε2ρε)x , (ω+ ε
2ρε)y)= O(ε3);

(53)

a way to prove it is to use the expansion of the metric with the fact that in dimension 3 one has

Rαβγµ = (gαγ Ricβµ−gαµ Ricβγ +gβµ Ricαγ −gβγ Ricαµ)+ 1
2 Scal(gαµgβγ − gαγ gβµ).

3D. Proof of Theorem 1.2. Let us briefly recall the setting. Let8k :S
2 ↪→ (M, g) be conformal Willmore

immersions satisfying

ε := diamg(8k(S
2))→ 0, (54)

Wg(8k) :=

∫
S2
|Hg,8k |

2 dvolgk ≤ 8π − 2δ for some δ > 0 independent of k. (55)

Thanks to Lemma 2.2, we associate to 8k the new immersion 8ε : S2 ↪→ (R3, gε), where gε(y)(u, v) :=
g(εy)(ε−1u, ε−1v), which satisfies the area-constrained Willmore equation

4gε Hgε,8ε + Hgε,8ε |A
◦

gε,8ε |
2
gε + Hgε,8ε Ricgε(Engε,8ε , Engε,8ε)= λεHgε,8ε (56)

with λε = O(ε2). Moreover, by Lemma 3.1, we know that, up to conformal reparametrizations and up to
subsequences, we have

8ε→8 in C2(S2),

where8 is a conformal diffeomorphism of S2. Clearly, up to reparametrizing our sequence, we can assume
that 8= Id. In the following, we perform all the computations in the chart given by the stereographic
projection (which is conformal); we denote by ω the inverse of the stereographic projection.

Before proceeding with the proof, we need to make a small adjustment to the immersions. We claim
that there exist aε ∈ R2, bε ∈ R2, Rε ∈ SO(3), and zε ∈ C satisfying

aε = o(1), bε = o(1), |Id−Rε| = o(1), and zε = o(1) (57)

such that, up to replacing 8ε by 8ε(aε + zε · ) and �ε = ωε + ε2ρε, where ρε is given by (52), by
Rε[ω( · + bε)+ ε2ρε( · + bε)], we get

|∇8ε| and |∇�ε| are maximal at 0, Vect{8εx(0),8
ε
y(0)} = Vect{�εx(0),�

ε
y(0)},

and 8εx(0)=�
ε
x(0). (58)

This is a simple consequence of the C2
loc(R

2) convergence of 8ε to ω. Indeed, we first choose aε and bε

such that |∇8ε| and |∇�ε| are maximal at 0 and then Rε such that the tangent plane of 8ε and Rε�ε

coincide at 0, and finally we find zε in order to adjust the first derivatives.
Therefore, from now on, we will assume that (58) is satisfied.
Now we prove Theorem 1.2. We set

8ε =�ε + r ε
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for some function r ε, and thanks to the computations of Section 3C, we see that r ε satisfies

Lω(r ε)= O(ε3)+ o(|∇r ε| + |∇2r ε| + |∇3r ε| + |∇4r ε|). (59)

Moreover, combining (53) and (58), we get that

gε(∇r ε,∇r ε)(0)= O(ε6). (60)

Indeed, the error terms of r εx (0) and r εy(0) lie in the plane generated by �εx(0) and �εy(0). So it suffices to
estimate their projection against �εx(0) and �εy(0). But this one vanishes up to the ε3 order thanks to (53).
Observe that we also have

gε(∇2r ε,∇ωε)(0)= O(ε3). (61)

Claim. sup
R2
|∇r ε| + |∇2r ε| + |∇3r ε| + |∇4r ε| = O(ε3).

Proof of the claim. Let us denote µε := |∇r ε| + |∇2r ε| + |∇3r ε| + |∇4r ε|, and assume by contradiction
that lim ε3/µε = 0. Up to a reparametrization, we can assume that this sup is achieved at some point zε
that is confined in a fixed compact subset of R2. In fact, we can do a reparametrization in order to make
this requirement satisfied before performing the adjustments of the previous page. Then we set

r̃ε =
rε − rε(0)

µε
.

By construction, r̃ ε is bounded in the C4-norm on every compact subset of R2, and therefore, by the
Arzelà–Ascoli theorem, it converges up to subsequences to a limit function r̃ in C3

loc-topology. Thanks to
(59), r̃ is a solution of the linearized equation (A-1) and, recalling (60)-(61), satisfies (A-2) with ∇r̃(0)= 0
and 〈∇2r̃ ,∇ω〉(0)= 0. Then, applying Lemma A.1, we get that ∇r̃ ≡ 0, which is in contradiction with
the fact that |∇r̃ | + |∇2r̃ | + |∇3r̃ | + |∇4r̃ | = 1 at some point at finite distance. This proves the claim. �

Mimicking the proof of the claim above, one can prove that by setting

r̃ε =
rε − rε(0)

ε3

then, up to subsequences, r̃ε converges to a function r̃ in C3
loc(R

2) that, using (41), (45), and (46), satisfies
the linearized Willmore equation

Lω(r̃)=1
( 1

6|∇ω|2
Rαβγµ,ν(pk)ω

βωγων〈∇ωα,∇ωµ〉+ 1
6 Ricαβ,γ (pk)ω

αωβωγ
)
.

Recalling identity (50), the last equation can be rewritten as

Lω(r̃)=1
( 1

12 Ricαβ,γ (pk)ω
αωβωγ

)
.

Finally, integrating this relation against the ωα, for α = 1, . . . , 3, which are solutions of the linearized
equation, we get ∫

R2
1ω

( 1
12 Ricαβ,γ (pk)ω

αωβωγ
)

dz = 0.
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Let us note that the integration by parts above has been possible thanks to the decay of ω and its derivatives
at infinity. The last identity gives∫

R2
(Ricαβ,γ (pk)ω

αωβωγ )1
2ω|∇ω|

2 dz = 0.

Then by a change of variable, we get∫
S2
(Ricαβ,γ (pk)(pk)yα yβ yγ )y dvolh = 0,

where h is the standard metric on S2 and yα are the position coordinates of S2 in R3. Finally, using the
relation ∫

S2
yα yβ yγ yµ dvolh = 4

15π(δ
αβδµγ + δαµδβγ + δαγ δβµ)

and the second Bianchi identity, we obtain

∇ Scal(p)= 0,

which proves the theorem. �

Appendix A: The linearized Willmore operator

The aim of this appendix is to derive the linearized Willmore equation and to classify its solution.
The Willmore equation for a conformal immersion 8 into R3 can be written as

W ′(8)=1g(H)+ H |A◦|2g = 0,

where 1g = (2/|∇8|2)1, H is the mean curvature, and A◦ is the traceless second fundamental form.
Equivalently, one has

H = 1
2〈1g8, Eν〉,

where Eν is the inward-pointing unit normal of the immersion 8. Hence, by multiplying the first equation
by |∇8|2/2, we can consider the equivalent equation

W̃ ′(8)=1H +〈18, Eν〉12 |A
◦
|
2
g = 0.

Of course, any conformal parametrization, ω, of a round sphere is a solution. Then expanding W̃ ′(ω+ tρ)
for some function ρ and using the fact that A◦ ≡ 0 for a round sphere, we get

Lω(ρ) := δW̃ω(ρ)=−1
(
〈1ρ,ω〉+ 2〈∇ω,∇ρ〉

|∇ω|2

)
= 0. (A-1)

Also consider the linearization of the conformality condition, which gives{
〈ωx , ρx 〉− 〈ωy, ρy〉 = 0,
〈ωx , ρy〉+ 〈ωy, ρx 〉 = 0.

(A-2)
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In the following lemma, we classify the solutions of the linearized operator following the previous work
[Laurain 2012] concerning the linearized operator for the constant mean curvature equation:3

Lemma A.1. Let ρ ∈ H̊ 2(R2,R3) be a solution of the linearized equation (A-1) that satisfies (A-2) and
the additional normalizing conditions

∇ρ(0)= 0 and 〈∇
2ρ,∇ω〉(0)= 0.

Then ∇ρ ≡ 0.

Proof. First we remark that, thanks to the definition of H̊ 2(R2,R3), we have

〈1ρ,ω〉+ 2〈∇ω,∇ρ〉
|∇ω|2

∈ L2(R2).

Hence, using Liouville’s theorem, we get that

〈1ρ,ω〉+ 2〈∇ω,∇ρ〉 = 0. (A-3)

Then thanks to the fact that (ωx , ωy, ω) is a basis of R3 and (A-2), there exist a, b, c, d :R2
→R such that{

ρx = aωx + bωy + cω,
ρy =−bωx + aωy + dω.

(A-4)

Then plugging (A-4) into (A-3) and using the relation ρxy = ρyx , we see that a, b, c, and d satisfy the
equations

ay + bx = d, (A-5)

by − ax =−c, (A-6)

cy − dx = b|∇ω|2,

cx + dy =−a|∇ω|2.

These equations imply that a and b satisfy

1a =−a|∇ω|2 and 1b =−b|∇ω|2.

Since ρ ∈ H̊ 1(R2,R3), then a and b can be seen as functions in H 1(S2) satisfying 1α = 2α; therefore, a
and b are linear combinations of the first nonvanishing eigenfunctions of 1S2 (see also Lemma C.1 of
[Laurain 2012]); that is to say

a =
2∑

i=0

aiψi and b =
2∑

i=0

biψi ,

where

ψi (x)=
xi

(1+ |x |2)
for i = 1, 2 and ψ0(x)=

1− |x |2

1+ |x |2
.

3In this statement, H̊2(R2,R3) is the pushforward of H2(S2) on R2 via stereographic projection.
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Finally using the facts that ∇ρ(0)= 0 and 〈∇2ρ,∇ω〉(0)= 0, (A-5), and (A-6), we can conclude that
a ≡ b ≡ c ≡ d ≡ 0, which proves the lemma. �
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HOLE PROBABILITIES OF SU.m C 1/ GAUSSIAN RANDOM POLYNOMIALS
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In this paper, we study hole probabilities P0;m.r;N / of SU.mC 1/ Gaussian random polynomials of
degree N over a polydisc .D.0; r//m. When r � 1, we find asymptotic formulas and the decay rate of
log P0;m.r;N /. In dimension one, we also consider hole probabilities over some general open sets and
compute asymptotic formulas for the generalized hole probabilities Pk;1.r;N / over a disc D.0; r/.
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Introduction

Hole probability is the probability that some random field never vanishes over some set. For Gaussian
random entire functions we have this (see also [Zrebiec 2007, Theorem 1.2] for a multivariable result):

Theorem [Sodin and Tsirelson 2005, Theorem 1]. Let  .z/D
P1

kD0 ckzk=
p

k!, where the ck .k � 0/

are i.i.d. standard complex Gaussian random variables. Then there exist constants C1 � C2 > 0 such that

exp f�C1r4
g � Prob

˚
0 62  .D.0; r//

	
� exp f�C2r4

g:

The case of Gaussian random sections was considered in [Shiffman et al. 2008]: Let M be a compact
Kähler manifold with complex dimension m and .L; h/!M a positive holomorphic line bundle. Let 


N

denote the Gaussian probability measure on H 0.M;LN / induced by the fiberwise inner product hN and
the polarized volume form dVM D !

m
h
=m!D ..

p
�1=2�/‚h/

m=m!, where ‚h is the Chern curvature
tensor of .L; h/.

Theorem [Shiffman et al. 2008, Theorem 1.4]. For any nonempty open set U �M , if there exists s in
H 0.M;L/ such that s does not vanish on U , then there exist constants C1 �C2 > 0 such that, for N � 1,

exp f�C1N mC1
g � 
N fsN 2H 0.M;LN / W 0 62 sN .U /g � exp f�C2N mC1

g:

MSC2010: 32A60, 60D05.
Keywords: hole probability, asymptotic, SU(m+1) polynomial.
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Therefore, it is natural to ask: can we find sharp constants C1, C2 in these two theorems, and is it
possible to obtain an asymptotic formula and a decay rate for the hole probability? Using Cauchy’s
integral estimates, Nishry answered this in the random entire function case as follows (an analogous result
for Gaussian random power series is obtained in [Peres and Virág 2005, Corollary 3]).

Theorem [Nishry 2010, Theorem 1]. Let  .z/ D
P1

kD0 ckzk=
p

k!, where the ck .k � 0/ are i.i.d.
standard complex Gaussian random variables. Then

Prob
˚
0 62  .D.0; r//

	
D exp

˚
�

1
2
e2r4

CO.r
18
5 /
	
:

This suggests to us that, for those line bundles with polynomial sections, maybe it is possible to find
an asymptotic formula for the hole probability.

If P0;m.r;N / denotes the hole probability of SU.mC 1/ Gaussian random polynomials over the
polydisc .D.0; r//m, dmx denotes the Lebesgue measure on Rm and

Er .x/ WD 2

mX
iD1

xi log r �

� mX
iD1

xi log xi C

�
1�

mX
iD1

xi

�
log

�
1�

mX
iD1

xi

��
is a continuous function defined over the standard simplex†m WD

˚
xD .x1; : : : ;xm/2RmC W

Pm
iD1 xi�1

	
(here we adopt the convention that 0 log 0D 0), we have the following results:

Theorem 0.1. For r � 1,

log P0;m.r;N /D�N mC1

Z
†m

Er .x/ dmxC o.N mC1/;

where Z
†m

Er .x/ dmx D
2m log r

.mC 1/!
C

1

m!

mC1X
kD2

1

k
:

Theorem 0.2. For r > 0,

log P0;m.r;N /� �N mC1

Z
x2†mWEr .x/�0

Er .x/ dmxC o.N mC1/;

log P0;m.r;N /� �N mC1

Z
x2RmCW

Pm
iD1 xi�˛0

Er .x/ dmxC o.N mC1/;

where ˛0 D ˛0.r;m/ > 0 is defined by

˛0 D ˛0.r;m/D

8<:1 if 2 log r C
Pm

kD2 1=k � 0;

the nonzero root of ˛ D
˛ log˛C .1�˛/ log .1�˛/

2 log r C
Pm

kD2 1=k
if 2 log r C

Pm
kD2 1=k < 0:

Here, when mD 1, we take
Pm

kD2 1=k D 0.

Remark 0.3. Theorem 0.1 can be derived from Theorem 0.2 as, when r � 1, fx 2†m WEr .x/� 0gD†m

and ˛0.r;m/D 1. In fact, we could have proved this general case directly, but the idea of the proof would
turn out to be extremely difficult to follow.
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Corollary 0.4. In the case of m D 1, the following asymptotic formula for the logarithm of the hole
probability over a disc exists for all r > 0:

log P0;1.r;N /D�N 2

Z ˛0

0

Er .x/ dxC o.N 2/I

here Z ˛0

0

Er .x/ dx D 1
2
˛0.2 log r C 1� log˛0/

and ˛0 D ˛0.r; 1/ 2 .0; 1� is given in Theorem 0.2.

Because of the simplicity of the one-dimensional case, we can obtain more about the hole probability
of SU.2/ Gaussian random polynomials:

Theorem 0.5. If U � C is a bounded simply connected domain containing 0 and @U is a Jordan curve,
let � WD.0; 1/! U be a biholomorphism given by the Riemann mapping theorem such that �.0/D 0

(thus � is unique up to the composition of a unitary transformation of C). Then the hole probability
P0;1.U;N / of SU.2/ Gaussian random polynomials of degree N over U satisfies

log P0;1.U;N /� �
�
log j�0.0/jC 1

2

�
N 2
C o.N 2/:

Also, in dimension one, it makes sense to study the number of zeros in some set. So let the generalized
hole probability Pk;1.r;N / be the probability that an SU.2/ Gaussian random polynomial of degree N

has no more than k zeros in D.0; r/; then, the following theorem shows that the asymptotic formula of
log Pk;1.r;N / exists:

Theorem 0.6. For all k � 0 and r > 0,

log Pk;1.r;N /D�1
2
˛0.2 log r C 1� log˛0/N

2
C o.N 2/;

where ˛0 D ˛0.r; 1/ 2 .0; 1� is given in Theorem 0.2.

We should remark here that in all the cases we consider, the event that some Gaussian random
polynomial has zeros on the boundary of some open set is a null set, i.e., of zero probability. Therefore
we do not distinguish between the (generalized) hole probability over an open set and that over its closure.

1. Background

We review in this section some background on SU.m C 1/ Gaussian random polynomials and the
definition of our probability measures. Before that, we define two lexicographically ordered sets that will
be consistently used as index sets throughout this paper.

Definition 1.1. �m;N WD fJ D .j1; : : : ; jm/ 2 Œ0;N �m\Zm
W 0� j1 � � � � � jm �N g;

ƒm;N WD fK D .k1; : : : ; km/ 2 Œ0;N �m\Zm
W jKj D k1C � � �C km �N g:

It is not difficult to show that j�m;N j D jƒm;N j D

�NCm

m

�
.
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The tautological line bundle O.�1/ over the complex projective space CPm is a holomorphic line
bundle with fibers

O.�1/Œx� D C �x for all Œx�D Œx0 W � � � W xm� 2 CPm:

Its dual bundle, denoted by O.1/, is called the hyperplane section bundle, since O.1/ D O.H /, where
the divisor

H D fŒx� 2 CPm
W x0 D 0g

is a hyperplane in CPm. H 0.CPm;O.N //, the space of holomorphic sections of the tensor bundle O.N /D

O.1/˝N , is isomorphic to hPN
mC1

, the space of .mC1/-variable homogeneous polynomials of degree N .
The Fubini–Study metric hFS on O.1/ can be described in the following way: Over the open subset

U0 D fŒx�D Œx0 W � � � W xm� 2 CPm
W x0 ¤ 0g � CPm;

we have a local frame of O.1/,

e.Œx�/D x0:

Set

ke.Œx�/k2hFS
D

jx0j
2Pm

iD0jxi j
2
D
jx0j

2

kxk2
;

which is independent of the choice of representative x of Œx�. In terms of the affine coordinates

z D .z1; : : : ; zm/D

�
x1

x0

; : : : ;
xm

x0

�
over U0,

ke.z/k2hFS
D .1Ckzk2/�1

D

�
1C

mX
iD1

jzi j
2

��1

;

which defines a metric with positive Chern curvature form

!FS D�

p
�1

2�
@N@ log ke.z/k2hFS

D

p
�1

2�
@N@ log .1Cjz1j

2
C � � �C jzmj

2/:

This induces a metric hN
FS on the line bundle O.N / so that

ke˝N .z/k2
hN

FS
D .1Ckzk2/�N :

With the frame e˝N over U0, for any s 2 H 0.CPm;O.N //, represented as p.x0; : : : ;xm/ 2
hPN

mC1
,

we have

p.x0; : : : ;xm/D
p.x0; : : : ;xm/

xN
0

e˝N .Œx�/D p.1; z1; : : : ; zm/e
˝N .Œx�/;

which implies that all the elements in H 0.CPm;O.N // can be viewed over U0 as polynomials in
.z1; : : : ; zm/ of degree at most N .
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Since !FS is positive over CPm, we may take it as a polarized metric form on CPm, and the associated
volume form is dV D!m

FS=m! . Thus, the metric hN
FS together with the volume form dV induce a Hermitian

inner product on the space of holomorphic sections H 0.CPm;O.N //: for all s1; s2 2H 0.CPm;O.N //,

hhs1; s2ii WD

Z
CPm
hs1; s2ihN

FS
dV:

With this inner product, there is an orthonormal basis fSN
K
gKD.k1;:::;km/2ƒm;N

given in local affine
coordinates .z1; : : : ; zm/ over U0 by

SN
K .z/D

p
.N C 1/ � � � .N Cm/

r�N

K

�
zK ;

where we adopt the notations�N

K

�
D

N !

.N � jKj/!k1! � � � km!
; zK

WD z
k1

1
� � � zkm

m :

Thus, H 0.CPm;O.N // is equal to
˚
sN D

P
K2ƒm;N

cK SN
K
W c D .cK /K2ƒm;N

2 C.
NCm

m /
	
. Endow

H 0.CPm;O.N // with the Gaussian probability measure 

N

defined by

d
N .sN / WD �
�.NCm

m /e�kck
2

d
2.NCm

m /c;

where kck2 D
P

K2ƒm;N
jcK j

2 and d2.NCm
m /c denotes the 2

�
NCm

m

�
-dimensional Lebesgue measure.

Then 

N

is characterized by the property that fcK gK2ƒm;N
consists of independent and identically

distributed (i.i.d.) standard complex Gaussian random variables. Then
�
H 0.CPm;O.N //; 


N

�
is called

the ensemble of SU.mC 1/ Gaussian random polynomials of degree N , since the random element sN is
distributionally invariant under SU.mC1/ transformations of CPm. Its hole probability over the polydisc
.D.0; r//m � Cm is

P0;m.r;N /D 
N

˚
sN 2H 0.CPm;O.N // W 0 62 sN

�
.D.0; r//m

�	
D ��.

NCm
m /

Z
c2C.

NCm
m /W062sN ..D.0;r//m/

e�kck
2

d
2.NCm

m /c

D ��.
NCm

m /
Z

c2C.
NCm

m /W062QsN ..D.0;r//m/

e�kck
2

d
2.NCm

m /c;

where QsN .z/D
P

K2ƒm;N
cK

q�
N
K

�
zK . Hereafter, when considering hole probability, we work on QsN

instead of sN for simplicity.

2. Preliminaries

Definition 2.1. Qr;m.N / WD
X

K2ƒm;N

log
h�N

K

�
r2jK j

i
:

Lemma 2.2. Qr;m.N /DN mC1

Z
†m

Er .x/dmxCo.N mC1/D

�
2m log r

.mC 1/!
C

1

m!

mC1X
kD2

1

k

�
N mC1

Co.N mC1/:
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Proof. We can prove inductively that, for k � 1,�
k

e

�k

� k!�
kkC1

ek�1

or, equivalently,
k log k � k � log k!� .kC 1/ log k � .k � 1/: (2-1)

Hence we have

�.kC 1/ log N C .k � 1/� k log k

N
� log k!� �k log N C k for 0� k �N: (2-2)

For all K D .k1; : : : ; km/ 2ƒm;N ,

log
h�N

K

�
r2jK j

i
�NEr

�
K

N

�
D log N !C

mX
iD1

�
ki log

ki

N
� log ki !

�
C

�
.N � jKj/ log

N � jKj

N
� log .N � jKj/!

�
;

Applying (2-1) and (2-2), we then get

log
h�N

K

�
r2jK j

i
�NEr

�
K

N

�
� .N logN�N /�.NCmC1/logNC.N�m�1/D�.mC1/.logNC1/;

log
h�N

K

�
r2jK j

i
�NEr

�
K

N

�
� Œ.NC1/logN�.N�1/��N logNCN D logNC1:

Hence, for all K 2ƒm;N ,ˇ̌̌
log
h�N

K

�
r2jK j

i
�NEr

�
K

N

�ˇ̌̌
� .mC 1/.log N C 1/;

so ˇ̌̌̌
Qr;m.N /�N

X
K2ƒm;N

Er

�
K

N

�ˇ̌̌̌
�

X
K2ƒm;N

ˇ̌̌
log
h�N

K

�
r2jK j

i
�NEr

�
K

N

�ˇ̌̌
� .mC 1/.log N C 1/

�NCm

m

�
D o.N mC1/: (2-3)

Take
Vƒm;N WD fK 2ƒm;N W ki � 1 for 1� i �m and jKj �N �m� 1g �ƒm;N

and
V†m.N / WD

[
K2 Vƒm;N

�
k1

N
;
k1C 1

N

�
� � � � �

�
km

N
;
kmC 1

N

�
�†m:

Then

j Vƒm;N j D

�N �m�1

m

�
;

jƒm;N n
Vƒm;N j D

�NCm

m

�
�

�N �m�1

m

�
DO.N m�1/;

VolRm.†m n
V†m.N //D

1

m!
�N�m

�N �m�1

m

�
DO.N�1/:
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Over †m we have

jEr j � 2jlog r jC
mC1

e
DO.1/I

hence ˇ̌̌̌
N

X
K2ƒm;N

Er

�
K

N

�
�N

X
K2 Vƒm;N

Er

�
K

N

�ˇ̌̌̌
�N jƒm;N n

Vƒm;N j sup
†m

jEr j DO.N m/: (2-4)

As
sup
V†m.N /

krErk �O.log N /;

we haveˇ̌̌̌
N

X
K2 Vƒm;N

Er

�
K

N

�
�N mC1

Z
V†m.N /

Er .x/ dmx

ˇ̌̌̌
�N mC1

X
K2 Vƒm;N

Z�
k1
N
;

k1C1

N

�
�����

�
km
N
;kmC1

N

� ˇ̌̌Er

�
K

N

�
�Er .x/

ˇ̌̌
dmx

�N mC1
�N �m�1

m

�
N�mO.log N /O.N�1/

DO.N m log N /: (2-5)

Moreover,ˇ̌̌̌
N mC1

Z
V†m.N /

Er .x/dmx�N mC1

Z
†m

Er .x/dmx

ˇ̌̌̌
�N mC1 sup

†m

jEr jVolRm.†mn
V†m.N //DO.N m/:

(2-6)
Combining (2-3)–(2-6), we thus obtain

Qr;m.N /DN mC1

Z
†m

Er .x/ dmxCo.N mC1/

DN mC1

Z
†m

2

mX
iD1

xi log r�

� mX
iD1

xi log xiC

�
1�

mX
iD1

xi

�
log

�
1�

mX
iD1

xi

��
dmxCo.N mC1/

DN mC1

�
2m log r

Z
†m

x1 dmx�.mC1/

Z
†m

x1 log x1 dmx

�
Co.N mC1/

D

�
2m log r

.mC1/!
C

1

m!

mC1X
kD2

1

k

�
N mC1

Co.N mC1/: �

Remark 2.3. The scaled lattice .1=N /ƒm;N � Rm tends to †m. Hence Lemma 2.2 is in fact converting
a Riemann sum into a Riemann integral and estimating the error. Such procedures will appear several
times in this paper.

Remark 2.4. The function Er .x/ in the above lemma can also be written as

Er .x/D�bfxg.zr /C log .1Ckzrk
2/;
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where zr D .r; : : : ; r/ 2 Rm and bfxg is the exponential decay rate of the expected mass density of
random L2-normalized polynomials with some prescribed Newton polytope (see Theorem 1.2 and (78)
in [Shiffman and Zelditch 2004]).

Let � D .�1; : : : ; �m/, where �i D .�i;0; : : : ; �i;N / 2 CNC1 for 1� i �m.

Definition 2.5. Wm;N .�/ is the
�
NCm

m

�
�
�
NCm

m

�
matrix with rows indexed by �m;N and columns indexed

by ƒm;N such that, for all J D .j1; : : : ; jm/ 2 �m;N , K D .k1; : : : ; km/ 2 ƒm;N , the .J;K/-entry of
Wm;N .�/ is �K

J
D �

k1

1;j1
� � � �

km

m;jm
.

The next lemma gives the formula for a “Vandermonde-type” determinant.

Lemma 2.6. jdet Wm;N .�/j D

mY
iD1

Y
0�j<k�N

j�i;j � �i;k j
.jCi�1

i�1 /.
N�kCm�i

m�i /:

Proof. For all 1� i �m and 0� j < k �N , the rows of Wm;N .�/ involving �i;j correspond to the set

�
i;j
m;N
D f.j1; : : : ; jm/ 2 �m;N W ji D j g;

while those rows involving �i;k correspond to the set

�
i;k
m;N
D f.j1; : : : ; jm/ 2 �m;N W ji D kg: (2-7)

Let

z�
i;j
m;N
D f.j1; : : : ; Oji ; : : : ; jm/ 2 Œ0;N �m�1

\Zm�1
W 0� j1 � � � � � ji�1 � j � jiC1 � � � � � jm �N g;

z�
i;k
m;N
D f.j1; : : : ; Oji ; : : : ; jm/ 2 Œ0;N �m�1

\Zm�1
W 0� j1 � � � � � ji�1 � k � jiC1 � � � � � jm �N gI

then
j�

i;j
m;N
j D jz�

i;j
m;N
j D

�jCi�1

i�1

��N �jCm�i

m�i

�
;

j�
i;k
m;N
j D jz�

i;k
m;N
j D

�kCi�1

i�1

��N �kCm�i

m�i

�
:

Since, for any 1� i �m,

�m;N D

NG
kD0

�
i;k
m;N

;

we have the equality
NX

kD0

�kCi�1

i�1

��N �kCm�i

m�i

�
D

�NCm

m

�
: (2-8)

Note that

z�
i;j
m;N
\ z�

i;k
m;N

D f.j1; : : : ; Oji ; : : : ; jm/ 2 Œ0;N �m�1
\Zm�1

W 0� j1 � � � � � ji�1 � j < k � jiC1 � � � � � jm �N g

and ˇ̌
z�

i;j
m;N
\ z�

i;k
m;N

ˇ̌
D

�jCi�1

i�1

��N �kCm�i

m�i

�
;
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which means that there are
�
jCi�1

i�1

��
N�kCm�i

m�i

�
pairs of rows; within each pair the only difference between

two rows is �i;j instead of �i;k . Therefore, for all 1� i �m and 0� j < k �N ,

.�i;j � �i;k/
.jCi�1

i�1 /.
N�kCm�i

m�i /
ˇ̌̌

det Wm;N .�/;

and thus
Gm;N .�/ j det Wm;N .�/; (2-9)

where

Gm;N .�/ WD

mY
iD1

Y
0�j<k�N

.�i;j � �i;k/
.jCi�1

i�1 /.
N�kCm�i

m�i /:

Furthermore, for all 1� i �m,

deg�i
Gm;N .�/D

X
0�j<k�N

�jCi�1

i�1

��N �kCm�i

m�i

�

D

NX
kD1

� k�1X
jD0

�jCi�1

i�1

���N �kCm�i

m�i

�

D

NX
kD1

�k�1Ci

i

��N �kCm�i

m�i

�

D

N�1X
k�1D0

�.k�1/C.iC1/�1

.iC1/�1

��.N �1/�.k�1/C.mC1/�.iC1/

.mC1/�.iC1/

�
D

�.N �1/C.mC1/

mC1

�
D

�NCm

mC1

�
; (2-10)

where the second-to-last equality is due to (2-8). On the other hand, for all 1� i �m and 1� k �N ,
the number of K in ƒm;N with ki D k is

�
N�kCm�1

m�1

�
; hence,

deg�i
det Wm;N .�/D

NX
kD1

k
�N �kCm�1

m�1

�
D

�NCm

mC1

�
;

where the second equality is the special case i D 1 in (2-10). Therefore, for all 1� i �m,

deg�i
det Wm;N .�/D deg�i

Gm;N .�/: (2-11)

By (2-9) and (2-11),

det Wm;N .�/D Cm;N Gm;N D Cm;N

mY
iD1

Y
0�j<k�N

.�i;j � �i;k/
.jCi�1

i�1 /.
N�kCm�i

m�i /;

where Cm;N is a constant depending only on m and N . Consider the monomial

gm;N .�/ WD

mY
iD1

NY
kD1

�

Pk�1
jD0 .

jCi�1
i�1 /.

N�kCm�i
m�i /

i;k
D

mY
iD1

NY
kD1

�
.kCi�1

i /.N�kCm�i
m�i /

i;k
I
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then

Gm;N .�/D˙gm;N .�/C � � � :

In the Appendix, we show that the coefficient of gm;N in the expansion of det Wm;N .�/ equals 1, and
therefore Cm;N D˙1. �

3. Proof of Theorem 0.1

To prove Theorem 0.1, it suffices to prove separately the lower and upper bounds

�N mC1

Z
†m

Er .x/ dmxC o.N mC1/� log P0;m.r;N /� �N mC1

Z
†m

Er .x/ dmxC o.N mC1/

Lower bound.

Proof of the lower bound in Theorem 0.1. Recall that QsN .z/D
P

K2ƒm;N
cK

q�
N
K

�
zK . Hence,

jQsN .z/j � jc.0;:::;0/j�
X

K2ƒm;N nf.0;:::;0/g

jcK j

r�N

K

�
r jK j for all zD .z1; : : : ; zm/ 2 .D.0; r//

m: (3-1)

Consider the event �r;m;N :

(i) jc.0;:::;0/j �
p

N ,

(ii) jcK j �
1

2
p

N

q�
N
K

�
r jK j

�
jK jCm�1

m�1

� ; K 2ƒm;N nf.0; : : : ; 0/g.

Then, if �r;m;N occurs, by (3-1) we have that for all z D .z1; : : : ; zm/ 2 .D.0; r//
m,

jQsN .z/j �
p

N �
X

K2ƒm;N nf.0;:::;0/g

q�
N
K

�
r jK j

2
p

N

q�
N
K

�
r jK j

�
jK jCm�1

m�1

�
D
p

N �
X

K2ƒm;N nf.0;:::;0/g

1

2
p

N
�
jK jCm�1

m�1

�
D
p

N �

NX
kD1

1

2
p

N
D

1

2

p
N > 0I

hence

P0;m.r;N /� 
N .�r;m;N /

D 
N .jc.0;:::;0/j �
p

N /
Y

K2ƒm;N nf.0;:::;0/g


N

�
jcK j �

1

2
p

N

q�
N
K

�
r jK j

�
jK jCm�1

m�1

��;
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where 

N
.jc.0;:::;0/j �

p
N / D e�N . Recall that for K 2 ƒm;N nf.0; : : : ; 0/g the standard complex

Gaussian random variables cK satisfy 

N
.jcK j � a/� 1

2
a2 whenever a� 1. Since

1

2
p

N

q�
N
K

�
r jK j

�
jK jCm�1

m�1

� � 1

if r � 1, we thus have


N

�
jcK j�

1

2
p

N

q�
N
K

�
r jK j

�
jK jCm�1

m�1

��� 1

2

�
1

2
p

N

q�
N
K

�
r jK j

�
jK jCm�1

m�1

��2

D
1

8N
�
N
K

�
r2jK j

�
jK jCm�1

m�1

�2 ;
and

log P0;m.r;N /� �N �
X

K2ƒm;N nf.0;:::;0/g

n
log 8C log N C 2 log

�
jKjCm�1

m�1

�
C log

h�N

K

�
r2jK j

io
:

Since

log
�
jKjCm�1

m�1

�
� log

�NCm�1

m�1

�
DO.log N /;

it follows thatX
K2ƒm;N nf.0;:::;0/g

h
log 8C log N C 2 log

�
jKjCm�1

m�1

�i
D

�NCm

m

�
O.log N /D o.N mC1/:

Therefore,

log P0;m.r;N /� �
X

K2ƒm;N nf.0;:::;0/g

log
h�N

K

�
r2jK j

i
C o.N mC1/

D�Qr;m.N /C o.N mC1/

D�N mC1

Z
†m

Er .x/ dmxC o.N mC1/: �

Upper bound. Let ı > 0 be small and � D 1�
p
ı. We shall first treat ı as a small positive constant and

at the end we will let ı! 0C. For the sake of clarity, all the constants C , the big O and little o terms
listed throughout this paper will not depend on ı unless otherwise stated.

Definition 3.1. zj .N / WD �re2�
p
�1j=NC1 for 0� j �N:

For all p 2 ZC, by division with remainder, N C1D q.N /pC l.N /, where q.N / 2 Z, q.N /� 0 and
0 � l.N / < p. For convenience, we drop the dependence on N when there is no chance of confusion.
Since N C 1D l.qC 1/C .p� l/q, for all 1� i �m, define �i D .�i;0; : : : ; �i;N / by

�i;spCt D

�
zt.qC1/Cs if 0� t � l � 1; 0� s � q;

zl.qC1/C.t�l/qCs if l � t � p� 1; 0� s � q� 1:
(3-2)
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Intuitively, (3-2) gives a way to choose points �i;j (j D 0; 1; : : : ) one after another on the circle of
radius �r such that the arguments of each two consecutive points differ approximately by 2�=p. Denote the
permutation of NC1 indices f0; : : : ;N g given by (3-2) by � , i.e., zj D �i;�.j/ for 0� j �N and 1� i �m.

For t 2 f0; : : : ;p� 1g, denote

It D

�
ft.qC 1/; : : : ; t.qC 1/C qg if 0� t � l � 1;

fl.qC 1/C .t � l/q; : : : ; l.qC 1/C .t � l/qC .q� 1/g if l � t � p� 1;

at D tqCminft; lg D
�

t.qC 1/ if 0� t � l � 1;

l.qC 1/C .t � l/q if l � t � p� 1:

I0; : : : ; Ip�1 give a partition of f0; : : : ;N g. Again there is an implicit dependence on N for each term
defined above, and we will indicate this dependence explicitly when necessary. Then

�.j /D .j � at /pC t D

�
Œj � t.qC 1/�pC t if j 2 It ; 0� t � l � 1;

Œj � l.qC 1/� .t � l/q�pC t if j 2 It ; l � t � p� 1;

and, if fj .N /g1
ND1

is a sequence satisfying j .N / 2 It .N / for all N � 1, then

j�N .j .N //�pj .N /C t.N C 1/j � 2p2;

and therefore
�N .j .N //

N C 1
�

�
p

j .N /

N C 1
� t

�
DO.N�1/: (3-3)

Lemma 3.2. With the values of �i given by (3-2),

logjdet Wm;N .�/j Dm
�NCm

mC1

�
log .�r/C

ˇm

p
N mC1

C o.N mC1/;

where ˇm D .1=.m� 1/!/
R 1

0 xm logŒ2 sin.�x/� dx, which is finite for each m� 1 by the comparison test
for improper integrals.

Proof. By Lemma 2.6,

logjdet Wm;N .�/j

D log
� mY

iD1

Y
0�j<k�N

j�i;j��i;k j
.jCi�1

i�1 /.
N�kCm�i

m�i /
�

D

mX
iD1

X
0�j<k�N

�jCi�1

i�1

��N �kCm�i

m�i

��
log

ˇ̌̌̌
�i;j

�r
�
�i;k

�r

ˇ̌̌̌
Clog.�r/

�

D

mX
iD1

X
0��.j/<�.k/�N

��.j /Ci�1

i�1

��N ��.k/Cm�i

m�i

�
log

ˇ̌̌̌
�i;�.j/

�r
�
�i;�.k/

�r

ˇ̌̌̌
Cm

�NCm

mC1

�
log.�r/

D

mX
iD1

X
0��.j/<�.k/�N

��.j /Ci�1

i�1

��N ��.k/Cm�i

m�i

�
log

ˇ̌
e2�
p
�1 j

NC1�e2�
p
�1 k

NC1

ˇ̌
Cm

�NCm

mC1

�
log.�r/;
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where the second part of the third equality is due to (2-10). Now we are going to show that the first term
after the last equality can be approximated by a double integral.

mX
iD1

X
0��.j/<�.k/�N

��.j /Ci�1

i�1

��N ��.k/Cm�i

m�i

�
log

ˇ̌
e2�
p
�1 j

NC1 � e2�
p
�1 k

NC1

ˇ̌
D

mX
iD1

X
0��.j/<�.k/�N

�
.�.j //i�1

.i � 1/!
C o

�
.�.j //i�1

���.N � �.k//m�i

.m� i/!
C o

�
.N � �.k//m�i

��
� log

ˇ̌
1� e2�

p
�1. j

NC1
� k

NC1
/
ˇ̌
: (3-4)

For all 0� j ; k �N , 1� i �m; 0� u; v � p� 1, denote

Ij ;k;N D

�
j

N C 1
;

j C 1

N C 1

�
�

�
k

N C 1
;

kC 1

N C 1

�
;

Lu;v;N D f.j ; k/ 2 Iu � Iv W �.j / < �.k/g;

Tu;v.N /D
[

.j ;k/2Lu;v;N

Ij ;k;N ;

VLu;v;N D f.j ; k/ 2Lu;v;N W j � k ¤˙N and j � k ¤˙1g �Lu;v;N ;

VTu;v.N /D
[

.j ;k/2 VLu;v;N

Ij ;k;N � Tu;v.N /;

and define a function over f.x;y/ 2 .0; 1/� .0; 1/ W x ¤ yg by

gi
u;v.x;y/D .px�u/i�1Œ1� .py � v/�m�i log

ˇ̌
1� e2�

p
�1.x�y/

ˇ̌
:

Then

jLu;v;N n
VLu;v;N j � 2N C 2; (3-5)

VolR2.Tu;v.N / n VTu;v.N //�O.N�1/; (3-6)

1

N C 1
�

ˇ̌̌̌
j � k

N C 1

ˇ̌̌̌
�

N

N C 1
for .j ; k/ 2Lu;v;N ; (3-7)

1

N C 1
� jx�yj �

N

N C 1
for .x;y/ 2 VTu;v.N /; (3-8)

jgi
u;v.x;y/j �O.log N / if

1

N C 1
� jx�yj �

N

N C 1
; (3-9)

krgi
u;v.x;y/k �O.N

1
2 / if

1
p

N C 1
� jx�yj � 1�

1
p

N C 1
: (3-10)

From (3-3), we have
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0��.j/<�.k/�N

.�.j //i�1.N � �.k//m�i log
ˇ̌
1� e2�

p
�1. j

NC1
� k

NC1
/
ˇ̌

D.NC1/m�1
X

0�u;v�p�1

X
.j ;k/2Lu;v;N

�
p

j

N C 1
�uCO.N�1/

�i�1�
1�

�
p

k

N C 1
�v

�
CO.N�1/

�m�i

� log
ˇ̌
1� e2�

p
�1. j

NC1
� k

NC1
/
ˇ̌
: (3-11)

For all 0� u; v � p� 1, by (3-5), (3-7) and (3-9), we get

X
.j ;k/2Lu;v;N

�
p

j

N C 1
�u

�i�1�
1�

�
p

k

N C 1
� v

��m�i

log
ˇ̌
1� e2�

p
�1. j

NC1
� k

NC1
/
ˇ̌

D

X
.j ;k/2Lu;v;N

gi
u;v

�
j

N C 1
;

k

N C 1

�

D

X
.j ;k/2 VLu;v;N

gi
u;v

�
j

N C 1
;

k

N C 1

�
CO.N log N /: (3-12)

Moreover,ˇ̌̌̌
.N C 1/�2

X
.j ;k/2 VLu;v;N

gi
u;v

�
j

N C 1
;

k

N C 1

�
�

“
VTu;v.N /

gi
u;v.x;y/ dx dy

ˇ̌̌̌

�

X
.j ;k/2 VLu;v;N

“
Ij ;k;N

ˇ̌̌̌
gi

u;v.x;y/�gi
u;v

�
j

N C 1
;

k

N C 1

�ˇ̌̌̌
dx dy

D

X
.j ;k/2 VLu;v;N

1p
NC1

�j
j�k
NC1

j�1� 1p
NC1

“
Ij ;k;N

ˇ̌̌̌
gi

u;v.x;y/�gi
u;v

�
j

N C 1
;

k

N C 1

�ˇ̌̌̌
dx dy

C

X
.j ;k/2 VLu;v;N

j
j�k
NC1

j< 1p
NC1

or j j�k
NC1

j>1� 1p
NC1

“
Ij ;k;N

ˇ̌̌̌
gi

u;v.x;y/�gi
u;v

�
j

N C 1
;

k

N C 1

�ˇ̌̌̌
dx dy: (3-13)

Since

#
�
.j ; k/ 2 VLu;v;N W

1
p

N C 1
�

ˇ̌̌̌
j � k

N C 1

ˇ̌̌̌
� 1�

1
p

N C 1

�
� j VLu;v;N j DO.N 2/;

#
�
.j ; k/ 2 VLu;v;N W

ˇ̌̌̌
j � k

N C 1

ˇ̌̌̌
<

1
p

N C 1
or
ˇ̌̌̌

j � k

N C 1

ˇ̌̌̌
> 1�

1
p

N C 1

�
�O.N

3
2 /;
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(3-10) implies thatX
.j ;k/2 VLu;v;N

1p
NC1

�j
j�k
NC1

j�1� 1p
NC1

“
Ij ;k;N

ˇ̌̌̌
gi

u;v.x;y/�gi
u;v

�
j

N C 1
;

k

N C 1

�ˇ̌̌̌
dx dy

�O.N 2/� .N C 1/�2
�

p
2

N C 1
� sup

1p
NC1

�jx�yj�1� 1p
NC1

krgi
u;v.x;y/k �O.N�

1
2 /; (3-14)

and, by (3-8) and (3-9),X
.j ;k/2 VLu;v;N

j
j�k
NC1

j< 1p
NC1

or j j�k
NC1

j>1� 1p
NC1

“
Ij ;k;N

ˇ̌̌̌
gi

u;v.x;y/�gi
u;v

�
j

N C 1
;

k

N C 1

�ˇ̌̌̌
dx dy

�O.N
3
2 /� .N C 1/�2

�O.log N /DO.N�
1
2 log N /: (3-15)

Let Tu;vDf.x;y/2R2 W0�x�u=p�y�v=p�1=pg. Since gi
u;v is L1

loc, the measure gi
u;v.x;y/ dx dy

is absolutely continuous with respect to the Lebesgue measure. Therefore, by Lemma 3.3 below, we
have that “

VTu;v.N /

gi
u;v.x;y/ dx dy �

“
Tu;v

gi
u;v.x;y/ dx dy D o.1/ as N !1: (3-16)

By (3-12)–(3-16),X
.j ;k/2Lu;v;N

�
p

j

N C 1
�u

�i�1�
1�

�
p

k

N C 1
� v

��m�i

log
ˇ̌
1� e2�

p
�1. j

NC1
� k

NC1
/
ˇ̌

D .N C 1/2
“

Tu;v

gi
u;v.x;y/ dx dyC o.N 2/: (3-17)

(3-17) and (3-11) imply thatX
0��.j/<�.k/�N

.�.j //i�1.N � �.k//m�i log
ˇ̌
1� e2�

p
�1. j

NC1
� k

NC1
/
ˇ̌

D .N C 1/mC1
X

0�u;v�p�1

“
Tu;v

gi
u;v.x;y/ dx dyC o.N mC1/; (3-18)

(3-18) and (3-4) imply
mX

iD1

X
0��.j/<�.k/�N

��.j /Ci�1

i�1

��N ��.k/Cm�i

m�i

�
log

ˇ̌
e2�
p
�1 j

NC1 � e2�
p
�1 k

NC1

ˇ̌
D

mX
iD1

X
0�u;v�p�1

“
Tu;v

gi
u;v.x;y/

.i � 1/!.m� i/!
dx dyC o.N mC1/
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D

mX
iD1

X
0�u;v�p�1

“
Tu;v

Œp.x� u
p
/�i�1

.i � 1/!

Œ1�p.y � v
p
/�m�i

.m� i/!
log

ˇ̌
1� e2�

p
�1.x�y/

ˇ̌
dx dyC o.N mC1/

D

mX
iD1

X
0�u;v�p�1

“
T0;0

.px/i�1

.i � 1/!

.1�py/m�i

.m� i/!
log

ˇ̌
1� e2�

p
�1.x�yCu

p
� v

p
/
ˇ̌
dx dyC o.N mC1/

D

mX
iD1

X
0�u�p�1

“
T0;0

.px/i�1

.i � 1/!

.1�py/m�i

.m� i/!
log
�p�1Y
vD0

ˇ̌
e2�
p
�1 v

p � e2�
p
�1.x�yCu

p
/
ˇ̌�

dxdyCo.N mC1/

D p

mX
iD1

“
T0;0

.px/i�1

.i � 1/!

.1�py/m�i

.m� i/!
log

ˇ̌
1� e2�

p
�1.px�py/

ˇ̌
dx dyC o.N mC1/

D
1

p

“
T

mX
iD1

xi�1

.i � 1/!

.1�y/m�i

.m� i/!
log

ˇ̌
1� e2�

p
�1.x�y/

ˇ̌
dx dyC o.N mC1/

D
1

p.m� 1/!

“
T

.1Cx�y/m�1 log
ˇ̌
1� e2�

p
�1.x�y/

ˇ̌
dx dyC o.N mC1/;

where T D f.x;y/ 2 R2 W 0� x � y � 1g. After the change of variables Qx D x�y, Qy D y, T is mapped
to zT D f. Qx; Qy/ 2 R2 W �1� Qx � 0; � Qx � Qy � 1g. Then

1

.m� 1/!

“
T

.1Cx�y/m�1 log
ˇ̌
1� e2�

p
�1.x�y/

ˇ̌
dx dy

D
1

.m� 1/!

“
zT

.1C Qx/m�1 log
ˇ̌
1� e2�

p
�1 Qx

ˇ̌
d Qx d Qy

D
1

.m� 1/!

Z 0

�1

.1C Qx/m log
ˇ̌
1� e2�

p
�1 Qx

ˇ̌
d Qx

D
1

.m� 1/!

Z 1

0

xm log
ˇ̌
1� e2�

p
�1x

ˇ̌
dx

D
1

.m� 1/!

Z 1

0

xm log Œ2 sin.�x/� dx

DˇmI

hence,

mX
iD1

X
0��.j/<�.k/�N

��.j /Ci�1

i�1

��N ��.k/Cm�i

m�i

�
log

ˇ̌
e2�
p
�1 j

NC1 � e2�
p
�1 k

NC1

ˇ̌
D
ˇm

p
N mC1

C o.N mC1/:

Thus,

logjdet Wm;N .�/j Dm
�NCm

mC1

�
log .�r/C

ˇm

p
N mC1

C o.N mC1/: �
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Lemma 3.3. limN!1VolR2.Tu;v 4
VTu;v.N // D 0 for any 0 � u; v � p � 1, where Tu;v 4

VTu;v.N /

denotes the difference set of Tu;v and VTu;v.N /.

Proof. By (3-6), the statement in the lemma is equivalent to limN!1VolR2.Tu;v4Tu;v.N //D 0, which
follows from limN!1.Tu;v.N /n@Tu;v/D VTu;v , as Tu;v4Tu;v.N /D .Tu;vnTu;v.N //[.Tu;v.N /nTu;v/.
Since Tu;v nTu;v.N /� Œ VTu;v n .Tu;v.N / n @Tu;v/�[ @Tu;v,

VolR2.Tu;v nTu;v.N //� VolR2. VTu;v n .Tu;v.N / n @Tu;v//CVolR2.@Tu;v/

D

“
R2

1
VTu;vn.Tu;v.N /n@Tu;v/

dx dy

�

“
R2

ˇ̌
1
VTu;v

�1Tu;v.N /n@Tu;v

ˇ̌
dx dyI

the last line tends to 0 by Fatou’s lemma. A similar proof works for Tu;v.N /nTu;v . Therefore, it remains
to prove limN!1.Tu;v.N / n @Tu;v/D VTu;v.

First we’ll show that lim supN!1 Tu;v.N /�Tu;v . For all .x;y/2 lim supN!1 Tu;v.N /, there exists
a sequence fNng

1
nD1
!1 such that, for any n� 1, there exists .j .Nn/; k.Nn// 2 Iu.Nn/�Iv.Nn/ with

�Nn
.j .Nn// < �Nn

.k.Nn// and with .x;y/ 2 Ij.Nn/;k.Nn/;Nn
. Then limn!1 j .Nn/=.NnC 1/D x and

limn!1 k.Nn/=.NnC1/Dy. Since 0� �Nn
.j .Nn//=.NnC1/< �Nn

.k.Nn//=.NnC1/�Nn=.NnC1/

and .j .Nn/; k.Nn// 2 Iu.Nn/� Iv.Nn/, (3-3) implies that

0� p lim
n!1

j .Nn/=.NnC 1/�u� p lim
n!1

k.Nn/=.NnC 1/� v � 1:

Hence 0� px�u� py � v � 1 and .x;y/ 2 Tu;v.
Next we will prove VTu;v � lim infN!1 Tu;v.N /. For all .x;y/2 VTu;v , 0< x�u=p< y�v=p< 1=p.

Then there exist 0<�1; �2; �1; �2<1=p such that xDu=pC�1D .uC1/=p��1 and yDv=pC�2D .vC

1/=p��2. For each N >0, define j .N /Db.NC1/xc and k.N /Db.NC1/yc. When N is large enough,
j .N /Db.NC1/.u=pC�1/cDuq.N /Cbul.N /=pC�1.NC1/c�uq.N /Cminfu; l.N /gDau, while

j .N /D
j
.N C 1/

�
uC1

p
� �1

�k
D .uC 1/q.N /C

j
.uC 1/

l.N /

p
� �1.N C 1/

k
� .uC 1/q.N /CminfuC 1; l.N /g� 1D auC1� 1

for 0� u< p�1, which indicates that j .N / 2 Iu.N /. Similarly, k.N / 2 Iv.N / for N large. Moreover,
limN!1 �.j .N //=.N C1/Dp limN!1 j .N /=.N C1/�uDp limN!1b.N C1/xc=.N C1/�uD

px�u; similarly, limN!1 �.k.N //=.NC1/Dpy�v. And, since 0<px�u<py�v < 1, for N large
enough we have 0<�.j .N //=.NC1/<�.k.N //=.NC1/<1, so 0<�.j .N //<�.k.N //�N . Thus, by
the definition of j .N / and k.N /, we have, for N large, .x;y/2Ij.N /;k.N /;N �

S
.j ;k/2Lu;v;N

Ij ;k;N D

Tu;v.N /, which implies that .x;y/ 2 lim infN!1 Tu;v.N /.
In conclusion, we have

VTu;v � lim inf
N!1

Tu;v.N /� lim sup
N!1

Tu;v.N /� Tu;v;
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from which

lim
N!1

.Tu;v.N / n @Tu;v/D VTu;v: �

Let � D .�J /tJ2�m;N
D .QsN .�J //

t
J2�m;N

D .QsN .�1;j1
; : : : ; �m;jm

//t
J2�m;N

be an
�
NCm

m

�
-dimensional

mean zero complex Gaussian random vector. Let its covariance matrix be†; then, for all J D .j1; : : : ; jm/,
J 0 D .j 0

1
; : : : ; j 0m/ 2 �m;N and

†J ;J 0 D EN .�J N�J 0/D EN .QsN .�J /QsN .�J 0//

D

X
K2ƒm;N

�r�N

K

�
�K

J

��r�N

K

�
N�K
J 0

�

D

X
K2ƒm;N

�N

K

�
.�J N�J 0/

K

D .1C �J N�J 0/
N

D .1C �1;j1
N�1;j 0

1
C � � �C �m;jm

N�m;j 0m/
N ;

where EN denotes the expectation with respect to the probability measure 

N

.

Lemma 3.4. With the assignment of � as in (3-2),

log .det†/DQ�r;m.N /C
2ˇm

p
N mC1

C o.N mC1/:

Proof. † D Vm;N .�/V
�

m;N
.�/, where Vm;N .�/ D

�q�
N
K

�
�K

J

�
J2�m;N ;K2ƒm;N

is an
�
NCm

m

�
�
�
NCm

m

�
matrix. Thus

det†D jdet Vm;N .�/j
2
D

Y
K2ƒm;N

�N

K

�
jdet Wm;N .�/j

2:

By Lemma 3.2,

log .det†/D
X

K2ƒm;N

log
�N

K

�
C 2 log jdet Wm;N .�/j

D

X
K2ƒm;N

log
�N

K

�
C 2m

�NCm

mC1

�
log .�r/C

2ˇm

p
N mC1

C o.N mC1/

D

X
K2ƒm;N

log
�N

K

�
C 2

X
K2ƒm;N

jKj log .�r/C
2ˇm

p
N mC1

C o.N mC1/

DQ�r;m.N /C
2ˇm

p
N mC1

C o.N mC1/: �



HOLE PROBABILITIES OF SU.mC1/ GAUSSIAN RANDOM POLYNOMIALS 1941

As log jQsN .z/j is plurisubharmonic in a neighborhood of .D.0; r//m, we have

log
Y

J2�m;N

j�J j D
X

J2�m;N

log jQsN .�J /j

�

X
J2�m;N

Z
� � �

Z
.@D.0;r//m

log jQsN .u/j

mY
iD1

Pr .�i;ji
;ui/ d�r .u1/ � � � d�r .um/

D .N C 1/m
Z
� � �

Z
.@D.0;r//m

log jQsN .u/j

� X
J2�m;N

mY
iD1

Pr .�i;ji
;ui/

N C 1

�

Z
H

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

�
d�r .u1/ � � � d�r .um/

C .N C 1/m
Z
� � �

Z
.@D.0;r//m

log jQsN .u/j

Z
H

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx d�r .u1/ � � � d�r .um/; (3-19)

where Pr .�;u/ D .r
2 � j�j2/=.ju� �j2/ is the Poisson kernel of D.0; r/, d�r is the Haar measure on

@D.0; r/, dmx is the Lebesgue measure on Rm, and

HD
[

0�t1;:::;tm�p�1

Ht1;:::;tm
WD

[
0�t1;:::;tm�p�1

�
xD .x1; : : : ;xm/2Rm

W0�x1�
t1

p
�� � ��xm�

tm

p
�

1

p

�
:

Let I and II be the two summands on the right-hand side of (3-19). Then

I � .N C 1/m max
u2.@D.0;r//m

ˇ̌̌̌ X
J2�m;N

mY
iD1

Pr .�i;ji
;ui/

N C 1
�

Z
H

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

ˇ̌̌̌

�

Z
� � �

Z
.@D.0;r//m

ˇ̌
log jQsN .u/j

ˇ̌
d�r .u1/ � � � d�r .um/: (3-20)

First we estimate
R
� � �
R
.@D.0;r//m

ˇ̌
log jQsN .u/j

ˇ̌
d�r .u1/ � � � d�r .um/.

Lemma 3.5. 
N

�
sup

u2.@D.0;r//m
jQsN .u/j< 1

�
� e�Qr;m.N /:

Proof. QsN .u/D
X

K2ƒm;N

cK

r�N

K

�
uK

)
@K

@uK
QsN .0/DK!

r�N

K

�
cK ;

where @K=@uK refers to .@k1=@u
k1

1
/ � � � .@km=@u

km

1
/ and K!D k1! � � � km!.

By Cauchy’s integral formula,

@K

@uK
QsN .0/D

K!

.2�
p
�1/m

Z
� � �

Z
.@D.0;r//m

QsN .u/Qm
iD1 u

kiC1
i

du1 � � � dum;
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so

cK D

�N

K

�� 1
2 1

.2�
p
�1/m

Z
� � �

Z
.@D.0;r//m

QsN .u/Qm
iD1 u

kiC1
i

du1 � � � dum;

and thus

jcK j �
supu2.@D.0;r//m jQsN .u/jq�

N
K

�
r jK j

for all K 2ƒm;N :

Therefore, supu2.@D.0;r//m jQsN .u/j< 1 would imply that, for all K 2ƒm;N ,

jcK j �

h�N

K

�
r2jK j

i� 1
2
:

Therefore,


N

�
sup

u2.@D.0;r//m
jQsN .u/j< 1

�
�

Y
K2ƒm;N


N

�
jcK j �

h�N

K

�
r2jK j

i� 1
2
�

�

Y
K2ƒm;N

h�N

K

�
r2jK j

i�1

D e�Qr;m.N /: �

The next lemma follows directly from the first part of [Shiffman et al. 2008, Theorem 3.1], but here
we provide a self-contained proof without using the language of sections and metrics.

Lemma 3.6. Given U � Cm open and bounded with supz2U kzk DR> 0, for all � > 0,


N

n
sup
z2U

jQsN .z/j> .1CR2/
N
2 e�N

o
� e�e�N

for N � 1:

Proof. By the Cauchy–Schwartz inequality,

sup
z2U

jQsN .z/j D sup
z2U

ˇ̌̌̌ X
K2ƒm;N

cK

r�N

K

�
zK

ˇ̌̌̌
� kck sup

z2U

� X
K2ƒm;N

�N

K

�
jzj2K

� 1
2

D kck sup
z2U

.1Ckzk2/
N
2

D kck.1CR2/
N
2 ;

so


N

n
sup
z2U

jQsN .z/j> .1CR2/
N
2 e�N

o
� 
N fkck> e�N

g D e�e2�N

.NCm
m /�1X
kD0

e.2�N /k

k!
I

hence,

log 
N

n
sup
z2U

jQsN .z/j> .1CR2/
N
2 e�N

o
� �e2�N

C log
�NCm

m

�
C .2�N /

h�NCm

m

�
� 1

i
� �e�N for N � 1: �
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Lemma 3.7.
Z
� � �

Z
.@D.0;r//m

ˇ̌
logjQsN .u/j

ˇ̌
d�r .u1/ � � � d�r .um/� CN=ım

for some constant C outside an event of probability at most e�eN

C e�Q�r;m.N /.

Proof. Applying Lemma 3.6 to U D .D.0; r//m, we have


N

n
sup

u2.@D.0;r//m
jQsN .u/j> .1Cmr2/

N
2 e�N

o
� 
N

n
sup

u2.D.0;r//m

jQsN .u/j> .1Cmr2/
N
2 e�N

o
� e�e�N

:

(3-21)
Therefore, taking �D 1, outside an event of probability at most e�eN

we have

logCjQsN .u/j �
1
2
N log.1Cmr2/CN on .@D.0; r//m;

so Z
� � �

Z
.@D.0;r//m

logCjQsN .u/j d�r .u1/ � � � d�r .um/�
1
2
N log.1Cmr2/CN: (3-22)

Applying Lemma 3.5 to the distinguished boundary .@D.0; �r//m, we have, outside an event of probability
at most e�Q�r;m.N /, supu2.@D.0;�r//m jQsN .u/j � 1, i.e., there exists some � 2 .@D.0; �r//m such that
jQsN .�/j � 1 and

0� log jQsN .�/j �

Z
� � �

Z
.@D.0;r//m

log jQsN .u/j

mY
iD1

Pr .�i ;ui/ d�r .u1/ � � � d�r .um/

D

Z
� � �

Z
.@D.0;r//m

logC jQsN .u/j

mY
iD1

Pr .�i ;ui/ d�r .u1/ � � � d�r .um/

�

Z
� � �

Z
.@D.0;r//m

log� jQsN .u/j

mY
iD1

Pr .�i ;ui/ d�r .u1/ � � � d�r .um/: (3-23)

Since for all 1� i �m, j�i j D �r D .1�
p
ı/r and jui j D r we have

p
ı=2�Pr .�i ;ui/� 2=

p
ı, (3-23)

implies that, outside an event of probability at most e�Q�r;m.N /,�p
ı

2

�m Z
� � �

Z
.@D.0;r//m

log� jQsN .u/j d�r .u1/ � � � d�r .um/

�

�
2
p
ı

�m Z
� � �

Z
.@D.0;r//m

logC jQsN .u/j d�r .u1/ � � � d�r .um/: (3-24)

Combining (3-22) and (3-24), we get that, outside an event of probability at most e�eN

C e�Q�r;m.N /,Z
� � �

Z
.@D.0;r//m

ˇ̌
logjQsN .u/j

ˇ̌
d�r .u1/ � � � d�r .um/

D

Z
� � �

Z
.@D.0;r//m

logCjQsN .u/j d�r .u1/ � � � d�r .um/C

Z
� � �

Z
.@D.0;r//m

log�jQsN .u/j d�r .u1/ � � � d�r .um/
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�

h
1C

�
4

ı

�mi Z
� � �

Z
.@D.0;r//m

logCjQsN .u/j d�r .u1/ � � � d�r .um/

�

h
1C

�
4

ı

�mih1

2
N log.1Cmr2/CN

i
D

CN

ım
: �

Lemma 3.8. max
u2.@D.0;r//m

ˇ̌̌̌ X
J2�m;N

mY
iD1

Pr .�i;ji
;ui/

N C 1
�

Z
H

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

ˇ̌̌̌
�

o.1/

ı
1
2
.mC1/

:

Proof. For all u 2 .@D.0; r//m,ˇ̌̌̌ X
J2�m;N

mY
iD1

Pr .�i;ji
;ui/

N C 1
�

Z
H

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

ˇ̌̌̌

D

ˇ̌̌̌ X
�.J /2�m;N

mY
iD1

Pr .�i;�.ji /;ui/

N C 1
�

Z
H

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

ˇ̌̌̌

�

X
0�t1;:::;tm�p�1

ˇ̌̌̌ X
J2It1

�����Itm

�.J /2�m;N

mY
iD1

Pr .zji
;ui/

N C 1
�

Z
Ht1;:::;tm

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

ˇ̌̌̌

�

X
0�t1;:::;tm�p�1

ˇ̌̌̌ X
J2It1

�����Itm

�.J /2�m;N

mY
iD1

Pr .zji
;ui/

N C 1
�

Z
Ht1;:::;tm

.N /

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

ˇ̌̌̌

C

X
0�t1;:::;tm�p�1

ˇ̌̌̌Z
Ht1;:::;tm

.N /

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

�

Z
Ht1;:::;tm

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

ˇ̌̌̌
; (3-25)

where Ht1;:::;tm
.N /D

[
J2It1

�����Itm W �.J /2�m;N

�
j1

N C 1
;

j1C 1

N C 1

�
� � � � �

�
jm

N C 1
;
jmC 1

N C 1

�
.

For all 0� t1; : : : ; tm � p� 1,ˇ̌̌̌
ˇ X
J2It1

�����Itm

�.J /2�m;N

mY
iD1

Pr .zji
;ui/

N C 1
�

Z
Ht1;:::;tm

.N /

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

ˇ̌̌̌
ˇ

�

X
J2It1

�����Itm

�.J /2�m;N

Z�
j1

NC1
;
j1C1

NC1

�
�����

�
jm

NC1
; jmC1

NC1

�ˇ̌̌̌ mY
iD1

Pr .�re2�
p
�1xi ;ui/�

mY
iD1

Pr .�re2�
p
�1

ji
NC1 ;ui/

ˇ̌̌̌
dmx

�
.qC 1/m

.N C 1/m
m sup
j!jD�r; jujDr

ŒPr .!;u/�
m�1 sup

j!j��r; jujDr

ˇ̌̌̌
@Pr .!;u/

@!

ˇ̌̌̌
2��r

N C 1
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�
C

pmı
1
2
.mC1/.N C 1/

;

so

X
0�t1;:::;tm�p�1

ˇ̌̌̌
ˇ X
J2It1

�����Itm

�.J /2�m;N

mY
iD1

Pr .zji
;ui/

N C 1
�

Z
Ht1;:::;tm

.N /

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

ˇ̌̌̌
ˇ

�
C

ı
1
2
.mC1/.N C 1/

D
o.1/

ı
1
2
.mC1/

: (3-26)

To bound the second term in (3-25), we need the following statement, which can be proved in a similar
way as Lemma 3.3:

lim
N!1

VolRm.Ht1;:::;tm
.N /4Ht1;:::;tm

/D 0 for any 0� t1; : : : ; tm � p� 1:

Hence,

X
0�t1;:::;tm�p�1

ˇ̌̌̌Z
Ht1;:::;tm

.N /

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx�

Z
Ht1;:::;tm

mY
iD1

Pr .�re2�
p
�1xi ;ui/ dmx

ˇ̌̌̌
�

X
0�t1;:::;tm�p�1

VolRm.Ht1;:::;tm
.N /4Ht1;:::;tm

/
h

sup
j!jD�r;jujDr

Pr .!;u/
im

�

X
0�t1;:::;tm�p�1

o.1/

�
2
p
ı

�m

D
o.1/

ı
1
2

m
: (3-27)

This o.1/ may depend on p.
By (3-25), (3-26) and (3-27) the lemma is proved. �

Combining (3-20), Lemma 3.7 and Lemma 3.8, we have, outside an event of probability at most
e�eN

C e�Q�r;m.N /,

I � .N C 1/m
o.1/

ı
1
2
.mC1/

CN

ım
D

o.N mC1/

ı
3
2

mC 1
2

:

By changing the order of integration,

II D .N C 1/m
Z

H

Z
� � �

Z
.@D.0;r//m

log jQsN .u/j

mY
iD1

Pr .�re2�
p
�1xi ;ui/ d�r .u1/ � � � d�r .um/ dmx:

If QsN is nonvanishing on .D.0; r//m, logjQsN .u/j is harmonic in ui in a neighborhood of D.0; r/ for each
fixed .u1; : : : ; Oui ; : : : ;um/ in .D.0; r//m�1. Applying the mean value theorem for harmonic functions,
we get
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II D .N C 1/m
Z

H

Z
� � �

Z
.@D.0;r//m

log jQsN .�re2�
p
�1x1 ;u2; : : : ;um/j

�

mY
iD2

Pr .�re2�
p
�1xi ;ui/ d�r .u2/ � � � d�r .um/ dmx

D � � � D .N C 1/m
Z

H

log jQsN .�re2�
p
�1x1 ; : : : ; �re2�

p
�1xm/j dmx:

Define

„D

Z
H

log jQsN .�re2�
p
�1x1 ; : : : ; �re2�

p
�1xm/j dmx; (3-28)

which is a complex random variable. Thus we have proved:

Lemma 3.9. If QsN is nonvanishing on .D.0; r//m then

log
Y

J2�m;N

j�J j �
o.N mC1/

ı
3
2

mC 1
2

C .N C 1/m„

outside an event of probability at most e�eN

C e�Q�r;m.N /.

Replacing �m;N by �.%/
m;N
D fJ D .j1; : : : ; jm/ 2 Œ0;N �m \ Zm W 0 � j%.1/ � � � � � j%.m/ � N g,

where % can be any element in Sm, the permutation group of m letters, similar results hold and we have
counterparts for Lemma 3.4 and Lemma 3.9, which we state without proof.

Lemma 3.10. Denote the covariance matrix of the random vector .�.%/
J
D QsN .�J //

t

J2�
.%/

m;N

by †.%/. Then

log .det†.%//DQ�r;m.N /C
2ˇm

p
N mC1

C o.N mC1/:

For all % 2 Sm, let

H .%/
D

[
0�t1;:::;tm�p�1

H
.%/
t1;:::;tm

WD

[
0�t1;:::;tm�p�1

�
x D .x1; : : : ;xm/ 2 Rm

W 0� x%.1/�
t%.1/

p
� � � � � x%.m/�

t%.m/

p
�

1

p

�
;

and define the random variable

„.%/ D

Z
H .%/

log
ˇ̌
QsN .�re2�

p
�1x1 ; : : : ; �re2�

p
�1xm/

ˇ̌
dmx:

Then:

Lemma 3.11. If QsN is nonvanishing on .D.0; r//m then

log
Y

J2�
.%/

m;N

j�
.%/
J
j �

o.N mC1/

ı
3
2

mC 1
2

C .N C 1/m„.%/

outside an event of probability at most e�eN

C e�Q�r;m.N /.



HOLE PROBABILITIES OF SU.mC1/ GAUSSIAN RANDOM POLYNOMIALS 1947

The last ingredient we need to prove the upper bound is the following lemma:

Lemma 3.12 [Nishry 2010, Lemma 4.6]. Let s, t > 0 and N 2 NC be such that log .tN =s/ � N ;
then

VolRN

�
.r1; : : : ; rN / 2 RN

W 0� rj � t and
NY

jD1

rj � s

�
�

s

.N � 1/!
logN

�
tN

s

�
:

Proof of the upper bound in Theorem 0.1. If QsN is nonvanishing on .D.0; r//m then, by the mean value
property of pluriharmonic functions,

X
%2Sm

„.%/ D
X
%2Sm

Z
H .%/

log
ˇ̌
QsN .�re2�

p
�1x1 ; : : : ; �re2�

p
�1xm/

ˇ̌
dmx

D

Z
S
%2Sm

H .%/

log
ˇ̌
QsN .�re2�

p
�1x1 ; : : : ; �re2�

p
�1xm/

ˇ̌
dmx

D

Z 1

0

� � �

Z 1

0

log
ˇ̌
QsN .�re2�

p
�1x1 ; : : : ; �re2�

p
�1xm/

ˇ̌
dx1 � � � dxm

D

Z
� � �

Z
.@D.0;�r//m

logjQsN .!1; : : : ; !m/j d��r .!1/ � � � d��r .!m/

D logjQsN .0; : : : ; 0/j

D logjc.0;:::;0/jI

the second equality holds because, for distinct %1, %2 2Sm, H .%1/\H .%2/ is of m-dimensional Lebesgue
measure zero. Then,

P0;m.r;N /D 
N

˚
0 62 QsN

�
.D.0; r//m

�	
D 
N

˚
.logjc.0;:::;0/j> 2m! log N /\

�
0 62 QsN

�
.D.0; r//m

��	
C 
N

˚
.logjc.0;:::;0/j � 2m! log N /\

�
0 62 QsN

�
.D.0; r//m

��	
� 
N .jc.0;:::;0/j>N 2m!/C 
N

�� X
%2Sm

„.%/ � 2m! log N

�
\
�
0 62 QsN

�
.D.0; r//m

���

� e�N 4m!

C 
N

� [
%2Sm

.„.%/ � 2 log N /\
�
0 62 QsN

�
.D.0; r//m

���
� e�N 4m!

C

X
%2Sm


N

˚
.„.%/ � 2 log N /\

�
0 62 QsN

�
.D.0; r//m

��	
:
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Lemma 3.9 implies


N

˚
.„� 2 log N /\

�
0 62 QsN

�
.D.0; r//m

��	
� e�eN

C e�Q�r;m.N /C 
N

�
log

Y
J2�m;N

j�J j �
o.N mC1/

ı
3
2

mC 1
2

C 2.N C 1/m log N

�

D e�eN

C e�Q�r;m.N /C 
N

� Y
J2�m;N

j�J j � exp
�

o.N mC1/

ı
3
2

mC 1
2

C 2.N C 1/m log N

��
:

Define

Em;N D

�
� D .�J /J2�m;N

2 C.
NCm

m /
W

Y
J2�m;N

j�J j � exp
�

o.N mC1/

ı
3
2

mC 1
2

C 2.N C 1/m log N

��
;

and

Fm;N D
˚
� D .�J /J2�m;N

2 Em;N W j�J j � .2C 2mr2/
N
2 8J 2 �m;N

	
� Em;N ;

which can both be treated as subsets in C.
NCm

m / and events in the probability space
�
H 0.CPm;O.N //; 


N

�
.

Thus,


N

˚
.„� 2 log N /\

�
0 62 QsN

�
.D.0; r//m

��	
� e�eN

C e�Q�r;m.N /C 
N .Em;N /

� e�eN

C e�Q�r;m.N /C 
N .Em;N nFm;N /C 
N .Fm;N / (3-29)

and


N .Em;N nFm;N /� 
N

˚
j�J j> .2C 2mr2/

N
2 for some J 2 �m;N

	
� 
N

˚
sup

!2.@D.0;�r//m
jQsN .!/j> .2C 2mr2/

N
2

	
� 
N

˚
sup

!2.D.0;r//m

jQsN .!/j> .1Cmr2/
N
2 2

N
2

	
� e�2

N
2
; (3-30)

where the last inequality is due to Lemma 3.6. Then Lemma 3.4 gives


N .Fm;N /D
1

�.
NCm

m / det†

Z
Fm;N

e��
�†�1� d

2.NCm
m /�

� exp
�
�

�
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p
N mC1

�
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�
��.

NCm
m /Vol

C.
NCm

m /.Fm;N /:
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Change into polar coordinates and note that

Vol
R.

NCm
m /.Fm;N /

DVol
R.

NCm
m /

�
.xJ /J2�m;N

2
�
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o.N mC1/

ı
3
2

mC 1
2

�
Vol

R.
NCm
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now p, ı are constants), we can apply Lemma 3.12 and get:
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By Lemma 2.2, (3-29), (3-30) and (3-31),
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C e�Q�r;m.N /C e�2
N
2
C exp

�
�Q�r;m.N /�

2ˇm

p
N mC1

C
o.N mC1/

ı
3
2

mC 1
2

�

� exp
�
�min

�
2m log.�r/

.mC 1/!
C

1

m!

mC1X
kD2

1

k
;

2m log.�r/

.mC 1/!
C

1

m!

mC1X
kD2

1

k
C

2ˇm

p

�
N mC1

C
o.N mC1/

ı
3
2

mC 1
2

�
:

Similarly, for all % 2 Sm,


N

˚
.„.%/ � 2 log N /\

�
0 62 QsN

�
.D.0; r//m

��	
� exp

�
�min

�
2m log.�r/

.mC 1/!
C

1

m!

mC1X
kD2

1

k
;

2m log.�r/

.mC 1/!
C

1

m!

mC1X
kD2

1

k
C

2ˇm

p

�
N mC1

C
o.N mC1/

ı
3
2

mC 1
2

�
I

thus,

P0;m.r;N /

� e�N 4m!

Cm! exp
�
�min

�
2m log.�r/

.mC1/!
C

1

m!

mC1X
kD2

1

k
;

2m log.�r/

.mC1/!
C

1

m!

mC1X
kD2

1

k
C

2ˇm

p

�
N mC1

C
o.N mC1/

ı
3
2

mC 1
2

�

D exp
�
�min

�
2m log.�r/

.mC1/!
C

1

m!

mC1X
kD2

1

k
;

2m log.�r/

.mC1/!
C

1

m!

mC1X
kD2

1

k
C

2ˇm

p

�
N mC1

C
o.N mC1/

ı
3
2

mC 1
2

�
;

so

log P0;m.r;N /

� �min
�

2m log.�r/

.mC 1/!
C

1

m!

mC1X
kD2

1

k
;

2m log.�r/

.mC 1/!
C

1

m!

mC1X
kD2

1

k
C

2ˇm

p

�
N mC1

C
o.N mC1/

ı
3
2

mC 1
2

;

and thus

lim sup
N!1

log P0;m.r;N /

N mC1
� �min

�
2m log.�r/

.mC 1/!
C

1

m!

mC1X
kD2

1

k
;

2m log.�r/

.mC 1/!
C

1

m!

mC1X
kD2

1

k
C

2ˇm

p

�
:

Let p!1; then

lim sup
N!1

log P0;m.r;N /

N mC1
� �

�
2m log.�r/

.mC 1/!
C

1

m!

mC1X
kD2

1

k

�
:

Let ı! 0C; then � D 1�
p
ı! 1, so

lim sup
N!1

log P0;m.r;N /

N mC1
� �

�
2m log r

.mC 1/!
C

1

m!

mC1X
kD2

1

k

�
:
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Hence,

log P0;m.r;N /� �

�
2m log r

.mC 1/!
C

1

m!

mC1X
kD2

1

k

�
N mC1

C o.N mC1/:

Thus, Theorem 0.1 is proved. �

4. Proof of Theorem 0.2

The proof of Theorem 0.2 is quite similar to that of Theorem 0.1. We only need to make some slight
modifications in picking “determining exponents” and “sampling points”.

Lower bound.

Definition 4.1. ƒm;N .r/ WD
n
K 2ƒm;N W

�N

K

�
r2jK j

� 1
o
�ƒm;N ;

Rr;m.N / WD
X

K2ƒm;N .r/

log
h�N

K

�
r2jK j

i
:

Lemma 4.2. log P0;m.r;N /� �Rr;m.N /C o.N mC1/:

Proof. Consider the following event �r;m;N :

(i) jc.0;:::;0/j �
p

N ,

(ii) jcK j �
1

2
p

N

q�
N
K

�
r jK j

�
jK jCm�1

m�1

� ; K 2ƒm;N .r/nf.0; : : : ; 0/g,

(iii) jcK j �
1

2
p

N
�
jK jCm�1

m�1

� ; K 2ƒm;N nƒm;N .r/.

Then, when �r;m;N occurs, for all z 2 .D.0; r//m,

jQsN .z/j �
p

N �
X

K2ƒm;N .r/nf.0;:::;0/g

q�
N
K

�
r jK j

2
p

N

q�
N
K

�
r jK j

�
jK jCm�1

m�1

� � X
K2ƒm;N nƒm;N .r/

1

2
p

N
�
jK jCm�1

m�1

�
D
p

N �
X

K2ƒm;N nf.0;:::;0/g

1

2
p

N
�
jK jCm�1

m�1

�
D
p

N �

NX
kD1

1

2
p

N

D
1
2

p
N > 0:
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Thus,

P0;m.r;N /� 
N .�r;m;N /

D 
N .jc.0;:::;0/j �
p

N /
Y

K2ƒm;N .r/nf.0;:::;0/g


N

�
jcK j �

1

2
p

N

q�
N
K

�
r jK j

�
jK jCm�1

m�1

��

�

Y
K2ƒm;N nƒm;N .r/


N

�
jcK j �

1

2
p

N
�
jK jCm�1

m�1

��

� e�N
Y

K2ƒm;N .r/nf.0;:::;0/g

1

8N
�
N
K

�
r2jK j

�
jK jCm�1

m�1

�2 Y
K2ƒm;N nƒm;N .r/

1

8N
�
jK jCm�1

m�1

�2 ;
Therefore,

log P0;m.r;N /

� �N �
X

K2ƒm;N .r/nf.0;:::;0/g

log
h�N

K

�
r2jK j

i
�

X
K2ƒm;N .r/nf.0;:::;0/g

log
h
8N

�
jKjCm�1

m�1

�2i
D�

X
K2ƒm;N .r/nf.0;:::;0/g

log
h�N

K

�
r2jK j

i
C o.N mC1/

D�Rr;m.N /C o.N mC1/: �

Upper bound. For some ˛ 2 .0; 1�, we can define the index sets ƒm;b˛N c and �m;b˛N c, and the�
b˛N cCm

m

�
�
�
b˛N cCm

m

�
matrix

Wm;b˛N c.�/D .�
K
J /J2�m;b˛Nc; K2ƒm;b˛Nc

:

We also assign the values of the variables .�i;j /0�i�m;0�j�b˛N c by the points on @D.0; �r/ in a way
similar to in Section 3, except that we replace N by b˛N c. Then we have the following lemma:

Lemma 4.3. logjdet Wm;b˛N c.�/j Dm
�
b˛N cCm

mC1

�
log .�r/C

ˇm

p
.b˛N c/mC1

C o.N mC1/:

The word � D .�J /tJ2�m;b˛Nc
D .QsN .�J //

t
J2�m;b˛Nc

is a dimension-
�
b˛N cCm

m

�
mean zero complex

Gaussian random vector with covariance matrix

†D Vm;N;˛.�/V
�

m;N;˛.�/;

where Vm;N;˛.�/D
�q�

N
K

�
�K

J

�
J2�m;b˛Nc; K2ƒm;N

is a
�
b˛N cCm

m

�
�
�
NCm

m

�
matrix.

Definition 4.4. Qr;m;˛.N / WD
X

K2ƒm;b˛Nc

log
h�N

K

�
r2jK j

i
:

Lemma 4.5. log det†�Q�r;m;˛.N /C
2ˇm

p
.b˛N c/mC1

C o.N mC1/:
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Proof. By the Cauchy–Binet identity, summing over the
�
b˛N cCm

m

�
�
�
b˛N cCm

m

�
minors of Vm;N;˛.�/,

det†D
X
M

jdet M j2�

ˇ̌̌̌
det

�r�N

K

�
�K

J

�
J2�m;b˛Nc; K2ƒm;b˛Nc

ˇ̌̌̌2
D

Y
K2ƒm;b˛Nc

�N

K

�
jdet Wm;b˛N c.�/j

2;

so

log det†�
X

K2ƒm;b˛Nc

log
�N

K

�
C 2m

�
b˛N cCm

mC1

�
log .�r/C

2ˇm

p
.b˛N c/mC1

C o.N mC1/

D

X
K2ƒm;b˛Nc

log
h�N

K

�
.�r/2jK j

i
C

2ˇm

p
.b˛N c/mC1

C o.N mC1/

DQ�r;m;˛.N /C
2ˇm

p
.b˛N c/mC1

C o.N mC1/: �

The following lemma is a counterpart of Lemma 3.9. The proof is similar.

Lemma 4.6. If QsN is nonvanishing on .D.0; r//m then

log
Y

J2�m;b˛Nc

j�J j �
o.N mC1/

ı
3
2

mC 1
2

C .b˛N cC 1/m„

outside an event of probability at most e�eN

C e�R�r;m.N /, where the complex random variable „ is
defined in (3-28).

By the same trick of permutation as in Section 3, we can get an upper bound estimate for P0;m.r;N /:

P0;m.r;N /� e�N 4m!

Cm!

�
e�eN

C e�R�r;m.N /C e�2
N
2

C exp
�
�Q�r;m;˛.N /�

2ˇm

p
.b˛N c/mC1

C
o.N mC1/

ı
3
2

mC 1
2

��
: (4-1)

Punch line of the proof. In order to prove Theorem 0.2, it suffices to compute Rr;m.N / and Qr;m;˛.N /

asymptotically. We follow the same idea as in Lemma 2.2.
The scaled lattice .1=N /ƒm;N .r/ corresponds to the set

fx D .x1; : : : ;xm/ 2†m WEr .x/� 0g

and .1=N /ƒr;m;˛.N / corresponds to the set

�
x D .x1; : : : ;xm/ 2 RmC

W

mX
iD1

xi � ˛ � 1

�
:



1954 JUNYAN ZHU

So we have

Rr;m.N /D
X

K2ƒm;N .r/

log
h�N

K

�
r2jK j

i
DN mC1

Z
x2†m

Er .x/�0

Er .x/ dmxC o.N mC1/; (4-2)

Qr;m;˛.N /D
X

K2ƒm;b˛Nc

log
h�N

K

�
r2jK j

i
DN mC1

Z
x2RmCPm
iD1 xi�˛

Er .x/ dmxC o.N mC1/: (4-3)

Moreover, if we go through the proof of Lemma 2.2, we find that the o.N mC1/ terms in (4-2) and (4-3)
are uniform if r � c for some constant c > 0, which implies that, when r is replaced by �r D .1�

p
ı/r ,

the remainder won’t depend on ı.

Proof of Theorem 0.2. The lower bound proof is already implied by Lemma 4.2 and (4-2). To prove the
upper bound, by (4-1) and (4-3),

log P0;m.r;N /

� �N mC1 min
�Z

x2†m

E�r .x/�0

E�r .x/ dmx;

Z
x2RmCPm
iD1 xi�˛

E�r .x/ dmxC
2ˇm˛

mC1

p

�
C

o.N mC1/

ı
3
2

mC 1
2

:

Similarly as in Section 3, we obtain

log P0;m.r;N /� �N mC1 min
�Z

x2†m

Er .x/�0

Er .x/ dmx;

Z
x2RmCPm
iD1 xi�˛

Er .x/ dmx

�
C o.N mC1/

D�N mC1

Z
x2RmCPm
iD1 xi�˛

Er .x/ dmxC o.N mC1/:

Now we must find a proper ˛0 D ˛0.r;m/ 2 .0; 1� which maximizes
R

x2RmC;
Pm

iD1 xi�˛
Er .x/ dmx. For

this purpose, we consider the function defined on .0; 1� by

‡.˛/ WD

Z
x2RmCW

Pm
iD1 xi�˛

Er .x/ dmx:

Then

‡.˛/D 2m log r

Z
x2RmCPm
iD1xi�˛

x1 dmx�m

Z
x2RmCPm
iD1 xi�˛

x1 log x1 dmx

�

Z
x2RmCPm
iD1 xi�˛

�
1�

mX
iD1

xi

�
log

�
1�

mX
iD1
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�
dmx

D 2m log r
˛mC1

.mC 1/!
�m

˛mC1

.mC 1/!

�
log˛�

mC1X
kD2

1

k

�
�

1

.m� 1/!

Z ˛

0

.1�x/xm�1 log .1�x/ dx;

‡ 0.˛/D
˛m�1

.m� 1/!

��
2 log r C

mX
kD2

1

k

�
˛� Œ˛ log˛C .1�˛/ log .1�˛/�

�
;
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where we take
Pm

kD2 1=k D 0 when mD 1. So, if 2 log r C
Pm

kD2 1=k � 0, ‡ 0.˛/� 0 over .0; 1�, thus
max.0;1�‡ D ‡.1/ and therefore ˛0 D 1.

If 2 log r C
Pm

kD2 1=k < 0,
�
2 log r C

Pm
kD2 1=k

�
˛ D ˛ log˛ C .1 � ˛/ log .1�˛/ has a unique

nonzero root ˛0 2 .0; 1/, and

max
.0;1�

‡ D ‡.˛0/D

Z
x2RmCPm
iD1 xi�˛0

Er .x/ dmx D
1

.mC 1/!

�
.1�˛m

0 / log .1�˛0/C

mX
kD1

˛k
0

k

�
: (4-4)

This concludes the proof. �

Remark 4.7. The proofs of Theorems 0.1 and 0.2 also work for a general polydisc
Qm

iD1 D.0; ri/. For
example, if r D .r1; : : : ; rm/ 2 Œ1;1/

m, the function Er in Theorem 0.1 would be

Er .x/D 2

mX
iD1

xi log ri �

� mX
iD1

xi log xi C

�
1�

mX
iD1

xi

�
log

�
1�

mX
iD1

xi

��

and
R
†m

Er .x/ dmx would equal .2=.mC 1/!/
Pm

iD1 log ri C .1=m!/
PmC1

kD2 1=k.

5. Hole probability of SU.2/ polynomials

Proof of Corollary 0.4. When r � 1, ˛0 D 1. The result follows from Theorem 0.1.
When 0< r < 1, for x 2 RC,

Er .x/D 2x log r � Œx log xC .1�x/ log .1�x/�� 0 () 0� x � ˛0:

By Theorem 0.2,

log P0;1.r;N /D�N 2

Z ˛0

0

Er .x/ dxC o.N 2/;

where the value of the integral in the corollary is due to (4-4) and the fact that

2˛0 log r D ˛0 log˛0C .1�˛0/ log .1�˛0/: �

Proof of Theorem 0.5. As @U is a Jordan curve, by Carathéodory’s theorem � can be extended to a homeo-
morphism D.0; 1/! U . We still use � to denote the extended map. Thus, QsN .z/D

PN
kD0 ck

�
N
k

�1=2
zk

is nonvanishing over U if and only if tN .!/ WD
PN

kD0 ck

�
N
k

�1=2
.�.!//k is nonvanishing over D.0; 1/,

where tN 2 O.D.0; 1//\C.D.0; 1//.
Since 26664

tN .0/

t 0
N
.0/
:::

t
.N /
N

.0/

37775DA

26664
c0

c1
:::

cN

37775 ;
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where A is an .N C1/�.N C1/ lower triangular matrix with diagonal entries
n
k!

q�
N
k

�
.�0.0//k

o
0�k�N ,

.tN .0/ : : : t
.N /
N

.0//t is Gaussian with covariance matrix AA�. Then

det.AA�/D jdet Aj2 D

NY
kD0

h
k!2
�N

k

�
j�0.0/j2k

i
¤ 0 (5-1)

because � is a biholomorphism.
We again define � D 1�

p
ı. Then, if sup@D.0;�/jtN j< 1, for 0� k �N ,

jt
.k/
N
.0/j D

ˇ̌̌̌
k!

2�
p
�1

Z
@D.0;�/

tN .u/

ukC1
du

ˇ̌̌̌
�

k!

�k
:

Therefore,


N . sup
@D.0;�/

jtN j< 1/� 
N

�
.tN .0/; : : : ; t

.N /
N

.0// 2

NY
kD0

D

�
0;

k!

�k

��
D

1

�NC1 det.AA�/

Z
QN

kD0 D.0;k!=�k/

expf���.AA�/�1�g d2.NC1/�

�
�NC1

QN
kD0.k!=�k/2

�NC1 det.AA�/
:

By (5-1),


N

�
sup

@D.0;�/

jtN j< 1
�
�

QN
kD0.k!=�k/2QN

kD0

�
k!2
�
N
k

�
j�0.0/j2k

�
D

� NY
kD0

h�N

k

�
.�j�0.0/j/2k

i��1

D expf�Q�j�0.0/j;1.N /g

D exp
˚
�
�
log j�0.0/jC log �C 1

2

�
N 2
C o.N 2/

	
;

where the last equality is due to Lemma 2.2.
Similarly as in Lemma 3.9, we can show that if tN jD.0;1/ ¤ 0 then, outside an event of probability at

most e�eN

C expf�Q�j�0.0/j;1.N /g D exp
˚
�
�
log j�0.0/jC log �C 1

2

�
N 2C o.N 2/

	
,

log
NY

jD0

jtN .zj /j �
o.N 2/

ı2
C .N C 1/ log jc0j;

where zj D �e2�
p
�1 j

NC1 , 0� j �N .
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Now, .tN .z0/ � � � tN .zN //
t is complex Gaussian with covariance matrix

†D
�
EN .tN .zj /tN .zj //

�
0�i;j�N

D

� NX
kD0

�N

k

�
.�.zi//

k.�.zj //
k

�
0�i;j�N

D

26664
q�

N
0

� q�
N
1

�
�.z0/ � � �

q�
N
N

�
.�.z0//

N

:::
:::

: : :
:::q�

N
0

� q�
N
1

�
�.zN / � � �

q�
N
N

�
.�.zN //

N

37775
26664
q�

N
0

� q�
N
1

�
�.z0/ � � �

q�
N
N

�
.�.z0//

N

:::
:::

: : :
:::q�

N
0

� q�
N
1

�
�.zN / � � �

q�
N
N

�
.�.zN //

N

37775
�

and

det†D
NY

kD0

�N

k

� Y
0�i<j�N

j�.zi/��.zj /j
2;

so

log det†D
NX

kD0

log
�N

k

�
C 2

X
0�i<j�N

log j�.zi/��.zj /j: (5-2)

Next we will show that

2
X

0�i<j�N

log j�.zi/��.zj /jDN 2

“
.@D.0;�//2

log j�.u1/��.u2/j d��.u1/ d��.u2/Coı.N
2/; (5-3)

where oı.N
2/ denotes a lower-order term depending on ı.

Since

2
X
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log j�.zi/��.zj /jD2.NC1/2
X
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1
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p
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p
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p
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p
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Since � is a biholomorphism, we set

inf
D.0;�/

j�0j D a.ı/ > 0:

And, by Cauchy’s inequality, we have

sup
D.0;�/

j�0j �O.ı�1/:

For each N , define

�.N /D f.i; j / 2 Z2
W 0� i < j �N g;

the “far from diagonal” indices FD.N / to be the set of those .i; j / 2�.N / such that8̂<̂
:
b
p

N C 1cC i � j �N �b
p

N C 1cC i if 0� i � b
p

N C 1c;

b
p

N C 1cC i � j �N if b
p

N C 1c< i �N �b
p

N C 1c;

j 2∅ if i >N �b
p

N C 1c;

with

FD.N /D
[

.i;j/2FD.N /

Ii;j ;N

(recall the definition of Ii;j ;N on page 1935), and the “near diagonal” indices to be

D.N /D�.N / nFD.N /:

Then

jD.N /j DO.N
3
2 /

and, for .i; j / 2 FD.N /,

i

N C 1
�

j

N C 1
� .N C 1/�

1
2 mod 1:

So,ˇ̌̌̌
ˇ X
0�i<j�N

1

.N C 1/2
log

ˇ̌
�.�e2�

p
�1 i

NC1 /��.�e2�
p
�1 j

NC1 /
ˇ̌

�

“
0�x�y�1

log
ˇ̌
�.�e2�

p
�1x/��.�e2�

p
�1y/

ˇ̌
dx dy

ˇ̌̌̌
ˇ
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�

X
.i;j/2D.N /

1

.N C 1/2

ˇ̌
log

ˇ̌
�.�e2�

p
�1 i

NC1 /��.�e2�
p
�1 j

NC1 /
ˇ̌ˇ̌

C

X
.i;j/2FD.N /

Z jC1
NC1

j
NC1

Z iC1
NC1

i
NC1

ˇ̌̌̌
log

ˇ̌
�.�e2�

p
�1x/��.�e2�

p
�1y/

ˇ̌
� log

ˇ̌
�.�e2�

p
�1 i

NC1 /��.�e2�
p
�1 j

NC1 /
ˇ̌ˇ̌̌̌

dx dy

C

ˇ̌̌̌
ˇ
“

FD.N /
log

ˇ̌
�.�e2�

p
�1x/��.�e2�

p
�1y/

ˇ̌
dx dy

�

“
0�x�y�1

log
ˇ̌
�.�e2�

p
�1x/��.�e2�

p
�1y/

ˇ̌
dx dy

ˇ̌̌̌
ˇ:

Let I, II and III be the summands of the last expression.
For all .i; j / 2D.N /,

a.ı/

N C 1
�
ˇ̌
�.�e2�

p
�1 i

NC1 /��.�e2�
p
�1 j

NC1 /
ˇ̌
�O.1/;

so ˇ̌̌
log

ˇ̌
�.�e2�

p
�1 i

NC1 /��.�e2�
p
�1 j

NC1 /
ˇ̌ˇ̌̌
� jlog a.ı/jC log .N C 1/;

and thus

I �
O.N

3
2 /

N 2
Œjlog a.ı/jC log .N C 1/�D oı.1/:

Since

sup
x�y�.NC1/

� 1
2 mod 1



r log
ˇ̌
�.�e2�

p
�1x/��.�e2�

p
�1y/

ˇ̌

� O.ı�1/

a.ı/.N C 1/�
1
2

D
O.N

1
2 /

ıa.ı/
;

we have

II �
N 2

.N C 1/2
sup

x�y�.NC1/
� 1

2 mod 1



r log
ˇ̌
�.�e2�

p
�1x/��.�e2�

p
�1y/

ˇ̌

O.N�1/

�
O.N�

1
2 /

ıa.ı/
D oı.1/:

By a similar argument as in Lemma 3.3, we have

lim
N!1

VolR2

�
FD.N /4f.x;y/ 2 R2

W 0� x � y � 1g
�
D 0:

Furthermore, (5-4) and (5-5) below indicate that the function log
ˇ̌
�.�e2�

p
�1x/��.�e2�

p
�1y/

ˇ̌
is L1

over Œ0; 1�2, so

III � oı.1/:
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Thus, we have proved (5-3).
For u1, u2 2D.0; 1/, define

 .u1;u2/D

8<:
�.u1/��.u2/

u1�u2

if u1 ¤ u2;

�0.u1/ if u1 D u2:

Then  is continuous and nonzero in D.0; 1/�D.0; 1/. Moreover, by the removable singularity theorem,
 is holomorphic in u1 as well as u2. Therefore, log j j is pluriharmonic in D.0; 1/�D.0; 1/. By the
mean value equality,Z
@D.0;�/

Z
@D.0;�/

log j�.u1/��.u2/j d��.u1/ d��.u2/

D

Z
@D.0;�/

Z
@D.0;�/

log j .u1;u2/jd��.u1/d��.u2/C

Z
@D.0;�/

Z
@D.0;�/

log ju1�u2jd��.u1/d��.u2/

D log j .0; 0/jC log �C
Z
@D.0;1/

Z
@D.0;1/

log ju1�u2j d�1.u1/ d�1.u2/

D log j�0.0/jC log �C
Z
@D.0;1/

Z
@D.0;1/

log ju1�u2j d�1.u1/ d�1.u2/; (5-4)

andZ
@D.0;1/

Z
@D.0;1/

log ju1�u2j d�1.u1/ d�1.u2/D

Z 1

0

Z 1

0

log
ˇ̌
e2�
p
�1x
� e2�

p
�1y

ˇ̌
dx dy

D

Z 1

0

log
ˇ̌
1� e2�

p
�1x

ˇ̌
dx

D

Z
@D.0;1/

log j1� zj d�1.z/

D 0; (5-5)

where the last equality is due to Lebesgue’s dominated convergence theorem.
Equations (5-2)–(5-5) show that

log det†D
NX

kD0

log
�N

k

�
C .log j�0.0/jC log �/N 2

C oı.N
2/

D
�
log j�0.0/jC log �C 1

2

�
N 2
C oı.N

2/:

The remaining part is similar to Section 3. �

Remark 5.1. For U DD.0; r/, � is a rotation composed with a scaling by r , so j�0.0/j D r . Thus, the
upper bound in Theorem 0.5 is�

�
log rC1

2

�
N 2Co.N 2/, which agrees with Corollary 0.4 in the case r �1.
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6. Generalized hole probabilities of SU.2/ polynomials

If n.r;N / denotes the number of zeros of QsN .z/ in D.0; r/, counting multiplicity, then the hole probability
P0;1.r;N / is just the first term of a sequence of probabilities

Pk;1.r;N /D 
N fn.r;N /� kg; k � 0:

We call Pk;1.r;N / a generalized hole probability because, compared with the large degree or total number
of zeros in C of the polynomial QsN , any finite number k is negligible. It has the status of almost having no
zeros in D.0; r/. And, by Theorem 0.6, it turns out that the generalized hole probabilities are numerically
almost equal to the regular one.

Proof of Theorem 0.6. Equation (3-21) implies that, for all � > 0,


N

�Z
@D.0;r/

log jQsN .u/j d�r .u/ >
N

2
log .1C r2/C �N

�
� e�e�N

for N � 1: (6-1)

We follow the notations in Section 4, except this time mD 1 and we take the number of partitions to be
p D 1. The corresponding restatement of Lemma 4.6 is


N

�
log
b˛0N cY
jD0

j�j j>
o.N 2/

ı2
C .b˛0N cC 1/

Z
@D.0;r/

log jQsN .u/j d�r .u/

�
� e�eN

C e�R�r;1.N /;

where �j D QsN .�re2�
p
�1j=.b˛0N cC1//, 0� j �b˛0N c. Here we do not need to assume 0 62 QsN .D.0; r//

as we do in Lemma 4.6; the counterpart of II in (3-19) is

II D .b˛0N cC 1/

Z
@D.0;r/

log jQsN .u/j

Z
H

Pr .�re2�
p
�1x;u/ dx d�r .u/:

Since mD 1 and p D 1, H D Œ0; 1�� R, so

II D .b˛0N cC 1/

Z
@D.0;r/

log jQsN .u/j

Z 1

0

Pr .�re2�
p
�1x;u/ dx d�r .u/

D .b˛0N cC 1/

Z
@D.0;r/

log jQsN .u/j d�r .u/:

Therefore, for all � > 0 small enough,


N

�Z
@D.0;r/

log jQsN .u/j d�r .u/�
N

2
log .1C r2/� �N

�
� e�eN

Ce�R�r;1.N /C
N

�b˛0N cY
jD0

j�j j � exp
�

o.N 2/

ı2
C.b˛0N cC1/

�
N

2
log .1Cr2/��N

���
: (6-2)
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Following the steps (3-29)–(3-31), we can show that

log 
N

�Z
@D.0;r/

log jQsN .u/j d�r .u/�
N

2
log .1C r2/� �N

�
�N.b˛0N cC 1/Œlog.1C r2/� 2���Q�r;1;˛0

.N /� 2ˇ1˛
2
0N 2

C
o.N 2/

ı2
;

Q�r;1;˛0
.N /�N 2

Z ˛0

0

Er .x/ dx D 1
2
˛0Œ2 log �r C 1� log˛0�N

2;

ˇ1 D

Z 1

0

x log Œ2 sin.�x/� dx

D

Z 1

0

.x� 1
2
/ log Œ2 sin.�x/� dxC

1

2

Z 1

0

log Œ2 sin.�x/� dx

D

Z 1
2

� 1
2

x log
�
2 sin�

�
xC 1

2

��
dxC

1

2

Z 1

0

log Œ2 sin.�x/� dx

D

Z 1
2

� 1
2

x log Œ2 cos.�x/� dxC
1

2

Z 1

0

log Œ2 sin.�x/� dx:

Since
R 0

� 1
2

x log Œ2 cos.�x/� dx and
R 1

2

0
x log Œ2 cos.�x/� dx both converge and x log Œ2 cos.�x/� is odd,

ˇ1 D
1

2

Z 1

0

log Œ2 sin.�x/� dx D
1

2

Z
@D.0;1/

log j1� zj d�1.z/;

which equals 0 as in (5-5). Thus

log 
N

�Z
@D.0;r/

log jQsN .u/j d�r .u/�
N

2
log .1C r2/� �N

�
� �

1

2
˛0Œ1C 2 log .�r/� log˛0� 2 log .1C r2/C 4��N 2

C
o.N 2/

ı2
: (6-3)

On the other hand,

R�r;1.N /�N 2

Z
E�r .x/�0

E�r .x/ dx: (6-4)

Combining (6-2)–(6-4) and letting ı! 0C, we get

log 
N

�Z
@D.0;r/

log jQsN .u/j d�r .u/�
N

2
log .1C r2/� �N

�
� �min

n
1
2
˛0Œ1C 2 log r � log˛0� 2 log .1C r2/C 4��; 1

2
˛0Œ1C 2 log r � log˛0�

o
N 2
C o.N 2/

D�
1
2
˛0Œ1C 2 log r � log˛0� 2 log .1C r2/C 4��N 2

C o.N 2/; (6-5)

for 0< � < 1
2

log .1C r2/. SinceZ
Er .x/�0

Er .x/ dx D 1
2
˛0Œ1C 2 log r � log˛0� > 0 and thus 1C 2 log r � log˛0 > 0;
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we can choose 0< � < 1
2

log .1C r2/ close to 1
2

log .1C r2/ such that

1C 2 log r � log˛0� 2 log .1C r2/C 4� > 0:

Therefore, (6-5) makes sense. Denote

F�.r/D
1
2
˛0Œ1C 2 log r � log˛0� 2 log .1C r2/C 4��I

then we have, for 0< � < 1
2

log .1C r2/,


N

�Z
@D.0;r/

log jQsN .u/j d�r .u/�
N

2
log .1C r2/� �N

�
� e�F�.r/N

2Co.N 2/: (6-6)

Let � > 1, to be determined. By discarding a null set, we may assume QsN .0/¤ 0, 0 62 QsN .@D.0; r//

and 0 62 QsN .@D.0; �
�1r//. So, by Jensen’s formula (cf. [Hough et al. 2009, (7.2.11)]), almost surely,Z

@D.0;r/

log jQsN .u/j d�r .u/D log jc0jC

Z r

0

n.t;N /

t
dt; (6-7)Z

@D.0;��1r/

log jQsN .u/j d���1r .u/D log jc0jC

Z ��1r

0

n.t;N /

t
dt: (6-8)

Since n.r;N / is increasing with respect to r , (6-7) and (6-8) implyZ
@D.0;r/

log jQsN .u/j d�r .u/�

Z
@D.0;��1r/

log jQsN .u/j d���1r .u/D

Z r

��1r

n.t;N /

t
dt � n.r;N / log �;

and thus

n.r;N /�
1

log �

�Z
@D.0;r/

log jQsN .u/j d�r .u/�

Z
@D.0;��1r/

log jQsN .u/j d���1r .u/

�
: (6-9)

By (6-1), for �1 > 0, outside an event of probability at most e�e�1N

,Z
@D.0;��1r/

log jQsN .u/j d���1r .u/�
N

2
log .1C ��2r2/C �1N; (6-10)

By (6-6), for 0< �2 <
1
2

log .1C r2/, outside an event of probability at most e�F�2
.r/N 2Co.N 2/,Z

@D.0;r/

log jQsN .u/j d�r .u/�
N

2
log .1C r2/� �2N: (6-11)

By (6-9)–(6-11), outside an event of probability at most e�e�1N

C e�F�2
.r/N 2Co.N 2/,

n.r;N /�
N

log �

h
1

2
log .1C r2/�

1

2
log .1C ��2r2/� .�1C �2/

i
:

Therefore,


N

�
n.r;N / <

N

log �

�
1
2

log .1C r2/� 1
2

log .1C ��2r2/� .�1C�2/
��
� e�e�1N

C e�F�2
.r/N 2Co.N 2/;
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where the right-hand side is independent of �. We need to choose proper �, �1 and �2.
For all � > 0, we set

1

log �

h
1

2
log .1C r2/�

1

2
log .1C ��2r2/� .�1C �2/

i
D �;

�1C �2 D �� .�/ WD
1

2
log .1C r2/�

1

2
log .1C ��2r2/� � log �:

If � > 0 is small enough, let �0.�/ WD
p
.1� �/=� r > 1; then

�0� .�/D
��3r2

1C ��2r2
�
�

�
D
.1� �/r2� ��2

�.�2C r2/

8<:
> 0 when 1< � < �0;

D 0 when �D �0;

< 0 when � > �0;

and thus

.�1C �2/max D �� .�0.�//

D
1

2
log .1C r2/�

1

2
log

�
1C

�

1��

�
� �

h
1

2
log .1� �/� 1

2
log � C log r

i
D

1
2

log .1C r2/C 1
2

log .1� �/� 1
2
� log .1� �/C 1

2
� log � � � log r

D
1
2

log .1C r2/C 1
2
Œ� log � C .1� �/ log .1� �/� 2� log r �:

For a fixed r > 0, we can choose smaller � > 0 if necessary so that

�
1
2

log .1C r2/ < � log � C .1� �/ log .1� �/� 2� log r < 0:

This is possible since

� log � C .1� �/ log .1� �/� 2� log r < 0 if 0< � < ˛0

and
lim
�!0C

Œ� log � C .1� �/ log .1� �/� 2� log r �D 0:

Thus, for such � and the corresponding �0 D �0.�/,

1
4

log .1C r2/ < �1C �2 D �� .�0/ <
1
2

log .1C r2/:

In this case, for all 0< �1 <
1
4

log .1C r2/,

0< �2 D
1
2

log .1C r2/C 1
2
Œ� log � C .1� �/ log .1� �/� 2� log r �� �1 <

1
2

log .1C r2/;


N fn.r;N / < �N g D 
N

n
n.r;N / <

N

log �0

h
1

2
log .1C r2/�

1

2
log .1C ��2

0 r2/� .�1C �2/
io

� e�e�1N

C e�F�2
.r/N 2Co.N 2/:

Fix any k � 0; when N is large enough, k < �N ,

exp
˚
�

1
2
˛0.1C2 log r�log˛0/N

2
Co.N 2/

	
D P0;1.r;N /� Pk;1.r;N /� 
N fn.r;N / < �N g

� e�e�1N

Cexp
˚
�

1
2
˛0

˚
.1C2 log r�log˛0/C2Œ� log �C.1��/ log .1��/�2� log r ��4�1

	
N 2
Co.N 2/

	
:
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Therefore,

�
1
2
˛0.1C 2 log r � log˛0/� lim inf

N!1

log Pk;1.r;N /

N 2
� lim sup

N!1

log Pk;1.r;N /

N 2

� �
1
2
˛0

˚
.1C 2 log r � log˛0/C 2Œ� log � C .1� �/ log .1� �/� 2� log r �� 4�1

	
:

Let �1! 0C and then � ! 0C; we have

lim
N!1

log Pk;1.r;N /

N 2
D�

1
2
˛0.1C 2 log r � log˛0/

or, equivalently,

log Pk;1.r;N /��1
2
˛0.1C 2 log r � log˛0/N

2: �

Appendix

We now prove the following lemma:

Lemma A.1. The coefficient of gm;N .�/ in det Wm;N .�/ equals 1.

Proof. Let Sm;N be the set of bijections from �m;N to ƒm;N and, for all � 2 Sm;N , J 2 �m;N , write
�.J /D .�1.J /; : : : ; �m.J //. Then

det Wm;N .�/D
X

�2Sm;N

sgn.�/
Y

J2�m;N

�
�.J /
J
D

X
�2Sm;N

sgn.�/
Y

J2�m;N

�
�1.J /
1;j1

� � � �
�m.J /
m;jm

:

To find those � 2 Sm;N ending up with gm;N .�/, it is equivalent to find � satisfying, for all 1� i �m,

X
J2�

i;k

m;N

�i.J /D

8<:
�kCi�1

i

��N �kCm�i

m�i

�
1� k �N;

0 k D 0;
(A-1)

where the set � i;k
m;N

is defined in (2-7). We are going to prove by induction that

�.J /D .j1; j2� j1; : : : ; jm� jm�1/ for all J 2 �m;N : (A-2)

First of all, similarly to � i;k
m;N

, we introduce

ƒ
i;k
m;N
D f.k1; : : : ; km/ 2ƒm;N W k1C � � �C ki D kgI

then

ƒm;N D

NG
kD0

ƒ
i;k
m;N

for all 1� i �m;

and

jƒ
i;k
m;N
j D

�kCi�1

i�1

��N �kCm�i

m�i

�
D j�

i;k
m;N
j:
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When i D 1, (A-1) shows that, for 0� k �N ,X
J2�

1;k

m;N

�1.J /D k
�N �kCm�1

m�1

�
; (A-3)

where the number of terms in the summation on the left is j�1;k
m;N
j D

�
N�kCm�1

m�1

�
D jƒ

1;k
m;N
j for all

0� k �N . Then

k D 0 in (A-3) D) �.�
1;0
m;N

/Dƒ
1;0
m;N

D) �

� NG
kD1

�
1;k
m;N

�
D

NG
kD1

ƒ
1;k
m;N

;

k D 1 in (A-3) D) �.�
1;1
m;N

/Dƒ
1;1
m;N

D) �

� NG
kD2

�
1;k
m;N

�
D

NG
kD2

ƒ
1;k
m;N

;

:::

k DN in (A-3) D) �.�
1;N
m;N

/Dƒ
1;N
m;N

;

so

�1.J /D j1 for all J 2 �m;N :

Now assume, for some 1� i�m�1, that .�1C� � �C�i/.J /Dji for all J 2�m;N . Then, for any 1�k�N ,X
J2�

iC1;k

m;N

.�1C � � �C �iC1/.J /D
X

J2�
iC1;k

m;N

Œji C �iC1.J /�

D

kX
jD0

j j�
i;j
m;N
\�

iC1;k
m;N

jC

�kCi

iC1

��N �kCm�i�1

m�i�1

�

D

kX
jD0

j
�jCi�1

i�1

��N �kCm�i�1

m�i�1

�
C

�kCi

iC1

��N �kCm�i�1

m�i�1

�
D k

�kCi

i

��N �kCm�i�1

m�i�1

�
;

where the second term on the second line of the calculation comes from (A-1). And, for k D 0,X
J2�

iC1;0

m;N

.�1C � � �C �iC1/.J /D
X

J2�
iC1;0

m;N

Œji C �iC1.J /�D 0:

So, for all 0� k �N ,X
J2�

iC1;k

m;N

.�1C � � �C �iC1/.J /D k
�kCi

i

��N �kCm�i�1

m�i�1

�
; (A-4)
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where the number of terms in the summation on the left is j� iC1;k
m;N

j D
�
kCi

i

��
N�kCm�i�1

m�i�1

�
D jƒ

iC1;k
m;N

j

for all 0� k �N .

k D 0 in (A-4) D) �.�
iC1;0
m;N

/Dƒ
iC1;0
m;N

D) �

� NG
kD1

�
iC1;k
m;N

�
D

NG
kD1

ƒ
iC1;k
m;N

;

k D 1 in (A-4) D) �.�
iC1;1
m;N

/Dƒ
iC1;1
m;N

D) �

� NG
kD2

�
iC1;k
m;N

�
D

NG
kD2

ƒ
iC1;k
m;N

;

:::

k DN in (A-4) D) �.�
iC1;N
m;N

/Dƒ
iC1;N
m;N

;

so
.�1C � � �C �iC1/.J /D jiC1 for all J 2 �m;N :

Thus, (A-2) is proved. And it is trivial to check that the � defined in (A-2) satisfies all the equations
in (A-1). This means that there is only one � 2 Sm;N that ends up with gm;N .�/, and it turns out to be
order-preserving. Therefore,

det Wm;N .�/D gm;N .�/C � � � : �
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STOCHASTIC HOMOGENIZATION
OF VISCOUS HAMILTON–JACOBI EQUATIONS AND APPLICATIONS

SCOTT N. ARMSTRONG AND HUNG V. TRAN

We present stochastic homogenization results for viscous Hamilton–Jacobi equations using a new argument
that is based only on the subadditive structure of maximal subsolutions (i.e., solutions of the “metric
problem”). This permits us to give qualitative homogenization results under very general hypotheses: in
particular, we treat nonuniformly coercive Hamiltonians that satisfy instead a weaker averaging condition.
As an application, we derive a general quenched large deviation principle for diffusions in random
environments and with absorbing random potentials.

1. Introduction

1A. Motivation and informal summary of results. In this paper, we consider the qualitative stochastic
homogenization of second-order, “viscous” Hamilton–Jacobi equations. We present a new, short and
self-contained argument that yields homogenization under very general and essentially optimal hypotheses.
Our framework includes a class of equations for which the homogenization result has an equivalent
formulation in probabilistic terms as a quenched large deviation principle (LDP) for diffusions in random
environments (and/or with random obstacles), and so a corollary of our analysis is a very general LDP for
such problems that generalizes many previous results on the topic.

In its time-dependent form, the viscous Hamilton–Jacobi equation we consider is

uεt − ε tr
(

A
( x
ε

)
D2uε

)
+ H

(
Duε, x

ε

)
= 0 in Rd

× (0,∞). (1-1)

Here Dφ and D2φ denote the gradient and Hessian of a real-valued function φ, and tr B is the trace
of a d-by-d matrix B. The coefficients A and H are called the diffusion matrix and the Hamiltonian,
respectively, and are assumed to be stationary-ergodic random fields. That is, they are randomly selected
from the set of all such equations by an underlying probability measure that is stationary and ergodic
with respect to Rd-translations. The essential structural hypotheses on the coefficients are that A takes
values in the nonnegative definite matrices (and in particular may be degenerate or even vanish) and H
is convex and growing superlinearly in its first variable. See below for some important examples of the
equations that fit into our framework.

The presence of the ε factor in the diffusion term of (1-1) gives the equation a critical scaling, and it
turns out that it behaves like a first-order Hamilton–Jacobi equation in the limit ε→ 0. Indeed, rather
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environment, weak coercivity, degenerate diffusion.
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than providing any useful regularizing effect, the diffusion term actually makes the analysis more difficult
compared to the pure first-order case by destroying localization effects (such as the finite speed of
propagation). Also notice that, while we choose to write the principal part of (1-1) in nondivergence form,
thanks to the scaling of the equation, our study also covers the case of equations with principal part in
divergence form. Indeed, we may rewrite an equation with principal part divergence form, at least in the
case that the diffusion matrix is sufficiently smooth (on the microscopic scale) in the form of (1-1) by
simply expanding out the divergence, observing that the ε’s cancel, and absorbing the new first-order
drift term into the Hamiltonian.

The archetypical result of almost-sure, qualitative homogenization for (1-1) is that there exists a
deterministic, constant-coefficient equation

ut + H(Du)= 0 in Rd
× (0,∞) (1-2)

such that, subject to an appropriate initial condition, uε converges locally uniformly, as ε→ 0 and with
probability one, to the solution u of (1-2). The nonlinearity H , called the effective Hamiltonian, depends
on P but is a deterministic quantity. It inherits convexity and superlinearity from the heterogeneous
Hamiltonian. Its fine qualitative properties encode information regarding the behavior of solutions of the
heterogeneous equation (1-1). In the particular case corresponding to quenched large deviation principles
for diffusions in random environments, H is, up to a constant, the Legendre–Fenchel transform of the
rate function (see below for more details).

The first qualitative homogenization results of this type for second-order equations, asserting that (1-1)
homogenizes to a limiting equation of the form of (1-2), were proved independently by Kosygina, Reza-
khanlou and Varadhan [Kosygina et al. 2006] and Lions and Souganidis [2005]. Earlier homogenization
results for first-order equations (i.e., A ≡ 0) in the random setting are due to Souganidis [1999] and
Rezakhanlou and Tarver [2000], and subsequent work can be found in [Armstrong and Souganidis 2012;
Lions and Souganidis 2010]. We also refer the reader to the nice survey article of Kosygina [2007].

In this paper, we present a new proof of homogenization that applies to a wider class of equations. The
idea is to apply the subadditive ergodic theorem to certain maximal subsolutions (these are the functions mµ

in Section 2), thereby obtaining a deterministic limit (which we denote mµ) and hence a candidate for H
(by the formula (3-2)) and then recovering the full homogenization result by deterministic comparison
arguments (presented in Sections 4 and 5). The approach is simple and more or less self-contained
(the reader may consult our recent paper [Armstrong and Tran 2014] for the necessary deterministic
PDE theory) and yields a very general qualitative homogenization theorem under essentially optimal
hypotheses. In addition to recovering all of the known cases, including the results mentioned above, we
can also treat for the first time general Hamiltonians that are not necessarily uniformly coercive. An
essential characteristic of (1-1) is that p 7→ H(p, y) exhibits superlinear growth in p, and this is typically
assumed to be uniform in x . Here we can handle Hamiltonians satisfying an averaged coercivity condition
that is not uniform in x .

The most important feature of the method is that, unlike previous approaches, our proof of homogeni-
zation is quantifiable, as demonstrated in [Armstrong and Cardaliaguet 2015]. Much recent effort has been
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put into obtaining quantitative stochastic homogenization results, for example, estimates for the difference
uε − u, rigorous bounds for numerical methods for computing effective coefficients and so on. For first-
order Hamilton–Jacobi equations, quantitative stochastic homogenization results were recently obtained
by Armstrong, Cardaliaguet and Souganidis [Armstrong et al. 2014], who quantified the convergence
proof in [Armstrong and Souganidis 2013]. Unfortunately, the method of this last paper is not applicable
in the viscous case without new ideas, as the presence of the diffusion term generates significant additional
difficulties. From this point of view, the results in this paper can be considered as the completion of the
idea that originated in [Armstrong and Souganidis 2013].

1B. Statement of the main results. We begin by defining “the set of all equations” by specifying some
structural conditions on the coefficients. We work with parameters q > 1, n ∈ N, 31 ≥ 1 and 32 ≥ 0,
which are fixed throughout the paper.

We require the coefficients to be functions A : Rd
→ Sd (here Sd denotes the set of d-by-d real

symmetric matrices) and H :Rd
×Rd

→R satisfying the following conditions. First, the diffusion matrix
has a Lipschitz square root. Precisely, we assume that there exists a function σ : Rd

→ Rn×d such that

A = 1
2σ

tσ,

where σ is bounded and Lipschitz: for every y, z ∈ Rd ,

|σ(y)| ≤32, (1-3)

|σ(y)− σ(z)| ≤32|y− z|. (1-4)

(Here Rn×d is the set of real n-by-d matrices.) Regarding the Hamiltonian, we assume that, for every
y ∈ Rd ,

p 7→ H(p, y) is convex (1-5)

and, for every R > 0, there exist constants 0 < aR ≤ 1 and MR ≥ 1 such that, for every p, p̂ ∈ Rd

and y, z ∈ BR ,

aR|p|q −MR ≤ H(p, y)≤31(|p|q + 1), (1-6)

|H(p, y)− H(p, z)| ≤ (31|p|q +MR)|y− z|, (1-7)

|H(p, y)− H( p̂, y)| ≤31(|p| + | p̂| + 1)q−1
|p− p̂|. (1-8)

We define the probability space � to be the set of ordered pairs (σ, H) satisfying the above conditions:

� := {(σ, H) : σ and H satisfy (1-3), (1-4), (1-5), (1-6), (1-7), and (1-8)}.

We may write �=�(q, n,31,32) if we wish to emphasize the dependence of � on the parameters.
We endow the set � with

F := σ -algebra generated by (σ, H) 7→ σ(y) and (σ, H) 7→ H(p, y) with p, y ∈ Rd .

The random environment is modeled by a probability measure P on (�,F). The expectation with
respect to P is denoted by E. We assume that P is stationary and ergodic with respect to the action of Rd
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on� given by translation. To be precise, we let {τz}z∈Rd be the group action of translation on� defined by

τz(σ, H) := (τzσ, τz H), where (τzσ)(y) := σ(y+ z) and (τz H)(p, y) := H(p, y+ z).

We extend this to F by setting, for every event F ∈ F,

τz F := {τzω : ω ∈ F}.

The stationary-ergodic hypothesis is that

for all y ∈ Rd and F ∈ F, P[τy F] = P[F] (stationarity) (1-9)

and, for all F ∈ F, ⋂
z∈Rd

τz F = F implies that P[F] ∈ {0, 1} (ergodicity). (1-10)

The final assumption we impose on P is a weak coercivity condition: there exists an exponent α > d such
that

E
[(32

a1

)2α/(q−1)
+

(M1

a1

)α/q]
<+∞. (1-11)

It is important to note that 32 ≥ 0 is a constant but 0< a1 ≤ 1 and M1 ≥ 1 are random variables in the
above condition.

Remark 1.1. We emphasize that, in contrast to q, n, 31 and 32, the positive constants aR and MR in
the assumptions (1-6) and (1-7) depend on H itself; that is, they are random variables on �. To make
this precise, for each ω = (σ, H) ∈�, we redefine MR(ω) to be the smallest constant not smaller than 1
for which (1-7) holds in BR; we then redefine aR(ω) to be the largest constant not larger than 1 for
which (1-6) holds in BR . We denote

aR(x, ω) := aR(τxω) and MR(x, ω) := MR(τxω).

We drop the dependence on ω from the notation where possible, e.g., aR(x, ω)= aR(x).

We present our main homogenization result in terms of the initial-value problem{
uεt − ε tr

(
A
( x
ε

)
D2uε

)
+ H

(
Duε, x

ε

)
= 0 in Rd

× (0,∞),

uε = g on Rd
×{0}.

(1-12)

Here the initial data g is a given element of BUC(Rd), the set of bounded and uniformly continuous real-
valued functions on Rd , and the unknown function uε depends on (x, t) as well as g and the coefficients
ω = (σ, H). We typically write uε(x, t, g, ω) or often simply uε(x, t, g) or uε(x, t). As explained
in Section 5, under our assumptions, the problem (1-12) has a unique viscosity solution (subject to an
appropriate growth condition) almost surely with respect to P. In fact, it is defined by formula (5-2)
below. We remark that all differential equations and inequalities in this paper, including the ones above,
are interpreted in the viscosity sense; see Section 1D.
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In our main result, we identify a continuous, convex H : Rd
→ R and show that, as ε → 0, the

solutions uε of (1-12) converge, P-almost surely, to the unique solution of{
ut + H(Du)= 0 in Rd

× (0,∞),
u = g on Rd

×{0}.
(1-13)

That the latter has a unique solution is a consequence of the properties of H summarized in Lemma 3.1
(see Section 5 for more details).

We now state our main homogenization theorem.

Theorem 1. Let (�,F) be defined as above for fixed constants q > 1 and 31,32 > 0. Suppose that P is
a probability measure on (�,F) satisfying (1-9), (1-10) and (1-11). Then there exists a convex H ∈C(Rd)

satisfying, for some constants C, c > 0,

c(|p|q −C)≤ H(p)≤ C(|p|q + 1)

with the following property: with uε(x, t, g, ω) defined by (5-2), and denoting by u = u(x, t, g) the unique
solution of (1-13), we have

P
[
∀g ∈ BUC(Rd), ∀R > 0, lim sup

ε→0
sup

(x,t)∈BR×[0,R)
|uε(x, t, g)− u(x, t, g)| = 0

]
= 1.

Let us say a few words regarding the role of the weak coercivity assumption. The first thing to notice
about (1-11) is that a particular case occurs when P is supported on the set of (σ, H) for which H
satisfies (1-6) and (1-7) for constants aR > 0 and MR > 1 that are independent of R. We call this a
uniform coercivity condition, and it is the traditional hypothesis under which homogenization results for
viscous Hamilton–Jacobi equations have been obtained. From the PDE point of view, it is important
because it provides uniform Lipschitz estimates for solutions, which is a starting point for the analysis.
The condition (1-11) can then be seen as a relaxation of the uniform coercivity condition, replacing it by
an averaging condition. We remark that we expect the averaging condition stated here to be optimal in
terms of the range of the exponent α. The result should not hold if we only have (1-11) for α = d .

There are few homogenization results in the random setting without uniform coercivity. Armstrong and
Souganidis [2012] recently proved such a result under a less general averaging condition (essentially (1-11)
with a1 bounded below). They also assumed the random environment satisfied a strong mixing condition
with an algebraic mixing rate assumed to be sufficiently fast, depending on the exponent α. Similar
results stated in probabilistic terms were obtained at about the same time by Rassoul-Agha, Seppäläinen
and Yilmaz [Rassoul-Agha et al. 2013]. In contrast to these results, we do not require any mixing condition
here, merely that the environment be stationary-ergodic.

We next present a model equation that fits into our framework.

Example 1.2. Consider the particular case of the Hamiltonian

H(p, y)= a(y)|p|q − V (y), (1-14)

where q > 1, the functions a and V are stationary-ergodic random fields that are almost surely locally
Lipschitz, V ≥ 0 and a is positive and uniformly Lipschitz on Rd . Assume also that A satisfies the usual



1974 SCOTT N. ARMSTRONG AND HUNG V. TRAN

assumption stated above. This of course fits under our framework since given such a random function H
(together with σ ) we simply take P to be the law of (σ, H). The weak coercivity condition is satisfied in
this case provided that, for some α > d ,

E

[(
1

a(0)

)2α/(q−1)

+

(
‖V ‖C0,1(B1)

a(0)

)α/q]
<+∞.

If the diffusion matrix A vanishes, we only need that, for some α > d ,

E

[(
‖V ‖C0,1(B1)

a(0)

)α/q]
<+∞.

In the case that V is bounded and uniformly Lipschitz, we need simply that a−1
∈ L p(�) for some

p > 2d/(q − 1); if in addition there is no diffusion (A = 0), then we just need p > d/q. Even in these
relatively simple situations, the homogenization result we obtain is completely new. In the case that a is
bounded below, then we just need that E[‖V ‖p

C0,1(B1)
]<+∞ for some p > d/q , which is better than the

condition p ≥ d assumed in [Armstrong and Souganidis 2012].

Remark 1.3. It is customary in the homogenization literature to hide the specifics of the probability
space � by introducing the “dummy variable” ω and expressing σ and H as maps σ : Rd

×�→ Sd

and H : Rd
×Rd

×�→ R by identifying σ( · , ω) and H( · , · , ω) with σ̃ and H̃ , respectively, where
ω = (σ̃ , H̃). Viewed this way, the functions A and H are stationary with respect to the translation group
action {τz}z∈Rd in the sense that, for every p, y, z ∈ Rd and ω ∈�,

σ(y, τzω)= σ(y+ z, ω) and H(p, y, τzω)= H(p, y+ z, ω).

While this is evidently equivalent to the formulation here, we feel that writing ω everywhere is both
unsightly and unnecessary, and so we avoid it wherever possible. The meaning of expressions such as
P[ · · · ] and E[ · · · ] are always quite clear from the context. Meanwhile, measurability issues are already
set up by the definition of F and become, in our opinion, more rather than less confusing if we display
explicit dependence on ω.

1C. A quenched LDP for diffusions in random environments. In order to state the main probabilistic
application of Theorem 1, we require some additional notation. We begin with another example of a
Hamilton–Jacobi equation with random coefficients that is contained in the framework of Theorem 1.

Example 1.4. With σ : Rd
→ Rd×d as described in the hypotheses (with n = d) and given a random

vector field b and potential V ≥ 0, we define the Hamiltonian

H(p, y)= 1
2 |σ p|2+ b(y) · p− V (y)= p · Ap+ b(y) · p− V (y), (1-15)

where as usual A = 1
2σ

tσ , which is precisely the given diffusion matrix. The weak coercivity condition
is satisfied provided there exists α > d such that

E

[(
1

λ1(A(0))

)2α

+

(
‖V ‖C0,1(B1)

λ1(A(0))

)α/2]
<+∞, (1-16)
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where λ1(A)= 1
2 min|z|=1|σ z|2 is the smallest eigenvalue of A. If this random variable is bounded below,

we say that A is uniformly elliptic, and in this case, we need only that the potential V has a finite q-th
moment for some q > d/2.

Throughout the rest of this subsection, we take σ , A, b and V to be as in Example 1.4. In this situation,
we may identify the probability space � with ordered triples (σ, b, V ).

We denote by t 7→ X t the canonical process on C(R+,Rd). Recall that the martingale problem
corresponding to σ and b has a unique solution [Stroock and Varadhan 1979]. This means that, for each
x ∈ Rd and ω = (σ, b, V ) ∈�, there exists a unique probability measure Px,ω on C(R+,Rd) such that,
under Px,ω, the canonical process X = {X t }t≥0 satisfies the stochastic differential equation{

d X t = σ(X t , ω) dBt + b(X t , ω) dt,
Px,ω[X0 = x] = 1,

where {Bt }t≥0 is a d-dimensional Brownian motion with respect to Px,ω.
The main object of interest is the quenched path measure of the diffusion t 7→ X t in the random

potential V ( · , ω), which is defined, for each x ∈ Rd , ω ∈� and t > 0, by

Qt,x,ω(dv) :=
1

S(t, x, ω)
exp

(
−

ˆ t

0
V (Xs, ω) ds

)
Px,ω(dv),

where the normalizing factor S(t, x, ω), called the quenched partition function, is given by

S(t, x, ω) := Ex,ω

[
exp

(
−

ˆ t

0
V (Xs, ω) ds

)]
. (1-17)

Note that Qt,x,ω is a probability measure on the path space C(R+;Rd).
The physical interpretation of the quenched path measures is that Qt,x,ω describes the behavior of

the diffusion X in an “absorbing” potential (in this interpretation, the half-life of a particle at position x
is log 2/V (x, ω)) conditioned on the (exponentially unlikely event) that X is not absorbed up to time t ;
the probability that the particle lives until time t is precisely St,x,ω. We note that the case V ≡ 0 is also of
interest, in which case Qt,x,ω = Px,ω and our results below describe the quenched large deviations of Px,ω,
that is, of the diffusion in the random medium with no absorption. We also remark that we may allow V to
take negative values, provided that V is uniformly bounded below; in the particle interpretation, negative
values of V correspond to the creation of particles.

A central task in the study of diffusions in random environments is to obtain statistical information
about the typical sample paths under Qt,t x,ω. Here we are interested in information regarding the large
deviations of Qt,t x,ω in the asymptotic limit t→∞.

Corollary 2. Let P be a probability measure on � (which is identified with ordered triples (σ, b, V )
as explained above) satisfying (1-9), (1-10) and (1-16). Let H be as in the statement of Theorem 1
corresponding to the Hamiltonian H given in (1-15), and let L be the Legendre–Fenchel transform of H ,
defined for z ∈ Rd by

L(z) := sup
p∈Rd

(p · z− H(p)).
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Then there exists �0 ∈ F with P[�0] = 1 such that, for every ω ∈�0, we have the following:

(i) For every closed set K ⊆ Rd and x ∈ Rd ,

lim inf
t→∞

−
1
t

log Qt,t x,ω[X t ∈ t K ] ≥ inf
y∈K

L(x − y)+ H(0). (1-18)

(ii) For every open set U ⊆ Rd and x ∈ Rd ,

lim sup
t→∞

−
1
t

log Qt,t x,ω[X t ∈ tU ] ≤ inf
y∈U

L(x − y)+ H(0). (1-19)

The proof that Theorem 1 implies Corollary 2 is presented in Section 6, and it follows along similar
lines as the ones that previously appeared for example in [Lions and Souganidis 2005; Kosygina 2007].

Sznitman [1994] was the first to prove a quenched large deviations result like this in dimensions
larger than one. Precisely, he proved Corollary 2 in the special case that σ = Id is the identity matrix,
b(y, ω)= b0 ∈ Rd is a constant vector and the potential V is Poissonian; i.e.,

V (y, ω)=
ˆ

Rd
W (y− z) dρ(z),

where W ∈ C∞c (R
d) and the locally finite measure ρ has a Poissonian law (see [Sznitman 1998, Theorem

4.7]). In particular, such a random potential has a finite range of dependence and bounded finite moments.
In fact, the first phase of the strategy followed in this paper to homogenize the Hamilton–Jacobi equation

is analogous in many respects to the probabilistic approach Sznitman used to obtain the large deviation
principle. His proof relied on an application of the subadditive ergodic theorem to certain quantities,
essentially equivalent to the maximal subsolutions considered here (the mµ’s), to obtain deterministic
limits, the Lyapunov exponents, which are precisely the mµ’s we encounter in the next section. See also
the discussion preceding Proposition 2.5.

Let us check that the rate function in Corollary 2 agrees with the one in [Sznitman 1998]. First note
that minRd H = H(0)= 0 in Sznitman’s case. The effective Lagrangian L may thus be expressed in terms
of the mµ’s as follows:

L(z)= sup
z∈Rd

(p · z− H(p)) (definition of L)

= sup
µ>0

sup{p · z− H(p) : H(p)≤ µ} (by 0=min H )

= sup
µ>0

sup{p · z−µ : H(p)≤ µ}

= sup
µ>0

(mµ(z)−µ) (by (3-3) below).

In the absorption-free case V ≡ 0, Zerner [1998] proved a result similar to Corollary 2 for random walks
on the lattice Zd with i.i.d. transition probabilities at each lattice point. He required (loosely translated
into our notation) that A be “almost” uniformly elliptic:

E[−log λ1(A(0, ω))d ]<∞. (1-20)
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This condition is much weaker than our (1-16) but is compensated for by the much stronger independence
assumption on the random environment.

The subject of large deviations of random walks in random environments continues to receive much
attention, and the works of Sznitman and Zerner have been subsequently extended to more general settings,
and properties of the rate function have been studied in more depth; in particular, we refer to [Varadhan
2003; Rassoul-Agha 2004]. See also the more recent work of Yilmaz [2009], who proves a discrete
version of Corollary 2 with no absorption, V = 0, in a quite general stationary-ergodic framework like
ours with a slight strengthening of (1-20). Finally, a large deviation result for random walks in the case of
absorption, V 6≡ 0, was proved recently by Rassoul-Agha et al. [2013] under the assumptions that the
random environment is strongly mixing. Admitting the proof of Corollary 2 from Theorem 1, the results
of [Rassoul-Agha et al. 2013] may be compared to those of [Armstrong and Souganidis 2012].

Finally, we mention that the connection between large deviations and viscosity solutions of Hamilton–
Jacobi equations was observed by Evans and Ishii [1985], who studied large deviations of the occupation
times of small random perturbations of ODEs.

1D. Disclaimer on viscosity solutions. Throughout the paper, all differential equalities and inequalities
are understood in the viscosity sense. For a general introduction to viscosity solutions, we refer to
[Crandall et al. 1992]. Many of the fundamental PDE results we need here are proved in [Armstrong
and Tran 2014], which we cite many times below. Recall that the natural function space for viscosity
subsolutions on a domain X is the space USC(X) of upper semicontinuous functions on X and, for
supersolutions, it is LSC(X), the set of lower semicontinuous functions on X .

1E. Outline of the paper. In the next section, we introduce the maximal subsolutions and homogenize
them using the subadditive ergodic theorem. In Section 3, we construct the effective Hamiltonian and
study some of its basic properties. In Section 4, we give the proof of an intermediate homogenization
result and finally prove Theorem 1 in Section 5. The quenched large deviation principle is shown in
Section 6 to be a consequence of the homogenization result.

2. The shape theorem: homogenization of the maximal subsolutions

In this section, we homogenize the maximal subsolutions of the inequality

− tr(A(y)D2w)+ H(Dw, y)≤ µ in Rd . (2-1)

In subsequent sections, we show with comparison arguments that homogenizing these maximal subsolu-
tions is enough to imply Theorem 1. As we will see, the reason that the maximal subsolutions are easier
to homogenize is due to their subadditive structure.

The maximal subsolutions are defined, for each µ ∈ R and y, z ∈ Rd , by

mµ(y, z) := sup
{
w(y)− sup

B1(z)
w : w ∈ USC(Rd) satisfies (2-1)

}
. (2-2)
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If the admissible class in the supremum above is empty, then we take mµ(y, z)≡−∞. We denote, for
every ω = (σ, H) ∈�, the critical parameter h(ω) for which mµ is finite by

h := inf{µ : there exists w ∈ USC(Rd) satisfying (2-1)}. (2-3)

According to (1-6), we have h(ω)≤31. It is sometimes convenient to work with the quantity

m̃µ(y, z) := sup
B1(y)

mµ( · , z). (2-4)

Some deterministic properties of the maximal subsolutions are summarized in the following proposition,
which is proved in [Armstrong and Tran 2014]. See Proposition 3.1 and Section 5 of that paper. The
estimate (2-7) below is particularly important in our analysis and comes from the explicit Lipschitz
estimates proved in [Armstrong and Tran 2014, Proposition 3.1].

Proposition 2.1 [Armstrong and Tran 2014]. Fix ω = (σ, H) ∈� and µ≥ h(ω). Then, for every z ∈ Rd ,
the function mµ( · , z) belongs to C0,1

loc (R
d
\ B1(z))∩USC(Rd) and satisfies

− tr(A(y)D2mµ)+ H(Dmµ, y)≤ µ in Rd (2-5)

as well as
− tr(A(y)D2mµ)+ H(Dmµ, y)= µ in Rd

\ B1(z). (2-6)

There exists a constant C > 0, depending only on d and q , such that, for every y, z ∈ Rd ,

osc
B1(y)

mµ( · , z)≤ C
[(
(1+31)

1/2
‖σ‖C0,1(B2(y))

a2(y)

)2/(q−1)

+

(
M2(y)+µ

a2(y)

)1/q]
. (2-7)

For every λ ∈ [0, 1], µ, ν ≥ h(ω) and y, z ∈ Rd ,

mλµ+(1−λ)ν(y, z)≥ λmµ(y, z)+ (1− λ)mν(y, z). (2-8)

Finally, for every x, y, z ∈ Rd , we have

m̃µ(y, z)≤ m̃µ(y, x)+ m̃µ(x, z). (2-9)

We define Kµ(y) to be the random variable on the right side of (2-7), that is,

Kµ(y) := C
[(
(1+31)

1/2
‖σ‖C0,1(B2(y))

a2(y)

)2/(q−1)

+

(
M2(y)+µ

a2(y)

)1/q]
,

so that we can write the bound (2-7) as

osc
B1(y)

mµ( · , z)≤ Kµ(y). (2-10)

We also denote Kµ = Kµ(0). The primary use of the weak coercivity hypothesis (1-11) is that it implies
that the α-th moment of Kµ, which we denote by K α

µ, is finite for some α > d:

Kµ := E[K α
µ]

1/α <+∞. (2-11)
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Note that we have used (1-11) with a2 and M2 replacing a1 and M1, respectively, which is seen to be
equivalent to (1-11) by an easy covering argument.

As far as the dependence of Kµ on µ, we use M2 ≥ 1 to check that

Kµ ≤ K 0(1+µ1/q). (2-12)

We next use ergodicity to show that the random variable h defined in (2-3) is, up to an event of
probability zero, a deterministic constant.

Lemma 2.2. Assume that P is a probability measure on (�,F) satisfying (1-9) and (1-10). Then there
exists a constant H∗ ∈ R, depending on P, such that

P
[
H∗ = inf{µ ∈ R : there exists w ∈ USC(Rd) satisfying (2-1)}

]
= 1. (2-13)

Proof. Let us see that h defined in (2-3) is finite. We have already seen that h ≤31 by (1-6). To argue
that h(ω) >−∞ for every ω = (σ, H) ∈�, we use the test function

φ(y) := k(1− |y|2)−1/(q−1).

If k > 1 and C > 1 are sufficiently large, depending only on 32 and the constants a1 and M1 in (1-6)
for H , then φ is a smooth solution of

− tr(A(y)D2φ)+ H(Dφ, y) >−C in B1.

Now consider an arbitrary element w ∈ USC(Rd). Since φ(y)→+∞ as y→ ∂B1, there exists x0 ∈ B1

such that w−φ has a local maximum at x0. In view of the differential inequality for φ, we obtain that w
cannot be a subsolution of (1-6) for any µ≥−C .

It is immediate from its definition that h is invariant under the translation group action {τy}y∈Rd . By the
ergodicity assumption, this implies that P assigns each of the events {h >λ} and {h <λ}, for every λ ∈R,
probability either zero or one. This implies that h is P-almost surely a constant. Taking this constant to
be H∗ yields the lemma. �

Our main interest lies in the asymptotic behavior of mµ(y, z) for |y− z| ' |z| � 1. In the next lemma,
we use Morrey’s inequality together with the local oscillation bound (2-10) and the ergodic theorem to
prove the large-scale oscillation bound oscBR(Ry) mµ( · , z). R uniformly in z ∈ Rd for R� 1. Recall
that Morrey’s inequality [Evans 1998, Section 5.6.2] states that, for any R > 0, u ∈ C1(BR) and β > d,
there exists C(β, d) > 1 such that

osc
BR

u ≤ C R
( 

BR

|Du(x)|β dx
)1/β

. (2-14)

Therefore, we can control the oscillation of a function in terms of “averaged pointwise oscillation bounds”.
Thus, it is natural to attempt to control the large-scale oscillation of mµ( · , z) in terms of the average of a
power of its local oscillation with the hope of using (2-10), (2-11) and the ergodic theorem to control the
latter.
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Lemma 2.3. Assume that P is a probability measure on (�,F) satisfying (1-9), (1-10) and (1-11). Then
there exists C > 0, depending only on d and α, such that

P
[
∀µ≥ H∗, ∀x ∈ Rd , lim sup

R→∞
sup
z∈Rd

1
R

osc
BR(Rx)

mµ( · , z)≤ C Kµ

]
= 1. (2-15)

Proof. It is convenient to mollify the functions in order to put the local oscillation bounds into a pointwise
form suitable for the application of Morrey’s inequality. We first observe that, owing to Lemma 2.2, we
may assume that mµ is finite for all µ≥ H∗ by removing an event of zero probability.

We now fix µ ≥ H∗ and z ∈ Rd and take a nonnegative η ∈ C∞c (R
d) with support in B1/2 and unit

mass,
´

Rd η(y) dy = 1, and set

m̂µ(y) :=
ˆ

Rd
η(y− x)mµ(x, z) dx . (2-16)

Then m̂µ is smooth, and using (2-7), we have, for every y ∈ Rd ,

|m̂µ(y)−mµ(y, z)| ≤
ˆ

Rd
η(y− x)|mµ(x, z)−mµ(y, z)| dx

≤ osc
B1/2(y)

mµ( · , z)≤ inf
B1/2(y)

Kµ( · ) (2-17)

and

|Dm̂µ(y)| =
∣∣∣∣ˆ

Rd
Dη(y− x)(mµ(x, z)−mµ(y, z)) dx

∣∣∣∣≤ C Kµ(y). (2-18)

Applying (2-14) and then using (2-18), we deduce the existence of C(d, α) > 1 such that, for every
x ∈ Rd ,

osc
BR(x)

m̂µ ≤ C R
( 

BR(x)
|Dm̂µ(y)|α dy

)1/α

≤ C R
( 

BR(x)
K α
µ(y) dy

)1/α

. (2-19)

Next, we return to (2-17) and observe that

sup
y∈BR(x)

|m̂µ(y)−mµ(y, z)| ≤ sup
y∈BR(x)

inf
x∈B1/2(y)

Kµ(x)≤
(

sup
y∈BR(x)

 
B1/2(y)

K α
µ(x) dx

)1/α

≤ C
(ˆ

BR+1(x)
K α
µ(x) dx

)1/α

≤ C(R+ 1)d/α
( 

BR+1(x)
K α
µ(x) dx

)1/α

.

Making note of the fact that d/α < 1 and combining the above inequality with (2-19), we deduce that,
for every R > 1 and x, z ∈ Rd ,

1
R

osc
BR(x)

mµ( · , z)≤ C
( 

BR+1(x)
K α
µ(y) dy

)1/α

. (2-20)

According to the ergodic theorem [Becker 1981],

P

[
lim

R→∞

( 
BR+1(Rx)

K α
µ(y) dy

)1/α

= E[K α
µ]

1/α
]
= 1.
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In view of the definition of Kµ, the last two lines yield that, for every µ≥ H∗,

P
[
∀x ∈ Rd , lim sup

R→∞
sup
z∈Rd

1
R

osc
BR(Rx)

mµ( · , z)≤ C Kµ

]
= 1.

Using the monotonicity ofµ→mµ and the continuity ofµ 7→Kµ and intersecting the events corresponding
to all rational µ and µ= H∗, we obtain (2-15). �

The following lemma is an abstract tool that allows us to obtain uniform convergence, with respect to
the translation group {τy}y∈Rd , for sequences of random variables that converge almost surely and satisfy
appropriate oscillation bounds. The argument follows an (unpublished) idea attributed to Varadhan, using
a combination of Egoroff’s theorem and the ergodic theorem.

Lemma 2.4. Assume P is a probability measure on (�,F) satisfying (1-9) and (1-10). Suppose that
{X t }t>0 is a family of F-measurable random variables on � such that

P
[
lim sup

t→∞
X t(0)≤ 0

]
= 1.

Denote X t(y, ω) := X t(τyω), and suppose that

P
[
∀z ∈ Rd , lim sup

r→0
lim sup

t→∞
osc

y∈Btr (t z)
X t(y, · )= 0

]
= 1.

Then

P
[
∀R > 0, lim sup

t→∞
sup

y∈Bt R

X t(y, · )≤ 0
]
= 1.

Proof. We first notice that, after a routine covering argument, the second hypothesis can be rewritten in a
slightly stronger way as

P
[
∀R > 0, lim sup

r→0
lim sup

t→∞
sup
z∈BR

osc
y∈Btr (t z)

X t(y, · )= 0
]
= 1. (2-21)

By the first hypothesis, for each ε > 0, there exists Tε > 0 sufficiently large that

P

[
sup
t≥Tε

X t(0, · )≤ ε
]
≥ 1− 1

2ε
d . (2-22)

Denote this event by Dε := {ω ∈ � : supt≥Tε X t(0, ω) ≤ ε}. According to the multiparameter ergodic
theorem [Becker 1981], for each ε > 0, there exists an event �̃ε ∈ F with P[�̃ε] = 1 such that, for every
ω ∈ �̃ε,

lim
r→∞

 
Br

1Dε
(τxω) dx = P[Dε] ≥ 1− 1

2ε
d . (2-23)

Here 1E denotes the indicator function of an event E ∈ F. It follows that, for each ω ∈ �̃ε, there exists
rε > 0 sufficiently large (and depending on ω in addition to ε) that

inf
r≥rε

 
Br

1Dε
(τxω) dx > 1− εd . (2-24)
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Notice that (2-24) implies that, for r ≥ rε(ω),

|{x ∈ Br : τxω ∈ Dε}|> (1− εd)|Br |. (2-25)

In particular, if r ≥ rε(ω), then no ball of radius rε is contained in {x ∈ Br : τxω /∈ Dε}.
Let �̃ be the intersection of �̃ε over all ε ∈Q+. Fix R, ε > 0 with ε ∈Q+, ω ∈ �̃ such that ω also

belongs to the event inside the probability in (2-21), t ≥ R−1 max{rε(ω), Tε} and y ∈ Bt R . Then there
exists z ∈ BR such that τt zω ∈ Dε and |y− t z| ≤ t Rε. Note that τt zω ∈ Dε is equivalent to X t(t z, ω)≤ ε.
We deduce that

X t(y, ω)≤ X t(t z, ω)+ osc
x∈Bt Rε(t z)

X t(x, ω)≤ ε+ sup
z′∈BR

osc
x∈Bt Rε(t z′)

X t(x, ω).

This holds for all y ∈ Bt R; hence,

sup
y∈Bt R

X t(y, ω)≤ ε+ sup
z′∈BR

osc
x∈Bt Rε(t z′)

X t(x, ω).

We have shown that, for all ε ∈Q such that ε > 0, we have

lim sup
t→∞

sup
y∈Bt R

X t(y, ω)≤ ε+ lim sup
t→∞

sup
z′∈BR

osc
x∈Bt Rε(t z′)

X t(x, ω).

Sending ε→ 0, using that ω belongs to the event inside the probability in (2-21), we obtain

lim sup
t→∞

sup
y∈Bt R

X t(y, ω)≤ 0.

This conclusion applies for every R > 0 and ω belonging to the intersection of �̃ and the event in (2-21),
which has probability one. �

We next employ the subadditive ergodic theorem [Akcoglu and Krengel 1981] and the subadditivity
of mµ to get the following result, which asserts that, for large t>0, we have mµ(t y, t z)≈ tmµ(y−z)+o(t)
for some deterministic function mµ. The key ingredients in the proof are subadditivity (2-9) and the local
oscillation estimate (2-15).

The terminology “shape theorem” originated in first-passage percolation, and “shape” refers to the
sublevel sets of mµ. In particular, the result here generalizes [Sznitman 1998, Theorem 5.2.5] and also
covers the case that A ≡ 0 and the Hamiltonian has the specific form H(p, x)= a(x)|p| where a > 0 is
an appropriate random field, which is a continuum analogue of the first passage percolation model.

Proposition 2.5 (the shape theorem). Assume P is a probability measure on (�,F) satisfying (1-9), (1-10)
and (1-11). Then there exists a family {mµ :µ≥ H∗}⊆C(Rd) of convex, positively homogeneous functions
such that

P
[
∀µ≥ H∗, ∀R > 0, lim sup

t→∞
sup

y,z∈BR

∣∣∣mµ(t y, t z)
t

−mµ(y− z)
∣∣∣= 0

]
= 1. (2-26)

Proof. We break the argument into five steps. In the first step, we construct mµ using the subadditive
ergodic theorem and, in Step 2, derive some of its basic properties. In Step 3, we prove (2-26) for z = 0,
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and in the fourth step, we remove this restriction. For the first four steps, we fix µ≥ H∗. The universal
quantifier over µ≥ H∗ will be moved inside the probability in the final step.

Before commencing with the argument, we make a reduction. With m̃µ defined as in (2-4), we observe
that

0≤ m̃µ(y, z)−mµ(y, z)= sup
ξ∈B1(y)

(mµ(ξ, z)−mµ(y, z))≤ osc
B1(y)

mµ( · , z).

Using this together with Lemma 2.3, we find that

P
[
∀µ≥ H∗, ∀R > 0, lim sup

t→∞
sup

y,z∈BR

1
t
|mµ(t y, t z)− m̃µ(t y, t z)| = 0

]
≥ P

[
∀µ≥ H∗, ∀R > 0, lim sup

t→∞
sup

y,z∈BR

1
t

osc
B1(t y)

mµ( · , t z)= 0
]

≥ P
[
∀µ≥ H∗, ∀R, δ > 0, lim sup

t→∞
sup
z∈Rd

sup
y∈BR

1
t

osc
Btδ(t y)

mµ( · , z)≤ C Kµδ
]
= 1.

Therefore, it suffices to prove the proposition with m̃µ in place of mµ.

Step 1. We apply the subadditive ergodic theorem to construct mµ. Note that it is immediate from the
definitions that both mµ and m̃µ are jointly stationary in (y, z). Precisely, we mean that, using the notation
mµ(y, z, ω) and m̃µ(y, z, ω) to denote dependence on ω ∈�, then with respect to the translation group
action {τx}x∈Rd , we have

mµ(y, z, τxω)= mµ(y+ x, z+ x, ω) and m̃µ(y, z, τxω)= m̃µ(y+ x, z+ x, ω).

Note that m̃µ is subadditive by (2-9) and P-integrable on � since (2-20) implies

E[m̃µ(y, z)] ≤ E

[
sup

B|y−z|+1(z)
mµ( · , z)

]
≤ C(|y− z| + 1)E

[( 
B|y−z|+2

K α
µ(x) dx

)1/α]
≤ C Kµ(|y− z| + 1), (2-27)

where the last inequality follows by Jensen’s inequality. We have checked that m̃µ verifies the hypothesis
of the subadditive ergodic theorem [Akcoglu and Krengel 1981], and we obtain, for each fixed y ∈ Rd , a
random variable mµ(y) such that

P
[

lim
t→∞

1
t

m̃µ(t y, 0)= mµ(y)
]
= 1. (2-28)

However, it turns out that mµ(y) is constant P-almost surely, that is,

P
[
mµ(y)= E[mµ(y)]

]
= 1. (2-29)
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This follows from the ergodic hypothesis and the fact that mµ(y) is invariant under translations. To see this,
we write m̃µ(y, z, ω) and mµ(y, ω) to denote dependence on ω ∈� and observe that, for every z ∈ Rd ,

mµ(y, τzω)= lim
t→∞

1
t

m̃µ(t y+ z, z, ω)

≤ lim
t→∞

1
t
(
m̃µ(t y+ z, t y, ω)+ m̃µ(t y, 0, ω)+ m̃µ(0, z, ω)

)
≤ lim

t→∞

1
t

m̃µ(t y, 0, ω)+ lim sup
t→∞

1
t

(
osc

B|z|+1(t y)
mµ( · , t y, ω)+ osc

B1(0)
mµ( · , z, ω)

)
= lim

t→∞

1
t

m̃µ(t y, 0, ω)= mµ(y, ω).

Here we used stationarity, followed by (2-9), the definition of m̃µ and Lemma 2.3. We deduce that
mµ(y, τzω) = mµ(y, ω) for all ω ∈ � and z ∈ Rd , which, in view of (1-10), implies that each of the
events {ω ∈� : mµ(y, ω) > E[mµ(y, · )]} and {ω ∈� : mµ(y, ω) < E[mµ(y, · )]} has probability either
zero or one. So both must be of probability zero, and (2-29) holds.

We henceforth identify mµ(y) and the deterministic quantity E[mµ(y, · )]. With this identification, we
may combine (2-28) and (2-29) to write

P
[
lim sup

t→∞

∣∣∣ m̃µ(t y, 0)
t

−mµ(y)
∣∣∣= 0

]
= 1. (2-30)

This holds for all y ∈ Rd . By intersecting the events in (2-30) over all y ∈Qd , we get

P
[
∀y ∈Qd , lim sup

t→∞

∣∣∣ m̃µ(t y, 0)
t

−mµ(y)
∣∣∣= 0

]
= 1. (2-31)

Step 2. We next verify that mµ : Rd
→ R is continuous, convex and positively homogeneous. It is

immediate from (2-27) that
|mµ(y)| ≤ C Kµ|y|. (2-32)

The stationarity and subadditivity of m̃µ yield that mµ is sublinear. Indeed, for every y, z ∈ Rd ,

mµ(y+ z)= lim
t→∞

1
t

E[m̃µ(t (y+ z), 0)] ≤ lim
t→∞

1
t

E[m̃µ(t (y+ z), t z)+ m̃µ(t z, 0)]

= lim
t→∞

1
t

E[m̃µ(t y, 0)] + lim
t→∞

1
t

E[m̃µ(t z, 0)] = mµ(y)+mµ(z). (2-33)

Combining (2-32) and (2-33) yields

mµ(y)−mµ(z)≤ mµ(y− z)≤ C Kµ|y− z|.

By interchanging y and z, we get

|mµ(y)−mµ(z)| ≤ C Kµ|y− z|, (2-34)

and so mµ is Lipschitz with constant C Kµ. It is immediate from the form of the limit (2-28) that mµ is
positively homogeneous, and from this and (2-33), we deduce that mµ is convex. For future reference, we
observe that µ 7→mµ(y) is concave by (2-8). Since this map is nondecreasing, it must also be continuous.
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Step 3. We next upgrade assertion (2-31) to

P
[
∀R > 0, lim

t→∞
sup
y∈BR

∣∣∣1t m̃µ(t y, 0, ω)−mµ(y)
∣∣∣= 0

]
= 1. (2-35)

Observe that, for every y ∈ Rd and z ∈Qd , we have∣∣∣1t m̃µ(t y, 0)−mµ(y)
∣∣∣≤ 1

t
|m̃µ(t y, 0)− m̃µ(t z, 0)| +

∣∣∣1t m̃µ(t z, 0)−mµ(z)
∣∣∣+ |mµ(y)−mµ(z)|

≤
1
t

osc
Bt |y−z|+2(t z)

mµ( · , 0)+ 1
t
|m̃µ(t z, 0)−mµ(z)| +C Kµ|y− z|.

Fix R> 0. Let δ > 0, and select finitely many z1, . . . , zk ∈Qd
∩BR such that the union of the balls B(zi , δ)

covers BR . Then from the above inequality, we find that

sup
y∈BR

∣∣∣1t m̃µ(t y, 0)−mµ(y)
∣∣∣≤ sup

y∈BR

sup
i∈{1,...,k}

1
t

osc
Btδ+2(t zi )

mµ( · , 0)+ sup
i∈{1,...,k}

1
t
|m̃µ(t zi , 0)−mµ(zi )|+C Kµδ.

Now taking the lim sup as t→∞, we deduce from (2-15) and (2-31) that, for every R, δ > 0,

P
[

lim
t→∞

sup
y∈BR

∣∣∣1t m̃µ(t y, 0, ω)−mµ(y)
∣∣∣≤ 2C Kµδ

]
= 1.

We recover (2-35) after intersecting over all the events corresponding to δ ∈Q+ and then over all of the
resulting events corresponding to R ∈ N∗.

Step 4. We next release the vertex point using Lemma 2.4 with

X t := sup
y∈B2R

∣∣∣1t m̃µ(t y, 0)−mµ(y)
∣∣∣, t > 0.

Lemma 2.3 and (2-35) give the hypotheses of Lemma 2.4 for X t , and so an application of the lemma
yields, for every R > 0,

P
[

lim
t→∞

sup
y,z∈BR

∣∣∣1t m̃µ(t y, t z)−mµ(y−z)
∣∣∣=0

]
≥P

[
lim

t→∞
sup
z∈BR

sup
y∈B2R(z)

∣∣∣1t m̃µ(t y+t z, t z)−mµ(y)
∣∣∣=0

]
=1.

Intersecting the events corresponding to R = 1, 2, . . . , we obtain

P
[
∀R > 0, lim

t→∞
sup

y,z∈BR

∣∣∣1t m̃µ(t y, t z)−mµ(y− z)
∣∣∣= 0

]
= 1. (2-36)

Step 5. We immediately obtain (2-26) from (2-36) by the monotonicity of µ 7→ mµ(y, z), the continuity
of µ 7→ mµ(y) (see the end of Step 2) and intersecting the events corresponding to each rational µ> H∗
as well as to µ= H∗. �

Remark 2.6. For future reference, we note that mµ(y, z)≥ β|y− z| for any β > 0 and µ≥31(β
q
+ 1).

Indeed, in view of the monotonicity of µ 7→ mµ(y, z), it is enough to check that the cone function
φ(y) := β max{0, |y − z| − 1} is a subsolution of (2-1) for µ = 31(β

q
+ 1). This is easy to obtain
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from (1-6), using |Dφ| ≤ β and the fact that the diffusion term has a helpful sign due to the convexity
of φ. This also yields

µ≥31(β
q
+ 1) =⇒ for all y ∈ Rd , mµ(y)≥ β|y|. (2-37)

In view of the concavity of µ 7→ mµ(y), which was obtained in Step 2 of the proof above, we get the
following: there exists c > 0 such that, for every µ≥ ν ≥ H∗ and y, z ∈ Rd ,

mµ(y)≥ mν(y)+ cµ−(q−1)/q(µ− ν)|y|.

(This remark is needed in the proof (3-4) and to check that H is well defined.)

3. Identification of the effective Hamiltonian

In this section, we define H in terms of the family {mµ : µ≥ H∗} of homogenized maximal subsolutions
and proceed to study some of its basic properties. Throughout this section, we assume that P is a given
probability measure satisfying (1-9), (1-10) and (1-11).

We begin with an informal heuristic that leads to a guess for what H should be, thinking in terms of
an inverse problem. Write the metric problem in the “theatrical scaling” by introducing a parameter ε > 0
and defining

mε
µ(x) := εmµ

( x
ε
, 0
)
.

At this scale, Proposition 2.5 asserts that mε
µ→mµ locally uniformly in Rd and P-almost surely, as ε→ 0,

and we may write (2-6) as

−ε tr
(

A
( x
ε

)
D2mε

µ

)
+ H

(
Dmε

µ,
x
ε

)
= µ in Rd

\ Bε(0).

By formally passing to the limit ε→ 0 in this equation (and in the rescaled version of (2-5)) under the
assumption that it homogenizes, this suggests that we should obtain

H(Dmµ)≤ µ in Rd and H(Dmµ)= µ in Rd
\ {0}. (3-1)

That is, we expect that mµ is the maximal subsolution of H with respect to µ and the gradient of this
positively homogeneous function should prescribe the µ-level set of H ; the image of its subdifferential
should be the µ-sublevel set of H .

In view of this discussion, we simply define H in such a way that this is so:

H(p) := inf{µ≥ H∗ : ∀y ∈ Rd , mµ(y)≥ p · y}. (3-2)

Note that, since mµ is convex and positively homogeneous, the subdifferential ∂mµ(0) is actually the
closed convex hull of the image of Rd under Dmµ. Recall that the subdifferential ∂φ(x) of a convex
function φ : Rd

→ R at a point x is defined by

∂φ(x) := {p ∈ Rd
: ∀y ∈ Rd , φ(y)≥ φ(x)+ p · (y− x)}.
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We expect ∂mµ(0) to be the µ-sublevel set of H and the image of Rd under Dmµ to be the µ-level set
of H . This indeed follows from (3-2), and we may invert this formula to write mµ in terms of H :

mµ(y)= sup{p · y : H(p)≤ µ}. (3-3)

That is, mµ is simply the support function of the µ-sublevel set of H . So the definition (3-2) is formally
in accord with (3-1), and once we have verified that H is convex (which we do below in Lemma 3.1),
checking the latter in the viscosity sense is simply a routine exercise. Since here we do not actually use
this fact, we omit the argument, but the reader may consult for example [Armstrong and Souganidis 2013]
or else argue directly that the maximal subsolutions of a constant-coefficient convex Hamiltonian are the
support functions of the sublevel sets.

We need to check that the quantity H(p) is well defined (and finite). In view of the monotonicity
of µ 7→ mµ, we need only show that, for every p ∈ Rd , there exists µ > H∗ sufficiently large that the
graph of mµ is above the plane y 7→ p · y. But this is immediate from (2-37), which in fact gives the
estimate

H∗ ≤ H(p)≤31(|p|q + 1). (3-4)

We collect some more basic properties of the effective Hamiltonian H : Rd
→ R in the following lemma:

Lemma 3.1. The function H :Rd
→R is continuous, convex and satisfies H∗=minp∈Rd H(p). Moreover,

there exist C, c > 0, depending only on d, such that

cK−q
0 (|p| −C K 0)

q
≤ H(p)≤31(|p|q + 1). (3-5)

Proof. By definition, H( · ) ≥ H∗. On the other hand, take δ > 0, and set µ := H∗ + δ. Since mµ is
convex, we may select p0 ∈ ∂mµ(0). This implies that mµ(y)≥ p0 · y for every y ∈ Rd . Thus,

min
p∈Rd

H(p)≤ H(p0)≤ µ= H∗+ δ.

Since δ > 0 was arbitrary, we obtain the first assertion that H∗ =minp∈Rd H(p).
The upper bound for H was proved already in (3-4). The lower bound follows from (2-12) and (2-32)

and the definition of H after an easy computation. �

An immediate consequence of the convexity of H is that, with the possible exception of the minimal
level set {H = H∗}, each of the level sets of H is the boundary of the corresponding sublevel set. That is,
for every p ∈ Rd ,

H(p) > H∗ implies that p ∈ ∂{ p̂ ∈ Rd
: H( p̂)≤ H(p)}. (3-6)

To prove the main homogenization result, we need further geometric information, summarized in the
following lemma, relating the level sets of H and the maximal subsolutions.

Recall that, if K ⊆ Rd is closed and convex, an exposed point of K is a point p ∈ K such that there
exists a linear functional l :Rd

→R such that l(p) > l( p̂) for every p̂ ∈ K \{p}. The set of exposed points
is, for a general bounded convex subset K of Rd , a subset of the set of extreme points of K . However,
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Straszewicz’s theorem [Rockafellar 1970, Theorem 18.6] asserts that every extreme point is a limit of
exposed points.

Lemma 3.2. Let µ≥ H∗ and p ∈ ∂{ p̂ ∈ Rd
: H( p̂)≤ µ}. There exists a unit vector e ∈ ∂B1 such that

mµ(e)− p · e = 0= inf
y∈Rd

(mµ(y)− p · y). (3-7)

If in addition p is an exposed point of { p̂ ∈ Rd
: H( p̂)≤ µ}, then e can be chosen in such a way that mµ

is differentiable at e with p = Dmµ(e).

Proof. Set S := { p̂ ∈ Rd
: H( p̂)≤ µ}. By elementary convex separation, there exists a linear functional

l : Rd
→ R such that l(p) = 0 and l( p̂) ≤ 0 for every p̂ ∈ S. If p is an exposed point, then we also

take l so that l( p̂) < 0 for every p̂ ∈ S \ {p}. There exists e ∈ Rd
\ {0} such that l(x) = e · (x − p). By

normalizing, we may assume that |e| = 1. We deduce that, for every y ∈ Rd ,

mµ(e)− p · e = sup{( p̂− p) · e : p̂ ∈ S} = 0≤ sup{( p̂− p) · y : p̂ ∈ S} = mµ(y)− p · y. (3-8)

This is (3-7). Since mµ is positively homogeneous, we see that p ∈ ∂mµ(e). In fact, if we repeat (3-8)
with an arbitrary element of S in place of p, we find that

∂mµ(e)⊆ { p̂ ∈ S : l( p̂)= 0}. (3-9)

Thus, if p is an exposed point of S, then we have ∂mµ(e)= {p} by our choice of l. This implies that mµ

is differentiable at e and Dmµ(e)= p. �

Remark 3.3. We can express H via the following “min-max” formula:

H(p)= inf
{
µ ∈ R : there exists w ∈ C0,1

loc (R
d) satisfying (2-1) and lim inf

|y|→∞

w(y)− p · y
|y|

≥ 0
}
. (3-10)

Indeed, if w ∈ USC(Rd) satisfies (2-1), then

mµ(y)− p · y ≥ lim inf
t→∞

w(t y)− p · (t y)
t

.

If the latter is nonnegative for all y ∈ Rd , then H(p) ≤ µ by definition. This yields “≤” in (3-10). To
obtain the reverse inequality, we use mµ with µ= H(p) and observe that

lim inf
|y|→∞

mµ(y)− p · y
|y|

= lim inf
t→∞

inf
|y|=1

(mµ(t y)
t
− p · y

)
= inf
|y|=1

(mµ(y)− p · y)≥ 0.

The reason that we call (3-10) a “min-max” representation is that it can be formally written

H(p)= inf
w∈Lp

sup
y∈Rd

(
− tr(A(y)D2w(y))+ H(Dw(y), y)

)
, (3-11)

where
Lp :=

{
w ∈ C0,1

loc (R
d) : lim inf

|y|→∞

w(y)− p · y
|y|

≥ 0
}
.

The expression inside the infimum on the right of (3-11) does not make sense since w may not have
enough regularity. It must therefore be interpreted in the viscosity sense, and this leads precisely to (3-10).
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4. Homogenization of the approximate cell problem

In this section, we show using a comparison argument that Proposition 2.5 implies a homogenization
result for a special time-independent problem. The particularities of this argument are new here, even for
uniformly coercive Hamiltonians or first-order equations.

Throughout, we assume P is a probability measure on (�,F) satisfying (1-9), (1-10) and (1-11).
For each fixed p ∈ Rd , we consider the problem

wε − ε tr
(

A
( x
ε

)
D2wε

)
+ H

(
p+ Dwε, x

ε

)
= 0 in Rd . (4-1)

We will show that (4-1) has a unique bounded-below solution with probability one that we denote by
wε( · , p). We argue that

P
[
∀p ∈ Rd , ∀R > 0, lim sup

ε→0
sup

x∈BR

|wε(x, p)+ H(p)| = 0
]
= 1. (4-2)

Recall that (4-1), often written at the microscopic (“nontheatrical”) scale (as in (4-5) below), is often
called the approximate cell problem and homogenizing it (by which we mean proving (4-2)) is the key
step in the derivation of Theorem 1 from Proposition 2.5. To see why we expect wε( · , p) to converge
locally uniformly to the constant −H(p) as ε→ 0, observe that the (unique) solution of

w+ H(p+ Dw)= 0 in Rd (4-3)

is precisely the constant function w ≡−H(p). Thus, (4-2) can be understood roughly as the assertion
that “(4-1) homogenizes to (4-3)”.

4A. Basic properties of (4-1). In order to prove (4-2), we must first establish some fundamental properties
of (4-1) including wellposedness. In the uniformly coercive case, it is straightforward (and classical) to
show that the Perron method and the comparison principle yield a unique bounded solution of (4-1) given
by the formula

wε(x, p) := sup{v(x) : v ∈ USC(Rd) is a subsolution of (4-1)}. (4-4)

Wellposedness in the general weakly coercive setting is more nontrivial because it is less easy to show
a priori that wε( · , p) satisfies a suitable growth condition at infinity for the application of the comparison
principle.

We take (4-4) to be the definition of the function wε(x, p) and continue with a discussion of some
elementary properties ofwε. First, we remark that it is often convenient to consider (4-1) at the microscopic
scale in order to use the stationarity of the environment. The rescaled equation is

εv− tr(A(y)D2v)+ H(p+ Dv, y)= 0 in Rd , (4-5)

and we rescale wε by introducing

vε(y, p) := 1
ε
wε(εy, p)= sup{v(x) : v ∈ USC(Rd) is a subsolution of (4-5)}. (4-6)



1990 SCOTT N. ARMSTRONG AND HUNG V. TRAN

The second equality in (4-6) follows from the definition of wε and a rescaling of (4-1). Note that it is
immediate from (4-6) that vε(x, p) is stationary with respect to the translation action. According to
[Armstrong and Tran 2014, Theorem 6.1], for every ε > 0, p ∈ Rd and choice of coefficients (σ, H) ∈�,
the function vε( · , p) defined in (4-6) belongs to C0,1

loc (R
d) and is a solution of (4-5). It follows immediately

from reversing the scaling that wε( · , p) ∈ C0,1
loc (R

d) is a solution of (4-1). Uniqueness is a separate issue
addressed below; see (4-16).

Next, we observe that wε( · , p) is bounded below uniformly in ε. Indeed, for all p ∈ Rd ,

inf
x∈Rd

wε(x, p)≥−31(|p|q + 1). (4-7)

This follows from the definition of wε and the fact that the right side of this inequality is a subsolution
of (4-1), according to (1-6), as we have already seen in (2-37). Using this bound for the equation at the
microscopic scale, we obtain that vε( · , p) is a solution of the inequality

− tr(A(y)D2vε)+ H(p+ Dvε, y)≤31(|p|q + 1) in Rd .

Then according to the definition of mµ with µ=31(|p|q + 1), we obtain the estimate

vε(y, p)− sup
x∈B1(z)

vε(x, p)≤ mµ(y, z) for every µ≥31(|p|q + 1). (4-8)

Note that this inequality holds uniformly in ε.

Lemma 4.1. For every ε > 0, x ∈ Rd and (σ, H) ∈�,

p 7→ wε(x, p) is concave. (4-9)

Proof. Observe that, if v1, v2 ∈ USC(Rd) are subsolutions of (4-1) with p = p1 and p = p2, respectively,
and λ ∈ [0, 1], then the function λv1+ (1−λ)v2 is a subsolution of (4-1) with p = λp1+ (1−λ)p2. This
follows formally from the convexity of the Hamiltonian, and for a rigorous proof, we refer to the argument
of [Armstrong and Tran 2014, Lemma 2.4]. In view of the definition of wε in (4-4), this observation gives
the lemma. �

An immediate consequence of (4-7) and Lemma 4.1 is that the map p 7→max{k, wε(x, p)} is uniformly
continuous for every k > 0. Indeed, we obtain that, for all p, p̂ ∈ Rd with |p− p̂|< 1,

wε(x, p)≥ (1− |p− p̂|)wε(x, p̂)−31(|p|q + 1)|p− p̂|. (4-10)

We next show that wε(x, p) satisfies, almost surely with respect to P, an appropriate sublinear growth
condition uniformly in ε and for bounded |p|. This is required both in order to establish wε as the unique
bounded-below solution of (4-1) and is also needed in the proof of (4-2). Note that this estimate is trivial
for uniformly coercive Hamiltonians since in that case wε(x, p) is bounded above uniformly for x ∈ Rd ,
p ∈ BR and 0< ε ≤ 1. In the general case, it is a consequence of the averaged coercivity condition (1-11)
and its proof uses the ergodic theorem, which is the reason we expect it to hold only almost surely with
respect to P.
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Lemma 4.2. We have

P
[
∀R > 0, lim sup

|x |→∞
sup
|p|≤R

sup
0<ε≤1

|wε(x, p)|
|x |

= 0
]
= 1. (4-11)

Proof. In view of (4-7), we need only prove upper bounds for wε. For most of the argument, we work at
the microscopic scale. It clearly suffices to prove the lemma for fixed R > 0 since we obtain the general
case by intersecting the events corresponding to all positive integers R.

It is convenient to work with the random fields

V ε(y) := sup
|p|≤R

sup
z∈B1(y)

vε(z, p).

Note that V ε is stationary with respect to the translation group action. According to [Armstrong and Tran
2014, Theorem 4.2], the family {V ε

}ε>0 is locally equi-Lipschitz continuous in Rd for every realization
ω = (σ, H) ∈� of the coefficients.

Step 1. We begin from the estimate from [Armstrong and Tran 2014] that, for C > 0 depending only on d
and q,

P

[
∀ε ∈ (0, 1], εV ε(0)≤ M2(1+31 Rq)+C

(
32

2

a2

)1/(q−1)]
= 1. (4-12)

This is shown by exhibiting explicit, smooth supersolutions. See for example [Armstrong and Tran 2014,
Lemma 3.2, Remark 4.5], which handles the case R = 0, and note that the estimate for R > 0 can be
reduced to the former by using (1-8).

Let ξ denote the random variable

ξ := M2(1+31 Rq)+C
(
32

2

a2

)1/(q−1)

,

and let I denote its essential infimum (with respect to P):

I := inf{λ ∈ R : P[ξ < λ]> 0}<∞.

We eventually apply Lemma 2.4 to the sequence of random fields defined by

X t(y) :=
1
t

inf
z∈Bt (y)

sup
0<ε≤1

(
V ε(z)− 2

ε
I
)
, t > 0.

In the next few steps, we check that the hypotheses of Lemma 2.4 hold for X t .

Step 2. We show that

P
[
lim sup

t→∞
X t(0)≤ 0

]
= 1. (4-13)

According to the ergodic theorem,

P

[
lim

s→∞

 
Bs

1{ξ( · )≤2I }(y) dy = P[ξ(0)≤ 2I ]
]
= 1.



1992 SCOTT N. ARMSTRONG AND HUNG V. TRAN

Note that P[ξ(0) ≤ 2I ] > 0 by the definition of I and that, if 1{ξ( · )≤2I }(y) does not vanish identically
in Bt , then X t(0)≤ 0 by (4-12). This yields (4-13).

Step 3. We show that

P
[
lim sup

r→0
lim sup

t→∞

1
t

sup
y∈Bt

sup
0<ε≤1

osc
Br t (y)

V ε
= 0

]
= 1. (4-14)

To see this, observe that (4-8) implies that, for every ε > 0 and y, z ∈ Rd ,

V ε(y)− V ε(z)≤ m̃µ(y, z) with µ :=31(Rq
+ 1).

We therefore obtain (4-14) from (2-15). As a consequence of (4-14), we get

P
[
lim sup

r→0
lim sup

t→∞
sup
y∈Bt

osc
Br t (y)

X t = 0
]
= 1. (4-15)

Step 4. We complete the argument. In view of (4-13) and (4-15), we may apply Lemma 2.4 to conclude
that

P
[
∀K > 0, lim sup

t→∞
sup

y∈BK t

X t(y)≤ 0
]
= 1.

Using the definition of X t , replacing K t by t and setting r = 1/K , this gives

P
[
∀r > 0, lim sup

t→∞

1
t

sup
y∈Bt

inf
z∈Br t (y)

sup
0<ε≤1

(
V ε(z)− 2

ε
I
)
≤ 0

]
= 1.

Using again (4-14), we obtain

P
[
lim sup

t→∞

1
t

sup
y∈Bt

sup
0<ε≤1

(
V ε(y)− 2

ε
I
)
≤ 0

]
= 1.

Using the definition of V ε and rewriting the expression in terms of wε, we get

P
[
lim sup

t→∞
sup

0<ε≤1
sup
|p|≤R

sup
x∈Bεt

wε(x, p)− 2I
εt

≤ 0
]
= 1.

This is actually stronger than (4-11). Indeed,

lim sup
t→∞

sup
0<ε≤1

sup
|p|≤R

sup
x∈Bεt

wε(x, p)− 2I
εt

= lim
s→∞

sup
t≥s

sup
0<ε≤1

sup
|p|≤R

sup
x∈Bεt

wε(x, p)− 2I
εt

≥ lim sup
s→∞

sup
0<ε≤1

sup
|p|≤R

sup
x∈Bs

wε(x, p)− 2I
s

≥ lim sup
|x |→∞

sup
0<ε≤1

sup
|p|≤R

wε(x, p)
|x |

.

Note that the inequality on the second line was obtained by reversing the first two suprema and then
taking t = s/ε in the supremum over t . This completes the proof. �
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It follows from Lemma 4.2 and [Armstrong and Tran 2014, Theorem 2.1] that, with probability one,
wε( · , p) is the unique bounded-below solution of (4-1) for every fixed ε > 0 and p ∈ Rd . That is,

P
[
∀p ∈ Rd , ∀ε > 0, wε( · , p) belongs to C0,1

loc (R
d) and is the unique solution of (4-1),

which is bounded below on Rd]
= 1. (4-16)

4B. The proof of (4-2). The next lemma is the first step in the direction of (4-2). For the argument, we
again use Lemma 2.4.

Lemma 4.3. We have

P
[
∀p ∈ Rd , ∀R > 0, lim sup

ε→0
sup

x∈BR

wε(x, p)≤−H∗
]
= 1. (4-17)

Proof. Here we employ a soft compactness argument using the rescaled functions vε defined in (4-6). Let

E :=
{
(σ, H) ∈� : H∗ = inf{µ ∈ R : there exists w ∈ USC(Rd) satisfying (2-1)}

}
.

Recall from Lemma 2.2 that P[E] = 1.

Step 1. We first show that, for all p ∈ Rd and ω ∈ E ,

lim sup
ε→0

sup
z∈B1

εvε(z, p)≤−H∗. (4-18)

Suppose on the contrary that there exist η > 0 and a subsequence εk→ 0 such that, for every k ∈ N,

εk sup
z∈B1

vεk (z, p)≥−H∗+ η.

Define the function

ṽε(y, p) := p · y+ vε(y, p)− sup
z∈B1

vε(z, p).

According to the local Lipschitz estimates [Armstrong and Tran 2014, Proposition 3.1] and (4-11), the
family {ṽε}ε>0 is uniformly bounded in C0,1(Bs) for every s > 0. By taking a further subsequence of {εk},
we may suppose that ṽεk converges locally uniformly on Rd to a function ṽ ∈ C0,1

loc (R
d). In view of the

fact that ṽε satisfies the equation

εṽε − tr(A(y)D2ṽε)+ H(Dṽε, y)=−ε sup
z∈B1

vε(z, p) in Rd ,

we obtain, by the stability of viscosity solutions under local uniform convergence, that ṽ satisfies

− tr(A(y)D2ṽ)+ H(Dṽ, y)≤ H∗− η in Rd .

This contradicts the assumption that ω= (σ, H)∈ E and completes the proof of (4-18). As a consequence,
we obtain

P
[
∀p ∈ Rd , lim sup

ε→0
sup
z∈B1

εvε(z, p)≤−H∗
]
= 1. (4-19)
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Step 2. To obtain the conclusion of the lemma from (4-18), we apply Lemma 2.4 to the family of random
variables

X t := sup
z∈B1

εvε(z, p) with t = ε−1.

The first hypothesis of Lemma 2.4 is satisfied by (4-18), and the second hypothesis is confirmed by (4-8)
and (2-15). The conclusion of Lemma 2.4 yields that, for every p ∈ Rd ,

P
[
∀R > 0, lim sup

ε→0
sup

z∈BR/ε

εvε(z, p)≤−H∗
]
= 1.

Using (4-10) and intersecting over all events corresponding to rational p, we obtain

P
[
∀p ∈ Rd , ∀R > 0, lim sup

ε→0
sup

z∈BR/ε

εvε(z, p)≤−H∗
]
= 1.

This is equivalent to (4-17). �

We now show that (4-1) homogenizes to (4-3).

Proposition 4.4. The assertion (4-2) holds.

Proof. The argument is deterministic and based on the comparison principle. To give an overview of the
proof, we introduce the following events:

E1 :=

{
(σ, H) ∈� : ∀µ≥ H∗, ∀R > 0, lim sup

t→∞
sup

y,z∈BR

∣∣∣mµ(t y, t z)
t

−mµ(y− z)
∣∣∣= 0

}
,

E2 :=

{
(σ, H) ∈� : ∀R > 0, lim sup

|x |→∞
sup
|p|≤R

sup
0<ε≤1

|wε(x, p)|
|x |

= 0
}
,

E3 :=

{
(σ, H) ∈� : ∀p ∈ Rd , lim sup

ε→0
sup

x∈BR

wε(x, p)≤−H∗
}
,

E4 :=

{
(σ, H) ∈� : ∀p ∈ Rd , ∀R > 0, lim sup

ε→0
sup

x∈BR

|wε(x, p)+ H(p)| = 0
}
.

According to Proposition 2.5, Lemma 4.2 and Lemma 4.3, we have

P[E1 ∩ E2 ∩ E3] = 1.

To obtain P[E4] = 1, it therefore suffices to demonstrate that

E1 ∩ E2 ∩ E3 ⊆ E4. (4-20)

Thus, for the remainder of the proof, we fix p ∈ Rd , R > 0 and (σ, H) ∈ E1 ∩ E2 ∩ E3 and argue that

lim sup
ε→0

sup
x∈BR

|wε(x, p)+ H(p)| = 0. (4-21)

The proof of (4-21) is broken into two steps.

Step 1. We show that
lim inf
ε→0

inf
z∈BR

wε(z, p)≥−H(p). (4-22)
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We begin with some reductions. By the concavity of the map p̂ 7→wε(x, p̂), we may assume without loss
of generality that p is an extreme point of { p̂ : H( p̂)≤ H(p)}. Second, by (4-10), we may also suppose
that H(p) > H∗. Next, Straszewicz’s theorem [Rockafellar 1970, Theorem 18.6] and (4-10) permit us to
further suppose that p is an exposed point of { p̂ : H( p̂) ≤ H(p)}. This is useful in view of (3-6) and
Lemma 3.2, which imply the existence of e ∈ ∂B1 such that mµ(e)= e · p and mµ is differentiable at e
with p = Dmµ(e), where as usual we have set µ := H(p) for convenience. In view of the limit (2-26),
this forces the function mµ( · , z− te), with t > 0 very large, to be very “flat” in large balls centered at z,
as we will see. This is what allows us to use this function as an “approximate subcorrector” in order to
bound wε from below.

We proceed with the demonstration of (4-22) by supposing that −H(p) − wε(z, p) ≥ δ > 0 for
some z ∈ BR and deriving a contradiction if 0<ε≤ 1 is too small. The idea is to compare wε( · , p) in the
ball Bs(z), for a large enough but fixed s> 0, to the function x 7→−p ·(x−z+ te)+εmµ(x/ε, (z− te)/ε)
for t � s. We argue that the former is a strict supersolution of the equation solved by the latter, and then
we derive a contradiction by showing that their difference has a local minimum. To ensure that we can
touch the first function from below by the second, we use the fact that both functions are expected to
be “flat” near z (for the second function, this is due to the fact that p = Dmµ(e)), and we add a small
linearly growing perturbative term made possible by the positivity of δ.

In order to prepare wε( · , p) for comparison, we take c > 0 and λ > 1 to be selected below and define
the auxiliary function

W ε(x) := λ(wε(x, p)−wε(z, p))+ cδ((1+ |x − z|2)1/2− 1).

Since ω ∈ E2, there exists an s > 0, which does not depend on z or ε > 0, such that

Uε :=
{

x ∈ Rd
:W ε(x)≤ 1

4δ
}
⊆ Bs(z).

We claim that, by choosing λ sufficiently close to 1 and c > 0 sufficiently small depending on λ, then we
have

− tr
(

A
( x
ε

)
D2W ε

)
+ H

(
p+ DW ε,

x
ε

)
≥ H(p)+ 1

2δ in Uε. (4-23)

In order to verify (4-23), take any smooth test function ϕ such that vε − ϕ has a strict local minimum
at x0 ∈ Uε. Set ψ(x) := (1+ |x − z|2)1/2. Then wε − λ−1(ϕ + cδψ) has a strict local minimum at x0.
Using the equation satisfied by wε and the definition of viscosity supersolution, we obtain

wε(x0)− ε tr
(

A
( x0

ε

)
λ−1 D2(ϕ+ cδψ)(x0)

)
+ H

(
p+ λ−1 D(ϕ+ cδψ)(x0),

x0

ε

)
≥ 0.

The convexity of H gives

H
(

p+λ−1 D(ϕ+cδψ)(x0),
x0

ε

)
≤λ−1 H

(
p+Dϕ(x0),

x0

ε

)
+(1−λ−1)H

(
p+(λ−1)−1cδDψ(x0),

x0

ε

)
.

Combining the above computations and using x0 ∈ Uε, we deduce that, for λ sufficiently close to 1
and c > 0 sufficiently small depending on λ,

− tr
(

A
( x0

ε
, ω
)

D2ϕ(x0)
)
+ H

(
p+ Dϕ(x0),

x0

ε
, ω
)
≥ H(p)+ 1

2δ.
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This completes the proof of (4-23).
We may now apply the comparison principle [Armstrong and Tran 2014, Theorem 2.2] to conclude

that, for every t ≥ s+ 1,

inf
x∈Uε

(
W ε(x)+ p · (x − z+ te)− εmµ

( x
ε
,

z− te
ε

))
= inf

x∈∂Uε

(
W ε(x)+ p · (x − z+ te)− εmµ

( x
ε
,

z− te
ε

))
. (4-24)

Estimating the infimum on the left side of (4-24) by taking x = z and recalling that W ε(z)= 0 and the
term on the right side by using that W ε

≡ δ/4 on ∂Uε and ∂Uε ⊆ Bs(z), we conclude after a rearrangement
that, for every t ≥ s+ 1,

inf
x∈Bs(z)

(
p · (x − z)+ εmµ

( z
ε
,

z−te
ε

)
− εmµ

( x
ε
,

z−te
ε

))
≤−

1
4δ. (4-25)

This holds for every z ∈ BR and ε> 0 for which−H(p)−wε(z, p)≥ δ > 0. So if−H(p)−wε j (z j , p)≥ δ
along subsequences {z j } j∈N ⊆ BR and ε j → 0, then by passing to limits in (4-25), using (2-26), we
obtain, for every t ≥ s+ 1,

inf
x∈Bs

(p · x +mµ(te)−mµ(x + te))≤− 1
4δ.

This contradicts the fact that p = Dmµ(e) since the latter implies, in view of the positive homogeneity
of mµ, that

lim
t→∞

sup
x∈Bs

|mµ(x + te)−mµ(te)− p · x | = 0. (4-26)

This completes the proof of (4-22).

Step 2. We demonstrate that

lim sup
ε→0

sup
z∈BR

wε(z, p)≤−H(p). (4-27)

We may suppose that H(p) > H∗ since otherwise the claim follows from ω ∈ E3.
The argument is similar to one introduced in [Armstrong and Souganidis 2013], relying on the

limit (2-26) and using mµ as a supercorrector. Here it is a bit simpler than Step 1 since we do not need to
use Straszewicz’s theorem or to restrict our attention to exposed points of the sublevel set of H . Applying
Lemma 3.2 in view of (3-6) and the assumption that H(p) > H∗, we may select e ∈ ∂B1 such that
p ∈ ∂mµ(e) and mµ(e)= e · p, where as usual we set µ := H(p). The reason we do not need p= Dmµ(e)
is because mµ will be used as a supercorrector; so the fact that it may not be flat and rather “bends upward”
like a cone can only help in the comparison argument.

We consider a point z ∈ Bs and ε, δ > 0 such that wε(z, p, ω)+ H(p)≥ δ > 0. With c > 0 and λ < 1
to be selected, we consider the auxiliary function

W ε(x) := λ(wε(x, p)−wε(z, p))− cδ(1+ |x − z|2)1/2+ cδ. (4-28)
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Since ω ∈ E2, there exists s > 0, which does not depend on z or ε, such that

Uε :=
{

x ∈ Rd
:W ε(x)≥− 1

4δ
}
⊆ Bs(z). (4-29)

Choosing λ sufficiently close to 1 and c>0 sufficiently small depending on λ and after similar computations
arguments as in the demonstration of (4-23), we find that

− tr
(

A
( x
ε

)
D2W ε

)
+ H

(
p+ DW ε,

x
ε

)
≤ H(p)− 1

2δ in Uε. (4-30)

The comparison principle yields

inf
x∈Uε

(
εmµ

( x
ε
,

z−(s+1)e
ε

)
−W ε(x)− p · (x − z+ (s+ 1)e)

)
= inf

x∈∂Uε

(
εmµ

( x
ε
,

z−(s+1)e
ε

)
−W ε(x)− p · (x − z+ (s+ 1)e)

)
. (4-31)

Using that W ε(z)= 0 and W ε
≡−δ/4 on ∂Uε ⊆ Bs(z) and rearranging, we obtain

inf
x∈Bs(z)

(
εmµ

( x
ε
,

z−(s+1)e
ε

)
− εmµ

( z
ε
,

z−(s+1)e
ε

)
− p · (x − z)

)
≤−

1
4δ. (4-32)

To obtain a contradiction, we suppose that wε j (z j , p)+ H(p) ≥ δ > 0 for sequences {z j } j∈N ⊆ BR

and ε j → 0. Applying (4-32) and sending j→∞ yields, in light of (2-26),

inf
x∈Bs

(
mµ(x + (s+ 1)e)−mµ((s+ 1)e)− p · x

)
≤−

1
4δ. (4-33)

Since mµ((s+ 1)e)= (s+ 1)e · p, we conclude that, for some x ∈ Bs ,

mµ(x + (s+ 1)e)− p · (x + (s+ 1)e)≤− 1
8δ. (4-34)

This contradicts that p ∈ ∂mµ(e) and finishes Step 2 and the proof of the proposition. �

Remark 4.5. The reader may object to the proof of Theorem 1 on the grounds that several steps in the
proof are not as “quantifiable” as promised in the introduction. In particular, it seems at first glance
impossible to quantify (i) the limit in (4-26) without extra information about the shape of the level sets
of H (which is not easy to obtain) and (ii) Lemma 4.3 since it is obtained by a compactness argument.

About (i): this step is actually quantifiable because we can approximate the level sets of H by nice sets
with positive curvature. Rather than the exposed points of the sublevel sets of H , we may instead consider
“points of positive curvature” of the boundary of the level set, that is, points that also lie on the boundary
of a large ball that contains the level set. The radius of this ball controls the rate of the limit (4-26), and
the error this introduces is relatively small. The details will appear in [Armstrong and Cardaliaguet 2015].

The second objection is more serious, but the phenomenon we encounter here is not artificial or a
limitation of the method. Indeed, it was shown already in the first-order case [Armstrong et al. 2014] that
the rate of convergence in the limit in Lemma 4.3 may be arbitrarily slow (even with a finite range of de-
pendence quantifying the ergodicity assumption). In this sense, the proof above seems to optimally capture
the underlying phenomena driving the homogenization of Hamilton–Jacobi equations in random media.
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5. Homogenization: the proof of Theorem 1

In this section, we present the proof of our main result, Theorem 1. The convergence result is obtained
from the classical perturbed test function argument, suitably modified to handle the lack of uniform
Lipschitz estimates for weakly coercive Hamiltonians. The argument can be seen as a method for showing
that the homogenization result of (4-2), which is a special case of Theorem 1, is actually strong enough
to imply the theorem.

As in the previous section, we assume throughout that P is a probability measure on (�,F) satisfying
(1-9), (1-10) and (1-11).

5A. Wellposedness and basic properties. Before giving the proof of homogenization, we first consider
the question of wellposedness of solutions of the time-dependent initial-value problem{

uεt − ε tr
(

A
( x
ε

)
D2uε

)
+ H

(
Duε, x

ε

)
= 0 in Rd

× (0,∞),

uε( · , 0)= g ∈ BUC(Rd).
(5-1)

For each ε > 0, g ∈ BUC(Rd) and (x, t) ∈ Rd
× (0,∞), we define the random variable

uε(x, t, g) := sup
{
w(x, t) : w ∈ USC(Rd

×[0, t]) is a subsolution of (1-1) in Rd
×[0, t),

lim sup
|x |→∞

sup
0<s≤t

w(x, s)
|x |

= 0 and w( · , 0)≤ g on Rd
}
. (5-2)

This is the candidate for the unique solution of (5-1). Observe that we have

uε(x, t, g)≥−31t + inf
Rd

g (5-3)

since the function on the right belongs to the admissible class in (5-2) by (1-6) and (1-3).
Similar to the situation for the approximate cell problem, checking that (x, t) 7→ uε(x, t, g) does indeed

solve (5-1) reduces to proving a sublinear growth condition at infinity (uniformly in time). We remark
that this is of interest only in the nonuniformly coercivity case since otherwise wellposedness of (5-1) is
classical.

Lemma 5.1. We have

P
[
∀T > 0, ∀g ∈ BUC(Rd), lim sup

|x |→∞
sup

0<t≤T
sup

0<ε≤1

|uε(x, t, g)|
|x |

= 0
]
= 1.

Proof. In view of (5-3), we may focus only on obtaining upper bounds for uε. By definition, g 7→uε(x, t, g)
is monotone nondecreasing, and so we may suppose that g is constant. Since g 7→ uε(x, t, g) also
commutes with constants, it suffices therefore to prove the sublinear growth estimate for g ≡ 0. That is,
we need to show only the following:

P
[
∀T > 0, lim sup

|x |→∞
sup

0<t≤T
sup

0<ε≤1

|uε(x, t, 0)|
|x |

= 0
]
= 1.
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We proceed by exhibiting an explicit supersolution and appealing to the comparison principle. The
supersolution is

V ε(x, t) := etwε(x, 0)+ et31,

where wε(x, p) is, as in the previous section, the solution of (4-1). The convexity of H and (1-6) imply
that, for every p ∈ Rd and λ≥ 1,

λ−1 H(λp, y)≥ H(p, y)− (1− λ−1)H(0, y)≥ H(p, y)− (1− λ−1)31.

Using this with λ= et , we find that, for each t > 0, the function wε( · , 0) satisfies the inequality

wε − ε tr
(

A
( x
ε

)
D2wε

)
+ e−t H

(
et Dwε, x

ε

)
≥−(1− e−t)31 in Rd .

From this, it follows that V ε satisfies

V ε
t − ε tr

(
A
( x
ε

)
D2V ε

)
+ H

(
DV ε,

x
ε

)
≥ 0 in R×[0,∞).

Since V ε is bounded below by 0 uniformly in Rd
× [0,∞), by comparing V ε to any function in the

admissible class in (5-2) using the comparison principle, we find that, for all (x, t) ∈ Rd
× [0,∞) and

every realization of the coefficients,

uε(x, t, 0)≤ V ε(x, t).

According to Lemma 4.2,

P
[
∀T > 0, lim sup

|x |→∞
sup

0<t≤T
sup

0<ε≤1

|V ε(x, t)|
|x |

= 0
]
= 1.

This yields the lemma. �

By Lemma 5.1, the lower bound (5-3), the comparison principle [Armstrong and Tran 2014, Theorem
2.3] and the classical Perron argument, we obtain

P
[
∀ε > 0, ∀g ∈ BUC(Rd), (x, t) 7→ uε(x, t, g) belongs to C(Rd

× (0,∞)) and, for all T > 0,
is the unique bounded-below solution of (5-1) in Rd

×[0, T ]
]
= 1. (5-4)

5B. Homogenization. In this subsection, we complete the proof of Theorem 1. We let u(x, t, g) denote
the unique solution of the homogenized problem{

ut + H(Du)= 0 in Rd
× (0,∞),

u = g on Rd
×{0}.

(5-5)

In view of the growth condition (3-5), the problem (5-5) indeed possesses a unique solution, and it is
given by the Hopf–Lax formula

u(x, t, g) := inf
y∈Rd

(
t L
( x − y

t

)
+ g(y)

)
,
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where L : Rd
→ R is the Legendre–Fenchel transform of H , that is,

L(z) := sup
p∈Rd

(p · z− H(p)).

Note that L is continuous, convex and satisfies |z|−1L(z)→+∞ as |z| →∞ [Evans 1998].
A proof that the Hopf–Lax formula defines a viscosity solution of (5-5) can be found for example in

[Evans 1998, Theorem 3 in Section 10.3.4] under the assumption that g ∈ C0,1
loc (R

d). It is easy to extend
this to the case that g ∈ BUC(Rd) using the monotonicity of the Hopf–Lax formula in g and the stability
of viscosity solutions under local uniform convergence. The uniqueness of this solution follows from
classical comparison principles for first-order equations.

We now present the proof of the main result.

Proof of Theorem 1. The theorem follows from Proposition 4.4 by a variation of the classical perturbed test
function argument first introduced by Evans [1992]. This comparison argument is entirely deterministic.
The fact that the functions uε are not uniformly equi-Lipschitz continuous causes a technical difficulty
that is overcome by the use of the parameter λ in Step 1, an idea which first appeared in [Armstrong and
Souganidis 2012].

To set up the argument, we let the events E2 and E4 be defined as in the proof of Proposition 4.4 and set

E5 :=

{
(σ, H) ∈� : ∀g ∈ BUC(Rd), ∀R > 0, lim sup

ε→0
sup

(x,t)∈BR×[0,R)
|uε(x, t, g)− u(x, t, g)| = 0

}
.

We claim that
E2 ∪ E4 ⊆ E5. (5-6)

Since P[E2 ∩ E4] = 1 by Lemma 4.2 and Proposition 4.4, the theorem follows from (5-6).
For the rest of the argument, we fix (σ, H) ∈ E2 ∩ E4, g ∈ BUC(Rd) and R > 0 and argue that

lim sup
ε→0

sup
(x,t)∈BR×[0,R)

|uε(x, t, g)− u(x, t, g)| = 0.

By the comparison principle [Armstrong and Tran 2014, Theorem 2.3], the flow g 7→ uε( · , t, g) is
monotone nondecreasing as well as a contraction mapping on L∞(Rd). We may therefore assume without
loss of generality that g ∈ C1,1(Rd). For notational convenience, we henceforth drop the dependence of u
and uε on g.

We first argue that
U (x, t) := lim sup

ε→0
uε(x, t)≤ u(x, t). (5-7)

By the comparison principle, it suffices to check that U is a subsolution of the limiting equation and
U ( · , 0)≤ g. We handle these claims in the next two steps.

Step 1. To check that U is a subsolution of the limiting equation, take a smooth test function ψ ∈
C∞(Rd

× (0,∞)) and a point (x0, t0) ∈ Rd
× (0,∞) so that

U −ψ has a strict local maximum at (x0, t0). (5-8)
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We must show that

ψt(x0, t0)+ H(Dψ(x0, t0))≤ 0. (5-9)

Arguing by contradiction, we suppose on the contrary that

η := ψt(x0, t0)+ H(Dψ(x0, t0)) > 0. (5-10)

With p0 := Dψ(x0, t0) and λ> 1 a constant to be selected below, we introduce the perturbed test function

ψε(x, t) := ψ(x, t)+ λwε(x, p0),

where wε is the solution of the approximate cell problem (4-1). It is appropriate to compare ψε to uε,
and to this end, we must check that, for ε, r > 0 sufficiently small, ψε is a solution of the inequality

ψεt − ε tr
(

A
( x
ε

)
D2ψε

)
+ H

(
Dψε, x

ε

)
≥

1
6η in B(x0, r)× (t0− r, t0+ r). (5-11)

Let us admit the claim (5-11) for the moment and show that it allows us to obtain the desired contraction,
completing the proof that U is a subsolution of the limiting equation. Applying the comparison principle
[Armstrong and Tran 2014, Theorem 2.3], in view of (5-11) and the equation satisfied by uε, we deduce that

sup
B(x0,r)×(t0−r,t0+r)

(uε −ψε)= sup
∂(B(x0,r)×(t0−r,t0+r))

(uε −ψε).

This holds for all sufficiently small r > 0 and ε > 0, and by passing to the limit ε→ 0, using that by
(σ, H) ∈ E4 we have that wε( · , p0) converges to the constant −H(p0) uniformly on compact subsets
of Rd as ε→ 0, we find that

sup
B(x0,r)×(t0−r,t0+r)

(U −ψ)= sup
∂(B(x0,r)×(t0−r,t0+r))

(U −ψ).

This holds for all sufficiently small r > 0, which contradicts the assumption (5-8).
To check that (5-11) holds in the viscosity sense, we take a smooth test function ϕ and a point

(x1, t1) ∈ B(x0, r)× (t0− r, t0+ r) such that

ψε −ϕ has a strict local minimum at (x1, t1).

Rewriting this using the definition of ψε, we get

(x, t) 7→ wε(x, p0)− λ
−1(ϕ−ψ)(x, t) has a strict local minimum at (x1, t1).

Using the equation for wε, we find that

wε(x1, p0)− ε tr
(

A
( x1

ε

)
λ−1 D2(ϕ−ψ)(x1, t1)

)
+ H

(
p0+ λ

−1 D(ϕ−ψ),
x1

ε

)
≥ 0. (5-12)

Using that (σ, H) ∈ E4 and ψ is smooth, we may select ε > 0 sufficiently small and λ sufficiently close
to 1 so that

|λwε(x1, p0)+ H(p0)| +

∣∣∣ε tr
(

A
( x1

ε

)
D2ψ(x1, t1)

)∣∣∣≤ 1
3η. (5-13)
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Next, by selecting r > 0 small enough, depending on λ and ψ , we obtain

(λ− 1)−1
|λp0− Dψ(x1, t1)| ≤ |p0| + (λ− 1)−1

|p0− Dψ(x1, t1)| ≤ 2|p0|.

Using the convexity of H together with the previous line and (1-6), we discover that

λH
(

p0+ λ
−1 D(ϕ−ψ)(x1, t1),

x1

ε

)
≤ H

(
Dϕ(x1, t1),

x1

ε

)
+ (λ− 1)H

(λp0− Dψ(x1, t1)
λ− 1

,
x1

ε

)
≤ H

(
Dϕ(x1, t1),

x1

ε

)
+31(λ− 1)(2q

|p0|
q
+ 1).

Taking λ > 1 closer to 1, if necessary, we obtain

λH
(

p0+ λ
−1 D(ϕ−ψ)(x1, t1),

x1

ε

)
≤ H

(
Dϕ(x1, t1),

x1

ε

)
+

1
3η. (5-14)

Combining (5-12), (5-13) and (5-14) yields

−H(p0)− ε tr
(

A
( x1

ε

)
D2ϕ(x1, t1)

)
+ H

(
Dϕ,

x1

ε

)
≥−

2
3η, (5-15)

and then combining (5-10) and (5-15) gives

ψt(x0, t0)− ε tr
(

A
( x1

ε

)
D2ϕ(x1, t1)

)
+ H

(
Dϕ,

x1

ε

)
≥

1
3η.

By making r > 0 smaller, if necessary, and using ϕt(x1, t1)= ψt(x1, t1), we obtain

ϕt(x1, t1)− ε tr
(

A
( x1

ε

)
D2ϕ(x1, t1)

)
+ H

(
Dϕ,

x1

ε

)
≥

1
6η.

This completes the proof of (5-11) and thus that of Step 1.

Step 2. We next show that U (·, 0)≤ g or, more precisely, that for every R > 0,

lim sup
t→0

sup
x∈BR

(U (x, t)− g(x))≤ 0. (5-16)

To accomplish this, we must construct supersolution barriers from above and apply the comparison
principle. Note that this is very easy to do in the uniformly coercive case; we simply use the map
(x, t) 7→ g(x) + kt where k > 0 is a large constant depending on the constants in the hypotheses
and ‖g‖C1,1(Rd ). Unfortunately, this function is not a supersolution in the nonuniformly coercive case,
and so we need to consider a more elaborate barrier function. Rather than construct a barrier from scratch,
we build it from the functions wε and use the fact that these homogenize.

For each fixed x0 ∈ Rd , the functions we consider have the form

V ε(x, t) := 2W ε(x, t)−φ(x, t),

where
W ε(x, t) := etwε

(
x, 1

2 Dg(x0)
)
+ H

( 1
2 Dg(x0)

)
+

1
2 g(x0)+

1
2 Dg(x0) · (x − x0)

and
φ(x, t) := −2(1+‖g‖C1,1(Rd ))((1+ |x − x0|

2)1/2− 1)− k(et
− 1)
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and k > 0 is a constant depending only on g, x0, and other structural constants defined by

k := 232(1+‖g‖C1,1(Rd ))+31(2q(1+‖g‖C1,1(Rd ))
q
+ 1)+ 231(2−q

|Dg(x0)|
q
+ 1).

We next derive a supersolution inequality for W ε. The convexity of H and (1-6) imply that, for every
p, p̂ ∈ Rd and λ≥ 1,

λ−1 H(λp+ p̂, y)≥ H(p+ p̂, y)− (1− λ−1)H( p̂, y)≥ H(p+ p̂, y)− (1− λ−1)31(| p̂|q + 1).

Using this with p̂ fixed and λ= et , we find that, for each t>0, the functionwε( · , p̂) satisfies the inequality

wε − ε tr
(

A
( x
ε

)
D2wε

)
+ e−t H

(
p̂+ et Dwε, x

ε

)
≥−(1− e−t)31(| p̂|q + 1) in Rd .

From this, we see that W ε satisfies the inequality

W ε
t − ε tr

(
A
( x
ε

)
D2W ε

)
+ H

(
DW ε,

x
ε

)
≥−(et

− 1)31(2−q
|Dg(x0)|

q
+ 1) in Rd

× (0,∞).

On the other hand, we see by a routine calculation, using the definition of k, (1-6) and (1-3), that φ is
a (smooth) subsolution of the inequality

φt − ε tr
(

A
( x
ε

)
D2φ

)
+ H

(
Dφ, x

ε

)
≤−2et31(2−q

|Dg(x0)|
q
+ 1) in Rd

× (0,∞).

The definition of k has been split into three terms, and we see from (1-6) that the first two terms take care
of the contributions from spatial derivatives of φ and the third term is responsible for the right-hand side.

We may now apply [Armstrong and Tran 2014, Lemma 2.5 and Remark 2.6 with λ= 1] to find that
V ε is a supersolution of

V ε
t − ε tr

(
A
( x
ε

)
D2V ε

)
+ H

(
DV ε,

x
ε

)
≥ 0 in Rd

× (0,∞).

Therefore, the comparison principle implies that, for every ε > 0,

uε ≤ V ε
− inf

x∈Rd
(V ε(x, 0)− g(x)) in Rd

×[0,∞). (5-17)

Since wε is bounded below (see (4-7)) and g is bounded, the linearly growing term in φ ensures
that V ε( · , 0) is larger than g outside a ball of fixed radius and centered at x0. But due to the fact
that ω = (σ, H) belongs to E4, we have that, for every R > 0,

lim
ε→0

sup
x∈BR

sup
0≤t≤R

|V ε(x, t)− V (x, t)| = 0,

where

V (x, t) := 2(et
− 1)H

( 1
2 Dg(x0)

)
+ g(x0)+ Dg(x0) · (x − x0)

+ 2(1+‖g‖C1,1(Rd ))((1+ |x − x0|
2)1/2− 1)+ k(et

− 1).

It is routine to check that, for every x ∈ Rd ,

g(x)≤ g(x0)+ Dg(x0) · (x − x0)+ 2(1+‖g‖C1,1(Rd ))((1+ |x − x0|
2)1/2− 1)= V (x, 0).
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We deduce that
lim sup
ε→0

inf
x∈Rd

(V ε(x, 0)− g(x))≥ 0.

Since V (x0, 0)= g(x0) and V is uniformly Lipschitz continuous on Rd
×[0, 1) with a constant that is

bounded above independently of x0, this inequality combined with (5-17) yields (5-16).

Step 3. We complete the proof by arguing that

lim inf
ε→0

uε(x, t)≥ u(x, t). (5-18)

The argument here is similar to the demonstration of (5-7). We omit the proof that the left side of (5-18)
is a supersolution of the limiting equation since this part is essentially identical to Step 1 (except that we
remark that it is necessary to take 0<λ< 1 in contrast to λ> 1 as we did above). The second step, which
is the analogue of Step 2, is actually much easier because we may produce a single smooth function that
is a subsolution of the heterogeneous equation for all ε > 0. Indeed, since H(p, x) is uniformly bounded
above for bounded |p|, we may take k > 0 large enough, depending only on 31, 32 and ‖g‖C1,1(Rd ), such
that (x, t) 7→ g(x)− kt is a subsolution of (5-1). Thus, uε(x, t)≥ g(x)− kt for all ε > 0, giving us the
desired lower bound at the initial time. �

6. The proof of the quenched large deviation principle

In this section, we give the proof of Corollary 2 and study some properties of the rate function L . To our
knowledge, the argument is originally due to Varadhan (communicated orally and unpublished) and also
appeared later in [Lions and Souganidis 2005] and well as in [Kosygina 2007].

Before giving the demonstration of Corollary 2, let us see how the viscous Hamilton–Jacobi equation
arises by considering the asymptotics of the partition function. According to the Feynman–Kac formula,
for each ω ∈�, the map (x, t) 7→ S(t, x, ω) defined in (1-17) is a solution of the equation

St − tr(A(y, ω)D2S)− b(y, ω) · DS+ V (y, ω)S = 0 in Rd
×R+

and we have S(0, · , ω)≡ 1. If we take the (inverse) Hopf–Cole transform of S, setting

U (x, t, ω) := −log S(t, x, ω),

then we check that (x, t) 7→U (x, t, ω) is the unique viscosity solution of the initial-value problem{
Ut − tr(A(y, ω)D2U )+ DU · A(y, ω)DU + b(y, ω) · DU − V (y, ω)= 0 in Rd

×R+,

U ( · , 0, ω)≡ 0 on Rd .

This suggests the definition (1-15) of H . Rescale by setting

uε(x, t, ω) := εU
( x
ε
,

t
ε
, ω
)
, (6-1)

and observe that uε is the solution of (5-1) with g ≡ 0. An application of Theorem 1 yields

P
[

lim
t→∞

1
t

U (t x, t, ω)= lim
ε→0

uε(x, 1, ω)=−H(0) locally uniformly in x ∈ Rd
]
= 1.
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This gives the approximate likelihood that a particle survives for a very long time:

sup
|x |≤Rt

e−H(0)t S(t, t x, ω)= exp(o(t)) as t→∞. (6-2)

(Note that in this context we have H(0) ≤ 0 as can be seen from the fact that wε ≥ 0 since the zero
function is a subsolution of (4-1).) In fact, we have just proved Corollary 2 in the case K =U =Rd since,
by the duality of the Legendre transform,

inf
y∈Rd

L(y)=−H(0).

It turns out that by varying the initial condition g in Theorem 1 (taking it to be approximately the
characteristic function of K or U ) and using the Hopf–Lax formula for the solution of the limiting
equation, this argument yields a proof of the large deviation principle. Here it is:

Proof of Corollary 2. Fix an element ω ∈� belonging to the event inside the probability in the conclusion
of Theorem 1. We prove only the upper bound since the argument for the lower bound is similar (except
that in the latter case we have to approximate initial data that is −∞ from below, but this technicality
can be handled by recalling the monotonicity of the solutions with respect to the data and using an
approximation argument). Select a positive, uniformly continuous function g on Rd such that g ≤ 1 in Rd

and g ≡ 1 on K , and observe that

−log Qt,x,ω[X t ∈ sK ] ≥ −log Ex,ω

[
g(X t/s) exp

(
−

ˆ t

0
V (Xs, ω) ds

)]
︸ ︷︷ ︸

=:U (x, t, ω; s)

+ log S(t, x, ω). (6-3)

The limit of the second term on the right side is given by (6-2):

lim
t→∞

1
t

log S(t, t x, ω)= H(0).

Therefore, we concentrate on the first term on the right of (6-2). By the Feynman–Kac formula and an
inverse Hopf–Cole change of variables, the function U defined in (6-3) is a solution of the initial-value
problem{

Ut − tr(A(y, ω)D2U )+ DU · A(y, ω)DU + b(y, ω) · DU − V (y, ω)= 0 in Rd
×R+,

U ( · , 0, ω; s)=−log g( · /s) on Rd .

Rescale by introducing

uε(x, t, ω) := εU
( x
ε
,

t
ε
, ω;

1
ε

)
,

and notice that uε satisfies the rescaled equation

uεt − ε tr
(

A
( x
ε
, ω
)

D2uε
)
+ Duε · A

( x
ε
, ω
)

Duε + b
( x
ε
, ω
)
· Duε − V

( x
ε
, ω
)
= 0 in Rd

×R+

with the initial condition uε( · , 0, ω)=−log g on Rd .
Since ω belongs to the event in the conclusion of Theorem 1, we have

lim
t→∞

1
t

U (t x, t, ω; t)= lim
ε→0

uε(x, 1, ω)= u(x, 1),
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where u = u(x, t) is the unique solution of the deterministic problem{
ut + H(Du)= 0 in Rd

×R+,

u( · , 0)=−log g on Rd .

According to the Hopf–Lax formula, we have

u(x, t)= inf
y∈Rd

(
t L
( x − y

t

)
− log g(y)

)
.

Combining the last few lines, we obtain

lim
t→∞

1
t

U (t x, t, ω; t)= inf
y∈Rd

(L(x − y)− log g(y)).

Inserting into (6-3), we obtain

lim
t→∞
−

1
t

log Qt,t x,ω[X t ∈ t K ] ≥ inf
y∈Rd

(L(x − y)− log g(y))+ H(0).

Using the continuity of L and taking g to approximate the characteristic function of K , we obtain

lim
t→∞
−

1
t

log Qt,t x,ω[X t ∈ t K ] ≥ inf
y∈K

L(x − y)+ H(0). �
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GLOBAL REGULARITY FOR A SLIGHTLY SUPERCRITICAL
HYPERDISSIPATIVE NAVIER–STOKES SYSTEM

DAVID BARBATO, FRANCESCO MORANDIN AND MARCO ROMITO

We prove global existence of smooth solutions for a slightly supercritical hyperdissipative Navier–Stokes
under the optimal condition on the correction to the dissipation. This proves a conjecture formulated
by Tao.

1. Introduction

Let d ≥ 3 and consider the generalized Navier–Stokes system
∂u/∂t + (u · ∇)u+∇ p+ D2

0u = 0,
∇ · u = 0,∫
[0,2π ]d u(t, x) dx = 0,

(1-1)

on [0, 2π ]d with periodic boundary conditions, where D0 is a Fourier multiplier with nonnegative
symbol m. The Navier–Stokes system is recovered when m(k)= |k|. If

m(k)≥ c
|k|(d+2)/4

G(|k|)
, (1-2)

where G : [0,∞)→ [0,∞) is a nondecreasing function such that∫
∞

1

ds
sG(s)4

=∞, (1-3)

and
G(x)
|x |(d+2)/4 is eventually nonincreasing, (1-4)

then in [Tao 2009] it is proved1 that (1-1) has a global smooth solution for every smooth initial condition.
The result has been extended to the two-dimensional case in [Katz and Tapay 2012].

A heuristic argument developed in [Tao 2009] and based on the comparison between the speed of
propagation of a (possible) blow-up and the rate of dissipation suggests that regularity should still hold
under the weaker condition ∫

∞

1

ds
sG(s)2

=∞. (1-5)

D. Barbato acknowledges the financial support of the research project “Stochastic Processes and Applications to Complex
Systems” (CPDA123182) of the University of Padua.
MSC2010: primary 76D03, 76D05; secondary 35Q30, 35Q35.
Keywords: Navier–Stokes, dyadic model, global existence, slightly supercritical Navier–Stokes equations.

1The proof of that result is given in Rd , but it can be easily extended to the periodic setting; see [Tao 2009, Remark 2.1].
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The main result of this paper, contained in the following theorem, is a complete proof of this conjecture.

Theorem 1.1. Let d ≥ 2 and assume conditions (1-2), (1-4) and (1-5) hold for a nondecreasing function
G : [0,∞)→ [0,∞). Then (1-1) has a global smooth solution for every smooth initial condition.

A simple version of this conjecture, when reformulated on a toy model, has been proved for the dyadic
model in [Barbato et al. 2014]. Actually, for that model one could prove regularity in the full supercritical
regime, with m(k)= |k|, as was done in [Barbato et al. 2011], but it was natural to develop there some
of the main ideas on which also this paper is based. In fact, here we prove that the equations for the
velocity can be reduced to a suitable dyadic-like model, but with infinitely many interactions. A more
sophisticated version of the arguments of [Barbato et al. 2014] ensures regularity of this dyadic model
and, in turn, of the solution of problem (1-1).

Our technique for proving Theorem 1.1 is flexible enough to include an additional critical parameter.
Consider the generalized Leray α-model,

∂v/∂t + (u · ∇)v+∇ p+ D1v = 0,
v = D2u,
∇ · v = 0,∫
[0,2π ]d v(t, x) dx =

∫
[0,2π ]d u(t, x) dx = 0,

(1-6)

where D1 and D2 are Fourier multipliers with nonnegative symbols m1 and m2.

Theorem 1.2. Let d ≥ 2 and α, β ≥ 0, and assume

m1(k)≥ c
|k|α

g(|k|)
, m2(k)≥ c|k|β, α+β ≥

d + 2
2

,

where g : [0,∞)→[0,∞) is a nondecreasing function such that x−αg(x) is eventually nonincreasing and∫
∞

1

ds
sg(s)

=∞. (1-7)

Then (1-6) has a global smooth solution for every smooth initial condition.

Under the assumptions of Theorem 1.1, if β = 0, α = (d + 2)/2, g(x) = G(x)2, m2(k) = 1, and
m1(k)=m(k)2, then the assumptions of Theorem 1.2 are met. Therefore Theorem 1.1 follows immediately
from Theorem 1.2, and it is sufficient to prove only the second result.

Our results hold as well when the problems are considered in Rd , since in our method large scales play
no significant role (see Remark 2.9).

The model (1-6) with g ≡ 1 was introduced by Olson and Titi [2007]. They proposed the idea that
a weaker nonlinearity and a stronger viscous dissipation could work together to yield regularity. Their
statement uses the stronger hypothesis α+β/2≥ (d+2)/2 though, and this result was later logarithmically
improved in [Yamazaki 2012] with condition (1-3).

Our results are also relevant in view of the analysis in [Tao 2014, Remark 5.2], since they confirm that
the condition (1-7) is optimal when general nonlinear terms with the same scaling are considered.
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The proof of the above theorem is based on two crucial ideas. The first idea is that smoothness of
(1-6) can be reduced to the smoothness of a suitable shell model, obtained by averaging the energy of a
solution of (1-6) over dyadic shells in Fourier space. We believe that this reduction may be interesting
beyond the scope of this paper. The second idea is that the overall contribution of energy and dissipation
over large shells satisfies a recursive inequality. Under condition (1-7), dissipation significantly dumps
the flow of energy towards small scales and ensures smoothness. This is a more sophisticated version of
the result obtained in [Barbato et al. 2014], due to the larger number of interactions between shells.

The paper is organized as follows. In Section 2 we derive the shell approximation of a solution of
(1-6). The recursive formula is obtained in Section 3. In Section 4 we deduce exponential decays of shell
modes by the recursive formula. The Appendix contains a standard existence and uniqueness result for
the sake of completeness.

2. From the generalized Fourier Navier–Stokes to the dyadic equation

This section contains one of the crucial steps in our approach. We show that the proof of Theorem 1.2
can be reduced to a proof of the decay of solutions of a suitable shell model. For simplicity and without
loss of generality, from now on we assume that

m1(k)=
|k|α

g(|k|)
, m2(k)≥ |k|β .

The shell approximation. The dynamics of our generalized version of the Navier–Stokes equation in
Fourier decomposition are 

v′k =−
|k|α

g(|k|)
vk − i

∑
h∈Zd\{0}

〈vh, k〉
|h|β

Pk(vk−h),

〈vk, k〉 = 0,
v−k = vk,

(2-1)

for k ∈ Zd
\{0}, where Pk(w) :=w− (〈w, k〉/|k|2)k and v0 = 0. A solution is a family (vk)k∈Zd\{0} where

each vk = vk(t) is a differentiable map from [0,∞) to Cd satisfying (2-1) for all times.
As is common in Littlewood–Paley theory, let8 : [0,∞)→[0, 1] be a smooth function such that8≡ 1

on [0, 1], 8≡ 0 on [2,∞), and 8 is strictly decreasing on [1, 2]. For x ≥ 0, let ψ(x) :=8(x)−8(2x),
so that ψ is a smooth bump function supported on

( 1
2 , 2

)
satisfying

∞∑
n=0

ψ

(
x
2n

)
= 1−8(2x)≡ 1, x ≥ 1.

Notice that it is elementary to show that
√
ψ is Lipschitz continuous.

Let N0 denote the set of nonnegative integers. For all n ∈ N0, we introduce the radial maps
ψn : R

d
→ [0, 1] defined by ψn(x)= ψ(2−n

|x |). Notice that∑
n∈N0

ψn(x)≡ 1, x ∈ Zd
\ {0}.
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In Littlewood–Paley theory, one typically defines ψn for all n ∈ Z, introduces objects like

Pn(x) :=
∑
k∈Zd

ψn(k)vkei〈k,x〉,

and then proves that u=
∑

n Pn . Since these Pn are not orthogonal2 this does not give a nice decomposition
of energy, as ∑

n∈Z

‖Pn‖
2
L2 6=

∑
k∈Zd

|vk |
2
= ‖u‖2L2 .

Thus, instead of Pn(x), we introduce a sort of square-averaged Littlewood–Paley decomposition. Let

Xn(t) :=
(∑

k∈Zd

ψn(k)|vk(t)|2
)1

2

, n ∈ N0, t ≥ 0. (2-2)

Then clearly ∑
n∈N0

X2
n =

∑
k∈Zd

|vk |
2
= ‖u‖2L2 .

Remark 2.1. One major difference with respect to the usual Littlewood–Paley theory is that it is impossible
to recover v from these Xn (as it was with the components Pn(x)), since they are averaged both in the
physical space and over one shell of the frequency space.

We will denote by Hγ the Hilbert–Sobolev space of periodic functions with differentiation index γ ,
namely

Hγ
=

{
v = (vk)k∈Zd :

∑
(1+ |k|2)γ |vk |

2 <∞
}
. (2-3)

Definition 2.2. If (2-2) holds, we say that X = (Xn(t))n∈N0,t≥0 is the shell approximation of v.

If v ∈ Hγ and X is its shell approximation, then∑
n

22γ n X2
n =

∑
k

(∑
n

22γ nψn(k)
)
|vk |

2
≈

∑
k

|k|2γ |vk |
2
= ‖v‖2Hγ . (2-4)

Hence, v(t) ∈C∞ if and only if supn 2γ n Xn <∞ for every γ > 0. In view of Theorem A.1, Theorem 1.2
follows if we can prove:

Theorem 2.3. Under the assumptions of Theorem 1.2, let v(0) be smooth and periodic and let m≥2+d/2.
If v is a solution of (1-6) in H m on its maximal interval of existence [0, T?), X is its shell approximation and

sup
[0,T?)

∑
22mn X2

n <∞,

then T? =∞.

2They are in fact almost orthogonal, in the sense that 〈Pn, Pm〉L2 = 0 whenever |m− n| ≥ 2.
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The shell solution. We want to write a system of equations for the shell approximation of a solution of
(1-6). We give a more formal connection between (1-6) and its shell equation because we believe the
notion will turn out to be useful beyond the scopes of the present work.

Define the set I to be those (l,m, n) ∈ N3
0 for which the difference between the two largest integers

among l, m and n is at most 2.
We are now ready to introduce the shell model ODE for the energy of each shell (Equation (2-5)).

Definition 2.4 (shell solution). Let X = (Xn)n∈N0 be a sequence of real-valued maps Xn : [0,∞)→ R.
We say that X is a shell solution if there are two families of real-valued maps χ = (χn)n∈N0 and
φ = (φ(l,m,n))(l,m,n)∈I such that

d
dt

X2
n(t)=−χn(t)X2

n(t)+
∑

l,m∈N0
(l,m,n)∈I

φ(l,m,n)(t)Xl(t)Xm(t)Xn(t) (2-5)

for all n ∈ N0 and t > 0, where the sum above is understood as absolutely convergent, and χ, φ satisfy
the following:

(1) The family φ is antisymmetric, in the sense that

φ(l,m,n)(t)=−φ(l,n,m)(t), (l,m, n) ∈ I, t ≥ 0.

(2) There exist two positive constants c1 and c2 for which

χn(t)≥ c1
2αn

g(2n+1)
and |φ(l,m,n)(t)| ≤ c22(d/2+1−β)min{l,m,n} (2-6)

for all (l,m, n) ∈ I and t ≥ 0.

Remark 2.5. We will prove below that the shell approximation of a solution of (1-6) is a shell solution.
It is easy to check that the dissipation term is local, as expected, due to the way the shell components of
a solution interact in the model’s dynamics. As for the nonlinear term, it turns out that the set I of the
triples of indices (l,m, n) for which there may be interaction between the shell components l, m and n is
quite small. This is basically because, in the Fourier space, three components may interact only if they
are the sides of a triangle, and by the triangle inequality their lengths cannot be in three shells far away
from each other.

Remark 2.6. To ensure that the sum in (2-5) is absolutely convergent, it is sufficient to assume that
the sequence (Xn(t))n∈N0 is square-summable (this will be a consequence of the energy inequality; see
Definition 3.1). Indeed, if n is not the smallest index, then the sum is extended to a finite number of
indices. Otherwise, φ(l,m,n) is constant with respect to l, m.
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Remark 2.7. The antisymmetric property is what makes the nonlinearity of (2-5) formally conservative.
In fact, using antisymmetry, a change of variable (m′ = n and n′ = m) and the fact that (l,m′, n′) ∈ I if
and only if (l, n′,m′) ∈ I , one could formally write

−

∑
l,m,n∈N0
(l,m,n)∈I

φ(l,m,n)Xl Xm Xn =
∑

l,m,n∈N0
(l,m,n)∈I

φ(l,n,m)Xl Xm Xn =
∑

l,m′,n′∈N0
(l,n′,m′)∈I

φ(l,m′,n′)Xl Xm′Xn′

=

∑
l,m′,n′∈N0
(l,m′,n′)∈I

φ(l,m′,n′)Xl Xm′Xn′ .

If these sums are absolutely convergent, this would prove indeed that the expression itself is equal to zero.
Since these are infinite sums, these computations are not rigorous unless we know, for instance, that∑
n 22γ n X2

n <∞ with γ ≥ 1
3

( 1
2 d + 1−β

)
, as can be verified by an elementary computation.

The shell model as a shell approximation. The bounds on the coefficients given in Definition 2.4 are in
the correct direction to prove regularity results (and hence Theorem 2.3). The following theorem, which
is the main result of this section, shows that they capture the natural scaling of the shell interactions for
the physical solutions.

Theorem 2.8. If v is a solution of (1-6) on [0, T ] and X is its shell approximation, then X is a shell
solution.

Remark 2.9. At this stage it is easy to realize that our main results hold also in Rd with minimal changes.
Indeed when passing to the shell approximation, all large frequencies are considered together in the first
element of the shell model.

The proof of Theorem 2.8 can be found at the end of this section. It is based on Propositions 2.10–2.11
below, which give the actual definitions of χ and φ and prove their properties.

Proposition 2.10. Let X be the shell approximation of a solution v. Define χn(t) for n ∈N0 and t ≥ 0 by

χn(t) :=


2

X2
n(t)

∑
k∈Zd\{0}

ψn(k)
|k|α

g(|k|)
|vk(t)|2 if Xn(t) 6= 0,

2αn−α+1

g(2n+1)
if Xn(t)= 0.

(2-7)

Then

χn(t)≥
2αn−α+1

g(2n+1)
, n ∈ N0, t ≥ 0.

Proof. Fix n ∈ N0 and t ≥ 0. The map ψn is supported on {x ∈ Zd
: 2n−1 < |x | < 2n+1

} and g is
nondecreasing, so∑

k∈Zd\{0}

ψn(k)
|k|α

g(|k|)
|vk(t)|2 ≥

∑
k∈Zd\{0}

ψn(k)
2(n−1)α

g(2n+1)
|vk(t)|2 =

2(n−1)α

g(2n+1)
X2

n(t),

where we used (2-2). By (2-7) we get the result. �
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We finally turn our attention to the antisymmetry property and an upper bound for φ(l,m,n)(t):

Proposition 2.11. Let X be the shell approximation of a solution v. Define φ(l,m,n)(t) for all l, m, n ∈N0

and t ≥ 0 as

φ(l,m,n)(t) :=
2

Xl(t)Xm(t)Xn(t)

∑
h,k∈Zd

h 6=0

ψl(h)ψm(k− h)ψn(k)
Im{〈vh(t), k〉〈vk−h(t), vk(t)〉}

|h|β
(2-8)

(unless Xl(t)Xm(t)Xn(t)= 0, in which case φ(l,m,n)(t) := 0). Then:

(1) φ(l,m,n)(t)= 0 for all (l,m, n) /∈ I and all t ≥ 0.

(2) φ(l,m,n)(t)=−φ(l,n,m)(t) for all l, m, n ∈ N0 and all t ≥ 0.

(3) For any β ≥ 0 there exists a constant c3 > 0 depending only on d, β and ψ such that

|φ(l,m,n)(t)| ≤ c32(d/2+1−β)min{l,m,n}, (l,m, n) ∈ I, t ≥ 0. (2-9)

For the proof we need a couple of lemmas:

Lemma 2.12. Suppose v = (vk)k∈Zd is a complex field over Zd such that, for all k ∈ Zd , 〈k, vk〉 = 0 and
vk = v−k . Then, for all h ∈ Zd ,∑

k∈Zd

ψm(k− h)ψn(k) Im{〈vh, k〉〈vk−h, vk〉} = −
∑
k∈Zd

ψm(k)ψn(k− h) Im{〈vh, k〉〈vk−h, vk〉}.

Proof. Consider the left-hand side. By performing the change of variable k ′ = h− k, we obtain

ψm(k− h)= ψm(−k ′)= ψm(k ′),

ψn(k)= ψn(h− k ′)= ψn(k ′− h),

〈vh, k〉 = 〈vh, h− k ′〉 = −〈vh, k ′〉,

〈vk−h, vk〉 = 〈v−k′, vh−k′〉 = 〈vk′, vk′−h〉 = 〈vk′−h, vk′〉.

The sum for k ∈ Zd is equivalent to the sum for k ′ ∈ Zd , and this concludes the proof. �

Lemma 2.13. Let v be a solution and X its shell approximation. Then, for all a, b, c ∈ N0 and all t ≥ 0,∑
h∈Zd

ψa(h)|vh(t)|
∑
k∈Zd

√
ψb(k)ψc(k− h)|vk(t)||vk−h(t)| ≤ 2d(a+3)/2 Xa(t)Xb(t)Xc(t).

Proof. By the Cauchy–Schwarz inequality and formula (2-2), we have that, for all h ∈ Zd ,∑
k∈Zd

√
ψb(k)ψc(k− h)|vk(t)||vk−h(t)| ≤ Xb(t)Xc(t).

Then, let Sa denote the intersection of Zd and the support of ψa . By inscribing Sa in a cube, we can
bound its cardinality by |Sa| ≤ (2a+2

+ 1)d ≤ 2(a+3)d , so

∑
k∈Zd

ψa(k)|vk(t)| ≤
(
|Sa|

∑
k∈Sa

ψ2
a (k)v

2
k (t)

)1
2

≤ (2(a+3)d)1/2 Xa(t),
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where we used the fact that ψa(k)≤ 1. �

Proof of Proposition 2.11. Consider Equation (2-8), the definition of φ(l,m,n). By applying Lemma 2.12,
for fixed t we immediately conclude that

φ(l,n,m) =−φ(l,m,n), l,m, n ∈ N0,

and in particular that φ(l,m,m) = 0.
Moreover, for all choices of h and k, the arguments of ψl , ψm and ψn are the sides of a triangle in Rd ,

so by the triangle inequality the size of the largest (without loss of generality k) is at most twice the size
of the second largest (without loss of generality h). On the other hand, for all j ∈N0 the support of ψ j is
{x ∈ Rd

: 2 j−1 < |x |< 2 j+1
}. Thus, whenever ψl(h)ψn(k) 6= 0, necessarily n ≤ l + 2, since

2n−1 < |k| ≤ 2|h|< 2l+2.

This proves that φ(l,m,n) = 0 outside the set I defined before Definition 2.4.
Finally, we prove inequality (2-9) for (l,m, n) ∈ I with m < n. We will consider separately the two

cases n−m > 2 and n−m ∈ {1, 2}, starting with the former.

Case 1. Since m < n− 2 and (l,m, n) ∈ I , we have m = min{l,m, n} and |l − n| ≤ 2. This means in
particular that typically |k− h|< |k| for all the nonzero terms of the sum in (2-8), so it is convenient to
substitute 〈vh, k〉 = 〈vh, k− h〉 in the equation to obtain the bound

|φ(l,m,n)| ≤
2

Xl Xm Xn

∑
h,k∈Zd

h 6=0

ψl(h)ψm(k− h)ψn(k)
|vh||k− h||vk−h||vk |

|h|β
.

By the definition of ψl , either ψl(h)= 0 or |h| ≥ 2l−1
≥ 2m . Applying this and the change of variable

k ′ = k− h, one gets

|φ(l,m,n)| ≤
21−βm

Xl Xm Xn

∑
k′∈Zd

ψm(k ′)|k ′||vk′ |
∑
h∈Zd

ψl(h)ψn(k ′+ h)|vh||vk′+h|.

In the same way, we can substitute |k ′|≤2m+1 and apply Lemma 2.13 (recall thatψ ≤1, soψ ≤
√
ψ) to get

|φ(l,m,n)| ≤ 21−βm+m+1+d(m+3)/2.

Since in the present case min{l,m, n} = m, this proves inequality (2-9) with c3 = 22+3d/2.

Case 2. Suppose now that n−m ∈ {1, 2} and (l,m, n) ∈ I ; then l ≤ n+ 2 and min{l,m, n} ≥ l − 4. In
this case it is l that can be small with respect to m and n, so we take the terms in l and h outside the
internal sum:

|φ(l,m,n)| ≤
2

Xl Xm Xn

∑
h∈Zd\{0}

ψl(h)
|h|β

∣∣∣∣∑
k∈Zd

ψm(k− h)ψn(k) Im{〈vh, k〉〈vk−h, vk〉}

∣∣∣∣.
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The idea is to exploit the cancellations in the sum over k that happen when k− h and k are switched. By
Lemma 2.12 and the bound |k| ≤ 2n+1 for k in the support of ψm or ψn ,

|φ(l,m,n)| ≤
2

Xl Xm Xn

∑
h∈Zd\{0}

ψl(h)
|h|β

1
2

∣∣∣∣∑
k∈Zd

(
ψm(k− h)ψn(k)−ψm(k)ψn(k− h)

)
Im{〈vh, k〉〈vk−h, vk〉}

∣∣∣∣
≤

2n+1

Xl Xm Xn

∑
h∈Zd\{0}

ψl(h)|vh|

|h|β
∑
k∈Zd

∣∣ψm(k− h)ψn(k)−ψm(k)ψn(k− h)
∣∣|vk−h||vk |.

We turn our attention to the term ψm(k − h)ψn(k)− ψm(k)ψn(k − h) and show that it is small. Let
L denote the Lipschitz constant of the function ψ1/2. Then, for all h, k ∈ Zd and all m, n ∈ N0 such
that m ≥ n− 2,∣∣√ψm(k− h)ψn(k)−

√
ψm(k)ψn(k− h)

∣∣
=
∣∣√ψm(k− h)ψn(k)−

√
ψm(k)ψn(k)+

√
ψm(k)ψn(k)−

√
ψm(k)ψn(k− h)

∣∣
≤ L
|h|
2m

√
ψn(k)+ L

|h|
2n

√
ψm(k)≤ L

|h|
2n−3 .

Moreover, by symmetry with respect to m and n,∑
k∈Zd

(√
ψm(k− h)ψn(k)+

√
ψm(k)ψn(k− h)

)
|vk−h||vk | = 2

∑
k∈Zd

√
ψm(k− h)ψn(k)|vk−h||vk |,

so that

|φ(l,m,n)| ≤
25L

Xl Xm Xn

∑
h∈Zd\{0}

|h|1−βψl(h)|vh|
∑
k∈Zd

√
ψm(k− h)ψn(k)|vk−h||vk |.

By the usual bound 2l−1
≤|h|≤2l+1 and since β≥0, we see that |h|1−β ≤2l(1−β)+1+β so, by Lemma 2.13,

|φ(l,m,n)| ≤ 252(1−β)l+1+β2(l+3)d/2L ≤ 2(d/2+1−β)(l−4)+9−3β+11d/2L .

Since in the present case min{l,m, n} ≥ l − 4, this proves inequality (2-9) with c3 = 29+11d/2−3βL . �

Finally we have all the ingredients to prove the main theorem of this section:

Proof of Theorem 2.8. A direct computation using (2-2) and (2-1) shows that

1
2

d
dt

X2
n = Re

∑
k∈Zd

ψn(k)〈v′k, vk〉

= −

∑
k∈Zd\{0}

ψn(k)
|k|α

g(|k|)
|vk |

2
+ Im

∑
k∈Zd

∑
h∈Zd\{0}

ψn(k)
〈vh, k〉
|h|β

〈Pk(vk−h), vk〉

= −

∑
k∈Zd\{0}

ψn(k)
|k|α

g(|k|)
|vk |

2
+

∑
h,k∈Zd

h 6=0

ψn(k)
Im{〈vh, k〉〈vk−h, vk〉}

|h|β
.
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To deal with the first sum, define χ as in Proposition 2.10. By applying (2-7) for Xn(t) 6= 0 and (2-2) for
Xn(t)= 0, we see that in both cases

2
∑

k∈Zd\{0}

ψn(k)
|k|α

g(|k|)
|vk |

2
= χn(t)X2

n(t).

Now consider the second sum. Since the terms with h = k give no contribution, we can apply∑
l∈N0

ψl(h)=
∑

m∈N0

ψm(k− h)= 1, h, k ∈ Zd , 0 6= h 6= k,

to get∑
h,k∈Zd

h 6=0

ψn(k)
Im{〈vh, k〉〈vk−h, vk〉}

|h|β
=

∑
h,k∈Zd

h 6=0

∑
l,m∈N0

ψl(h)ψm(k− h)ψn(k)
Im{〈vh, k〉〈vk−h, vk〉}

|h|β

=

∑
l,m∈N0

∑
h,k∈Zd

h 6=0

ψl(h)ψm(k− h)ψn(k)
Im{〈vh, k〉〈vk−h, vk〉}

|h|β
,

where it was possible to exchange the order of summation because the middle expression is clearly
absolutely convergent.

Now define φ as in Proposition 2.11. By applying (2-8) or (2-2), depending on Xl(t)Xm(t)Xn(t) being
positive or zero, we see that, for all l, m, n ∈ N0 and t ≥ 0,

2
∑

h,k∈Zd

h 6=0

ψl(h)ψm(k− h)ψn(k)
Im{〈vh, k〉〈vk−h, vk〉}

|h|β
= φ(l,m,n)(t)Xl(t)Xm(t)Xn(t).

Putting it all together we get

d
dt

X2
n(t)=−χn(t)X2

n(t)+
∑

l,m∈N0

φ(l,m,n)(t)Xl(t)Xm(t)Xn(t), n ∈ N0, t ≥ 0.

Finally, recalling by Proposition 2.11 that φ≡ 0 outside I , we may restrict the scope of the sum and obtain
(2-5). The required properties of the coefficients χ and ψ follow again from Propositions 2.10–2.11. �

3. From the dyadic equation to the recursive inequality

In view of the results of the previous section, we can now concentrate on shell solutions and forget (1-6).
In this section we proceed as in [Barbato et al. 2014] and deduce a recursive inequality between the tails
of energy and dissipation. Clearly here, due to the more complex nonlinear interaction, the relation is less
trivial than in [Barbato et al. 2014].

Definition 3.1. A shell solution X satisfies the energy inequality on [0, T ] if
∑

n X2
n(0) is finite and∑

n∈N0

X2
n(t)+

∫ t

0

∑
n∈N0

χn(s)X2
n(s) ds ≤

∑
n∈N0

X2
n(0), t ∈ [0, T ]. (3-1)
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Definition 3.2. Let X be a shell solution and define the sequences of real-valued maps (Fn)n∈N0 and
(dn)n∈N0 for t ≥ 0 by

Fn(t) :=
∑
k≥n

X2
k (t), dn(t) :=

(
Fn(t)+

∑
h≥n

∫ t

0
χh(s)X2

h(s) ds
)1

2

.

We will call (Fn)n∈N0 the tail of X and (dn)n∈N0 the energy bound of X .

The recursive inequality between the tails and the energy bound is given in the next result.

Proposition 3.3. Let X be a shell solution that satisfies the energy inequality on a time interval [0, t], let
(dn)n∈N0 be its sequence of energy bounds, and set λ= 2α.

Then there is a positive constant c4 > 0, not depending on t , such that, for all n ∈ N0,

d2
n (t)≤ Fn(0)+ c4

n−1∑
l=0

d̄l

λn−l

∑
m≥n−2

g(2m+1)

λm−n (d2
m(t)− d2

m+1(t)), (3-2)

where d̄l :=maxs∈[0,t] dl(s).

Proof. Fix n ∈ N0. Differentiate
∑n−1

h=0 X2
h using (2-5):

d
dt

n−1∑
h=0

X2
h =−

n−1∑
h=0

χh X2
h +

∑
l,m,h∈N0
(l,m,h)∈I

h≤n−1

φ(l,m,h)Xl Xm Xh .

Apply Lemma 3.4 below to the second sum and integrate on [0, t] to obtain

n−1∑
h=0

X2
h(t)−

n−1∑
h=0

X2
h(0)=−

∫ t

0

n−1∑
h=0

χh X2
h ds−

∫ t

0

∑
(l,m,h)∈I
m<n≤h

φ(l,m,h)Xl Xm Xh ds

so that, by the energy inequality (3-1),

Fn(t)+
∫ t

0

∑
h≥n

χh(s)X2
h(s) ds ≤ Fn(0)+

∫ t

0

∑
(l,m,h)∈I
m<n≤h

φ(l,m,h)Xl(s)Xm(s)Xh(s) ds,

where the Fn are the tails of X and Fn(0)<∞ by hypothesis. Thus, by the definition of dn (Definition 3.2),

d2
n (t)≤ Fn(0)+

∫ t

0

∑
(l,m,h)∈I
m<n≤h

φ(l,m,h)Xl(s)Xm(s)Xh(s) ds.

Recall that α+β ≥ 1
2 d + 1, hence the bound (2-6) for φ yields φ(l,m,h) ≤ c2λ

min{l,m,h}. Therefore

d2
n (t)≤ Fn(0)+

∫ t

0

∑
(l,m,h)∈I
m<n≤h

c2λ
min{l,m}

|Xl(s)Xm(s)Xh(s)| ds.
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It is convenient to split the set over which the sum is taken into the sets {l < m} and {m ≤ l}:∑
(l,m,h)∈I
m<n≤h

λmin{l,m}
|Xl Xm Xh| ≤

∑
(l,m,h)∈I
l<m<n≤h

λl
|Xl Xm Xh| +

∑
(l,m,h)∈I
m<n≤h

m≤l

λm
|Xl Xm Xh|

≤

∑
(l,m,h)∈I
l<m<n≤h

λl
|Xl Xm Xh| +

∑
(l,m,h)∈I

l<n≤h
l≤m

λl
|Xl Xm Xh|

≤ 2
∑

(l,m,h)∈I
l<n≤h

l≤m

λl
|Xl Xm Xh| ≤ 2

n−1∑
l=0

λl d̄l

∑
h≥n

h+2∑
m=h−2

|Xm Xh|.

Apply the Cauchy–Schwarz inequality to get

2
∑
h≥n

h+2∑
m=h−2

|Xh Xm | ≤
∑
h≥n

h+2∑
m=h−2

(X2
h + X2

m)≤ 10
∑

m≥n−2

X2
m .

Then by the bound on χ in (2-6), on all [0, t],∑
m≥n−2

X2
m ≤ c−1

1

∑
m≥n−2

g(2m+1)

λm χm X2
m .

Finally the integral of χm X2
m can be bounded as follows, since Fm(t) is nonincreasing with respect to m:

d2
m(t)− d2

m+1(t)= Fm(t)− Fm+1(t)+
∫ t

0
χm(s)X2

m(s) ds ≥
∫ t

0
χm(s)X2

m(s) ds.

Putting it all together we obtain

d2
n (t)≤ Fn(0)+ 10

c2

c1

n−1∑
l=0

d̄l

λ−l

∑
m≥n−2

g(2m+1)

λm (d2
m(t)− d2

m+1(t)),

thus proving (3-2) with c4 = 10c2/c1. �

Lemma 3.4. Let X be a shell solution; then, for all n ∈ N0 \ {0} and s ∈ [0, t],∑
(l,m,h)∈I

h≤n−1

φ(l,m,h)Xl Xm Xh =−
∑

(l,m,h)∈I
m≤n−1<h

φ(l,m,h)Xl Xm Xh . (3-3)

Proof. By using (2-6) and noticing that min(l,m, h) ≤ n − 1, we see that by the definition of shell
solutions (Definition 2.4) the left-hand side of (3-3) is an absolutely convergent sum. Therefore we can
exploit the cancellations due to the antisymmetry of φ, as in Remark 2.7. Indeed∑

(l,m,h)∈I
h≤n−1

φ(l,m,h)Xl Xm Xh =
∑

(l,m,h)∈I
m<h≤n−1

φ(l,m,h)Xl Xm Xh +
∑

(l,m,h)∈I
h≤n−1

m>h

φ(l,m,h)Xl Xm Xh (3-4)
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and ∑
(l,m,h)∈I

h≤n−1
m>h

φ(l,m,h)Xl Xm Xh =−
∑

(l,m,h)∈I
h≤n−1

m>h

φ(l,h,m)Xl Xm Xh =−
∑

(l,h′,m′)∈I
m′≤n−1
h′>m′

φ(l,m′,h′)Xl Xm′Xh′

=−

∑
(l,m′,h′)∈I

m′≤n−1
m′<h′

φ(l,m′,h′)Xl Xm′Xh′ . (3-5)

By substituting (3-5) into (3-4) the conclusion follows. �

4. Solving the recursion

In this section we complete the proof of our main result. In the previous section we have shown a
recursive inequality involving the energy bounds of a shell solution. The following theorem shows that
shell solutions are smooth. By Theorem 2.8, the shell approximation of a solution of (1-6) is a shell
solution; hence Theorem 2.3 holds, and in turn Theorem 1.2 holds as well.

Theorem 4.1. Let X be a shell solution satisfying the energy inequality on [0, t). If supn 2mn
|Xn(0)|<∞

for every m ≥ 1, then
sup

s∈[0,t]
sup

n
2mn
|Xn(s)|<∞ for every m ≥ 1.

Let bn = g(2n+1)−1, n ≥ 0; then the assumptions of Theorem 1.2 for g, in terms of the sequence b, are

• (bn)n∈N0 is nonincreasing,

• (λnbn)n∈N0 is nondecreasing, and

•
∑

n bn =∞.

Let X be a shell solution as in the statement of Theorem 4.1, denote by (dn)n∈N0 and (Fn)n∈N0 the energy
bound and the tail of X (see Definition 3.2), and set d̄n = sup[0,t] dn(t) for every n. Set

Qn =

n−1∑
j=0

d̄ j

λn− j and Rn(t)=
∑
j≥n

d j (t)2− d j+1(t)2

λ j−nb j
,

where λ= 2α as in the previous section. We recall that, by Proposition 3.3,

dn(t)2 ≤ Fn(0)+ c4 Qn Rn−2(t). (4-1)

We now collect some properties of the quantities Rn , Qn , d̄n that will be crucial in the proof of Theorem 4.1.

Lemma 4.2. (1) For every 1≤ m1 ≤ m2 and t > 0,

min{Rm1(t), Rm1+1(t), . . . , Rm2(t)} ≤
λ

λ− 1
dm1(t)

2∑m2
n=m1

bn
. (4-2)

(2) For every t > 0, lim infn Rn(t)= 0.
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(3) d̄n ↓ 0 as n→∞.

(4) Qn→ 0 as n→∞.

(5) (Qn)n≥1 is eventually nonincreasing.

Proof. Since λnbn is nondecreasing, we know that bn − λ
−1bn−1 ≥ 0. Hence, by exchanging the sums,

∞∑
n=m1

(bn − λ
−1bn−1)Rn(t)=

∞∑
k=m1

dk(t)2− dk+1(t)2

λkbk

k∑
n=m1

(
λnbn − λ

n−1bn−1
)
≤

∞∑
k=m1

(dk(t)2− dk+1(t)2)

≤ dm1(t)
2.

If m2 ≥ m1, since (bn)n≥1 is nonincreasing,

m2∑
n=m1

(bn − λ
−1bn−1)Rn(t)≥min{Rm1(t), . . . , Rm2(t)}

m2∑
n=m1

(bn − λ
−1bn−1)

≥
λ− 1
λ

( m2∑
n=m1

bn

)
min{Rm1(t), . . . , Rm2(t)}.

The claim lim infn Rn(t) = 0 follows from (4-2), since dn(t) ≤ d1(t) for every n, and since, by the
assumptions on (bn)n≥1, we can find a sequence (mk)k≥1 such that

∑mk+1−1
n=mk

bn ↑∞.
To prove that d̄n ↓ 0, we notice that the sequence (mk)k≥1 mentioned above does not depend on t ; hence,

using the monotonicity of (dn(t))n≥1 and formula (4-2), we can prove that lim infn d̄n = 0, and hence
d̄n ↓ 0 by monotonicity. Once we know that d̄n ↓ 0, an easy and standard argument proves that Qn→ 0.

To prove that (Qn)n≥1 is eventually nonincreasing, we notice that, since (d̄n)n≥1 is nonincreasing,

(Qn+1− Qn)=
1
λ
(Qn − Qn−1)+

1
λ
(d̄n − d̄n−1)≤

1
λ
(Qn − Qn−1).

In view of the above inequality, it is sufficient to show that for some m the difference Qm − Qm−1 is
nonpositive. This is true because otherwise the sequence (Qn)n≥1 would be nondecreasing, in contradiction
with Qn→ 0 and Qn ≥ 0. �

Given θ > 0 and n0 ≥ 1, define by recursion the sequence

nk+1 = 2+min
{

n ≥ nk − 1 :
n∑

j=nk−1

b j ≥ θλ
−k/4

}
. (4-3)

The definition of Qn and the fact that the sequence (d̄n)n≥1 is nonincreasing yield the following recursive
formula for Qnk :

Qnk+1 =
1

λnk+1−nk
Qnk +

nk+1−1∑
j=nk

d̄ j

λnk+1− j ≤
1
λ

Qnk + cd̄nk , (4-4)
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for a constant c > 0 depending only on λ. Moreover, if we choose n0 large enough that (Qn)n≥0 is
nonincreasing,

dnk+1(t)
2
≤ dn(t)2 ≤ Fn(0)+ c4 Qn Rn−2(t)≤ Fnk (0)+ c4 Qnk Rn−2(t)

for each n ∈ {nk + 1, . . . , nk+1}; hence, by formula (4-2) and the definition of the sequence (nk)k≥1,

dnk+1(t)
2
≤ Fnk (0)+ c4 Qnk min{Rnk−1, . . . , Rnk+1−2}

≤ Fnk (0)+ cQnk

dnk−1(t)2∑nk+1−2
nk−1 b j

≤ Fnk (0)+ c
λk/4

θ
Qnk dnk−1(t)2

and, in conclusion,

d̄2
nk+1
≤ Fnk (0)+ c

λk/4

θ
Qnk d̄2

nk−1. (4-5)

Lemma 4.3 (initial step of the cascade). Given M > 0, there are n0 ≥ 1 and θ > 0 such that

Qnk ≤ λ
−k/2 and d̄2

nk
≤ λ−Mk,

for all k ≥ 0.

Proof. Without loss of generality we can choose M large (depending only on the value of λ; see the end
of the proof). Choose n0 large enough that (Qn)n≥n0 is nonincreasing and

Qn0−i ≤ ε, d̄n0−i ≤ ε, i = 0, 1, and λMn Fn(0)≤ ε, n ≥ n0,

for a number ε ∈ (0, 1) suitably chosen below. We will prove by induction that

Qnk−i ≤ λ
−(k−i)/2, d̄2

nk−i
≤ λ−M(k−i), i = 0, 1, k ≥ 1. (4-6)

For the initial step of the induction (k = 1), we notice that, by (4-4) and (4-5),

Qn1 ≤
1
λ

Qn0 + cd̄n0 ≤
ε

λ
+ cε ≤

1
λ1/2 ,

d̄2
n1
≤ Fn0(0)+

c
θ

Qn0 d̄2
n0−1 ≤ ε+

c
θ
ε3
≤ λ−M ,

if we choose ε small enough, depending on the values of λ, M and θ .
Assume now that (4-6) holds for some k ≥ 1, and let us prove that the same holds for k+1. To this end

it is sufficient to give the estimate for Qnk+1 and d̄2
nk+1

. Again by (4-4), (4-5) and the induction hypothesis,
and since (nk)k≥0 is increasing by definition,

Qnk+1 ≤
1
λ

Qnk + cd̄nk ≤ λ
−k/2−1

+ cλ−Mk/2
≤ λ−(k+1)/2,

d̄2
nk+1
≤ Fnk (0)+ c

λk/4

θ
Qnk d̄2

nk−1 ≤ ελ
−Mk
+

c
θ
λ−k/4λ−M(k−1)

≤ λ−M(k+1),

if M is large (depending on λ), and ε is small and θ is large (depending only on M , λ). �

Before giving the last step of the proof of Theorem 4.1, we show a property of the sequence (nk)k≥0.
The proof is the same as [Barbato et al. 2014, Lemma 11]; we give the details for completeness.
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Lemma 4.4. Given n0 ≥ 1 and θ > 0, consider the sequence defined in (4-3). For infinitely many k,
nk+1 = nk + 1. In particular, bnk−1 ≥ θλ

−k/4 for all such k.

Proof. Assume by contradiction that there is r such that nk+1 ≥ nk + 2 for k ≥ r . On the one hand

nk+1−3∑
j=nk−1

b j ≤ θλ
−k/4,

and summing up over k ≥ r yields

∑
k≥r

nk+1−3∑
j=nk−1

b j <∞ =⇒

∑
k

bnk−2 =∞.

On the other hand, bnk−2 ≤ bnk−3 ≤ θλ
−(k−1)/4 and the series

∑
k bnk−2 converges. �

Lemma 4.5 (cascade recursion). For every M > 0 there is cM > 0 such that

d̄2
n ≤ cMλ

−Mn, Qn ≤ cMλ
−n.

Proof. There is no loss of generality if we assume M is large. Let n0, θ be the values provided by
Lemma 4.3. By Lemma 4.3 and Lemma 4.4 there are infinitely many k ≥ 1 such that

bnk−1 ≥ θλ
−k/4, Qnk ≤ λ

−k/2, d̄2
nk
≤ λ−Mk . (4-7)

Let k0 be one such index, taken sufficiently large (the size of k0 will be chosen at the end of the proof).
We will prove by induction that

d̄2
nk0+m ≤ cλ−Mm, Qnk0+m ≤ c′λ−m, bnk0−1+m ≥ θλ

−k0/4−m, (4-8)

for a suitable choice of the constants c> 0, c′> 0. We first notice that there is nothing to prove concerning
bnk0−1+m , since this is a straightforward consequence of the choice of k0 and the monotonicity of (λnbn)n≥1.

The initial step m = 0 holds, since the inequalities in (4-7) hold for the index k0. For m = 1,

d̄2
nk0+1 ≤ d̄2

nk0
≤ cλ−M ,

Qnk0+1 =
1
λ

Qnk0
+

1
λ

d̄nk0
≤

1
λ
(λ−k0/2+ λ−Mk0/2)≤

c′

λ
,

if c = λ−M(k0−1) and c′ ≥ λ−k0/2+ λ−Mk0/2.
Assume that (4-8) holds for 1, . . . ,m, for some m ≥ 1. By definition,

Qnk0+m+1 = Qnk0
λ−(m+1)

+

nk0+m∑
j=nk0

d̄ j

λnk0+m+1− j ≤ λ
−k0/2−(m+1)

+
√

cλ−(m+1)
m∑

j=0

λ−(M/2−1) j

≤

(
λ−k0/2+

λ

λ− 1
√

c
)
λ−(m+1)

≤ c′λ−(m+1)

if c′ = λ−k0/2+ λ(λ− 1)−1√c (the previous constraint on c′ is satisfied by this choice).
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By (4-1) and (4-2) we have that, for every n ≥ 2,

dn+1(t)2 ≤ Fn+1(0)+ c4 Qn+1 Rn−1(t)≤ Fn+1(0)+ c4 Qn+1
d̄2

n−1

bn−1
;

hence, using the inequality for Qnk0+m+1 already proved and the induction hypothesis,

d̄2
nk0+m+1 ≤ Fnk0+m+1(0)+ c4 Qnk0+m+1

d̄2
nk0+m−1

bnk0+m−1

≤ cλ−M(m+1)
(
λM(nk0+m+1)Fnk0+m+1(0)+

c4

θ
c′λ2M+k0/4

)
≤ c2−M(m+1),

where the last inequality follows if k0 is large enough since λn Fn(0)→ 0 by assumption, and by our
choice of c, c′ we have that λk0/4c′→ 0 as k0→∞. �

Appendix A: Local existence and uniqueness

Consider the generalized system (1-6), under the same assumptions of Theorem 1.2. Assume3 for
simplicity that m1(k) = |k|α/g(|k|). Denote by Vm the subspace of H m (see (2-3)) of divergence-free
vector fields with mean zero. Our main theorem on local existence and uniqueness for (1-6) is as follows:

Theorem A.1. Let m ≥ 2+ 1
2 d and v0 ∈ Vm . Then there are T > 0 and a unique solution v of (1-6) on

[0, T ] with initial condition v0 such that

v ∈ L∞([0, T ]; Vm)∩Lip([0, T ]; Vm−α)∩C([0, T ]; V weak
m ),

∫ T

0
‖D1/2

1 v‖2m dt <∞, (A-1)

where V weak
m is the space Vm with the weak topology. Moreover, v is right-continuous with values in Vm

for the strong topology.
If T? is the maximal time of existence of the solution starting from v0, then either T? =∞ or

lim sup
t↑T?

‖v(t)‖m =∞.

The proof of the theorem is based on a proof of existence of a local unique solution for the Euler
equation taken from [Majda and Bertozzi 2002, Section 3.2]. The idea is that we cannot use the D1

operator as a replacement for the Laplacian, since in general D1 may not have smoothing properties
(indeed, it is easy to adapt the counterexample in [Barbato et al. 2014, Remark 15] to D1 on Rd or on the
d-dimensional torus). Likewise we do not use any smoothing properties of D2, so that our proof includes
the case β = 0. The result is by no means optimal, but fits the needs of our paper.

3Existence and uniqueness can be proved also in the general case m1(k)≥ |k|αg(|k|)−1. A simple assumption that keeps our
proof almost unchanged is a control from above, say m(k)≤ |k|β for some β ≥ α.
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We work on the torus [0, 2π ]d , although the proof, essentially unchanged, works in Rd . Denote by H
the projection of L2([0, 2π ]d) onto divergence-free vector fields, and, for every s>0, denote by Vs the pro-
jection of the Sobolev space H s([0, 2π ]d) onto divergence-free vector fields. We will denote by ‖ · ‖H and
〈 · , · 〉H the norm and the scalar product in H , and by ‖ · ‖s and 〈 · , · 〉s the norm and the scalar product in Vs .

We denote by B̂(v1, v2) the (Leray) projection of the nonlinearity, namely

B̂(v1, v2)=5Leray[(D−1
2 v1 · ∇)v2].

Since β ≥ 0, ‖D−1
2 v‖s ≤ ‖v‖s for every s ∈ R. Hence (see for instance [Kato 1972] or [Constantin and

Foiaş 1988]), for every m ≥ 1+ [d/2], there exists cm > 0 such that

‖B̂(v1, v2)‖m ≤ cm‖v1‖m‖v2‖m+1,

〈B̂(v1, v2), v2〉m ≤ cm‖v1‖m‖v2‖
2
m .

In the rest of the section we briefly outline the proof of Theorem A.1, following [Majda and Bertozzi
2002, Section 3.2]. The proof of the following result is a slight modification of the arguments to prove
[Majda and Bertozzi 2002, Theorem 3.4].

Proposition A.2. Given an integer m ≥ 2+d/2, there exists a number c? > 0 such that for every v0 ∈ Vm ,
if T < c?/‖v0‖m , there is a unique solution of (1-6) with initial condition v0. Moreover, vε → v in
C([0, T ]; Vm′) for m′<m and in C([0, T ]; V weak

m ), the inequalities in (A-1) hold for v, and for any ε > 0,

sup
[0,T ]
‖vε‖m ≤

‖v0‖m

1− c?T ‖v0‖m
. (A-2)

Unfortunately, at this stage, we cannot prove the analog of [Majda and Bertozzi 2002, Theorem 3.5]
for our v, namely that v is continuous in time for the strong topology of Vm . The reason is that their proof
uses either the reversibility of the Euler equation (which we do not have due to the presence of D1), or
the smoothing of the Laplace operator, which we do not have here either (as already mentioned). On the
other hand, we can prove right-continuity:

Lemma A.3. The solution v from Proposition A.2 is right-continuous with values in Vm for the strong
topology, and dv/dt is right-continuous with values in Vm−α.

Proof. Given t ∈ [0, T ], the same computations leading to (A-2) yield

sup
[0,t]
‖v(s)‖m ≤ ‖v0‖m +

c?t‖v0‖
2
m

1− c?t‖v0‖m
;

therefore lim supt↓0 ‖v(t)‖m ≤‖v0‖m . On the other hand, by weak continuity, ‖v0‖m ≤ lim inft↓0 ‖v(t)‖m
and v is right-continuous at 0. Uniqueness for (1-6) and the same argument applied to t ∈ (0, T ] yield
right-continuity in t . �

Nevertheless, we can still define a maximal solution and a maximal time of existence. Given v0 ∈ Vm ,
let T? be the maximal time of existence of the solution starting from v0, that is the supremum over all
T > 0 such that there exists a solution v of (1-6) on [0, T ] with v(0)= u0, v right-continuous with values
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in Vm , continuous with values in V weak
m and with dv/dt right-continuous with values in Vm−α. Due to

uniqueness, any two such solutions coincide on the common interval of definition.

Proposition A.4. Given v0 ∈ Vm , if T? is the maximal time of existence of the solution starting from v0,
then either T? =∞ or

lim sup
t↑T?

‖v(t)‖m =∞.

Proof. Assume by contradiction that T?<∞ and that M := supt<T? ‖v(t)‖m <∞. Let T0= T?−c?/(4M),
and start a solution with initial condition v(T0) at time T0. By Proposition A.2 there is a solution of (1-6)
on a time span of length at least c?/(2‖v(T0)‖m)≥ c?/(2M), hence at least up to time T0+c?/(2M) > T?.
By uniqueness, this solution is equal to v up to time T?. �
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