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CRITERIA FOR HANKEL OPERATORS TO BE SIGN-DEFINITE

DIMITRI R. YAFAEV

We show that the total multiplicities of negative and positive spectra of a self-adjoint Hankel operator H in
L2(R+) with integral kernel h(t) and of the operator of multiplication by the inverse Laplace transform of
h(t), the distribution σ(λ), coincide. In particular, ±H ≥ 0 if and only if ±σ(λ)≥ 0. To construct σ(λ),
we suggest a new method of inversion of the Laplace transform in appropriate classes of distributions.
Our approach directly applies to various classes of Hankel operators. For example, for Hankel operators
of finite rank, we find an explicit formula for the total numbers of their negative and positive eigenvalues.

1. Introduction

1.1. Hankel operators can be defined as integral operators

(H f )(t)=
∫
∞

0
h(t + s) f (s) ds (1-1)

in the space L2(R+) with kernels h that depend on the sum of variables only. Of course H is symmetric
if h(t) = h(t). In the fundamental paper [Megretskiı̆ et al. 1995], A. V. Megretskiı̆, V. V. Peller, and
S. R. Treil characterized the spectra of all bounded self-adjoint Hankel operators by a certain balance
between the positive and negative parts of their spectra. The result of [Megretskiı̆ et al. 1995] applies to
all Hankel operators, and so it does not allow one to distinguish spectral properties of particular operators.

The cases where Hankel operators can be explicitly diagonalized are very scarce. We mention here the
kernels h(t)= t−1 [Carleman 1923], h(t)= (t + 1)−1 [Mehler 1881], and h(t)= t−1e−t [Magnus 1950;
Rosenblum 1958a; 1958b]. These kernels are treated in a unified way in [Yafaev 2010], where some new
examples are also considered.

Our goal here is to find explicit expressions for the total numbers N+(H) and N−(H) of (strictly)
positive and negative eigenvalues of self-adjoint Hankel operators H . Actually, we show that N±(H)=
N±(6), where 6 is the operator1 of multiplication by the function (distribution) σ(λ) obtained through
the inversion of the Laplace transform

h(t)=
∫
∞

0
e−tλσ(λ) dλ. (1-2)

We call σ(λ) the sigma function of a Hankel operator H or of its kernel h(t).

MSC2010: primary 47A40; secondary 47B25.
Keywords: Hankel operators, convolutions, necessary and sufficient conditions for positivity, sign function, operators of finite

rank, the Carleman operator and its perturbations.
1To be more precise, we consider the quadratic forms (H f, f ) and (6ϕ, ϕ) instead of the operators H and 6.
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In particular, we obtain necessary and sufficient conditions for the sign-definiteness of Hankel operators.
Indeed, it formally follows from (1-2) that

(H f, f )=
∫
∞

0
dλ σ(λ)

∣∣∣∣∫ ∞
0

f (t)e−tλ dt
∣∣∣∣2,

and hence ±H ≥ 0 if and only if ±σ ≥ 0. We usually discuss conditions for H ≥ 0, but of course
replacing H by −H we obtain conditions for H ≤ 0. Note that positive2 distributions are always given
by some measures, so that for positive Hankel operators H , representation (1-2) reduces to

h(t)=
∫
∞

0
e−tλ dm(λ), (1-3)

where dm(λ) is a (positive) measure on [0,∞).

1.2. If a function σ(λ) is sufficiently regular (for example, bounded), then its Laplace transform (1-2) is
analytic in the right half-plane and satisfies certain decay conditions for |t | →∞. For example, such
simple functions as the characteristic functions of intervals or h(t)= e−t2

do not satisfy these conditions.
A regular function σ(λ) can be recovered from its Laplace transform h(t) by the integral of h(a+ iτ),
a > 0, over τ ∈ R; alternatively, it can also be recovered (see, for example, [Paley and Wiener 1934,
Section 13]) from the values of h(t) for t > 0. These methods are not sufficient for our purposes since,
for example, for h(t)= tke−αt , k ∈ Z+, Reα > 0 (such Hankel operators have rank k), the corresponding
function

σ(λ)= δ(k)(λ−α) (1-4)

(δ( · ) is the Dirac function) is a highly singular distribution, especially if Imα 6= 0.
Thus we are led to a solution of (1-2) for σ(λ) in a class of distributions. Put

b(ξ)=
1

2π

∫
∞

0 h(t)t−iξ dt∫
∞

0 e−t t−iξ dt
, (1-5)

and let s(x)=
√

2π(8∗b)(x), where 8 is the Fourier transform. We show that the function

σ(λ) := s(− ln λ) (1-6)

satisfies (1-2). We call b(ξ) the b-function and s(x) the sign function (or s-function) of the Hankel operator
H (or of its integral kernel h(t)). The sigma function σ(λ) differs from s(x) by a change of variables
only. In specific examples we consider, functions b(ξ) and s(x) may be of a quite different nature. For
instance, s(x) may be a polynomial or, on the contrary, it may be a highly singular distribution such as a
combination of delta functions and their derivatives. We emphasize that all our formulas are understood
in the sense of distributions and of course no analyticity of h(t) is required. From a purely formal point of
view, our method of inversion of the Laplace transform is not too far from one of the methods described
in [Paley and Wiener 1934], but the classes of functions (distributions) are quite different.

2We use the term “positive” instead of the more precise but lengthy term “nonnegative”.
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The precise meaning of formula (1-5) requires some discussion. Observe that the denominator in (1-5)
coincides with the numerator for the special case h(t)= e−t . It equals 0(1− iξ), and hence exponentially
tends to zero as |ξ |→∞. Therefore b(ξ) is a “nice” function of ξ only under very restrictive assumptions
on the kernel h(t). Thus, to cover natural examples, we are obliged to work with distributions b(ξ)
and s(x). The choice of appropriate spaces of distributions is also very important. The Schwartz space
S(R)′ is too restrictive for our purposes, which is seen already in the example of finite-rank Hankel
operators. In order to be able to divide in (1-5) by an exponentially decaying function, we assume that
the numerator belongs to the class of distributions C∞0 (R)

′. This means that the Fourier transform of the
function θ(x)= ex h(ex) belongs to C∞0 (R)

′, that is, θ belongs to the space Z′ dual to the space Z=Z(R)

of analytic test functions. The class of distributions h(t) such that the corresponding function θ is in Z′

will be denoted by Z′
+

. It follows from (1-5) that b ∈ C∞0 (R)
′ and s ∈ Z′ if h ∈ Z′

+
.

A remarkable circumstance is that, in these classes, there is a one-to-one correspondence between
kernels of Hankel operators and their sigma functions. To be precise, let us put h\(λ)=λ−1σ(λ). We show
that h ∈Z′

+
if and only if h\ ∈Z′

+
, and the correspondence h 7→ h\ is a continuous one-to-one mapping of

Z′
+

onto itself. As an example, note that although the functions h(t)= tke−αt and h\(λ)= λ−1δ(k)(λ−α)

are of a completely different nature, both of them belong to the class Z′
+

.
In the case h ∈ L1

loc(R+), the condition h ∈ Z′
+

means that∫
∞

0
|h(t)|(1+ |ln t |)−κ dt <∞ (1-7)

for some κ . Condition (1-7) is also quite general and does not require that the corresponding Hankel
operator be bounded. For example, it admits kernels

h(t)= P(ln t)t−1, (1-8)

where P(x) is an arbitrary polynomial. Note that Hankel operators with such kernels are bounded for
P(x)= const only.

1.3. Our study of spectral properties of Hankel operators H relies on their reduction to the operators S of
multiplication by the corresponding sign functions. This reduction is given by a transformation which is,
in a suitable sense, invertible but not unitary. Let B,

(Bg)(ξ)=
∫
∞

−∞

b(ξ − η)g(η) dη, (1-9)

be the operator of convolution with the function (1-5), and let S be the operator of multiplication by s(x)
so that S =8∗B8. If h(t)= h(t), then b(−ξ)= b(ξ) and s(x)= s(x) so that the operators B and S are
formally symmetric.

We establish the identity
(H f, f )= (Bg, g)= (Su, u), (1-10)

where
g(ξ)= 0

( 1
2 + iξ

)
f̃ (ξ)=: (4 f )(ξ), u(x)= (8∗g)(x), (1-11)
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f̃ (ξ) is the Mellin transform of f (t), and 0( · ) is the gamma function. We often write the identity (1-10)
in short form as

H =4∗B4= 4̂∗S4̂, (1-12)

where 4̂=8∗4.
It follows from (1-12) that the total multiplicities of the strictly positive (negative) spectra of the

operators H and B, or S, coincide:

N±(H)= N±(B)= N±(S). (1-13)

This result can be compared with Sylvester’s inertia theorem, which states the same for Hermitian matrices
H and B, or S, related by (1-12) provided the matrix 4, or 4̂, is invertible. In contrast to linear algebra,
in our case the operators H and B, or S, are of a completely different nature and B and S (but not H )
admit explicit spectral analysis.

Thus our calculation of the numbers N±(H) consists of two parts. The first is the construction of the
sign function (distribution) s(x). The second is the study of the operator S of multiplication by s(x).
Observe that since s(x) is a distribution, the numbers N±(S) are not necessarily zero or infinity. We also
note that N±(S)= N±(6) because the functions s(x) and σ(λ) differ by the change of variables (1-6)
only.

In particular, we see that the Hankel operator H is positive if and only if B ≥ 0 or, equivalently, S ≥ 0.
This means that a Hankel operator H is positive if and only if its sign function s(x) is positive. In some
cases the calculation of the sign function is not necessary. Actually, we show that if |b(ξ)| → ∞ as
|ξ | →∞, then H is not sign-definite.

Under the assumption h ∈ Z′
+

, we prove the identity (1-10) for test functions f (t) whose Mellin
transforms f̃ are in C∞0 (R). Then functions (1-11) belong to C∞0 (R) and both sides of (1-10) are well
defined. The condition h ∈ Z′

+
is very general. It is satisfied for all bounded, but also for a wide class of

unbounded, Hankel operators H . More than that, it is not even required that H be defined by formula
(1-1) on some dense set. Therefore we work with quadratic forms (H f, f ), which is more convenient
and yields more general results. This context allows us to accommodate distributions h(t) as kernels of
Hankel operators and makes the theory self-consistent. Note that for bounded operators H , the identity
(1-10) extends to all elements f ∈ L2(R+).

1.4. Representation (1-2) does not require the positivity of H . If, however, H ≥ 0, then combining our
results with the Bochner–Schwartz theorem, we obtain that σ(λ) dλ= dm(λ), where dm(λ) is a positive
measure on R+ (m({0})= 0). In this case, representation (1-2) reduces to (1-3), with the measure dm(λ)
satisfying for some ~ the condition∫

∞

0
(1+ |ln λ|)−~λ−1 dm(λ) <∞, (1-14)

which follows from the assumption h ∈ Z′
+

.
Recall that according to the Bernstein theorem (see the original paper [1929] or [Akhiezer 1965;

Widder 1941]), the representation (1-3) is true if and only if the function h(t) is completely monotonic. In
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contrast to this classical result, we link the representation (1-3) to the positivity of the Hankel operator H
with kernel h(t). This fact is not very surprising in view of the analogy with the discrete case when Hankel
operators are given in the space `2(Z+) by infinite matrices with elements hn+m where n,m ∈Z+. Indeed,
according to the classical Hamburger theorem (see, e.g., [Akhiezer 1965]), the positivity of a discrete
Hankel operator is equivalent to the existence of a solution of the moment problem with moments hn . In
the continuous case, the role of the moment problem is played by the exponential representation (1-3).

We mention that Hankel operators H with kernels h(t) admitting representation (1-3) were considered
by H. Widom [1966] and J. S. Howland [1971]. Such kernels h(t) and operators H are necessarily
positive. Widom proved that H is bounded if and only if m([0, λ))= O(λ) as λ→ 0 and as λ→∞. In
this case, h(t)≤ Ct−1 for some C > 0. Howland showed that H belongs to the trace class if and only if
condition (1-14) is satisfied for ~ = 0.

1.5. A large part of this paper is devoted to applying the general theory to various classes of Hankel
operators H , although we do not try to cover all possible cases. In some examples, the sign-definiteness of
H can also be verified or refuted with the help of Bernstein’s theorems. Note, however, that our approach
yields additionally an explicit formula for the total numbers N±(H) of positive and negative eigenvalues
of H .

In Section 5, we calculate N±(H) for Hankel operators H of finite rank. Then we consider two specific
examples. The first one is given by the formula

h(t)= tke−αt , α > 0, k ≥−1. (1-15)

Note that the Hankel operator H with such kernel has finite rank for k ∈ Z+ only. We show that H is
positive if and only if k ≤ 0. The second class of kernels is defined by the formula

h(t)= e−tr
, r > 0. (1-16)

It turns out that the corresponding Hankel operator is positive if and only if r ≤ 1.
Section 6 is devoted to a study of Hankel operators H with kernels h(t) having a singularity at a single

point t0 > 0. In this case the operators H are compact, but both numbers N±(H) are infinite. We find
the asymptotics of positive (λ(+)n ) and negative (λ(−)n ) eigenvalues of H as n→∞ for singularities of
different strengths.

Finally, in Section 7, we consider perturbations of the Carleman operator C, that is, of the Hankel
operator with kernel t−1, by various classes of compact Hankel operators V . The operator C can be
explicitly diagonalized by the Mellin transform. We recall that it has the absolutely continuous spectrum
[0, π] of multiplicity 2. The Carleman operator plays a distinguished role in the theory of Hankel operators.
In particular, it is important for us that its sign function s(x) equals 1. As was pointed out by Howland
[1992], Hankel operators are to a certain extent similar to differential operators. In this analogy, the
Carleman operator C plays the role of the “free” Schrödinger operator D2, D =−id/dx , in the space
L2(R). Furthermore, Hankel operators H = C + V with “perturbed” kernels h(t) = t−1

+ v(t) can be
compared to Schrödinger operators D2

+V(x). The assumption that v(t) decays sufficiently rapidly as
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t→∞ and is not too singular as t→ 0 corresponds to a sufficiently rapid decay of the potential V(x) as
|x | →∞.

As shown in [Yafaev 2013], the results on the discrete spectrum of the operator H lying above its
essential spectrum [0, π] are close in spirit to the results on the discrete spectrum of the Schrödinger
operator D2

+V(x). On the other hand, the results on the negative spectrum of the Hankel operator H are
drastically different. In particular, contrary to the case of differential operators with decaying coefficients,
the finiteness of the negative spectrum of the Hankel operator H is not determined by the behavior of
v(t) at singular points t = 0 and t =∞. As an example, consider the Hankel operator with kernel

h(t)= t−1
− γ e−tr

, r ∈ (0, 1).

Now the kernel of the perturbation is a function that decays faster than any power of t−1 as t →∞,
and it has a finite limit as t→ 0. Nevertheless, we show that the negative spectrum of H is infinite if
γ > γ0 (here γ0= γ0(r) is an explicit constant), while H is positive if γ ≤ γ0. Such a phenomenon has no
analogy for Schrödinger operators with decaying potentials, although a somewhat similar effect (known
as the Efimov effect) occurs for three-particle Schrödinger operators. Note, however, that for γ > γ0, a
new band of the continuous spectrum appears for three-particle systems, while in our case, the continuous
spectrum of H is [0, π] for all values of γ .

We also study perturbations of the Carleman operator C by Hankel operators V of finite rank. Here
we obtain a striking result: the total numbers of negative eigenvalues of the operators H = C + V and V
coincide.

As examples, we consider only bounded Hankel operators in this paper. However, our general results
directly apply to a wide class of unbounded operators, such as Hankel operators with kernels (1-8); see
[Yafaev 2014a].

1.6. Let us briefly describe the structure of the paper. In Section 2, we define the basic objects, establish
the inversion formula (1-2), and obtain the main identity (1-10). Necessary information on bounded
Hankel operators (including a continuous version of the Nehari theorem) is collected in Section 3. In
Sections 2 and 3, we do not assume that the function h is real, i.e., the corresponding Hankel operator H
is not necessarily symmetric. Spectral consequences of the formula (1-10) and, in particular, criteria for
the sign-definiteness of Hankel operators are stated in Section 4. In Sections 5, 6, and 7, we apply the
general theory to particular classes of Hankel operators.

Let us introduce some standard notation. We denote by 8,

(8u)(ξ)= (2π)−1/2
∫
∞

−∞

u(x)e−i xξ dx,

the Fourier transform. The space Z = Z(R) of test functions is defined as the subset of the Schwartz
space S= S(R) which consists of functions ϕ admitting the analytic continuation to entire functions in
the complex plane C and satisfying bounds

|ϕ(z)| ≤ Cn(1+ |z|)−ner |Im z|, for all z ∈ C,
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for some r = r(ϕ) > 0 and all n. Note that Z is invariant with respect to the complex conjugation
ϕ(z) 7→ϕ∗(z)=ϕ(z̄). We recall that the Fourier transform8maps Z→C∞0 (R) and that8∗ :C∞0 (R)→Z.
The dual classes of distributions (continuous antilinear functionals) are denoted by S′, C∞0 (R)

′, and Z′,
respectively. In general, for a linear topological space L, we use the notation L′ for its dual space.

We use the notation 〈〈〈 · , · 〉〉〉 and 〈 · , · 〉 for the duality symbols in L2(R+) and L2(R), respectively. They
are always linear in the first argument and antilinear in the second argument. The letter C (sometimes
with indices) denotes various positive constants whose precise values are inessential.

2. The main identity

2.1. Let us consider the Hankel operator H defined by equality (1-1) in the space L2(R+). Actually, it is
more convenient to work with sesquilinear forms (H f1, f2) instead of operators.

Before giving precise definitions, let us explain our construction at a formal level. It follows from (1-1)
that

(H f1, f2)=

∫
∞

0

∫
∞

0
h(t + s) f1(s) f2(t) dt ds =

∫
∞

0
h(t)F(t) dt =: 〈〈〈h, F〉〉〉, (2-1)

where

F(t)=
∫ t

0
f1(s) f2(t − s) ds =: ( f̄1 ? f2)(t) (2-2)

is the Laplace convolution of the functions f̄1 and f2. Formula (2-1) allows us to consider h as a
distribution with the test function F defined by (2-2). Thus the Hankel quadratic form will be defined by
the relation

h[ f1, f2] := 〈〈〈h, f̄1 ? f2〉〉〉. (2-3)

Let us introduce the test function

�(x)= F(ex)=: (RF)(x) (2-4)

and the distribution
θ(x)= ex h(ex) (2-5)

defined for x ∈ R. Setting t = ex in (2-1), we see that

〈〈〈h, F〉〉〉 =
∫
∞

−∞

θ(x)�(x) dx =: 〈θ,�〉. (2-6)

We are going to consider the form (2-6) on pairs F, h such that the corresponding test function �
defined by (2-4) is an element of the space Z of analytic functions and the corresponding distribution θ
defined by (2-5) is an element of the dual space Z′. The set of all such F and h will be denoted by Z+
and Z′

+
, respectively; that is,

F ∈ Z+⇐⇒� ∈ Z and h ∈ Z′
+
⇐⇒ θ ∈ Z′. (2-7)

Of course, the topology in Z+ is induced by that in Z and Z′
+

is dual to Z+. Note that h ∈ Z′
+

if
h ∈ L1

loc(R+) and integral (1-7) is convergent for some κ . In this case, the corresponding function (2-5)
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satisfies the condition ∫
∞

−∞

|θ(x)|(1+ |x |)−κ dx <∞,

and hence θ ∈ S′ ⊂ Z′.
Define the unitary operator U : L2(R+)→ L2(R) by the equality

(U f )(x)= ex/2 f (ex). (2-8)

Let the set D consist of functions f (t) such that U f ∈ Z. Since

f (t)= t−1/2(U f )(ln t)

and Z⊂ S, we see that functions f ∈ D and their derivatives satisfy the estimates

| f (m)(t)| = Cn,m t−1/2−m(1+ |ln t |)−n

for all n and m. Obviously, f ∈ D if and only if ϕ(t)= t1/2 f (t) belongs to the class Z+.
Let us show that form (2-3) is correctly defined on functions f1, f2 ∈D. To that end, we have to verify

that function (2-2) belongs to the space Z+ or, equivalently, that function (2-4) belongs to the space Z.
This requires some preliminary study, which will also allow us to derive a convenient representation for
form (2-3).

Recall that the Mellin transform M : L2(R+)→ L2(R) is defined by the formula

(M f )(ξ)= (2π)−1/2
∫
∞

0
f (t)t−1/2−iξ dt. (2-9)

Of course, M =8U , where 8 is the Fourier transform and U is operator (2-8). Since both 8 and U are
unitary, the operator M is also unitary. The inversion of the formula (2-9) is given by the relation

f (t)= (2π)−1/2
∫
∞

−∞

f̃ (ξ)t−1/2+iξ dξ, f̃ = M f. (2-10)

Let 0(z) be the gamma function. Recall that 0(z) is a holomorphic function in the right half-plane and
0(z) 6= 0 for all z ∈ C. According to the Stirling formula, the function 0(z) tends to zero exponentially
as |z| →∞ parallel with the imaginary axis. To be more precise, we have

0(α+ iλ)= eπ i(2α−1)/4
(

2π
e

)1/2

λα−1/2eiλ(ln λ−1)e−πλ/2(1+ O(λ−1)) (2-11)

for a fixed α> 0 and λ→+∞. Since 0(α−iλ)=0(α+ iλ), this yields also the asymptotics of 0(α+iλ)
as λ→−∞.

If f j ∈ D, j = 1, 2, then f̃ j = M f j = 8U f j ∈ C∞0 (R), and hence the functions g j (ξ) defined by
formula (1-11) also belong to the class C∞0 (R). Let us introduce the convolution of the functions g1

and g2,

(g1 ∗ g2)(ξ)=

∫
∞

−∞

g1(ξ − η)g2(η) dη,



CRITERIA FOR HANKEL OPERATORS TO BE SIGN-DEFINITE 191

and set
(Jg)(ξ)= g(−ξ).

We have the following result.

Lemma 2.1. Suppose that f j ∈D, j = 1, 2, and define functions g j (ξ) by equality (1-11). Let the function
�(x) be defined by formulas (2-2) and (2-4). Then

(8�)(ξ)= (2π)−1/20(1+ iξ)−1((Jḡ1) ∗ g2)(ξ). (2-12)

Proof. Substituting (2-10) into (2-2), we see that

F(t)= (2π)−1
∫ t

0
ds
∫
∞

−∞

f̃1(τ )(t − s)−1/2−iτ dτ
∫
∞

−∞

f̃2(σ )s−1/2+iσ dσ.

Observe that ∫ t

0
(t − s)−1/2−iτ s−1/2+iσ ds = t i(σ−τ)0

(1
2 − iτ

)
0
( 1

2 + iσ
)

0(1+ i(σ − τ))
.

Then using (1-11), we obtain the representation

F(t)= (2π)−1
∫
∞

−∞

∫
∞

−∞

t i(σ−τ)0(1+ i(σ − τ))−1g1(τ )g2(σ ) dτ dσ

= (2π)−1
∫
∞

−∞

t iξ0(1+ iξ)−1((Jḡ1) ∗ g2)(ξ) dξ,

whence

�(x)= (2π)−1
∫
∞

−∞

eiξ x0(1+ iξ)−1((Jḡ1) ∗ g2)(ξ) dξ.

This is equivalent to formula (2-12). �

Observe that the function 0(1+ iξ)−1 on the right-hand side of (2-12) tends to infinity exponentially as
|ξ | →∞. Nevertheless, 8� ∈ C∞0 (R) because (Jḡ1) ∗ g2 ∈ C∞0 (R) for g1, g2 ∈ C∞0 (R). Thus we have:

Corollary 2.2. Let f j ∈ D, j = 1, 2, and let the function �(x) be defined by formulas (2-2) and (2-4).
Then � ∈ Z or, equivalently, F ∈ Z+.

Now we are in a position to give the precise definition.

Definition 2.3. Let h ∈ Z′
+

and f j ∈D, j = 1, 2. Then f̄1 ? f2 ∈ Z+ and the Hankel sesquilinear form is
defined by the relation (2-3).

We shall see in Section 2.4 that h ∈Z′
+

is determined uniquely by the values 〈〈〈h, f̄1 ? f2〉〉〉 on f1, f2 ∈D,
that is, h = 0 if 〈〈〈h, f̄1 ? f2〉〉〉 = 0 for all f1, f2 ∈ D.

Of course (2-3) can be rewritten as

h[ f1, f2] = 〈θ,�〉, (2-13)

where θ is distribution (2-5) and
�(x)= ( f̄1 ? f2)(ex).
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We sometimes write h[ f1, f2] as integral (2-1), keeping in mind that its precise meaning is given by
Definition 2.3.

2.2. Our next goal is to show that (2-13) is the sesquilinear form of the convolution operator B, that is, it
equals the right-hand side of (1-10). Here the representation of Lemma 2.1 for the function

G(ξ) :=
√

2π0(1+ iξ)(8�)(ξ) (2-14)

plays a crucial role.
Since θ is in Z′, its Fourier transform a =8θ is correctly defined as an element of C∞0 (R)

′. Formally,

a(ξ)= (8θ)(ξ)= (2π)−1/2
∫
∞

0
h(t)t−iξ dt, (2-15)

that is, a(ξ) is the Mellin transform of the function h(t)t1/2. Let � ∈Z. Passing to the Fourier transforms
and using notation (2-14), we see that

〈θ,�〉 = 〈a,8�〉 = 〈b,G〉, (2-16)

where G ∈ C∞0 (R) and the distribution b ∈ C∞0 (R)
′ is given by the relation

b(ξ)= (2π)−1/2a(ξ)0(1− iξ)−1, (2-17)

which is of course the same as (1-5). Thus we are led to the following.

Definition 2.4. Let h ∈ Z′
+

. The distribution b ∈ C∞0 (R)
′ defined by formulas (2-5), (2-15), and (2-17)

is called the b-function of the kernel h(t) (or of the Hankel operator H ). Its Fourier transform s =
√

2π8∗b ∈ Z′ is called the s-function or the sign function.

Recall that the distribution σ was defined by relation (1-6). It is convenient to also introduce

h\(λ)= λ−1σ(λ)= λ−1s(− ln λ). (2-18)

The following assertion is an immediate consequence of formulas (2-5), (2-15), and (2-17).

Proposition 2.5. The mappings
h 7→ θ 7→ a 7→ b 7→ s 7→ h\

yield one-to-one correspondences (bijections)

Z′
+
→ Z′→ C∞0 (R)→ C∞0 (R)→ Z′→ Z′

+
.

All of them, as well as their inverse mappings, are continuous.

Putting together equalities (2-6) and (2-16), we see that

〈〈〈h, F〉〉〉 = 〈b,G〉. (2-19)

Combining this relation with Lemma 2.1 and Definitions 2.3, 2.4 and using notation (1-11), we obtain the
main identity (1-10). To be more precise, we have the following result.
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Theorem 2.6. Suppose that h ∈ Z′
+

, and let b ∈ C∞0 (R)
′ be the corresponding b-function. Let f j ∈ D,

j = 1, 2, and let the functions g j be defined by formula (1-11). Then g j ∈ C∞0 (R), and the representation

〈〈〈h, f̄1 ? f2〉〉〉 = 〈b, (Jḡ1) ∗ g2〉 =: b[g1, g2] (2-20)

holds.

Passing to the Fourier transforms on the right-hand side of (2-20) and using

8∗((Jḡ1) ∗ g2)= (2π)1/28∗g18
∗g2,

we obtain:

Corollary 2.7. Let s ∈ Z′ be the sign function of h, and let u j =8
∗g j =8

∗4 f j ∈ Z. Then

〈〈〈h, f̄1 ? f2〉〉〉 = 〈s, u∗1u2〉 =: s[u1, u2]. (2-21)

Loosely speaking, equalities (2-20) and (2-21) mean that

〈〈〈h, f̄1 ? f2〉〉〉 =

∫
∞

−∞

∫
∞

−∞

b(ξ − η)g1(η)g2(ξ) dξ dη =
∫
∞

−∞

s(x)u1(x)u2(x) dx . (2-22)

In the particular case h(t)= t−1 when H = C is the Carleman operator, we have

θ(x)= 1, a(ξ)= (2π)1/2δ(ξ), b(ξ)= δ(ξ), s(x)= 1, (2-23)

and hence (2-22) yields

〈〈〈h, f̄1 ? f2〉〉〉 =

∫
∞

−∞

g1(ξ)g2(ξ) dξ =
∫
∞

−∞

∣∣0( 1
2 + iξ

)∣∣2 f̃1(ξ) f̃2(ξ) dξ,

where ∣∣0( 1
2 + iξ

)∣∣2 = π

cosh(πξ)
. (2-24)

This leads to the familiar diagonalization of the Carleman operator.

2.3. According to Proposition 2.5, the distribution h\ determines uniquely the distribution h. Let us now
obtain an explicit formula for the mapping h\ 7→ h. This requires some auxiliary information.

Let 0α :C∞0 (R)→C∞0 (R), α > 0, be the operator of multiplication by the function 0(α+ iξ). Making
the change of variables t = e−x in the definition of the gamma function, we see that

0(α+ iλ)=
∫
∞

0
e−t tα+iλ−1 dt =

∫
∞

−∞

e−e−x
e−αx e−i xλ dx, α > 0,

and hence

(2π)−1
∫
∞

−∞

ei xλ0(α+ iλ) dλ= e−e−x
e−αx . (2-25)

It follows that

(8∗0α8�)(x)=
∫
∞

−∞

eα(y−x)e−ey−x
�(y) dy. (2-26)
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Let us also introduce the operator Lα:

(LαF)(λ)= λα
∫
∞

0
e−tλtα−1 F(t) dt, λ > 0, α > 0. (2-27)

Obviously, LαF ∈ C∞(R+) for all bounded functions F(t) and, in particular, for F ∈ Z+. Note that Lα is
the Laplace operator L,

(LF)(λ)=
∫
∞

0
e−tλF(t) dt, (2-28)

sandwiched by the weights λα and tα−1.
The following result yields the whole scale of spaces where the Laplace operator L acts as an isomor-

phism. Recall that the operator R defined by (2-4) is a one-to-one mapping of Z+ onto Z.

Lemma 2.8. For all α > 0, the identity

Lα =R−1J8∗0α8R (2-29)

holds. In particular, Lα and its inverse are the one-to-one continuous mappings of Z+ onto itself.

Proof. Putting �(y)= (RF)(y)= F(ey) in (2-26) and making the change of variables t = ey , we find
that

(8∗0α8RF)(x)= e−αx
∫
∞

0
e−e−x t tα−1 F(t) dt.

Now making the change of variables λ= e−x , we arrive at the identity (2-29).
Consider the right-hand side of (2-29). All mappings R : Z+→ Z, 8 : Z→ C∞0 (R), 0α : C∞0 (R)→

C∞0 (R), 8
∗
: C∞0 (R)→ Z, J : Z→ Z are bijections. All of them as well as their inverses are continuous.

Therefore the identity (2-29) ensures the same result for the operator Lα : Z+→ Z+. �

The adjoint operators L∗α are defined by the relation 〈〈〈LαF, ψ〉〉〉 = 〈〈〈F, L∗αψ〉〉〉, where F ∈ Z+ and ψ ∈ Z′
+

are arbitrary. According to (2-27), they are formally given by the relation

(L∗αψ)(t)= tα−1
∫
∞

0
e−tλλαψ(λ) dλ, t > 0. (2-30)

By duality, the next assertion follows from Lemma 2.8.

Theorem 2.9. For all α > 0, the operators L∗α as well as their inverses are the one-to-one continuous
mappings of Z′

+
onto itself.

To recover h(t), we proceed from formula (2-19). Passing to the Fourier transforms, we can write it as

〈〈〈h, F〉〉〉 = (2π)−1/2
〈s,8∗G〉,

where G is defined by formulas (2-4), (2-14), that is, G = (2π)1/2018RF. Therefore, using the identity
(2-29) for α = 1, we see that

〈〈〈h, F〉〉〉 = 〈s,JRL1 F〉 =
∫
∞

−∞

s(x)(L1 F)(e−x) dx .
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Making the change of variables λ= e−x and using notation (2-18), we obtain the identity

〈〈〈h, F〉〉〉 = 〈〈〈h\, L1 F〉〉〉.

Passing here to adjoint operators and taking into account that F ∈ Z+ is arbitrary, we find that

h = L∗1h\ or h = L∗σ, (2-31)

where σ(λ)= λh\(λ). In view of (2-30), this gives the precise sense to formula (1-2).
Let us state the result obtained.

Theorem 2.10. Let h ∈ Z′
+

, and let s ∈ Z′ be the corresponding sign function (see Definition 2.4). Define
the distribution h\ by formula (2-18). Then h\ ∈ Z′

+
and h can be recovered from h\ or σ by formulas

(2-31).

We emphasize that in the roundabout h 7→ h\ 7→ h, the mapping h 7→ h\ and its inverse h\ 7→ h are
the one-to-one continuous mappings of the set Z′

+
onto itself.

Let us also give a direct expression of u(x)= (8∗g)(x) in terms of f (t).

Lemma 2.11. Suppose that f ∈ D and put ϕ(t)= t1/2 f (t). Let g(ξ) be defined by formula (1-11) and
u(x)= (8∗g)(x). Then

u(x)= (L1/2ϕ)(e−x). (2-32)

Proof. Since (Rϕ)(x)= (U f )(x), it follows from formula (2-29) for α = 1
2 that

(R−1J8∗01/28U f )(λ)= (L1/2ϕ)(λ).

The left-hand side here equals (R−1Ju)(λ), which after the change of variables λ= e−x yields (2-32). �

Now we can rewrite identity (2-21) in a slightly different way.

Corollary 2.12. Let h ∈ Z′
+

, and let the distribution h\ ∈ Z′
+

be defined by formula (2-18). Then for
arbitrary f j ∈ D, j = 1, 2, we have

〈〈〈h, f̄1 ? f2〉〉〉 = 〈〈〈h\, L1/2ϕ1L1/2ϕ2〉〉〉, where ϕ j (t)= t1/2 f j (t). (2-33)

Proof. It suffices to make the change of variables x =− ln λ in the right-hand side of (2-22) and to take
equality (2-32) into account. �

We emphasize that according to Lemma 2.8, L1/2ϕ j ∈ Z+, and hence L1/2ϕ1L1/2ϕ2 ∈ Z+. Thus the
right-hand side of (2-33) is correctly defined.

2.4. Finally, we check that a distribution h ∈ Z′
+

is determined uniquely by the values 〈〈〈h, f̄1 ? f2〉〉〉 on
f1, f2 ∈ D. First we consider convolution operators. Let us introduce the shift in the space L2(R):

(T (τ )g)(ξ)= g(ξ − τ), τ ∈ R. (2-34)

Since

(g1 ∗ g2)(ξ)=

∫
∞

−∞

(T (τ )g1)(ξ)g2(τ ) dτ for all g1, g2 ∈ C∞0 (R),
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we have the formula

〈b, (Jḡ1) ∗ g2〉 =

∫
∞

−∞

〈b, T (τ )Jḡ1〉g2(τ ) dτ, (2-35)

where for b ∈ C∞0 (R)
′ the function 〈b, T (τ )Jḡ1〉 is infinitely differentiable in τ ∈ R.

The following assertion is quite standard.

Lemma 2.13. Let b ∈ C∞0 (R)
′. Suppose that 〈b, (Jḡ1) ∗ g2〉 = 0 for all g1, g2 ∈ C∞0 (R). Then b = 0.

Proof. If 〈b, (Jḡ1)∗g2〉 = 0 for all g2 ∈C∞0 (R), then 〈b, T (τ )Jḡ1〉 = 0 for all τ ∈R according to formula
(2-35). In particular, for τ = 0 we have 〈b,Jḡ1〉 = 0, whence b = 0 because g1 ∈ C∞0 (R) is arbitrary. �

Next we pass to Hankel operators.

Proposition 2.14. Let h ∈ Z′
+

. Suppose that 〈〈〈h, f̄1 ? f2〉〉〉 = 0 for all f1, f2 ∈ D. Then h = 0.

Proof. Let b ∈ C∞0 (R)
′ be the b-function of h (see Definition 2.4). For arbitrary g1, g2 ∈ C∞0 (R), we

can construct f1, f2 ∈ D by formula (1-11). Since 〈〈〈h, f̄1 ? f2〉〉〉 = 0, it follows from the identity (2-20)
that 〈b, (Jḡ1) ∗ g2〉 = 0. Therefore b = 0 according to Lemma 2.13. Now Proposition 2.5 implies that
h = 0. �

3. Bounded Hankel operators

Our main goal here is to show that the condition h ∈ Z′
+

is satisfied for all bounded Hankel operators H .

3.1. In this section we a priori only assume that h ∈ C∞0 (R+)
′ and consider the Hankel form (2-3) on

functions f1, f2 ∈ C∞0 (R+). Let T+(τ ), where τ ≥ 0, be the restriction of the shift (2-34) on its invariant
subspace L2(R+). Since

( f̄1 ? f2)(t)=
∫
∞

0
(T+(τ ) f̄1)(t) f2(τ ) dτ for all f1, f2 ∈ C∞0 (R+),

for all h ∈ C∞0 (R+)
′ we have the formula

〈〈〈h, f̄1 ? f2〉〉〉 =

∫
∞

0
〈〈〈h, T+(τ ) f̄1〉〉〉 f2(τ ) dτ. (3-1)

Here the function 〈〈〈h, T+(τ ) f̄1〉〉〉 is infinitely differentiable in τ ∈ R+, and this function, as well as all its
derivatives, has finite limits as τ → 0. In the theory of Hankel operators, formula (3-1) plays the role of
formula (2-35) for convolution operators.

The proof of the following assertion is almost the same as that of Lemma 2.13.

Proposition 3.1. Let h ∈ C∞0 (R+)
′. Suppose that 〈〈〈h, f̄1 ? f2〉〉〉 = 0 for all f1, f2 ∈ C∞0 (R+). Then h = 0.

Proof. If 〈〈〈h, f̄1 ? f2〉〉〉 = 0 for all f2 ∈ C∞0 (R+), then 〈〈〈h, T+(τ ) f̄1〉〉〉 = 0 for all τ ∈ [0,∞) according to
formula (3-1). In particular, for τ = 0 we have 〈〈〈h, f̄1〉〉〉= 0, which implies that h= 0 because f1 ∈C∞0 (R+)
is arbitrary. �
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Of course Propositions 2.14 and 3.1 differ only by the set of functions on which the Hankel form is
considered.

Assume now that
|〈〈〈h, f̄ ? f 〉〉〉| ≤ C‖ f ‖2 for all f ∈ C∞0 (R+). (3-2)

Then there exists a bounded operator H such that

(H f1, f2)= 〈〈〈h, f̄1 ? f2〉〉〉 for all f1, f2 ∈ C∞0 (R+). (3-3)

We call H the Hankel operator associated to the Hankel form 〈〈〈h, f̄1 ? f2〉〉〉.

3.2. It is possible to characterize Hankel operators by some commutation relations. A presentation of
such results for discrete Hankel operators acting in the space of sequences l2(Z+) can be found in [Power
1982, §1.1].

Let us define a bounded operator Q in the space L2(R+) by the equality

(Q f )(t)=−2e−t
∫ t

0
es f (s) ds.

Note that

Q =−2
∫
∞

0
T+(τ )e−τ dτ. (3-4)

Lemma 3.2. Let (3-2) hold. Then the operator H defined by formula (3-3) satisfies the commutation
relations

H T+(τ )= T+(τ )∗H for all τ ≥ 0 (3-5)

and
HQ = Q∗H. (3-6)

Proof. Since
(T+(τ ) f̄1) ? f2 = f̄1 ? (T+(τ ) f2) for all τ ≥ 0,

relation (3-5) directly follows from (3-3). By virtue of formula (3-4), relation (3-6) is a consequence of
(3-5). �

Below we need the Nehari theorem; see the original paper [1957] or [Peller 2003, Chapter 1, §1;
Power 1982, Chapter 1, §2]. We formulate it in the Hardy space H2

+
(R) of functions analytic in the upper

half-plane. We denote by Q̂ the operator of multiplication by the function (µ− i)/(µ+ i) in this space.
Clearly, Q̂ =8∗Q8.

Theorem 3.3 [Nehari 1957]. Let ω ∈ L∞(R), and let an operator Ĥ in the space H2
+
(R) be defined by

the relation

(Ĥ f̂1, f̂2)=

∫
∞

−∞

ω(µ) f̂1(−µ) f̂2(µ) dµ for all f̂1, f̂2 ∈ H2
+
(R). (3-7)

Then Ĥ is bounded and Ĥ Q̂ = Q̂∗ Ĥ . Conversely, if Ĥ is a bounded operator in H2
+
(R) and Ĥ Q̂ = Q̂∗ Ĥ ,

then there exists a function ω ∈ L∞(R) such that representation (3-7) holds.



198 DIMITRI R. YAFAEV

The following assertion can be regarded as a translation of this theorem into the space L2(R+). Recall
that, by the Paley–Wiener theorem, the Fourier transform 8 : H2

+
(R)→ L2(R+) is the unitary operator.

Since ∫
∞

−∞

(µ+ i)−1e−iµt dµ=−2π ie−t

for t > 0 and this integral is zero for t < 0, we have the relation

I + Q =8Q̂8∗. (3-8)

Theorem 3.4. If h = (2π)−1/28ω, where ω ∈ L∞(R) (in this case h ∈ S′ ⊂ C∞0 (R+)
′), then estimate

(3-2) is true and the operator H in the space L2(R+) defined by formula (3-3) satisfies the commutation
relation (3-5). Conversely, if a bounded operator H satisfies (3-5), then representation (3-3) holds with
h = (2π)−1/28ω for some ω ∈ L∞(R).

Proof. Since

(8∗( f̄1 ? f2))(µ)=
√

2π (J f̂1)(µ) f̂2(µ) for all f1, f2 ∈ C∞0 (R+),

where f̂1 =8
∗ f1, f̂2 =8

∗ f2, and (J f̂1)(µ)= f̂1(−µ), we have

〈〈〈h, f̄1 ? f2〉〉〉 =
√

2π〈8∗h, (J f̂1) f̂2〉 for all h ∈ S′. (3-9)

Therefore, estimate (3-2) is satisfied if 8∗h ∈ L∞(R). Relation (3-5) for the corresponding Hankel
operator H follows from Lemma 3.2.

Conversely, if a bounded operator H satisfies relation (3-5), then by virtue of (3-4), it also satisfies
relation (3-6). Hence it follows from (3-8) that Ĥ Q̂ = Q̂∗ Ĥ , where Ĥ =8∗H8 is a bounded operator
in the space H2

+
(R). Thus, by Theorem 3.3, there exists a function ω ∈ L∞(R) such that representation

(3-7) holds. This means that

(H f1, f2)=

∫
∞

−∞

ω(µ) f̂1(−µ) f̂2(µ) dµ for all f1, f2 ∈ L2(R+). (3-10)

If h = (2π)−1/28ω, then the right-hand sides in (3-9) and (3-10) coincide. This yields representation
(3-3). �

Corollary 3.5. For a bounded operator H in the space L2(R+), commutation relations (3-5) and (3-6)
are equivalent.

Proof. As was already noted, (3-6) follows from (3-5) according to formula (3-4). Conversely, if H satisfies
(3-5), then representation (3-3) holds according to Theorem 3.4. Thus it remains to use Lemma 3.2. �

Recall that a function ω ∈ L∞(R) such that 8ω =
√

2πh is called the symbol of a bounded Hankel
operator H with kernel h(t). In view of formula (3-7), if ω ∈ H∞

−
(R), that is, ω admits an analytic

continuation to a bounded function in the lower half-plane, then the Hankel operator Ĥ equals 0, and
hence H =8Ĥ8∗ = 0. Therefore the symbol is defined up to a function in the class H∞

−
(R).
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3.3. Now we are in a position to check that the condition h ∈ Z′
+

is satisfied for all bounded Hankel
operators. By (2-7), it means that distribution (2-5) belongs to the class Z′. We shall verify the stronger
inclusion θ ∈ S′.

To that end, it suffices to check that, for some N ∈ Z+ and some κ ∈ R,

|〈θ,�〉| ≤ C
N∑

n=0

max
x∈R

(
(1+ |x |)κ |�(n)(x)|

)
for all � ∈ C∞0 (R). (3-11)

Putting F(t)=�(ln t), we see that (3-11) is equivalent to the estimate

|〈〈〈h, F〉〉〉| ≤ C
N∑

n=0

max
t∈R+

(
(1+ |ln t |)κ tn

|F (n)(t)|
)
, F ∈ C∞0 (R+). (3-12)

Let us make some comments on this condition. If h ∈ L1
loc(R), then estimate (3-12) for N = 0 is

equivalent to the convergence of integral (1-7) for the same values of κ . If H is Hilbert–Schmidt, that is,∫
∞

0
|h(t)|2t dt <∞,

then integral (1-7) converges for any κ > 1
2 . Similarly, if |h(t)| ≤ Ct−1, then integral (1-7) converges for

any κ > 1.
For the proof of (3-12) in the general case, we use the following elementary result. Its proof is given

in Appendix A.

Lemma 3.6. If F ∈ C∞0 (R+), then for an arbitrary κ > 2, the estimate

‖8∗F‖L1(R) ≤ C(κ)
2∑

n=0

max
t∈R+

(
(1+ |ln t |)κ tn

|F (n)(t)|
)

(3-13)

holds.

Corollary 3.7. If h = 8ω, where ω ∈ L∞(R), then estimate (3-12) holds for N = 2 and an arbitrary
κ > 2.

Proof. It suffices to combine the estimates

|〈〈〈h, F〉〉〉| = |〈ω,8∗F〉| ≤ ‖ω‖L∞(R)‖8
∗F‖L1(R)

and (3-13). �

Since, by Theorem 3.4, for a bounded Hankel operator H , its kernel h equals 8ω for some ω ∈ L∞(R),
we arrive at the following result.

Theorem 3.8. Suppose that h ∈C∞0 (R+)
′ and that condition (3-2) is satisfied. Then estimate (3-12) holds

for N = 2 and an arbitrary κ > 2; in particular, h ∈ Z′
+

.

The following simple example shows that for N = 0, estimate (3-12) is in general violated (for all κ).
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Example 3.9. Let h(t)= e−i t2
. Then the corresponding Hankel operator H is bounded because according

to the formula e−i(t+s)2
= e−i t2

e−i2tse−is2
, it is a product of three bounded operators. Since h ∈ L∞(R+),

estimate (3-12) for N = 0 is equivalent to the convergence of integral (1-7) for the same value of κ .
However, this integral diverges at infinity for all κ .

Let us show that for h(t) = e−i t2
, condition (3-12) is satisfied for N = 1 and κ = 0. Integrating by

parts, we see that ∫
∞

0
h(t)F(t) dt =−

∫
∞

0
h1(t)F ′(t) dt, (3-14)

where the function h1(t)=
∫ t

0 e−is2
ds is bounded. Therefore, the integral on the right-hand side of (3-14)

is bounded by maxt∈R+

(
(1+ |ln t |)κ t |F ′(t)|

)
for any κ > 1.

Note that for h(t)= e−i t2
, the symbol of H equals ω(µ)=

√
πe−π i/4eiµ2/4. More generally, one can

consider the class of symbols ω(µ) such that ω ∈ C∞(R), ω(µ) = eiω0µ
α

, ω0 > 0 for large positive µ
and ω(µ)= 0 for large negative µ. Of course, Hankel operators with such symbols are bounded. Using
the stationary phase method, we find that for α > 1, the corresponding kernel h(t) has the asymptotics

h(t)∼ h0tβeiσ tγ , t→∞, (3-15)

where β = (1−α/2)(α− 1)−1, γ = α(α− 1)−1, and h0, σ = σ̄ are some constants. Moreover, h(t) is a
bounded function on all finite intervals. Similarly to Example 3.9, it can be checked that for such kernels,
condition (3-12) is satisfied for N = 1 but not for N = 0. The same conclusion is true for α ∈ (0, 1),
because in this case the asymptotic relation (3-15) holds for t→ 0.

3.4. Here we shall show that, for bounded Hankel operators H , the representations (2-20) and (2-21)
extend to all f1, f2 ∈ L2(R+). By Theorem 3.8, we have h ∈ Z′

+
. Let b and s be the corresponding b-

and s-functions (see Definition 2.4). Recall that the operator 4 is defined by formula (1-11). We denote
by K the operator of multiplication by the function

√
cosh(πξ)/π in the space L2(R). It follows from

identity (2-24) and the unitarity of the Mellin transform (2-9) that

‖K4 f ‖ = ‖ f ‖,

and hence the operator K4 : L2(R+)→ L2(R) is unitary. Therefore, in view of the identities (2-20) and
(2-21), we have the following result.

Lemma 3.10. The inequalities (3-2),

|〈b, (Jḡ) ∗ g〉| ≤ C‖K g‖2 for all g ∈ C∞0 (R), (3-16)

and

|〈s, u∗u〉| ≤ C‖K8u‖2 for all u ∈ Z (3-17)

are equivalent. The Hankel operator corresponding to form (2-3) is bounded if and only if one of equivalent
estimates (3-2), (3-16), or (3-17) is satisfied.
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These estimates can be formulated in a slightly different way. Let us introduce the space E⊂ L2(R)

of exponentially decaying functions with the norm ‖g‖E = ‖K g‖. Then the space W = 8∗E consists
of functions u(x) admitting the analytic continuation u(z) in the strip Im z ∈ (−π/2, π/2); moreover,
functions u(x + iy) have limits in L2(R) as y→±π/2. The identity

‖8u‖2E = (2π)
−1
∫
∞

−∞

(∣∣∣∣u(x + i
π

2

)∣∣∣∣2+ ∣∣∣∣u(x − i
π

2

)∣∣∣∣2) dx =: ‖u‖2W

defines the Hilbert norm on W. We call W the exponential Sobolev space because it is contained in the
standard Sobolev spaces Hl(R) for all l. The operators 4 : L2(R+)→ E and 4̂ :=8∗4 : L2(R+)→W

are of course unitary. Obviously, ‖K g‖ and ‖K8u‖ on the right-hand sides of (3-16) and (3-17) can
be replaced by ‖g‖E and ‖u‖W, respectively. Note that the inclusions f ∈ L2(R+), g = 4 f ∈ E, and
u = 4̂ f ∈W are equivalent.

Recall that the operator B is defined by formula (1-9) and (Su)(x)= s(x)u(x). If one of the equivalent
estimates (3-2), (3-16), or (3-17) is satisfied, then all operators H : L2(R)→ L2(R), B : E→ E′, and
S : W→ W′ are bounded. Using that relations fn → f in L2(R+), gn = 4 fn → g = 4 f in E, and
un =8

∗gn→ u =8∗g in W are equivalent, we extend (2-20) and (2-21) to all f ∈ L2(R+). Thus we
have obtained the following result.

Proposition 3.11. If one of equivalent estimates (3-2), (3-16), or (3-17) is satisfied, then the identities

(H f1, f2)= (Bg1, g2)= (Su1, u2), g j =4 f j , u j =8
∗g j

are true for all f1, f2 ∈ L2(R+).

Let Kl be the operator of multiplication by the function (1+ ξ 2)l/2. Then estimates (3-16) or (3-17)
are satisfied provided

|〈b, (Jḡ) ∗ g〉| ≤ Cl‖Kl g‖2 or |〈s, |u|2〉| ≤ Cl‖u‖2Hl (R)
, (3-18)

for some l; in this case

C = Clπ max
ξ∈R

(
(1+ ξ 2)l(cosh(πξ))−1).

3.5. In terms of the sign function, it is possible to give simple sufficient conditions for the boundedness
and compactness of Hankel operators.

Proposition 3.12. A Hankel operator H is bounded if its sign function satisfies the condition

s ∈ L1(R)+ L∞(R). (3-19)

If s ∈ L∞(R) and s(x)→ 0 as |x | →∞, then H is compact.

Proof. The first statement is obvious because under (3-19), the second estimate (3-18) is satisfied with
l > 1

2 . To prove the second statement, we observe that the operator S8∗K−1 is compact because both S
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and K−1 are operators of multiplication by bounded functions which tend to zero at infinity. Since the
operator K4 : L2(R+)→ L2(R) is bounded, it follows from the identity (1-12) that the operator

H = (4∗8)S(8∗4)=4∗8(S8∗K−1)(K4)

is also compact. �

Condition (3-19) is of course not necessary for the boundedness of H . For example, in view of formula
(1-4) for Hankel operators H of finite rank, the sign function is a singular distribution.

4. Criteria for sign-definiteness

In this section we suppose that h(t) = h(t) so that the operator H is formally symmetric. The results
of Section 2 allow us to give simple necessary and sufficient conditions for a Hankel operator H to
be positive or negative. Moreover, they also provide convenient tools for the calculation of the total
multiplicity of the negative and positive spectra of H . We often state our results only for the negative
spectrum. The corresponding results for the positive spectrum are obtained if H is replaced by −H .

4.1. Actually, we consider the problem in terms of Hankel quadratic forms rather than Hankel operators.
This is both more general and more convenient. As usual, we take a distribution h ∈ Z′

+
and introduce

the b-function b ∈ C∞0 (R)
′ and the s-function s ∈ Z′ as in Definition 2.4.

Below we use the following natural notation. Let h[ϕ, ϕ] be a real quadratic form defined on a linear
set D. We denote by N±(h;D) the maximal dimension of linear sets M± ⊂ D such that ±h[ϕ, ϕ]> 0 for
all ϕ ∈M±, ϕ 6= 0. This means that there exists a linear set M±, dim M±= N±(h), such that ±h[ϕ, ϕ]> 0
for all ϕ ∈M±, ϕ 6= 0; and for every linear set M′

±
with dim M′

±
> N±(h) there exists ϕ ∈M′

±
, ϕ 6= 0,

such that ±h[ϕ, ϕ] ≤ 0. We apply this definition to the forms h[ f, f ] = 〈〈〈h, f̄ ? f 〉〉〉 defined on D, to
b[g, g] = 〈b, (Jḡ) ∗ g〉 defined on C∞0 (R), and to s[u, u] = 〈s, |u|2〉 defined on Z. Of course, if D is
dense in a Hilbert space H and h[ϕ, ϕ] is semibounded and closed on D, then for the self-adjoint operator
H corresponding to h, we have N±(H)= N±(h;D).

Observe that formula (1-11) establishes a one-to-one correspondence between the sets D and C∞0 (R).
Moreover, the Fourier transform establishes a one-to-one correspondence between the sets C∞0 (R) and Z.
Therefore the following assertion is a direct consequence of Theorem 2.6.

Theorem 4.1. Let h ∈ Z′
+

. Then

N±(h;D)= N±(b;C∞0 (R))= N±(s;Z).

In particular, we have:

Theorem 4.2. Let h ∈ Z′
+

. Then ±〈〈〈h, f̄ ? f 〉〉〉 ≥ 0 for all f ∈ D if and only if ±〈b, (Jḡ) ∗ g〉 ≥ 0 for all
g ∈ C∞0 (R), or ±〈s, u∗u〉 ≥ 0 for all u ∈ Z.

4.2. A calculation of the form s[u, u] on analytic functions u ∈ Z is not always convenient. Therefore it
is desirable to replace the class Z, for example, by the class C∞0 (R). Such a replacement is not obvious
because for u ∈ C∞0 (R) we only have g =8u ∈ Z. In this case (M f )(ξ)= 0

( 1
2 + iξ

)−1g(ξ) need not
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even belong to L2(R), so that f 6∈ L2(R+). Nevertheless, under the additional assumption s ∈ S′, we
have the following assertion.

Lemma 4.3. If s ∈ S′, then N±(s;Z)= N±(s;C∞0 (R))= N±(s;S).

Proof. Since8 :Z→C∞0 (R),8
∗
:C∞0 (R)→Z and S is invariant with respect to the Fourier transform8,

it suffices, for example, to show that N±(s;Z)= N±(s;S). The inequality N± := N±(s;S)≥ N±(s;Z)
is obvious because Z⊂ S.

Let us prove the opposite inequality. Consider for definiteness the sign “+”. Let L+ ⊂ S, and
let s[u, u] > 0 for all u ∈ L+, u 6= 0. Suppose first that N := dim L+ < ∞ and choose elements
u1, . . . , uN ∈ L+ such that s[u j , uk] = δ j,k for all j, k = 1, . . . , N . Let us construct elements u(ε)j ∈ Z

such that u(ε)j → u j and hence u(ε)j ū(ε)k → u j ūk in S as ε→ 0 for j, k= 1, . . . , N . Since s ∈S′, we see that
s[u(ε)j , u(ε)k ]→ δ j,k as ε→ 0. For an arbitrary σ > 0, we can choose ε such that

∣∣s[u(ε)j , u(ε)k ]− δ j,k
∣∣≤ σ .

Then for arbitrary λ1, . . . , λN ∈ C, we have

s
[ N∑

j=1

λ j u
(ε)
j ,

N∑
j=1

λ j u
(ε)
j

]
=

N∑
j=1

|λ j |
2s[u(ε)j , u(ε)j ] + 2 Re

N∑
j,k=1
j 6=k

λ j λ̄ks[u(ε)j , u(ε)k ]

≥ (1− σ)
N∑

j=1

|λ j |
2
− 2σ

N∑
j,k=1
j 6=k

λ j λ̄k ≥
(
1− (2N − 1)σ

) N∑
j=1

|λ j |
2.

Thus elements u(ε)1 , . . . , u(ε)N are linearly independent if (2N − 1)σ < 1. The same inequality shows that
s[u, u]> 0 on all vectors u 6= 0 in the space L(ε)

+ spanned by u(ε)1 , . . . , u(ε)N .
If N+ = ∞, then the same construction works on every finite-dimensional subspace of L+ where

s[u, u]> 0. This yields a space L(ε)
+ ⊂ Z of arbitrarily large dimension where s[u, u]> 0. �

Putting together this lemma with Theorem 4.1, we obtain the following result.

Theorem 4.4. Let h ∈ Z′
+

. Suppose that b ∈ S′ or, equivalently, that s ∈ S′. Then N±(h;D) =
N±(s;C∞0 (R)).

In many cases the following consequence of Theorem 4.4 is convenient. According to Proposition 3.12,
under the assumptions of Theorem 4.5, H is defined as the bounded self-adjoint operator corresponding
to the form 〈〈〈h, f̄ ? f 〉〉〉. Therefore N±(h;D) = N±(H) is the total multiplicity of the (strictly) positive
spectrum for the sign “+” and of the (strictly) negative spectrum for the sign “−” of the operator H . For
definiteness, we consider the negative spectrum.

Theorem 4.5. Let h ∈ Z′
+

, and let the corresponding sign function satisfy condition (3-19). If s(x)≥ 0,
then the operator H is positive. If s(x) ≤ −s0 < 0 for almost all x in some interval 1 ⊂ R, then
N−(H)=∞.

Proof. If s(x)≥ 0, then H ≥ 0 according to the second relation in (2-22).
Let s(x)≤−s0 < 0 for x ∈1, and let N be arbitrary. Choose a function ϕ ∈C∞0 (R) such that ϕ(x)= 1

for x ∈ [−δ, δ] and ϕ(x)= 0 for x 6∈ [−2δ, 2δ], where δ = δN is a sufficiently small number. Let points
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α j ∈1, j = 1, . . . , N , be such that α j+1−α j =α j−α j−1 for j = 2, . . . , N−1. Set1 j = (α j−δ, α j+δ),
1̃ j = (α j − 2δ, α j + 2δ). For a sufficiently small δ, we may suppose that 1̃ j ⊂1 for all j = 1, . . . , N
and that 1̃ j+1 ∩ 1̃ j = ∅ for j = 1, . . . , N − 1. We set ϕ j (x) = ϕ(x − α j ). Since s(x) ≤ −s0 < 0 for
x ∈1, we have

〈s, |ϕ j |
2
〉 =

∫
∞

−∞

s(x)|ϕ j (x)|2 dx ≤−2δs0 < 0. (4-1)

The functions ϕ1, . . . , ϕN have disjoint supports, and hence 〈s, |u|2〉< 0 for an arbitrary nontrivial linear
combination u of the functions ϕ j . Therefore, combining Theorem 4.1 and Theorem 4.4, we obtain the
second statement of the theorem. �

Theorem 4.5 can be reformulated, although in a weaker form, in terms of the functions b(ξ) and
even h(t). Suppose, for example, that

b ∈ L1(R). (4-2)

Then b(ξ)’s Fourier transform s(x) is a continuous function which tends to 0 as |x |→∞. The convolution
operator B defined by formula (1-9) is bounded in L2(R) and self-adjoint, and

spec(B)= [min
x∈R

s(x),max
x∈R

s(x)].

The result below follows directly from Theorem 4.5. Note that by Proposition 3.12, under (4-2) the
operator H is compact.

Proposition 4.6. Under (4-2), the Hankel operator H is positive if and only if s(x)≥0. If minx∈R s(x)<0,
then H necessarily has an infinite number of negative eigenvalues.

In particular, condition (4-2) is satisfied if

h(t)=
θ(ln t)

t
, where θ ∈ Z.

In this case a =8θ ∈ C∞0 (R), and hence b ∈ C∞0 (R).

4.3. For the proof that a Hankel operator is not sign-definite, it is sometimes not even necessary to
calculate the sign function s(x) (the Fourier transform of b(ξ)). It turns out that if b(ξ) grows as |ξ |→∞,
then the form b[g, g] = 〈b,Jḡ ∗ g〉 cannot be sign-definite. More precisely, we have the following
statement about convolutions with growing kernels b(−ξ)= b(ξ).

Theorem 4.7. Let b = b0+ b∞, where b0 ∈ C p(R)′ for some p ∈ Z+ and b∞ ∈ L∞loc(R). Suppose that
there exists a sequence of intervals 1n = (rn − σn, rn + σn), where rn→∞ (or equivalently rn→−∞)
and the sequence σn is bounded such that

lim
n→∞

σ l
n min
ξ∈1n

Re b∞(ξ)=∞ or lim
n→∞

σ l
n max
ξ∈1n

Re b∞(ξ)=−∞, (4-3)

where l = 2 if p = 0 or p = 1 and l = p+ 1 if p ≥ 2. Then for both signs, N±(b;C∞0 (R))≥ 1.
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Proof. Since b can be replaced by −b, we can assume that, for example, the first condition (4-3) is
satisfied. Pick a real even function ϕ ∈ C∞0 (R) such that ϕ(ξ)≥ 0, ϕ(ξ)= 1 for |ξ | ≤ 1

4 , and ϕ(ξ)= 0
for |ξ | ≥ 1

2 , and set

gn(ξ)= ϕ

(
ξ −

rn
2

σn

)
±ϕ

(
ξ +

rn
2

σn

)
. (4-4)

An easy calculation shows that

((Jgn) ∗ gn)(ξ)= 2σnψ

(
ξ

σn

)
± σnψ

(
ξ − rn

σn

)
± σnψ

(
ξ + rn

σn

)
, (4-5)

where ψ = (Jϕ) ∗ ϕ ∈ C∞0 (R). The function ψ(ξ) is also even, with ψ(ξ) ≥ 0, ψ(ξ) ≥ 1
8 for |ξ | ≤ 1

8 ,
and ψ(ξ)= 0 for |ξ | ≥ 1.

Since |〈b0, g〉| ≤ C‖g‖C p , it follows from (4-5) that

|〈b0, (Jgn) ∗ gn〉| ≤ Cσ 1−p
n . (4-6)

Moreover, again according to (4-5), we have

〈b∞, (Jgn) ∗ gn〉 = 2σ 2
n

∫
∞

−∞

b∞(σnη)ψ(η) dη± 2σ 2
n

∫
∞

−∞

Re b∞(σnη+ rn)ψ(η) dη. (4-7)

The first term on the right-hand side is O(σ 2
n ). For the second one, we use the estimate

32
∫
∞

−∞

Re b∞(σnη+ rn)ψ(η) dη ≥ min
|ξ−rn |≤σn

Re b∞(ξ). (4-8)

Let us first choose the sign “+” in (4-4). Then using representation (4-7) and putting together estimates
(4-6) and (4-8), we obtain the lower bound

〈b, (Jgn) ∗ gn〉 ≥ −c(σ 1−p
n + σ 2

n )+
σ 2

n

16
min

|ξ−rn |≤σn
Re b∞(ξ).

If p= 0 or p= 1, then under the first condition in (4-3), the right-hand side here tends to +∞ as n→∞.
If p ≥ 2, it is bounded from below by

σ 1−p
n

(
−c+

σ l
n

16
min

|ξ−rn |≤σn
Re b∞(ξ)

)
,

where the expression in the brackets tends again to +∞. Therefore 〈b, (Jgn) ∗ gn〉> 0 for sufficiently
large n. Similarly choosing the sign “−” in (4-4), we see that 〈b, (Jgn)∗gn〉< 0 for sufficiently large n. �

Corollary 4.8. Instead of condition (4-3), assume that

lim
|ξ |→∞

Re b∞(ξ)=∞ or lim
|ξ |→∞

Re b∞(ξ)=−∞.

Then for both signs, N±(b;C∞0 (R))≥ 1.
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In contrast to Theorem 4.7, there are no restrictions in Corollary 4.8 on the parameter p in the
assumption b0 ∈ C p(R)′. On the other hand, condition (4-3) permits Re b(ξ) to tend to ±∞ only on
some system of intervals. Moreover, the lengths of these intervals may tend to zero. In this case, however,
the growth of Re b(ξ) and the decay of these lengths should be correlated and there are restrictions on
admissible values of the parameters p and l.

Unlike Theorem 4.5, Theorem 4.7 does not guarantee that N =∞; see Section 5.4 for a discussion of
various possible cases.

4.4. Theorem 4.2 can be combined with the Bochner–Schwartz theorem (see, e.g., Theorem 3 in [Gel’fand
and Vilenkin 1964, Chapter II, §3]). It states that a distribution b ∈ C∞0 (R)

′ satisfying the condition
〈b,Jḡ ∗ g〉 ≥ 0 for all g ∈ C∞0 (R) (such b are sometimes called distributions of positive type) is the
Fourier transform

b(ξ)= (2π)−1
∫
∞

−∞

e−i xξ dM(x)

of a positive measure dM(x) such that∫
∞

−∞

(1+ |x |)−~ dM(x) <∞ (4-9)

for some ~ (that is, of at most polynomial growth at infinity). In particular, this ensures that b ∈ S′.
Theorem 4.2 implies that if 〈〈〈h, f̄ ? f 〉〉〉 ≥ 0 for all f ∈ D, then the distribution b related to h by

Definition 2.4 is of positive type. This means that the sign function s(x) of h(t) is determined by the
measure dM(x):

〈s, ϕ〉 =
∫
∞

−∞

ϕ(x) dM(x), ϕ ∈ S,

that is, s(x) dx = dM(x). Let us define the measure

dm(λ)= λ dM(− ln λ), λ ∈ R+. (4-10)

It is easy to see that condition (4-9) is equivalent to condition (1-14) on measure (4-10). In terms of
distribution (1-6), we have σ(λ) dλ= dm(λ). Therefore, Theorem 2.10 leads to the following result.

Theorem 4.9. Let h ∈ Z′
+

and 〈〈〈h, f̄ ? f 〉〉〉 ≥ 0 for all f ∈ D. Then h(t) admits the representation (1-3)
with a positive measure dm(λ) on R+ satisfying for some ~ condition (1-14).

The representation (1-3) is of course a particular case of (1-2). It is much more precise than (1-2), but
requires the positivity of 〈〈〈h, f̄ ? f 〉〉〉. Theorem 4.9 shows that the positivity of 〈〈〈h, f̄ ? f 〉〉〉 imposes very
strong conditions on h(t). Actually, we have:

Corollary 4.10. Let h ∈ Z′
+

and 〈〈〈h, f̄ ? f 〉〉〉 ≥ 0 for all f ∈ D. Then h ∈ C∞(R+) and

(−1)nh(n)(t)≥ 0 (4-11)

for all t > 0 and all n = 0, 1, 2, . . . (such functions are called completely monotonic). The function h(t)
admits an analytic continuation in the right half-plane Re t > 0, and it is uniformly bounded in every strip
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Re t ∈ (t1, t2), where 0< t1 < t2 <∞. Moreover, for some ~ ∈ R and C > 0, we have the estimate

h(t)≤ Ct−1(1+ |ln t |)~, t > 0. (4-12)

All these assertions are direct consequences of the representation (1-3). In particular, under condition
(1-14), we have

h(t)≤ C max
λ≥0

(
e−tλλ(1+ |ln λ|)~

)
,

which yields (4-12).
Recall that according to the Bernstein theorem (see, e.g., Theorems 5.5.1 and 5.5.2 in [Akhiezer 1965]),

condition (4-11) implies that the function h(t) admits the representation (1-3) with some positive measure
dm(λ) on [0,∞). Note that condition (4-11) does not impose any restrictions on the measure dm(λ)
(except that the integral (1-3) is convergent for all t > 0).

Under the positivity assumption, the identity (2-21) takes a more precise form.

Proposition 4.11. Let h ∈ Z′
+

and 〈〈〈h, f̄ ? f 〉〉〉 ≥ 0 for all f ∈ D. Then there exists a positive measure
dM(x) satisfying condition (4-9) for some ~ such that

〈〈〈h, f̄1 ? f2〉〉〉 =

∫
∞

−∞

u1(x)u2(x) dM(x)

for all f j ∈ D, j = 1, 2, and u j =8
∗4 f j ∈ Z, where the mapping 4 is defined by (1-11).

5. Applications and examples

5.1. Consider first self-adjoint Hankel operators H of finite rank. Recall that integral kernels of Hankel
operators of finite rank are given (this is the Kronecker theorem — see, e.g., Sections 1.3 and 1.8 of [Peller
2003]) by the formula

h(t)=
M∑

m=1

Pm(t)e−αm t , (5-1)

where Reαm > 0 and Pm(t) are polynomials of degree Km . If H is self-adjoint, that is, h(t)= h(t), then
the set {α1, . . . , αM} consists of points lying on the real axis and pairs of points symmetric with respect to
it. Let Imαm = 0 for m = 1, . . . ,M0 and Imαm > 0, αM1+m = ᾱm for m = M0+ 1, . . . ,M0+M1. Thus
M = M0+ 2M1; of course the cases M0 = 0 or M1 = 0 are not excluded. The condition h(t)= h(t) also
requires that Pm(t)= Pm(t) for m = 1, . . . ,M0 and PM1+m(t)= Pm(t) for m = M0+ 1, . . . ,M0+M1.
As is well known and as we shall see below,

rank H =
M∑

m=1

Km +M =: r.

For m = 1, . . . ,M0, we denote by pm = p̄m the coefficient at t Km in the polynomial Pm(t).
The following assertion yields an explicit formula for the numbers N±(H). Its proof relies on formula

(1-4) for the sigma function of the kernel h(t)= tkeαt and on the identity N±(H)= N±(S). The detailed
proof is given in [Yafaev 2015].
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Theorem 5.1. For m = 1, . . . ,M0, set

N(m)
+ = N(m)

− =
Km + 1

2
if Km is odd,

N(m)
+ − 1= N(m)

− =
Km

2
if Km is even and pm > 0,

N(m)
+ = N(m)

− − 1=
Km

2
if Km is even and pm < 0.

(5-2)

Then the total numbers N±(H) of (strictly) positive and negative eigenvalues of the operator H are given
by the formula

N±(H)=
M0∑

m=1

N(m)
± +

M0+M1∑
m=M0+1

Km +M1. (5-3)

Formula (5-2) shows that every pair

Pm(t)e−αm t
+ Pm+M1(t)e

−αm+M1 t , m = M0+ 1, . . . ,M0+M1, (5-4)

of complex conjugate terms in (5-1) yields Km + 1 positive and Km + 1 negative eigenvalues. The
contribution of every real term Pm(t)e−αm t , where m = 1, . . . ,M0, also consists of equal numbers
(Km + 1)/2 of positive and negative eigenvalues if the degree Km of the polynomial Pm(t) is odd. If Km

is even, then there is one more positive (negative) eigenvalue if pm > 0 (pm < 0). In particular, in the
question considered, there is no “interference” between different terms Pm(t)e−αm t , m = 1, . . . ,M0, and
pairs (5-4) in representation (5-1) of the kernel h(t).

According to (5-3), the operator H cannot be sign-definite if M1 > 0. Moreover, according to (5-2),
N(m)
± = 0 for m = 1, . . . ,M0 if and only if Km = 0 and ∓pm > 0. Therefore we have the following result.

Corollary 5.2. A Hankel operator H of finite rank is positive (negative) if and only if its kernel is given
by the formula

h(t)=
M0∑

m=1

pme−αm t ,

where αm > 0 and pm > 0 (pm < 0) for all m = 1, . . . ,M0.

Corollary 5.2 admits different proofs which avoid formula (5-3). For example, one can use that although
the functions Pm(t)e−αm t are analytic in the right half-plane Re t > 0, they are bounded for t = τ + iσ as
σ →∞ for a constant Pm(t) only. Therefore, according to Corollary 4.10, such Hankel operators cannot
be positive. Alternatively, using formula (5-15) below for the b-function of the kernel tke−αt , one can
deduce Corollary 5.2 from Theorem 4.7.

Let us compare formula (5-3) with the result of [Megretskiı̆ et al. 1995]. In application to finite-rank
operators H , this general result implies that the spectra of Hankel operators are characterized by the
following condition: the multiplicities of eigenvalues λ 6= 0 and −λ of H do not differ by more than 1.
This condition and formula (5-3) mean that there is a certain balance between positive and negative
spectra of finite-rank Hankel operators. Nevertheless, neither of these results ensures another one.
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5.2. Consider now Hankel operators H with kernels (1-15). Since the case k = 0, 1, . . . (finite-rank
Hankel operators) has been discussed in the previous subsection, here we suppose that k 6= 0, 1, . . . . If
k >−1, condition (1-7) is satisfied for all κ , and the operators H are compact (actually, they belong to
much better classes of operators). If k =−1, then condition (1-7) is satisfied for κ > 1, and the operators
H are bounded but not compact.

Let us calculate the b- and s-functions of kernels (1-15). If k >−1, then function (2-15) equals

a(ξ)= (2π)−1/2
∫
∞

0
tke−αt t−iξ dt = (2π)−1/2α−1−k+iξ0(1+ k− iξ), (5-5)

and hence function (2-17) equals

b(ξ)= α−1−k+iξ 0(1+ k− iξ)
2π0(1− iξ)

. (5-6)

If k =−1, then in accordance with formulas (5-5) and (5-6), we have

a(ξ)= (2π)−1/2αiξ lim
ε→+0

0(ε− iξ), b(ξ)= (2π)−1αiξ i(ξ + i0)−1.

This yields the expression {
s(x)= 0 if x > β,
s(x)= 1 if x < β,

where β =− lnα, (5-7)

for the function s =
√

2π8∗b. Formula (5-7) remains true for the Carleman operator C (the Hankel
operator with kernel h(t)= t−1) when α = 0. Indeed, in this case, according to (2-23), the sign function
s(x) equals 1.

Next, we calculate the Fourier transform of function (5-6). Assume first that k ∈ (−1, 0). Then (see,
e.g., formula (1.5.12) in [Erdélyi et al. 1953])∫

∞

0
t−k−1(t + 1)−1+iξ dt =

0(−k)0(1+ k− iξ)
0(1− iξ)

.

Making here the change of variables t + 1= α−1e−x , we find that

1
0(−k)

∫
∞

−∞

(e−x
−α)−k−1

+
e−i xξ dx = α−1−k−iξ 0(1+ k− iξ)

0(1− iξ)
.

Passing now to the inverse Fourier transform, we see that for k ∈ (−1, 0) the sign function s(x)= sk(x)
of kernel (1-15) equals

s(x)=
1

0(−k)
(e−x
−α)−k−1

+
. (5-8)

Let us verify that this formula remains true for all noninteger k. To that end, we assume that (5-8)
holds for some noninteger k >−1 and check it for k1 = k+ 1. Since

0(1+ k1− iξ)= (k1− iξ)0(1+ k− iξ),
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we have

sk1(x)= α
−1(k1− ∂)sk(x).

Substituting here formula (5-8) for sk(x) and differentiating this expression, we obtain formula (5-8) for
sk1(x). This concludes the proof of relation (5-8) for all k ≥−1.

Lemma 5.3. Let h(t) be given by formula (1-15), where k 6∈ Z+. Then the sign function is determined by
relation (5-8).

Actually, relation (5-8) remains true for k ∈ Z+ if one takes into account that the distribution
(e−x
−α)−k−1

+ has poles at integer points. For example, for k = 0 we have s(x)= α−1δ(x −β).
Obviously, s(x) = 0 for x > β = − lnα. If k = −1, then s(x) = 1 for x < β. If k ∈ (−1, 0), then

s(x)≥ 0 and s ∈ L1(R). Therefore it follows from Theorem 4.5 that H ≥ 0.
If k > 0, then distribution (5-8) does not have a definite sign. Therefore it can be deduced from

Theorem 4.2 that the corresponding Hankel operator also is not sign-definite.
Alternatively, for the proof of this result we can use Corollary 4.8. Formula (2-11) implies that function

(5-6) has the asymptotics

b(ξ)= (2π)−1α−1−k−iξ (−iξ)k(1+ O(|ξ |−1)), |ξ | →∞. (5-9)

Making the dilation transformation in (1-15), we can suppose that α = 1. Then we have

Re b(ξ)= (2π)−1 cos
(
πk
2

)
ξ k
+ O(ξ k−1), ξ →+∞. (5-10)

Since cos(πk/2) 6= 0 unless k is an integer odd number, this expression tends to ±∞ if ± cos(πk/2) > 0.
Thus Corollary 4.8 for the case b = b∞ ensures that the Hankel operator H is not sign-definite.

Let us summarize the results obtained.

Proposition 5.4. The Hankel operator with kernel (1-15) is positive for k ∈ [−1, 0], and it is not sign-
definite for k > 0.

Actually, using relation (5-8), one can calculate explicitly the numbers N±(H) for all values of k (see
[Yafaev 2014b]).

Explicit formulas for the sign functions can also be used to treat more complicated Hankel operators.
For example, in view of (5-7), the following assertion directly follows from Theorem 4.5.

Example 5.5. The Hankel operator with kernel

h(t)= t−1(e−α1t
− γ e−α2t), γ ≥ 0,

is positive if and only if α2 ≥ α1 ≥ 0 and γ ≤ 1.
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5.3. In this subsection, we consider the Hankel operator H with kernel (1-16). Condition (1-7) is now
fulfilled for all κ , and the operator H belongs of course to the Hilbert–Schmidt class (actually, to much
better classes). Observe that

a(ξ)= (2π)−1/2
∫
∞

0
e−tr

t−iξ dt = (2π)−1/2r−10

(
1− iξ

r

)
and define, as usual, the function b(ξ) by formula (2-17) so that

b(ξ)= (2πr)−1
0

(
1− iξ

r

)
0(1− iξ)

. (5-11)

Consider first the case r > 1. It follows from the Stirling formula (2-11) that for all r > 1, the modulus of
function (5-11) exponentially grows and the periods of its oscillations tend to zero only logarithmically as
|ξ |→∞. Therefore, Theorem 4.7 implies that the Hankel operator with kernel (1-16) is not sign-definite.

The Hankel operator H with kernel h(t)= e−t2
can also be treated (see Appendix B) in a completely

different way, which is perhaps also of some interest. This method shows that both positive and negative
spectra of the operator H are infinite.

If r = 1, then h(t)= e−t yields a positive Hankel operator of rank 1.
Let us now consider the case r < 1. Again according to the Stirling formula (2-11), function (5-11)

belongs to L1(R), so that its Fourier transform

s(x)= (2πr)−1
∫
∞

−∞

0

(
1− iξ

r

)
0(1− iξ)

ei xξ dξ =: Ir (x) (5-12)

is a continuous function which tends to 0 as |x | →∞. Therefore, by Proposition 4.6, the corresponding
Hankel operator H is nonnegative if and only if Ir (x)≥ 0 for all x ∈ R.

It turns out that Ir (x)≥ 0. Surprisingly, we have not found a proof of this fact in the literature, but it
follows from our results. Only for r = 1

2 , integral (5-12) can be explicitly calculated. Indeed, according
to formula (1.2.15) of [Erdélyi et al. 1953],

0(2(1− iξ))
0(1− iξ)

= 21−2iξπ−1/20
( 3

2 − iξ
)
.

Therefore it follows from formula (2-25) that

I1/2(x)= 2−1π−1/2e3x/2e−ex/4, (5-13)

which is of course positive.
For an arbitrary r ∈ (0, 1), one can proceed from the Bernstein theorem on completely monotonic

functions (see Section 4.4). Observe that if

ψ(t)= t−pe−tr
, p ≥ 0, (5-14)
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then

ψ ′(t)=−pt−p−1e−tr
− r t−p+r−1e−tr

.

Further differentiations of ψ(t) change the sign and yield sums of terms having the form (5-14). Thus the
function h(t)= e−tr

satisfies, for all n, condition (4-11), and hence admits the representation (1-3) with
some positive measure dm(λ). It follows from (1-3) that

(H f, f )=
∫
∞

0
|(L f )(λ)|2 dm(λ)≥ 0, for all f ∈ C∞0 (R+),

where L is the Laplace transform (2-28). Since the operator H is bounded, this implies that H ≥ 0.
Thus we have obtained the following result.

Proposition 5.6. The Hankel operator with kernel (1-16) is positive for r ∈ (0, 1], and it is not sign-definite
for r > 1.

Putting together this result with Theorem 4.5, we see that integral (5-12) is positive for all r ∈ (0, 1).
Our indirect proof of this fact looks curiously enough.

5.4. Let us now discuss convolution operators with growing kernels b(ξ). We emphasize that condition
(4-3) does not guarantee that the numbers N±(b;C∞0 (R)) are infinite. Indeed, consider the kernel
h(t)= tke−αt , where k is a positive integer. Formula (5-6) shows that for Imα = 0, the corresponding
b-function

b(ξ)= (2π)−1α−1−k+iξ (1− iξ) · · · (k− iξ) (5-15)

has power asymptotics as |ξ | → ∞. According to Theorem 5.1, the positive and negative spectra of
the Hankel operator H with the kernel h(t) are finite; for example, H has exactly (k + 1)/2 positive
and negative eigenvalues if k is odd. Moreover, if Imα 6= 0, then in view of (5-15), the function
b(ξ) exponentially grows as ξ →+∞ or ξ →−∞. Nevertheless, the Hankel operator H with kernel
h(t)= tk(e−αt

+ e−ᾱt) has exactly k+ 1 positive and negative eigenvalues.
On the other hand, for kernel (5-11), where r = 2, we have N±(b;C∞0 (R))=∞. This follows from

Theorem 4.1 because, by Proposition B.1, the Hankel operator with kernel h(t) = e−t2
has an infinite

number of positive and negative eigenvalues.
A similar phenomenon occurs for Hankel operators with nonsmooth kernels. This is discussed in the

next section. However, in general, the calculation of the numbers N±(b;C∞0 (R)) for convolutions with
kernels b(ξ) growing and oscillating at infinity looks like an open problem.

6. Hankel operators with nonsmooth kernels

According to Corollary 4.10, a Hankel operator H can be sign-definite only for kernels h ∈ C∞(R+).
Here we show that if h(t) or one of its derivatives h(l)(t) has a jump discontinuity at some point t0 > 0,
then H has an infinite number of both positive and negative eigenvalues accumulating to zero. Moreover,
we calculate their asymptotic behavior.
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6.1. We start with a distributional kernel. Let the symbol (see the definition in Section 3.2) of the Hankel
operator H be defined by the formula ω(µ)= ei t0µ. Then h(t)= (2π)−1/2(8ω)(t)= δ(t− t0). It follows
from (1-1) that H = 0 for t0 ≤ 0 and

(H f )(t)= f (t0− t)

for t0 > 0, which we suppose from now on. For such h(t), condition (3-12) is satisfied for N = 0 and
κ = 0.

The operator H admits an explicit spectral analysis. Indeed, observe first that (H f )(t)= 0 for t > t0
and hence L2(t0,∞) ⊂ Ker H . Since H 2 f = f for f ∈ L2(0, t0), the restriction of H on its invariant
subspace L2(0, t0) may have only ±1 as eigenvalues. Obviously, the eigenspace H± of H corresponding
to the eigenvalue ±1 consists of all functions f (t) such that f (t)=± f (t0− t). Since

H+⊕H−⊕ L2(t0,∞)= L2(R+),

the spectrum of H consists of the eigenvalues 0, 1,−1 of infinite multiplicity each.

6.2. For a compact operator H , let us denote by λ(+)n (−λ(−)n ) its positive (negative) eigenvalues. Positive
(negative) eigenvalues are of course enumerated in decreasing (increasing) order with multiplicities taken
into account.

Let us start with the explicit kernel

h(t)= (t0− t)l for t ≤ t0, h(t)= 0 for t > t0, (6-1)

where l is one of the numbers l = 0, 1, . . . . Then

(H f )(t)=
∫ t0−t

0
(t0− t − s)l f (s) ds, t ∈ (0, t0),

and (H f )(t)= 0 for t ≥ t0. For such h(t), the symbol equals

ω(µ)=

∫ t0

0
eiµt(t0− t)l dt = l!(iµ)−l−1

(
eiµt0 −

l∑
k=0

1
k!
(iµt0)k

)
.

It is a smooth function oscillating as |µ| →∞.
It follows from (1-5) that the b-function of the operator H equals

b(ξ)=
l!t l+1−iξ

0

2π0(l + 2− iξ)
(6-2)

(if h(t)=δ(t−t0), then this formula is true with l=−1). So according to Theorem 4.7, we have N±(H)>0.
Actually, the spectrum of H consists of an infinite number of positive and negative eigenvalues denoted
by λ(±)n , and we will find their asymptotic behavior as n→∞.

Let us consider the spectral problem H f = λ f , that is,∫ t0−t

0
(t0− t − s)l f (s) ds = λ f (t), t ∈ (0, t0). (6-3)
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Differentiating this equation k times, we find that

(−1)kl(l − 1) · · · (l − k+ 1)
∫ t0−t

0
(t0− t − s)l−k f (s) ds = λ f (k)(t) (6-4)

for k = 1, . . . , l. Differentiating (6-4), where k = l once more, we see that

l! f (t)= λ(−1)l+1 f (l+1)(t0− t), t ∈ (0, t0). (6-5)

Setting t = t0 in (6-3) and (6-4), we obtain the boundary conditions

f (t0)= f ′(t0)= · · · = f (l)(t0)= 0. (6-6)

Conversely, if a function f (t) satisfies (6-5) and boundary conditions (6-6), it satisfies also (6-3). This
leads to the following intermediary result.

Lemma 6.1. Let the operator A be defined on the Sobolev class Hl+1(0, t0) by the equation

(A f )(t)= (−1)l+1 f (l+1)(t0− t). (6-7)

Considered with boundary conditions (6-6), it is self-adjoint in the space L2(0, t0), and its eigenvalues
α
(±)
n are linked to eigenvalues λ(±)n of the Hankel operator H with kernel (6-1) by the equation α(±)n =

l! (λ(±)n )−1.

6.3. Clearly, A2 is a differential operator and the asymptotic behavior of its eigenvalues is described by
the Weyl formula. However, to find the eigenvalue asymptotics of the operator A, we have to distinguish
between positive and negative eigenvalues. For this reason, it is convenient to introduce an auxiliary
operator Ã with symmetric (with respect to the point 0) spectrum having the same eigenvalue asymptotics
as A.

We define Ã by the same formula (6-7) as A but consider it on functions in Hl+1(0, t0/2)⊕Hl+1(t0/2, t0)
satisfying the boundary conditions

f (k)(0)= f (k)
(

t0
2
− 0

)
, f (k)

(
t0
2
+ 0

)
= f (k)(t0), (6-8)

where k = 0, . . . , l for l even, and

f (k)(0)= f (k)
(

t0
2
− 0

)
= 0, f (k)

(
t0
2
+ 0

)
= f (k)(t0)= 0, (6-9)

where k= 0, . . . , (l−1)/2 for l odd. The operator Ã is self-adjoint in the space L2(0, t0/2)⊕L2(t0/2, t0),
and it is determined by the matrix

Ã =
(

0 A1,2

A2,1 0

)
, A1,2 = A∗2,1, (6-10)

where A2,1 : L2(0, t0/2)→ L2(t0/2, t0). The operator A2,1 is again given by relation (6-7) on functions
in Hl+1(0, t0/2) satisfying conditions (6-8) or (6-9) at the points 0 and t0/2− 0. It follows from formula
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(6-10) that the spectrum of the operator Ã is symmetric with respect to the point 0 and consists of
eigenvalues ±an , where a2

n are eigenvalues of the operator A∗2,1 A2,1 =: A.
An easy calculation shows that A is the differential operator A= (−1)l+1∂2l+2 in the space L2(0, t0/2)

defined on functions in the class H2l+2(0, t0/2) satisfying the boundary conditions f (k)(0)= f (k)(t0/2),
where k = 0, . . . , 2l + 1 for l even, and the boundary conditions

f (k)(0)= f (k)
(

t0
2

)
= f (l+1+k)(0)= f (l+1+k)

(
t0
2

)
= 0,

where k = 0, . . . , (l− 1)/2 for l odd. The asymptotic formula for the eigenvalues a2
n of A is given by the

Weyl formula, that is,

an = (2π t−1
0 n)l+1(1+ O(n−1)).

Let us now observe that the operators A and Ã are self-adjoint extensions of a symmetric operator
A0 with finite deficiency indices (2l + 2, 2l + 2). For example, A0 can be defined by formula (6-7) on
C∞-functions vanishing in some neighborhoods of the points 0, t0/2, and t0. Therefore, the operators
A and Ã have the same spectral asymptotics. Taking Lemma 6.1 into account, we obtain the following
result.

Lemma 6.2. The eigenvalues of the Hankel operator H = H(t0) with kernel (6-1) have the asymptotic
behavior

λ(±)n = l! (2π)−l−1t l+1
0 n−l−1(1+ O(n−1)). (6-11)

Remark 6.3. It is interesting that the asymptotic coefficient in (6-11) is proportional to t l+1
0 , where t0

is the jump point. However, this fact is not surprising, because the operators H(t0) are related by the
equation H(t0)= t l+1

0 D(t0)∗H(1)D(t0), where D(t0), (D(t0) f )(t)=
√

t0 f (t0t), is the unitary operator of
dilations.

Remark 6.4. In the case l = 0 we have the explicit formulas

λ(+)n = (2π)
−1t0

(
n− 3

4

)−1
, λ(−)n = (2π)

−1t0
(
n− 1

4

)−1
, n = 1, 2, . . . .

6.4. Now we extend the asymptotics (6-11) to general Hankel operators whose kernels (or their derivatives)
have jumps of continuity at a single positive point. To that end, we combine Lemma 6.2 with Theorem 7.4
in Chapter 6 of [Peller 2003]. This theorem implies that singular values sn(V ) of a Hankel operator V
satisfy the bound

sn(V )= o(n−l−1)

if V has a symbol belonging to the Besov class Bl+1
p,p (R), where p = (l + 1)−1. By the Weyl theorem on

the stability of the power asymptotics of eigenvalues, adding such an operator V to the Hankel operator
with kernel (6-1) cannot change the leading asymptotic term in formula (6-11). This yields the following
result.



216 DIMITRI R. YAFAEV

Theorem 6.5. Let l ∈ Z+, and let v(t) be the Fourier transform of a function in the Besov class Bl+1
p,p (R),

where p = (l + 1)−1. Set
h(t)= h0(t0− t)l + v(t)

for t ≤ t0 and h(t)= v(t) for t > t0. Then eigenvalues of the Hankel operator H have the asymptotics

λ(±)n = |h0|l! (2π)−l−1t l+1
0 n−l−1(1+ o(1))

as n→∞.

We emphasize that under the assumptions of this theorem, the leading terms in the asymptotics of the
positive and negative eigenvalues are the same. Of course if h(t) becomes smoother (l increases), then
eigenvalues of the Hankel operator H decrease faster as n→∞. Observe that for l = 0 (when the kernel
itself is discontinuous), the Hankel operator H does not belong to the trace class.

We finally note that, under assumptions close to those of Theorem 6.5, the asymptotic behavior of the
singular values of the Hankel operator H was obtained long ago in [Glover et al. 1990] by a completely
different method.

7. Perturbations of the Carleman operator

In this section we consider operators H = H0 + V , where H0 is the Carleman operator C (or a more
general operator) and the perturbation V belongs to one of the classes introduced in Section 5. Various
objects related to the operator H0 will be endowed with the index “0”, and objects related to the operator
V will be endowed with the index “v”.

7.1. For perturbations V of finite rank, we have the following result.

Theorem 7.1. Let the sign function s0(x) of a Hankel operator H0 be bounded and positive. Let the
kernel v(t) of V be given by the formula

v(t)=
M∑

m=1

Pm(t)e−αm t ,

where Pm(t) is a polynomial of degree Km . Put H = H0+ V and define the numbers N(m)
− by formula

(5-2). Then N−(H) is given by formula (5-3).

Corollary 7.2. Under the assumptions of Theorem 7.1, we have N−(H)= N−(V ). In particular, H ≥ 0
if and only if V ≥ 0.

Of course, in the case H0 = 0, Theorem 7.1 reduces to Theorem 5.1. Since for the Carleman operator
C the sign function equals 1, Theorem 7.1 applies to H0 = C .

The inequality N−(H)≤ N−(V ) is obvious because H0 ≥ 0. On the other hand, the opposite inequality
N−(H)≥ N−(V ) looks surprising because the operator H0, which may have the continuous spectrum, is
much “stronger” than the operator V of finite rank. At a heuristic level, the equality N−(H)= N−(V )
can be explained by the fact that the supports of the sign functions s0(x) and sv(x) are essentially disjoint.
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Very loosely speaking, this means that the operators H0 and V “live in orthogonal subspaces”, and hence
the positive operator H0 does not affect the negative spectrum of V . The detailed proof of Theorem 7.1,
as well as that of Theorem 5.1, is given in [Yafaev 2015].

7.2. Let C be the Carleman operator, and let V be the Hankel operator with kernel

v(t)= tke−αt , α > 0, k >−1. (7-1)

The operator V is compact, and hence the essential spectrum specess(Hγ ) of the operator

Hγ = C − γ V, γ ∈ R, (7-2)

coincides with the interval [0, π]. Since the sign function of the operator C equals 1, the sign function sγ
of the operator Hγ equals

sγ (x)= 1− γ sv(x),

where the function sv(x) is given by formula (5-8).
Let first k ∈ (−1, 0). Observe that sv(x) is continuous for x < β = − lnα and sv(x)→ +∞ as

x→ β−0 but sv ∈ L1(R). Thus the function sγ (x) goes to −∞ as x→ β−0 for all γ > 0, and hence it
follows from Theorem 4.5 that the operator Hγ has infinite negative spectrum for all γ > 0.

In the case k > 0, we use the formula

b(ξ)= δ(ξ)+ bv(ξ) (7-3)

and apply Theorem 4.7 (more precisely, Corollary 4.8) with b0(ξ) = δ(ξ) and b∞(ξ) = bv(ξ). Since
b0 ∈ C(R)′ and b∞ has the asymptotic behavior (5-9), the operator Hγ has a negative spectrum for all
γ 6= 0.

Let us summarize the results obtained.

Proposition 7.3. Let Hγ = C − γ V , where V is the Hankel operator with kernel (7-1). Then:

(1) If k ∈ (−1, 0) and γ > 0, then the operator Hγ has an infinite number of negative eigenvalues.

(2) If k > 0, then the operator Hγ has at least one negative eigenvalue for all γ 6= 0.

7.3. The result below directly follows from Theorem 4.5.

Proposition 7.4. Suppose that the sign function sv(x) of a Hankel operator V is continuous and sv(x)→0
as |x | →∞. Then the operator Hγ defined by formula (7-2) is positive if and only if

γ sv(x)≤ 1 for all x ∈ R.

If this condition is not satisfied, then Hγ has infinite negative spectrum.

We note that by Proposition 3.12, under the assumption of Proposition 7.4 on the sign function sv , the
operator V is compact, and hence specess(Hγ )= [0,∞). Of course, this assumption on sv is satisfied if
bv ∈ L1(R).
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Example 7.5. Let v(t) = e−tr
, where r < 1. We have seen in Section 5.3 that its sign function sv(x)

equals Ir (x), where Ir (x) is integral (5-12). Recall that Ir (x) is a nonnegative continuous function of
x ∈ R and Ir (x)→ 0 as |x | →∞. Set

νr =max
x∈R

Ir (x).

Then Hγ ≥ 0 if γ ≤ ν−1
r , and the operator Hγ has infinite negative spectrum for all γ > ν−1

r . Using the
explicit formula (5-13), it is easy to calculate ν1/2 = 3

√
6/πe−3/2.

In the case r > 1 we use formula (7-3). As shown in Section 5.3, the modulus of the function bv(ξ)
exponentially grows and the periods of its oscillations tend to zero only logarithmically as |ξ | → ∞.
Therefore Theorem 4.7 yields the following result.

Proposition 7.6. Let v(t)=e−tr
, where r>1. Then the operator (7-2) has at least one negative eigenvalue

for all γ 6= 0.

Thus the results on the negative spectrum of the operator Hγ = C − γ V , where v(t) = e−tr
, are

qualitatively different for r < 1, r = 1, and r > 1.

Appendix A: Proof of Lemma 3.6

Set
F (n)κ =max

t∈R+

(
〈ln t〉κ tn

|F (n)(t)|
)
,

where for shortness we use the notation 〈x〉 = (1+ |x |).
Let us first consider (8∗F)(λ) for λ ∈ (−1, 1)=: I . We have

√
2π(8∗F)(λ)=

∫ a

0
F(t)eiλt dt +

∫
∞

a
F(t)eiλt dt, a = |λ|−1/2.

The first integral on the right-hand side is bounded by F (0)0 |λ|
−1/2, which belongs to L1(I ). In the second

integral, we integrate by parts:∫
∞

a
F(t)eiλt dt = iλ−1 F(a)eiλa

+ iλ−1
∫
∞

a
F ′(t)eiλt dt. (A-1)

The first term here is bounded by C |λ|−1
〈ln λ〉−κF (0)κ , which belongs to L1(I ) if κ > 1. The second term

is bounded by

|λ|−1
∫
∞

a
t−1
〈ln t〉−κ dt F (1)κ ≤ C |λ|−1

〈ln λ〉−κ+1 F (1)κ .

It belongs to L1(I ) if κ > 2. Thus, for all κ > 2, we have

‖8∗F‖L1(I ) ≤ C(κ)(F (0)0 + F (1)κ ). (A-2)

Next, we consider (8∗F)(λ) for |λ| ≥ 1. Integrating by parts, we see that

√
2π(8∗F)(λ)= iλ−1

∫ a

0
F ′(t)eiλt dt + iλ−1

∫
∞

a
F ′(t)eiλt dt. (A-3)
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The first term here is bounded by

|λ|−1
∫ a

0
t−1
〈ln t〉−κ dt F (1)κ ≤ C |λ|−1

〈ln λ〉−κ+1 F (1)κ .

It belongs to L1(R \ I ) if κ > 2. In the second integral in (A-3) we once more integrate by parts, that is,
we use formula (A-1) with F(t) replaced by F ′(t). The function λ−2 F ′(a) is bounded by |λ|−3/2 F (1)0 .
For the second term, we use the estimate∣∣∣∣λ−2

∫
∞

a
F ′′(t)eiλt dt

∣∣∣∣≤ λ−2
∫
∞

a
t−2 dt F (2)0 = |λ|

−3/2 F (2)0 .

Therefore the second term in (A-3) also belongs to L1(R \ I ). Thus, for all κ > 2, we have

‖8∗F‖L1(R\I ) ≤ C(κ)(F (1)κ + F (2)0 ). (A-4)

Putting together (A-2) and (A-4), we obtain estimate (3-13).

Appendix B: The Gaussian kernel

Here we return to the Hankel operator H with kernel h(t) = e−t2
considered in Section 5.3. Since

e−(t+s)2
= e−t2

e−2tse−s2
, we have the identity

(H f, f )= (Lψ,ψ), (B-1)

where ψ(t)= e−t2/2 f (t/
√

2)/
√

2 and L is the Laplace transform defined in the space L2(R+) by formula
(2-28). We shall use (B-1) essentially in the same way as the main identity (1-10). It follows from equality
(2-29) for α = 1

2 that L = M∗J01/2 M , where M is the Mellin transform. Therefore the spectrum of L
consists of the interval [−γ, γ ], where, according to (2-24),

γ =max
ξ∈R

∣∣0( 1
2 + iξ

)∣∣=√π max
ξ∈R

(cosh(πξ))−1
=
√
π.

This allows us to check the following assertion.

Proposition B.1. The Hankel operator H with kernel h(t)= e−t2
has an infinite number of positive and

negative eigenvalues.

Proof. Fix some µ ∈ (0,
√
π). For an arbitrary N , let 1(+)1 , . . . ,1

(+)
N ⊂ (µ,

√
π) and 1(−)1 , . . . ,1

(−)
N ⊂

(−
√
π,−µ) be closed mutually disjoint intervals. Choose functions ϕ(±)j in the spectral intervals 1(±)j of

the operator L and such that ‖ϕ(±)j ‖ = 1, j = 1, . . . N . Let ϕ(±) =
∑N

j=1 α jϕ
(±)
j be a linear combination

of the functions ϕ(±)1 , . . . , ϕ(±)N . Then

±(Lϕ(±), ϕ(±))=±

N∑
j=1

|α j |
2(Lϕ

(±)
j , ϕ

(±)
j )≥ µ

N∑
j=1

|α j |
2
‖ϕ

(±)
j ‖

2
= µ‖ϕ(±)‖2. (B-2)

For an arbitrary ε > 0, we can choose ψ (±)j ∈C∞0 (R+) such that ‖ψ (±)j −ϕ
(±)
j ‖<ε for all j = 1, . . . , N .

Since the functions ϕ(±)j are orthogonal, the functions ψ (±)j are linearly independent if ε is small enough.
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Moreover, it follows from (B-2) that

±(Lψ (±), ψ (±))≥ 2−1µ‖ψ (±)‖2 (B-3)

if ψ (±) =
∑N

j=1 α jψ
(±)
j and ε is small.

Set now f (±)(t) =
√

2 et2
ψ (±)(

√
2t). Then f (±) ∈ L2(R+), and according to the identity (B-1),

inequality (B-3) implies that ±(H f (±), f (±)) > 0 on the linear subspace of such functions f (±) (except
f (±) = 0). This subspace has dimension N . Hence the operator H has at least N positive and N negative
eigenvalues. Since N is arbitrary, this concludes the proof. �

We emphasize that the operator H is compact while the operator L has the continuous spectrum.
Nevertheless the total multiplicities of their positive and negative spectra are the same (infinite).
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