Vol. 8, No. 4, 2015

Download this article
Download this article For screen
For printing
Recent Issues

Volume 12
Issue 6, 1397–1642
Issue 5, 1149–1396
Issue 4, 867–1148
Issue 3, 605–866
Issue 2, 259–604
Issue 1, 1–258

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Ethics Statement
Author Index
To Appear
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Other MSP Journals
Growth of Sobolev norms for the quintic NLS on $T^2$

Emanuele Haus and Michela Procesi

Vol. 8 (2015), No. 4, 883–922

We study the quintic nonlinear Schrödinger equation on a two-dimensional torus and exhibit orbits whose Sobolev norms grow with time. The main point is to reduce to a sufficiently simple toy model, similar in many ways to the one discussed by Colliander et al. for the case of the cubic NLS. This requires an accurate combinatorial analysis.

nonlinear Schrödinger equation, growth of Sobolev norms, Hamiltonian PDEs, weak turbulence
Mathematical Subject Classification 2010
Primary: 35B34, 35Q55, 37K45
Received: 9 June 2014
Revised: 19 January 2015
Accepted: 6 March 2015
Published: 21 June 2015
Emanuele Haus
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
Università di Napoli “Federico II”
Via Cintia, Monte S. Angelo
I-80126 Napoli
Michela Procesi
Dipartimento di Matematica
Università di Roma “La Sapienza”
Piazzale Aldo Moro, 5
I-00185 Roma