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We describe the asymptotic behavior of small energy solutions of an NLS with a trapping potential,
generalizing work of Soffer and Weinstein, and of Tsai and Yau. The novelty is that we allow generic
spectra associated to the potential. This is a new application of the idea of interpreting the nonlinear
Fermi golden rule as a consequence of the Hamiltonian structure.
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1. Introduction

We consider the initial value problem

iut = Hu+ |u|2u, (t, x) ∈ R1+3, u(0)= u0, (1-1)

where H =−1+ V . For f , g : R3
→ C, we introduce the bilinear form

〈 f, g〉 =
∫

R3
f (x)g(x) dx . (1-2)

We assume the following:

(H1) V ∈ S(R3), where S(R3) is the space of Schwartz functions.

(H2) σp(H)= {e1 < e2 < e3 < · · ·< en < 0}. Here we assume that all the eigenvalues have multiplicity 1.
Zero is neither an eigenvalue nor a resonance (that is, if (−1+V )u= 0 with u ∈C∞ and |u(x)| ≤C |x |−1

for a fixed C , then u = 0).
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(H3) There is an N ∈N with N > |e1|(min{ei − e j : i > j})−1 such that, if µ ∈ Zn satisfies |µ| ≤ 4N +8
and e := (e1, . . . , en), then we have

µ · e := µ1e1+ · · ·+µnen = 0 ⇐⇒ µ= 0 .

(H4) The following Fermi golden rule (FGR) holds: the expression∑
L∈3

〈δ(H − L)GL(ζ ),GL(ζ )〉,

which is defined in the course of the paper (for 3⊂ R+ see (6-25) and for GL see (6-44)) and which is
always nonnegative, satisfies formula (6-47).

To each e j we associate an eigenfunction φ j . We choose them so that 〈φ j , φk〉 = δ jk and, since we
can, we also choose the φ j to be all real valued. To each φ j we associate nonlinear bound states.

Proposition 1.1 (bound states). Fix j ∈{1, . . . , n}. Then there exists a0>0 such that, for all z∈ BC(0, a0),
there is a unique Q j z ∈ S(R3,C) :=

⋂
t≥06t(R

3,C) (for the spaces 6t , see Section 2) such that

H Q j z + |Q j z|
2 Q j z = E j z Q j z, Q j z = zφ j + q j z, 〈q j z, φ j 〉 = 0, (1-3)

and such that we have, for any r ∈ N:

(1) (q j z, E j z) ∈ C∞(BC(0, a0),6r × R), q j z = zq̂ j (|z|2) with q̂ j (t2) = t2q̃ j (t2), where q̃ j (t) is in
C∞((−a0

2, a0
2),6r (R

3,R)), and E j z = E j (|z|2) with E j (t) ∈ C∞((−a0
2, a0

2),R).

(2) ‖q j z‖6r ≤ C |z|3, |E j z − e j |< C |z|2 for some C > 0.

For the proof of Proposition 1.1 see Appendix A.

Definition 1.2. Let b0 > 0 be sufficiently small so that, for z j ∈ BC(0, b0), the function Q j z j exists for
all j ∈ {1, . . . , n}. For such z j and for D j I and D j R , defined in Section 2, we set

Hc[z] =Hc[z1, . . . , zn] :=
{
η ∈ L2

: Re〈iη, D j R Q j z j 〉 = Re〈iη, D j I Q j z j 〉 = 0 for all j
}
. (1-4)

In particular, as an elementary consequence of (1-4) and Proposition 1.1, we have

Hc[0] = {η ∈ L2
: 〈η, φ j 〉 = 0 for all j}. (1-5)

We denote by Pc the orthogonal projection of L2 onto Hc[0].

A pair (p, q) is admissible when

2
p
+

3
q
=

3
2
, 6≥ q ≥ 2, p ≥ 2. (1-6)

The following theorem is our main result:

Theorem 1.3. Assume (H1)–(H4). Then there exist ε0 > 0 and C > 0 such that, if ε = ‖u(0)‖H1 < ε0,
the solution u(t) of (1-1) can be written uniquely for all times as

u(t)=
n∑

j=1

Q j z j (t)+ η(t) with η(t) ∈Hc[z(t)] (1-7)
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in such a way that there exist a unique j0, a ρ+ ∈ [0,∞)n with ρ+ j = 0 for j 6= j0 and |ρ+| ≤C‖u(0)‖H1 ,
and an η+ ∈ H 1 with ‖η+‖H1 ≤ C‖u(0)‖H1 , such that

lim
t→+∞

‖η(t, x)− eit1η+(x)‖H1
x
= 0, lim

t→+∞
|z j (t)| = ρ+ j . (1-8)

Furthermore, we have η = η̃+ A(t, x) such that, for all admissible pairs (p, q),

‖z‖L∞t (R+)+‖η̃‖L p
t (R+,W

1,q
x )
≤ C‖u(0)‖H1 and ‖ż j + ie j z j‖L∞t (R+) ≤ C‖u(0)‖2H1 (1-9)

and such that A(t, · ) ∈62 for all t ≥ 0 and

lim
t→+∞

‖A(t, · )‖62 = 0. (1-10)

As an interesting corollary to Theorem 1.3, we show rather simply that the excited states are orbitally
unstable. We recall that e−it E j z Q j z is called orbitally stable in H 1(R3) for (1-1) if

∀ε > 0 ∃δ > 0 ‖u0− Q j z‖H1(R3) < δ =⇒ sup
t∈R

inf
ϑ∈R
‖u(t)− eiϑe−it E j z Q j z‖H1(R3) < ε (1-11)

and is orbitally unstable if (1-11) does not hold. We prove:

Theorem 1.4. Assume (H1)–(H4). Then there exists ε0 > 0 such that, if j ≥ 2, and for |z| < ε0, the
standing wave e−it E j z Q j z is orbitally unstable. Furthermore, e−it E1z Q1z is orbitally stable.

Notice that [Tsai and Yau 2002b; 2002c; 2002d; Soffer and Weinstein 2004; Gang and Weinstein 2008;
2011; Gustafson and Phan 2011; Nakanishi et al. 2012] contain only very partial proofs of the instability
of the second excited state. Theorem 1.4 will be proved in Section 7 and, until then, and in particular in
the sequel of this introduction, we will focus only on Theorem 1.3.

We recall that [Gustafson et al. 2004] proved Theorem 1.3 for |u|2u replaced by more general functions
in the case when H has one eigenvalue (for the NLS with an electromagnetic potential, we refer to [Koo
2011]). The case of two eigenvalues is discussed in the series [Tsai and Yau 2002a; 2002b; 2002c] and
in [Soffer and Weinstein 2004] under more stringent conditions on the initial data, which are such that
‖u0‖H k,s is small for k > 2 and some s large enough in [Soffer and Weinstein 2004] and ‖u0‖H1∩L2,s small
for s > 3 in [Tsai and Yau 2002a; 2002b; 2002c]. A crucial restriction in these papers is that 2e2 > e1.
They then prove versions of Theorem 1.3 involving also rates of decay of |z(t)|, of ‖η(t)‖L∞(R3), and of
‖η(t)‖L2,s(R3) for appropriate s > 0.

The ideas used in proofs such as in [Tsai and Yau 2002a; 2002b; 2002c; Soffer and Weinstein 2004]
appear to be very difficult to extend to operators with more than 2 eigenvalues, where only partial results
like in [Nakanishi et al. 2012] are known, and for initial data small only in H 1. On one hand, the
Poincaré–Dulac normal form argument in these papers seems not suited to discuss the higher-order FGR
needed when 2e2 < e1. Furthermore, in these papers there is a subdivision of the evolution into distinct
phases, which the solution enters in a somewhat irreversible fashion and which are considered one by one.
This division into distinct phases might become unclear in cases when u(t) oscillates from one phase to
the other, as is not unlikely to happen in the H 1 case, or when the passage from one phase to the other
is very slow, as is certainly true in the H 1 case. Moreover, an increase in the number of eigenvalues



1292 SCIPIO CUCCAGNA AND MASAYA MAEDA

of H increases also the number of distinct phases that need to be accounted for and the complexity of the
argument. So, any hope of proving Theorem 1.3 should rely on an argument which yields the asymptotics
in a single stroke and which does not distinguish distinct cases. This is what we do; see, for example, the
second part of Section 6. We did not check if our method yields the decay estimates of [Tsai and Yau
2002a; 2002b; 2002c; Soffer and Weinstein 2004] under more stringent conditions on u0.

We give a new application of the interpretation of the FGR in terms of the Hamiltonian structure
of the equation. This interpretation was first introduced in [Cuccagna 2009] and was then applied in
[Bambusi and Cuccagna 2011] to generalize the result of [Soffer and Weinstein 1999]. It was later
applied to the problem of asymptotic stability of ground states of the NLS, first not allowing translation
symmetries in [Cuccagna 2011a], and then with translation in [Cuccagna 2014]; see also [Cuccagna
2012].

The link between FGR and Hamiltonian structure rests in the fact that the latter yields algebraic
identities between coefficients of different coordinates in the system (compare the right-hand side in (6-13)
with the second line in (6-27)). These allow us to show that some other coefficients in the equations of
the z j have a square power structure and have a fixed sign (in the case of the NLS); see Lemma 6.8. This
then yields decay of the z j , except for at most one of the j here. We refer to pp. 287–288 in [Cuccagna
2011a] for the original intuition behind this approach to the FGR, which views the FGR as a simple
consequence of Schwartz’s lemma on mixed derivatives, and which has been used in [Bambusi and
Cuccagna 2011; Cuccagna 2009; 2011a; 2014; 2012], among others. For other applications of this theory
we refer to the references in [Cuccagna 2012; Cuccagna and Maeda 2014]. We refer also to [Cuccagna
2011b], whose treatment of the FGR is similar to the one in this paper. Earlier treatments of FGR, are
in [Tsai and Yau 2002a; 2002b; 2002c; Soffer and Weinstein 2004] and, still earlier, in [Buslaev and
Perel′man 1995; Soffer and Weinstein 1999], but they seem to work only in relatively simple cases,
because they run into trouble if the normal form argument requires more than a very few steps. For more
references and comments see [Cuccagna 2011a].

As we will see below, the FGR can be seen relatively easily after one finds an appropriate effective
Hamiltonian in the right system of coordinates. This coordinate system is obtained by a normal form
argument. Right from the beginning, though, it is crucial to choose the right ansatz and system of
coordinates. For example, since H has eigenvalues, it would seem natural to split the NLS (1-1) into
a system using the coordinates of the spectral decomposition of H ; see (4-2). However, this would not
be a good choice for our nonlinear system. Following [Gustafson et al. 2004], it is better to pick as
coordinates the z j of Proposition 1.1, complementing them with an appropriate continuous coordinate.
There is the natural ansatz (2-1) (the same used in [Soffer and Weinstein 2004]), which, following
[Gustafson et al. 2004], can be used to obtain the continuous coordinate, here denoted η and introduced
in Lemma 2.4.

Once we have coordinates (z, η) with z = (z1, . . . , zn), where z1 is the ground state coordinate,
z j for j > 1 the excited states coordinates, and η the radiation coordinate, Theorem 1.3 can be loosely
paraphrased as

η(t)→ 0 in H 1
loc and z j (t)→ 0 except for at most one j. (1-12)
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In particular, if z(t)→ 0 the solution u(t) of (1-1) scatters like a solution of iu̇ =−1u in H 1. Otherwise
there is one j such that u(t) scatters to eiϑ(t)Qz+ j , with ϑ(t) a phase term which we do not control here.
We have convergence by scattering to a ground state if j = 1, and to an excited state if j > 1. The latter
presumably occurs for the u(t) whose trajectory is contained in an appropriate manifold; see [Tsai and
Yau 2002d; Beceanu 2012; Gustafson and Phan 2011].

It is not easy to see (1-12) in the initial coordinate system. So we need a Birkhoff normal form argument
to identify an effective Hamiltonian, like in [Bambusi and Cuccagna 2011]. Unlike there, but like in
[Cuccagna 2011a], the initial coordinates, while quite natural from the point of view of the NLS (1-1), are
not Darboux coordinates for the natural symplectic form � in the problem; see (4-1). Hence, before doing
normal forms, we have first to implement the Darboux theorem to diagonalize the problem (of course, the
coordinates arising from the spectral decomposition of H — see (4-2) — are Darboux coordinates, but, as
we wrote, they are not suited for our nonlinear asymptotic analysis). So in this paper we need to perform
a number of coordinate changes: first a Darboux theorem and then normal form analysis. At the end
of the process we get new coordinates (z1, . . . , zn, η) where the Hamiltonian is sufficiently simple that
we can prove (1-12) relatively easily using the FGR (which tells us that all the z j , except at most one,
are damped) and a semilinear NLS for η that shows scattering of η because of linear dispersion. In the
context of the theory developed in [Bambusi and Cuccagna 2011; Cuccagna 2011a] and other literature,
the work in the last system of coordinates, that is, all the material in Section 6, is rather routine.

Having proved (1-12) for the last system of coordinates (z, η), the obvious question is why (1-12)
should hold, as Theorem 1.3 is saying, also for the initial coordinates, which we now denote by (z′, η′) to
distinguish them from the final coordinates (z, η). Keeping in mind that all coordinate changes are small
nonlinear perturbations of the identity, the only simple reason why this might happen is that different
coordinates must be related in the form

z′k = zk + O(zη)+ O(η2)+
∑
i 6= j

O(zi z j ) for k = 1, . . . , n,

η′ = η+ O(zη)+ O(η2)+
∑
i 6= j

O(zi z j ).
(1-13)

This relation between any two systems of coordinates forbids relations like z′1 = z1+ z2
2. Indeed, with the

latter relations it would not be true (except for the case z(t)→ 0) that (1-12) for (z, η) implies (1-12)
for (z′, η′). So our main strategy is to prove (1-12) for the final (z, η) with some relatively standard
method using FGR and linear dispersion, and to be careful to implement only coordinate changes like
in (1-13). This latter point is the novel problem we need to face in this paper. It is not obvious from the
outset that (1-13) should hold.

As we wrote above, [Gustafson et al. 2004] suggests a very natural choice of functions z j , based on
Proposition 1.1, which can be completed in a system of independent coordinates. Loosely speaking,
the z j have the problem that they are defined somewhat independently to each other. This shows up in the
expansion of the Hamiltonian in Lemma 3.1, with a certain lack of decoupling inside the energy between
distinct z j ; see (3-9) and Remark 3.2. This leads in (3-3) (see the second line) to terms whose elimination
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in a normal form argument would seem incompatible with coordinate changes satisfying (1-13). These bad
terms of the energy can be better seen in (4-45): they are the l = 0 terms in the third line. Other additional
bad terms arise in the course of the Darboux theorem transformation. Bad terms in the differential form 0

in (4-17) (used in the classical formula (4-40)) are those in I1 in (4-22). Specifically, they are the first
term in the right-hand side of (4-22). The right-hand side of (4-28) is also filled with bad terms, in the
sense that they yield a coordinate change F in Lemma 4.8 leading to more l = 0 terms in the third line in
(4-45). Specifically, they originate from the pullback F∗

∑n
j=1 E(Q j z j ) of the first term in the right-hand

side of (3-3) (more bad terms seem to arise if we use �′0 — see (4-8) — rather than the slightly more
complicated �0 — see (4-13) — as the local model of �). In a somewhat empirical fashion, for which we
don’t have a simple conceptual reason, a plain and simple computation shows that all the bad terms cancel
out and that there are no l = 0 terms in (4-45). This is proved in the cancellation lemma, Lemma 4.11,
which is the main new ingredient in the paper. This lemma proves that the change of coordinates designed
to diagonalize � is also decoupling the discrete coordinates inside the Hamiltonian. From that point
on, the structure (1-13) for the coordinate changes is automatic and the various steps of the proof of
Theorem 1.3 are similar to arguments such as [Cuccagna 2011b; 2012], which have been repeated in a
number of papers. So they are fairly standard, even though we are able to discuss them only in a rather
technical way. We have to go into the details of the proof, rather than refer to the references, because of
some technical novelties required by the fact that in general z 9 0, and what converges to 0 is instead the
vector Z introduced in Definition 2.2, whose components are products of distinct components of z.

In the second part of Section 6, the FGR and the asymptotics of the z j in the final coordinate system are
rather simple to see in a single stroke. Furthermore, Theorem 6.1 is more or less the same as [Cuccagna
2011a; 2011b].

One limitation in our present paper is that we do not generate examples of equations which satisfy
hypothesis (H4). Notice though that our result, for solutions only in H 1, is new even in the 2-eigenvalues
case of [Tsai and Yau 2002a; 2002b; 2002c; Soffer and Weinstein 2004], where our FGR is the same.
Still, we believe that (H4) holds for generic V . And even if it fails at one stage, this is not necessarily a
problem: the strict positive sign in the FGR is only an obstruction to performing further the normal form
argument, so, if there is a 0, in principle it is enough to proceed with some further coordinate change until,
after a finite number of steps, there will finally be a positive sign in the FGR, and so the stabilization will
occur, just at a slower rate. And if the FGR is always 0, then maybe this is because the NLS has a special
structure; see [Soffer and Weinstein 1999, p. 69] for some thoughts.

Proposition 2.2 of [Bambusi and Cuccagna 2011] proves validity in general of the FGR. Transposing
here that proof would require replacing the cubic nonlinearity with a more general nonlinearity β(|u|2)u.
This seems rather simple to do because the cubic power is only used to simplify the discussion in
Lemma 3.1. But it is not so clear how to offset here the absence of a meaningful mass term m2u, which in
[Bambusi and Cuccagna 2011, pp. 1444–1445], by choosing m generic, is used to move some appropriate
spheres in phase space. Adding to the NLS a term m2u would not change the spheres here.

We reiterate that Proposition 1.1 is valid for small z j ∈ C. As z j increases there are interesting
symmetry-breaking bifurcation phenomena; see [Kirr et al. 2008; 2011] and references therein and see
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also [Fukuizumi and Sacchetti 2011; Grecchi et al. 2002; Sacchetti 2005] and references therein for the
semiclassical NLS. Notice that Theorem 1.3 should allow one to prove asymptotic breakdown of the
beating motion in the case µ∞ = 0 in [Grecchi et al. 2002]. Finite-dimensional approximations of the
solutions at energies close to the symmetry breaking point of [Kirr et al. 2008] have been considered by
[Goodman 2011; Marzuola and Weinstein 2010], who prove the long time existence of interesting patterns
for the full NLS. Unfortunately, it is beyond the scope of our analysis, and it remains an interesting open
problem, to understand the eventual asymptotic behavior of the solutions in [Goodman 2011; Marzuola
and Weinstein 2010].

2. Notation, coordinates and resonant sets

Notation.

• We denote by N= {1, 2, . . . } the set of natural numbers and set N0 = N∪ {0}.

• We denote z = (z1, . . . , zn), |z| :=
√∑n

j=1 |z j |
2.

• Given a Banach space X , v ∈ X and δ > 0, we set BX (v, δ) := {x ∈ X : ‖v− x‖X < δ}.

• Let A be an operator on L2(R3). Then σp(A)⊂ C is the set of eigenvalues of A and σe(A)⊂ C is
the essential spectrum of A.

• For K=R, C, we denote by6r =6r (R
3,K) for r ∈N0 the Banach spaces defined by the completion

of Cc(R
3,K) by the norms

‖u‖26r
:=

∑
|α|≤r

(‖xαu‖2L2(R3)
+‖∂αx u‖2L2(R3,K)

).

For m < 0 we consider the topological dual 6m = (6−m)
′. Notice — see [Cuccagna 2014] — that the

spaces 6r can be equivalently defined using, for r ∈ R, the norm ‖u‖6r := ‖(1−1+ |x |
2)r/2u‖L2 .

• S(R3)=
⋂

m≥06m is the space of Schwartz functions; S′(R3)=
⋃

m≤06m is the space of tempered
distributions.

• We set z j = z j R + iz j I for z j R , z j I ∈ R.

• For f : Cn
→ C, set D j R f (z) := ∂ f/∂z j R(z) and D j I f (z) := ∂ f/∂z j I (z).

• We set ∂l := ∂zl and ∂l̄ := ∂z̄l . Here, as is customary, ∂zl =
1
2(Dl R − iDl I ) and ∂z̄l =

1
2(Dl R + iDl I ).

• Occasionally we use a single index `= j , j̄ . To define ` we use the convention ¯̄j = j . We will also
write z j̄ = z̄ j .

• We will consider vectors z = (z1, . . . , zn) ∈ Cn and, for vectors µ, ν ∈ (N∪ {0})n , we set zµ z̄ν :=
zµ1

1 · · · z
µn
n z̄ν1

1 · · · z̄
νn
n . We will set |µ| =

∑
j µ j .

• We have dz j = dz j R + i dz j I , dz̄ j = dz j R − i dz j I .

• We consider the vector e= (e1, . . . , en) whose entries are the eigenvalues of H .

• Pc is the orthogonal projection of L2 onto Hc[0].
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• Given two Banach spaces X and Y we denote by B(X, Y ) the space of bounded linear operators
X→ Y with the norm of the uniform operator topology.

Coordinates. The first thing we need is an ansatz. This is provided by the following lemma:

Lemma 2.1. There exist c0 > 0 and C > 0 such that, for all u ∈ H 1 with ‖u‖H1 < c0, there exists a unique
pair (z,2) ∈ Cn

× (H 1
∩Hc[z]) such that

u =
n∑

j=1

Q j z j +2 with |z| + ‖2‖H1 ≤ C‖u‖H1 . (2-1)

Finally, the map u 7→ (z,2) is C∞(BH1(0, c0),Cn
× H 1) and satisfies the gauge property

z(eiϑu)= eiϑ z(u) and 2(eiϑu)= eiϑ2(u). (2-2)

Proof. We consider the functions

F j A(u, z) := Re
〈
u−

n∑
l=1

Qlzl , iD j A Q j z j

〉
for A = R, I.

We have F j R(0, 0) = F j I (0, 0) = 0. These functions are smooth in L2
× BCn (0, b0) for the b0 in

Definition 1.2. We have F j R(0, z) = Im z j + O(z3) and F j I (0, z) = Re z j + O(z3) by Proposition 1.1.
By the implicit function theorem, there is a map u→ z which is C∞(BL2(0, c0),Cn) for c0 > 0 suffi-
ciently small. Set 2 := u−

∑n
j=1 Q j z j . Then 2 ∈ C∞(BH1(0, c0), H 1). The inequalities follow from

|z(u)| ≤ C‖u‖H1 , which follows from z ∈ C1 and z(0)= 0. Formula (2-2) follows from

eiϑu =
n∑

j=1

eiϑQ j z j + eiϑ2=

n∑
j=1

Q jeiϑ z j + eiϑ2

and from the fact that 2 ∈ Hc[z] implies eiϑ2 ∈ Hc[z′], where z′ = eiϑ z. This last fact is elementary.
Indeed, setting only for this proof z j = x j + iy j and z′j = x ′j + iy′j , we have

Re〈ieiϑ2, ∂x ′j Q j z′j 〉 = ∂x ′j x j Re〈ieiϑ2, eiϑ∂x j Q j z j 〉+ ∂x ′j y j Re〈ieiϑ2, eiϑ∂y j Q j z j 〉 = 0

if 2 ∈Hc[z]. Similarly, Re〈ieiϑ2, ∂y′j Q j z′j 〉 = 0. Hence 2 ∈Hc[z] implies eiϑ2 ∈Hc[eiϑ z]. �

Definition 2.2. Given z ∈ Cn , we denote by Ẑ the vector with entries (zi z̄ j ) with i , j ∈ [1, n], in
lexicographic order. We denote by Z the vector with entries (zi z̄ j ) with i , j ∈ [1, n], in lexicographic
order but only for pairs of indexes with i 6= j . Here, Z is in L , the subspace of Cn0={(ai, j )i, j=1,...,n : i 6= j},
n0= n(n−1), with (ai, j )∈ L if and only if ai, j = ā j,i for all i, j . For a multiindex m= {mi j ∈N0 : i 6= j},
we set Zm

=
∏
(zi z̄ j )

mi j and |m| :=
∑

i, j mi j .

We need a system of independent coordinates, which the (z,2) in (2-1) are not. The following lemma
is used to complete the z with a continuous coordinate.
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Lemma 2.3. There exists d0 > 0 such that, for any z ∈ C with |z|< d0, there exists an R-linear operator
R[z] :H[0]→Hc[z] such that Pc|Hc[z] = R[z]−1, with Pc the orthogonal projection of L2 onto Hc[0]; see
Definition 1.2. Furthermore, for |z|< d0 and η ∈Hc[0], we have the following properties:

(1) R[z] ∈ C∞(BCn (0, d0), B(H 1, H 1)) with B(H 1, H 1) the Banach space of R-linear bounded opera-
tors from H 1 into itself.

(2) For any r > 0, we have ‖(R[z] − 1)η‖6r ≤ cr |z|2‖η‖6−r for a fixed cr .

(3) We have the covariance property R[eiϑ z] = eiϑ R[z]e−iϑ .

(4) We have, summing on repeated indexes,

R[z]η = η+ (α j [z]η)φ j with α j [z]η = 〈B j (z), η〉+ 〈C j (z), η〉, (2-3)

where B j (z)= B̂ j (Ẑ) and C j (z)= zi z`Ĉi`j (Ẑ) for B̂ and Ĉi`j smooth and the Ẑ of Definition 2.2.

(5) We have, for r ∈ R and Z as in Definition 2.2,

‖B j (z)+ ∂z̄ j q̄ j z j‖6r +‖C j (z)− ∂z̄ j q j z j‖6r ≤ cr |Z|2. (2-4)

Proof. Summing over repeated indexes, we search for a map R[z] : L2
→Hc[z] of the form

R[z] f = f + (α j [z] f )φ j with α j [z] f = 〈B ′j (z), f 〉+ 〈C j (z), f̄ 〉

such that R[z] f ∈Hc[z] for all f ∈ L2. The latter condition can be expressed as

Re〈 f̄ , iDl A Qlzl +〈φ j , iDl A Qlzl 〉B
′

j −〈φ j , iDl A Qlzl 〉C j 〉 = 0 for all f ∈ L2.

This and the equalities

〈φ j , iDl R Qlzl 〉 = iδ jl +〈φ j , iDl Rqlzl 〉, 〈φ j , iDl I Qlzl 〉 = −δ jl +〈φ j , iDl I qlzl 〉,

〈φ j , iDl R Qlzl 〉 = iδ jl +〈φ j , iDl R q̄lzl 〉, 〈φ j , iDl I Qlzl 〉 = δ jl +〈φ j , iDl I q̄lzl 〉,

yield the equalities

Dl R Qlzl + (δ jl +〈φ j , Dl Rqlzl 〉)B
′

j − (δ jl +〈φ j , Dl R q̄lzl 〉)C j = 0,

iDl I Qlzl + (−δ jl + i〈φ j , Dl I qlzl 〉)B
′

j − (δ jl + i〈φ j , Dl I q̄lzl 〉)C j = 0.

They can be rewritten as

φl + ∂lqlzl + (δ jl + i〈φ j , ∂lqlzl 〉)B
′

j −〈φ j , ∂l q̄lzl 〉C j = 0,

∂l̄qlzl +〈φ j , ∂l̄qlzl 〉B
′

j − (δ jl +〈φ j , ∂l̄ q̄lzl 〉)C j = 0.
(2-5)

For z2
= {z2

jδi j } and z̄2
= {z̄2

jδi j } two n× n matrices, the solution of this system is of the form(
B ′

C

)
=

∞∑
m=0

(−1)m
(

A1 z̄2 A2

z2 A3 A4

)m (
u1

z2u2

)
, (2-6)
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where Al = Al(|z1|
2, . . . , |zn|

2) are n × n matrices and ul = ul(|z1|
2, . . . , |zn|

2) are n × 1 matrices
for l = 1 (resp. l = 2) with entries φ j + ∂ j q j z j (resp. ∂ j̄ q j z j ) as j = 1, . . . , n. This yields the structure
B ′(z)= B̂ ′(Ẑ) and C j (z)= zi z`Ĉi`j (Ẑ).

Using 〈φ j , q j z j 〉 = 0, we can rewrite (2-5) in the form

B ′l =−φl − ∂lqlzl −

∑
j 6=l

(i〈φ j , ∂lqlzl 〉B
′

j −〈φ j , ∂l q̄lzl 〉C j ),

Cl = ∂l̄qlzl +

∑
j 6=l

(〈φ j , ∂l̄qlzl 〉B
′

j −〈φ j , ∂l̄ q̄lzl 〉)C j .
(2-7)

By Proposition 1.1, this implies

‖B ′l +φl‖6r +‖Cl‖6r ≤ C |zl |
2. (2-8)

Reiterating this estimate, from (2-7) and for Bl defined by the following formula, we get

∥∥∥∥
Bl︷ ︸︸ ︷

B ′l +φl −
∑
j 6=l

i〈φ j , ∂lqlzl 〉φ j +∂lqlzl

∥∥∥∥
6r

≤ C |Z|2

‖Cl − ∂l̄qlzl‖6r ≤ C |Z|2.

This yields (2-4). Claim (3) follows by

α j [eiϑ z]η = eiϑα j [z]e−iϑη, (2-9)

which in turn follows by claim (4). Indeed,

α j [eiϑ z]η = 〈B̂ j (Ẑ), η〉+ 〈e2iϑ zi z`Ĉi`j (Ẑ), η〉

= eiϑ
〈B̂ j (Ẑ), e−iϑη〉+ eiϑ

〈zi z`Ĉi`j (Ẑ), e−iϑη〉 = eiϑα j [z]e−iϑη. �

We are now able to define a system of coordinates near the origin in L2.

Lemma 2.4. For the d0 of Lemma 2.3, the map (z, η) 7→ u defined by

u =
n∑

j=1

Q j z j + R[z]η for (z, η) ∈ BCn (0, d0)× (H 1
∩Hc[0]) (2-10)

has values in H 1 and is C∞. Furthermore, there is a d1 > 0 such that the above map is a diffeomorphism
for (z, η) ∈ BCn (0, d1)× (BH1(0, d1)∩Hc[0]) and

|z| + ‖η‖H1 ∼ ‖u‖H1 . (2-11)

Finally, we have the gauge properties u(eiϑ z, eiϑη)= eiϑu(z, η),

z(eiϑu)= eiϑ z(u) and η(eiϑu)= eiϑη(u). (2-12)
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Proof. The smoothness follows from the smoothness in z in Proposition 1.1 and Lemma 2.3. Property
u(eiϑ z, eiϑη)= eiϑu(z, η) and its equivalent formula (2-12) follow from (2-2) and Lemma 2.3(3). Notice
that u = u(z, η) is the inverse of the smooth map u 7→ (z,2) 7→ (z, Pc2). Formula (2-11) follows by the
estimates in Proposition 1.1 and by Lemma 2.3(2). �

Resonant sets.

Definition 2.5. Consider the set of multiindexes m as in Definition 2.2 and, for any k ∈ {1, . . . , n}, the
set

Mk(r)=
{
m :

∑n
i=1

∑n
j=1 mi j (ei − e j )− ek < 0 and |m| ≤ r

}
,

M0(r)=
{
m :

∑n
i=1

∑n
j=1 mi j (ei − e j )= 0 and |m| ≤ r

}
.

(2-13)

Set now
Mk(r)= {(µ, ν) ∈ Nn

0 ×Nn
0 : z

µ z̄ν = z̄k Zm for some m ∈Mk(r)},

M(r)=
n⋃

k=1

Mk(r) and M = M(2N + 4)
(2-14)

Lemma 2.6. Assuming (H3) we have the following facts:

(1) If Zm
= zµ z̄ν , then m ∈ M0(2N + 4) implies µ = ν. In particular, m ∈ M0(2N + 4) implies

Zm
= |z1|

2l1 · · · |zn|
2ln for some (l1, . . . , ln) ∈ Nn

0 .

(2) For |m| ≤ 2N + 3 and any j , we have
∑

a,b(ea − eb)mab− e j 6= 0.

Proof. First of all, if µ= ν then zµ z̄ν = |z1|
2µ1 · · · |zn|

2µn . So the first sentence in claim (1) implies the
second sentence in claim (1). We have

Zm
=

n∏
i,l=1

(zi z̄l)
mil =

n∏
i=1

z
∑n

l=1 mil
i z̄

∑n
l=1 mli

i = zµ z̄ν .

The pair (µ, ν) satisfies |µ| = |ν| ≤ 2N + 4, by

|µ| =
∑

l

µl =
∑
i,l

mil = |ν|.

We have (µ− ν) · e= 0 by m ∈M0(2N + 4) and∑
i

µi ei −
∑

l

νlel =
∑
i,l

mil(ei − el)= 0.

We conclude, by (H3), that µ− ν = 0. This proves the first sentence of claim (1).
The proof of claim (2) is similar. Set

Zm z̄ j =

n∏
i,l=1

(zi z̄l)
mil z̄ j =

n∏
i=1

z
∑n

l=1 mil
i z̄

∑n
l=1 mli

i z̄ j = zµ z̄ν .

We have
(µ− ν) · e=

∑
i

µi ei −
∑

l

νlel =
∑
i,l

mil(ei − el)− e j
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and
|µ| =

∑
l

µl =
∑
i,l

mil = |ν| − 1. (2-15)

If (µ− ν) · e = 0 then, by |µ− ν| ≤ 4N + 5 and (H3), we would have µ = ν, which is impossible
by (2-15). �

Lemma 2.7. (1) Consider m= (mi j )∈N
n0
0 such that

∑
i< j mi j > N for N > |e1|(min{e j−ei : j > i})−1;

see (H3). Then, for any eigenvalue ek , we have∑
i< j

mi j (ei − e j )− ek < 0. (2-16)

(2) Consider m ∈N
n0
0 with |m| ≥ 2N +3 and the monomial z j Zm. Then there exist a, b ∈N

n0
0 such that∑

i< j

ai j = N + 1=
∑
i< j

bi j ,

ai j = bi j = 0 for all i > j and ai j + bi j ≤ mi j +m j i for all (i, j), (2-17)

and moreover there is a pair of indexes (k, l) such that∑
i< j

ai j (ei − e j )− ek < 0 and
∑
i< j

bi j (ei − e j )− el < 0 (2-18)

and such that, for |z| ≤ 1,
|z j Zm

| ≤ |z j ||zk Za
||zl Zb

|. (2-19)

(3) For m with |m| ≥ 2N + 3, there exist (k, l), a ∈Mk and b ∈Ml such that (2-19) holds.

Proof. Equation (2-16) follows immediately from∑
i< j

mi j (ei − e j )− ek ≤−min{e j − ei : j > i}N − e1 < 0,

where the latter inequality follows by the definition of N .
Given a, b∈N

n0
0 satisfying (2-17), by claim (1) they satisfy (2-18) for any pair of indexes (k, l). Consider

now the monomial z j Zm. Since |m| ≥ 2N + 3, there are vectors c, d ∈ N
n0
0 such that |c| = |d| = N + 1

and ci j + di j ≤ mi j for all (i, j). Furthermore, we have

z j Zm
= z j zµ z̄νZc Zd with |µ|> 0 and |ν|> 0. (2-20)

So, for zk a factor of zµ and z̄l a factor of z̄ν , and for

ai j =

{
ci j + c j i for i < j,
0 for i > j,

bi j =

{
di j + d j i for i < j,
0 for i > j,

(2-21)

for |z| ≤ 1 we have, from (2-20),

|z j Zm
| ≤ |z j ||zk Zc

||zl Zd
| = |z j ||zk Za

||zl Zb
|.

Furthermore, (2-17) is satisfied.
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Since our (a, b) satisfy a ∈Mk and b ∈Ml , claim (3) is a consequence of claim (2). �

We end this section by exploiting the notation introduced in Lemma 2.3(5) to introduce two classes of
functions. First of all, notice that the linear maps η 7→ 〈η, φ j 〉 extend to bounded linear maps 6r → R

for any r ∈ R. We set
6c

r := {η ∈6r : 〈η, φ j 〉 = 0, j = 1, . . . , n}. (2-22)

The following two classes of functions will be used in the rest of the paper. Recall that in Definition 2.2
we introduced the space L with dim L = n(n− 1). In Definitions 2.8–2.9, we denote by Z an auxiliary
variable independent of z which takes values in L .

Definition 2.8. Let B be an open subset of a Banach space. We will say that F(t, b, z, Z, η) in
C M(I ×B×A,R), with I a neighborhood of 0 in R and A a neighborhood of 0 in Cn

× L ×6c
−K , is

F =R
i, j
K ,M(t, b, z, Z, η) if there exists a C > 0 and a smaller neighborhood A′ of 0 such that

|F(t, b, z, Z, η)| ≤ C(‖η‖6−K + |Z|)
j (‖η‖6−K + |Z| + |z|)

i in I ×B×A′. (2-23)

We will specify F =R
i, j
K ,M(t, b, z, Z) if

|F(t, b, z, Z, η)| ≤ C |Z| j |z|i (2-24)

and F =R
i, j
K ,M(t, b, z, η) if

|F(t, b, z, Z, η)| ≤ C‖η‖ j
6−K

(‖η‖6−K + |z|)
i . (2-25)

We will omit t or b if there is no dependence on such variables.
We write F =R

i, j
K ,∞ if F =R

i, j
K ,m for all m ≥ M . We write F =R

i, j
∞,M if, for all k ≥ K , the above F

is the restriction of an F(t, b, z, η) ∈ C M(I ×B×Ak,R) with Ak a neighborhood of 0 in Cn
× L×6c

−k
and which is F =R

i, j
k,M . Finally we write F =R

i, j
∞,∞ if F =R

i, j
k,∞ for all k.

Definition 2.9. We will say that T (t, b, z, η) ∈ C M(I ×B×A, 6K (R
3,C)), with the above notation, is

T = Si, j
K ,M(t, b, z, Z, η) if there exists a C > 0 and a smaller neighborhood A′ of 0 such that

‖T (t, b, z, Z, η)‖6K ≤ C(‖η‖6−K + |Z|)
j (‖η‖6−K + |Z| + |z|)

i in I ×B×A′. (2-26)

We use notations Si, j
K ,M(t, b, z, Z), Si, j

K ,M(t, b, z, η), etc. as above.

Notice that we have the elementary formulas

Ra,b
K ,M Si, j

K ,M = Si+a, j+b
K ,M and Ra,b

K ,M R
i, j
K ,M =R

i+a, j+b
K ,M . (2-27)

Remark 2.10. For functions F(t, b, z, η) and T (t, b, z, η), we write F(t, b, z, η)=R
i, j
K ,M(t, b, z, Z, η)

and T (t, b, z, η) = Si, j
K ,M(t, b, z, Z, η) when the equality holds restricting the variable Z to the Z of

Definition 2.2 for symbols satisfying Definitions 2.8–2.9.
Furthermore, later, when we write R

i, j
K ,M and Si, j

K ,M , we will mean R
i, j
K ,M(z, Z, η) and Si, j

K ,M(z, Z, η),
respectively.

Notice that F =R
i, j
K ,M(z, Z) or T = Si, j

K ,M(z, Z) do not mean independence from the variable η.
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3. Invariants

Equation (1-1) admits energy and mass invariants, defined as follows:

E(u) := EK (u)+ EP(u), where EK (u) := 〈Hu, ū〉 and EP(u)=
1
2

∫
R3
|u(x)|4 dx,

Q(u) := 〈u, ū〉.
(3-1)

We have E ∈ C∞(H 1(R3,C),R) and Q ∈ C∞(L2(R3,C),R). We denote by d E the Fréchet derivative
of E . We define ∇E ∈C∞(H 1(R3,C), H−1(R3,C)) by d E X =Re〈∇E, X〉 for any X ∈ H 1. We define
also ∇u E and ∇ū E by

d E X = 〈∇u E, X〉+ 〈∇ū E, X〉, that is, ∇u E = 2−1
∇E and ∇ū E = 2−1

∇E .

Notice that ∇E = 2Hu+ 2|u|2u. Then (1-1) can be interpreted as

iu̇ =∇ū E(u). (3-2)

Lemma 3.1. Consider the coordinates (z, η) 7→ u in Lemma 2.4. Then there exists some functions
as in Definitions 2.8–2.9 such that, for (z, η) ∈ BCn (0, d0)× (BH1(0, d0) ∩Hc[0]), we have, for any
preassigned r0 ∈ N, the expansion (where c.c. means complex conjugate)

E(u)=
n∑

j=1

E(Q j z j )+〈Hη, η〉+R1,2
r0,∞

(z, η)

+

∑
j 6=k

[
E j z j (Re〈q j z j , z̄kφk〉+Re〈qkzk , z̄ jφ j 〉)+Re〈|Qkzk |

2 Qkzk , z̄ jφ j 〉
]

+R0,2N+5
r0,∞

(z, Z)+
n∑

j=1

2N+3∑
l=1

∑
|m|=l+1

Zma jm(|z j |
2)+Re〈S0,2N+4

r0,∞
(z, Z), η〉

+

n∑
j,k=1

2N+3∑
l=1

∑
|m|=l

(z̄ j Zm
〈G jkm(|zk |

2), η〉+ c.c.)+
∑

i+ j=2

∑
|m|≤1

Zm
〈G2mi j (z), ηi η j

〉

+

∑
d+c=3

∑
i+ j=d

〈Gdi j (z), ηi η j
〉R0,c

r0,∞
(z, η)+ EP(η), (3-3)

where:

• (a jm,G jkm) ∈ C∞(BR(0, d0),C×6r0(R
3,C));

• (G2mi j ,Gdi j ) ∈ C∞(BCn (0, d0),6r0(R
3,C)×6r0(R

3,C));

• for |m| = 0, where, in particular, G20i j (0)= 0, we have∑
i+ j=2

〈G20i j (z), ηiη j
〉 =

n∑
j=1

〈|Q j z j |
2η, η〉+ 2

n∑
j=1

Re〈Q j z j Re(Q j z jη), η〉; (3-4)

• R1,2
r0,∞

(eiϑ z, eiϑη)=R1,2
r0,∞

(z, η) for all ϑ ∈ R for the third term in the right-hand side of (3-3).
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Remark 3.2. In (3-3) the terms of the second line could potentially derail our proof. They appear
in (3-7)–(3-9). Similarly problematic is the first term in the right-hand side in (4-18) later. All these terms
are tied up. Indeed, in Lemma 4.11 we will show that in a system of coordinates better suited to search
for an effective Hamiltonian the problematic terms in the expansion of E cancel out.

In the proof of Lemma 3.1 we use the following lemma:

Lemma 3.3. We have, for j 6= k and δE j z j := E j z j − e j ,

E j z j 〈qkzk , φ j 〉+ 〈|Qkzk |
2 Qkzk , φ j 〉 = Ekzk 〈qkzk , φ j 〉+ δE j z j 〈qkzk , φ j 〉. (3-5)

Proof. We apply 〈 · , φ j 〉 to

Hqkzk + |Qkzk |
2 Qkzk = zkδEkzkφk + Ekzk qkzk

to get the following equality, which, from e j = E j z j − δE j z j , yields (3-5):

e j 〈qkzk , φ j 〉+ 〈|Qkzk |
2 Qkzk , φ j 〉 = Ekzk 〈qkzk , φ j 〉. �

Proof of Lemma 3.1. First of all, we have the Taylor expansion

E(u)= E
( n∑

j=1

Q j z j

)
+Re

〈
∇E

( n∑
j=1

Q j z j

)
, R[z]η

〉
+2−1 Re

〈
∇

2 E
( n∑

j=1

Q j z j

)
R[z]η, R[z]η

〉
+E3(η)

(3-6)
with

E3(η) :=

∫ 1

0
(1− t)Re

〈[
∇

2 EP

( n∑
j=1

Q j z j + t R[z]η
)
−∇

2 EP

( n∑
j=1

Q j z j

)]
R[z]η, R[z]η

〉
dt.

Step 1. We consider the expansion of the first term in the right-hand side of (3-6). We have∣∣∣∑ Q j z j

∣∣∣4=∑ |Q j z j |
4
+4

∑
j 6=k

|Q j z j |
2 Re(Q j z j Qkzk )

+2
∑
j<k

|Q j z j |
2
|Qkzk |

2
+

∑
j 6=k

j ′ 6=k′

Re(Q j z j Qkzk )Re(Q j ′z j ′
Qk′zk′

)+4
∑
k<l

j 6=k,l

|Q j z j |
2 Re(Qkzk Qlzl ).

All terms are invariant under the change of variable z eiϑ z. The second line is O(|Z|2). We conclude
that

E
( ∑

j=1,...,n

Q j z j

)
=

∑
j,k

〈H Q j z j , Qkzk 〉+
1
2

∫ ∣∣∣∣ ∑
j=1,...,n

Q j z j

∣∣∣∣4
=

∑
j=1,...,n

E(Q j z j )+R1+
∑
j 6=k

[
Re〈H Q j z j , Qkzk 〉+2 Re〈|Q j z j |

2 Q j z j , Qkzk 〉
]
, (3-7)
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where

R1 :=
∑
j<k

∫
|Q j z j |

2
|Qkzk |

2
+

1
2

∑
j 6=k

j ′ 6=k′

∫
Re(Q j z j Qkzk )Re(Q j ′z j ′

Qk′zk′
)+2

∑
k<l

j 6=k,l

∫
|Q j z j |

2 Re(Qkzk Qlzl )

= O(|Z|2).

By Proposition 1.1 and by (3-5), the second summation in the last line of (3-7) equals∑
j 6=k

[E j z j Re〈Q j z j , Qkzk 〉+Re〈|Q j z j |
2 Q j z j , Qkzk 〉]

=

∑
j 6=k

[
E j z j (Re〈q j z j , z̄kφk〉+Re〈qkzk , z̄ jφ j 〉)+Re〈|Qkzk |

2 Qkzk , z̄ jφ j 〉
]
+ R2, (3-8)

where

R2 :=
∑
j 6=k

E j z j Re〈q j z j , q̄kzk 〉+Re〈|Qkzk |
2 Qkzk , q̄ j z j 〉 = O(|Z|2).

The summation in (3-8) is O(|z|2|Z|) and not of the form O(|Z|2). Indeed, in the particular case when
zk = ρk and z j = ρ j are real numbers, we have what follows, which is not O(ρ2

kρ
2
j ):

E j z j Re〈q j z j , z̄kφk〉+ Ekzk Re〈qkzk , z̄ jφ j 〉+Re〈|Qkzk |
2 Qkzk , z̄ jφ j 〉

= ρkρ j
[
E jρ jρ

2
j 〈q̃ j (ρ

2
j ), φk〉+ Ekρkρ

2
k 〈q̃k(ρk), φ j 〉+ ρ

2
k 〈(φk + q̂k(ρ

2
k ))

3, φ j 〉
]
. (3-9)

Finally, we observe that R1+ R2 = O(|Z|2) summed up together yield the first two terms on the third
line of (3-3).

Indeed, since R1+ R2 is gauge invariant, by Lemma B.3 in Appendix B we have

R1+ R2 =

n∑
j=1

2N+3∑
l=1

∑
|m|=l+1

Zmb jm(|z j |
2)+ O(|Z|2N+5) (3-10)

with O(|Z|2N+5) smooth in z, independent of η and gauge invariant.
We have discussed the contribution to (3-3) of the first term in the expansion (3-6). Now we consider

the other terms in (3-6).

Step 2. We consider the expansion of the second term in the right-hand side of (3-6).
By Re〈∇E(Q j z j ), R[z]η〉 = 2 Re E j z j 〈Q j z j , R[z]η〉 = 0, which follows from R[z]η ∈ Hc[z] and

iQ j z j =−z j I D j R Q j z j + z j R D j I Q j z j — see (11) in [Gustafson et al. 2004] (and which is an immediate
consequence of Q j z j = eiθQ j |z j | for z j = eiθ

|z j |) — we have

Re
〈
∇E

( n∑
j=1

Q j z j

)
, R[z]η

〉

=

0︷ ︸︸ ︷
Re〈∇E(Q1z1), R[z]η〉+

∫ 1

0
∂t Re

〈
∇E

(
Q1z1 + t

∑
j>1

Q j z j

)
, R[z]η

〉
dt
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= Re
〈
∇E

(∑
j>1

Q j z j

)
, R[z]η

〉
+

∫
[0,1]2

∂s∂t Re
〈
∇EP

(
s Q1z1 + t

∑
l>1

Qlzl

)
, R[z]η

〉
dt ds

=

n−1∑
j=1

∫
[0,1]2

∂s∂t Re
〈
∇EP

(
s Q j z j + t

∑
l> j

Qlzl

)
, R[z]η

〉
dt ds, (3-11)

where the last line is obtained by repeating the argument in the first three lines. For Q̂ j =
∑

l> j Qlzl , by
∇EP(u)= 2|u|2u, the last line of (3-11) is, in the notation of Lemma 2.3,

2
n−1∑
j=1

Re
〈
2Q j z j |Q̂ j |

2
+ 2|Q j z j |

2 Q̂ j + Q2
j z j

Q̂ j + Q j z j Q̂2
j , η+φ j

(
〈B̂ j (Ẑ), η〉+ 〈z̄i z̄`Ĉ i`j (Ẑ), η〉

)〉
.

Further expanding Q̂ j =
∑

l> j Qlzl and using Qlzl = zl(φl + q̂l(|zl |
2)), the above term is of the form

n∑
j=1

∑
|m|=1

(
z̄ j Zm

〈G jm(Ẑ), η〉+ c.c.
)
.

As in Step 1, by Lemma B.4, this can be expanded into
n∑

j=1

∑
1≤|m|≤2N+3

(
z̄ j Zm

〈G jkm(|zk |
2), η〉+ c.c.

)
+

∑
|m|=2N+4

(
Zm
〈Gm(z), η〉+ c.c.

)
. (3-12)

Thus the last line in (3-11) can be absorbed in the third and fourth lines of (3-3).

Step 3. We consider the expansion of the third term in the right-hand side of (3-6). Using ∇2 EK (u)= 2H
and proceeding as for (3-6), we obtain

2−1 Re
〈
∇

2 E
( n∑

j=1

Q j z j

)
R[z]η, R[z]η

〉

= 2−1 Re
〈
∇

2 EK

( n∑
j=1

Q j z j

)
R[z]η, R[z]η

〉
+ 2−1

n∑
j=1

Re〈∇2 EP(Q j z j )R[z]η, R[z]η〉

+ 2−1
n−1∑
j=1

∫
[0,1]2

∂s∂t Re
〈
∇

2 EP

(
s Q j z j + t

n∑
l= j+1

Qlzl

)
R[z]η, R[z]η

〉
dt ds.

The third line is absorbed in the Zm
〈G2mi j (z), ηi η j

〉 +R1,2
r0,∞

(z, η) with |m| = 1 terms in (3-3). From
the second line, using (2-3)–(2-4) and, in particular, α j [z]η =R1,1

r0,∞
(z, η) for the last equality, we have

2−1 Re
〈
∇

2 EK

( n∑
j=1

Q j z j

)
R[z]η, R[z]η

〉
= 〈H R[z]η, R[z]η〉

= 〈Hη, η〉+ 2
n∑

j=1

Re
[
(α j [z]η)〈Hφ j , η〉

]
+

n∑
j,k=1

e j |α j [z]η|2

= 〈Hη, η〉+R1,2
r0,∞

(z, η),
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which yield the second and third terms in the right-hand side of (3-3). For

2−1
n∑

j=1

∇
2 EP(Q j z j )η =

n∑
j=1

|Q j z j |
2η+ 2

n∑
j=1

Q j z j Re(Q j z jη),

we have, for G20i j (z) as in (3-4),

2−1
n∑

j=1

Re〈∇2 EP(Q j z j )R[z]η, R[z]η〉 =R1,2
r0,∞

(z, η)+
∑

i+ j=2

〈G20i j (z), ηi η j
〉. (3-13)

This R1,2
r0,∞

(z, η) defines the third term in the right-hand side of (3-3). Notice that R1,2
r0,∞

(eiϑ z, eiϑη)=

R1,2
r0,∞

(z, η) because this invariance is satisfied both by the left-hand side of (3-13) (by the invariance
of E , (2-2) and Lemma 2.3) and by the last summation in the right-hand side of (3-13), by formula (3-4).

Step 4. We now turn to the E3(η) term in (3-6). By elementary computations,

E3(η)=

∫
[0,1]2

t (1− t) d3 EP

(∑
j≥1

Q j z j + st R[z]η
)
· (R[z]η)3 dt ds

= EP(R[z]η)

+

∫
[0,1]3

t (1− t) d4 EP

(
τ
∑
j≥1

Q j z j + st R[z]η
)
· (R[z]η)3

∑
j≥1

Q j z j dt ds dτ (3-14)

with d3 EP(u) · v3 the trilinear differential form applied to (v, v, v) and d4 EP(u) · v3w the 4-linear
differential form applied to (v, v, v,w).

In particular, we have used the fact that, since d j EP(0)= 0 for 0≤ j ≤ 2, we have

EP(R[z]η)=
∫
[0,1]2

t (1− t) d3 EP(st R[z]η) · (R[z]η)3 dt ds. (3-15)

For β(u)= |u|4, and using the fact that d4β(u) ∈ B4(C, R) is constant in u, the last line of (3-14) is

1
12

∫
R3

d4β · ((R[z]η)(x))3
∑
j≥1

Q j z j (x) dx,

and can be absorbed in the 〈Gdi j (z), ηi η j
〉R0,c

r0,∞
(z, η) terms in (3-3). We expand EP(R[z]η) as a sum

of similar terms and of EP(η). �

In order to extract from the functional in (3-3) an effective Hamiltonian well suited for the FGR
and dispersive estimates, we need to implement a Birkhoff normal form argument; see Section 5. This
requires an intermediate change of coordinates, which will partially normalize the symplectic form �

defined in (4-1) below, and diagonalize the homological equations. Notice that, as a bonus, this change of
coordinates erases the bad terms in the expansion of E in (3-3) discussed in Remark 3.2.
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4. Darboux theorem

System (3-2) is Hamiltonian with respect to the symplectic form in H 1(R3,C),

�(X, Y ) := i〈X, Y 〉− i〈X , Y 〉 = 2 Im〈X , Y 〉. (4-1)

In terms of the spectral decomposition of H (recall φ j = φ j ),

X =
n∑

j=1

〈X, φ j 〉φ j + Pc X, (4-2)

�(X, Y )= i
n∑

j=1

(〈X, φ j 〉〈Y , φ j 〉− 〈X , φ j 〉〈Y, φ j 〉)+ i〈Pc X, PcY 〉− i〈Pc X , PcY 〉. (4-3)

However, in terms of the coordinates in Lemma 2.4, � admits a quite more complicated representation,
as we shall see. This will require us to adjust these coordinates.

Our first observation is that, for the coordinates in Lemma 2.4, we have the following facts:

Lemma 4.1. The Fréchet derivatives of η(u) and z j are given by the formulas

dη(u)=−
∑

j=1,...,n

∑
A=I,R

Pc D j Aq j z j dz j A+ Pc, (4-4)

dz j = 〈 · , φ j 〉−
∑

k:k 6= j

∑
A=I,R

〈Dk Aqkzk , φ j 〉 dzk A−

n∑
k=1

∑
A=I,R

Dk Aα j [z]η dzk A−α j [z] ◦ dη. (4-5)

Analogous formulas for dz j R and dz j I are obtained by applying Re and Im to (4-5).

Proof. We start with (4-4). By the independence of z and η, we have

dη
∂

∂z j R
= dη

∂

∂z j I
= 0, (4-6)

where
∂

∂z j A
= D j A Q j z j +

n∑
k=1

D j A(αk[z]η)φk . (4-7)

Next, for ξ ∈Hc[0] we have what follows, which implies dη R[z]Pc = 1|Hc[0]:

dη R[z]Pcξ =
d
dt
η(Q j z j + R[z](η+ tξ))

∣∣∣∣
t=0
= ξ.

So dη =
∑
(a j dz j R + b j dz j I )+ Pc, where we used Pc R[z] = 1. Then a j and b j can be computed

applying
∑
(a j dz j R + b j dz j I )+ Pc to the vectors (4-7) and using (4-6). Finally (4-5) follows by

z j (u)=
〈
u−

n∑
k=1

qkzk − R[z]η, φ j

〉
=

〈
u−

∑
k:k 6= j

qkzk , φ j

〉
−α j [z]η. �
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We consider the function η(u). Notice that dη(u)X = dη(u+ t X)/dt
∣∣
t=0 = dη(u)X . Now we introduce

a new symplectic form. Notice that our final choice of symplectic form is not the �′0 defined here in (4-8),
but rather the �0 defined in (4-13).

Lemma 4.2. Set

�′0 := 2
n∑

j=1

dz j R ∧ dz j I + i〈dη, dη〉− i〈dη, dη〉

and B ′0 :=
n∑

j=1

(z j R dz j I − z j I dz j R)−
i
2
(〈η, dη〉− 〈η, dη〉).

(4-8)

Then d B ′0 =�
′

0 and �=�′0 at u = 0 for the � of (4-1). Furthermore,

8∗B ′0 = B ′0 for 8(u)= eiϑu for any fixed ϑ ∈ R. (4-9)

Proof. The equality d B ′0 =�
′

0 is elementary. Indeed, d(z j R dz j I − z j I dz j R)= 2 dz j R ∧ dz j I and, for a
pair of constant vector fields X and Y , since d2η(X, Y )= d2η(Y, X) we have

d〈η, dη〉(X, Y )= X〈η, dη Y 〉− Y 〈η, dη X〉 = 〈dη X, dη Y 〉− 〈dη Y, dη X〉.

This yields d〈η, dη〉 = 〈dη, dη〉− 〈dη, dη〉 and also d〈η, dη〉 = −d〈η, dη〉 = 〈dη, dη〉− 〈dη, dη〉.
To compute �′0 at u = 0, we observe that, by Lemma 4.1, we have dη = Pc at u = 0, so that

i〈dη X, dη Y 〉− i〈dη X, dη Y 〉 = i〈Pc X, PcY 〉− i〈Pc X , PcY 〉 at u = 0. (4-10)

By Lemma 4.1 and Proposition 1.1, at u = 0 we have dz j R =Re〈 · , φ j 〉 and dz j I = Im〈 · , φ j 〉. Summing
on repeated indexes, we have

i(〈X, φ j 〉〈Y , φ j 〉− 〈X , φ j 〉〈Y, φ j 〉)=−2 Im(〈X, φ j 〉〈Y , φ j 〉)

= 2(Re〈X, φ j 〉 Im〈Y, φ j 〉−Re〈Y, φ j 〉 Im〈X, φ j 〉)

= 2 Re〈 · , φ j 〉 ∧ Im〈 · , φ j 〉(X, Y )

= 2 dz j R ∧ dz j I |u=0(X, Y ). (4-11)

By (4-10)–(4-11), we get �=�′0 at u = 0. Finally, (4-9) follows immediately by

B ′0 :=
n∑

j=1

Im(z̄ j dz j )+ Im〈η, dη〉. (4-12)

This concludes the proof. �

Summing on repeated indexes and using the notation in Proposition 1.1, we introduce the differential
forms

�0 :=�
′

0+ iγ j (|z j |
2) dz j ∧ dz̄ j ,

where γ j (|z j |
2) := 〈q̂ j (|z j |

2), q̂ j (|z j |
2)〉+ 2|z j |

2
〈q̂ j (|z j |

2), q̂ ′j (|z j |
2)〉,

and B0 := B ′0− Im〈D j Aq̄ j z j , q j z j 〉 dz j A

(4-13)
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with q̂ ′j (t)= dq̂ j/dt . We have the following lemma:

Lemma 4.3. We have γ j (|z j |
2)=R2,0

∞,∞(|z j |
2). We have d B0 =�0 and

8∗B0 = B0 for 8(u)= eiϑu for any fixed ϑ ∈ R. (4-14)

Proof. The identity γ j (|z j |
2)=R2,0

∞,∞(|z j |
2) is elementary from Proposition 1.1 and Definition 2.8. Next,

d B0 =�0 follows by d B ′0 =�
′

0 and

−d Im〈D j Aq̄ j z j , q j z j 〉 dz j A = Im〈D j Aq̄ j z j , D j Bq j z j 〉 dz j A ∧ dz j B

= 2 Im〈D j R q̄ j z j , D j I q j z j 〉 dz j R ∧ dz j I

= 2γ (|z j |
2) dz j R ∧ dz j I

= iγ j (|z j |
2) dz j ∧ dz̄ j ,

where q j z j = z j q̂ j (|z j |
2).

Turning to the proof of (4-14), we have

8∗(iγ j (|z j |
2) dz j ∧ dz̄ j )= iγ j (|z j |

2) d(8∗z j )∧ d(8∗ z̄ j )= iγ j (|z j |
2) dz j ∧ dz̄ j . �

Lemma 4.4. We have d B =� with B the differential form in the manifold H 1 defined by

B(u)X := Im〈ū, X〉. (4-15)

Consider, for u ∈ BH1(0, d0) with the d0 of Lemma 2.3, the function ψ ∈ C∞(BH1(0, d0),R) and the
differential form 0(u) defined by

ψ(u) :=
n∑

j=1

Im〈q̄ j z j , u〉+
n∑

j=1

Im(α j [z]ηz̄ j ), (4-16)

0(u) := B(u)− B0(u)+ dψ(u). (4-17)

Then the map (z, η) 7→ 0(u(z, η)), where u(z, η) is the right-hand side of (2-10), which is initially
defined in BCn (0, d0)× (H 1

∩Hc[0]), extends to BCn (0, d0)×6
c
−r for any r ∈ N. In particular, we have

0 = 0 j Adz j A+〈0η, dη〉+ 〈0η, dη〉 with, in the sense of Remark 2.10,

0 j A =R1,1
∞,∞(z, Z, η) and 0ξ = S1,1

∞,∞(z, Z, η) for ξ = η, η. (4-18)

Furthermore, 0 satisfies an invariance property in BH1(0, d0):

8∗0 = 0 for 8(u)= eiϑu for any fixed ϑ ∈ R. (4-19)

Proof. By the definition of the exterior differential, and focusing on constant vector fields X and Y ,

d B(X, Y )= X B(u)Y − Y B(u)X = Im〈X , Y 〉− Im〈Y , X〉 =�(X, Y ).
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This is enough to prove d B =�. Next, using R[z]η = η+
∑

j α j [z]ηφ j , we expand

B(u)=
∑

j

Im〈Q j z j , · 〉 + Im〈R[z]η, · 〉

=

∑
j

Im〈z̄ jφ j , · 〉 + Im〈η, · 〉 +
∑

j

Im〈q̄ j z j , · 〉 +
∑

j

Im(α j [z]η〈φ j , · 〉). (4-20)

By the definition of B0 in (4-13), we have

B− B0 = I1+ I2+ I3+
∑
j,A

Im〈D j Aq̄ j z j , q j z j 〉dz j A+
∑

j

Im〈q̄ j z j , · 〉, (4-21)

where

I1 :=
∑

j

Im[z̄ j (〈φ j , · 〉 − dz j )], I2 := − Im〈η, dη− Pc〉, I3 :=
∑

j

Im[α j [z]η〈φ j , · 〉].

We replace dη using (4-4) and 〈φ j , · 〉 using (4-5). For α j [z] ◦ dη, the linear operator defined by
α j [z] ◦ dη(X) := α j [z] dη(X), we then get

I1 = Im〈D j Aq j z j , z̄kφk〉 dz j A+ Im(z̄ j Dk Aα j [z]η) dzk A+ Im(z̄ jα j [z] ◦ dη)

=

∑
j A

R1,1
∞,∞ dz j A+ Im(z̄ jα j [z] ◦ dη), (4-22)

where, as anticipated in Remark 2.10, here we set R
i, j
K ,M = R

i, j
K ,M(z, Z, η) and Si, j

K ,M = Si, j
K ,M(z, Z, η),

where Z is as defined in Definition 2.2.
The second term in the last line of (4-22) is incorporated into the first sum in (4-25). We have

I2 = Im〈η, D j Aq j z j 〉dz j A =
∑
j A

R2,1
∞,∞dz j A. (4-23)

Substituting with (4-5), we have

I3 =
∑
j A

R2,1
∞,∞dz j A+〈S1,1

∞,∞, dη〉+ 〈S1,1
∞,∞, dη〉. (4-24)

Hence, we get

B− B0 =
∑

j

Im(z̄ jα j [z] ◦ dη)+
∑
j A

R1,1
∞,∞ dz j A+〈S1,1

∞,∞, dη〉+ 〈S1,1
∞,∞, dη〉

+

∑
j A

Im〈D j Aq̄ j z j , q j z j 〉 dz j A+
∑

j

Im〈q̄ j z j , · 〉. (4-25)

Set now ψ̃(u) := −
∑n

j=1 Im〈q̄ j z j , u〉. Then it is elementary that we have

dψ̃ =−
n∑

j=1

Im〈q̄ j z j , · 〉 −
∑
j,A

Im〈D j Aq̄ j z j , q j z j 〉 dz j A+
∑
j,A

R1,1
∞,∞ dz j A. (4-26)

By the Leibniz rule we have

Im(z̄ jα j [z] ◦ dη)= d Im(z̄ jα j [z] η)− Im(d(z̄ jα j [z]) η). (4-27)
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The contribution to
∑

j Im(z̄ jα j [z] ◦ dη) in (4-25) of the last term in the right-hand side of (4-27) can be
absorbed into the term

∑
j A R1,1

∞,∞ dz j A. Then

B− B0+ dψ =
∑
j A

R1,1
∞,∞ dz j A+〈S1,1

∞,∞, dη〉+ 〈S1,1
∞,∞, dη〉.

Here we have used that the first two terms in the right-hand side of (4-26) cancel with the last two
sums in (4-25) and that there is a cancellation between the contribution to

∑
j Im(z̄ jα j [z] ◦ dη) of the

d Im(z̄ jα j [z] η) in (4-27) and the differential of the last term in (4-16). This yields (4-18).
Lastly we consider (4-19). We have 8∗B0 = B0 by (4-14), while 8∗B = B follows immediately from

the definition of B in (4-15). Finally, 8∗ψ =ψ follows immediately from 8∗〈q̄ j z j , u〉 = 〈q̄ j z j , u〉, which
follows from q j z j (e

iϑ z)= eiϑq j z j (z), and from (2-9) and (2-12), which imply

8∗(z̄ jα j [z]η)= e−iϑ z̄ jα j [eiϑ z]eiϑη = z̄ jα j [z]η. �

Lemma 4.5. Consider the differential form�−�0, which is defined in BH1(0, d0) for the d0 of Lemma 2.3.
Then, summing on repeated indexes, we have

�−�0 = �̃i j AB dzi A ∧ dz j B +
∑
ξ=η,η

dzi A ∧ 〈�̃i Aξ , dξ〉+
∑

ξ,ξ ′=η,η

〈�̃ξ ′ξ dξ, dξ ′〉, (4-28)

where, expressed as functions of (z, η), the coefficients extend into functions defined in BCn (0, d0)×6
c
−r

for any r ∈N and, in particular, we have �̂i Aξ = S1,0
∞,∞(z, Z, η), �̂i j AB =R1,0

∞,∞(z, Z, η) in the sense of
Remark 2.10 and �̃ξ ′ξ = ∂ξ S1,1

∞,∞(z, Z, η)− (∂ξ ′S1,1
∞,∞(z, Z, η))∗ (with the two instances of S distinct).

We furthermore have

8∗(�−�0)=�−�0 for 8(z, η)= (eiϑ z, eiϑη) for any fixed ϑ ∈ R. (4-29)

Proof. We have

�−�0 = d0 = d
∑
j,A

R1,1
∞,∞dz j A+ d

∑
ξ

〈S1,1
∞,∞, dξ〉.

Summing over k, B and ξ , we have

d(R1,1
∞,∞ dz j A)= ∂zk B R1,1

∞,∞ dzk B ∧ dz j A+〈∂ξR1,1
∞,∞, dξ〉 ∧ dz j A

with the ∂ξR1,1
∞,∞ ∈Hc[0] defined, summing on repeated indexes and for F with values in R, by

d F X = ∂zk B F dzk B X +〈∂ξ F, dξ X〉 for any X ∈ L2(R3,C).

It is easy to see that ∂ξR1,1
∞,∞ = S1,0

∞,∞ and ∂zk B R1,1
∞,∞ =R1,0

∞,∞.
Furthermore, summing on repeated indexes we have

d〈S1,1
∞,∞, dξ〉 = dzk B ∧ 〈∂zk B S1,1

∞,∞, dξ〉+ 〈∂ξ ′S1,1
∞,∞ dξ ′, dξ〉− 〈dξ, ∂ξ ′S1,1

∞,∞ dξ ′〉

= dzk B ∧ 〈∂zk B S1,1
∞,∞, dξ〉+ 〈∂ξ ′S1,1

∞,∞ dξ ′, dξ〉− 〈(∂ξ ′S1,1
∞,∞)

∗ dξ, dξ ′〉, (4-30)
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where, for T ∈ C1(UL2, L2) with UL2 an open subset in L2, ∂ξT ∈ B(Hc[0], L2) is defined by

dT X = ∂zk B T dzk B X + ∂ξT dξ X for any X ∈ L2(R3,C).

Summing on ξ in (4-30) we get terms which are absorbed into the last two terms of (4-28).
Formula (4-29) follows from (4-19), �0 = d B0 and �= d B. �

Lemma 4.6. Consider the form�t :=�0+t (�−�0) and set iX�t(Y ) :=�t(X, Y ). For any preassigned
r ∈ N recall by, (4-8), (4-13) and Lemmas 4.4 and 4.5, that �−�0 and 0 extend to forms defined in
BCn (0, d0)×6

c
−r . Then there is δ0∈ (0, d0) such that, for any (t, z, η)∈ (−4, 4)×BCn (0, δ0)×B6c

−r
(0, δ0),

there exists exactly one solution Xt(z, η) ∈ L2 of the equation iXt�t = −0. Furthermore, we have the
following facts:

(1) Xt(z, η) ∈ 6r and, if we set Xt
j A(z, η) = dz j A Xt(z, η) and Xt

η(z, η) = dηXt(z, η), we have
Xt

j A(z, η)=R1,1
r,∞(t, z, Z, η) and Xt

η(z, η)= S1,1
r,∞(t, z, Z, η) in the sense of Remark 2.10.

(2) For Xt
j := dz j Xt and Xt

η := dηXt , we have Xt
j (e

iϑ z, eiϑη) = eiϑXt
j (z, η) and Xt

η(e
iϑ z, eiϑη) =

eiϑXt
η(z, η).

Proof. We define Y such that iY�
′

0 = −0, which yields Y j R = −
1
20 j I and Y j I =

1
20 j R (both R1,1

∞,∞),
Yη = −i0η and Yη = i0η (both S1,1

∞,∞). We use iKt X�
′

0 = iX (�0 −�
′

0 + t�̂), where �̂ := �−�0, to
define in L2 the operator Kt . We claim the following lemma:

Lemma 4.7. For appropriate symbols R1,0
∞,∞(t, z, Z, η) and S1,0

∞,∞(t, z, Z, η), which differ from one term
to the other, and for Z as in Definition 2.2, we have

(Kt X) j A =
∑
l B

R1,0
∞,∞Xl B +

∑
ξ=η,η

〈S1,0
∞,∞, Xξ 〉,

(Kt X)ξ =
∑
l B

S1,0
∞,∞Xl B +

∑
ξ ′=η,η

(
∂ξ ′S1,1

∞,∞(t, z, Z, η)− (∂ξ S1,1
∞,∞(t, z, Z, η))∗

)
Xξ ′ .

(4-31)

We assume for a moment Lemma 4.7 and complete the proof of Lemma 4.6. The equation iXt�t =−0

becomes Xt
+ Kt X

t
= Y . Indeed, suppose Xt

+ Kt X
t
= Y holds. Then, by definition of Kt , we have

iXt (�t −�
′)= iKt Xt�

′

0 and so iXt�t = iXt�
′

0+ iKt Xt�
′

0 =−0.

By Lemma 4.7, in coordinates and for ξ = η, η, the last equation is schematically of the form

Xt
j A+

∑
`,B

R1,0
r,∞Xt

`B +
∑
ξ=η,η

〈S1,1
r,∞,Xt

ξ 〉 =R1,1
r,∞,

Xt
ξ +

∑
`B

S1,0
r,∞Xt

`B +
∑
ξ ′=η,η

(
∂ξ ′S1,1

∞,∞(t, z, Z, η)− (∂ξ S1,1
∞,∞(t, z, Z, η))∗

)
Xt
ξ ′ = S1,1

r,∞.
(4-32)

Notice that (∂ξ S1,1
∞,∞)S1,1

r,∞ is C∞ in (t, z, Z, η) with values in 6r . We have

‖(∂ξ S1,1
∞,∞)S

1,1
r,∞‖6r ≤ ‖∂ξ S1,1

∞,∞‖B(6−r ,6r )‖S
1,1
r,∞‖6r .
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By (2-26), we have ∂ξ S1,1
∞,∞(t, 0, 0, 0). This implies

‖∂ξ S1,1
∞,∞‖B(6−r ,6r ) ≤ C‖η‖6−K + |Z| + |z| (4-33)

and so
‖(∂ξ S1,1

∞,∞)S
1,1
r,∞‖6r ≤ C(‖η‖6−K + |Z|)(‖η‖6−K + |Z| + |z|)

2.

So (∂ξ S1,1
∞,∞)S1,1

r,∞ = S2,1
r,∞.

Inequality (4-33), a Neumann expansion and formulas (2-27) yield claim (1) in Lemma 4.6.
Claim (2) in Lemma 4.6 follows from

i8−1
∗ Xt8

∗�t =−8
∗0 =−0 = iXt�t = i8−1

∗ Xt�t ,

where 8∗0 = 0 is (4-19) and we use (4-14) and (4-29) to conclude 8∗�t = �t . Then 8−1
∗

Xt
= Xt ,

which is equivalent to 8∗Xt
= Xt . For the other formulas in claim (2), we have, for instance,

Xt
j (e

iϑ z, eiϑη)= Xt
j (8(u))= dz j (X

t(8(u)))= dz j (8∗X
t(u))= d(z j ◦8)(X

t(u))= eiϑXt
j (u).

This ends the proof of Lemma 4.6, assuming Lemma 4.7. �

Proof of Lemma 4.7. By (4-13) and summing over the indexes ( j, A, B), we can write

�0−�
′

0 =R4,0
∞,∞ dz j A ∧ dz j B =⇒ iX (�0−�

′

0)=R4,0
∞,∞X j R dz j I +R4,0

∞,∞X j I dz j R. (4-34)

So, if we define K ′X by setting iK ′X�
′

0 = iX (�0−�
′

0), by comparing (4-34) with

iK ′X�
′

0 = 2(K ′X) j Rdz j I − 2(K ′X) j I dz j R + i〈(K ′X)η, Xη〉− i〈(K ′X)η, Xη〉,

we obtain
(K ′X) j A =R4,0

∞,∞X j A and (K ′X)ξ = 0 for ξ = η, η. (4-35)

Summing on ( j, l, A, B, ξ, ξ ′), we have

t�̂=R1,0
∞,∞ dz j A ∧ dzl B + dz j A ∧ 〈S1,0

∞,∞, dξ〉+ t
〈(
∂ξ S1,1
∞,∞(z, Z, η)− (∂ξ ′S1,1

∞,∞(z, Z, η))∗
)

dξ, dξ ′
〉
.

Hence,

tiX �̂=R1,0
∞,∞X j A dzl B +〈S1,0

∞,∞, Xξ 〉 dz j A+ X j A〈S1,0
∞,∞, dξ〉+ 〈[∂ξ S1,1

∞,∞− (∂ξ ′S
1,1
∞,∞)

∗
]Xξ , dξ ′〉.

So, if we define K ′′X by setting iK ′′X�
′

0 = tiX �̂, we obtain

(K ′′X) j A =
∑
`B

R1,0
∞,∞X`B +

∑
ξ=η,η

〈S1,0
∞,∞, Xξ 〉,

(K ′′X)ξ =
∑
l B

S1,0
∞,∞Xl B +

∑
ξ=η,η

[∂ξ ′S1,1
∞,∞− (∂ξ S1,1

∞,∞)
∗
]Xξ ′ .

(4-36)

Since Kt = K ′+ K ′′, summing up (4-35) and (4-36) we get (4-31), and so Lemma 4.7. �

Having established that Xt(z, η) has components which are restrictions of symbols as in Definitions
2.8 and 2.9, we have the following result:
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Lemma 4.8. Fix r ∈N and for the δ0 and the Xt(z, η) of Lemma 4.6, consider the following system, which
is well defined in (t, z, η) ∈ (−4, 4)× BCn (0, δ0)× B6c

k
(0, δ0) for all k ∈ Z∩ [−r, r ]:

ż j = Xt
j (z, η) and η̇ = Xt

η(z, η). (4-37)

Then the following facts hold:

(1) For δ1 ∈ (0, δ0) sufficiently small, system (4-37) generates flows, for all k ∈ Z∩ [−r, r ],

Ft
∈ C∞((−2, 2)× BCn (0, δ1)× B6c

k
(0, δ1), BCn (0, δ0)× B6c

k
(0, δ0)),

Ft
∈ C∞((−2, 2)× BCn (0, δ1)× BH1∩Hc[0](0, δ1), BCn (0, δ0)× BH1∩Hc[0](0, δ0)).

(4-38)

In particular, for zt
j := z j ◦F

t(z, η) and ηt
:= η ◦Ft(z, η), we have

zt
j = z j + S j (t, z, η) and ηt

= η+ Sη(t, z, η) (4-39)

with S j (t, z, η)=R1,1
r,∞(t, z, Z, η) and Sη(t, z, η)= S1,1

r,∞(t, z, Z, η) in the sense of Remark 2.10.

(2) F= F1 is a local diffeomorphism of H 1 into itself near the origin such that F∗�=�0.

(3) S j (t, eiϑ z, eiϑη)= eiϑ S j (t, z, η) and Sη(t, eiϑ z, eiϑη)= eiϑ Sη(t, z, η).

Proof. The first sentence has been established in Lemma 4.6. Elementary theory of ODEs yields (4-38).
The rest of claim (1) is a special case of a more general result; see Lemma 4.9 below. We get claim (2)
by the classical formula, for L X the Lie derivative,

∂t(F
t∗�t)= Ft∗(LXt�t + ∂t�t)= Ft∗(diXt�t + d0)= 0. (4-40)

Notice that (4-40) is well defined here, while it has no clear meaning for the NLS with translation treated
in [Cuccagna 2012; 2014], where the flows Ft are not differentiable (see [Cuccagna 2012] for a rigorous
argument on how to get around this problem). The symmetry in claim (3) is elementary and we skip it. �

Lemma 4.9. Consider a system

ż j = X j (t, z, η) and η̇ = Xη(t, z, η), (4-41)

where X j = Ra,b
r,m(t, z, Z, η) for all j and Xη = Sc,d

r,m(t, z, Z, η) for fixed pairs (r,m), (a, b) and (c, d).
Assume m, b, d ≥ 1, with possibly m =∞, and r ≥ 0. Then, for the flow (zt , ηt)= Ft(z, η), we have

zt
j = z j + S j (t, z, η) and ηt

= η+ Sη(t, z, η) (4-42)

for appropriate functions S j =Ra,b
r,m(t, z, Z, η) and Sη = Sc,d

r,m(t, z, Z, η) in the sense of Remark 2.10.

Proof. Consider the vectors Z of Definition 2.2. Notice that Ż =Ra+1,b
r,m (t, z, Z, η), and this equation can

be extended to a whole neighborhood of 0 in the space L . Pairing the latter equation with equations (4-42),
a system remains defined which has a flow Ft(z, Z, η) that is Cm in (t, z, Z, η) and which reduces to
the flow in (4-41) when we restrict to the vectors Z of Definition 2.2, by construction. The inequalities
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(2-23) and (2-26), required to prove S j =Ra,b
r,m and Sη = Sc,d

r,m , can be obtained as follows. We have, for
all |k| ≤ r ,

|zt
− z| ≤

∫ t

0
|Ra,b

r,m(s, zs, Zs, ηs)| ds

≤ C
∫ t

0
(‖ηs
‖6−r + |Z

s
|)b(‖ηs

‖6−r + |Z
s
| + |zs

|)a ds,

‖ηt
− η‖6k ≤

∫ t

0
‖Sc,d

r,m(s, zs, Zs, ηs)‖6k ds

≤ C
∫ t

0
(‖ηs
‖6−r + |Z

s
|)d(‖ηs

‖6−r + |Z
s
| + |zs

|)c ds,

|Zt
− Z| ≤

∫ t

0
|Ra,b

r,m(s, zs, Zs, ηs)| ds

≤ C
∫ t

0
(‖ηs
‖6−r + |Z

s
|)b(‖ηs

‖6−r + |Z
s
| + |zs

|)a+1 ds. (4-43)

By Gronwall’s inequality we get that |Zt
| and ‖ηt

‖6−r are bounded by C(|Z| + ‖η‖6−r ). Plugging this
into the right-hand side of (4-43), we obtain the last part of the statement. �

We discuss the pullback of the energy E by the map F := F1 in Lemma 4.8(2). We set H2(z, η) =∑n
j=1 e j |z j |

2
+〈Hη, η〉. Our first preliminary result is the following one:

Lemma 4.10. Consider the δ1 of Lemma 4.8, the δ0 of Lemma 4.6 and set r = r0 with r0 the index in
Lemma 3.1. Then, for the map F in Lemma 4.8(2), we have

F
(
BCn (0, δ1)× (BH1(0, δ1)∩Hc[0])

)
⊂ BCn (0, δ0)× (BH1(0, δ0)∩Hc[0]) (4-44)

and F|BCn (0,δ1)×(BH1 (0,δ1)∩Hc[0]) is a diffeomorphism between its domain and an open neighborhood of the
origin in Cn

× (H 1
∩Hc[0]). Furthermore, the functional K := E ◦F admits an expansion

K (z, η)

= H2(z, η)+
∑

j=1,...,n

λ j (|z j |
2)

+

2N+3∑
l=0

∑
|m|=l+1

Zma(1)m (|z1|
2, . . . , |zn|

2)+

n∑
j=1

2N+3∑
l=0

∑
|m|=l

(z̄ j Zm
〈G(1)

jm(|z j |
2), η〉+ c.c.)

+R1,2
r1,∞

(z, η)+R0,2N+5
r1,∞

(z, Z, η)+Re〈S0,2N+4
r1,∞

(z, Z, η), η〉

+

∑
i+ j=2

∑
|m|≤1

Zm
〈G(1)

2mi j (z, η), η
i η j
〉+

∑
d+c=3

∑
i+ j=d

〈G(1)
di j (z), η

i η j
〉R0,c

r,∞(z, η)+EP(η), (4-45)

where r1 = r0−2, G(1)
jm, G(1)

2mi j and G(1)
di j are S0,0

r1,∞
, a(1)m (|z1|

2, . . . , |zn|
2)=R0,0

∞,∞(z), c.c. means complex

conjugate, and λ j (|z j |
2) = R2,0

∞,∞(|z j |
2). For |m| = 0, G(1)

2mi j (z, η) = G2mi j (z) is the same as (3-4).
Finally, we have the invariance R1,2

r1,∞
(eiϑ z, eiϑη)≡R1,2

r1,∞
(z, η).
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Proof. Consider the expansion (3-3) for E(u(z′, η′)), and substitute the formulas z′j = z j + S j (z, η) and
η′=η+Sη(z, η), with S`(z, η)= S`(1, z, η) for `= j , j̄ , η, η, with S`= S`. By S j (z, η)=R1,1

r0,∞
(z, Z, η)

and Sη(z, η)= S1,1
r0,∞

(z, Z, η), it is elementary to see that the last three lines of (3-3) yield terms that can
be absorbed into the last three lines (4-45) (with l ≥ 1 in the third line). Notice that the z dependence of
the a(1)m in terms of (|z1|

2, . . . , |zn|
2) follows by Lemmas 4.8 and B.3. The z dependence of the G(1)

jm is
obtained by Lemma B.4. Notice also that, if an Ri,0

r,∞(z) depends only on z, then it is an Ri,0
∞,∞(z).

We have R1,2
r0,∞

(z′, η′)=R1,2
r0,∞

(z, Z, η). Note that, by the invariance of R1,2
r0,∞

(z, η) and Lemma 4.8(3),
we have R1,2

r0,∞
(eiϑ z, Z, eiϑη)≡R1,2

r0,∞
(z, Z, η). By Taylor expansion (using the conventions under (3-14))

R1,2
r0,∞

(z, Z, η)=R1,2
r0,∞

(z, Z, 0)+ dηR1,2
r0,∞

(z, Z, 0)η+
∫ 1

0
(1− t)∂2

ηR1,2
r0,∞

(z, Z, tη) dt · η2. (4-46)

Each of the terms in the right-hand side is invariant by change of variables (z, η) (eiϑ z, eiϑη). We have

R1,2
r0,∞

(z, Z, η)|η=0 =R1,2
∞,∞(z, Z)=

∑
k≤2N+4

1
k!

dk
ZR1,2
∞,∞(z, 0)Zk

+R1,2N+5
∞,∞ (z, Z)

=R1,2N+5
∞,∞ (z, Z)+

2N+4∑
l=2

∑
|m|=l+1

Zmcm(z)

=R1,2N+5
∞,∞ (z, Z)+

2N+4∑
l=2

∑
|m|=l+1

Zm
n∑

j=1

c jm(|z j |
2),

where, as in Step 1 in Lemma 3.1, the last equality is obtained by the invariance with respect to
(z, η) (eiϑ z, eiϑη) and by smoothness. We have, proceeding as above,

dηR1,2
r0,∞

(z, Z, 0)η = Re〈S1,1
r0,∞

(z, Z), η〉

=

∑
k≤2N+3

1
k!

Re〈dk
Z S1,1

r0,∞
(z, 0), η〉Zk

+Re〈S1,2N+4
r0,∞

(z, Z, η), η〉

= Re〈S1,2N+4
r0,∞

(z, Z, η), η〉+
n∑

j=1

2N+3∑
l=1

∑
|m|=l

(z̄ j Zm
〈A jm(|z j |

2), η〉+ c.c.),

Finally, for an R1,2
r0,∞

(eiϑ z, eiϑη)≡R1,2
r0,∞

(z, η) we have — see Definition 2.8 —∫ 1

0
(1− t)∂2

ηR1,2
r0,∞

(z, Z, tη) dt η2
=R1,2

r0,∞
(z, η).

By (4-46) and the subsequent formulas, we see that R1,2
r0,∞

(z′, η′) is absorbed into the last three lines of
(4-45) (with l ≥ 1 in the third line). The term 〈Hη′, η′〉 = 〈Hη, η〉+R1,2

r0−2,∞(z, Z, η) behaves similarly,
recalling that r1 = r0− 2. Here too we have R1,2

r0−2,∞(e
iϑ z, Z, eiϑη)≡R1,2

r0−2,∞(z, Z, η). This function
can be treated like the R1,2

r0,∞
(z, Z, η) discussed earlier.

The terms E(Q j z j ) and, for j 6= k, Re〈q j z j , z̄kφk〉 =R1,1
∞,∞(z, Z) can be expanded similarly. But this

time we need l = 0 in the third line. �
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The expansion in Lemma 4.10 is too crude. We have the following additional and crucial fact:

Lemma 4.11 (cancellation lemma). In the third line of (4-45) all the terms with l = 0 are zeros.

Proof. We first observe that the terms in the third line of (4-45) with l = 0 can be written as

n∑
k=1

∑
j 6=k

∑
A=R,I

z j Abk j A(zk)+

n∑
k=1

Re〈Ak(zk), η〉. (4-47)

Indeed, they are

∑
|m|=1

Zma(1)m (|z1|
2, . . . , |zn|

2)+

n∑
j=1

(z̄ j 〈G
(1)
j0 (|z j |

2), η〉+ c.c.), (4-48)

and it is obvious that the second term of (4-48) is the second term of (4-47). Arguing as in Lemma 3.1,
the first term of (4-48) can be written as

n∑
k=1

∑
|m|=1

Zma(1)km(|zk |
2).

Further, for Zm
= zi z̄ j , we can assume that i or j must be equal to k, because, if not, it can be absorbed

into the terms with l ≥ 1. Set Nk := {m : |m| = 1, mi, j = 0 if i 6= k and j 6= k}. We have

n∑
k=1

∑
|m|=1

Zma(1)km(|zk |
2)=

n∑
k=1

∑
m∈Nk

Zma(1)km(|zk |
2)=

n∑
k=1

∑
j 6=k

(z j z̄ka(1)km jk
(|zk |

2)+ zk z̄ j a
(1)
km jk

(|zk |
2)).

So, we can write the term in the form of the first term of (4-47).
Next, notice that, for pk = (0, . . . , 0, zk, . . . , 0; 0),

bk j A(zk)= ∂z j A K (z, η)
∣∣

pk
and Ak(zk)=∇ηK (pk). (4-49)

Therefore, it suffices to show the right sides in (4-49) are both zero. Recall u(z, η)=
∑n

j=1 Q j z j + R[z]η.
We have

∂z j A K (z, η)
∣∣

pk
= ∂z j A E

(
u(z′(z, η), η′(z, η))

)∣∣
pk

= Re
〈
∇E

(
u(z′(pk), η

′(pk))
)
, ∂z j A u

(
z′(z, η), η′(z, η)

)∣∣
pk

〉
.

By Lemma 4.8, we have

(z′(pk), η
′(pk))= pk . (4-50)

So

∇E(u(z′(pk), η
′(pk)))=∇E(Qkzk )= 2Ekzk Qkzk .

By Proposition 1.1 and by (4-50), for zk = eiϑkρk we have

−iF∗
∂

∂ϑk

∣∣∣∣
pk

=−i
∂

∂ϑk

( n∑
j=1

Q j z′j + R[z′]η′
)∣∣∣∣

pk

=−i
∂

∂ϑk
Qkzk =−i

∂

∂ϑk
eiϑk Qkρk = Qkzk ,
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where the first equality follows by definition of push forward, the second by (4-50) and the third by
Proposition 1.1. Similarly, by the definition of push forward, we have

∂z j A u(z′(z, η), η′(z, η))
∣∣

pk
= F∗∂z j A

∣∣
pk
.

Therefore, bk j A(zk)= 0 follows by

∂z j A K (z, η)
∣∣

pk
= 2Ekzk Im〈F∗∂ϑk |pk ,F∗∂z j A |pk 〉 = −Ekzk�0(∂ϑk , ∂z j,A)

∣∣
pk
= 0.

To get Ak(zk)= 0, fix 4 ∈Hc[0] and set pk,4(t) := (0, . . . , 0, zk, 0, . . . , 0; t4). Then, for all 4,

Re〈∇K (pk),4〉 =
d
dt

K (pk,4(t))
∣∣∣∣
t=0
=

d
dt

E
(
u
(
z′(pk,4(t)), η′(pk,4(t))

))∣∣∣∣
t=0

= Re
〈
∇E(Qkzk ),

d
dt

u
(
z′(pk,4(t)), η′(pk,4(t))

)∣∣∣∣
t=0

〉
= 2Ekzk Im

〈
F∗

∂

∂ϑk

∣∣∣∣
pk

,F∗4

〉
=−Ekzk�0

(
∂

∂ϑk
, 4

)∣∣∣∣
pk

= 0 =⇒ Ak(zk)= 0. �

5. Birkhoff normal form

In this section, where we search for the effective Hamiltonian, the main result is Theorem 5.9.
We consider the symplectic form �0 introduced in (4-13). We introduce an index `= j , j̄ , for ¯̄j = j

with j = 1, . . . , n. We write ∂ j = ∂z j and ∂ j̄ = ∂z̄ j , z j̄ = z̄ j . With this notation, summing on j , by (4-8)
and (4-34) for γ j (|z j |

2)=R2,0
∞,∞(|z j |

2) we have

�0 = i(1+ γ j (|z j |
2)) dz j ∧ dz̄ j + i〈dη, dη〉− i〈dη, dη〉. (5-1)

Given F ∈ C1(U,R) with U an open subset of Cn
×6c

r , its Hamiltonian vector field X F is defined by
iX F�0 = d F . We have, summing on j ,

iX F�0 = i(1+ γ j (|z j |
2))((X F ) j dz̄ j − (X F ) j̄ dz j )+ i〈(X F )η, dη〉− i〈(X F )η, dη〉

= ∂ j F dz j + ∂ j̄ F dz̄ j +〈∇ηF, dη〉+ 〈∇ηF, dη〉.

So, comparing the components of the two sides, we get for 1+$ j (|z j |
2) = (1+ γ j (|z j |

2))−1, where
$ j (|z j |

2)=R2,0
∞,∞(|z j |

2),

(X F ) j =−i(1+$ j (|z j |
2))∂ j̄ F, (X F )η =−i∇ηF,

(X F ) j̄ = i(1+$ j (|z j |
2))∂ j F, (X F )η = i∇ηF.

(5-2)

Given G ∈ C1(U,R) and F ∈ C1(U, E) with E a Banach space, we set {F,G} := d F XG .

Definition 5.1 (normal form). Recall Definition 2.5 and, in particular, (2-13). Fix r ∈ N0. A real-valued
function Z(z, η) is in normal form if Z = Z0+ Z1, where Z0 and Z1 are finite sums of the following
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type for l ≥ 1:

Z1(z, Z, η)=
n∑

j=1

∑
|m|=l

m∈M j (l)

(z̄ j Zm
〈G jm(|z j |

2), η〉+ c.c.), (5-3)

Z0(z, Z)=
∑
|m|=l+1

m∈M0(l+1)

Zmam(|z1|
2, . . . , |zn|

2), (5-4)

where G jm(|z j |
2)= S0,0

r,∞(|z j |
2), Z is as in Definition 2.2 and am(|z1|

2, . . . , |zn|
2)=R0,0

r,∞(|z1|
2, . . . , |zn|

2).

Remark 5.2. By Lemma 2.6, Zm
= |z1|

2m1 · · · |zn|
2mn for all m ∈ M0(2N + 4) for an m ∈ Nn

0 with
2|m|=|m|. By Lemma 2.6 for |m|≤2N+3, either

∑
a,b(ea−eb)mab−e j >0 or

∑
a,b(ea−eb)mab−e j <0.

For l ≤ 2N + 4 we will consider flows associated to Hamiltonian vector fields Xχ with real-valued
functions χ of the form

χ =
∑
|m|=l+1

m 6∈M0(l+1)

Zmbm(|z1|
2, . . . , |zn|

2)+

n∑
j=1

∑
|m|=l

m 6∈M j (l)

(z̄ j Zm
〈B jm(|z j |

2), η〉+ c.c.) (5-5)

with bm = R0,0
r,∞(|z1|

2, . . . , |zn|
2) and B jm = S0,0

r,∞(|z j |
2) for some r ∈ N defined in BCn (0, d) for

some d > 0.
The Hamiltonian vector field Xχ can be explicitly computed using (5-2). We have

(Xχ ) j = (Yχ ) j + (Ỹχ ) j , (Xχ )η =−i
n∑

j=1

∑
|m|=l

m 6∈M j (l)

z j Zm B jm(|z j |
2), (5-6)

where

(Yχ ) j (z, η) := −i(1+$ j (|z j |
2))

×

[ ∑
|m|=l+1

bm(|z1|
2, . . . , |zn|

2)∂ j̄ Zm

+

n∑
k=1

∑
|m|=l

(〈Bkm(|zk |
2), η〉∂ j̄ (z̄k Zm)+〈Bkm(|zk |

2), η〉∂ j̄ (zk Zm))

]
,

(Ỹχ ) j (z, η) := −i(1+$ j (|z j |
2))

[ ∑
|m|=l+1

∂|z j |2bm(|z1|
2, . . . , |zn|

2)z j Zm

+

∑
|m|=l

(〈B ′jm(|z j |
2), η〉|z j |

2 Zm
+〈B ′jm(|z j |

2), η〉z2
j Zm)

]
. (5-7)

Notice that (Yχ ) j =R1,l
r,∞, (Ỹχ ) j =R1,l+1

r,∞ and (Xχ )η = S1,l
r,∞. We now introduce a new space.
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Definition 5.3. We denote by X r(l) the space formed by

{(b, B)= ({bm}m∈A(l), {B jn} j∈1,...,n,n∈B j (l)) : bm ∈ C, B jn ∈6
c
r

and χ(b, B) is real valued for all z ∈ BCn(0,d)},

where
A(l) := {m : |m| = l + 1, m 6∈M0(l + 1)},

B j (l) := {n : |n| = l, n 6∈M j (l + 1)},

where we have assigned some order in the coordinates and where

χ(b, B)=
∑

m∈A(l)

Zmbm+

n∑
j=1

∑
m∈B j (l)

(z̄ j Zm
〈B jm, η〉+ c.c.).

We give X r(l) the norm

‖(b, B)‖X r (l) =
∑

m∈A(l)

|bm| +

n∑
j=1

∑
m∈B j (l)

‖B jm‖6r .

Set %(z)= (%1(z), . . . , %n(z)) with % j (z)= |z j |
2.

Lemma 5.4. Consider the χ in (5-5) for fixed r > 0 and l ≥ 1, with coefficients (b(%(z)), B(%(z))) in
C2(BCn (0, d), X r(l)) and with B jm(%(z))= B jm(% j (z)). Consider the system

ż j = (Xχ ) j (z, η) and η̇ = (Xχ )η(z, η),

which is defined in (t, z) ∈ R× BCn (0, d) and η ∈ 6c
k for all k ∈ Z∩ [−r, r] (or η ∈ H 1

∩Hc[0]). Let
δ ∈ (0,min(d, δ1)) with δ1 the constant of Lemma 4.8. Then the following properties hold:

(1) If

4(l + 1)δ
∥∥(b(%(z)), B(%(z))

)∥∥
W 1,∞(BCn (0,d),X r (l))

< 1, (5-8)

then, for all k ∈ Z∩ [−r, r], for the flow φt(z, η) we have

φt
∈ C∞

(
(−2, 2)× BCn (0, δ/2)× B6c

k
(0, δ/2), BCn (0, δ)× B6c

k
(0, δ)

)
and φt

∈ C∞
(
(−2, 2)× BCn (0, δ/2)× BH1∩Hc[0](0, δ/2), BCn (0, δ)× BH1∩Hc[0](0, δ)

)
.

(5-9)

In particular, for zt
j := z j ◦φ

t(z, η) and ηt
:= η ◦φt(z, η), and in the sense of Remark 2.10,

zt
j = z j + S j (t, z, η) and ηt

= η+ Sη(t, z, η)

with S j (t, z, η)=R1,l
r,∞(t, z, Z, η) and Sη(t, z, η)= S1,l

r,∞(t, z, Z, η).
(5-10)

(2) We have S j (t, eiϑ z, eiϑη)= eiϑ S j (t, z, η) and Sη(t, eiϑ z, eiϑη)= eiϑ Sη(t, z, η).

(3) The flow φt is canonical, that is, φt∗�0 =�0 in BCn (0, δ/2)× BH1∩Hc[0](0, δ/2).
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Proof. Claim (2) is elementary. The same is true for (3), given that φt is a standard, sufficiently regular
flow. In claim (1), (5-10) is a consequence of Lemma 4.9. The first part of claim (1) follows from
elementary estimates such as

|(Xχ ) j (z, η)|= |(1+$ j (|z j |
2))∂ j̄χ(z, η)|≤ (1+‖$ j‖L∞(BC(0,δ0)))(l+1)‖(b, B)‖W 1,∞(BCn (0,δ0),X r (l))δ

l+1
0

for (z, η)∈ BCn (0, δ)× B6c
−r
(0, δ). Notice that, taking δ0 sufficiently small in Lemma 4.6, we can arrange

‖$ j‖L∞(BC(0,δ0)) < 1. We also have

‖(Xχ )η(z, η)‖6r ≤ ‖(0, B)‖L∞(BCn (0,δ0),X r (l))δ
l+1
0 .

Then if (5-8) holds we obtain (5-9). �

The main part of φt will be given by the following lemma:

Lemma 5.5. Consider a function χ as in (5-5). For a parameter % ∈ [0,∞)n , consider the field Wχ

defined as follows (notice that Wχ (z, η, %(z))= Yχ (z, η)):

(Wχ ) j (z, η, %) := −i(1+$ j (% j ))

×

[ ∑
|m|=l+1

bm(%)∂ j̄ Zm

+

n∑
k=1

∑
|m|=l

(
〈Bkm(%k), η〉∂ j̄ (z̄k Zm)+〈Bkm(%k), η〉zk∂ j̄ Zm)],

(Wχ )η(z, η, %) := −i
n∑

k=1

∑
|m|=l

zk Zm Bkm(%k).

(5-11)

Denote by (wt , σ t)= φt
0(z, η) the flow associated to the system

ẇ j = (Wχ ) j (w, σ, %(z)), w j (0)= z j ,

σ̇ = (Wχ )σ (w, σ, %(z)), σ (0)= η.
(5-12)

Let δ ∈ (0,min(d, δ1)), as in Lemma 5.4. Then the following facts hold:

(1) If (5-8) holds, then, for B(%(z))= (B jm(% j (z)) jm,

wt
j = z j + T j (t, b(%(z)), B(%(z)), z, η) and σ t

= η+ Tη(t, b(%(z)), B(%(z)), z, η), (5-13)

T j and Tη are C∞ for (t, b, B, z, η) ∈ (−2, 2)× BX r (0, c)× BCn (0, δ)× B6−r (0, δ) (5-14)

with values in C and 6r , respectively. Furthermore, we have

T j (t, b, B, z, η)=R1,l
r,∞(t, b, B, z, Z, η),

Tη(t, b, B, z, η)= S1,l
r,∞(t, b, B, z, Z, η).

(5-15)

(2) We have the gauge covariance, for any fixed ϑ ∈ R,

T j (t, b, B, eiϑ z, eiϑη)= eiϑT j (t, b, B, z, η),

Tη(t, b, B, eiϑ z, eiϑη)= eiϑTη(t, b, B, z, η).
(5-16)



1322 SCIPIO CUCCAGNA AND MASAYA MAEDA

(3) Consider the Hamiltonian flow (zt , ηt)= φt(z, η) associated to χ ; see Lemma 5.4. Then

zt
−wt

=R1,l+1
r,∞ (t, z, Z, η), ηt

− σ t
= S1,l+1

r,∞ (t, z, Z, η). (5-17)

Proof. We have (5-13)–(5-14) by standard ODE theory. For W = (wi w̄ j )i 6= j like the Z in Definition 2.2,

wt
j = z j − i(1+$ j (% j (z)))

[ ∑
|m|=l+1

bm(%(z))
∫ t

0
(∂ j̄ W

m)s ds

+

n∑
k=1

∑
|m|=l

(〈
Bkm(%k(z)),

∫ t

0
σ s(∂ j̄ (w̄k W m))s ds

〉

+

〈
Bkm(%k(z)),

∫ t

0
σ sws

k(∂ j̄ W m)s ds
〉)]

, (5-18)

where (∂ j̄ W m)s = ∂ j̄ W m|w=ws . Similarly, we have

σ t
= η− i

n∑
k=1

∑
|m|=l

Bkm(%k(z))
∫ t

0
ws

k(W m)s ds. (5-19)

Like in Lemma 4.9, we have also W t
= Z +

∫ t
0 R1,l

r,∞
(
s, b(%(z)), B(%(z)), z, Z, η

)
ds. We can apply

Gronwall’s inequality like in Lemma 4.9 in these formulas to obtain (5-15). This yields claim (1).
Next,

(Wχ ) j (eiϑw, eiϑσ, %(z))= eiϑ(Wχ ) j (w, σ, %(z)),

(Wχ )η(eiϑw, eiϑσ, %(z))= eiϑ(Wχ )η(w, σ, %(z))

yield claim (2).
Consider claim (3). Observe that (5-17) holds replacing l + 1 by l . By (5-6), we have, for a fixed C ,

|ż− ẇ| ≤ |(Wχ ) j (z, η)− (Wχ ) j (w, σ )| + |R
1,l+1
r,∞ (t, z, Z, η)|

≤ C |z−w| +C‖η− σ‖6−r + |R
1,l+1
r,∞ (t, z, Z, η)|.

Similarly, we have

‖η̇− σ̇‖6r ≤ ‖(Wχ )η(z, η, %(z))− (Wχ )η(w, σ, %(z))‖6r ≤ C |z−w| +C‖η− σ‖6−r .

We then conclude, by Gronwall’s inequality,

|zt
−wt
| + ‖ηt

− σ t
‖6r ≤ |R

1,l+1
r,∞ (t, z, Z, η)|,

which, along with (5-17) with l + 1 replaced by l , yields (5-17), ending Lemma 5.5. �

Using Lemma 5.5, we expand the φ1 given in Lemma 5.4.

Lemma 5.6. Let (z′, η′)= φ1(z, η), where φt is the canonical flow given in Lemma 5.4. We have:

(1) For T j (b, B, z, η)=R3,2l−1
r,∞ , Tη(b, B, z, η)= S3,2l−1

r,∞ and T j , Tη smooth in (b, B, z, η),

z′j = z j + (Yχ ) j (z, η)+T j
(
b(%(z)), B(%(z)), z, η

)
+R1,l+1

r,∞ ,

η′ = η+ (Xχ )η(z, η)+Tη

(
b(%(z)), B(%(z)), z, η

)
+S1,l+1

r,∞ .
(5-20)
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(2) For T̃ j (b, B, z, η)=R1,2l
r,∞ smooth in (b, B, z, η),

|z′j |
2
= |z j |

2
+ z̄ j (Yχ ) j (z, η)+ z j (Yχ ) j (z, η)+ T̃ j (b(%(z)), B(%(z)), z, η)+R1,2l+1

r,∞ . (5-21)

Remark 5.7. For l≥2, T j and Tη are absorbed in R1,l+1
r,∞ and S1,l+1

r,∞ and do not appear in the homological
equations in Theorem 5.9. But, if l = 1, they do, although as small perturbations.

Proof. First of all, by (5-7) and by Definition 5.3, we have z̄ j (Ỹχ ) j + z j (Ỹχ ) j = 2 Re(z̄ j (Ỹχ ) j )= 0. So,
using the following formula to define Y j , we have

d
dt
|z j |

2
= z̄ j (Xχ ) j + z j (Xχ ) j = z̄ j (Yχ ) j + z j (Yχ ) j =: Y j (z, η). (5-22)

Notice that Y j is R0,l+1
r,∞ . Therefore, we have

|zs
j |

2
− |z j |

2
=R0,l+1

r,∞ . (5-23)

This implies

b(%(zs))− b(%(z))=R0,l+1
r,∞ and B(%(zs))− B(%(z))= S0,l+1

r,∞ . (5-24)

Similarly — see right before (5-2) — we have

$ j (|zs
j |

2)−$ j (|z j |
2)=R2,l+1

r,∞ . (5-25)

Now we show (1). By (5-6) and (5-11), using (5-24) and (5-25), we have

(Yχ ) j (zs, ηs)− (Wχ ) j (zs, ηs, %(z))=R1,2l+1
r,∞ . (5-26)

By (5-6), (5-10), (5-17) and (5-26), we have

z′j = z j+

∫ 1

0
(Wχ ) j (zs, ηs, %(z)) ds+

∫ 1

0

(
(Yχ ) j (zs, ηs)−(Wχ ) j (zs, ηs, %(z))

)
ds+

∫ 1

0
(Ỹχ ) j (zs, ηs) ds

= z j+

∫ 1

0
(Wχ ) j (w

s
+R1,l+1

r,∞ , σ s
+S1,l+1

r,∞ , %(z)) ds+R1,l+1
r,∞

= z j+

∫ 1

0
(Wχ ) j (w

s, σ s, %(z)) ds+R1,l+1
r,∞

= z j+(Wχ ) j (z, η, %(z))+T j+R1,l+1
r,∞ ,

where T j =
∫ 1

0 (Wχ ) j (w
s, σ s, %(z)) ds − (Wχ ) j (z, η, %(z)) and the last R1,l+1

r,∞ in the second line is
different from the R1,l+1

r,∞ in the third line. Finally, by Lemma 5.5(1) and the fact (Wχ ) j =R1,l
r,∞, we have

T j =R1,2l−1
r,∞ with T j smooth in (t, b, B, z, η). The argument for η′ is similar.

We next show (2). Set Ỹ j (z, η, %) := z̄ j (Wχ ) j (z, η, %)+ z j (Wχ ) j (z, η, %). As in (5-23)–(5-24), we
have

Ỹ j (zs, ηs, %(z))−Y j (zs, ηs)=R0,2l+2
r,∞ ,
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where Y j is as defined in (5-22). So we have

|z′j |
2
= |z j |

2
+

∫ 1

0
Y j (zs, ηs) ds = |z j |

2
+

∫ 1

0
Ỹ j (zs, ηs, %(z)) ds+R0,2l+2

r,∞

= |z j |
2
+

∫ 1

0
Ỹ j (w

s, σ s, %(z)) ds+R1,2l+1
r,∞ = |z j |

2
+ Ỹ j (z, η)+ T̃ j +R1,2l+1

r,∞ ,

where T̃ j =
∫ 1

0 Ỹ j (w
s, σ s, %(z)) ds− Ỹ j (z, η). As in (1), T̃ j =R1,2l

r,∞ and T̃ is C∞ for (b, B, z, η). �

After a coordinate change φ = φ1 as in Lemma 5.4 the Hamiltonian expands like in (4-45).

Lemma 5.8 (structure lemma). Consider a function K which admits an expansion as in (4-45), defined for
(z, η) ∈ BCn (0, δ)× (BH1(0, δ)∩Hc[0]) for some small δ > 0 and with r1 replaced by an r ′. Suppose also
that the l=0 terms in the third line are zero. Consider a function χ such as in (5-5) with 1≤ l≤2N+4, with
‖(b, B)‖W 1,∞(BCn (0,δ),Xr (l)) ≤ C and with C a preassigned number. Suppose also that 2c2(2N + 4)δC < 1
with c2 the constant of Lemma 5.4. Denote by φ = φ1 the corresponding flow. Then Lemma 5.4(1)–(3)
hold and, for (z, η) ∈ BCn (0, δ/2)× (BH1(0, δ/2)∩Hc[0]), r = r ′−2 and Z as in Definition 2.2, we have
an expansion

K ◦φ(z, η)= H2(z, η)+
n∑

j=1

λ j (|z j |
2)+

2N+3∑
l=1

∑
|m|=l+1

Zmam(|z1|
2, . . . , |zn|

2)

+

n∑
j=1

2N+3∑
l=1

∑
|m|=l

(z̄ j Zm
〈G jm(|z j |

2), η〉+ c.c.)+R1,2
r,∞(z, η)+R0,2N+5

r,∞ (z, Z, η)

+Re〈S0,2N+4
r,∞ (z, Z, η), η〉+

∑
i+ j=2

∑
|m|≤1

Zm
〈G2mi j (z, η), ηi η j

〉

+

∑
d+c=3

∑
i+ j=d

〈Gdi j (z, η), ηi η j
〉R0,c

r,∞(z, η)+ EP(η), (5-27)

where G jm, G2mi j and Gdi j are S0,0
r,∞ and the am are R0,0

∞,∞. For |m|= 0, we have G2mi j (z, η)=G2mi j (z)
are the functions in (3-4) and the λ j (|z j |

2) are the same as those of (4-45). Furthermore, the term
R1,2

r,∞(z, η) in (5-27) satisfies R1,2
r,∞(e

iϑ z, eiϑη)≡R1,2
r,∞(z, η).

Proof. Like in Lemma 4.10, we consider the expansion (4-45) for K (z′, η′), and substitute the formulas
z′j = z j + S j (z, η) and η′ = η+ Sη(z, η). Proceeding like in Lemma 4.10, we have

R1,2
r ′,∞(z

′, η′)=R1,2
r ′,∞(z, η)+R1,2N+5

r ′,∞ (z, Z, η)+Re〈S1,2N+4
r ′,∞ (z, Z, η), η〉+S, (5-28)

where S consists of terms like in the second and third sums of (5-27).
Similarly, for a S̃ like S, we have

〈Hη′, η′〉 = 〈Hη, η〉+R1,l+1
r ′−2,∞(z, Z, η)

= 〈Hη, η〉+R1,l+1
r ′−2,∞(z, η)+R1,l+1

r ′−2,∞(z, Z)+Re〈S1,l
r ′−2,∞(z, Z, η), η〉

= 〈Hη, η〉+R1,l+1
r ′−2,∞(z, η)+R1,2N+5

r ′−2,∞ (z, Z, η)+Re〈S1,2N+4
r ′−2,∞ (z, Z, η), η〉+ S̃. (5-29)
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Consider a λ j (|z j |
2) in (4-45). Then, by (5-21), we have

λ(|z′j |
2)= λ(|z j |

2
+R0,l+1

r,∞ (z, Z, η))= µ(|z j |
2)+R1,l+1

r,∞ (z, Z, η). (5-30)

The latter admits an expansion like in (4-46) and what follows it.
The term R1,2

r,∞(z, η) in the second line of (5-27) is either the first in the right-hand side in (5-28) for
l > 1 in Lemma 4.8, or the sum of that with the R1,l+1

r ′−2,∞(z, η) originating from (5-29)–(5-30) for l = 1 in
Lemma 4.8. In either case it satisfies R1,2

r,∞(e
iϑ z, eiϑη)≡R1,2

r,∞(z, η). Other terms in (4-45) computed at
(z′, η′) by similar elementary expansions are similarly absorbed in (5-27). �

All of the above lemmas are preparation for the following result, which will give us an effective
Hamiltonian by picking ι= 2N + 4.

Theorem 5.9 (Birkhoff normal form). For any ι ∈ N∩ [2, 2N + 4] there is a δι > 0, a polynomial χι as
in (5-5) with l = ι, d = δι and r = rι = r0− 2(ι+ 1) such that, for all k ∈ Z∩ [−r(ι), r(ι)], we have for
each χι a flow (for δ1 the constant in Lemma 4.10)

φt
ι ∈ C∞

(
(−2, 2)× BCn (0, δι)× B6c

k
(0, δι), BCn (0, δι−1)× B6c

k
(0, δι−1)

)
and φt

ι ∈ C∞
(
(−2, 2)× BCn (0, δι)× BH1∩Hc[0](0, δι), BCn (0, δι−1)× BH1∩Hc[0](0, δι−1)

) (5-31)

and such that, for F(ι) := F ◦ φ2 ◦ · · · ◦ φι with F the transformation in Lemma 4.8 and φ j = φ
1
ι , for

(z, η) ∈ BCn (0, δι)× (BH1(0, δι)∩Hc[0]) and for Z as in Definition 2.2, we have

H (ι)(z, η) := E ◦F(ι)(z, η)

= H2(z, η)+
n∑

j=1

λ j (|z j |
2)+ Z (ι)(z, Z, η)+

2N+3∑
l=ι

∑
|m|=l+1

Zma(ι)m (|z1|
2, . . . , |zn|

2)

+

n∑
j=1

2N+3∑
l=ι

∑
|m|=l

(z̄ j Zm
〈G(ι)

jm(|z j |
2), η〉+ c.c.)+R1,2

rι,∞(z, η)+R0,2N+5
rι,∞ (z, Z, η)

+Re〈S0,2N+4
rι,∞ (z, Z, η), η〉+

∑
i+ j=2

∑
|m|≤1

Zm
〈G(ι)

2mi j (z, η), η
i η j
〉

+

∑
d+c=3

∑
i+ j=d

〈G(ι)
di j (z, η), η

i η j
〉R0,c

rι,∞(z, η)+ EP(η), (5-32)

where, for coefficients like in Definition 5.1 for (r,m)= (rι,∞),

Z (ι) =
∑

m∈M0(ι)

Zmam(|z1|
2, . . . , |zn|

2)+

n∑
j=1

( ∑
m∈M j (ι−1)

z̄ j Zm
〈G jm(|z j |

2), η〉+ c.c.
)
. (5-33)

We have R1,2
rι,∞ =R1,2

r2,∞
and R1,2

r2,∞
(eiϑ z, eiϑη)≡R1,2

r2,∞
(z, η).

In particular, we have, for δ f := δ2N+4 and for the δ0 in Lemma 4.6,

F(2N+4)(BCn (0, δ f )× (BH1(0, δ f )∩Hc[0])
)
⊂ BCn (0, δ0)× (BH1(0, δ0)∩Hc[0]) (5-34)
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with F|BCn (0,δ f )×(BH1 (0,δ f )∩Hc[0]) a diffeomorphism between its domain and an open neighborhood of the
origin in Cn

× (H 1
∩Hc[0]).

Furthermore, for r = r0−4N−10, there is a pair R1,1
r,∞ and S1,1

r,∞ such that, for (z′, η′)=F(2N+4)(z, η),

z′ = z+R1,1
r,∞(z, Z, η) and η′ = η+ S1,1

r,∞(z, Z, η). (5-35)

By taking all the δι > 0 sufficiently small, we can assume that all the symbols in the proof , i.e., the symbols
in (5-35) and the symbols in the expansions (5-32), satisfy the estimates of Definitions 2.8 and 2.9 for
|z|< δι and ‖η‖6r(ι) < δι for their respective ι.

Proof. Notice that the functional K in Lemma 4.10 satisfies the case ι= 1. The proof will be by induction
on ι. We assume that H (ι) satisfies the statement for some ι≥ 1 and prove that there is a φι+1 such that
H (ι+1)

:= H (ι)
◦ φι+1 satisfies the statement for ι+ 1. We consider the representation (5-27) for H (ι),

which is guaranteed by Lemma 5.8. Using (5-27), we set h = H (ι)(z, Z, η), interpreting (z, Z, η) as
independent variables. Then we have, for l = ι,

a(l)m (|z1|
2, . . . , |zn|

2)=
1

m!
∂m

Z h
∣∣∣∣
(z,η,Z)=(z;0,0)

, |m| ≤ 2N + 4, (5-36)

z̄ j G
(l)
jm(|z j |

2)=
1

m!
∂m

Z ∇ηh
∣∣∣∣
(z,η,Z)=(0,...,z j ,0,...,0;0,0)

, |m| ≤ 2N + 3. (5-37)

The inductive hypothesis on H (ι) is a statement on the Taylor coefficients in (5-36)–(5-37), that is, that,
for l = ι (see Definition 2.5 and Remark 5.2),

∂m
Z h
∣∣
(z,η,Z)=(z;0,0) = 0 for all m 6∈M0(l), (5-38)

∂m
Z ∇ηh

∣∣
(z,η,Z)=(0,...,z j ,0,...,0;0,0)

= 0 for all ( j,m) with m 6∈M j (l − 1). (5-39)

We consider now an as yet unknown χ as in (5-5) with l= ι, r=rι and a yet to be determined d= δ>0. Set
φ := φ1, where φt is the flow of Lemma 5.4. We are seeking χ such that H (ι)

◦φ satisfies the conclusions
of Theorem 5.9 for ι+1, i.e., that using Lemma 5.8 again and setting this time h= (H (ι)

◦φ)(z, η, Z), we
will have (5-38)–(5-39) for l = ι+1. Notice that, for any χ , (5-38)–(5-39) are automatically true for l = ι.
This is because H (ι)(z, η, Z) and (H (ι)

◦φ)(z, η, Z) have the same derivatives in (5-36) for |m| ≤ ι, and
in (5-37) for |m| ≤ ι− 1. So it is enough to consider (5-38) for |m| = ι+ 1 and (5-39) for |m| = ι. This
will be true for a specific choice of χ whose coefficients solve the homological equations, which we set
up in the sequel.

By (5-20) and G(ι)
20i j (z, η)= G20i j (z), we have

H (ι)(z′, η′)= H2(z′, η′)+
n∑

j=1

λ j (|z′j |
2)+Z (ι)(z′, Z′, η′)+R1,2

r,∞(z
′, η′)+

∑
i+ j=2

〈G20i j (z′), η′i η′ j 〉

+ (∗)+
∑
|m|=ι+1

Zma(ι)m (|z|
2)+

n∑
j=1

∑
|m|=ι

(z̄ j Zm
〈G(ι)

jm(|z j |
2), η〉+ c.c.), (5-40)



ON SMALL ENERGY STABILIZATION IN THE NLS WITH A TRAPPING POTENTIAL 1327

where h := (∗)(z, η, Z) satisfies (5-38)–(5-39) for l = ι+ 1. In the sequel, we will use (∗) with this
meaning. Let (z′, η′)= φ(z, η). We have

n∑
j=1

e j (z̄ j (Yχ ) j (z, η)+ z j (Yχ ) j̄ (z, η))

=

∑
|m|=ι+1

iẽ · (µ(m)− ν(m))bm(|z1|
2, . . . , |zn|

2)Zm

+

∑
j

∑
|m|=ι

(
iẽ · (µ̃ j (m)− ν̃ j (m))〈B jm(|z j |

2), η〉z̄ j Zm
+ c.c.

)
(5-41)

for
Zm
= zµ(m) z̄ν(m),

z̄ j Zm
= zµ̃ j (m) z̄ν̃ j (m),

ẽ(z) :=
(
e1(1+$1(|z1|

2)), . . . , en(1+$n(|zn|
2))
)
,

(5-42)

and, summing on repeated indexes,

〈Hη, (Xχ )η(z, η)〉+ 〈H(Xχ )η(z, η), η〉 = iz̄ j Zm
〈H B j,m(|z j |

2), η〉+ c.c. (5-43)

So, by Lemma 5.6, (5-41)–(5-43) and using the notation in (5-42), we have

H2(z′, η′)=
n∑

j=1

e j |z′j |
2
+〈Hη′, η′〉

= H2(z, η)+
∑
|m|=l+1

m 6∈M0(l+1)

iẽ · (µ(m)− ν(m))bm(|z1|
2, . . . , |zn|

2)Zm

+

∑
j

∑
|m|=l

m 6∈M j (l)

(
i
〈(

ẽ · (µ̃ j (m)− ν̃ j (m))+ H
)
B jm(|z j |

2), η
〉
z̄ j Zm

+ c.c.
)

+R2,2ι
r,∞(b, B, z, Z, η)+ (∗), (5-44)

where c.c. refers only to the third line and, in the last line,

R2,2ι
r,∞(b, B, z, Z, η)=

n∑
j=1

e j T̃ j +〈Hη,Tη〉+ 〈HTη, η〉+ 〈HTη,Tη〉,

where here and in the sequel of this proof we abuse notation, denoting by (b, B) the element in Xr (ι)—
see Definition 5.3 — with entries bm(|z1|

2, . . . , |zn|
2) and B jm(|z j |

2). The term R2,2ι
r,∞(b, B, z, Z, η) can

be absorbed in (∗) if ι ≥ 2, but if ι = 1 needs to be considered explicitly. By λ j (|z j |
2) = R2,0

∞,∞ and
(5-21), we have

λ j (|z′j |
2)= λ j (|z j |

2)+R2,ι+1
r,∞ (b, B, z, Z, η)+ (∗). (5-45)

Next, we claim
Z (ι)(z′, Z′, η′)= Z (ι)(z, Z, η)+R2,ι+1

r,∞ (b, B, z, Z, η)+ (∗). (5-46)
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Let us take a term Zmam(%(z)) in the first sum in (5-33). Notice that, by Lemma 2.6, we have necessarily
|m| ≥ 2. Furthermore, by (5-21) it is easy to see that we can omit the factor am(%(z)). For definiteness,
let Zm

= |z1|
2
|z2|

2 (so |m| = 2; the case |m|> 2 is simpler). By (5-21) we have

|z′1|
2
|z′2|

2
= (|z1|

2
+R0,ι+1

r,∞ )(|z2|
2
+R0,ι+1

r,∞ )= |z1|
2
|z2|

2
+ R2,ι+1

r,∞ (b, B, z, Z, η),

where we used information, such as T̃ j =R1,2ι
r,∞, contained in Lemma 5.6 and the fact, easy to check, that

z̄ j (Yχ ) j (z, η)+ z j (Yχ ) j̄ (z, η)= R0,ι+1
r,∞ (b, B, z, Z, η).

To complete the proof of (5-46) let us take now a term of the form z̄2 Zm
〈G(|z2|

2), η〉. Here we can
write G = G(|z2|

2), ignoring the dependence on |z2|
2 and we can focus on |m| = 1. For definiteness,

let Zm
= z1 z̄2. By Lemma 5.6,

z′1(z̄
′

2)
2
〈G, η′〉 = (z1+R1,ι

r,∞)(z̄2+R1,ι
r,∞)

2
〈G, η+ S1,ι

r,∞〉,

which for ι > 1 is of the form z1 z̄2
2〈G, η〉+ (∗), and for ι= 1, using (5-20), yields (5-46).

By Lemma 5.4(1) and dηR1,2
r,∞(z, η) · S1,ι

r,∞(b, B, z, η)=R2,ι+1
r,∞ (b, B, z, Z, η), we get

R1,2
r,∞(z

′, η′)=R1,2
r,∞(z, η

′)+ (∗)

=R1,2
r,∞(z, η)+ (∗)+

∫ 1

0
dηR1,2

r,∞(z, η+ τ S1,ι
r,∞(b, B, z, η)) · S1,ι

r,∞(b, B, z, η) dτ

=R1,2
r,∞(z, η)+ dηR1,2

r,∞(z, η) · S
1,ι
r,∞(b, B, z, η)+ (∗). (5-47)

Like in (5-47) and using (5-20) and G20i j (z)=R2,0
∞,∞(z)— see (3-4) — we have

∑
i+ j=2

〈G20i j (z′), η′i η′ j 〉 =
∑

i+ j=2

〈G20i j (z), η′i η′ j 〉+ (∗)

=

∑
i+ j=2

〈G20i j (z), ηi η j
〉+R3,ι+1

r,∞ (b, B, z, Z, η)+ (∗). (5-48)

Therefore, we seek χι such that the following holds, with %(z) = (|z1|
2, . . . , |zn|

2) and the notation in
(5-42):

(∗)=
∑
|m|=ι+1

m 6∈M0(ι+1)

iẽ · (µ(m)− ν(m))bm(%(z))Zm

+

∑
j

∑
|m|=ι

m 6∈M j (ι)

(
i〈(ẽ · (µ j (m)− ν j (m))+ H)B jm(|z j |

2), η〉z̄ j Zm
+ c.c.

)
+R2,ι+1

r,∞ (b, B, z, Z, η)

+

∑
|m|=ι+1

m 6∈M0(ι+1)

Zma(ι)m (%(z))+
n∑

j=1

∑
|m|=ι

m 6∈M j (ι)

(
z̄ j Zm

〈G(ι)
jm(|z j |

2), η〉+ c.c.
)
. (5-49)
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By a Taylor expansion, we can write

R2,ι+1
r,∞ (b, B, z, Z, η)

= (∗)+
∑
|m|=ι+1

m 6∈M0(ι+1)

Zmαm(b, B, %(z))

+

n∑
j=1

∑
|m|=ι

m 6∈M j (ι)

(
z̄ j Zm

〈0 jm(b(0, . . . , |z j |
2, 0, . . . , 0), B(0, . . . , |z j |

2, 0, . . . , 0), |z j |
2), η〉+ c.c.

)
,

where αm(b, B, %(z))=R1,0
r,∞(b, B, %(z)) and

0 jm(b(0, . . . , |z j |
2, 0, . . . , 0), B(0, . . . , |z j |

2, 0, . . . , 0), |z j |
2)

= S1,0
r,∞(b(0, . . . , |z j |

2, 0, . . . , 0), B(0, . . . , |z j |
2, 0, . . . , 0), |z j |

2).

Furthermore, by (5-42) and $ j (|z j |
2) = R2,0

r0,∞
(|z j |

2), the sum in the second line of (5-49) has an
expansion∑

j

∑
|m|=ι

m 6∈M j (ι)

(
i〈(e · (µ j (m)− ν j (m))+R1,0

r0,∞
(|z j |

2)+ H)B jm(|z j |
2), η〉z̄ j Zm

+ c.c.
)
+ (∗).

Then we reduce to the following system:

bm(%(z))=
i

ẽ(z) · (µ(m)− ν(m))
[
a(ι)m (%(z))+αm

(
(bn(%(z)))n, (B jn(% j (z))) jn, %(z)

)]
,

B jm(|z j |
2)= iRH

(
e · (µ j (m)− ν j (m))+R1,0

r0,∞
(|z j |

2)
)

×
[
G(ι)

jm(|z j |
2)+0 jm

(
b(0, . . . , |z j |

2, 0, . . . , 0), B(0, . . . , |z j |
2, 0, . . . , 0), |z j |

2)].
(5-50)

The bm(%(z)) and B jm(|z j |
2) can be found by the implicit function theorem for |z|<δ′ι for δ′ι sufficiently

small. This gives us the desired polynomial χ , yielding H (ι+1). Formulas (5-31) for the flow φt of χ
are obtained choosing δι > 0 sufficiently small, by Lemma 5.4(1). For the composition F(2N+4), we
obtain (5-34) as a consequence of (5-31) and of (4-44). �

6. Dispersion

We apply Theorem 5.9, set H= H (2N+4), so that

H(z, η)= H2(z, η)+
n∑

j=1

λ j (|z j |
2)+ Z (2N+4)(z, Z, η)+R, (6-1)

where

R :=R1,2
r,∞(z, η)+R0,2N+5

r,∞ (z, Z, η)+Re〈S0,2N+4
r,∞ (z, Z, η), η〉

+

∑
i+ j=2

∑
|m|≤1

Zm
〈G2mi j (z, η), ηi η j

〉+

∑
d+c=3

∑
i+ j=d

〈Gdi j (z, η), ηi η j
〉R0,c

r,∞(z, η)+ EP(η). (6-2)
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Using formula (5-33) for ι= 2N + 4, we have

n∑
j=1

λ j (|z j |
2)+ Z (2N+4)(z, Z, η)= Z0(z)+

n∑
j=1

( ∑
m∈M j (2N+3)

z̄ j Zm
〈G jm(|z j |

2), η〉+ c.c.
)

with Z0(z) :=
n∑

j=1

λ j (|z j |
2)+

∑
m∈M0(2N+4)

Zmam(|z1|
2, . . . , |zn|

2)

= Z0(|z1|
2, . . . , |zn|

2),

(6-3)

where the last equality holds for some Z0(|z1|
2, . . . , |zn|

2) by Lemma 2.6.

Theorem 6.1 (main estimates). There exist ε0 > 0 and C0 > 0 such that, if the constant 0 < ε of
Theorem 1.3 satisfies ε < ε0, then for I = [0,∞) and C = C0 we have

‖η‖L p
t (I,W

1,q
x )
≤ Cε for all admissible pairs (p, q), (6-4)

‖z j Zm
‖L2

t (I )
≤ Cε for all ( j,m) with m ∈M j (2N + 4), (6-5)

‖z j‖W 1,∞
t (I ) ≤ Cε for all j ∈ {1, . . . , n}. (6-6)

Furthermore, there exists ρ+ ∈ [0,∞)n and a j0 with ρ+ j = 0 for j 6= j0, and an η+ ∈ H 1 such that∣∣ρ+− |z(0)|∣∣≤ Cε and ‖η+‖H1 ≤ Cε, such that

lim
t→+∞

‖η(t, x)− eit1η+(x)‖H1
x
= 0, lim

t→+∞
|z j (t)| = ρ+ j . (6-7)

Proof that Theorem 6.1 implies Theorem 1.3. Denote by (z′, η′) the initial coordinate system. By (5-35),

z′ = z+R1,1
r,∞(z, Z, η) and η′ = η+ S1,1

r,∞(z, Z, η).

Notice that (6-7) implies limt→+∞ Z(t)= 0, and by standard arguments for s > 3
2 we have

lim
t→+∞

‖et1η+‖L2,−s(R3) = 0 for any η+ ∈ L2. (6-8)

These two limits, Definitions 2.8–2.9 and (6-7) imply

lim
t→+∞

R1,1
r,∞(z, Z, η)= 0 in Cn and lim

t→+∞
S1,1

r,∞(z, Z, η)= 0 in 6r .

This means that

lim
t→+∞

‖η′(t, x)− eit1η+(x)‖H1
x
= 0 and lim

t→+∞
|z′j (t)| = ρ+ j , (6-9)

so that (1-8) is true. Notice also that if we set η̃ = η and A(t, x)= S1,1
r,∞(z, Z, η), we obtain the desired

decomposition of η′ satisfying (1-9) and (1-10). Finally, we have

ż′j + ie j z′j = ż j + ie j z j +
d
dt

R1,1
r,∞(z, Z, η)+R1,1

r,∞(z, Z, η)= O(ε2),
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where ż j + ie j z j = O(ε2) by (6-27) below, R1,1
r,∞(z, Z, η)= O(ε2) by (2-23) and dR1,1

r,∞(z, Z, η)/dt =
O(ε2). To check the last of these, we write (it is easy that dwR1,1

r,∞(z, Z, η)=R1,0
r,∞(z, Z, η) for w= z, Z)

d
dt

R1,1
r,∞(z, Z, η)=R1,0

r,∞(z, Z, η)ż+R1,0
r,∞(z, Z, η)Ż+ dηR1,1

r,∞(z, Z, η) · η̇,

with dηR1,1
r,∞ the partial derivative in η. By a simple use of Taylor expansions and Definition 2.8,

‖dηR1,1
r,∞(z, Z, η)‖6c

−r→6
c
r
≤ C(|z| + ‖η‖6−r ).

Then, by equations (6-12) and (6-27) below, we have dR1,1
r,∞(z, Z, η)/dt = O(ε2). This yields the second

inequality claimed in (1-9). �

By a standard argument, (6-4)–(6-6) for I = [0,∞) are a consequence of the following proposition:

Proposition 6.2. There exists a constant c0 > 0 such that, for any C0 > c0, there is a value ε0 = ε0(C0)

such that, if the inequalities (6-4)–(6-6) hold for I = [0, T ] for some T > 0, for C =C0 and for 0<ε < ε0,
then, in fact, for I = [0, T ] the inequalities (6-4)–(6-6) hold for C = C0/2.

Proof. We will proceed via a series of lemmas.

Lemma 6.3. Assume the hypotheses of Proposition 6.2 and take the M of Definition 2.5. Then there is a
fixed c such that

‖η‖L p
t ([0,T ],W 1,q ) ≤ cε+ c

∑
(µ,ν)∈M

|zµ z̄ν |L2
t (0,T )

for all admissible pairs (p, q). (6-10)

Proof. First of all, for |z| < δ f and ‖η‖H1∩Hc[0] < δ f defining the domain of the Hamiltonian H(z, η)
in (6-1), we will pick ε0 ∈ (0, δ f ) sufficiently small. Let ε ∈ (0, ε0), where ε = ‖u(0)‖H1 . By (2-11), we
have |z′(0)|+‖η′(0)‖X ≤ c1ε, where (z′(0), η′(0)) are the coordinates in the initial system of coordinates
introduced in Lemma 2.4. Let (z(0), η(0)) be the corresponding coordinates in the final system of
coordinates. Then, by the relation (5-35), if ε0 is sufficiently small we conclude that

|z(0)| + ‖η(0)‖H1 ≤ c′1ε (6-11)

for some other fixed constant c′1. We now turn to the equation of η. We have, for G jm = G jm(0),

iη̇ = i{η,H} = Hη+
n∑

j=1

2N+3∑
l=1

∑
|m|=l

z j ZmG jm+A, (6-12)

where

A :=

n∑
j=1

2N+3∑
l=1

∑
|m|=l

z j Zm
[G jm(|z j |

2)−G jm] +∇ηR.

We rewrite
n∑

j=1

2N+3∑
l=1

∑
|m|=l

z j ZmG jm =
∑

(µ,ν)∈M

z̄µzνGµν . (6-13)
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Notice that (6-5) is the same as

‖zµ z̄ν‖L2
t (I )
≤ Cε for all (µ, ν) ∈ M. (6-14)

Suppose we can show that, for IT := [0, T ],

‖A‖L2(IT ,H1,S)+L1(IT ,H1) ≤ C(S,C0)ε
2. (6-15)

Then, if ε0 is small enough and ε ∈ (0, ε0), we obtain (6-10) by H 1,S(R3) ↪→ W 1,6/5(R3), by (6-11),
(6-14) and (6-15) and by the Strichartz estimates, which, for Pc the orthogonal projection of L2 onto H[0],
are valid for Pc H by [Yajima 1995] (here notice that all the terms in (6-12) belong to H[0]).

So now we prove (6-15). We have, for r − 1≥ S > 9
2 ,

‖z j Zm
[G jm(|z j |

2)−G jm]‖L2(IT ,H1,S) ≤ ‖z j Zm
‖L2(IT ,C)‖G jm(|z j |

2)−G jm‖L∞(IT ,H1,S)

≤ C0ε sup{‖G ′jm(|z j |
2)‖6r : |z j | ≤ δ0}‖z2

j‖L∞(IT ,C)

≤ CC3
0ε

3 < cε. (6-16)

We have, for a fixed c1 > 0,

‖∇ηEP(η)‖L1(IT ,H1) = 2‖|η|2η‖L1(IT ,H1) ≤ c1‖η‖L∞(IT ,H1)‖η‖
2
L2(IT ,L6)

≤ c1C3
0ε

3. (6-17)

We finally show that, for an arbitrarily preassigned S > 2,

‖R1‖L2(IT ,H1,S) ≤ C(S,C0)ε
2 for R1 =∇η(R− EP(η)). (6-18)

R1 is a sum of various terms obtained from the expansion (6-2). Let us start by showing

‖∇ηR1,2
r,∞(z, η)‖L2(IT ,H1,S) ≤ C(S,C0)ε

2. (6-19)

Recalling (2-25), it is elementary to show that ∇ηR1,2
r,∞(z, η)= S1,1

r,∞(z, η) and

‖S1,1
r,∞(z, η)‖L2(IT ,H1,S) ≤ C1‖(‖η‖6−r + |z|)‖L∞(IT )‖η‖L2(IT ,6−r )

≤ C2‖(‖η‖H1 + |z|)‖L∞(IT )‖η‖L2(IT ,L6) ≤ C(S,C0)ε
2.

We next show
‖∇ηR0,2N+5

r,∞ (z, Z, η)‖L2(IT ,H1,S) ≤ C(S,C0)ε
2. (6-20)

We have, for a remainder ‖O(‖η‖26−r
)‖6r ≤ C‖η‖26−r

,

∇ηR0,2N+5
r,∞ (z, Z, η)= S0,2N+4

r,∞ (z, Z, η)= S0,2N+4
r,∞ (z, Z)+ dηS0,2N+4

r,∞ (z, Z, 0) · η+ O(‖η‖26−r
).

We have, by Lemma 2.7,

‖S0,2N+4
r,∞ (z, Z)‖L2(IT ,H1,S) ≤ C1 sup

|z|≤C0ε

‖S0,0
r,∞(z, Z)‖6M ′

‖|Z|2N+4
‖L2(IT )

≤ C2‖z‖L∞(I )

∑
j

∑
(µ,ν)∈M j (N+1)

‖zµ z̄ν‖L∞(IT )‖z
µ z̄ν‖L2(IT )

≤ C(S,C0)ε
3.
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We have

‖dηS0,2N+4
r,∞ (z, Z, 0) · η‖L2(IT ,H1,S) ≤ C1(S)‖η‖L2(IT ,6−r ) sup

|z|≤C0ε

‖dηS0,2N+4
r,∞ (z, Z, 0)‖6−r→6r

≤ C2(S)‖η‖L2(IT ,L6) sup
|z|≤C0ε

|Z|2N+3

≤ C(S,C0)ε
2.

Hence (6-20) is proved. Other terms in R1 can be bounded with similarly elementary arguments,
yielding (6-18). Then (6-16), (6-17) and (6-18) imply (6-15). �

Setting M = M(2N + 4)— see Definition 2.5 — we now introduce a new variable g, setting

g = η+ Y with Y :=
∑

(α,β)∈M

z̄αzβR+H (e · (β −α))Gαβ . (6-21)

Lemma 6.4. Assume the hypotheses of Proposition 6.2 and fix S > 9
2 . Then there is a c1(S) > 0 such that,

for any C0, there is an ε0 = ε0(C0, S) > 0 such that, for ε ∈ (0, ε0) in Theorem 1.3, we have

‖g‖L2([0,T ],L2,−S) ≤ c1(S)ε. (6-22)

Proof. We have

iġ = Hg+A+ T , where T :=
∑

j

[∂z j Y (iż j − e j z j )+ ∂z̄ j Y (i ˙̄z j + e j z̄ j )]. (6-23)

We then have

g(t)= e−iHtη(0)+ e−iHt Y (0)− i
∫ t

0
e−iH(t−s)(A(s)+ T (s)) ds. (6-24)

We have, for fixed constants, by (6-11) and (6-15), the inequalities

‖e−iHtη(0)‖L2([0,T ],L2,−S)a ≤ c2‖e−iHtη(0)‖L2([0,T ],L6) ≤ c′2‖η(0)‖L2 ≤ c3ε,∥∥∥∥∫ t

0
e−iH(t−s)A(s) ds

∥∥∥∥
L2([0,T ],L2,−S)

≤ c2‖A‖L2([0,T ],H1,S)+L1([0,T ],H1) ≤ C(C0, S)ε2.

For a proof of the following standard lemma see, for instance, the proof of [Cuccagna 2003, Lemma 5.4].

Lemma 6.5. Let 3 be a compact subset of (0,∞) and let S > 9
2 . Then there exists a fixed c(S,3) such

that, for every t ≥ 0 and λ ∈3,

‖e−iHt R+H (λ)Pcv0‖L2,−S(R3) ≤ c(S,3)〈t〉−3/2
‖Pcv0‖L2,S(R3) for all v0 ∈ L2,S(R3).

By Lemma 6.5, (6-11) and Gαβ = PcGαβ , we have

‖e−iHt Y (0)‖L2([0,T ],L2,−S) ≤

∑
(α,β)∈M

|zα(0)zβ(0)|‖e−iHt R+H (e · (β −α))Gαβ‖L2([0,T ],L2,−S)

≤ (]M)c2ε
2
‖〈t〉−3/2

‖L2(0,T )c(S,3)‖Gαβ‖L2,S ≤ C(N ,C0, S)ε2
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with ]M the cardinality of M and a fixed c2, and where the set 3 is as in Lemma 6.5,

3 := {(ν−µ) · e : (µ, ν) ∈ M}. (6-25)

We finally consider, for definiteness (the term ∂z̄ j Y (i ˙̄z j + e j z̄ j ) can be treated similarly),∥∥∥∥∫ t

0
e−iH(t−s)R+H (e · (β −α))Gαβ∂z j Y (s)(iż j − e j z j )(s) ds

∥∥∥∥
L2([0,T ],L2,−S)

≤ c(S,3)
∑

(α,β)∈M

‖Gαβ‖L2,Sβ j

∥∥∥∥∫ t

0
〈t − s〉−3/2

∣∣∣∣ z̄α(s)zβ(s)z j (s)
(iż j − e j z j )(s)

∣∣∣∣ ds
∥∥∥∥

L2(0,T )

≤ c(S,3)c2
∑

(α,β)∈M

β j

∥∥∥∥ z̄α(s)zβ

z j
(iż j − e j z j )

∥∥∥∥
L2(0,T )

(6-26)

for fixed c2. We have

iż j = (1+$ j (|z j |
2))(e j z j + ∂z̄ j Z0(|z1|

2, . . . , |zn|
2)+ ∂z̄ j R)

+ (1+$ j (|z j |
2))

[ ∑
(µ,ν)∈M

ν j
zµ z̄ν

z̄ j
〈η,Gµν〉+

∑
(µ′,ν′)∈M

µ′j
zν
′

z̄µ
′

z̄ j
〈η,Gµ′ν′〉

]

+ (1+$ j (|z j |
2))

[ ∑
m∈M j (2N+3)

|z j |
2 Zm
〈G ′jm, η〉+ z2

j Zm
〈G ′jm, η〉

]
. (6-27)

To bound (6-26), we substitute (iż j − e j z j ) by the other terms in (6-27) in the last line of (6-26) . So, for
example, we have ∂z̄ j Z0(|z1|

2, . . . , |zn|
2)∼ z j O(ε), which by (6-14) yields

β j

∥∥∥∥ z̄αzβ

z j
∂z̄ j Z0(|z1|

2, . . . , |zn|
2)

∥∥∥∥
L2(0,T )

≤ C(C0)ε‖z̄αzβ‖L2(0,T ) ≤ C(C0)C0ε
2.

For (µ, ν) ∈ M , we have, in (0, T ),

β jν j

∥∥∥∥ z̄αzβ

z j

zµ z̄ν

z̄ j
〈η,Gµν〉

∥∥∥∥
L2

t

≤ β jν j

∥∥∥∥ z̄αzβ

z j

zµ z̄ν

z̄ j

∥∥∥∥
L∞t

‖Gµν‖
L

6
5
‖η‖L∞t L6 ≤ C(C0)ε

2.

A similar argument works for the terms in the second summation in the second line of (6-27). Finally,

β j

∥∥∥∥ z̄αzβ

z j
∂z̄ j R

∥∥∥∥
L2(0,T )

≤ β j

∥∥∥∥ z̄αzβ

z j

∥∥∥∥
L∞(0,T )

‖∂z̄ j R‖L2(0,T ) ≤ C(C0)ε
3

is a consequence of the bound

‖∂z̄ j R‖L p(0,T ) ≤ C(C0)ε
2 for any p ∈ [1,∞]. (6-28)

Here we need to check (6-28) term by term for the sum in the right-hand side of (6-2). This is straightfor-
ward using (2-23), (2-25) and (2-26) and the fact, stated in Lemma 5.8, that G2mi j and Gdi j are S0,0

r,∞. �
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We turn now to the Fermi golden rule (FGR). We substitute (6-21) into (6-27), getting

iż j = (1+$ j (|z j |
2))(e j z j + ∂z̄ j Z0(|z1|

2, . . . , |zn|
2))−

∑
(µ,ν)∈M
(α,β)∈M

ν j
zµ+β z̄ν+α

z̄ j
〈R+H (e · (β −α))Gαβ,Gµν〉

−

∑
(µ′,ν′)∈M
(α′,β ′)∈M

µ′j
zν
′
+α′ z̄µ

′
+β ′

z̄ j
〈R−H (e · (β

′
−α′))Gα′β ′,Gµ′ν′〉+F j , (6-29)

where

F j := (1+$ j (|z j |
2))∂z̄ j R+$ j (|z j |

2)

[ ∑
(µ,ν)∈M

ν j
zµ z̄ν

z̄ j
〈η,Gµν〉+

∑
(µ′,ν′)∈M

µ′j
zν
′

z̄µ
′

z̄ j
〈η,Gµ′ν′〉

]

+

∑
(µ,ν)∈M

ν j
zµ z̄ν

z̄ j
〈g,Gµν〉+

∑
(µ′,ν′)∈M

µ′j
zν
′

z̄µ
′

z̄ j
〈ḡ,Gµ′ν′〉

+ (1+$ j (|z j |
2))

[ ∑
m∈M j (2N+3)

|z j |
2 Zm
〈G ′jm, η〉+ z2

j Zm
〈G ′jm, η〉

]
. (6-30)

We introduce the new variable ζ , defined by

z j − ζ j =−
∑

(µ,ν)∈M
(α,β)∈M

ν j zµ+β z̄ν+α

((µ− ν) · e− (α−β) · e)z̄ j
〈R+H (e · (β −α))Gαβ,Gµν〉

−

∑
(µ′,ν′)∈M
(α′,β ′)∈M

µ′j z
ν′+α′ z̄µ

′
+β ′

((α′−β ′) · e− (µ′− ν ′) · e)z̄ j
〈R−H (e · (β

′
−α′))Gα′β ′,Gµ′ν′〉, (6-31)

where we are summing only on pairs where the formula makes sense (i.e., only on pairs not in the same
set ML for an L ∈3; see (6-33) below). It is easy to see that

‖ζ − z‖L2(0,T ) ≤ c(N ,C0)ε
2 and ‖ζ − z‖L∞(0,T ) ≤ c(N ,C0)ε

2. (6-32)

Recall now the set 3= {(ν−µ) · e : (µ, ν) ∈ M} defined in (6-25). For any L ∈3, set

ML := {(µ, ν) ∈ M : (ν−µ) · e= L}. (6-33)

We then get

iζ̇ j = (1+$(|z j |
2))(e jζ j+∂ j̄ Z0(|ζ1|

2, . . . , |ζn|
2))−

∑
L∈3

∑
(µ,ν)∈ML
(α,β)∈ML

ν j
ζµ+βζ ν+α

ζ j
〈R+H (e·(β−α))Gαβ,Gµν〉

−

∑
L∈3

∑
(µ′,ν′)∈ML
(α′,β ′)∈ML

µ′j
ζ ν
′
+α′ζµ

′
+β ′

ζ j
〈R−H (e · (β

′
−α′))Gα′β ′,Gµ′ν′〉+G j , (6-34)
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where, for some Akαβµν, Bkαβµν , we have

G j = F j + (1+$(|z j |
2))[∂ j̄ Z0(|z1|

2, . . . , |zn|
2)− ∂ j̄ Z0(|ζ1|

2, . . . , |ζn|
2)]

− e j$(|z j |
2)

[ ∑
(µ,ν)∈M
(α,β)∈M

ν j zµ+β z̄ν+α

((µ− ν) · e− (α−β) · e)z̄ j
〈R+H (e · (β −α))Gαβ,Gµν〉

+

∑
(µ′,ν′)∈M
(α′,β ′)∈M

µ′j z
ν′+α′ z̄µ

′
+β ′

((α′−β ′) · e− (µ′− ν ′) · e)z̄ j
〈R−H (e · (β

′
−α′))Gα′β ′,Gµ′ν′〉

]

+

∑
k

∑
(µ,ν)∈M
(α,β)∈M

(iżk − ekzk)
zµ+β z̄ν+α

z̄ j
Akαβµν + iżk − ekzk

zµ+β z̄ν+α

z̄ j
Bkαβµν . (6-35)

Lemma 6.6. There are fixed c4 and ε0 > 0 such that, for ε ∈ (0, ε0), we have

‖G jζ j‖L1[0,T ] ≤ (1+C0)c4ε
2. (6-36)

Proof. We consider separately the terms in the right-hand side of (6-35) and (6-30). By (6-6), (6-28)
and (6-32),

‖∂z̄ j Rζ j‖L1
t [0,T ]

≤ C(C0)ε
3.

For fixed constants c2 and c3, by (6-4) and (6-22) we have∥∥∥∥ zµ z̄νζ j

z̄ j
〈g,Gµν〉

∥∥∥∥
L1[0,T ]

≤ c2

∥∥∥∥ zµ z̄νζ j

z̄ j

∥∥∥∥
L2[0,T ]

‖g‖L2([0,T ],L2,−S) ≤ c3C0ε
2. (6-37)

To get (6-37) we exploit Lemma 6.4 and the following bound:

ν j

∥∥∥∥ zµ z̄νζ j

z̄ j

∥∥∥∥
L2[0,T ]

≤ ν j‖zµ z̄ν‖L2[0,T ]+ ν j

∥∥∥∥ zµ z̄ν

z̄ j

∥∥∥∥
L∞[0,T ]

‖ζ j − z̄ j‖L2[0,T ] ≤ c2C0ε+C(C0)ε
3 (6-38)

for fixed c2, where we used (6-14) and (6-32). Terms such as (6-37), that is, the terms from the second
term in the right-hand side of (6-30), are the ones responsible for the C0c4ε

2 in (6-36), where C0 could
be large. The other terms are O(ε2) with fixed constants if ε0 is small enough.

By (6-4) and (6-5), for m ∈M j (2N + 4) we have

‖|z j |
2 Zm
〈G ′jm, η〉ζ j‖L1[0,T ] ≤ c4‖z jζ j‖L∞ ‖z j Zm

‖L2[0,T ]‖η‖L2([0,T ],L2,−S) ≤ C(C0)ε
4. (6-39)

Let S be the sum of the second to fourth lines in (6-35). It is easy to see by (6-32) that

‖ζ j (S)‖L2[0,T ] ≤ C(C0)ε
3
; (6-40)

see [Cuccagna 2011b, Lemma 4.11]. Furthermore,

‖[∂ j̄ Z0(|z1|
2, . . . , |zn|

2)− ∂ j̄ Z0(|ζ1|
2, . . . , |ζn|

2)]ζ j‖L2[0,T ] ≤ C(C0)ε
3
; (6-41)
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see [Cuccagna 2011b, Lemma 4.10]. Finally we have, for (µ, ν) ∈ M ,∥∥∥∥$ j (|z j |
2)ν j

zµ z̄ν

z̄ j
〈η,Gµν〉ζ j

∥∥∥∥
L1

t

≤ ‖$ j (|z j |
2)ν j zµ z̄ν〈η,Gµν〉‖L1

t
+

∥∥∥∥$ j (|z j |
2)ν j

zµ z̄ν

z̄ j
〈η,Gµν〉(ζ j − z j )

∥∥∥∥
L1

t

≤ C(C0)ε
3

by $ j (|z j |
2)= O(|z j |

2), (6-4)–(6-6) and (6-32). This completes the proof of Lemma 6.6. �

We now consider

2−1 d
dt

∑
j

|e j | |ζ j |
2
=−

∑
j

e j

0︷ ︸︸ ︷
Im[(1+$(|z j |

2))e j |ζ j |
2
+ ∂ζ j

Z0(|ζ1|
2, . . . , |ζn|

2)ζ j ]

−

∑
j

e j Im[G jζ j ]+
∑
L∈3

Im[
∑

(µ,ν)∈ML
(α,β)∈ML

ν ·eζµ+βζ ν+α〈R+H (L)Gαβ,Gµν〉

+

∑
(µ′,ν′)∈ML
(α′,β ′)∈ML

µ′ · eζ ν
′
+α′ζµ

′
+β ′
〈R−H (L)Gα′β ′,Gµ′ν′〉]. (6-42)

We can now substitute R±H (L)= P.V.(1/(H − L))± iπδ(H − L).

Lemma 6.7. The contributions to (6-42) from P.V.(1/(H − L)) cancel out:

Im
[ ∑
(µ,ν)∈ML
(α,β)∈ML

ν · eζµ+βζ ν+α
〈
P.V.

1
H − L

Gαβ,Gµν

〉

+

∑
(µ′,ν′)∈ML
(α′,β ′)∈ML

µ′ · eζ ν
′
+α′ζµ

′
+β ′
〈
P.V.

1
H − L

Gα′β ′,Gµ′ν′

〉]
= 0. (6-43)

Proof. We set (α′, β ′)= (µ, ν) and (µ′, ν ′)= (α, β) in the second sum of (6-43). With these choices,

µ′ · eζ ν
′
+α′ζµ

′
+β ′
〈
P.V.

1
H − L

Gα′β ′,Gµ′ν′

〉
= α · eζµ+βζ ν+α

〈
P.V.

1
H − L

Gαβ,Gµν

〉
.

Then 2 times the left-hand side of (6-43) becomes

2 Im
[ ∑
(µ,ν)∈ML
(α,β)∈ML

(α+ ν) · eζµ+βζ ν+α
〈
P.V.

1
H − L

Gαβ,Gµν

〉]

=

∑
(µ,ν)∈ML
(α,β)∈ML

Im
[
(α+ ν) · eζµ+βζ ν+α

〈
P.V.

1
H − L

Gαβ,Gµν

〉
+ (µ+β) · eζµ+βζ ν+α

〈
P.V.

1
H − L

Gµν,Gαβ

〉]
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= Im
[ ∑
(µ,ν)∈ML
(α,β)∈ML

(α+ ν) · e
(
ζµ+βζ ν+α

〈
P.V.

1
H − L

Gαβ,Gµν

〉
+ c.c.

)]
= 0,

where we exploited the fact that, if (µ, ν) and (α, β) both belong to ML , then (α+ν) · e= (µ+β) · e. �

Lemma 6.8. Set, for any L ∈3,

GL(ζ ) :=
√
π

∑
(µ,ν)∈ML

ζµζ νGµν . (6-44)

Then we have

Im
[

iπ
∑

(µ,ν)∈ML
(α,β)∈ML

ν·eζµ+βζ ν+α〈δ(H − L)Gαβ,Gµν〉+iπ
∑

(µ′,ν′)∈ML
(α′,β ′)∈ML

µ′·eζ ν
′
+α′ζµ

′
+β ′
〈δ(H − L)Gα′β ′,Gµ′ν′〉

]

= L〈δ(H − L)GL(ζ ),GL(ζ )〉 ≥ 0. (6-45)

Proof. First of all, the last inequality is a consequence of the formula

〈F, δ(H − L)G〉 =
1

2
√

L

∫
|ξ |=
√

L
F̂(ξ)Ĝ(ξ) dσ(ξ)

with F̂ and Ĝ the Fourier transforms of F and G associated to H ; see [Taylor 1997, Chapter 9, Proposi-
tion 2.2].

To prove the equality in (6-45), set (α′, β ′)= (α, β) and (µ′, ν ′)= (µ, ν) in the second sum of (6-45).
Then the left-hand side of (6-45) equals

π Re
[ ∑
(µ,ν)∈ML
(α,β)∈ML

L︷ ︸︸ ︷
(ν−µ) · e ζµ+βζ ν+α〈δ(H − L)Gαβ,Gµν〉

]
= L〈δ(H − L)GL(ζ ),GL(ζ )〉. �

From (6-42) and Lemmas 6.7–6.8, we obtain

2
∑
L∈3

L〈δ(H − L)GL(ζ ),GL(ζ )〉 =
d
dt

∑
j

|e j ||ζ j |
2
+ 2

∑
j

e j Im[G jζ j ]. (6-46)

We are able to restate, precisely this time, hypothesis (H4):

(H4) For some fixed constants, we have∑
L∈3

〈δ(H − L)GL(ζ ),GL(ζ )〉 ∼
∑

(µ,ν)∈M

|ζµ+ν |2 for all ζ ∈ Cn with |ζ | ≤ 1. (6-47)

We now complete the proof of Proposition 6.2. We claim we have, for a fixed c,∣∣∣∣∑
j

|e j |
(
|ζ j (t)|2− |ζ j (0)|2

)∣∣∣∣≤ cε2. (6-48)
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Indeed, first of all we have |ζ j (0)| ≤ c′ε by ε := ‖u0‖H1 . Observe that, for (z′, η′) the initial coordinates
in Lemma 2.4, by Proposition 1.1 and Lemma 2.3 it is easy to see that we have

ε2 > ‖u0‖
2
L2 = ‖u(t)‖2L2 =

∥∥∥∥( n∑
j=1

z′j (t)φ j + η
′(t)
)
+

( n∑
j=1

q j z′j (t)+ (R[z
′(t)] − 1)η′(t)

)∥∥∥∥2

L2

=

n∑
j=1

|z′j (t)|
2
+‖η′(t)‖2L2 + O

(
|z′(t)|6+ |z′(t)|4‖η′(t)‖2L2

)
.

This gives the following version of (2-11):

n∑
j=1

|z′j (t)|
2
+‖η′(t)‖2L2 ≤ 2ε2. (6-49)

This yields an analogous formula for the last system of coordinates, (z, η) in (5-35). Finally, this yields
the following inequality for the variables ζ introduced in (6-31):

n∑
j=1

|ζ j (t)|2 ≤ 3ε2. (6-50)

Hence the claim (6-48) is proved. By Lemma 6.6, the hypothesis (6-47), (6-32) and (6-48), for ε ∈ (0, ε0)

with ε0 small enough we obtain, for a fixed c,∑
(µ,ν)∈M

‖zµ+ν‖2L2(0,t) ≤ cε2
+ cC0ε

2. (6-51)

Now, (6-51) tells us that ‖zµ+ν‖2L2(0,t) .C2
0ε

2 implies ‖zµ+ν‖2L2(0,t) . ε
2
+C0ε

2 for all (µ, ν) ∈ M . This
means that we can take C0 ∼ 1. This completes the proof of Proposition 6.2. �

Proof of the asymptotics (6-9). We write (6-12) in the form iη̇ = −1η+ Vη+B. Then ∂t(e−i1tη) =

−ie−i1t(η+B) and so

e−i1t2η(t2)− e−i1t1η(t1)=−i
∫ t2

t1
e−i1t(Vη(t)+B(t)) dt for t1 < t2.

Then, for a fixed c2, by the Strichartz estimates,

‖e−i1t2η(t2)− e−i1t1η(t1)‖H1 ≤ c2
(
‖η‖L2(R+,W 1,6)+‖B(t)‖L1([t1,t2],H1)+L2([t1,t2],W 6/5)

)
.

Since we have

B=
∑

(µ,ν)∈M

z̄µzνGµν +A,

and by (6-14) and (6-15), valid now in [0,∞), for a fixed C we have∥∥∥∥ ∑
(µ,ν)∈M

z̄µzνGµν

∥∥∥∥
L2(R+,W 1,6/5)

≤ Cε, ‖A‖L2(R+,W 1,6/5)+L1(R+,H1) ≤ Cε2,
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so we conclude that there exists an η+ ∈ H 1 with

lim
t→+∞

e−i1tη(t)= η+ in H 1 and ‖η(t)− ei1tη+‖H1 ≤ Cε for all t ≥ 0.

So we have the first limit in (6-7) and the inequality ‖η+‖H1 ≤ C‖u(0)‖H1 in Theorem 6.1.
We prove now the existence of z+ and the facts about it in Theorem 6.1. First of all, from (6-27),

1
2

∑
j

d
dt
|z j |

2
=

∑
j

Im
[
∂ j̄ Rz̄ j +

∑
(µ,ν)∈M

ν j zµ z̄ν〈η,Gµν〉+

∑
(µ′,ν′)∈M

µ′j z
ν′ z̄µ

′

〈η,Gµ′ν′〉

]
.

Since the right-hand side has L1(0,∞) norm bounded by Cε2 for a fixed C , we conclude that the limit

lim
t→+∞

(|z1(t)|, . . . , |zn(t)|)= (ρ+1, . . . , ρ+n) exists with |ρ+| ≤ C‖u(0)‖H1 .

Since limt→+∞ Z(t)= 0, we conclude that all but at most one of the ρ+ j are equal to 0. �

7. Proof of Theorem 1.4

The stability of e−it E1z Q1z is known. By [Grillakis et al. 1987, Theorem 1], the stability of e−it E1z Q1z , or
equivalently of e−it E1ρ1 Q1ρ for ρ > 0, is a consequence of the following two points:

(1) The self-adjoint operator L−ρ := H − E1ρ + |Q1ρ |
2 has kernel ker L−ρ = {Q1ρ} and L−ρ > 0

in {Q1ρ}
⊥.

(2) The self-adjoint operator L+ρ = H − E1ρ + 3|Q1ρ |
2 is strictly positive: L+ρ > 0.

If |Q1ρ(x)|> 0 for all x , then (2) is an immediate consequence of (1). The fact that ker L−ρ = {Q1ρ}

follows by the facts that Q1ρ ∈ ker L−ρ and that, for |ρ|< ε0 with ε0 > 0 small, the number E1ρ ∼ e1 is
the smallest eigenvalue of H + |Q1ρ |

2, since e1 is the smallest eigenvalue of H .

We recall that [Tsai and Yau 2002b; 2002c; 2002d; Soffer and Weinstein 2004; Gang and Weinstein
2008; 2011; Gustafson and Phan 2011; Nakanishi et al. 2012] give partial proofs of the instability of the
second excited state, and only for 2e2 > e1. We now prove the instability of the excited states.

Fix j > 1 and assume that Q jr is orbitally stable. Then Q jr is asymptotically stable, by Theorem 1.3.
So, if ‖u(0)−Q jr‖H1� 1, then ‖u(t)−Q j z j − ei1tη+‖H1→ 0 for t→∞ and |z j (t)|→ ρ with ρ 6= 0
and close to r . In this case we have

E(u(0))= lim
t→∞

E(u(t))= lim
t→∞

E(Q j z j (t)+ ei1tη+),

‖u(0)‖2L2 = lim
t→∞
‖Q j z j (t)+ ei1tη+‖

2
L2 .

Since ‖ei1tη+‖L2
t L6

x
. ‖η+‖L2 , there exists tn→∞ such that ‖ei1tnη‖L6

x
→ 0. So, since ‖eitn1η+‖L4→ 0,∫

V |eitn1η+|
2 dx→ 0, and the cross terms in (3-3) disappear, we have

E(u(0))= lim
n→∞

E(Q j z j (tn)+ ei1tnη+)= E(Q jρ)+‖∇η+‖
2
L2,

‖u(0)‖2L2 = lim
n→∞
‖Q j z j (tn)+ ei1tnη+‖

2
L2 = ‖Q jρ‖

2
L2 +‖η+‖

2
L2 .

We claim that for j ≥ 2 we can construct a curve on H 1 with the following property:
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Lemma 7.1. For sufficiently small δ, there exists a map [0, δ)→ H 1, ε 7→9(ε) such that:

• 9(0)= Q jr ;

• ‖9(ε)‖2L2 = ‖Q jr‖
2
L2 ;

• E(9(ε)) < E(Q jr ) if ε > 0.

Before proving the lemma, we show that the assumption that Q jr is asymptotically stable and the
existence of 9 lead to a contradiction.

Proof of instability. Since ‖Q jr‖
2
L2 = r2

+ O(r6) by Proposition 1.1, ‖Q jr‖
2
L2 is strictly increasing in r

for r small. By Proposition 1.1, we have E ′(Q jr )= (e j +O(r2))Q′(Q jr ). This implies that E(Q jr ) is a
strictly decreasing function of r . Setting u(0)=9(ε), we have

‖Q jr‖
2
L2 = ‖9(ε)‖

2
L2 = ‖Q jρ‖

2
L2 +‖η+‖

2
L2 .

Therefore we have ‖Q jr‖
2
L2 ≥ ‖Q jρ‖

2
L2 . This implies r ≥ ρ and so E(Q jρ)≥ E(Q jr ). But, looking at

the energy, we get the following contradiction, which ends the proof of Theorem 1.4:

E(Q jr ) > E(9(ε))= E(Q jρ)+‖∇η+‖
2
L2 ≥ E(Q jρ)≥ E(Q jr ). �

We now construct the curve 9.

Proof of Lemma 7.1. We set 9(ε)= β(ε)Q j,r + εφ1 and choose β(ε) to make ‖9(ε)‖2L2 = ‖Q jr‖
2
L2 :

‖Q jr‖
2
L2β

2
+ 2ε〈Q jr , φ1〉β + ε

2
−‖Q jr‖

2
L2 = 0.

So, we have

β(ε)=
−〈Q jr , φ1〉ε+

√
〈Q jr , φ1〉2ε2−‖Q jr‖

2
L2(ε

2−‖Q jr‖
2
L2)

‖Q jr‖
2
L2

=

√
1− g1(r)ε2+ g2(r)ε,

g1(r) :=
1

‖Q jr‖
4
L2

(‖Q jr‖
2
L2 −〈Q jr , φ1〉

2)=
1

‖Q jr‖
4
L2

(‖Q jr‖
2
L2 −〈q jr , φ1〉

2),

g2(r) := −
〈Q jr , φ1〉

‖Q jr‖
2
L2

=−
〈q jr , φ1〉

‖Q jr‖
2
L2

.

We now show E(9(ε)) < E(Q j,r ) for ε > 0. It suffices to show SE jr (9(ε)) < SE jr (Q jr ), where

SE jr (u)= E(u)− E jr‖u‖2L2 .

Notice that we have S′E jr
(Q jr )= 0. Therefore, setting γ (ε)= β(ε)− 1, we have

SE jr (9(ε))= SE jr (Q jr + γ (ε)Q jr + εφ1)

= SE jr (Q jr )+
1
2

〈
S′′E jr

(Q jr )(γ (ε)Q jr + εφ1), γ (ε)Q jr + εφ1
〉
+ o(‖γ (ε)Q jr + εφ1‖

2
H1).

If g2(r)= 0, we have γ (ε)= O(ε2r−2) and we conclude

SE jr (9(ε))= SE jr (Q jr )+ ε
2
〈SE jr (Q jr )φ1, φ1〉+ o(ε2)

= SE jr (Q jr )+ ε
2(e1− e j )+ O(ε2r)+ o(ε2) < SE jr (Q jr ).
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If g2(r) 6= 0, we have γ (ε)= O(rε) and

SE jr (9(ε))= SE jr (Q jr )+ ε
2(e1− e j )+ O(rε2) < SE jr (Q jr ).

Therefore Lemma 7.1 is proved. This also completes the proof of Theorem 1.4. �

Appendix A: A generalization of Proposition 1.1

For reference purposes, we generalize (1-1) as

iut =−1u+ V (x)u+β(|u|2)u, (t, x) ∈ R×R3, (A-1)

and assume that β(0)= 0, β ∈ C∞(R,R) and, further, there exists p ∈ (1, 5) such that, for every k ≥ 0,
there is a fixed Ck with ∣∣∣∣ dk

dvk β(v
2)

∣∣∣∣≤ Ck |v|
p−k−1 if |v| ≥ 1.

Proposition A.1. Fix j ∈ {1, . . . , n}. Then there is a0 > 0 such that, for all z j ∈ BC(0, a0), there is a
unique Q j z j ∈ S(R3,C) :=

⋂
t≥06t(R

3,C) such that

(−1+ V )Q j z j +β(|Q j z j |
2)Q j z j = E j z j Q j z j , Q j z j = z jφ j + q j z j , 〈q j z j , φ j 〉 = 0, (A-2)

and such that we have, for any r ∈ N:

(1) (q j z j , E j z j ) ∈ C∞(BC(a0),6r × R); we have q j z j = z j q̂ j (|z j |
2) with q̂ j (t2) = t2q̃ j (t2), where

q̃ j (t) ∈ C∞((−a0
2, a0

2),6r (R
3,R)), and E j z j = E j (|z j |

2) with E j (t) ∈ C∞((−a0
2, a0

2),R).

(2) There exists C > 0 such that ‖q j z j‖6r ≤ C |z j |
3 and |E j z j − e j |< C |z j |

2.

The rest of this section is devoted to the proof of Proposition A.1.
The first step is the following lemma, which follows by a direct computation:

Lemma A.2. Let m ∈ N0 and k ∈ {1, 2, 3}. Then we have

[−1, |x |2m
] = −2m(2m+ 1)|x |2m−2

− 4m|x |2m−2x · ∇,

[−1, |x |2m xk] = −2m(2m+ 3)|x |2m−2xk − 4mxk |x |2m−2x · ∇ − 2|x |2m∂xk .
(A-3)

Our second step is the following lemma:

Lemma A.3. The eigenfunctions φ j of −1+ V satisfy φ j ∈ S(R3).

Proof. First, φ j ∈ L2(R3), so we have φ j ∈ H 2(R3) by

(−1− e j )φ j =−Vφ j .

Furthermore, if we have φ j ∈ H 2m(R3), then we have φ j ∈ H 2m+2(R3). This implies φ j ∈
⋂
∞

m=1 H m .
Next, by Lemma A.2, we have

(−1− e j )xkφ j =−2∂xkφ j − V xkφ j
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for k = 1, 2, 3. Therefore, we have xkφ j ∈ H 2(R3). Again, by Lemma A.2, we have

(−1− e j )|x |2φ j =−6φ j − 4x · ∇φ j − V xkφ j .

So, by x · ∇φ j =∇(xφ j )− 3φ j ∈ L2(R3), we have |x |2φ j ∈ H 2.
Now, suppose |x |2mφ j ∈ H 2(R3). By Lemma A.2, we have

(−1− e j )|x |2m xkφ j =−2m(2m+ 3)|x |2m−2xkφ j − 4mxk |x |2m−2x · ∇φ j − 2|x |2m∂xkφ j − V |x |2m xkφ j .

Since
|x |2m∂xkφ j = ∂xk (|x |

2mφ j )− 4m|x |2m−2xkφ j ∈ L2(R3),

we have |x |2m xkφ j ∈ H 2(R3). Finally, since

(−1− e j )|x |2m+2φ j =−2(m+ 1)(2m+ 3)|x |2mφ j − 4(m+ 1)|x |2m x · ∇φ j − V |x |2m+2φ j

and |x |2m x · ∇φ j = ∇ · (|x |2m xφ j )− (4m + 3)|x |2mφ j ∈ L2(R3), we have |x |2m+2φ j ∈ H 2(R2). By
induction, we have φ j ∈62m for any m ≥ 1. �

The next step is the following lemma:

Lemma A.4. Fix j ∈ {1, . . . , n} and r ∈ N with r ≥ 2. Then there exists δr > 0 such that, for all
z j ∈ BC(0, δr ), there is a unique Q j z j ∈6r (R

3,C) satisfying (1-3) and Proposition 1.1(1)–(2).

Proof. In this proof we write g(u) := β(|u|2)u. Notice that it suffices to show the claim of Lemma A.4
for z j ∈ R with real-valued Q j,z j . Indeed, if we define

Q j z j = eiθQ jρ and E j z j = E jρ (A-4)

for z = eiθρ, then Q j z and E j z satisfy (1-3) if Q jρ and E jρ satisfy (1-3). Further, if BR(0, δ)→6r ×R,
z 7→ (Q j z, E j z) is C∞, then, by (A-4), we have BC(0, δ)6r ×R, z 7→ (Q j,z, E j,z) is C∞.

Fix j ∈ {0, 1, . . . , n}. For simplicity we set z j = z, e j = e and φ j = φ. Set

Q j,z = z(φ+ |z|2ψ(z)) and E j,z = e+ |z|2 f (z).

We solve (1-3) under the above ansatz. Substituting the ansatz into (1-3), we have

Hψ + z−3g(z(φ+ z2ψ))= eψ + f φ+ z2 fψ. (A-5)

Set Pu = u−〈u, φ〉φ. Then, we have

Hψ + z−3 Pg(z(φ+ z2ψ))= eψ + z2 fψ, 〈z−3g(z(φ+ z2ψ)), φ〉 = f.

Therefore, it suffices to solve

(H − e)ψ =−z−3 Pg(z(φ+ z2ψ))+ z−1
〈g(z(φ+ z2ψ)), φ〉ψ. (A-6)

Now, set φ̃(z) := φ+ z2ψ(z). Then,

g(zφ̃)= β(z2φ̃)zφ̃ = z3
∫ 1

0
β ′(sz2φ̃2) ds φ̃3.
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So, (A-6) can be rewritten as

(H − e)ψ =−P
(∫ 1

0
β ′(sz2φ̃2) ds φ̃3

)
+〈β(z2φ̃2)φ̃, φ〉ψ. (A-7)

To show that z 7→ ψ(z) ∈6r exists and is C∞, we use the inverse function theorem. Set

8(z, ψ) := −(H − e)−1 P
(∫ 1

0
β ′(sz2φ̃2) ds φ̃3

)
+〈β(z2φ̃2)φ̃, φ〉(H − e)−1ψ

and
F(z, ψ) := ψ −8(z, ψ).

Then, F : R× P6r → P6r is C∞. Next, since

F(0, ψ)= ψ +β ′(0)(H − e)−1 Pφ3,

we have
F(0,−β ′(0)(H − e)−1 Pφ3)= 0.

We now compute Fψ(z, ψ):

8ψ(z, ψ)h =−2z4(H−e)−1 P
(∫ 1

0
β ′′(sz2φ̃2)s ds φ̃4h

)
−3z2(H−e)−1 P

(∫ 1

0
β ′(sz2φ̃2) ds φ̃2h

)
+2z4

〈β ′(z2φ̃2)φ̃2h, φ〉(H−e)ψ+z2
〈β(z2φ̃2)h, φ〉(H−e)ψ+〈β(z2φ̃2)φ̃, φ〉(H−e)h.

So, we have
Fψ(0, ψ)h = h.

Therefore, by the inverse function theorem we have the conclusion of the lemma. �

The final step is to show that the δr > 0 can be chosen independent of r .

Lemma A.5. Consider the Q j z j in Lemma A.4. Then there is a δ > 0 such that Q j z j ∈S(R3) for |z j |< δ.

Proof. We use a bootstrap argument similar to the proof of Lemma A.3. We can consider the Q j z given
in Lemma A.4 with r = 4. It is enough to consider z = ρ ∈ (0, δ) with δ < δ4. For δ > 0 sufficiently
small, we also have E jρ <

1
2 e j < 0. By (A-2) we have

(−1− E jρ)Q jρ =−V Q jρ −

∫ 1

0
β ′(s Q2

jρ) ds Q3
jρ . (A-8)

We proceed as in Lemma A.3. Since the commutator term and −V Q jρ are the same as in Lemma A.3,
we conclude that Lemma A.5 is a consequence of the following two simple facts for m ≥ 2:

(i) If Q jρ ∈ H m , then β(Q2
jρ)Q jρ =

∫ 1
0 β
′(s Q2

jρ) ds Q3
jρ ∈ H m .

(ii) If |x |2m Q jρ ∈ L2(R3), then |x |2m+2
∫ 1

0 β
′(s Q2

jρ) ds Q3
jρ ∈ L2.

Fact (i) follows from the fact that H m(R3) is a ring for m ≥ 2. We now look at (ii). Since Q jρ is
a continuous function with Q jρ(x)→ 0 as |x | → ∞, the range of Q jρ (i.e., {Q jρ(x) ∈ R : x ∈ R3

})
is relatively compact. So, since t →

∫ 1
0 β
′(st2) ds is a continuous function from R→ R, the range of
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0 β
′(s Q2

jρ) ds is relatively compact. Therefore, we have
∫ 1

0 β
′(s Q2

jρ) ds ∈ L∞. On the other hand, by
Q jρ ∈64 we have |x |Q jρ ∈63 ↪→ L∞. Therefore, we have

|x |2m+2
∫ 1

0
β ′(s Q2

jρ) ds Q3
jρ =

∫ 1

0
β ′(s Q2

jρ) ds (|x |Q jρ)
2
|x |2m Q jρ ∈ L2(R3).

This proves (ii) and completes the proof of Lemma A.5. �

Finally, Proposition A.1 is a consequence of Lemmas A.2–A.5.

Appendix B: Expansions of gauge invariant functions

We prove here (3-10) and (3-12), which are direct consequences of Lemmas B.3 and B.4.

Lemma B.1. Let a(z) ∈ C∞(BC(0, δ),R) and a(eiθ z) = a(z) for any θ ∈ R. Then there exists α in
C∞([0, δ2);R) such that α(|z|2)= a(z).

Proof. For z = reiθ we have a(z) = a(r + i0). Since x 7→ a(x + i0) is even and smooth, we have
a(x + i0)= α(x2) with α(x) smooth; see [Whitney 1943]. So a(z)= α(|z|2). �

Lemma B.2. Let δ > 0. Suppose a ∈ C∞(BCn (0, δ);R) satisfies a(eiθ z1, . . . , eiθ zn)= a(z1, . . . , zn) for
all θ ∈ R and a(0, . . . , 0)= 0. Then, for any M > 0, there exists bm such that

a(z1, . . . , zn)=

n∑
j=1

α j (|z j |
2)+

∑
|m|=1

Zmbm(z1, . . . , zn)+R0,M(z, Z), (B-1)

where α j (|z j |
2)= a(0, . . . , 0, z j , 0, . . . , 0). Furthermore, bm ∈ C∞(BCn (0, δ);R) and satisfies

bm(eiθ z1, . . . , eiθ zn)= bm(z1, . . . , zn) for all θ ∈ R.

Proof. First, we expand a as

a(z1, . . . , zn)= a(z1, 0, . . . , 0)+
∫ 1

0

( n∑
j=2

∂ j a(z1, t z2, . . . , t zn)z j + ∂ j̄ a(z1, t z2, . . . , t zn)z̄ j

)
dt.

Then, by

a(0, z2, . . . , zn)=

∫ 1

0

( n∑
j=2

∂ j a(0, t z2, . . . , t zn)z j + ∂ j̄ a(0, t z2, . . . , t zn)z̄ j

)
dt,

we have

a(z1, . . . , zn)

= a(z1, 0, . . . , 0)+ a(0, z2, . . . , zn)+

∫ 1

0

n∑
j=2

[
(∂ j a(z1, t z2, . . . , t zn)− ∂ j a(0, t z2, . . . , t zn))z j

+ (∂ j̄ a(z1, t z2, . . . , t zn)− ∂ j̄ a(0, t z2, . . . , t zn))z̄ j
]

dt
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= a(z1, 0, . . . , 0)+ a(0, z2, . . . , zn)

+

∑
j≥2

∫ 1

0

∫ 1

0

[
(∂1∂ j a(sz1, t z2, . . . , t zn))z1z j + (∂1∂ j a(sz1, t z2, . . . , t zn))z̄1z j

+ (∂1∂ j̄ a(sz1, t z2, . . . , t zn))z̄1z j + (∂1∂ j̄ a(sz1, t z2, . . . , t zn))z̄1 z̄ j
]

ds dt.

Iterating this argument first for a(0, z2, . . . , zn) and then for a(0, . . . , 0, zk, . . . , zn), we have

a(z1, . . . , zn)= a(z1, 0, . . . , 0)+ a(0, z2, 0, . . . , 0)+ · · ·+ a(0, . . . , 0, zn)

+

n−1∑
k=1

∑
j≥k+1

∫ 1

0

∫ 1

0

[
(∂k∂ j a(0, . . . , 0, szk, t zk+1, . . . , t zn))zkz j

+ (∂k̄∂ j a(0, . . . , 0, szk, t zk+1, . . . , t zn))z̄kz j

+ (∂k∂ j̄ a(0, . . . , 0, szk, t zk+1, . . . , t zn))zk z̄ j

+(∂k̄∂ j̄ a(0, . . . , 0, szk, t zk+1, . . . , t zn))z̄k z̄ j

]
ds dt. (B-2)

By Lemma B.1, there exist smooth α j such that α j (|z j |
2)= a(0, . . . , 0, z j , 0, . . . , 0). Furthermore, the

sum of the middle two terms in the integral of (B-2) has the same form as the second term in the right-hand
side of (B-1). So, it remains to handle the terms in the second and fifth lines of (B-2). Since they can be
treated similarly, we focus only the second line of (B-2). Set

β jk(zk, . . . , zn)=

∫ 1

0

∫ 1

0
(∂k∂ j a(0, . . . , 0, szk, t zk+1, . . . , t zn)) ds dt

with j ≥ k+ 1. Notice that ∂α∂βa(0, . . . , 0) 6= 0 by the gauge invariance of a is easily shown to imply
|α| = |β|. This in particular implies β jk(0, . . . , 0)= 0. So, as in (B-2), we have

β jk(zk, . . . , zn)= β jk(zk, 0, . . . , 0)+β jk(0, zk+1, 0, . . . , 0)+ · · ·+β jk(0, . . . , 0, zn)

+

n−1∑
m=k

∑
l≥m+1

∫ 1

0

∫ 1

0

[
(∂m∂lβ jk(0, . . . , 0, szm, t zm+1, . . . , t zn))zmzl

+ (∂m̄∂lβ jk(0, . . . , 0, szm, t zm+1, . . . , t zn))z̄mzl

+ (∂m∂l̄β jk(0, . . . , 0, szm, t zm+1, . . . , t zn))zm z̄l

+ (∂m̄∂l̄β jk(0, . . . , 0, szm, t zm+1, . . . , t zn))z̄m z̄l

]
ds dt. (B-3)

Since z2
l β jk(0, . . . , 0, zl, 0, . . . , 0) is gauge invariant by Lemma B.1, we have

z2
l β jk(0, . . . , 0, zl, 0, . . . , 0)= β̃ jkl(|zl |

2)= β̃ jkl(0)+ β̃ ′jkl(0)|zl |
2
+ γ jkl(|zl |

2)|zl |
4
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for some smooth β̃ jkl and γ jkl . By the smoothness of β jk , we have β̃ jkl(0)= β̃ ′jkl(0)= 0. Therefore,

β jk(0, . . . , 0, zl, 0, . . . , 0)zkz j = γ jkl(|zl |
2)zkz j z̄2

l with k <min{ j, l}.

This can be absorbed in the second term of the right-hand side of (B-1). The same is true of the contribution
of the last two lines of (B-3). The term∫ 1

0

∫ 1

0
(∂m∂lβ jk(0, . . . , 0, szm, t zm+1, . . . , t zn))zmzl z j zk ds dt (B-4)

does not have as factors components of Z= (zi z̄ j )i 6= j but it is O(|Z|2). Treating (B-4) the way we treated
the second line of (B-2), and repeating the procedure a sufficient number of times, we can express (B-4)
as a sum of a summation like the second in the right-hand side of (B-1) and of a term that is O(|Z|M) for
an arbitrary M . Furthermore, notice that, since we can think of the dependence on Z = (zi z̄ j )i 6= j to be
polynomial, and so the remainder term R0,M(z, Z) in (B-1) can be thought to depend polynomially on
Z = (zi z̄ j )i 6= j , it can be thought as the restriction of a function in Z ∈ L . �

Lemma B.3. Take a(z1, . . . , zn) like in Lemma B.2. Then, for any M > 0, there exist smooth a j and b jm

such that, for α j (|z j |
2)= a(0, . . . , 0, z j , 0, . . . , 0), we have

a(z1, . . . , zn)=

n∑
j=1

α j (|z j |
2)+

∑
1≤|m|≤M−1

Zmb jm(|z j |
2)+R0,M(z, Z). (B-5)

Proof. To prove (B-5), one only has to repeatedly use Lemma B.2. �

Lemma B.4. Suppose that a : Cn
→ S is smooth from BR2n (0, δr ) to 6r for arbitrary r ∈ R and satisfies

a(eiθ z1, . . . , eiθ zn)= a(z1, . . . , zn), a(0, . . . , 0)= 0. Then, for any M > 0, there exist smooth a j and G jm

such that, for α j (|z j |
2)= a(0, . . . , 0, z j , 0, . . . , 0), we have

a(z1, . . . , zn)=

n∑
j=1

α j (|z j |
2)+

∑
1≤|m|≤M−1

ZmG jm(|z j |
2)+ S0,M(z, Z). (B-6)

Proof. The proof is same as the proof of Lemmas B.1–B.3 �
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