
ANALYSIS & PDE

msp

Volume 8 No. 6 2015

GRÉGOIRE NADIN AND LUCA ROSSI

TRANSITION WAVES FOR FISHER–KPP EQUATIONS
WITH GENERAL TIME-HETEROGENEOUS

AND SPACE-PERIODIC COEFFICIENTS





ANALYSIS AND PDE
Vol. 8, No. 6, 2015

dx.doi.org/10.2140/apde.2015.8.1351 msp

TRANSITION WAVES FOR FISHER–KPP EQUATIONS
WITH GENERAL TIME-HETEROGENEOUS

AND SPACE-PERIODIC COEFFICIENTS

GRÉGOIRE NADIN AND LUCA ROSSI

We study existence and nonexistence results for generalized transition wave solutions of space-time
heterogeneous Fisher–KPP equations. When the coefficients of the equation are periodic in space but
otherwise depend in a fairly general fashion on time, we prove that such waves exist as soon as their
speed is sufficiently large in a sense. When this speed is too small, transition waves do not exist anymore;
this result holds without assuming periodicity in space. These necessary and sufficient conditions are
proved to be optimal when the coefficients are periodic both in space and time. Our method is quite robust
and extends to general nonperiodic space-time heterogeneous coefficients, showing that transition wave
solutions of the nonlinear equation exist as soon as one can construct appropriate solutions of a given
linearized equation.

1. Introduction

We are concerned with transition wave solutions of the space-time heterogeneous reaction-diffusion
equation

∂t u−Tr(A(x, t)D2u)+ q(x, t) · Du = f (x, t, u), x ∈ RN , t ∈ R. (1)

Here D and D2 denote respectively the gradient and the Hessian with respect to the space variables.
We assume that the terms in the equation are periodic in x , with the same period. The matrix field A
is uniformly elliptic and the nonlinearity f (x, t, · ) vanishes at 0 and 1. The steady states 0 and 1 are
respectively unstable and stable.

When the coefficients do not depend on (x, t), Equation (1) becomes a classical homogeneous monos-
table reaction-diffusion equation. The pioneering works on such equations are due to Kolmogorov,
Petrovski and Piskunov [Kolmogorov et al. 1937] and Fisher [1937], when f (u) = u(1− u). They
investigated the existence of traveling wave solutions, that is, solutions of the form u(x, t)= φ(x · e− ct),
with φ(−∞) = 1, φ(+∞) = 0, φ > 0. The quantity c ∈ R is the speed of the wave and e ∈ SN−1 is
its direction. Kolmogorov, Petrovski and Piskunov [Kolmogorov et al. 1937] proved that when A = IN ,
q ≡ 0 and f = u(1− u), there exists c∗ > 0 such that (1) admits traveling waves of speed c if and
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only if c ≥ c∗. This property was extended to more general monostable nonlinearities by Aronson and
Weinberger [1978]. The properties (uniqueness, stability, attractivity, decay at infinity) of these waves
have been extensively studied since then.

An increasing attention has been paid to heterogeneous reaction-diffusion since the 2000s. In particular,
the existence of appropriate generalizations of traveling wave solutions has been proved for various classes
of heterogeneities such as shear [Berestycki and Nirenberg 1992], time periodic [Alikakos et al. 1999],
space-periodic [Berestycki and Hamel 2002; Berestycki et al. 2005; Xin 1992], space-time periodic [Nolen
et al. 2005; Nadin 2009], time almost periodic [Shen 1999] and time uniquely ergodic [Shen 2011b],
under several types of hypotheses on the nonlinearity. Now, the topical question is to understand whether
reaction-diffusion equations with general heterogeneous coefficients admit wave-like solutions or not.
A generalization of the notion of traveling waves has been given by Berestycki and Hamel [2007; 2012].

Definition 1.1 [Berestycki and Hamel 2007; 2012]. A generalized transition wave (in the direction
e ∈ SN−1) is a positive time-global solution u of (1) such that there exists a function c ∈ L∞(R) satisfying1

lim
x ·e→−∞

u
(

x + e
∫ t

0
c(s) ds, t

)
= 1, lim

x ·e→+∞
u
(

x + e
∫ t

0
c(s) ds, t

)
= 0, (2)

uniformly with respect to t ∈ R. The function c is called the speed of the generalized transition wave u,
and φ(x, t) := u

(
x + e

∫ t
0 c(s) ds, t

)
is the associated profile.

The profile of a generalized transition wave satisfies

lim
x ·e→−∞

φ(x, t)= 1, lim
x ·e→+∞

φ(x, t)= 0, uniformly with respect to t ∈ R.

It is clear that any perturbation of c obtained by adding a function with bounded integral is still a speed
of u, with a different profile. Reciprocally, if c̃ is another speed associated with u, then it is easy to
check that t 7→

∫ t
0 (c− c̃) ds is bounded. Obviously, all the notions of waves used previously when the

coefficients belong to particular classes of heterogeneities can be viewed as transition waves.
The existence of such waves has been proved for one-dimensional space heterogeneous equations

with ignition-type nonlinearities (that is, f (x, u)= 0 if u ∈ [0, θ)∪ {1} and f (x, u) > 0 if u ∈ (θ, 1)) in
parallel ways by Nolen and Ryzhik [2009] and Mellet, Roquejoffre and Sire [Mellet et al. 2010], and
their stability was proved in [Mellet et al. 2009]. For space heterogeneous monostable nonlinearities,
when f (x, u) > 0 if u ∈ (0, 1) and f (x, 0)= f (x, 1)= 0, transition waves might not exist [Nolen et al.
2012] in general. This justified the introduction of the alternative notion of critical traveling wave in
[Nadin 2014] for one-dimensional equations. Some existence results have also been obtained by Zlatos
for partially periodic multidimensional equations of ignition-type [Zlatoš 2013].

When the coefficients only depend on t in a general way, the existence of transition waves was first
proved by Shen for bistable nonlinearities [2006] (that is, nonlinearities vanishing at u = 0 and u = 1 but
negative near these two equilibria) and for monostable equations with time uniquely ergodic coefficients

1For a given function g = g(x, t), the condition limx ·e→±∞ g(x, t)= l uniformly with respect to t ∈ R means that

lim
r→+∞

sup
±x ·e>r

t∈R

|g(x, t)− l| = 0.
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[2011b]. The case of general time heterogeneous monostable equations was investigated in [Nadin and
Rossi 2012], where it was observed that the notions of least and upper mean play a crucial role in such
frameworks.

Definition 1.2. The least mean (resp. the upper mean) over R of a function g ∈ L∞(R) is given by

bgc := lim
T→+∞

inf
t∈R

1
T

∫ t+T

t
g(s) ds

(
resp. dge := lim

T→+∞
sup
t∈R

1
T

∫ t+T

t
g(s) ds

)
.

As shown in Proposition 3.1 of [Nadin and Rossi 2012], the definitions of bgc, dge do not change
if one replaces limT→+∞ with supT>0 and infT>0 respectively in the above expressions; this shows
that bgc, dge are well defined for any g ∈ L∞(R). Notice that g admits a uniform mean 〈g〉, that is,
〈g〉 := limT→+∞

1
T

∫ t+T
t g(s) ds exists uniformly with respect to t ∈ R, if and only if bgc = dge = 〈g〉.

This is the case in particular when the coefficients are uniquely ergodic.
Note that if c and c̃ are two speeds associated with the same wave u, then c− c̃ has a bounded integral

and thus bcc = bc̃c.
It is proved in [Nadin and Rossi 2012] that when A ≡ IN , q ≡ 0 and f only depends on (t, u) and

is concave and positive with respect to u ∈ (0, 1), there exists a speed c∗ > 0 such that, for all γ > c∗
and |e| = 1, Equation (1) admits a generalized transition wave with speed c = c(t) in the direction e such
that bcc = γ , while no such waves exist when γ < c∗.

When the coefficients not only depend on t in a general way but also on x periodically, some of the
above results have been extended. Assuming in addition that the coefficients are uniquely ergodic and
recurrent with respect to t and that A ≡ IN , Shen [2011a] proved the existence of a quantity c∗ such that,
for all γ > c∗, there exists a generalized transition wave for monostable equations with speed c.

The case of space-periodic and time general monostable equations was first studied in [Rossi and
Ryzhik 2014], under the additional assumption that the dependences in t and x are separated, in the
sense that A and q only depend on x , periodically, while f only depends on (t, u). They proved both
the existence of generalized transition waves of speed c such that bcc> c∗ and the nonexistence of such
waves with bcc< c∗. Moreover, they provided a more general nonexistence result, without assuming that
the dependence on x of A and q is periodic.

The aim of the present paper is to consider the general case of coefficients depending on both x and t .
As in [Rossi and Ryzhik 2014], we assume the periodicity in x only for the existence result.

2. Hypotheses and results

2A. Statement of the main results. Throughout the paper, the terms in (1) will always be assumed to
satisfy the following (classical) regularity hypotheses:

(3) A is symmetric and uniformly continuous, and there exist 0< α ≤ α such that, for all (x, t) ∈ RN+1,
α I ≤ A(x, t)≤ α I .

(4) q is bounded and uniformly continuous on RN+1.
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(5) f is a Caratheodory function on RN+1
× [0, 1], and there exists δ > 0 such that f (x, t, · ) ∈

W 1,∞([0, 1])∩C1([0, δ)) uniformly in (x, t) ∈ RN+1.

The assumption that q is uniformly continuous is a technical hypothesis that is used in the proofs in order
to pass to the limit in sequences of translations of the equation. It could be replaced by div q = 0. We
further assume that f is of monostable type, 0 being the unstable equilibrium and 1 being the stable one.
Namely,

∀(x, t) ∈ RN+1, f (x, t, 0)= 0, (6)

∀(x, t) ∈ RN+1, f (x, t, 1)= 0, (7)

∀u ∈ (0, 1), inf
(x,t)∈RN+1

f (x, t, u) > 0. (8)

In order to derive the existence result, we need some additional hypotheses. The first one is the standard
KPP condition,

∀(x, t) ∈ RN+1, u ∈ [0, 1], f (x, t, u)≤ µ(x, t)u, (9)

where, here and in the sequel, µ denotes the function

µ(x, t) := ∂u f (x, t, 0).

Conditions (8), (9) imply that infµ > 0. The second condition is

∃C > 0, δ, ν ∈ (0, 1], ∀x ∈ RN , t ∈ R, u ∈ (0, δ), f (x, t, u)≥ µ(x, t)u−Cu1+ν . (10)

Note that a sufficient condition for (10) to hold is f (x, t, · ) ∈C1+ν([0, δ]), uniformly with respect to x, t .
The last condition for the existence result is

∃l = (l1, . . . , lN ) ∈ RN
+
, ∀t ∈ R, u ∈ (0, 1), A, q, f are l-periodic in x, (11)

where a function g is said to be l-periodic in x if it satisfies

∀ j ∈ {1, . . . , N },∀x ∈ RN , g(x + lj ej )= g(x),

(e1, . . . , eN ) being the canonical basis of RN .
When we say that a function is a solution (or subsolution or supersolution) of (1) we always mean

that it is between 0 and 1. We deal with strong solutions whose derivatives ∂t , D, D2 belong to some
L p(RN+1), p ∈ (1,∞). Many of our statements and equations, such as (1), are understood to hold almost
everywhere, even if we omit to specify it, and inf, sup are used in place of ess inf, ess sup.

The main results of this paper consist of sufficient and necessary conditions for the existence of
generalized transition waves, expressed in terms of their speeds.

Theorem 2.1. Under the assumptions (3)–(11), for all e ∈ SN−1, there exists c∗ ∈ R such that, for
every γ > c∗, there is a generalized transition wave in the direction e with a speed c such that bcc = γ .

The minimal speed c∗ we construct is explicitly given by (29), (34) and (37). A natural question is to
determine whether our construction gives an optimal speed or not; that is, do generalized transition waves
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with speed c such that bcc< c∗ exist? One naturally starts by checking if our c∗ coincides with the optimal
speed known to exist in some particular cases, such as space-time periodic or space independent. In
Section 2C we show that this is the case. The answer in the general, non-space-periodic, case is only partial.
It is contained in the next theorem, where, however, we can relax the monostability hypotheses (8)–(9) by⌊

inf
x∈RN

µ(x, · )
⌋
> 0, (12)

and we can drop (7), (10) as well as (11). We actually need an extra regularity assumption on A:

A is uniformly Hölder-continuous in x , uniformly with respect to t . (13)

This ensures the validity of some a priori Lipschitz estimates quoted from [Porretta and Priola 2013] that
will be needed in the sequel. It is not clear to us if such estimates hold without (13).

Theorem 2.2. Under the assumptions (3)–(6), (12)–(13), for all e ∈ SN−1, there exists c∗ ∈ R such that
if c is the speed of a generalized transition wave in the direction e then bcc ≥ c∗.

We point out that no spatial-periodicity condition is assumed in the previous statement. In order to
prove Theorem 2.2 we derive a characterization of the least mean — Proposition 4.4 below — that we
believe to be of independent interest. The definition of c∗ is given in Section 4. Of course, c∗ ≤ c∗ if the
hypotheses of both Theorems 2.1 and 2.2 are fulfilled. We do not know if, in general, c∗ = c∗, that is, if
the speed c∗ is minimal, in the sense that there does not exist any wave with a speed having a smaller least
mean. When the coefficients are periodic in space and time or only depend on time, we could identify
the speed c∗ more explicitly (see Section 2C below). Indeed, we recover in these frameworks some
characterizations of the speeds identified in earlier papers [Nadin 2009; Nadin and Rossi 2012; Rossi and
Ryzhik 2014], which were proved to be minimal. In the general framework, we leave this question open.

Finally, we leave as an open problem the case bcc= c∗, for which we believe that generalized transition
waves still exist.

2B. Optimality of the monostability assumption. The assumption (8) implies that 0 and 1 are respectively
unstable and stable. Let us discuss the meaning and the optimality of this hypothesis, which might seem
strong. Actually, as we do not make any additional assumption on the coefficients, we can consider much
more general asymptotic states p− = p−(x, t) < p+ = p+(x, t) in place of 0 and 1 and try to construct
generalized transition waves v connecting p− to p+. Indeed, if p± are solutions to (1), with p+− p−
bounded and having positive infimum, then the change of variables

u(x, t) :=
v(x, t)− p−(x, t)
p+(x, t)− p−(x, t)

leads to an equation of the same form, with reaction term

f̃ (x, t, u) :=
f (x, t, up++ (1− u)p−)− u f (x, t, p+)− (1− u) f (x, t, p−)

p+− p−
.
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The new equation admits the steady states 0 and 1. Moreover, assuming that u 7→ f (x, t, u) is strictly
concave, then f̃ satisfies conditions (8), (9), the latter following from the inequality

∀u ∈ (0, 1), u(p+− p−)∂u f (x, t, p−)≥ f (x, t, up++ (1− u)p−)− f (x, t, p−).

This shows that, somehow, the concavity hypothesis of the nonlinearity with respect to u is stronger, up
to some change of variables, than the positivity hypothesis of the nonlinearity.

Let us illustrate the above procedure with an explicit example where p− ≡ 0. Consider the equation

∂tv =1v+µ(x, t)v− v2, x ∈ RN , t ∈ R, (14)

with µ periodic in x , bounded and such that infµ > 0. The later condition implies that the solution 0 is
linearly unstable (actually, it can be relaxed by (12); see the discussion below). Then one can check that
there is a time-global solution p = p(x, t) which is bounded, has a positive infimum and is periodic in x .
Let u := v/p. This function satisfies

∂t u =1u+ 2
∇ p

p
· ∇u+ p(x, t)u(1− u),

which is an equation of the form (1) for which (9)–(11) hold, at least if, for instance, µ is uniformly
Hölder-continuous, since then ∇ p is bounded by Schauder’s parabolic estimates, and inf p > 0.

Following this example, one can wonder whether (8) is an optimal condition (up to some change of
variables) for the existence of transition waves. It is well-known that other classes of nonlinearities, such
as bistable or ignition ones, could still give rise to transition waves (see for instance [Berestycki and
Hamel 2002]). Thus, this question only makes sense if one reduces to the class of nonlinearities which are
monostable, in a sense. Let us assume that f satisfies (6), (7) and that 0 is linearly unstable, in the weak
sense that (12) holds. Then, using the properties of the least mean derived in [Nadin and Rossi 2012],
one can construct arbitrarily small subsolutions u = u(t) and thus, as 1 is a positive solution, there exists
a minimal solution p of (1) in the class of bounded solutions with positive infimum. One could then
check that our proof still works and gives rise to generalized transition waves connecting 0 to p. Indeed,
condition (8) only ensures that p ≡ 1. As a conclusion, the positivity hypothesis (8) is not optimal: one
could replace it by (12) but then the generalized transition waves we construct connect 0 to the minimal
time-global solution, which might not be 1.

Since for the existence of positive solutions it is sufficient to require (12) rather than infµ > 0, one
may argue that, in order to guarantee that 1 is the minimal time-global solution with positive infimum,
hypothesis (8) could be relaxed by

∀u ∈ (0, 1),
⌊

min
x∈RN

f (x, · , u)
⌋
> 0. (15)

This is not true, as shown by the following example. Let p ∈ C1(R) be a strictly decreasing function
such that p(±∞) ∈ (0, 1). Let f satisfy f (t, p(t))= p′(t). It is clear that f can be extended in such a
way that (15) holds; however p is a time-global solution of ∂t u = f (t, u) with positive infimum which is
smaller than 1.
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Finally, if 0 is linearly stable, in the sense that⌈
sup

x∈RN
µ(x, · )

⌉
< 0 (16)

holds, and (9) is satisfied, then there do not exist generalized transition waves at all, and, more generally,
solutions to the Cauchy problem with bounded initial data converge uniformly to 0 as t→∞. Indeed, as
an easy application of the property of the least (and upper) mean (39), one can construct a supersolution
u = eσ(t)−εt , for some σ ∈W 1,∞(R) and ε > 0. The convergence to 0 of bounded solutions then follows
from the comparison principle.

2C. Description of the method and application to particular cases. The starting point of the construc-
tion of generalized transition waves consists of finding an explicit expression for the speed. This is not
a trivial task in the case of mixed space-time dependence considered in this paper. We achieve it by a
heuristic argument that we now illustrate.

Suppose that u is a generalized transition wave in a direction e ∈ SN−1. Its tail at large x · e is close
from being a solution of the linearized equation around 0:

∂t u−Tr(A(x, t)D2u)+ q(x, t) · Du = µ(x, t)u. (17)

It is natural to expect the tail of u to decay exponentially. Thus, since the equation is spatially periodic,
we look for (the tail of) u under the form

u(x, t)= e−λx ·eηλ(x, t), with ηλ positive and l-periodic in x . (18)

Rewriting this expression as

u(x, t)= exp
(
−λ
(

x · e− 1
λ

ln ηλ(x, t)
))

shows that the speed of u, namely, a function c for which (2) holds, should satisfy∣∣∣∣∫ t

0
c(s) ds− 1

λ
ln ηλ(x, t)

∣∣∣∣≤ C,

for some C independent of (x, t) ∈RN
×R. Clearly, this can hold true only if the ratio between maximum

and minimum of ηλ( · , t) is bounded uniformly on t . This property follows from a Harnack-type inequality,
Lemma 3.1 below, which is the keystone of our proof and actually the only step where the periodicity
in x really plays a role. It would be then natural to define c(t) := 1

λ
d
dt ln ‖ηλ( · , t)‖L∞(R). The problem is

that we do not know if this function is bounded, since it is not clear whether ∂tηλ ∈ L∞(RN+1) or not.
We overcome this difficulty by showing that there exists a Lipschitz continuous function Sλ such that

∃β > 0, ∀t ∈ R,

∣∣∣Sλ(t)− 1
λ

ln ‖ηλ( · , t)‖L∞(RN )

∣∣∣≤ β. (19)

We deduce that the function c defined (almost everywhere) by c := S′λ is bounded and it is an admissible
speed for the wave u. The method described above provides, for any given λ> 0, a wave with speed c= cλ
for the linearized equation which decays with exponential rate λ. It is known — for instance in the case
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of constant coefficients — that only decaying rates which are “not too fast” are admissible for waves of
the nonlinear reaction-diffusion equation. In Section 3C, we identify a threshold rate λ∗. In the following
section we construct generalized transition waves for any λ < λ∗, recovering with the least mean of their
speeds the whole interval (bcλ∗c,+∞). We do not know if the critical speed c∗ := bcλ∗c is optimal, nor
if an optimal speed does exist. However, we show below that this is the case if one applies the above
procedure to some particular classes of heterogeneities already investigated in the literature.

In the case where the coefficients are periodic in time too, the class of admissible speeds has been
characterized in [Nadin 2009] (see also [Berestycki et al. 2008]). Following the method described above,
we see that an entire solution of (17) in the form (18) is given by ηλ(x, t)= ek(λ)tϕλ(x, t), where (k(λ), ϕλ)
are the principal eigenelements of the problem2


∂tϕλ−Tr(AD2ϕλ)+ (q + 2λAe)Dϕλ− (µ+ λ2eAe+ λq · e)ϕλ+ k(λ)ϕλ = 0 in RN

×R,

ϕλ > 0,
ϕλ is periodic in t and x .

(20)

Actually, the uniqueness up to a multiplicative constant of solutions of (17) in the form (18), provided by
Lemma 3.1 (proved without assuming the time-periodicity), implies that ηλ necessarily has this form.
Thus, Sλ(t) := (k(λ)/λ)t satisfies (19), whence the speed of the wave for the linearized equation with
decaying rate λ is cλ ≡ k(λ)/λ. Since the cλ are constant (and therefore they have uniform mean), it turns
out that the threshold λ∗ we obtain for the decaying rates coincides with the minimum point of λ 7→ cλ
(see Remark 1 below). We eventually derive the existence of a generalized transition wave for any
speed larger than c∗ :=minλ>0 k(λ)/λ, which is exactly the sharp critical speed for pulsating traveling
fronts obtained in [Nadin 2009]. To sum up, our construction of the minimal speed c∗ is optimal in the
space-time periodic framework. On the other hand, in the periodic framework, the speed c∗ constructed
in Section 4 is identical to c∗ and thus Theorem 2.2 implies that there do not exist generalized transition
waves with a speed c such that bcc<minλ>0 k(λ)/λ. We therefore recover also the nonexistence result
for pulsating traveling fronts. Only the existence of fronts with critical speed is not recovered.

In the case investigated in [Nadin and Rossi 2012], namely, when A ≡ IN , q ≡ 0 and f does not
depend on x , one can easily check that ηλ(t) = e

∫ t
0 µ(s) ds+λ2t . As a function Sλ we can simply take

1
λ

ln ‖ηλ( · , t)‖L∞(RN ) =
1
λ

∫ t
0 µ(s) ds+ λt , which is Lipschitz continuous. Hence cλ(t) := λ+µ(t)/λ is

a speed of a wave with decaying rate λ. In this case the critical decaying rate λ∗ is equal to
√
bµc (see

again Remark 1) and thus we have c∗ = 2
√
bµc. This is the same speed c∗ as in [Nadin and Rossi 2012],

which was proved to be minimal.
Under the assumptions made in [Rossi and Ryzhik 2014], that is, A and q only depend on x (periodically)

and f only depends on (t, u), the speeds c∗ derived in the present paper and in [Rossi and Ryzhik 2014]
coincide, and thus it is minimal, in the sense that there do not exist any generalized transition waves with
a lower speed.

2The properties of these eigenelements, which are unique (up to a multiplicative constant in the case of ϕλ) are described in
[Nadin 2009] for instance.
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When A ≡ IN and q , f are periodic in x and uniquely ergodic in t , then one can prove that the same
holds true for the function ∂tηλ/ηλ by uniqueness, and thus αbcαc could be identified with the Lyapounov
exponent λ(α, ξ) used by Shen in [2011a], where ξ is the direction of propagation. We thus recover in
this framework the same speed c∗ as in [Shen 2011a], which was not proved to be minimal since the
nonexistence of transition waves with lower speed were not investigated. Note that this identification
is not completely obvious. However, as the formalism of the present paper and [Shen 2011a] are very
different, we leave these computations to the reader.

Lastly, let us consider the following example, where one could indeed construct directly the generalized
transition waves:

∂t u− ∂xx u− q(t)∂x u = µ0u(1− u), (21)

with q bounded and uniformly continuous and µ0 > 0. This equation satisfies assumptions (3)–(12). The
change of variables v(x, t) := u

(
x −

∫ t
0 q, t

)
leads to the classical homogeneous Fisher–KPP equation

∂tv− ∂xxv = µ0v(1−v). This equation admits traveling wave solutions of the form v(x, t)= φc(x− ct),
with φc(−∞)= 1 and φc(+∞)= 0, for all c≥ 2

√
µ0. Hence, Equation (21) admits generalized transition

waves u(x, t)= φc
(
x − ct +

∫ t
0 q, t

)
of speed c− q(t) if and only if c ≥ 2

√
µ0. That is, the set of least

mean of admissible speeds is [2
√
µ0−dqe,+∞). Computing c∗ in this case, one easily gets

ηλ = ηλ(t)= eλ
2t−λ

∫ t
0 q(s) ds+µ0t , cλ(t)= λ− q(t)+µ0/λ and c∗ = 2

√
µ0−dqe.

One could check that c∗ coincides with this value too, meaning that Theorems 2.1 and 2.2 fully characterize
the possible least means for admissible speeds, except for the critical one.

3. Existence result

Throughout this section, we fix e ∈ SN−1 and we assume that conditions (3)–(11) hold. Actually, condi-
tion (8) could be weakened by (12), except for the arguments in the very last part of the proof in Section 3D.
As already mentioned in Section 2B, these arguments could be easily adapted to the case where (8) is
replaced by (12), leading to transition waves connecting 0 to the minimal solution with positive infimum.

3A. Solving the linearized equation. We focus on solutions with prescribed spatial exponential decay.

Lemma 3.1. For all λ > 0, the equation (17) admits a time-global solution of the form (18). Moreover,
ηλ is unique up to a multiplicative constant and satisfies, for all t ∈ R, T ≥ 0,

max
x∈RN

ηλ(x, t + T )≤ max
x∈RN

ηλ(x, t) exp
((
αλ+ sup

RN+1
|q|
)
λT +

∫ t+T

t
max
x∈RN

µ(x, s) ds
)
, (22)

min
x∈RN

ηλ(x, t + T )≥ C max
x∈RN

ηλ(x, t) exp
((
αλ− sup

RN+1
|q|
)
λT +

∫ t+T

t
min
x∈RN

µ(x, s) ds
)
, (23)

with C > 0 only depending on a constant bounding |λ|, |l|, α−1, α, N and the L∞ norms of µ and q.

The function (x, t) 7→e−λx ·eηλ(x, t) is a solution of the linearization of (1) near the unstable equilibrium.
We will show in the next section that it is somehow a transition wave solution of the linearized equation,
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in the sense that it moves in the direction e with a certain speed. Due to hypothesis (9), we could use it
as a supersolution of the nonlinear equation. Then, in Section 3C, in order to construct an appropriate
subsolution, we will need to restrict to exponents λ less than some threshold λ∗. We will eventually derive
the existence of transition waves in Section 3D.

As mentioned in Section 2C, Lemma 3.1 is the only point where the spatial periodicity hypothesis
(11) is used. If the coefficients depend in a general way on both x and t and if one is able to construct a
solution ηλ of equation (25) for which there exists C > 0 such that, for all T > 0, (x, t) ∈ RN+1, one has

1
C
‖ηλ( · , t)‖L∞(RN )e

−CT
≤ ηλ(x, t + T )≤ C‖ηλ( · , t)‖L∞(RN )e

CT . (24)

Then the forthcoming other steps of the proof still apply and it is possible to construct a generalized
transition wave solution of the nonlinear equation (1). We describe this extension in Section 3E below.
It would be very useful to determine optimal conditions on the coefficients enabling the derivation of
a global Harnack-type inequality such as (24) for the linearized equation. We leave this question as an
open problem.

Proof of Lemma 3.1. The problem for ηλ is

∂tηλ = Tr(AD2ηλ)− (q + 2λAe) · Dηλ+ (µ+ λ2eAe+ λq · e)ηλ, x ∈ RN , t ∈ R. (25)

We find a positive, l-periodic solution to (25) as the locally uniform limit of (a subsequence of) solutions ηn

of the problem in RN
× (−n,+∞), with initial datum ηn(−n, · )≡ mn , where mn is a positive constant

chosen in such a way that, say, supx∈RN ηn(0, x)= 1.
Let us show that any l-periodic solution ηλ to (25) satisfies (22) and (23). For a given t0 ∈ R, the

function

max
x∈RN

ηλ(x, t0) exp
((
αλ2
+ sup

RN+1
|q|λ

)
(t − t0)+

∫ t

t0
max
x∈RN

µ(x, s) ds
)

is a supersolution of (25) larger than ηλ at time t0. Since ηλ is bounded, we can apply the parabolic
comparison principle and derive (22). Let C denote the periodicity cell

∏N
j=1[0, lj ]. By the parabolic

Harnack inequality (see, e.g., Corollary 7.42 in [Lieberman 1996]), we have that

∀t ∈ R, max
x∈C

ηλ(x, t − 1)≤ C̃ min
x∈C

ηλ(x, t), (26)

for some C̃ > 0 depending on a constant bounding |λ|, |l|, α−1, α, N and the L∞ norms of µ and q , and
not on t . On the other hand, the comparison principle yields, for T ≥ 0,

min
x∈RN

ηλ(x, t + T )≥ min
x∈RN

ηλ(x, t) exp
((
αλ2
− sup

RN+1
|q|λ

)
T +

∫ t+T

t
min
x∈RN

µ(x, s) ds
)
.

Combining this inequality with (26) we eventually derive

min
x∈RN

ηλ(x, t + T )≥ C̃−1 max
x∈RN

ηλ(x, t − 1) exp
((
αλ2
− sup

RN+1
|q|λ

)
T +

∫ t+T

t
min
x∈RN

µ(x, s) ds
)
,

from which (23) follows by (22).
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It remains to prove the uniqueness result. Assume that (17) admits two solutions η1, η2 that are positive
and l-periodic in x . As shown before, we know that they both satisfy (22) and (23). We first claim that
there exists K > 1 such that

∀t ∈ R, x ∈ RN , K−1η2(x, t)≤ η1(x, t)≤ Kη2(x, t). (27)

Let h> 0 be such that η1
≤ hη2 at t = 0. It follows, for t ≤ 0, that minx∈RN η1(x, t)≤ h maxx∈RN η2(x, t),

because otherwise the parabolic strong maximum principle would imply η1 > hη2 at t = 0. Hence,
applying (23) with T = 0 to both η1 and η2, we find a positive constant K such that

∀t < 0, max
x∈RN

η1(x, t)≤ K min
x∈RN

η2(x, t).

This proves the second inequality in (27), for t < 0, whence for all t ∈ R by the maximum principle. The
first inequality, with a possibly larger K , is obtained by exchanging the roles of η1 and η2. Now define

k := lim sup
t→−∞

max
x∈RN

η1(x, t)
η2(x, t)

.

We know from (27) that k ∈ [K−1, K ]. Consider a sequence (tn)n∈N such that

lim
n→∞

tn =−∞, lim
n→∞

max
x∈RN

η1(x, tn)
η2(x, tn)

= k.

Define the sequences of functions (η1
n)n∈N, (η2

n)n∈N as follows:

∀i ∈ {1, 2}, n ∈ N, ηi
n(x, t) :=

ηi (x, t + tn)
maxy∈RN η1(y, tn)

.

We deduce from (22) and (23) that the (η1
n)n∈N are uniformly bounded from above and uniformly

bounded from below away from 0 in, say, RN
×[−2, 2]. The same is true for (η2

n)n∈N by (27). Thus, by
parabolic estimates and periodicity in x , the sequences (ηi

n)n , (∂tη
i
n)n , (Dηi

n)n and (D2ηi
n)n converge, up

to subsequences, in L p
loc(R

N+1). Morrey’s inequality yields that the sequences (η1
n)n and (η2

n)n converge
locally uniformly to some functions η̃1 and η̃2 respectively.

Define An := A( · , · +tn), qn := q( · , · +tn), µn :=µ( · , · +tn). As A and q are uniformly continuous,
(An)n and (qn)n converge (up to subsequences) to some functions Ã and q̃ in L∞loc(R

N+1), whereas (µn)n

converges to some µ̃ in the L∞(RN+1) weak-∗ topology. Hence, taking the weak L p
loc(R

N+1) limit
as n→∞ in the equations satisfied by the (ηi

n)n∈N, we get

∂t η̃
i
= Tr( ÃD2η̃i )− (q̃ + 2λ Ãe)Dη̃i

+ (µ̃+ λ2e Ãe+ λq̃ · e)η̃i , x ∈ RN , t ∈ R.

Clearly, these equations hold almost everywhere because all the terms are measurable functions. That is,
the η̃i are strong solutions. Moreover,

η̃1
≤ kη̃2, max

x∈RN

η̃1(x, 0)
η̃2(x, 0)

= k.
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The strong maximum principle then yields η̃1
≡ kη̃2. As a consequence, for any ε > 0, we can find nε ∈N

such that, for n ≥ nε, one has (k− ε)η2
n < η

1
n < (k+ ε)η

2
n at t = 0. These inequalities hold for all t ≥ 0,

again by the maximum principle. Reverting to the original functions we obtain (k−ε)η2 <η1 < (k+ε)η2

for t ≥ tn and n ≥ nε, from which, letting n →∞ and ε → 0+, we eventually infer that η1
≡ kη2

for all t ∈ R. �

In the particular case T = 0, the inequality (23) reads

min
x∈RN

ηλ(x, t)≥ C max
x∈RN

ηλ(x, t). (28)

Notice that, in contrast with the standard parabolic Harnack inequality, the two sides are evaluated at the
same time. This particular instance of (23) will be used in the sequel.

Until the end of the proof of Theorem 2.1, for λ>0, we let ηλ stand for the (unique up to a multiplicative
constant) function given by Lemma 3.1.

3B. The speeds of the waves.

Lemma 3.2. There is a uniformly Lipschitz-continuous function Sλ : R→ R satisfying (19).

Proof. Properties (22)–(23) yield the existence of a constant β > 0 such that

∀t ∈ R, T ≥ 0,
∣∣ln ‖ηλ( · , t + T )‖L∞(RN )− ln ‖ηλ( · , t)‖L∞(RN )

∣∣≤ β(1+ λ2)T .

For all n ∈ N, we define Sλ on [n, n+ 1] as the affine function satisfying

Sλ(n)=
1
λ

ln ‖ηλ( · , n)‖L∞(RN ), Sλ(n+ 1)= 1
λ

ln ‖ηλ( · , n+ 1)‖L∞(RN ).

Then, for all t ∈ (n, n+ 1),

|S′λ(t)| =
∣∣∣1
λ

ln ‖ηλ( · , n+ 1)‖L∞(RN )−
1
λ

ln ‖ηλ( · , n)‖L∞(RN )

∣∣∣≤ β 1+λ2

λ
.

Hence, Sλ is uniformly Lipschitz-continuous over R. Moreover, if t ∈ [n, n+ 1], one has∣∣∣Sλ(t)− 1
λ

ln ‖ηλ( · , t)‖L∞(RN )

∣∣∣≤ |Sλ(t)− Sλ(n)| +
1
λ

∣∣ln ‖ηλ( · , t)‖L∞(RN )− ln ‖ηλ( · , n)‖L∞(RN )

∣∣
≤ 2β 1+λ2

λ
.

Hence, t 7→ Sλ(t)− 1
λ

ln ‖ηλ( · , t)‖L∞(RN ) is uniformly bounded over R. �

Owing to Lemma 3.2, the function cλ, defined for (almost everywhere) t ∈ R by

cλ(t) := S′λ(t), (29)

belongs to L∞(R). We will use it as a possible speed for a transition wave to be constructed.
Let us investigate the properties of the least mean of the (cλ)λ>0. It follows from (19) that

bcλc =
1
λ

lim
T→+∞

inf
t∈R

1
T

ln
‖ηλ( · , t + T )‖L∞(RN )

‖ηλ( · , t)‖L∞(RN )

. (30)
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Hence, by (22) and (23), we derive

αλ− sup
RN+1
|q| + 1

λ

⌊
min
x∈RN

µ(x, · )
⌋
≤ bcλc ≤ αλ+ sup

RN+1
|q| + 1

λ

⌊
max
x∈RN

µ(x, · )
⌋
. (31)

Analogous bounds hold for the upper mean:

αλ− sup
RN+1
|q| + 1

λ

⌈
min
x∈RN

µ(x, · )
⌉
≤ dcλe ≤ αλ+ sup

RN+1
|q| + 1

λ

⌈
max
x∈RN

µ(x, · )
⌉
. (32)

We have seen in Section 2C that, when the coefficients are periodic in t , one can take Sλ(t) := (k(λ)/λ)t ,
whence cλ ≡ k(λ)/λ. It follows that λcλ = k(λ), and we know from the arguments in the proof of
Proposition 5.7 part (iii) in [Berestycki and Hamel 2002] that the function k is convex. In the general
heterogeneous framework considered in the present paper, we use the same arguments as in [Berestycki
and Hamel 2002] to derive the Lipschitz continuity of the function λ 7→ λbcλc. If the functions cλ admit
a uniform mean then these arguments actually imply that λ 7→ λbcλc is convex, but we do not know if
this is true in general.

Lemma 3.3. The functions λ 7→bcλc and λ 7→dcλe are locally uniformly Lipschitz continuous on (0,+∞).

Proof. Fix 3 > 0 and −3 ≤ λ0 ≤ 3. Let λ1 be such that |λ1 − λ0| = 23. For j = 0, 1, the function
vj (x, t) := e−λj x ·eηλj (x, t) satisfies (17). Hence, setting vj = ewj , we find that

∂twj −Tr(AD2wj )+ q · Dwj = µ+Tr(ADwj ⊗ Dwj ), x ∈ RN , t ∈ R.

For τ ∈ (0, 1), the function w := (1− τ)w0+ τw1 satisfies, for x ∈ RN , t ∈ R,

∂tw−Tr(AD2w)+ q · Dw = µ+Tr
(

A((1− τ)Dw0⊗ Dw0+ τDw1⊗ Dw1)
)

≥ µ+Tr(ADw⊗ Dw).

As a consequence, ew is a supersolution of (17) and then, since

ew(x,t) = e−((1−τ)λ0+τλ1)x ·eη1−τ
λ0
(x, t)ητλ1

(x, t),

the function η1−τ
λ0
ητλ1

is a supersolution of (25) with λ= λτ := (1− τ)λ0+ τλ1. We can therefore apply
the comparison principle between this function and ηλτ and derive, for t ∈ R, T > 0,

‖ηλτ ( · , t + T )‖L∞(RN )

‖ηλτ ( · , t)‖L∞(RN )

≤
‖η1−τ
λ0
ητλ1
( · , t + T )‖L∞(RN )

minx∈RN η1−τ
λ0
ητλ1
(x, t)

≤

(
‖ηλ0( · , t + T )‖L∞(RN )

minx∈RN ηλ0(x, t)

)1−τ(
‖ηλ1( · , t + T )‖L∞(RN )

minx∈RN ηλ1(x, t)

)τ
.

Hence, using the inequality (28) for ηλ0 and ηλ1 (with the same C depending on 3), we obtain

‖ηλτ ( · , t + T )‖L∞(RN )

‖ηλτ ( · , t)‖L∞(RN )

≤ C−1
(
‖ηλ0( · , t + T )‖L∞(RN )

‖ηλ0( · , t)‖L∞(RN )

)1−τ(
‖ηλ1( · , t + T )‖L∞(RN )

‖ηλ1( · , t)‖L∞(RN )

)τ
. (33)
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Consider the function 0 defined by 0(λ) := λbcλc. It follows from (30) and (33) that

0(λτ )≤ lim
T→+∞

inf
t∈R

1
T

(
(1− τ) ln

‖ηλ0( · , t + T )‖L∞(RN )

‖ηλ0( · , t)‖L∞(RN )

+ τ ln
‖ηλ1( · , t + T )‖L∞(RN )

‖ηλ1( · , t)‖L∞(RN )

)
.

If the (cλ)λ>0 admit a uniform mean, the above inequality and (30) imply that 0 is convex. Otherwise,
we can only infer that

0(λτ )≤ (1− τ)0(λ0)+ τλ1dcλ1e.

We have therefore shown that

∀τ ∈ (0, 1), 0(λτ )−0(λ0)≤ τ(λ1dcλ1e− λ0bcλ0c).

Thus, by (31) and (32) there exists a constant K > 0, depending on A, q, µ, such that

∀τ ∈ (0, 1), 0(λτ )−0(λ0)≤ K (32
+ 1)τ.

This proves the Lipschitz continuity of 0 on [−3,3], because |λτ −λ0| = 23τ , concluding the proof of
the lemma.

The same arguments lead to the local Lipschitz continuity of λ 7→ dcλe. �

3C. Definition of the critical speed. In order to define the critical speed c∗, we introduce the set

3 := {λ > 0 : ∃k > 0, ∀0< k < k, bcλ− cλ+kc> 0}. (34)

Lemma 3.4. There exists λ∗ > 0 such that 3= (0, λ∗). Moreover, the function λ 7→ bcλc is decreasing
on 3.

Proof. Fix λ0, λ1 > 0. For τ ∈ (0, 1), we set λτ := (1− τ)λ0+ τλ1. Taking the natural log of (33) and
recalling that cλ = S′λ with Sλ satisfying (19) yields∫ t+T

t
[(1− τ)λ0cλ0 + τλ1cλ1 − λτ cλτ ] ds ≥ ln C − 4λτβ.

Hence,

λτ

∫ t+T

t
(cλ0 − cλτ ) ds ≥ τλ1

∫ t+T

t
(cλ0 − cλ1) ds+ ln C − 4λτβ.

Dividing both sides by T , taking the infimum over t ∈R and then taking the limit as T →+∞, we derive

∀τ ∈ (0, 1), bcλ0 − cλτ c ≥ τ
λ1

λτ
bcλ0 − cλ1c. (35)

If instead we divide by −T , we get

∀τ ∈ (0, 1), bcλτ − cλ0c ≤ τ
λ1

λτ
bcλ1 − cλ0c. (36)

Analogous estimates hold of course for the upper mean. The characterization of 3 follows from these
inequalities, by suitable choices of λ0, λ1 and τ . We prove it in four steps.
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Step 1: 3 6=∅. The first inequality in (31), together with (12), yields

lim
λ→0+
bcλ− c1c ≥ lim

λ→0+
bcλc− dc1e = +∞.

Then there exists 0< λ < 1 such that bcλ− c1c> 0. Applying (35) with λ0 = λ, λ1 = 1, we eventually
infer that bcλ− cλ+kc> 0, for all 0< k < 1− λ; that is, λ ∈3.

Step 2: 3 is bounded from above. By (31) we obtain

lim
λ→+∞

bc1− cλc ≤ bc1c− lim
λ→+∞

bcλc = −∞.

Then there exists λ′ > 1 such that, for λ > λ′, we have bc1− cλc< 0. Hence, for k > 0, applying (36)
with λ0 = λ+ k, λ1 = 1 and τ = k/(k+ λ− 1), we derive

bcλ− cλ+kc ≤
k

(k+ λ− 1)λ
bc1− cλ+kc< 0.

Namely, λ /∈3 and thus 3 is bounded from above by λ′.

Step 3: If λ ∈3 then (0, λ] ⊂3. Let 0< λ′ < λ and k > 0. Using first (35) and then (36) we get

bcλ′ − cλ′+kc ≥

(
k

k+ λ− λ′

)(
λ+ k
λ′+ k

)
bcλ′ − cλ+kc ≥

(
λ+ k
λ′+ k

)
λ

λ′
bcλ− cλ+kc.

Thus, λ ∈3 implies λ′ ∈3.

Step 4: sup3 /∈ 3. Let λ∗ := sup3 and k > 0. For all n ∈ N, there exists 0 < kn < 1/n such that
bcλ∗+1/n − cλ∗+1/n+knc ≤ 0. For n large enough, we have that 1/n+ kn < k and then, by (35),

0≥ bcλ∗+1/n − cλ∗+1/n+knc ≥

(
kn

k− 1/n

)(
λ∗+ k

λ∗+ 1/n+ kn

)
bcλ∗+1/n − cλ∗+kc.

Hence,

bcλ∗ − cλ∗+kc ≤ bcλ∗+1/n − cλ∗+kc+ dcλ∗ − cλ∗+1/ne ≤ dcλ∗ − cλ∗+1/ne.

Using the analogue of (36) for the upper mean, we can control the latter term as follows:

dcλ∗ − cλ∗+1/ne ≤
1/n

λ∗+ 2/n
dcλ∗/2− cλ∗+1/ne ≤

1/n
λ∗+ 2/n

(dcλ∗/2e− bcλ∗+1/nc),

which goes to 0 as n→∞ (recall that λ 7→ bcλc is continuous by Lemma 3.3). We eventually infer that
bcλ∗ − cλ∗+kc ≤ 0; that is, λ∗ /∈3.

It remains to show that λ 7→ bcλc is decreasing on 3. Assume by way of contradiction that there are
0< λ1 < λ2 < λ

∗ such that bcλ1c ≤ bcλ2c. The function λ 7→ bcλc, being continuous, attains its minimum
on [λ1, λ2] at some λ. Since bcλ1c ≤ bcλ2c, we can assume that λ ∈ [λ1, λ2). The definition of 3 implies
that there exists λ′ ∈ (λ, λ2) such that bcλ− cλ′c> 0. Hence, we obtain the following contradiction:

bcλ′c ≤ bcλc+ dcλ′ − cλe = bcλc− bcλ− cλ′c< bcλc. �
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We are now in position to define the critical speed

c∗ := bcλ∗c, (37)

where λ∗ is given in Lemma 3.4.

Remark 1. When the terms in (1) are periodic in time, resuming from Section 2C, we know that the
speeds (cλ)λ>0 are constant and satisfy cλ≡ k(λ)/λ, where k(λ) is the principal eigenvalue of problem (20).
Hence,

bcλ− cλ+κc =
k(λ)
λ
−

k(λ+ κ)
λ+ κ

.

As λ 7→ k(λ) is strictly convex (see [Nadin 2009]) and, by (31),

lim
λ→+∞

k(λ)
λ
=+∞, lim

λ→0+
k(λ)= lim

λ→0+
λcλ ≥

⌊
min
x∈RN

µ(x, · )
⌋
> 0,

straightforward convexity arguments yield that λ∗ is the unique minimizer of λ 7→ k(λ)/λ. Therefore,
c∗ =minλ>0 k(λ)/λ, which is known to be the minimal speed for pulsating traveling fronts (see [Nadin
2009]).

3D. Construction of a subsolution and conclusion of the proof. In order to prove Theorem 2.1, we
introduce a family of functions (ϕλ)λ>0 which play the role of the spatial-periodic principal eigenfunctions
in the time-independent case. For λ > 0, let ηλ be the function given by Lemma 3.1, normalized by
‖ηλ( · , 0)‖L∞(RN ) = 1. We define

ϕλ(x, t) := e−λSλ(t)ηλ(x, t).

By (19) and (28), there exist two positive constants Cλ, β such that

∀x ∈ RN , t ∈ R, Cλ ≤ ϕλ(x, t)≤ eλβ . (38)

We will make use of the following key property of the least mean, provided by Lemma 3.2 of [Nadin
and Rossi 2012]:

∀g ∈ L∞(R), bgc = sup
σ∈W 1,∞(R)

inf
t∈R
(σ ′+ g)(t). (39)

Proof of Theorem 2.1. Fix γ > c∗. Since the function λ 7→ bcλc is continuous by Lemma 3.3 and tends
to +∞ as λ→ 0+ by (31), and 3= (0, λ∗) by Lemma 3.4, there exists λ ∈3 such that bcλc = γ . The
function w defined by

w(x, t) :=min(e−λx ·eηλ(x, t), 1)

is a generalized supersolution of (1).
In order to construct a subsolution, consider the constant ν in (10). By the definition of 3, there exists

λ< λ′ < (1+ν)λ such that bcλ− cλ′c> 0. We then set ψ(x, t) := eσ(t)−λ
′(x ·e−Sλ(t)+Sλ′ (t))ηλ′(x, t), where

σ ∈W 1,∞(R) will be chosen later. We have that

∂tψ −Tr(A(x, t)D2ψ)+ q(x, t) · Dψ −µ(x, t)ψ =
(
σ ′(t)+ λ′(cλ(t)− cλ′(t))

)
ψ.
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Since bλ′(cλ− cλ′)c = λ′bcλ− cλ′c > 0, by (39) we can choose σ ∈ W 1,∞(R) in such a way that
K := infR(σ

′
+ λ′(cλ− cλ′)) > 0. Hence,

∂tψ −Tr(A(x, t)D2ψ)+ q(x, t) · Dψ ≥ (µ(x, t)+ K )ψ, x ∈ RN , t ∈ R.

We define

v(x, t) := e−λx ·eηλ(x, t)−mψ(x, t),

where m is a positive constant to be chosen. By computation,

e−λx ·eηλ(x, t)−mψ(x, t)= e−λ(x ·e−Sλ(t))
(
ϕλ(x, t)−mϕλ′(x, t)eσ(t)−(λ

′
−λ)(x ·e−Sλ(t))

)
.

Since ϕλ, ϕλ′ satisfy (38) and σ ∈ L∞(R), it follows that, choosing m large enough, we have v(x, t)≤ 0
if x · e − Sλ(t) ≤ 0, and that v is less than δ ∈ (0, 1], from (10), everywhere. If v(x, t) > 0, and
therefore x · e− Sλ(t) > 0, we see that

∂tv−Tr(A(x, t)D2v)+ q(x, t) · Dv−µ(x, t)v ≤−mKψ

≤−mKψ
v1+ν

e−(1+ν)λx ·eη1+ν
λ

=−mKv1+ν ϕλ′

ϕ1+ν
λ

eσ(t)−(λ
′
−(1+ν)λ)(x ·e−Sλ(t))

≤−mKv1+νCλ′e−(1+ν)λβ inf
s∈R

eσ(s),

where, for the last inequality, we have used (38) and the fact that λ′ < (1+ ν)λ. As a consequence, by
hypothesis (10), for m sufficiently large, v is a subsolution of (1) in the set where it is positive.

Using again (38), one computes

v(x + Sλ(t)e, t)= e−λx ·e(ϕλ(x + Sλ(t)e, t)−mϕλ′(x + Sλ(t)e, t)eσ(t)−(λ
′
−λ)x ·e)

≥ e−λx ·e(Cλ−mCλ′eλ
′β+‖σ‖∞−(λ

′
−λ)x ·e).

Hence, taking R large enough, one has

inf
x ·e=R

t∈R

v(x + Sλ(t)e, t)≥ e−λR(Cλ−mCλ′eλ
′β+‖σ‖∞−(λ

′
−λ)R)=: ω ∈ (0, 1).

Consequently, the function v defined by

v(x, t) :=
{
v(x, t) if x · e ≥ Sλ(t)+ R,
max(ω, v(x, t)) if x · e < Sλ(t)+ R,

is continuous and, because of (8), it is a generalized subsolution of (1). Moreover, since v ≤ w and
w(x + Sλ(t)e, t)≥ e−λRCλ >ω if x · e < R, one sees that v ≤w. A solution v ≤ u ≤w can therefore be
obtained as the limit of (a subsequence of) the solutions (un)n∈N of the problems{

∂t un −Tr(A(x, t)D2un)+ q(x, t) · Dun = f (x, t, un), x ∈ RN , t >−n
un(x,−n)= w(x,−n), x ∈ RN .
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The strong maximum principle yields u > 0. One further sees that

lim
x ·e→+∞

u
(

x + e
∫ t

0
cλ(s) ds, t

)
≤ lim

x ·e→+∞
w

(
x + e

∫ t

0
cλ(s) ds, t

)
≤ lim

x ·e→+∞
e−λx ·eϕλ(x, t)= 0,

uniformly with respect to t ∈ R. It remains to prove that

lim
x ·e→−∞

u
(

x + e
∫ t

0
cλ(s) ds, t

)
= 1

holds uniformly with respect to t ∈ R. Set

ϑ := lim
r→−∞

inf
x ·e≤r
t∈R

u
(

x + e
∫ t

0
cλ(s) ds, t

)
.

Our aim is to show that ϑ = 1. We know that ϑ ≥ω> 0, because u(x, t)≥ v(x, t)≥ω if x ·e< Sλ(t)+R.
Let (xn)n∈N in RN and (tn)n∈N in R be such that

lim
n→∞

xn · e =−∞, lim
n→∞

u
(

xn + e
∫ tn

0
cλ(s) ds, tn

)
= ϑ.

For n ∈ N, let kn ∈
∏N

j=1 lj Z be such that yn := xn + e
∫ tn

0 cλ(s) ds − kn ∈
∏N

j=1[0, lj ) and define
vn(x, t) := u(x + kn, t + tn). The functions (vn)n∈N are solutions of

∂tvn −Tr(A(x, t + tn)D2vn)+ q(x, t + tn) · Dvn = f (x, t + tn, vn), x ∈ RN , t ∈ R.

By parabolic estimates, one can show using the same types of arguments as in the proof of Lemma 3.1
that (vn)n∈N converges (up to subsequences) locally uniformly to some function v satisfying

∂tv−Tr( Ã(x, t)D2v)+ q̃(x, t) · Dv = g(x, t)≥ 0, x ∈ RN , t ∈ R,

where Ã and q̃ are the strong limits in L∞loc(R
N+1) and g is the weak limit in L p

loc(R
N
×R) of (a sub-

sequence of) A(x, t+ tn), q(x, t+ tn) and f (x, t+ tn, vn(x, t)) respectively, the inequality g ≥ 0 coming
from hypothesis (8). Furthermore, letting y be the limit of (a converging subsequence of) (yn)n∈N, we
find that v(y, 0)= ϑ and

∀x ∈ RN , t ∈ R, v(x, t)= lim
n→∞

u
(

x + xn + e
∫ tn

0
cλ(s) ds− yn, t + tn

)
≥ ϑ.

As a consequence, the strong maximum principle yields v = ϑ in RN
× (−∞, 0]. In particular, g = 0

in RN
×(−∞, 0). Using the Lipschitz continuity of f (x, t, · ), we then derive for all (x, t)∈RN

×(−∞, 0),

∀T > 0, 0= lim
n→+∞

f (x, t + tn, vn(x, t))= lim
n→+∞

f (x, t + tn, ϑ)≥ inf
(x,t)∈RN+1

f (x, t, ϑ).

This, by (8), implies that either ϑ = 0 or ϑ = 1, whence ϑ = 1 because ϑ ≥ ω > 0. �
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3E. A criterion for the existence of generalized transition waves in space-time general heterogeneous
media. As already emphasized above, our proof holds in more general media, without assuming that
the coefficients satisfy (11), that is, without the space periodicity assumption. We then need to assume
that the linearized equation admits a family of solutions satisfying some global Harnack inequality. We
conclude the existence part of the paper by stating such a result. We omit its proof since one only needs
to check that the previous arguments still work.

Theorem 3.5. In addition to (3)–(10), assume that there exists λ > 0 such that, for all λ ∈ (0, λ), there
exists a Lipschitz-continuous time-global solution ηλ of

∂tηλ = Tr(AD2ηλ)− (q + 2λAe)Dηλ+ (µ+ λ2eAe+ λq · e)ηλ, x ∈ RN , t ∈ R

satisfying
1
C
‖ηλ( · , t)‖L∞(RN )e

−CT
≤ ηλ(x, t + T )≤ C‖ηλ( · , t)‖L∞(RN )e

CT ,

for some C = C(λ) > 0 and for all T > 0, (x, t) ∈ RN+1.
Then there exists λ∗ ∈ (0, λ) such that, for all γ > c∗ := bS′λ∗c, where Sλ is a Lipschitz continuous

function satisfying (19), there exists a generalized transition wave with speed cλ = S′λ such that bcλc = γ .

4. Nonexistence result

Our aim is to find bounded subsolutions to the linearized problem

∂t u−Tr(A(x, t)D2u)+ q(x, t) · Du = µ(x, t)u, x ∈ RN , t ∈ R, (40)

in order to get a lower bound for the speed of traveling wave solutions. We recall that no spatial-periodic
condition is now assumed. Looking for solutions of (40) in the form u(x, t)= e−λ(x ·e−ct)φ(x, t), with
λ and c constant, leads to the equation

(Pλ+ cλ)φ = 0, x ∈ RN , t ∈ R, (41)

where Pλ is the linear parabolic operator defined by

Pλw := ∂tw−Tr(A(x, t)D2w)+ (q(x, t)−2λA(x, t)e) · Dw− (λ2eA(x, t)e+λq(x, t) · e+µ(x, t))w.

We consider the generalized principal eigenvalue introduced in [Berestycki and Nadin 2015]:

κ(λ) := inf
{
k ∈ R : ∃ϕ, infϕ > 0, supϕ <∞, sup |Dϕ|<∞, Pλϕ ≤ kϕ, in RN

×R
}
, (42)

where the functions ϕ belong to L N+1
loc (RN+1), together with their derivatives ∂t , D, D2 (and therefore

the differential inequalities are understood to hold almost everywhere). This is the minimal regularity
required for the maximum principle to apply. See, e.g., [Lieberman 1996].

Taking ϕ ≡ 1 in the above definition we get, for λ ∈ R,

κ(λ)≤−αλ2
+ sup

RN+1
|q||λ| − inf

RN+1
µ. (43)
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We now derive a lower bound for κ(λ). Assume by way of contradiction that there exists a function ϕ as
in the definition of κ(λ), associated with some k satisfying

k <−αλ2
− sup

RN+1
|q||λ| − sup

RN+1
µ.

For β > 0, the function ψ(x, t) := e−βt satisfies

Pλψ
ψ
≥−β −αλ2

− sup
RN+1
|q||λ| − sup

RN+1
µ.

Hence, β can be chosen small enough in such a way that the latter term is larger than k; that is, Pλψ ≥ kψ .
The function ψ is larger than ϕ for t less than some t0, whence ψ ≥ ϕ for all t by the comparison principle.
It follows that ϕ→ 0 as t→+∞, which is impossible since ϕ is bounded from below away from 0. This
shows that κ(λ) >−∞.

We can now define c∗ by setting

c∗ := −max
λ>0

κ(λ)

λ
. (44)

This definition is well posed if κ(0) < 0 because κ(λ)/λ→−∞ as λ→+∞ by (43), and we know
from [Berestycki and Nadin 2015] that λ 7→ κ(λ) is Lipschitz-continuous.3 Let us show that (12) implies
that κ(0) < 0 and then that c∗ is well defined and finite. Writing a positive function ϕ in the form
ϕ(t) := e−σ(t), we see that

P0ϕ =−(σ
′(t)+µ(x, t))ϕ ≤−

(
σ ′(t)+ inf

x∈R
µ(x, t)

)
ϕ.

Thus, (39) implies that, for given ε > 0, there exists σ ∈W 1,∞(R) such that

P0ϕ ≤−

(⌊
inf

x∈RN
µ(x, · )

⌋
− ε

)
ϕ.

Therefore, if (12) holds, taking ε < bminx∈RN µ(x, · )c we derive κ(0) < 0.
The proof of Theorem 2.2 proceeds in two steps. In the following section we show that the average

on (0,+∞) of the speed of a wave cannot be smaller than c∗. More precisely, we derive the following
estimate.

Proposition 4.1. Assume that (3)–(6) hold and that κ(0) < 0. Then, for any nonnegative supersolution u
of (1) such that there is c ∈ L∞(R) satisfying (2), it holds that

lim inf
t→+∞

1
t

∫ t

0
c(s) ds ≥ c∗ := −max

λ>0

κ(λ)

λ
.

In this statement, the notion of solution (including subsolution and supersolution) is understood as in
the definition of κ(λ): namely, u, ∂t u, Du, D2u ∈ L N+1

loc (RN+1). Notice that the least mean of a function
is in general smaller than the average on (0,+∞). In the last section, we establish a general property

3The coefficients are assumed to be Hölder continuous in [Berestycki and Nadin 2015], but one can check that it does not
matter in the proof of continuity.
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of the least mean that allows us to deduce Theorem 2.2 by applying Proposition 4.1 to suitable time
translations of the original problem.

4A. Lower bound on the mean speed for positive times. We start by constructing subsolutions with a
slightly varying exponential behavior as x · e→±∞. These will then be used to build a generalized
subsolution with an arbitrary modulation of the exponential behavior. The term “generalized subsolution”
refers to a function that, in a neighborhood of each point, is obtained as the supremum of some family of
subsolutions. Then, using the fact that the generalized subsolutions satisfy the maximum principle, we
will be able to prove Proposition 4.1.

Lemma 4.2. Let c, λ ∈ R be such that κ(λ)+ cλ < 0. Then there exists ε > 0 and M > 1 such that, for
any z ∈ R, (40) admits a subsolution v satisfying

if x · e− ct ≥ z,
1
M

e−(λ+ε)(x ·e−ct)
≤ v(x, t)≤ Me−(λ+ε)(x ·e−ct), inf

z−1<x ·e−ct<z
v(x, t) > 0,

if x · e− ct ≤ z− 1,
1
M

e−(λ−ε)(x ·e−ct)
≤ v(x, t)≤ Me−(λ−ε)(x ·e−ct).

Proof. By the definition of κ(λ), there is a bounded function ϕ with positive infimum satisfying

Pλϕ ≤ kϕ, x ∈ RN , t > T,

for some k < −cλ. It follows that v(x, t) := e−λ(x ·e−ct)ϕ(x, t) is a subsolution of (40). Fix z ∈ R and
consider a smooth function ζ : R→ R satisfying

ζ = λ− ε in (−∞, z− 1], ζ = λ+ ε in [z,+∞), 0≤ ζ ′ ≤ 3ε, |ζ ′′| ≤ hε,

where ε > 0 has to be chosen and h is a universal constant. We define the function v by setting
v(x, t) := e−(x ·e−ct)ζ(x ·e−ct)ϕ(x, t). Calling ρ := x · e− ct , we find that

[∂tv− ai j (x, t)∂i jv+ qi (x, t)∂iv−µ(x, t)v]eρ ≤ (Pζ + cζ )ϕ+C[(1+ ρ+ ρ|ζ | + ρ2
|ζ ′|)|ζ ′| + ρ|ζ ′′|],

where ζ , ζ ′, ζ ′′ are evaluated at ρ, and C is a constant depending on N , c and the L∞ norms of ai j ,
q, µ, ϕ, Dϕ. The second term of the above right-hand side is bounded by H(ε), for some continuous
function H vanishing at 0. The first term satisfies

(Pζ + cζ )ϕ ≤ (Pλ+ cλ)ϕ+C((ζ − λ)+ |ζ 2
− λ2
|)≤ (k+ cλ)ϕ+C(ε+ 2|λ|ε+ ε2).

We thus derive

∂tv− ai j (x, t)∂i jv+ qi (x, t)∂iv−µ(x, t)v ≤ eρ[(k+ cλ)ϕ+Cε(1+ 2|λ| + ε2)+ H(ε)].

Since k < −cλ and infϕ > 0, we can choose ε small enough in such a way that v is a subsolution
of (40). �

Lemma 4.3. Let λ, λ, c ∈ R satisfy λ < λ and

max
λ∈[λ,λ]

(κ(λ)+ cλ) < 0.
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Then there exists a generalized, bounded subsolution v of (40) satisfying

lim
r→−∞

sup
x ·e−ct<r

v(x, t)eλ(x ·e−ct)
= 0, lim

r→+∞
sup

x ·e−ct>r
v(x, t)eλ(x ·e−ct)

= 0,

and

∀r1 < r2, inf
r1<x ·e−ct<r2

v(x, t) > 0. (45)

Proof. For λ ∈ [λ, λ], let ελ, Mλ be the constants given by Lemma 4.2 associated with c and λ. Call Iλ
the interval (λ− ελ, λ+ ελ). The family (Iλ)λ≤λ≤λ is an open covering of [λ, λ]. Let (Iλi )i=1,...,n be a
finite subcovering and set for short εi := ελi , Mi := Mλi . Up to rearranging the indices and extracting
another subcovering if need be, we can assume that

∀i = 1, . . . , n− 1, λi+1− εi+1 < λi − εi < λi+1+ εi+1 < λi + εi .

Let v1 be the subsolution of (40) given by Lemma 4.2 associated with λ = λ1 and z = 0. Set z1 := 0,
k1 := 1 and

k2 :=
e(λ2+ε2−(λ1−ε1))(z1−1)

M1 M2
.

Consider then the subsolution v2 associated with λ = λ2 and z equal to some value z2 < z1 − 1 to be
chosen. We have that

if x · e− ct = z1− 1,
v1(x, t)
v2(x, t)

≥
k2

k1

if x · e− ct = z2,
k1v1(x, t)
k2v2(x, t)

≤ (M1 M2)
2e(λ2+ε2−(λ1−ε1))(z2−z1+1).

Since λ2+ ε2 > λ1− ε1, we can choose z2 in such a way that the latter term is less than 1. By a recursive
argument, we find some constants (zi )i=1,...,n satisfying zn < zn−1− 1< · · ·< z1− 1=−1, such that the
family of subsolutions (vi )i=1,...,n given by Lemma 4.2 associated with the (λi )i=1,...,n and (zi )i=1,...,n

satisfies, for some positive (ki )i=1,...,n ,

∀i = 1, . . . , n− 1, ki+1vi+1 ≤ kivi if x · e− ct = zi − 1, ki+1vi+1 ≥ kivi if x · e− ct = zi+1.

The function v, defined by

v(x, t) :=


v1(x, t) if x · e− ct ≥ z1,

max(kivi (x, t), ki+1vi+1(x, t)) if zi+1 ≤ x · e− ct < zi ,

knvn(x, t) if x · e− ct < zn,

is a generalized subsolution of (40) satisfying the desired properties. �

Proof of Proposition 4.1. Let u, c be as in the statement of the proposition, and define φ(x, t) :=
u(x + e

∫ t
0 c(s) ds, t). Since φ(x, t)→ 1 as x · e→−∞, uniformly with respect to t ∈ R, one can find

ρ ∈ R such that

inf
x ·e<ρ
t∈R

φ(x, t) > 0.
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We now make use of Lemma 3.1 in [Rossi and Ryzhik 2014], which, under the above condition, establishes
a lower bound for the exponential decay of an entire supersolution φ of a linear parabolic equation (notice
that the differential inequality for φ can be written in linear form with a bounded zero order term:
f (x, t, φ)= [ f (x, t, φ)/φ]φ). The result of [Rossi and Ryzhik 2014] implies the existence of a positive
constant λ0 such that

inf
x ·e>ρ−1

t∈R

φ(x, t)eλ0x ·e > 0.

By the definition of c∗, the hypotheses of Lemma 4.3 are fulfilled with λ= 0, λ= λ0 and c = c∗− ε, for
any given ε > 0. This is also true if one penalizes the nonlinear term f (x, t, u) by subtracting δu, with δ
small enough, since this just raises the principal eigenvalues κ(λ) by δ. Therefore, Lemma 4.3 provides
a function v such that, for h > 0 small enough, hv is a subsolution of (1). We choose h in such a way
that, together with the above property, hv(x, 0) < u(x, 0). This can be done, due to the lower bounds
of u(x, 0)= φ(x, 0), because v is bounded and decays faster than e−λ0x ·e as x · e→+∞. Applying the
parabolic comparison principle we eventually infer that hv < u for all x ∈ RN , t ≥ 0. It follows that u
satisfies (45) with c = c∗− ε for t > 0. We derive, in particular,

0< inf
t>0

u((c∗− ε)te, t)= inf
t>0

u
((
(c∗− ε)t −

∫ t

0
c(s) ds

)
e+ e

∫ t

0
c(s) ds, t

)
,

which, in virtue of the second condition in (2), implies that

lim sup
t→+∞

(
(c∗− ε)t −

∫ t

0
c(s) ds

)
<+∞.

This concludes the proof due to the arbitrariness of ε. �

4B. Property of the least mean and proof of Theorem 2.2. Roughly speaking, the least mean of a
function is the infimum of its averages in sufficiently large intervals. We show that, in some sense, this
infimum is achieved up to replacing the function with an element of its ω-limit set. The ω-limit (in the
L∞ weak-∗ topology) of a function g, denoted by ωg, is the set of functions obtained as L∞ weak-∗
limits of translations of g.

Proposition 4.4. Let g ∈ L∞(R) and let ωg denote its ω-limit set (in the L∞ weak-∗ topology). Then

bgc = min
g̃∈ωg

(
lim

t→+∞

1
t

∫ t

0
g̃(s) ds

)
.

Proof. We can assume without loss of generality that bgc = 0. Clearly, any g̃ ∈ ωg satisfies bg̃c ≥ bgc,
whence

lim inf
t→+∞

1
t

∫ t

0
g̃(s) ds ≥ bg̃c ≥ bgc = 0.

Our aim is to find a function g̃ ∈ ωg satisfying

lim sup
t→+∞

1
t

∫ t

0
g̃(s) ds ≤ 0. (46)
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We claim that, for any n ∈ N, there exists tn ∈ N such that

∀ j = 1, . . . , n, n
∫ tn+ j

tn
g(s) ds ≤ j.

Assume by way of contradiction that this property fails for some n ∈ N. By the definition of least mean,
for K ∈ N large enough, there is τ ∈ R such that

1
K

∫ τ+K n

τ

g(s) ds <
1
2
.

On the other hand, there is j ∈ {1, . . . , n} such that n
∫ τ+ j
τ

g(s) ds > j . Then, there is h ∈ {1, . . . , n}
such that n

∫ τ+ j+h
τ+ j g(s) ds > h, and hence n

∫ τ+ j+h
τ

g(s) ds > j + h. We repeat this argument until we
find k ∈ {1, . . . , n} such that n

∫ τ+K n+k
τ

g(s) ds > K n+ k. From this we deduce that∫ τ+K n

τ

g(s) ds > K +
k
n
−

∫ τ+K n+k

τ+K n
g(s) ds > K − n‖g‖L∞(R).

A contradiction follows taking K > 2n‖g‖L∞(R), and the claim is proved. The L∞ weak-∗ limit g̃
as n→∞ of (a subsequence of) g( · + tn) satisfies the desired property. Indeed,

∀ j ∈ N,

∫ j

0
g̃(s) ds = lim

n→∞

∫ tn+ j

tn
g(s) ds = 0,

from which (46) follows since g̃ is bounded. �

Proof of Theorem 2.2. Let u be a generalized transition wave with speed c. Proposition 4.4 yields that
there exists c̃ ∈ ωc such that

bcc = lim
T→+∞

1
T

∫ T

0
c̃(s) ds. (47)

The definition of ωc gives a sequence (tn)n∈N in R such that c( · + tn)⇀ c̃ as n→+∞ for the L∞ weak-∗
topology. For n ∈ N, consider the functions

An(x, t) := A
(

x + e
∫ tn

0
c(s) ds, t + tn

)
, qn(x, t) := q

(
x + e

∫ tn

0
c(s) ds, t + tn

)
,

µn(x, t) := µ
(

x + e
∫ tn

0
c(s) ds, t + tn

)
, un(x, t) := u

(
x + e

∫ tn

0
c(s) ds, t + tn

)
.

For any ε ∈ (0, 1) there exists m ∈ (0, 1) such that

∀(x, t) ∈ RN+1, u ∈ [0, 1], f (x, t, u)≥ (µ(x, t)− ε)u(m− u).

It follows that the un satisfy

∂t un −Tr(An(x, t)D2un)+ qn(x, t)Dun ≥ (µn(x, t)− ε)un(m− un), x ∈ RN , t ∈ R.

On the other hand, the L p parabolic interior estimates ensure that the sequences (∂t un)n∈N, (Dun)n∈N,
(D2un)n∈N are bounded in L p(Q) for all p ∈ (1,∞) and Q b RN+1. Hence, by the embedding theo-
rem, (un)n∈N converges (up to subsequences) locally uniformly in RN+1 to some function ũ, and the
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derivatives ∂t , D, D2 of the (un)n∈N weakly converge to those of ũ in L p
loc(R

N+1). Therefore, letting
Ã, q̃ be the locally uniform limits of (subsequences of) (An)n∈N, (qn)n∈N and µ̃ be the L∞ weak-∗ limit
of (a subsequence of) (µn)n∈N, we infer that

∂t ũ−Tr( Ã(x, t)D2ũ)+ q̃(x, t)Dũ ≥ (µ̃(x, t)− ε)ũ(m− ũ), x ∈ RN , t ∈ R.

Hence, ũ is a supersolution of an equation of the type (1) whose terms satisfy (3)–(5) and (6). Moreover, it
is easily derived from the definition of the speed c and the L∞ weak-∗ convergence to c̃, that ũ satisfies (2)
with c replaced by c̃, uniformly with respect to t ∈ R. In order to apply Proposition 4.1 to the function ũ,
we need to show that κ̃(0) < 0, where λ 7→ κ̃(λ) is defined like λ 7→ κ(λ), but with Ã, q̃, µ̃− ε in
place of A, q , µ respectively. Namely, the κ(λ) are the principal eigenvalues in the sense of (42) for the
operators P̃λ defined as follows:

P̃λw := ∂tw−Tr( Ã(x, t)D2w)+(q̃(x, t)−2λ Ã(x, t)e)·Dw−(λ2e Ã(x, t)e+λq̃(x, t)·e+µ̃(x, t)−ε)w.

This will be achieved by showing that

∀λ > 0, κ̃(λ)≤ κ(λ)+ ε, (48)

whence κ̃(0) < 0 as soon as ε <−κ(0) (recall that κ(0) < 0 by (12)). Let us postpone for a moment the
proof of (48). Applying Proposition 4.1 to ũ yields

lim inf
t→+∞

1
t

∫ t

0
c̃(s) ds ≥−max

λ>0

κ̃(λ)

λ
=−

κ̃(λ̂)

λ̂
,

for some λ̂ > 0. In virtue of (47) and (48), from this inequality we deduce

bcc ≥ −
κ(λ̂)+ ε

λ̂
,

from which bcc ≥ c∗ follows by the arbitrariness of ε.
It remains to prove (48). Let k > κ(λ). By definition (43) there exists ϕ such that infϕ > 0 and

ϕ, Dϕ ∈ L∞(RN
× R) and Pλϕ ≤ kϕ in RN

× R. We would like to perform on ϕ the same limit of
translations as done before to obtain ũ from u. This would yield a function ϕ̃ satisfying P̃λϕ̃ ≤ (k+ ε)ϕ̃.
But this argument requires the L p

loc estimates of the derivatives ∂t , D, D2 of the translated of ϕ, which
are not available because ϕ is a subsolution and not a solution of an equation. However, it is possible to
replace ϕ with a solution of a semilinear equation of the type Pλw = g(w) in RN

×R, with g smooth and
such that g(w) ≤ (k + ε)w, which satisfies the same properties as ϕ, as well as the desired additional
regularity properties. This is done in the proof of Theorem A.1 of [Rossi and Ryzhik 2014], whose
arguments can be exactly repeated here. We can therefore apply the translation argument that provides a
function ϕ̃ such that P̃λϕ̃ ≤ (k+ ε)ϕ̃. Moreover, inf ϕ̃ > 0 and sup ϕ̃ <∞. In order to be able to use ϕ̃ in
the definition of κ̃(λ) and derive κ̃(λ)≤ k+ ε, we only need to have that sup |Dϕ̃|<∞. This property
does not follow automatically from the L p estimates and the embedding theorem as in the elliptic case
treated in [Rossi and Ryzhik 2014]. This is the reason why we need the extra assumption (13) on A.
Indeed, we use Theorem 1.4 of [Porretta and Priola 2013] with, using the same notations as in [Porretta
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and Priola 2013], F the nonlinear operator associated with equation Pλw = g(w). Hypothesis 1.2 of
[Porretta and Priola 2013] is satisfied since A satisfies (13), q is bounded and f = f (x, t, u) is bounded
with respect to (x, t, u) ∈ RN

×R×[0, 1], and Hypothesis 1.3 is satisfied with ϕ(x, t) := eMt(1+ |x |2)
and M large enough. Hence, we get a uniform L∞ bound on Dw, where w is the solution of Pλw= g(w).
Using w instead of ϕ, we get that this bound is inherited by ϕ̃ and we therefore deduce κ̃(λ)≤ k+ ε. As
k > κ(λ) is arbitrary, we eventually get (48). �
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