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OF GAUSSIAN BEAMS ON LORENTZIAN MANIFOLDS:
WITH APPLICATIONS TO BLACK HOLE SPACETIMES

JAN SBIERSKI

It is known that, using the Gaussian beam approximation, one can show that there exist solutions of the
wave equation on a general globally hyperbolic Lorentzian manifold whose energy is localised along a
given null geodesic for a finite, but arbitrarily long, time. We show that the energy of such a localised
solution is determined by the energy of the underlying null geodesic. This result opens the door to
various applications of Gaussian beams on Lorentzian manifolds that do not admit a globally timelike
Killing vector field. In particular, we show that trapping in the exterior of Kerr or at the horizon of an
extremal Reissner–Nordström black hole necessarily leads to a “loss of derivative” in a local energy decay
statement. We also demonstrate the obstruction formed by the red-shift effect at the event horizon of
a Schwarzschild black hole to scattering constructions from the future (where the red-shift turns into a
blue-shift): we construct solutions to the backwards problem whose energies grow exponentially for a
finite, but arbitrarily long, time. Finally, we give a simple mathematical realisation of the heuristics for
the blue-shift effect near the Cauchy horizon of subextremal and extremal black holes: we construct a
sequence of solutions to the wave equation whose initial energies are uniformly bounded, whereas the
energy near the Cauchy horizon goes to infinity.
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1. Introduction

Part I of this paper is concerned with the study of the temporal behaviour of Gaussian beams on general
globally hyperbolic Lorentzian manifolds. Here, a Gaussian beam is a highly oscillatory wave packet of
the form

ũλ =
1

√
E(λ, a, φ)

· a · eiλφ,

where E(λ, a, φ) is a renormalisation factor keeping the initial energy of ũλ independent of λ ∈ R+, and
the complex-valued functions a and φ are chosen in such a way that for λ� 0 the Gaussian beam ũλ is
an approximate solution to the wave equation on the underlying Lorentzian manifold (M, g). The failure
of ũλ being an actual solution to the wave equation

�gu = 0 (1.1)

is measured in terms of an energy norm — and this error can be made arbitrarily small up to a finite, but
arbitrarily long, time, by choosing λ large enough. The construction of the functions a and φ allows for
restricting the support of a to a small neighbourhood of a given null geodesic. Thus, one can infer from
ũλ being an approximate solution with respect to some energy norm that:1

There exist actual solutions of the wave equation (1.1) whose “energy” is localised
along a given null geodesic up to some finite, but arbitrarily long, time.

(1.2)

This is, roughly, the state of the art knowledge of Gaussian beams (see, for instance, [Ralston 1982]).
The main new result of Part I is to provide a geometric characterisation of the temporal behaviour of

the localised energy of a Gaussian beam. More precisely, given a timelike vector field N (with respect to
which we measure the energy) and a Gaussian beam ũλ supported in a small neighbourhood of an affinely
parametrised null geodesic γ , we show in Theorem 4.1 that∫

6τ

J N (ũλ) · n6τ ≈−g(N , γ̇ )
∣∣
Im(γ )∩6τ

(1.3)

holds up to some finite time T . Here, we consider a foliation of the Lorentzian manifold (M, g) by
spacelike slices 6τ , J N (ũλ) denotes the contraction of the stress–energy tensor2 of ũλ with N , and n6τ
is the normal of 6τ . The left-hand side of (1.3) is called the N-energy of the Gaussian beam ũλ. The
approximation in (1.3) can be made arbitrarily good and the time T arbitrarily large if we only take λ > 0
to be big enough. This characterisation of the energy allows then for a refinement of (1.2):3

There exist (actual) solutions of the wave equation (1.1) whose N -energy is localised
along a given null geodesic γ and behaves approximately like −g(N , γ̇ )

∣∣
Im(γ )∩6τ

up to some finite, but arbitrarily large, time T . Here, γ̇ is with respect to some affine
parametrisation of γ .

(1.4)

1See Theorem 2.1.
2We refer the reader to (1.8) in Section 1E for the definition of the stress–energy tensor.
3See Theorem 5.1.
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It is worth emphasising that the need for an understanding of the temporal behaviour of the energy only
arises for Gaussian beams on Lorentzian manifolds that do not admit a globally timelike Killing vector
field4 — otherwise there is a canonical energy which is conserved for solutions to the wave equation (1.1).
Thus, for the majority of problems which so far found applications of Gaussian beams, for example the
obstacle problem or the wave equation in time-independent inhomogeneous media, the question of the
temporal behaviour of the energy did not arise (since it is trivial). However, understanding this behaviour
on general Lorentzian manifolds is crucial for widening the application of Gaussian beams to problems
arising, in particular, from general relativity.

In Part II, by applying (1.4), we derive some new results on the study of the wave equation on the
familiar Schwarzschild, Reissner–Nordström, and Kerr black hole backgrounds (see [Hawking and Ellis
1973] for an introduction to these spacetimes):

(1) It is well-known folklore that the trapping5 at the photon sphere in Reissner–Nordström and in Kerr
necessarily leads to a “loss of derivative” in a local energy decay (LED) statement. We give a rigorous
proof of this fact.

(2) We also show that the trapping at the horizon of an extremal Reissner–Nordström (and Kerr) black
hole necessarily leads to a loss of derivative in an LED statement.

(3) When solving the wave equation (1.1) on the exterior of a Schwarzschild black hole backwards in time,
the red-shift effect at the event horizon turns into a blue-shift: we construct solutions to the backwards
problem whose energies grow exponentially for a finite, but arbitrarily long, time. This demonstrates the
obstruction formed by the red-shift effect at the event horizon to scattering constructions from the future.

(4) Finally, we give a simple mathematical realisation of the heuristics for the blue-shift effect near the
Cauchy horizon of (sub)extremal Reissner–Nordström and Kerr black holes: we construct a sequence of
solutions to the wave equation whose initial energy is uniformly bounded whereas the energy near the
Cauchy horizon goes to infinity.

Outline of the paper. We start by giving a short historical review of Gaussian beams in Section 1A.
Thereafter we briefly explain how the notion of “energy” arises in the study of the wave equation and why
it is important. We also discuss how the results we obtain allow us to disprove certain uniform statements
about the temporal behaviour of the energy of waves. Section 1C elaborates on the wide applicability of
the Gaussian beam approximation and explains its advantage over the geometric optics approximation. In
the physics literature a similar “characterisation of the energy of high frequency waves” is folklore — we
discuss its origin in Section 1D and put it into context with the work presented in this paper. Section 1E
lays down the notation we use.

4One could add here “uniformly” timelike, meaning that the timelike Killing vector field does not “degenerate” when
approaching the “boundary” of the manifold. Let us just state here that one can give precise meaning to “degenerating at the
boundary”.

5We do not intend to give a precise definition in this paper of what we mean by “trapping”. However, loosely speaking
“trapping” refers here to the presence of null geodesics that stay for all time in a compact region of “space”.
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Part I discusses the theory of Gaussian beams on Lorentzian manifolds. Sections 2 and 3 recall the
construction of Gaussian beams and sketch the proof of Theorem 2.1, which basically says (1.2) and is
more or less well known. In Section 4 we characterise the energy of a Gaussian beam, which is the main
result of Part I. This result is then incorporated into Theorem 2.1, which yields Theorem 5.1 (or (1.4)).
Moreover, Section 5 contains some general theorems which are tailored to the needs of many applications.

In Part II, we prove the above mentioned new results on the behaviour of waves on various black hole
backgrounds. The important ideas are first introduced in Section 6 by the example of the Schwarzschild and
Reissner–Nordström family, whose simple form of the metric allows for an uncomplicated presentation.
Thereafter, in Section 7, we proceed to the Kerr family.

In the Appendix we give a sufficient criterion for the formation of caustics, i.e., a breakdown criterion
for solutions of the eikonal equation, which shows the limitations of the “naive” geometric optics
approximation.

1A. A brief historical review of Gaussian beams. The ansatz

uλ = eiλφ
(

a0+
1
λ

a1+ · · ·+
1
λN aN

)
(1.5)

for either a highly oscillatory approximate solution to some PDE or for a highly oscillatory approximate
eigenfunction to some partial differential operator is known as the geometric optics ansatz. Here,
N ∈ N, φ is a real function (called the eikonal), the ak are complex-valued functions, and λ is a positive
parameter determining how quickly the function uλ oscillates. In the widest sense, we understand under a
Gaussian beam a function of the form (1.5) with a complex-valued eikonal φ that is real-valued along a
bicharacteristic and has growing imaginary part off this bicharacteristic. This then leads to an exponential
fall off in λ away from the bicharacteristic.

The use of a complex eikonal, although in a slightly different context, appears already in work of
Keller [1956]. It was, however, only in the 1960s that the method of Gaussian beams was systematically
applied and explored — mainly from a physics perspective. For more on these early developments we
refer the reader to [Arnaud 1973, Chapter 4] and references therein. A general, mathematical theory of
Gaussian beams, or what he called the complex WKB method, was developed by Maslov; see his book
[1994] for an overview and also for references. Several of the later papers on Gaussian beams have their
roots in this work.

The earliest application of the Gaussian beam method was to the construction of quasimodes; see, for
example, [Ralston 1976]. Quasimodes approximately satisfy some type of Helmholtz equation, and thus
they give rise to time-harmonic, approximate solutions to a wave equation. In this way quasimodes can be
interpreted as standing waves. Later, various people used the Gaussian beam method for the construction
of Gaussian wave packets (but also called “Gaussian beams”) which form approximate solutions to a
hyperbolic PDE.6 Those wave packets, in contrast to quasimodes, are not stationary waves, but they move

6It is this sort of “Gaussian beam” that is the subject of this paper for the case of the wave equation on Lorentzian manifolds.
More appropriately, one could name them “Gaussian wave packets” or “Gaussian pulses” to distinguish them from the standing
waves — which are actually beams. However, we stick to the standard terminology.
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through space, the trajectory in spacetime being a bicharacteristic of the partial differential operator. A
detailed reference for this construction is [Ralston 1982], which goes back to 1977. Another presentation
of this construction scheme was given by Babich and Ulin [1981].

Since then, there have been a lot of papers applying Gaussian beams to various problems.7 For
instance, in quantum mechanics Gaussian beams correspond to semiclassical approximate solutions to the
Schrödinger equation and thus help understand the classical limit; or, in geophysics, one models seismic
waves using the Gaussian beam approximation for solutions to a wave equation in an inhomogeneous
(time-independent) medium.

1B. Gaussian beams and the energy method.

1B1. The energy method as a versatile method for studying the wave equation. The study of the wave
equation on various geometries has a long history in mathematics and physics. A very successful and
widely applicable method for obtaining quantitative results on the long-time behaviour of waves is the
energy method. It was pioneered by Morawetz [1961; 1962], where she proved pointwise decay results in
the context of the obstacle problem. In [Morawetz 1968] she established what is now known as integrated
local energy decay (ILED) for solutions of the Klein–Gordon equation (and thus inferring decay). In the
past ten years, her methods were adapted and extended by many people in order to prove boundedness
and decay of waves on various (black hole) spacetimes — a study which is mainly motivated by the black
hole stability conjecture (see the introduction of [Dafermos and Rodnianski 2013]). A small selection of
examples is [Klainerman 1985; Dafermos and Rodnianski 2009; 2010a; 2011a; 2011b; Andersson and
Blue 2009; Tataru and Tohaneanu 2011; Luk 2010; Schlue 2013; Aretakis 2011a; Holzegel and Smulevici
2013; Civin 2014; Dyatlov 2011].

The philosophy of the energy method is first to derive estimates on a suitable energy (and higher-order
energies)8 and then to establish pointwise estimates using Sobolev embeddings. Thus, given a spacetime
on which one intends to study the wave equation using the energy method, one first has to set up such
a suitable energy (and higher-order energies — but in this paper we focus on the first-order energy). A
general procedure is to construct an energy from a foliation of the spacetime by spacelike slices 6τ
together with a timelike vector field N ; see (1.9) in Section 1E. We refrain from discussing here what
choices of foliation and timelike vector field lead to a “suitable” notion of energy.9 Let us just mention here
that, in the presence of a globally timelike Killing vector field T , one obtains a particularly well-behaved
energy by choosing N = T and a foliation that is invariant under the flow of T .10 We invite the reader
to convince him- or herself that the familiar notions of energy for the wave equation on the Minkowski
spacetime or in time-independent inhomogeneous media arise as special cases of this more general
scheme.

7We refer the reader to [Maslov 1994] for a list of references.
8A first-order energy controls the first derivatives of the wave and is referred to in the following just as “energy”. Higher-

order energies control higher derivatives of the wave. A special case of the energy method is the so-called vector field method.
Higher-order energies arise there naturally by commutation with suitable vector fields; see [Klainerman 1985].

9However, see Section II for some examples and footnote 27 on page 1400 for some further comments.
10Such a choice corresponds to what we called in the introduction a “canonical energy”.
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1B2. Gaussian beams as obstructions to certain uniform behaviour of the energy of waves. The approx-
imation with Gaussian beams allows us to construct solutions to the wave equation whose energy is
localised for an arbitrarily long, but finite, time along a null geodesic. Such solutions naturally form
an obstruction to certain uniform statements about the temporal behaviour of the energy of waves. A
classical example is the case in which one has a null geodesic that does not leave a compact region in
“space” and which has constant energy.11 Such null geodesics form obstructions to certain formulations of
local energy decay being true.12 However, it is very important to be aware of the fact that, in general, none
of the solutions from (1.4) has localised energy for all time. Thus, in order to contradict, for instance, an
LED statement, it is in general inevitable to resort to a sequence of solutions of the form (1.4) which
exhibit the contradictory behaviour in the limit. For this scheme to work, however, it is clearly crucial
that the LED statement in question is uniform with respect to some energy which is left constant by the
sequence of Gaussian beam solutions. Note here that (1.4) states in particular that the time T up to which
one has good control over the wave can be made arbitrarily large without changing the initial energy!
Higher-order initial energies, however, will blow up when T is taken bigger and bigger. In this paper we
restrict our consideration to disproving statements that are uniform with respect to the first-order energy.
In Sections 6A, 6F and 7A, we demonstrate this important application of Gaussian beams: we show
that certain (I)LED statements derived by various people in the presence of “trapping” are sharp in the
sense that some loss of derivative is necessary (however, one does not necessarily need to lose a whole
derivative; see the discussion at the end of Section 6A).

We conclude this section with the remark that in the presence of a globally timelike Killing vector
field one can already infer such obstructions from (1.2), since the (canonical) energy of solutions to the
wave equation is then constant. In this way, one can easily infer from (1.2) alone that an LED statement
in Schwarzschild has to lose differentiability due to the trapping at the photon sphere. But already for
trapping in Kerr one needs to know how the “trapped” energy of the solutions referred to in (1.2) behaves
in order to infer the analogous result. This knowledge is provided by (1.3) and/or (1.4).

1C. Gaussian beams are parsimonious. The approximation by Gaussian beams can be carried out on a
Lorentzian manifold (M, g) under minimal assumptions:

(1) One needs a well-posed initial value problem. This is ensured by requiring that (M, g) is globally
hyperbolic.13 However, one can also replace the well-posed initial value problem by a well-posed initial–
boundary value problem — and one can obtain, with small changes and some additional work in the proof,
qualitatively identical results.

(2) Having fixed an N -energy to work with, one has to have an energy estimate of the form (2.8) at
one’s disposal, which is guaranteed by the condition (2.3). The estimate (2.8) allows us to infer that the
approximation by the Gaussian beam is global in space. It is only under this condition that it is justified to

11We refer to the right-hand side of (1.3) as the N -energy of the null geodesic.
12A classic regarding such a result is by Ralston [1969]. However, he does not use the Gaussian beam approximation in this

work, but the geometric optics approximation.
13The assumption of global hyperbolicity has another simplifying, but not essential, feature; see the discussion after

Definition 3.13.
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say in (1.2) and (1.4) that the energy of the actual solution is localised along a null geodesic.14 However,
as we show in Remark 2.9, one always has a local approximation, which is, together with the geometric
characterisation of the energy, sufficient for obtaining control of the wave in a small neighbourhood of the
underlying null geodesic regardless of condition (2.3). This then allows us to establish, for example, the
very general Theorem 5.5, which only requires global hyperbolicity (or some other form of well-posedness
for the wave equation; see (1)).

In particular, the method of Gaussian beams is not in need of any special structure on the Lorentzian
manifold like Killing vector fields (as, for example, needed for the mode analysis or for the construction
of quasimodes).

We would also like to emphasise here that in order to apply (1.4) one only needs to understand the
behaviour of the null geodesics of the underlying Lorentzian manifold! This knowledge is often in reach
and thus Gaussian beams provide in many cases an easy and feasible way for obtaining control of highly
oscillatory solutions to the wave equation. In this sense the theory presented in Part I forms a good “black
box result” which can be applied to various different problems.

We conclude this section with a brief comparison of the Gaussian beam approximation with the geomet-
ric optics approximation: Let us call the geometric optics approximation, which considers approximate
solutions of the form (1.5), the “naive” geometric optics approximation. Although it applies under the
same general conditions as the Gaussian beam approximation, in general the time T up to which one
has good control over the solution cannot be chosen arbitrarily large, since the approximate solution
breaks down at caustics. In the Appendix we show that caustics necessarily form along null geodesics that
possess conjugate points. A prominent example of such null geodesics are the trapped null geodesics at
the photon sphere in the Schwarzschild spacetime (see Section 6A for the proof that these null geodesics
have conjugate points). However, the formation of caustics is not a serious limitation of the geometric
optics approximation, since one can extend the approximate solution through the caustics, making use of
Maslov’s canonical operator. The approximate solution obtained in this way is, however, no longer of the
simple form (1.5). The advantage of the Gaussian beam approximation is that the simple ansatz (1.5)
does not break down at caustics; it yields an approximation up to all finite times T .

1D. “High-frequency” waves in the physics literature. In physics, the notion of a local observer’s
energy arose with the emergence of Einstein’s theory of relativity: Suppose an observer travels along a
timelike curve σ : I → M with unit velocity σ̇ . Then, with respect to a Lorentz frame of his, he measures
the local energy density of a wave u to be T(u)(σ̇ , σ̇ ), where T(u) is the stress–energy tensor of the
wave u; see (1.8) in Section 1E. By considering the 3-parameter family of observers whose velocity
vector field is given by the normal n6τ to a foliation of M by spacelike slices 6τ , the physical definition
of energy is contained in the mathematical one (which is given by (1.9)).

14That one needs condition (2.3) for ensuring that the energy is indeed localised is in fact another minor novelty in the study
of Gaussian beams on general Lorentzian manifolds (note that, in the case of N being a Killing vector field, condition (2.3) is
trivially satisfied). For an example for a violation of condition (2.3) we refer to the discussion after (6.8) on page 1406.
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The prevalent description of highly oscillatory (or “high-frequency”) waves in the physics literature is
that the waves (or “photons”) propagate along null geodesics γ and each of these rays (or photons) carries
an energy–momentum 4-vector γ̇ , where the dot is with respect to some affine parametrisation. In the
high-frequency limit, the number of photons is preserved. Thus, the energy of the wave, as measured by
a local observer with world line σ , is determined by the energy component −g(γ̇ , σ̇ ) of the momentum
4-vector γ̇ . By considering a highly oscillatory wave that “gives rise to just one photon”, one recovers
the characterisation of the energy of a Gaussian beam, (1.3), given in this paper.

In the physics literature (see, for example, the classic [Misner et al. 1973, Chapter 22.5]), this description
is justified using the naive geometric optics approximation. Here, it suffices to take N = 0 in (1.5); one
then considers approximate solutions to the wave equation of the form uλ = a ·eiλφ , where a and φ satisfy

dφ · dφ = 0 and 2 gradφ(a)+�φ · a = 0. (1.6)

The conservation law
div(a2 gradφ)= 0, (1.7)

which can be easily inferred from the second equation in (1.6), is interpreted as the conservation of the
number-flux vector S = a2 gradφ of the photons. The leading component in λ of the renormalised15

stress–energy tensor T (uλ) of the wave uλ = a · eiλφ in the geometric optics limit is then given by

T(uλ)= gradφ⊗ S,

from which it then follows that each photon carries a 4-momentum gradφ = γ̇ .
In particular, making use of the conservation law (1.7), it is not difficult16 to prove a geometric

characterisation of the energy of waves in the naive geometric optics limit analogous to the one we prove
in this paper for Gaussian beams. However, as we have mentioned in the previous section, the naive
geometric optics approximation has the undesirable feature that it breaks down at caustics.

The characterisation of the energy of Gaussian beams is more difficult, since (1.7) is replaced only
by an approximate conservation law.17 Moreover, it provides a rigorous justification of the temporal
behaviour of the local observer’s energy of photons, which also applies to photons along whose trajectory
caustics would form.

1E. Notation. Given a Lorentzian manifold (M, g), we denote the canonical isomorphisms induced by
the metric g between the tangent and cotangent space by ] : T ∗x M→ Tx M and [ : Tx M→ T ∗x M , where
x ∈ M and, for α ∈ T ∗x M and X ∈ Tx M , the isomorphisms ] and [ are given by α] := g−1(α, · ) and
X [
:= g(X, · ). Here g−1 denotes the inverse of the metric g. Moreover, we denote with · the inner

product of two vectors as well as the inner product of two covectors, i.e., for α, β ∈ T ∗x M we write
α · β := g−1(α, β), and for X , Y ∈ Tx M we write X · Y := g(X, Y ). We also introduce the notation
grad f := (d f )] for the gradient of a function f ∈ C∞(M,R). The Levi-Civita connection on the

15Divided by λ2.
16Although, to the best of our knowledge, it is nowhere done explicitly.
17See the discussion below (4.6) in Section 4.
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Lorentzian manifold (M, g) is denoted by ∇, and we write div Z := ∇µZµ for the divergence of a smooth
vector field Z on M . Furthermore, we define the wave operator �g by

�gu := ∇µ∇µu.

From here on we will, however, omit the index g on�g, since it is clear from the context which Lorentzian
metric is referred to.

Whenever we are given a time-oriented Lorentzian manifold (M, g) that is (partly) foliated by spacelike
slices {6τ }τ∈[0,τ ∗), 0<τ ∗≤∞, we denote the future-directed unit normal to the slice6τ by n6τ . Moreover,
the induced Riemannian metric on 6τ is then denoted by ḡτ and we set R[0,T ] :=

⋃
0≤τ≤T 6τ .

For u ∈ C∞(M,C) we define the stress–energy tensor T(u) by

T(u) := 1
2 du⊗ du+ 1

2 du⊗ du− 1
2 g( · , · )g−1(du, du). (1.8)

Given in addition a vector field N , we define the current J N (u) by

J N (u) := [T(u)(N , · )]].

Finally, if N is future-directed timelike, we call

E N
τ (u) :=

∫
6τ

J N (u) · n6τ volḡτ (1.9)

the N-energy of u at time τ , where volḡτ denotes the volume element corresponding to the metric ḡτ .18

If A⊆6τ , then E N
τ,A(u) denotes the N -energy of u at time τ in the volume A, i.e., the integration in (1.9)

is only over A.
The notion (1.9) of the N -energy of a function u is especially helpful whenever we have an adequate

knowledge of �u, since one can then infer detailed information about the behaviour of the N -energy (see
the energy estimate (2.8) in the next section), and thus also about the behaviour of u itself. Hence, the
stress–energy tensor (1.8) together with the notion of the N -energy is particularly useful for solutions u
of the wave equation

�u = 0. (1.10)

For more on the stress–energy tensor and the notion of energy, we refer the reader to [Taylor 2011,
Chapters 2.7 and 2.8].

Given a Lorentzian manifold (M, g) and A⊆M , we denote with J+(A) the causal future of A, namely,
all the points x ∈ M such that there exists a future-directed causal curve starting at some point of A and
ending at x . The causal past of A, J−(A), is defined analogously.19 Finally, C and c will always denote
positive constants.

For simplicity of notation we restrict our considerations to 3+1-dimensional Lorentzian manifolds
(M, g). However, all results extend in an obvious way to dimensions n+ 1, n ≥ 1. Moreover, all given

18See also [Choquet-Bruhat 2009, Appendix III, Sections 2.3 and 2.4] (in particular Definition (2.27)) for a detailed discussion
of the notion of N -energy.

19See also Chapter 14 in [O’Neill 1983].
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manifolds, functions and tensor fields are assumed to be smooth, although this is only for convenience
and clearly not necessary.

Part I. The theory of Gaussian beams on Lorentzian manifolds

2. Solutions of the wave equation with localised energy

This section and the next are devoted to a sketch of the proof of Theorem 2.1, which summarises the
state of the art knowledge concerning the construction of solutions with localised energy using the
approximation by Gaussian beams.

Theorem 2.1. Let (M, g) be a time-oriented, globally hyperbolic Lorentzian manifold with time function t ,
foliated by the level sets 6τ = {t = τ }, where 60 is a Cauchy hypersurface.20 Furthermore, let γ be a
null geodesic that intersects 60 and N a timelike, future-directed vector field.

For any neighbourhood N of γ , any T > 0 with 6T ∩ Im(γ ) 6=∅ (see Figure 1), and any µ > 0, there
exists a solution v ∈ C∞(M,C) of the wave equation (1.10) with E N

0 (v) = 1 and ũ ∈ C∞(M,C) with
supp(ũ)⊆ N such that

E N
τ (v− ũ) < µ for all 0≤ τ ≤ T (2.2)

provided that we have, on R[0,T ] ∩ J+(N∩60),

1
|dt (n6τ )|

+ |g(N , n6τ )| ≤ C <∞ and 0< c ≤ |g(N , N )|,

|∇N (n6τ , n6τ )| +
3∑

i=1

|∇N (n6τ , ei )| +

3∑
i, j=1

|∇N (ei , e j )| ≤ C <∞, (2.3)

where c and C are positive constants and {n6τ , e1, e2, e3} is an orthonormal frame.

Note that (2.2) together with supp(ũ) ⊆ N make rigorous the statement that the solution v hardly
disperses up to time T . The energy of the solution v stays localised for finite time.

Proof. The function ũ in the theorem is the Gaussian beam, the approximate solution to the wave equation
(1.10) which we need to construct. Recall that a Gaussian beam uλ ∈ C∞(M,C) is of the form

uλ(x)= aN(x)eiλφ(x), (2.4)

where λ > 0 is a parameter that determines how quickly the Gaussian beam oscillates, and aN and φ
are smooth, complex-valued functions on M that do not depend on λ. However, aN depends on the
neighbourhood N of the null geodesic γ . In Section 3 we outline how one constructs the functions aN

and φ in such a way that uλ satisfies the following three conditions: The first condition is

‖�uλ‖L2(R[0,T ]) ≤ C(T ), (2.5)

20Bernal and Sánchez [2005] showed that every globally hyperbolic Lorentzian manifold admits a smooth time function.
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γ

6τ

60

N

6T

Figure 1. The setting of Theorem 2.1.

where the constant C(T ) depends on aN, φ and T , but not on λ. The second condition is

E N
0 (uλ)→∞ for λ→∞, (2.6)

where N is the timelike vector field from Theorem 2.1. Finally, the third condition is

uλ is supported in N. (2.7)

Assuming for now that we have already found functions aN and φ such that the conditions (2.5), (2.6)
and (2.7) are satisfied, we finish the proof of Theorem 2.1. In order to normalise the initial energy of the
approximate solutions uλ, we define

ũλ :=
uλ

√

E N
0 (uλ)

,

which, moreover, yields

‖�ũλ‖L2(R[0,T ])→ 0 for λ→∞.

This says that as the Gaussian beam becomes more and more oscillatory (i.e., for bigger and bigger λ),
the closer it comes to being a proper solution to the wave equation.

We now define the actual solution vλ of the wave equation — the one that is being approximated by
the ũλ — to be the solution of the following initial value problem:

�v = 0,

v
∣∣
60
= ũλ

∣∣
60
,

n60v
∣∣
60
= n60 ũλ

∣∣
60
.

Here, we make use of the fact that the Lorentzian manifold (M, g) is globally hyperbolic and thus allows
for a well-posed initial value problem for the wave equation. Moreover, the condition (2.3) ensures that
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we have an energy estimate of the form∫
6τ

J N (u)·n6τ volḡτ ≤C(T, N , {6τ })
(∫

60

J N (u)·n60 volḡ0+‖�u‖2L2(R[0,T ])

)
for all 0≤τ ≤T (2.8)

at our disposal (see for example [Taylor 2011, Chapter 2.8]). Thus, we obtain

E N
τ (vλ− ũλ)≤ C(T, N , 6τ ) · ‖�ũλ‖2L2(R[0,T ])

for all 0≤ τ ≤ T,

which goes to zero for λ→∞. Given now µ > 0, it suffices to choose λ0 > 0 big enough and to set
ũ := ũλ0 and v := vλ0 , which then finishes the proof under the assumption of the conditions (2.5), (2.6)
and (2.7). �

We end this section with a couple of remarks about Theorem 2.1:

Remark 2.9. As already mentioned, the condition (2.3) ensures that we have the energy estimate (2.8).
It is automatically satisfied if the region under consideration, R[0,T ] ∩ J+(N∩60), is relatively compact,
which will be the case in many concrete applications.

Moreover, by choosing N a bit smaller if necessary, we can always arrange that 6T ∩N is relatively
compact and that N∩ R[0,T ] ⊆ J−(6T ∩N). Doing, then, the energy estimate in the relatively compact
region J−(6T ∩N)∩ J+(60), we obtain

E N
τ,N∩6τ

(v− ũ) < µ for all 0≤ τ ≤ T (2.10)

independently of (2.3). Of course, the information given by (2.10) is not interesting here, since Theorem 2.1
does not provide more information about ũ than its region of support. However, in Section 4 we will
derive more information about the approximate solution ũ and then (2.10) will tell us about the temporal
behaviour of the localised energy of v; see Theorem 5.1.

Remark 2.11. By taking the real or the imaginary part of ũλ and vλ it is clear that we can choose ũ and v
in Theorem 2.1 to be real valued.

3. The construction of Gaussian beams

Before we sketch the construction of Gaussian beams, let us mention that other (and complete) presentations
of this subject can be found, for example, in [Babich and Buldyrev 2009] or [Ralston 1982]. The latter
reference also includes the construction of Gaussian beams for more general hyperbolic PDEs.

Given now a neighbourhood N of a null geodesic γ , we need to construct functions aN, φ ∈C∞(M,C)

such that the approximate solution uλ = aN · eiλφ satisfies the conditions (2.5), (2.6) and (2.7). This will
then finish the proof of Theorem 2.1. We compute

�uλ =−λ2(dφ · dφ)aNeiλφ
+ iλ�φ · aNeiλφ

+ 2iλ gradφ(aN) · eiλφ
+�aN · eiλφ. (3.1)

Demanding dφ · dφ = 0 (the eikonal equation) and 2 gradφ(aN)+�φ · aN = 0 would lead us to the
naive geometric optics approximation (see (1.6)), whose major drawback is that in general the solution φ
of the eikonal equation breaks down at some point along γ due to the formation of caustics. The
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method of Gaussian beams takes a slightly different approach. We only require an approximate solution
φ ∈ C∞(M,C) of the eikonal equation in the sense that

dφ · dφ vanishes on γ to high order.21

Moreover, we demand that

φ
∣∣
γ

and dφ
∣∣
γ

are real valued, (3.2)

Im
(
∇∇φ

∣∣
γ

)
is positive definite on a 3-dimensional subspace transversal to γ̇ , (3.3)

where Im
(
∇∇φ

∣∣
x

)
, x ∈ M , denotes the imaginary part of the bilinear map ∇∇φ

∣∣
x : Tx M × Tx M→ C.

Let us assume for a moment that (3.2) and (3.3) hold. Taking slice coordinates for γ , that is, a coordinate
chart (U, ϕ), ϕ :U ⊆ M→ R4, such that ϕ(Im(γ )∩U )= {x1 = x2 = x3 = 0}, we obtain

Im(φ)(x)≥ c · (x2
1 + x2

2 + x2
3), (3.4)

at least if we restrict φ to a small enough neighbourhood of γ . Note that such slice coordinates exist,
since the global hyperbolicity of (M, g) implies that γ is an embedded submanifold of M . This is easily
seen by appealing to the strong causality condition.22 Let us now denote the real part of φ by φ1 and the
imaginary part by φ2. We then have

uλ = aN · eiλφ1 · e−λφ2 .

We see that the last factor imposes the shape of a Gaussian on uλ, centred around γ — this explains the
name. Moreover, for λ large this Gaussian will become more and more narrow, i.e., less and less weight
is given to the values of aN away from γ .

We rewrite (3.1) as

�uλ=−λ2(dφ · dφ︸ ︷︷ ︸)·aNeiλφ1 ·e−λφ2+iλ(2 gradφ(aN)+�φ · aN︸ ︷︷ ︸)·eiλφ1 ·e−λφ2+�aN·eiλφ1 ·e−λφ2 . (3.5)

Intuitively, if we can arrange for the underbraced terms to vanish on γ to some order and we choose
large λ, then we will pick up only very small contributions. The next lemma makes this rigorous:

Lemma 3.6. Let f ∈ C∞0 ([0, T ]×R3,C) vanish along {x1 = x2 = x3 = 0} to order S, that is, all partial
derivatives up to and including the order S of f vanish along {x1 = x2 = x3 = 0}, and let c > 0 be a
constant. We then have

(i)
∫
[0,T ]×R3

| f (x)|2e−λ·c(x
2
1+x2

2+x2
3 ) dx ≤ Cλ−(S+1)−3/2

and

(ii)
∫
[0,T ]×R3

| f (x)|e−λ·c(x
2
1+x2

2+x2
3 ) dx ≤ Cλ−(S+1)/2−3/2,

where C depends on f (and on T ).

21The exact order to which we require dφ · dφ to vanish on γ will be determined later.
22See, for example, [O’Neill 1983, Chapter 14] for more on the strong causality condition.
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Proof. We prove (i) here, since it is used in the following. The formulation (ii) of Lemma 3.6 is appealed
to in the proof of Theorem 4.1 in Section 4 — the proof is analogous.

Introduce stretched coordinates y0 := x0, yi :=
√
λxi for i = 1, 2, 3. Since f vanishes along the x0 axis

to order S and has compact support, we get | f (x)| ≤ C · |x |S+1 for all x = (x0, x) ∈ [0, T ]×R3; thus∣∣∣∣ f
(

y0,
y
√
λ

)∣∣∣∣≤ C ·
|y|S+1

λ(S+1)/2 .

This yields ∫
[0,T ]×R3

| f (x)|2e−λ·c|x |
2

dx ≤
∫
[0,T ]×R3

C · |y|2(S+1)e−c|y|2 dy · λ−(S+1)−3/2. (3.7)

This concludes the proof. �

We summarise the approach taken by the Gaussian beam approximation in the following:

Lemma 3.8. Within the setting of Theorem 2.1, assume we are given a, φ ∈ C∞(M,C) which satisfy
(3.2) and (3.3). Moreover, assume

dφ · dφ vanishes to second order along γ, (3.9)

2 gradφ(a)+�φ · a vanishes to zeroth order along γ, (3.10)

a(Im(γ )∩60) 6= 0 and dφ (Im(γ )∩60) 6= 0. (3.11)

Given a neighbourhood N of γ , we can then multiply a by a suitable bump function χN, which is equal to
one in a neighbourhood of γ and satisfies supp(χN)⊆ N, such that

uλ = uλ,N = aNeiλφ

satisfies (2.5), (2.6) and (2.7), where aN := a ·χN.

Proof. Cover γ by slice coordinate patches and let χ̃ be a bump function which meets the following three
requirements:

(i) χ̃ is equal to one in a neighbourhood of γ .

(ii) (3.4) is satisfied for all x ∈ supp(χ̃).

(iii) R[0,T ] ∩ supp(χ̃) is relatively compact in M for all T > 0 with 6T ∩ Im(γ ) 6=∅.

Pick now a second bump function χ̃N which is again equal to one in a neighbourhood of γ and is supported
in N. We then define χN := χ̃ · χ̃N. Clearly, (2.7) is satisfied.

In order to see that (2.5) holds, note that the conditions (3.2), (3.3), (3.9) and (3.10) are still satisfied
by the pair (aN, φ). Moreover note that, due to condition (iii), the integrand is supported in a compact
region for each T > 0 with 6T ∩ Im(γ ) 6= ∅. Thus, the spacetime volume of this region is finite. We
thus obtain (2.5) from (3.5) and Lemma 3.6.

Finally, we have
E N

0 (uλ)≥ C · (λ1/2
− 1).
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This follows since the highest-order term in λ in E N
0 (uλ) is

λ2
·

∫
60

|aN|
2 Nφ1 · n60φ1e−2λφ2 volḡ0,

and the same scaling argument used in the proof of Lemma 3.6 shows that the term e−2λφ2 leads to a
λ−3/2 damping — and only to a λ−3/2 damping due to condition (3.11) (together with (3.9) and (3.2)).
Thus, (2.6) is satisfied as well and the lemma is proved. �

For the actual construction of the functions φ and a such that (3.2), (3.3), (3.9), (3.10), and (3.11) are
satisfied, we refer the reader, for example, to [Ralston 1982]. We content ourselves here with pointing out
that the above conditions on the functions φ and a are actually only conditions on the first, second, and
third derivatives of φ along γ and on the first derivative of a and the value of a itself along γ . Making
the choice

dφ(s) := γ̇ [(s) (3.12)

along γ , where s is an affine parameter for γ , the condition (3.9) turns into a quadratic ODE for the
second derivatives of φ along γ , while the condition (3.10) turns into a linear ODE for a along γ . The
important step is to show that one can find a global solution for the first ODE, which, moreover, also
satisfies (3.3).

We conclude this section by making the following definition for future reference:

Definition 3.13. Let (M, g) be a time-oriented, globally hyperbolic Lorentzian manifold with time
function t , foliated by the level sets 6τ = {t = τ }. Furthermore, let γ : [0, S)→ M be an affinely
parametrised future-directed null geodesic with γ (0) ∈60, where 0< S ≤∞, and let N be a timelike,
future-directed vector field.

Given functions a, φ ∈C∞(M,C) that satisfy (3.2), (3.3), (3.9), (3.10), a(Im(γ )∩60) 6= 0 and (3.12),
we call the function

uλ,N = aNeiλφ

a Gaussian beam along γ with structure functions a and φ and with parameters λ and N. Here, aN =

a ·χN = a · χ̃ · χ̃N with χ̃ and χ̃N as in the proof of Lemma 3.8. Moreover, we call the function

ũλ,N =
uλ,N

√

E N
0 (uλ,N)

·
√

E

a Gaussian beam along γ with structure functions a and φ, parameters λ and N, and initial N-energy E ,
where E is a strictly positive real number. Let us emphasise that, when we say “a Gaussian beam along γ ”,
γ encodes here not only the image of γ , but also the affine parametrisation.

We end this section with the remark that, for the sole construction of the Gaussian beams, the
assumption of the global hyperbolicity of (M, g) can be replaced by the assumption that the null geodesic
γ : R ⊇ I → M is a smooth embedding, in particular γ (I ) is an embedded submanifold. Moreover,
note that, if γ : R ⊇ I → M is a smooth injective immersion and if [a, b] ⊆ I with a, b ∈ R, then
γ |(a,b) : (a, b)→ M is a smooth embedding. Thus the construction of a Gaussian beam is always possible
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for null geodesics with no self-intersections on general Lorentzian manifolds — at least up to some finite
affine time in the domain of γ .

4. Geometric characterisation of the energy of Gaussian beams

In this section we characterise the energy of a Gaussian beam in terms of the energy of the underlying
null geodesic. The following theorem is the main result of Part I:

Theorem 4.1. Let (M, g) be a time-oriented, globally hyperbolic Lorentzian manifold with time function t ,
foliated by the level sets 6τ = {t = τ }. Moreover, let N be a timelike future-directed vector field and
γ : [0, S)→ M an affinely parametrised future-directed null geodesic with γ (0) ∈60, where 0< S ≤∞.

For any T > 0 with Im(γ )∩6T 6= ∅ and any µ > 0, there exists a λ0 > 0 such that any Gaussian
beam ũλ,N along γ with structure functions a and φ, parameters λ ≥ λ0 and N, and initial N-energy
equal to −g(N , γ̇ )

∣∣
γ (0), satisfies∣∣E N

τ (ũλ,N)−
(
−g(N , γ̇ )

∣∣
Im(γ )∩6τ

)∣∣< µ for all 0≤ τ ≤ T . (4.2)

Before we give the proof, we make a few remarks:

(i) The only information about a Gaussian beam we made use of in Theorem 2.1, apart from it being an
approximate solution, was that it is supported in a given neighbourhood N of the null geodesic γ . This
then yielded, together with (2.2), an estimate on the energy outside of the neighbourhood N of the actual
solution to the wave equation, so we could construct solutions to the wave equation with localised energy.
However, Theorem 2.1 does not make any statement about the temporal behaviour of this localised energy.
The above theorem fills this gap by investigating the temporal behaviour of the energy of the approximate
solution, i.e., of the Gaussian beam. Together with (2.2) (or even with (2.10)!) this then gives an estimate
on the temporal behaviour of the localised energy of the actual solution to the wave equation.

(ii) If N is a timelike Killing vector field, the N -energy −g(N , γ̇ ) of the null geodesic γ is constant and,
thus, so is approximately the N -energy of the Gaussian beam.

(iii) By our Definition 3.13 a Gaussian beam is a complex-valued function. However, by taking the real
or the imaginary part, one can also define a real-valued Gaussian beam. The result of Theorem 4.1 also
holds true in this case, and can be proved using exactly the same technique — only the computations
become a bit longer, since we have to deal with more terms.

(iv) Although we have stated the above theorem again using the general assumptions needed for
Theorem 2.1, we actually do not need more assumptions than we need for the construction of a Gaussian
beam; see the final remark of the previous section.

Proof. Recall from Definition 3.13 that a Gaussian beam ũλ,N along γ with structure functions a and φ,
parameters N and λ, and initial N -energy equal to −g(N , γ̇ )

∣∣
γ (0), is a function

ũλ,N =
uλ,N

√

E N
0 (uλ,N)

·

√

−g(N , γ̇ )|γ (0) =
aNeiλφ
√

E N
0 (uλ,N)

·

√

−g(N , γ̇ )|γ (0),
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where the functions aN and φ satisfy (3.2), (3.3), (3.9), (3.10), (3.11), (3.12), supp(aN)⊆N, N∩ R[0,T ]
is relatively compact for all T > 0 with 6T ∩ Im(γ ) 6= ∅, and, for a cover of γ with slice coordinate
patches, (3.4) holds for all x ∈ supp(aN).

We will show

E N
τ (ũλ,N)=

E N
τ (uλ,N)

E N
0 (uλ,N)

·
[
−g(N , γ̇ )

∣∣
γ (0)

]
=−g(N , γ̇ )

∣∣
Im(γ )∩6τ

+ o(λ), (4.3)

where o(λ) goes to zero uniformly in 0≤ τ ≤ T for λ→∞. This would then prove the theorem.
In the following we compute the leading-order term of E N

τ (uλ,N) in λ:

J N (uλ,N)·n6τ =Re(Nuλ,N ·n6τ uλ,N)−
1
2 g(N , n6τ ) duλ,N ·duλ,N

= λ2
|aN|

2 Nφ1 ·n6τφ1 ·e−2λφ2+λ2
|aN|

2 Nφ2 ·n6τφ2 ·e−2λφ2+O(λ)·e−2λφ2

−
1
2 g(N , n6τ )[λ

2
|aN|

2 (dφ1 ·dφ1) e−2λφ2+λ2
|aN|

2 (dφ2 ·dφ2) e−2λφ2+O(λ)·e−2λφ2].

Note that dφ2
∣∣
γ (τ)
= 0, so these terms are of lower order after integration over 6τ . The same holds for

the dφ1 · dφ1 term. Thus, we get

E N
τ (uλ,N)= λ

2
∫
6τ

|aN|
2 Nφ1 · n6τφ1e−2λφ2 volḡτ︸ ︷︷ ︸
=O(λ1/2)

+ lower-order terms︸ ︷︷ ︸
=O(1)

. (4.4)

The main part of the proof is an approximate conservation law. Recall that aN and φ satisfy (3.9)
and (3.10). These equations yield

gradφ(|aN|
2)= gradφ(aN) · aN+ aN · gradφ(aN)

=−
1
2(�φ · aNaN+ aN�φ · aN)=−Re(�φ)|aN|

2 along γ (4.5)

and

dφ · dφ = (dφ1+ idφ2) · (dφ1+ idφ2)= dφ1 · dφ1− dφ2 · dφ2+ 2i dφ1 · dφ2

vanishes to second order along γ ; thus, in particular,

dφ1 · dφ2 = gradφ1 (φ2) vanishes along γ to second order. (4.6)

Lemma 3.6(ii), together with (4.5) and (4.6), shows that the current

Xλ,N = λ2
· |aN|

2e−2λφ2 gradφ1

is approximately conserved in the sense that∫
R[0,τ ]

div Xλ,N volg

= λ2
·

∫
R[0,τ ]

(
[gradφ1(|aN|

2)+�φ1 · |aN|
2
]e−2λφ2︸ ︷︷ ︸

=λ−1/2·λ−3/2=λ−2 after integration

− 2λ gradφ1(φ2) · |aN|
2e−2λφ2︸ ︷︷ ︸

=λ·λ−3/2·λ−3/2=λ−2 after integration

)
volg = O(1),



1396 JAN SBIERSKI

but ∫
6τ

Xλ,N · n6τ volḡτ = λ
2
·

∫
6τ

|aN|
2n6τφ1e−2λφ2 volḡτ = O(λ1/2).

In particular, we obtain23∣∣∣∣λ2
·

∫
6τ

|aN|
2n6τφ1e−2λφ2 volḡτ−λ

2
·

∫
60

|aN|
2n60φ1e−2λφ2 volḡ0

∣∣∣∣= ∣∣∣∣∫
R[0,τ ]

div Xλ,N volg

∣∣∣∣=O(1). (4.7)

We also observe that, by Lemma 3.6(ii), we have

λ2
·

∫
6τ

|aN|
2(Nφ1− Nφ1

∣∣
Im(γ )∩6τ

)
· n6τφ1e−2λφ2 volḡτ = O(1). (4.8)

It thus follows from (4.4), (4.7), and (4.8) that

E N
τ (uλ,N)= λ

2
∫
6τ

|aN|
2 Nφ1 · n6τφ1e−2λφ2 volḡτ +O(1)

= λ2
· Nφ1

∣∣
Im(γ )∩6τ

∫
6τ

|aN|
2n6τφ1e−2λφ2 volḡτ +O(1)

= λ2
· Nφ1

∣∣
Im(γ )∩6τ

∫
60

|aN|
2n6τφ1e−2λφ2 volḡ0 +O(1)

=

Nφ1
∣∣
Im(γ )∩6τ

Nφ1
∣∣
Im(γ )∩60

· E N
0 (uλ,N)+O(1)

=

g(N , γ̇ )
∣∣
Im(γ )∩6τ

g(N , γ̇ )
∣∣
Im(γ )∩60

· E N
0 (uλ,N)+O(1).

Substituting this into the expression for E N
τ (ũλ,N), i.e., the first equation in (4.3), we obtain the second

equation of (4.3). This finishes the proof of Theorem 4.1. �

5. Some general theorems about the Gaussian beam limit of the wave equation

We can now make a much more detailed statement about the behaviour of solutions v of the wave equation
in the Gaussian beam limit than Theorem 2.1 does:

Theorem 5.1. Let (M, g) be a time-oriented, globally hyperbolic Lorentzian manifold with time function t ,
foliated by the level sets6τ ={t= τ }, where60 is a Cauchy hypersurface. Furthermore, let γ : [0, S)→M
be an affinely parametrised future-directed null geodesic with γ (0) ∈60, where 0< S ≤∞. Finally, let
N be a timelike, future-directed vector field.

For any neighbourhood N of γ , any T > 0 with 6T ∩ Im(γ ) 6=∅, and any µ> 0, there exists a solution
v ∈ C∞(M,C) of the wave equation (1.10) with E N

0 (v)=−g(N , γ̇ )
∣∣
γ (0) such that∣∣E N

τ,N∩6τ
(v)−

[
−g(N , γ̇ )

∣∣
Imγ∩6τ

]∣∣< µ for all 0≤ τ ≤ T (5.2)

23In the geometric optics approximation we have, indeed, a proper conservation law, which is interpreted in the physics
literature as conservation of photon number; see, for example, [Misner et al. 1973, Chapter 22.5.]
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and24

E N
τ,Nc∩6τ

(v) < µ for all 0≤ τ ≤ T (5.3)

provided that we have, on R[0,T ] ∩ J+(N∩60),

1
|dt (n6τ )|

+ |g(N , n6τ )| ≤ C <∞ and 0< c ≤ |g(N , N )|,

|∇N (n6τ , n6τ )| +
3∑

i=1

|∇N (n6τ , ei )| +

3∑
i, j=1

|∇N (ei , e j )| ≤ C <∞, (5.4)

where c and C are positive constants and {n6τ , e1, e2, e3} is an orthonormal frame.
Moreover, by choosing N a bit smaller, if necessary, (5.2) holds independently of (5.4).

Proof. This follows easily from Theorem 2.1, Theorem 4.1, the second part of Remark 2.9 and the triangle
inequality for the square root of the N -energy. �

Let us again remark that the solution v of the wave equation in Theorem 5.1 can also be chosen to be
real valued.

The next theorem is a direct consequence of Theorem 5.1 and can be used, in particular, but not only,
for proving upper bounds on the rate of the energy decay of waves on globally hyperbolic Lorentzian
manifolds if we only allow the initial energy on the right-hand side of the decay statement.

Theorem 5.5. Let (M, g) be a time-oriented globally hyperbolic Lorentzian manifold with time function t ,
foliated by the level sets 6τ = {t = τ }, where 60 is a Cauchy hypersurface. Furthermore, let T be an
open subset of M. Assume there is an affinely parametrised future-directed null geodesic γ : [0, S)→ M
with γ (0) ∈60, where 0< S ≤∞, that is completely contained in T. Let

τ ∗ := sup
{
τ̂ ∈ [0,∞)

∣∣ Im(γ )∩6τ 6=∅ for all 0≤ τ < τ̂
}
.

Moreover, let N be a timelike, future-directed vector field and P : [0, τ ∗)→ (0,∞) a function.25

If there is no constant C > 0 such that

−g(N , γ̇ )
∣∣
Im(γ )∩6τ

≤ P(τ )C

holds for all 0≤ τ < τ ∗, then there exists no constant C > 0 such that

E N
τ,T∩6τ

(u)≤ P(τ )C E N
0 (u) (5.6)

holds for all solutions u of the wave equation (1.10) for 0≤ τ < τ ∗.

Proof. Assume the contrary, that is, that there exists a constant C0 > 0 such that (5.6) holds. There is then
a 0 ≤ τ0 < τ

∗ with −g(N , γ̇ )
∣∣
Im(γ )∩6τ0

> −g(N , γ̇ )
∣∣
Im(γ )∩60

C0 P(τ0). Choosing µ > 0 small enough
and a neighbourhood N⊆ T of γ small enough such that (5.2) of Theorem 5.1 applies without reference
to (5.4), we obtain a contradiction. �

24We denote the complement of N in M by Nc.
25There is no assumption on the regularity of the function P .
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A very robust method for proving decay of solutions of the wave equation was given in [Dafermos and
Rodnianski 2010b] (but also see [Metcalfe et al. 2012]). This method requires an integrated local energy
decay (ILED) statement (possibly with loss of derivative), i.e., a statement of the form (5.8). The next
theorem gives a sufficient criterion for an ILED statement having to lose regularity.

Theorem 5.7. Let (M, g) be a time-oriented, globally hyperbolic Lorentzian manifold with time function t ,
foliated by the level sets 6τ = {t = τ }, where 60 is a Cauchy hypersurface. Furthermore, let T be an
open subset of M. Assume there is an affinely parametrised, future-directed null geodesic γ : [0, S)→ M
with γ (0) ∈60, where 0< S ≤∞, that is completely contained in T. Let N be a timelike, future-directed
vector field and set

τ ∗ := sup
{
τ̂ ∈ [0,∞)

∣∣ Im(γ )∩6τ 6=∅ for all 0≤ τ < τ̂
}
.

If ∫ τ ∗

0
−g(N , γ̇ )

∣∣
Im(γ )∩6τ

dτ =∞,

where γ̇ is with respect to some affine parametrisation, then there exists no constant C > 0 such that∫ τ ∗

0

∫
6τ∩T

J N (u) · n6τ volḡτ dτ ≤ C E N
0 (u) (5.8)

holds for all solutions u of the wave equation (1.10).

The proof of this theorem goes along the same lines as the one of Theorem 5.5. The reader might have
noticed that whether an ILED statement of the form (5.8) exists or not depends heavily on the choice of
the time function. On the other hand, it also depends heavily on the choice of the time function whether
an ILED statement is helpful or not. So, for instance, we only have an estimate of the form∫

T∩R[0,τ∗]
J N (u) · n6τ volg ≤ C ·

∫ τ ∗

0

∫
6τ∩T

J N (u) · n6τ volḡτ dτ,

where C > 0, if the time function t is chosen such that 1/|dt (n6τ )| ≤ C is satisfied for all 0 ≤ τ ≤ τ ∗.
Such an estimate, together with an ILED statement, is very convenient whenever one needs to control
spacetime integrals that are quadratic in the first derivatives of the field.

Part II. Applications to black hole spacetimes

In the following we give a selection of applications of Theorems 5.1, 5.5 and 5.7. A rich variety of
behaviours of the energy is provided by black hole spacetimes arising in general relativity.26 Although
we will briefly introduce the Lorentzian manifolds that represent these black hole spacetimes, the reader
completely unfamiliar with those is referred to [Hawking and Ellis 1973] for a more detailed discussion,
including the concept of a so called Penrose diagram and an introduction to general relativity.

26Another physically interesting application would be, for example, to the study of waves in time-dependent inhomogeneous
media.
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We first restrict our considerations to the 2-parameter family of Reissner–Nordström black holes, which
are exact solutions to the Einstein–Maxwell equations. The spherical symmetry of these spacetimes (and
the accompanying simplicity of the metric) allows for an easy presentation without hiding any crucial
details. In Section 7 we then discuss the Kerr family and show that analogous results hold.

6. Applications to Schwarzschild and Reissner–Nordström black holes

The 2-parameter family of Reissner–Nordström spacetimes is given by

g =−
(

1−
2m
r
+

e2

r2

)
dt2
+

(
1−

2m
r
+

e2

r2

)−1

dr2
+ r2 dθ2

+ r2 sin2 θ dϕ2, (6.1)

initially defined on the manifold M :=R×(m+
√

m2− e2,∞)×S2, for which (t, r, θ, ϕ) are the standard
coordinates. We restrict the real parameters m and e, which model the mass and the charge of the black
hole, respectively, to the range 0≤ e ≤ m, m 6= 0.

For e = 0 we obtain the 1-parameter Schwarzschild subfamily which solves the vacuum Einstein
equations. The manifold M and the metric (6.1) can be analytically extended (so that they still solve the
Einstein equations). The so-called Penrose diagram of the maximal analytic extension of the Schwarzschild
family is given in Figure 2.

The diamond-shaped region to the right corresponds to the Lorentzian manifold (M, g) we started
with; it represents the exterior of the black hole. The triangle to the top corresponds to the interior of the
black hole, which is separated from the exterior by the so-called event horizon, the line from the centre to
the top-right i+. The remaining parts of the Penrose diagram play no role in the following discussion.

The black hole stability problem (see the introduction of [Dafermos and Rodnianski 2013]) motivates
the study of the wave equation in the exterior of the black hole (the event horizon included). In accordance
with our discussion in Section 1B, we consider the framework of the energy method for the study of the
wave equation. A suitable notion of energy for the black hole exterior is obtained via (1.9) through the

60

6τ
r =

2m

r = 0 i+

i0

i−

I +

I
−

r = 0

i+

i0

i−

r
=

2m

I −

I
+

r = 3m

H+

Figure 2. The Penrose diagram of the maximal analytic extension of the Schwarzschild family.
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foliation given by 6τ = {t∗ = τ } for t∗ ≥ c > −∞, where t∗ = t + 2m log(r − 2m), together with the
timelike vector field N := −(dt∗)].27

6A. Trapping at the photon sphere. There are null geodesics in the Schwarzschild spacetime that stay
forever on the photon sphere at {r = 3m}. Indeed, one can check that the curve γ given by

γ (s)=
(
s, 3m, 1

2π, (27m2)−1/2s
)

in (t, r, θ, ϕ) coordinates is an affinely parametrised null geodesic with N -energy given by −g(N , γ̇ )= 1.
We now apply Theorem 5.5: The time-oriented,28 globally hyperbolic Lorentzian manifold can be taken
to be the domain of dependence D(60) of 60 in (M, g). Moreover, we choose the time function to be
given by the restriction of t∗ to D(60), and the vector field N and null geodesic γ (s) in Theorem 5.5 are
given by N and γ (s− 2m log m) from above. Since −g(N , γ̇ )= 1 holds, Theorem 5.5 now states that,
given any open neighbourhood T of Im(γ ) in D(60), there is no function P : [0,∞)→ (0,∞) with
P(τ )→ 0 for τ →∞ such that

E N
τ,T∩6τ

(u)≤ P(τ )E N
0 (u)

holds for all solutions u of the wave equation for all τ ≥ 0. It follows that an LED statement for such a
region can only hold if it loses differentiability. One can infer the analogous result about ILED statements
from Theorem 5.7.

Let us mention here that γ has conjugate points. Indeed, the Jacobi field J with initial data J (0)= 0
and Ds J (0)= ∂θ |γ (0) vanishes in finite affine time s > 0: First note that the vector field

s 7→ ∂θ
∣∣
γ (s)

along γ is parallel, i.e., Ds∂θ
∣∣
γ (s) = 0. Moreover, a direct computation yields

R(∂θ , γ̇ )γ̇
∣∣
γ (s) =

1
27m2 ∂θ

∣∣∣∣
γ (s)
,

where R( · , · ) · is the Riemann curvature endomorphism. Thus, it follows that the vector field

J (s)= (27m2)1/2 sin((27m2)−1/2s) · ∂θ
∣∣
γ (s)

27 We are intentionally quite vague about what we mean by “suitable notion of energy”. Instead of considering a foliation that
ends at spacelike infinity ι0, it is sometimes desirable to work with a foliation that ends at future null infinity I+. In a stationary
spacetime, however, it is always convenient (and indeed “suitable”) to work with a foliation and an energy-measuring vector
field N both of which are invariant under the flow of the Killing vector field. The obvious advantage is that the constants in
Sobolev embeddings do not depend on the leaf — provided, of course, that higher-energy norms are also defined accordingly.
The precise choice of the timelike vector field N in a compact region of one leaf is completely irrelevant, since all the energy
norms are equivalent in a compact region. In particular, one can deduce that the following result about trapping at the photon
sphere in Schwarzschild remains unchanged if we choose a different timelike vector field N which commutes with ∂t and a
different foliation by spacelike slices. In fact, note that the behaviour of the energy of the null geodesic, −g(N , γ̇ ), does not
depend at all on the choice of the foliation!

28The time orientation is given by the timelike vector field N .
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satisfies the Jacobi equation D2
t J+R(J, γ̇ )γ̇ = 0. Moreover, it clearly satisfies the above initial conditions

and vanishes in finite affine time.
It now follows from Theorem A.1 that one cannot construct localised solutions to the wave equation

along the trapped null geodesic γ using the naive geometric optics approximation alone. Indeed, one
would need to bridge these caustics using Maslov’s canonical operator.

That one can indeed prove an (I)LED statement with a loss of derivative was shown in [Dafermos
and Rodnianski 2009] (see also [Blue and Sterbenz 2006]). In fact, it is sufficient to lose only an ε of a
derivative; see [Blue and Soffer 2009] and also [Dafermos and Rodnianski 2013]. For a numerical study
of the behaviour of a wave trapped at the photon sphere we refer the interested reader to [Zenginoglu and
Galley 2012].

Other, similar, examples are trapping at the photon sphere in higher-dimensional Schwarzschild [Schlue
2013] or in Reissner–Nordström [Aretakis 2011a; Blue and Soffer 2009].

6B. The red-shift effect at the event horizon — and its relevance for scattering constructions from the
future. Another kind of behaviour of the energy is exhibited by the trapping occuring at the event horizon
of the Schwarzschild spacetime. Recall that the event horizon H+ at {r = 2m} is a null hypersurface,
spanned by null geodesics. In (t∗, r, θ, ϕ) coordinates the affinely parametrised generators are given by

γ (s)=
(1
κ

log s, 2m, θ0, ϕ0

)
,

where κ = 1/(4m) is the surface gravity, s ∈ (0,∞) and θ0, ϕ0 are constants. Thus, we have

−(γ̇ (s), N )= 1
κs
=

1
κ

e−κt∗, (6.2)

i.e., the energy of the corresponding Gaussian beam decays exponentially — a direct manifestation of
the celebrated red-shift effect. For more on the impact of the red-shift effect on the study of the wave
equation on Schwarzschild we refer the reader to the original paper by Dafermos and Rodnianski [2009],
but also see [Dafermos and Rodnianski 2013].

Let us emphasise again that the null geodesics at the photon sphere as well as those at the horizon are
trapped, in the sense that they never escape to null infinity — but only those at the photon sphere form an ob-
struction for an LED statement without loss of differentiability; the “trapped” energy at the horizon decays
exponentially. This is in stark contrast to the obstacle problem, where every trapped light ray automatically
leads to an obstruction for an LED statement without loss of derivatives (see [Ralston 1969]). This new
variety of how the “trapped” energy behaves is due to the lack of a global timelike Killing vector field.

Let us now investigate the role played by the red-shift effect in scattering constructions from the future.
While the red-shift effect is conducive to proving bounds on solutions to the wave equation in the “forward
problem”, it turns into a blue-shift in the “backwards problem” (see Figure 3);29 it amplifies energy near
the horizon.

29We call the initial value problem on 60 to the future the “forward problem”, while solving a mixed characteristic initial
value problem on H+(τ )∪6τ to the past (or indeed a scattering construction from the future with data on H+ and I+) is called
the “backwards problem”. Here, we have denoted the (closed) portion of the event horizon H+ that is cut out by 60 and 6τ
by H+(τ ).
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i0

i+

i−

H+(τ ) 6τ

60

D(60)

solve
backwards

γτ

Figure 3. Illustration of the backwards problem.

Proposition 6.3. For every µ> 0 and every τ > 0 there exists a smooth solution30 v ∈ C∞(D(60),C) to
the wave equation (1.10) with E N

τ (v)= 1 and
∫

H+(τ ) J N (v) y volg < µ, which satisfies E N
0 (v)≥ eκτ −µ,

where κ = 1/(4m) is the surface gravity of the Schwarzschild black hole.

Here, J N (v) y volg denotes the 3-form obtained by inserting the vector field J N (v) into the first slot
of volg. Let us also remark that µ should be thought of as a small positive number, while τ rather as a
big one.

Proof. As in Section 6A, we consider the Lorentzian manifold D(60) with time function t∗ and timelike
vector field N . Since geodesics depend smoothly on their initial data, it follows from (6.2) that we
can find, for every τ > 0, an affinely parametrised, radially outgoing null geodesic31 γτ in D(60) with∣∣−(γ̇τ , N )|Im(γτ )∩60 − eκτ

∣∣ < µ/2 and −(γ̇τ , N )|Im(γτ )∩6τ = 1. We note that, for our choice of time
function and vector field N , the condition (2.3) is satisfied, which does not only give us the energy
estimate (2.8) but here also the refined version∫

H+(τ )
J N (u) y volg + E N

τ (u)≤ C(τ )(E N
0 (u)+‖�u‖2L2(R[0,T ])

), (6.4)

which holds in D(60) for all τ > 0 and all u ∈ C∞(D(60),R). The estimate (6.4) is derived in the same
way as (2.8), namely by an application of Stokes’ theorem to J N (u) y volg, followed by Gronwall’s
inequality. The estimate (6.4) gives, in addition to (2.2) in Theorem 2.1, the estimate∫

H+(τ )
J N (v− ũ) y volg < µ, (6.5)

where ũ is the Gaussian beam and v is the actual solution, as in Theorem 2.1. We now apply Theorem 5.1,
where the Lorentzian manifold is given by D(60), the time function by t∗, the timelike vector field

30We denote by D(60) the closure of D(60) in the maximal analytic extension of Schwarzschild; see Figure 2 on page 1399.
31Radially outgoing null geodesics are the lines parallel to, and to the right of, H+ in the Penrose diagram. In (u, r, θ, ϕ)

coordinates, where u(t, r, θ, ϕ) := t − 2m log(r − 2m)− r , these null geodesics are tangent to ∂/∂r .
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by N and, for given τ > 0, the affinely parametrised null geodesic is taken to be γτ from above. For
our purposes we can choose any neighbourhood N of Im(γτ ) in D(60). Theorem 5.1 then ensures the
existence of a solution v ∈ C∞(D(60),C) to the wave equation with E N

0 (v)≥ eκτ −µ and E N
τ (v)= 1 —

possibly after renormalising the energy at time τ of v to be exactly 1. It is not difficult to show, for
example by considering the Cauchy problem for a slightly larger globally hyperbolic Lorentzian manifold
which contains the event horizon, that v can be chosen to extend smoothly to the event horizon. We then
obtain

∫
H+(τ ) J N (v) y volg < µ from (6.5), since we recall that the Gaussian beam ũ in Theorem 2.1 is

supported in N, which is disjoint from H+. This finishes the proof. �

The above proposition shows that for every τ > 0 one can prescribe initial data for the mixed
characteristic initial value problem on H+ ∪6τ so that the total initial energy is equal to one, while the
energy of the solution obtained by solving backwards grows exponentially to ≈ eκτ on 60. Dafermos,
Holzegel and Rodnianski [Dafermos et al. 2013] approach the scattering problem from the future for
the Einstein equations (with initial data prescribed on H+ and I+) by considering it as the limit of
finite backwards problems, which — for the wave equation — are qualitatively the same as the backwards
problem with initial data on H+(τ ) and 6τ . In order to take the limit of the finite problems, uniform
control over the solutions is required: Dafermos et al. use a backwards energy estimate which bounds the
energy on 60 by the initial energy on H+ and 6τ , multiplied by C ·exp(cτ), where c and C are constants
that are independent of τ . Proposition 6.3 shows now that this estimate is sharp, in the sense that one
cannot avoid exponential growth (at least not as long as one does not sacrifice regularity in the estimate).
In particular, working with this estimate enforces the assumption of exponential decay on the scattering
data in [Dafermos et al. 2013].

6C. The blue-shift near the Cauchy horizon of a subextremal Reissner–Nordström black hole. We
now move on to the subextremal Reissner–Nordström black hole, i.e., to the parameter range 0< e < m
in (6.1). More precisely, we consider again its maximal analytic extension. Part of the Penrose diagram is
given in Figure 4.

Again, the diamond-shaped region I represents the black hole exterior and corresponds to the Lorentzian
manifold on which the metric g from (6.1) was initially defined. The regions II, III and IV represent the
black hole interior. Recall that Reissner–Nordström is a spherically symmetric spacetime. The “radius” of
the spheres of symmetry is given by a globally defined function r . We write D(r) := 1− 2m/r + e2/r2

and denote the two roots of D by r± = m±
√

m2− e2. The future Cauchy horizon32 is given by r = r−.
The coordinate functions (θ, ϕ) parametrise the spheres of symmetry in the usual way and are globally
defined up to one meridian. Regions I –III are covered by a (v, r, θ, ϕ) coordinate chart; in the region I ,
the function v is given by v = t + r∗I , where r∗I is a function of r satisfying dr∗I /dr = 1/D. With respect
to these coordinates, the Lorentzian metric takes the form

g =−D dv2
+ dv⊗ dr + dr ⊗ dv+ r2 dθ2

+ r2 sin2 θ dϕ2.

32We consider a Cauchy surface 60 of the big diamond-shaped region as shown in Figure 5, i.e., a Cauchy surface of the
region pictured in Figure 4 without the regions III and IV .
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Figure 4. Part of the Penrose diagram for the subextremal Reissner–Nordström black hole.

Introducing a function r∗II in region II, which satisfies dr∗II/dr = 1/D in this region, and defining a
function33 t := v− r∗II , we obtain a (t, r, θ, ϕ) coordinate system for region II in which the metric g is
again given by the algebraic expression (6.1). The regions II and IV are covered by a coordinate system
(u, r, θ, ϕ), where the function u is given in region II by u = t − r∗II .

Having laid down the coordinate functions we work with, we now investigate the family of affinely
parametrised ingoing null geodesics, given in (v, r, θ, ϕ) coordinates by

γv0(s)= (v0,−s, θ0, ϕ0),

where s ∈ (−∞, 0) and we keep θ0, ϕ0 fixed. Clearly, we have34 γ̇v0 =−∂/∂r
∣∣
v
. We are interested in the

energy of these null geodesics in region II close to i+ (in the topology of the Penrose diagram), i.e., close
to the Cauchy horizon separating region II from region IV . A suitable notion of energy is given by a
regular vector field that is future-directed timelike in a neighbourhood of i+. In order to construct such a
vector field, we consider (u, v, θ, ϕ) coordinates in region II. A straightforward computation shows that

N := −
1

r+− r
∂

∂u

∣∣∣∣
v

+
1

r − r−
∂

∂v

∣∣∣∣
u
=−

1
r+− r

∂

∂u

∣∣∣∣
r
−

1
2r2 (r+− r−)

∂

∂r

∣∣∣∣
u
=

r−− r+
2r2

∂

∂r

∣∣∣∣
v

+
1

r − r−
∂

∂v

∣∣∣∣
r

33One could also assign the functions t an index, specifying in which region they are defined. Note that these different
functions t do not patch together to give a globally defined smooth function!

34Let us denote with a subscript on the partial derivative which other coordinate (apart from θ and ϕ) remains fixed.
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Figure 5. The spacelike slices 60 and 61 of Figure 4.

is future-directed timelike in a neighbourhood of i+ intersected with region II and can be extended to a
smooth timelike vector field defined on a neighbourhood of i+. We obtain

−(N , γ̇v0)=
1

r − r−
; (6.6)

the N -energy of the null geodesics γv0 gets infinitely blue-shifted near the Cauchy horizon.
For later reference let us note that the rate with which the N -energy (6.6) of γv0 blows up along a

hypersurface of constant u, in advanced time v, is exponential. This is seen as follows: One has

r∗II(r)= r +
1

2κ+
log(r+− r)+

1
2κ−

log(r − r−)+ const,

where κ± = (r±− r∓)/(2r2
±
) are the surface gravities of the event and the Cauchy horizon, respectively.

Thus, for large r∗II , one has (1/(r − r−))(r∗II) ∼ e−2κ−r∗II . Finally, along {u = u0 = const}, we have
r∗II(v)=

1
2(v−u0). It thus follows that the N -energy (6.6) of γv0 blows up like e−κ−v along a hypersurface

of constant u.
Let us now consider spacelike slices 60 and 61 as in Figure 5, where 60 asymptotes to a hypersurface

of constant t and 61 is extendible as a smooth spacelike slice into the neighbouring regions.
Since the normal n61 of 61 is also regular at the Cauchy horizon, it follows from (6.6) that the

n61-energy of the null geodesics γv0 blows up along 61 when approaching the Cauchy horizon. Moreover,
note that the n60-energy of the geodesics γv0 along 60 is uniformly bounded as v0→∞. We now apply
Theorem 5.1 to the family of null geodesics γv0 with the following further input: the Lorentzian manifold
is given by the domain of dependence D(60) of 60, the time function is such that 60 and 61 are level
sets, N is a timelike vector field that extends n60 and n61 , and finally N is a small enough neighbourhood
of γv0 . This yields:
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Theorem 6.7. Let 60 and 61 be spacelike slices in the subextremal Reissner–Nordström spacetime as
indicated in Figure 6. Then there exists a sequence {ui }i∈N of solutions to the wave equation with initial
energy E

n60
0 (ui )= 1 on 60 such that the n61-energy on 61 goes to infinity, i.e., E

n61
1 (ui )→∞ as i→∞.

We can infer from Theorem 6.7 that there is no uniform energy boundedness statement — that is, there
is no constant C > 0 such that ∫

61

J n61 (u) · n61 ≤ C
∫
60

J n60 (u) · n60 (6.8)

holds for all solutions u of the wave equation.
Let us remark here that the nonexistence of a uniform energy boundedness statement has, in particular,

the following consequence: one cannot choose a time function for the region bounded by 60 and 61 for
which these hypersurfaces are level sets and, moreover, extend the normals of 60 and 61 to a smooth
timelike vector field N in such a way that an energy estimate of the form (2.8) holds. This emphasises the
importance of the condition (2.3) for the global approximation scheme on general Lorentzian manifolds
and points out the necessity of a local understanding of the approximate solution provided by Theorems 4.1
and 5.1.

One actually expects that there is no energy boundedness statement at all, no matter how many
derivatives one loses or whether one restricts the support of the initial data:

Conjecture 6.9. For generic compactly supported smooth initial data on 60, the n61-energy along 61 of
the corresponding solution to the wave equation is infinite.

Let us remark here that the analysis carried out in [Dafermos 2005] shows in particular that proving
the above conjecture can be reduced to proving a lower bound on the decay rate of the spherical mean of
the generic solution (as in Conjecture 6.9) on the horizon.

Before we elaborate in Section 6E on the mechanism that leads to the blow-up of the energy near the
Cauchy horizon in Theorem 6.7, let us investigate the situation for extremal Reissner–Nordström black
holes.

6D. The blue-shift near the Cauchy horizon of an extremal Reissner–Nordström black hole. The ex-
tremal Reissner–Nordström black hole is given by the choice m = e of the parameters in (6.1). We again
consider the maximal analytic extension of the initially defined spacetime. Part of the Penrose diagram is
given in Figure 6.

The region I represents again the black hole exterior and corresponds to the Lorentzian manifold on
which the metric g from (6.1) was initially defined. The black hole interior extends over the regions II
and III. The discussion of the functions r , θ and ϕ carries over from the subextremal case. However, in
the extremal case, D(r) has a double zero at r = m, the value of the radius of the spheres of symmetry
on the event, as well as on the Cauchy horizon. The regions I and II can be covered by “ingoing” null
coordinates (v, r, θ, ϕ), where the function v is given in region I by v = t + r∗I , where again r∗I (r)
satisfies dr∗I /dr = 1/D. In the same way as in the subextremal case, one introduces r∗II and defines a
(t, r, θ, ϕ) coordinate system for the region II. Finally, the regions II and III are covered by “outgoing”
null coordinates (u, r, θ, ϕ), where we have u = t − r∗II in region II.
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Figure 6. Part of the Penrose diagram for the extremal Reissner–Nordström black hole.

In ingoing null coordinates, the affinely parametrised, radially ingoing null geodesics are given by
γv0(s)= (v0,−s, θ0, ϕ0), where s ∈ (−∞, 0). Expressing the tangent vector of γv0 in region II in outgoing
coordinates, we obtain

γ̇v0 =−
∂

∂r

∣∣∣∣
v

=
2
D
∂

∂u

∣∣∣∣
r
−
∂

∂r

∣∣∣∣
u
, (6.10)

which blows up at r = m. Thus, we have, for any future-directed timelike vector field N in region II
which extends to a regular timelike vector field in region III, that the N -energy −g(γ̇v0, N ) of γv0 blows
up along the hypersurface 61 for v0→∞. Choosing now a spacelike slice 60 as in the above diagram,
again asymptoting to a {t = const} hypersurface at i0, and restricting consideration to its domain of
dependence, we obtain a globally hyperbolic spacetime (the shaded region) with respect to which we can
apply Theorem 5.1, inferring the analogue of Theorem 6.7 for extremal Reissner–Nordström black holes.

For the discussion in the next section, we again investigate the rate, in advanced time v, with which
the N -energy −g(γ̇v0, N ) blows up along a hypersurface of constant u; here, we have

r∗II(r)= r +m log((r −m)2)−
m2

(r −m)
+ const.

It follows that for large r∗II one has (1/D)(r∗II) ∼ (r
∗

II)
2. Moreover, along {u = u0 = const}, we have

r∗II(v)=
1
2(v−u0), from which it follows that the N -energy−g(γ̇v0, N ) of the family of null geodesics γv0

blows up like v2.

6E. The strong and the weak blue-shift — and their relevance for strong cosmic censorship. In the
example of subextremal Reissner–Nordström as well as in the example of extremal Reissner–Nordström,
the energy of the Gaussian beams is blue-shifted near the Cauchy horizon. Although not important for
the proof of the qualitative result of Theorem 6.7 (and the analogous statement for the extremal case), the
difference in the quantitative blow-up rate of the energy in the two cases is conspicuous.
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Figure 7. Illustration of the blue-shift effect in subextremal Reissner–Nordström.

Let us first recall the familiar heuristic picture that explains the basic mechanism responsible for the
blue-shift effect in both cases;35 see Figure 7. The observer σ0 travels along a timelike curve of infinite
proper time to i+ and, in regular time intervals, sends signals of the same energy into the black hole. These
signals are received by the observer σ1, who travels into the black hole and crosses the Cauchy horizon,
within finite proper time — which leads to an infinite blue shift. This mechanism was first pointed out by
Roger Penrose [1968, page 222].36 Although the picture, along with its heuristics, allow for inferring the
presence of a blue-shift near the Cauchy horizon, they do not reveal the strength of the blue-shift. For
investigating the latter, it is important to note that the region in spacetime which actually causes the blue
shift is a neighbourhood of the Cauchy horizon. This neighbourhood is not well defined, however, one
could think of it as being given by a neighbourhood of constant r — the shaded region in the diagram of
subextremal Reissner–Nordström in Figure 7. The crucial difference between the subextremal and the
extremal case is that, in the extremal case, the blue-shift degenerates at the Cauchy horizon itself, while,
in the subextremal case, it does not: the subextremal Cauchy horizon continues to blue-shift radiation. In
particular, one can prove an analogous result to Proposition 6.3 there — but for the forward problem.

This degeneration of the blue-shift towards the Cauchy horizon in the extremal case leads to the (total)
blue-shift being weaker than the blue-shift in the subextremal case. Thus, the geometry of spacetime
near the Cauchy horizon is crucial for understanding the strength of the blue-shift effect, and hence the
blow-up rate of the energy.

We now continue with a heuristic discussion of the importance of the different blow-up rates. The
reader might have noticed that we only made Conjecture 6.9 for the subextremal case; and indeed, the
analogous conjecture for the extremal case is expected to be false: While in our construction we consider

35In Figure 7 we give the picture for the subextremal case. However, the picture and the heuristics for the extremal case are
exactly the same!

36There, he describes the above scenario in the following, more dramatic language (he considers the scenario of gravitational
collapse, where the Einstein equations are coupled to some matter model and denotes the Cauchy horizon with H+(H)):

There is a further difficulty confronting our observer who tries to cross H+(H). As he looks out at the universe that
he is “leaving behind”, he sees, in one final flash, as he crosses H+(H), the entire later history of the rest of his “old
universe”. [. . . ] If, for example, an unlimited amount of matter eventually falls into the star then presumably he will
be confronted with an infinite density of matter along “H+(H)”. Even if only a finite amount of matter falls in, it
may not be possible, in generic situations to avoid a curvature singularity in place of H+(H).
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a family of ingoing wave packets whose energy along a fixed outgoing null ray to I+ does not decay in
advanced time v, the scattered “ingoing energy” of a wave with initial data as in Conjecture 6.9 will decay
in advanced time v along such an outgoing null ray. Thus, the blow-up of the energy near the Cauchy
horizon can be counteracted by the decay of the energy of the wave towards null infinity. In the extremal
case, the blow-up rate is v2, which does not dominate the decay rate of the energy towards null infinity;
the exponential blow-up rate e−κ−v , however, does. These are the heuristic reasons for only formulating
Conjecture 6.9 for the subextremal case. We conclude with a couple of remarks: Firstly, one should
actually compare the decay rate of the ingoing energy not along an outgoing null ray to I+, but along the
event horizon — or even better, along a spacelike slice in the interior of the black hole approaching i+

in the topology of the Penrose diagram. Secondly, we would like to repeat and stress the point made,
namely that the heuristics given in the very beginning of this section, which solely ensure the presence
of a blue-shift, are not sufficient to cause a C1 instability of the wave at the Cauchy horizon. For this
to happen, the local geometry of the Cauchy horizon is crucial. Finally, let us conjecture, based on the
fact that in the extremal case one gains powers of v in the blow-up rate at the Cauchy horizon when
considering higher-order energies, that there is some natural number k > 1 such that waves with initial
data as in Conjecture 6.9 exhibit a Ck instability at the Cauchy horizon.

We conclude this section by recalling that the study of the wave equation on black hole backgrounds
serves as a source of intuition for the behaviour of gravitational perturbations of these spacetimes. Thus,
the following expected picture emerges: Consider a generic dynamical spacetime which at late times
approaches a subextremal Reissner–Nordström black hole. Then the Cauchy horizon is replaced by a
weak null curvature singularity (for this notion see [Dafermos 2005]).

If we restrict consideration to the class of dynamical spacetimes which at late times approach an
extremal Reissner–Nordström black hole, then the generic spacetime within this class has a more regular
Cauchy horizon, which in particular is not seen as a singularity from the point of view of the low regularity
well-posedness theory for the Einstein equations; see the resolution [Klainerman et al. 2013] of the
L2-curvature conjecture. This picture is also supported by the recent numerical work [Murata et al. 2013].

6F. Trapping at the horizon of an extremal Reissner–Nordström black hole. We again consider the
extremal Reissner–Nordström black hole. With v defined as in Section 6D, we introduce the function
t∗ := v− r . In the coordinates (t∗, r, θ, ϕ) the metric takes the form

g =−D(dt∗)2+ (1− D)(dt∗⊗ dr + dr ⊗ dt∗)+ (2− D) dr2
+ r2 dθ2

+ r2 sin2 θ dϕ2.

We see that the foliation of the exterior given by 6τ = {t∗ = τ } is a foliation by spacelike slices, which is
invariant under the flow of the stationary Killing vector field ∂t∗ and is regular at the event horizon H+ in
the sense that it extends smoothly as a spacelike foliation across the event horizon; see Figure 8.

An appropriate choice of timelike vector field for measuring the energy of waves in the black hole
exterior is thus given by N = −(dt∗)], since it is also invariant under the flow of the Killing vector
field ∂t∗ and extends smoothly as a timelike vector field across the event horizon. Hence, the corresponding
N -energy is nondegenerate at the event horizon. These choices of foliation and timelike vector field N
correspond qualitatively to the choices made in the Schwarzschild spacetime in Sections 6A and 6B.
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Figure 8. The extremal Reissner–Nordström black hole.

Aretakis [2011a; 2011b] investigated the behaviour of waves on this spacetime and obtained stability
(i.e., boundedness and decay results) as well as instability results (blow-up of certain higher-order
derivatives along the horizon); for further developments see also [Lucietti and Reall 2012]. The instability
results originate from a conservation law on the extremal horizon once decay results for the wave are
established. In order to obtain these stability results, Aretakis followed the new method introduced by
Dafermos and Rodnianski [2010b].37 The first important step is to prove an ILED statement. As in the
Schwarzschild spacetime we have trapping at the photon sphere (here at {r = 2m}), and as shown before,
an ILED statement has to degenerate there in order to hold. The fundamentally new difficulty in the
extremal setting arises from the degeneration of the red-shift effect at the horizon H+, which was needed
for proving an ILED statement that holds up to the horizon (see for example [Dafermos and Rodnianski
2013]). And indeed, the energy of the generators of the horizon is no longer decaying: In (t∗, r, θ, ϕ)
coordinates, the affinely parametrised generators are given by

γ (s)= (s,m, θ0, ϕ0),

where s ∈ (−∞,∞) and again θ0, ϕ0 are fixed. Hence, we see that the N -energy of the generators of the
horizon is constant: −(N , γ̇ )= 1.

If we consider a globally hyperbolic subset of the depicted part of extremal Reissner–Nordström
that contains the horizon H+, for example by extending 60 a bit through the event horizon and then
considering its domain of dependence, we can directly infer from Theorems 5.5 and 5.7, by applying
them to the null geodesic γ from above, that every (I)LED statement which concerns a neighbourhood
of the horizon necessarily has to lose differentiability. However, we can also infer the same result for
the wave equation on the Lorentzian manifold D(60), where “a neighbourhood of the horizon” is “a
neighbourhood of the horizon in the previous, bigger spacetime, intersected with D(60)”: Analogous
to the proof of Proposition 6.3, we consider a sequence of radially outgoing null geodesics in D(60)

whose initial data on 60 converges to the data of γ from above. For every “neighbourhood of the
horizon”, every τ0 > 0 and every (small) µ > 0, there is then an element γ0 of the sequence such that

37Though in addition he had to work with a degenerate energy, which makes things more complicated.
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−(N , γ̇0)|Im(γ0)∩6τ ∈ (1−µ, 1+µ) for all 0≤ τ ≤ τ0. This follows again from the smooth dependence
of geodesics on their initial data. We now apply Theorem 5.1 to this sequence of null geodesics to infer
that, for every “neighbourhood of the horizon” and for every τ0 > 0, we can construct a solution to the
wave equation whose energy in this neighbourhood is, say, bigger than 1

2 for all times τ with 0≤ τ ≤ τ0.
This proves again that there is no nondegenerate (I)LED statement concerning “a neighbourhood of the
horizon” in D(60); the trapping at the event horizon obstructs local energy decay — which is in stark
contrast to subextremal black holes.

One should ask now whether an ILED statement with loss of derivative can actually hold. To answer
this question, at least partially, it is helpful to decompose the angular part of the wave into spherical
harmonics. Aretakis [2011a] proved indeed an (I)LED statement with loss of one derivative for waves
that are supported on the angular frequencies l ≥ 1. By constructing a localised solution with vanishing
spherical mean we can show that this result is optimal in the sense that some loss of derivative is again
necessary. This can be done for instance by considering the superposition of two Gaussian beams that
follow the generators γ1(s)=

(
s,m, 1

2π,
1
2π
)

and γ2(s)=
(
s,m, 1

2π,
3
2π
)
, where the initial value of beam

one is exactly the negative of the initial value of beam two if translated in the ϕ variable by π .38 The
question of whether one can prove an ILED statement with loss of derivative in the case l = 0 is still open,
though it is expected that the answer is negative. In order to obtain stability results for waves supported
on all angular frequencies, Aretakis had to use the degenerate energy (of course these results are weaker
than results one would obtain if an ILED statement for the case l = 0 actually held).

7. Applications to Kerr black holes

The Kerr family is a 2-parameter family of solutions to the vacuum Einstein equations. Let us fix the
manifold M := R× (m+

√
m2− a2,∞)×S2, where m and a are real parameters that will model the

mass and the angular momentum per unit mass of the black hole, respectively, and which are restricted
to the range 0≤ a ≤ m, 0 6= m. Let (t, r, θ, ϕ) denote the standard coordinates on the manifold M and
define functions

ρ2
:= r2

+ a2 cos2 θ, gt t := −1+
2mr
ρ2 ,

1 := r2
− 2mr + a2, gtϕ := −

2mra sin2 θ

ρ2 ,

gϕϕ :=
(

r2
+ a2
+

2mra2 sin2 θ

ρ2

)
sin2 θ.

38Let us mention here that in this particular situation the approximation using geometric optics is easier. Indeed, one can
easily write down a solution of the eikonal equation such that the characteristics are the outgoing null geodesics. First one has to
prove then the analogue of Theorem 4.1, which is easier since the approximate conservation law we used in the case of Gaussian
beams is replaced by an exact conservation law for the geometric optics approximation; see footnote 23 on page 1396. But
then we can easily contradict the validity of (I)LED statements for any angular frequency: working in (t∗, r, θ, ϕ) coordinates,
we choose the initial value of the function a in the transport equation (i.e., the second equation in (1.6)) to have the angular
dependence of a certain spherical harmonic and the radial dependence corresponds to a smooth cut-off, i.e., a initially is only
nonvanishing for r ∈ [m,m+ ε).
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The metric on M is then defined by

g = gt t dt2
− gtϕ(dϕ⊗ dt + dt ⊗ dϕ)+ gϕϕ dϕ2

+
ρ2

1
dr2
+ ρ2 dθ2.

The roots of 1(r) are denoted by r− and r+, where r± =m±
√

m2− a2. As for the Reissner–Nordström
family, one can (and should) extend these spacetimes in order to understand their physical interpretation as
a black hole. For details, we refer the reader again to [Hawking and Ellis 1973]. Fixing the θ coordinate to
be 1

2π and modding out the S1 corresponding to the ϕ coordinate, we again obtain pictorial representations
of these spacetimes. For the subextremal case 0< a < m, the diagram is the same as the one depicted in
Section 6C, while, in the extremal case a = m, one obtains the same diagram as in Section 6F.

7A. Trapping in (sub)extremal Kerr. As in the case of the Schwarzschild spacetime there are trapped
null geodesics in the domain of outer communications of the Kerr spacetime whose energy stays bounded
away from zero and infinity if the energy-measuring vector field N is sensibly chosen. In the case of a> 0,
however, the set that accommodates trapped null geodesics is the closure of an open set in spacetime,
which is in contrast to the 3-dimensional photonsphere in Schwarzschild and Reissner–Nordström. Before
we explain in some more detail how to find the trapped geodesics, we set up a suitable choice of foliation
and energy-measuring vector field:

For (sub)extremal Kerr we foliate the domain of outer communication (which is covered by the above
(t, r, θ, ϕ) coordinates) in the same way as we did before for the Schwarzschild and the extremal Reissner–
Nordström spacetimes, namely by first introducing an ingoing “null” coordinate v and then subtracting
off r to get a good time coordinate t∗. Slightly more general than is needed at this point, let us define

v+ := t + r∗ and ϕ+ := ϕ+ r̄ ,

where r∗ is defined up to a constant by dr∗/dr = (r2
+ a2)/1 and r̄ is defined up to a constant by

dr̄/dr = a/1. The set of functions (v+, r, θ, ϕ+) form ingoing “null” coordinates (v+ is here the “null”
coordinate, however, it does not satisfy the eikonal equation dφ · dφ = 0), they cover the regions I, II
and III in the spacetime diagram for subextremal Kerr,39 and the metric takes the form

g = gt t dv2
+
+ gtϕ(dv+⊗ dϕ++ dϕ+⊗ dv+)+ (dv+⊗ dr + dr ⊗ dv+)

− a sin2 θ(dr ⊗ dϕ++ dϕ+⊗ dr)+ gϕϕ dϕ2
+
+ ρ2 dθ2.

Finally, we define t∗ := v+− r . That this is indeed a good time coordinate is easily seen from writing the
metric in (t∗, r, θ, ϕ+) coordinates and restricting it to {t∗ = const} slices: One obtains

ḡ = (gt t + 2) dr2
+ (gtϕ − a sin2 θ)(dϕ+⊗ dr + dr ⊗ dϕ+)+ ρ2 dθ2

+ gϕϕ dϕ2
+
,

and the (θ, θ)minor of this matrix is found to be 2mr sin2 θ+(r2
+a2) sin2 θ−a2 sin4 θ , which is positive

away from the well-understood coordinate singularity θ =
{
0, 1

2π
}
. Hence, the slices 6τ := {t∗ = τ } are

spacelike and it is easily seen that they asymptote to {t = const} slices near spacelike infinity and end

39In the extremal case they cover all of the spacetime diagram depicted in Figure 8 in Section 6F.
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on the future event horizon. A suitable timelike vector field N for measuring the energy is again given
by N := −(dt∗)].

To be more precise about what we mean by a null geodesic being trapped, let us call a future, complete,
affinely parametrised null geodesic γ : [0,∞)→ M (which is in particular contained in the black hole
exterior M) trapped if, and only if, it does not escape to infinity, i.e., for s → ∞ we do not have
(r ◦ γ )(s)→∞. In the following we give a brief sketch of how one finds the trapped null geodesics. For
a detailed discussion of the geodesic flow we refer the reader to [O’Neill 1995] or [Chandrasekhar 1998].

The starting point for the investigation of the behaviour of the geodesics in the Kerr spacetime
is the observation that the geodesic flow separates. An affinely parametrised null geodesic γ (s) =
(t (s), r(s), θ(s), ϕ(s)) satisfies the following first-order equations:

ρ2 ṫ = aD+ (r2
+ a2)

P

1
, (7.1)

ρ4(ṙ)2 = R(r) := −K1+P2, (7.2)

ρ4(θ̇)2 =2(θ) := K−
D2

sin2 θ
, (7.3)

ρ2ϕ̇ =
D

sin2 θ
+

aP

1
,

where K is the Carter constant of the geodesic, P(r)= (r2
+a2)E− La and D(θ)= L− Ea sin2 θ . Here,

E = −g(∂t , γ̇ ) is the energy of the geodesic40 and L = g(∂ϕ, γ̇ ) is the angular momentum. Note that
since the left-hand side of (7.3) is positive, it follows that the Carter constant K is nonnegative.

In order to find all trapped null geodesics, the investigation naturally starts with (7.2). The crucial
observation is that a simple zero of R(r) corresponds to a turning point (in the r-coordinate) of the
geodesic, while a double zero corresponds to an orbit of constant r (or to asymptotic approach).41 It
follows that a necessary condition for a null geodesic being trapped is that the constants of motion K, L ,
and E can be chosen in such a way that either R(r) has a double zero in (r+,∞) or R(r) has two simple
zeros in (r+,∞) and is nonnegative in between. In the following we show that the latter case cannot
occur.

We distinguish the two cases E = 0 and E 6= 0. In the first case, R(r) is a polynomial of order two
with R(r)→−∞ for r→∞ (recall that K≥ 0). Moreover, R(r) is nonnegative in [r−, r+]. This shows
that R(r) can have at most one real root in (r+,∞).

In the case E 6= 0, R(r) is a polynomial of order four. Over the complex numbers, we can write R(r)
as

R(r)= E2
· (r − λ1)(r − λ2)(r − λ3)(r − λ4)= E2

· r4
− E2(λ1+ λ2+ λ3+ λ4) · r3

+ · · · ,

where λi ∈ C, i ∈ {1, 2, 3, 4}, are the complex roots of R(r). Since R(r) does not have a term of order
three, we see that the sum of the complex roots of R(r) has to yield zero. This directly excludes R(r)

40Note that ∂t is not timelike everywhere! However, one still calls this quantity the “energy” of the null geodesic.
41See Proposition 4.3.7 and Corollary 4.3.8 in Chapter 4 of [O’Neill 1995]
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having four positive zeros. We also note that R(r) tends to∞ for r→∞; hence, for R(r) to have two
simple zeros in (r+,∞) and to be nonnegative in between, we see that R(r) has to have at least three
zeros in (r+,∞). But since K ≥ 0, we see that R(r) is nonnegative in [r−, r+]; i.e., if R(r) has three
zeros in (r+,∞), then it needs to have a fourth positive zero, which we have already ruled out. This
shows that trapping can only occur due to a double zero of R(r).

We now sketch how one finds the values of r that accommodate trapped null geodesics (along with
the constants of motion K, L and E). A detailed discussion is found in Section 63(c) of [Chandrasekhar
1998].

Without loss of generality we can assume that E = 1. We then need to solve

R(r)=−K(r2
− 2mr + a2)+ (r2

+ a2
− La)2 = 0,

d
dr

R(r)= 2K(m− r)+ 4r(r2
+ a2
− La)= 0.

Eliminating K, we obtain the two solutions

L1(r)=
r2
+ a2

a
and L2(r)=

r3
+ ra2

− 3mr2
+ma2

a(m− r)
.

In the first case we obtain K1(r)= 0, which characterises the principal null geodesics (see Corollary 4.2.8
in [O’Neill 1995]) and is thus not compatible with orbits of constant r . We are thus left with the second
solution L2(r), which implies K2(r)= (4r2/(m−r)2)1. For the further analysis it is helpful to introduce
the quantity Q=K− (L−a)2, since it simplifies the analysis of the θ -motion of the geodesic. We obtain

Q2(r)=
r3

a2(m− r)2
(4a2m− r(r − 3m)2).

It can now be shown (see Section 63(c) of [Chandrasekhar 1998]) that if we evaluate the right-hand side
of (7.3) at L2(r) and K2(r), where r is such that Q2(r) < 0, then we see that it is negative for all values
of θ . Hence, these values of r do not accommodate trapped null geodesics. However, one can show
that the values of r where Q2(r)≥ 0 indeed allow the presence of trapped null geodesics. This region is
bounded by the roots rδ and rρ of Q2(r), which are bigger than r+.

We now show that the N -energy of a trapped null geodesic γr0 , trapped on the hypersurface {r = r0}

with r0 ∈ [rδ, rρ], is bounded away from zero and infinity. One way to do this is to compute the N -energy
directly:

−(N , γ̇ )= (dt + dr∗− dr)(γ̇ )= ṫ =
1
ρ2

[
aD(θ)+ (r2

0 + a2)
P(r0)

1(r0)

]
where we have used (7.1). A further analysis of the behaviour of the θ component of γr0 yields that its
image is a closed subset of [0, π]; thus −(N , γ̇ )(θ) takes on its minimum and maximum. Since −(N , γ̇ )
is always strictly positive, this immediately yields that it is bounded away from zero and infinity.

Invoking Theorem 5.5 we thus obtain:

Theorem 7.4 (trapping in (sub)extremal Kerr). Let (M, g) be the domain of outer communications of a
(sub)extremal Kerr spacetime, foliated by the level sets of a time function t∗ as above. Moreover, let N
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be the timelike vector field from above and T an open set with the property that for all τ ≥ 0 we have
T∩6τ ∩ [rδ, rρ] 6=∅. Then there is no function P : [0,∞)→ (0,∞) with P(τ )→ 0 for τ →∞ such
that

E N
τ,T∩6τ

(u)≤ P(τ )E N
0 (u)

holds for all solutions u of the wave equation.

Note that the same remark as made in footnote 27 on page 1400 applies: the theorem remains true if
we choose a different timelike vector field N which commutes with the Killing vector field ∂t and also if
we choose a different foliation by timelike slices, i.e., a different time function.42

Another way to show that the energy of the trapped null geodesic γr0 is bounded away from zero and
infinity is to choose a different suitable vector field N . Recall that the vector fields ∂t and ∂ϕ are Killing,
and that at each point in the domain of outer communications they also span a timelike direction. We
can thus find a timelike vector field Ñ that commutes with ∂t and such that in a small r -neighbourhood
of r0 the vector field Ñ is given by ∂t + k∂ϕ with k ∈ R a constant. Thus, Ñ is Killing in this small
r -neighbourhood and, hence, the Ñ -energy of γr0 is constant.

7B. Blue-shift near the Cauchy horizon of (sub)extremal Kerr. In this section we show that the results
of Section 6C and 6D also hold for (sub)extremal Kerr. The proof is completely analogous: In the above
defined (v+, r, θ, ϕ+) coordinates a family of ingoing null geodesics with uniformly bounded energy
on 60 near spacelike infinity ι0 is given by

γv0
+
(s)= (v0

+
,−s, θ0, ϕ0),

where s ∈ (−∞, 0). The same pictures as in Sections 6C and 6D apply, along with the same spacelike
hypersurfaces60 and61. In order to obtain regular coordinates in a neighbourhood of the Cauchy horizon,
we define, starting with (t, r, θ, ϕ) coordinates in region II, outgoing “null” coordinates (v−, r, θ, ϕ−) by
v− = t − r∗ and ϕ− = ϕ− r̄ . These coordinates cover the regions II and IV in the subextremal case and
regions II and III in the extremal case. In these coordinates, the tangent vector of the null geodesic γv0

+

takes the form

γ̇v0
+
=−

∂

∂r

∣∣∣∣
+

= 2
r2
+ a2

1

∂

∂v−

∣∣∣∣
−

−
∂

∂r

∣∣∣∣
−

+ 2
a
1

∂

∂ϕ−

∣∣∣∣
−

, (7.5)

which blows up at the Cauchy horizon. It is again easy to see that the inner product with a timelike vector
field, which extends smoothly to a timelike vector field over the Cauchy horizon, necessarily blows up
along 61 for v0

+
→∞. Thus, we obtain, after invoking Theorem 5.1:

Theorem 7.6 (blue-shift near the Cauchy horizon in subextremal Kerr). Let60 and61 be spacelike slices
in the subextremal Kerr spacetime as indicated in Figure 5 in Section 6C. Then there exists a sequence
{ui }i∈N of solutions to the wave equation with initial energy E

n60
0 (ui )= 1 on 60 such that the n61-energy

on 61 goes to infinity, i.e., E
n61
1 (ui )→∞ for i→∞.

In particular, there is no energy boundedness statement of the form (6.8).

42In the latter case one may have to alter the decay statement for the function P , i.e., replace it with P(τ )→ 0 for τ → τ∗.
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As before, let us state the following:

Conjecture 7.7. For generic compactly supported smooth initial data on 60, the n61-energy along 61 of
the corresponding solution to the wave equation is infinite.

Let us conclude this section with a few remarks:

(i) Obviously, an analogous statement to Theorem 7.6 is true for extremal Kerr, however, one has to
introduce again a suitable globally hyperbolic subset in order to be able to apply Theorem 5.1.

(ii) The discussion in Section 6E carries over to the Kerr case. In particular let us stress that Conjecture 7.7
only concerns subextremal Kerr black holes — the same statement for extremal Kerr black holes is
expected to be false. However, as for Reissner–Nordström black holes, we conjecture a Ck instability
(for some finite k) at the Cauchy horizon of extremal Kerr black holes.

(iii) We leave it as an exercise for the reader to convince him- or herself that analogous versions of
Theorems 7.4 and 7.6 also hold true for the Kerr–Newman family.

Appendix: A breakdown criterion for solutions of the eikonal equation

We give a breakdown criterion for solutions of the eikonal equation for which a given null geodesic is a
characteristic.

Theorem A.1. Let (M, g) be a Lorentzian manifold and γ : [0, a)→ M an affinely parametrised null
geodesic, a ∈ (0,∞]. If γ has conjugate points then there exists no solution φ : U → R of the eikonal
equation dφ · dφ = 0 with gradφ

∣∣
Im γ
= γ̇ , where U is a neighbourhood of Im γ .

The theorem is motivated by the construction of localised solutions to the wave equation using the
naive geometric optics approximation, where we need to find a solution of the eikonal equation for
which a given null geodesic is a characteristic; see (1.6). It is well known that solutions of the eikonal
equation break down whenever characteristics cross. However, by choosing the initial data (and thus the
neighbouring characteristics) suitably one can try to avoid crossing characteristics. This is for example
possible in the Minkowski spacetime. The theorem gives a sufficient condition for when no such choice
is possible.

Our proof is a minor adaptation of Riemannian methods to the Lorentzian null case; see, for example,
[Eschenburg and O’Sullivan 1976], in particular their Proposition 3.

First we need some groundwork. We pull back the tangent bundle TM via γ and denote the subbundle
of vectors that are orthogonal to γ̇ by N (γ ). The vectors that are proportional to γ̇ give rise to a
subbundle of N (γ ), which we quotient out to obtain the quotient bundle N (γ ). It is easy to see that
the metric g induces a positive-definite metric ḡ on N (γ ) and that the bundle map Rγ : N (γ )→ N (γ ),
where Rγ (X)= R(X, γ̇ )γ̇ and R is the Riemann curvature tensor, induces a bundle map Rγ on N (γ ),
and finally that the Levi-Civita connection ∇ induces a connection ∇ for N (γ ).

Definition A.2. J ∈ End(N (γ )) is a Jacobi tensor class if and only if D2
t J + Rγ J = 0.43

43Here and in what follows we write Dt for ∇∂t .
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A Jacobi tensor class should be thought of as a variation field of γ that arises from a many-parameter
variation by geodesics. It generalises the notion of a Jacobi field (class), an infinitesimal 1-parameter
variation. Indeed, a solution φ of the eikonal equation for which γ is a characteristic gives rise to a Jacobi
tensor class J :

We denote the flow of gradφ by 9t and define J ∈ End(N (γ )) by

Jt(X t) := (9t)∗(X0),

where we extend X t ∈ N (γ )t by parallel propagation to a vector field X along γ whose value at 0 is X0.
Note that J is well defined, that is, we have Jt(X t) ∈ N (γ ): Given X0 ∈ Tγ (0)M , extend it to a vector
field X̃ on M with [X̃ , gradφ] = 0, i.e., along γ we have X̃

∣∣
γ (t) = (9t)∗(X0). Then

0=∇X̃ (gradφ, gradφ)= 2(∇X̃ gradφ, gradφ)= 2∇gradφ(X̃ , gradφ),

from which it follows that X̃
∣∣
γ (t) is orthogonal to gradφ

∣∣
γ (t). Moreover, J is a Jacobi tensor:44 Let X be

a parallel section along γ and X̃ an extension of X0 as above. Then

(Dt J )(X)= Dt(J X)= Dt(9t∗X0)=∇gradφ X̃ =∇X̃ gradφ =∇J X gradφ.

Thus,
Dt J = (∇ gradφ) ◦ J. (A.3)

Differentiating once more gives

(D2
t J )(X)=∇gradφ(∇J X gradφ)= R(gradφ, J X) gradφ =−Rγ ◦ J (X).

Using that (9t)∗(gradφ|γ (0)) = gradφ|γ (t), it is now clear that J descends to a Jacobi tensor class J .
Moreover, J is nonsingular, i.e., J−1 exists. Since the metric ḡ is nondegenerate, we can form adjoints of
sections of End(N (γ )), which we will denote by ∗. Note also that (Dt J )J−1 is self-adjoint. This follows
from (A.3) and the fact that ∇∇φ is symmetric. We now prove the theorem.

Proof of Theorem A.1. Assume there exists such a solution φ of the eikonal equation. Say the points
γ (t0) and γ (t1) are conjugate, 0≤ t0 < t1 < a, and J is the Jacobi tensor class induced by φ, as discussed
above. Using the identification of End(N (γ )t) with End(N (γ )t0) via parallel translation, we write

K (t) := J (t)C
∫ t

t0
(J ∗ J )−1(τ ) dτ,

where C = J−1(t0)J ∗(t0)J (t0). A straightforward computation shows that K is a Jacobi tensor class with
K (t0)= 0 and Dt K (t0)= id. Moreover, K (t) is nonsingular for t > t0.

On the other hand, there exists a Jacobi field Y with Y (t0) = 0 and Y (t1) = 0. This implies that Y
is a section of N (γ ). The Jacobi field Y induces a nontrivial Jacobi field class Y that vanishes at t0
and t1. However, a Jacobi field class is uniquely determined by its value and velocity at a point. Parallelly
propagating Dt Y

∣∣
t0

gives rise to a vector field class Z . Then K Z is a Jacobi field class that has the same
value and velocity as Y at t= t0, thus K Z=Y . This, however, contradicts K being nonsingular for t> t0. �

44This notion is analogous to Definition A.2, without taking the quotient.
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