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We establish an algebraic error estimate for the stochastic homogenization of fully nonlinear, uniformly
parabolic equations in stationary ergodic spatiotemporal media. The approach is similar to that of Arm-
strong and Smart in the study of quantitative stochastic homogenization of uniformly elliptic equations.

1. Introduction 1497
2. A subadditive quantity suitable for parabolic equations 1502
3. Strict convexity of quasimaximizers 1509
4. The construction of F and the construction of approximate correctors 1513
5. A rate of decay on the second moments 1516
6. The proof of Theorem 1.1 1526
Acknowledgements 1537
References 1537

1. Introduction

We study quantitative stochastic homogenization of equations of the form{
uεt + F(D2uε, x/ε, t/ε2, ω)= 0 in UT ,

uε = g on ∂pUT ,
(1-1)

where F is a random uniformly elliptic operator, determined by an element ω of some probability space,
UT :=U × (0, T ]( Rd+1 is a compact domain, and ∂pUT is the parabolic boundary. Lin [2015] showed
that, under suitable hypotheses on the environment (namely stationarity and ergodicity of the operator in
space and time), uε( · , · , ω) converges almost surely to a limiting function u which solves{

ut + F(D2u)= 0 in UT ,

u = g on ∂pUT ,
(1-2)

for a uniformly elliptic limiting operator F which is independent of ω. Furthermore, a rate of convergence
was established under additional quantitative ergodic assumptions. If the environment is strongly mixing
with a prescribed logarithmic rate, then the convergence occurs in probability with a logarithmic rate, i.e.,

P
[
sup
UT

|uε( · , · , ω)− u( · , · )| ≥ f (ε)
]
≤ f (ε) (1-3)
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with f (ε)∼ |log ε|−1. In this article, we show that, under the assumption of finite range of dependence,
the homogenization occurs in probability with an algebraic rate, i.e., f (ε)∼ εβ .

Background and discussion. For nondivergence form equations in the random setting, the pioneering
works establishing the qualitative theory of homogenization (the convergence of uε→ u) include (but are
not limited to) the papers of Papanicolaou and Varadhan [1982] and Yurinskiı̆ [1982] for linear, nondiver-
gence form, uniformly elliptic equations, and Caffarelli, Souganidis, and Wang [Caffarelli et al. 2005] for
fully nonlinear, uniformly elliptic equations. The study of quantitative stochastic homogenization seeks
to establish error estimates for this convergence. For linear, uniformly elliptic equations in nondivergence
form, the first results were obtained by Yurinskiı̆ [1988; 1991]. Assuming that the environment satisfies
an algebraic rate of decorrelation, his works present an algebraic rate of convergence for stochastic
homogenization in dimensions d ≥ 5. In dimensions d = 3, 4, the same result holds under the additional
assumption of small ellipticity contrast, that is, the ratio of ellipticities is close to 1. In dimension d = 2,
Yurinskiı̆’s results yield a logarithmic rate of convergence.

For fully nonlinear equations, the first quantitative stochastic homogenization result appears in [Caf-
farelli and Souganidis 2010] for elliptic equations, and the parabolic case with spatiotemporal media was
considered in [Lin 2015]. Both of these works obtain logarithmic convergence rates from logarithmic
mixing conditions. The approach of both papers was to adapt the obstacle problem method of [Caffarelli
et al. 2005] to construct approximate correctors, which play the role of correctors in the random setting.
The logarithmic rate appears to be the optimal rate attainable with this approach. This left open the
question whether an algebraic rate similar to the results of Yurinskiı̆ was attainable in the more general
setting of fully nonlinear equations, and for problems in lower dimensions.

In the elliptic setting, this was addressed in [Armstrong and Smart 2014b]. They prove algebraic
error estimates in all dimensions for the stochastic homogenization of fully nonlinear, uniformly elliptic
equations. The main insight of their work was the introduction of a new subadditive quantity that (1)
controls the solutions of the equation and (2) can be studied by adapting the regularity theory of Monge–
Ampère equations. Their method does not see the presence of correctors and instead controls solutions
indirectly via geometric quantities.

The purpose of this article is to adapt the elliptic strategy to the parabolic spatiotemporal setting, which
turns out to be subtle. The approach of [Armstrong and Smart 2014b] was to view the convex envelope
of a supersolution as an approximate solution of the Monge–Ampère equation

det D2w = 1 (1-4)

for w convex and to then use ideas from the regularity theory of (1-4) (namely John’s lemma) to control
the sublevel sets of w. In the parabolic setting, we will show that the monotone envelope of a supersolution
of (1-1) is an approximate solution of the analogous Monge–Ampère equation

−wt det D2w = 1 (1-5)

forw parabolically convex (convex in space and nonincreasing in time). The equation (1-5) was introduced
by Krylov [1976], and then it was pointed out by Tso [1985] that this was the most appropriate parabolic
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analogue of (1-4). Regularity properties of (1-5) have been studied by Gutiérrez and Huang [1998; 2001]
and other parabolic Monge–Ampère equations have been studied by Daskalopoulos and Savin [2012]. In
spite of this work, the equation (1-5) is still not as well understood as (1-4). In particular, there is no
analogue of John’s lemma for sublevel sets of parabolically convex functions. This forced us to develop
an alternative approach (which can also be used in the elliptic setting), which replaces John’s lemma with
a compactness argument.

Assumptions, and statement of the main result. We begin by stating the general assumptions on (1-1)
and the precise statement of the main result. We work in the stationary ergodic, spatiotemporal setting.
We assume there exists an underlying probability space (�,F,P) such that

� := {F : Sd
×Rd+1

→ R satisfies (F1)–(F4)},

where (F1)–(F4) will be specified below. In particular, we have F(X, y, s, ω) = ω(X, y, s). F is the
Borel σ -algebra on �, and we assume that � is equipped with a set of measurable, measure-preserving
transformations τ(y′,s′) :�→� for each (y′, s ′) ∈ Rd+1. We also assume that ∂pUT satisfies a uniform
exterior cone condition, which allows us to construct global barriers (see [Crandall et al. 1999] for the
precise assumption). Our hypotheses can be summarized as follows:

(F1) Finite range of dependence: For A ⊆ Rd+1, denote

B(A) := σ {F( · , y, s, ω) : (y, s) ∈ A},

the σ -algebra generated by the operators F defined on A. For (x1, t1), (x2, t2) ∈ Rd+1, let

d[(x1, t1), (x2, t2)] := (|x1− x2|
2
+ |t1− t2|)1/2.

For A, B ⊆ Rd+1, let

d[A, B] :=min
{
d[(x, t), (y, s)] : (x, t) ∈ A, (y, s) ∈ B

}
. (1-6)

The finite range of dependence assumption is:

For all random variables
{

X :B(A)→ R,

Y :B(B)→ R,
with d[A, B] ≥ 1, X, Y are P-independent. (1-7)

(F2) Stationarity: For every (M, ω) ∈ Sd
×�, where Sd denotes the space of d × d symmetric matrices

with real entries, and for all (y′, s ′) ∈ Rd+1,

F(M, y+ y′, s+ s ′, ω)= F(M, y, s, τ(y′,s′)ω).

In fact, we only use this hypothesis for (y′, s ′) ∈ Zd+1.
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(F3) Uniform ellipticity: For a fixed choice of λ, 3 ∈ R with 0 < λ ≤ 3, we define Pucci’s extremal
operators,

M+(M)= sup
λI≤A≤3I

{−tr(AM)} = −λ
∑
ei>0

ei −3
∑
ei<0

ei ,

M−(M)= inf
λI≤A≤3I

{−tr(AM)} = −λ
∑
ei<0

ei −3
∑
ei>0

ei .

We assume that F( · , y, s, ω) is uniformly elliptic for each ω ∈ �, i.e., for all M , N ∈ Sd and
(y, s, ω) ∈ Rd+1

×�,

M−(M − N )≤ F(M, y, s, ω)− F(N , y, s, ω)≤M+(M − N ).

(F4) Boundedness and regularity of F : For every R > 0, ω ∈�, and M ∈ Sd with |M | ≤ R,

{F(M, · , · , ω)} is uniformly bounded and uniformly equicontinuous on Rd+1,

and there exists K0 such that

ess sup
ω∈�

sup
(y,s)∈Rd+1

|F(0, y, s, ω)|< K0.

We also require that there exists a modulus of continuity ρ[ · ] and a constant σ > 1
2 such that, for all

(M, y, s, ω) ∈ Sd
×Rd+1

×�,

|F(M, y1, s1, ω)− F(M, y2, s2, ω)| ≤ ρ
[
(1+ |M |)(|y1− y2| + |s1− s2|)

σ
]
,

where | · | denotes the standard Euclidean norm on Rd and R respectively. By applying (F4), we have
that

ess sup
ω∈�

sup
(y,s)∈Rd+1

|F(M, y, s, ω)| ≤ C +3|M | ≤ C(1+ |M |). (1-8)

Equipped with these assumptions, we now state the main result:

Theorem 1.1. Assume (F1)–(F4), and fix a domain UT and constant M0. There exists C=C(λ,3, d,M0)

and a random variable X :�→R with E[exp(X(ω))] ≤C such that, if uε solves (1-1), u solves (1-2), and

1+ K0+‖g‖C0,1(∂pUT ) ≤ M0,

then, for any p < d + 2, there exists a β = β(λ,3, d, p) > 0 such that

sup
UT

|u(x, t)− uε(x, t, ω)| ≤ C[1+ ε pX(ω)]εβ . (1-9)

The above theorem implies

P
[
sup
UT

|u(x, t)− uε(x, t, ω)|> Cεβ
]
≤ C exp(−ε−p) (1-10)

for β > 0 independent of the boundary data. It has recently been shown in the elliptic setting [Armstrong
and Smart 2014a; Armstrong and Mourrat 2015; Gloria et al. 2014; Fischer and Otto 2015] that quantitative
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estimates similar to (1-9) lead to a higher regularity theory at large scales. Although we do not discuss
higher regularity results in this article, we are motivated by the recent progress in the elliptic setting to
state our results in this form.

Notation and conventions. We mention some general notation and conventions used throughout the paper.
The letters λ, 3, K0, T , UT will be used exclusively to refer to the constants stated in the assumptions. In
the proofs, the letters c, C will constantly be used as a generic constant which depends on these universal
quantities, which may vary line by line, but is precisely specified when needed. We will always denote
Sd as the set of symmetric d × d matrices with real entries and Md as the set of d × d matrices with real
entries. We use the notation | · | to denote a norm on a finite-dimensional Euclidean space (R, Rd , Rd+1 or
Sd ) or the Lebesgue measure on Rd+1 and we reserve ‖ · ‖ to denote a norm on an infinite-dimensional
function space.

We choose to employ the parabolic metric

d[(x1, t1), (x2, t2)] = (|x1− x2|
2
+ |t1− t2|)1/2.

We point out that this equivalent to the metric

d∞[(x1, t1), (x2, t2)] =max{|x1− x2|, |t1− t2|1/2}.

We say that f ∈ C0,α if, for any (x, t), (y, s) ∈ Rd+1,

| f (x, t)− f (y, s)| ≤ ‖ f ‖C0,α d[(x, t), (y, s)]α.

For sets, we use the notation Q⊆Rd+1 to represent an arbitrary space-time domain, i.e., Q=Q′×(t1, t2],
where Q′ ⊆ Rd . We define the parabolic boundary by

∂p Q := (Q′×{t = t1})∪ (∂Q′×[t1, t2)).

We use the convention that Q = Q ∪ ∂p Q, and

Q(t) := {x ∈ Rd
: (x, t) ∈ Q}.

We use the conventions

Br (x, t)= Br (x)×{t = t},

Br (x, t)=
{
(x, t) ∈ Rd+1

: d[(x, t), (x, t))]< r
}
,

Qr (x, t)= Br (x)× (t − r2, t].

In general, Br , B(r), and Qr are used to denote Br (0, 0), Br (0, 0), and Qr (0, 0), respectively. We point
out that Br and Qr are nothing more than the open balls generated by d[ · , · ] and d∞[ · , · ], respectively.

In addition to these sets, we work with a grid of parabolic cubes which partitions Rd+1. The grid boxes
take the form

Gn =
[
−

1
2 3n, 1

2 3n)d
× (0, 32n

].
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For every (x, t) ∈ Rd+1, we identify the cube

Gn(x, t)=
(
3n⌊3−nx + 1

2

⌋
, 32n
b3−2ntc

)
+Gn.

Outline of the method and the paper. In Section 2, we define the appropriate parabolic analogue of the
quantity introduced in [Armstrong and Smart 2014b]. We prove the basic properties of this quantity and
describe how it controls solutions from one side. In Section 3, we show how the quantity controls the
behavior of solutions from the other side, utilizing the connection with the parabolic Monge–Ampère
equation. Here our primary innovation beyond [Armstrong and Smart 2014b] appears.

In Section 4, we construct the effective operator F using the asymptotic properties of our quantity and
we also construct approximate correctors of (1-1). In Section 5, we obtain a rate of decay on the second
moments of this quantity, following closely the analysis of [Armstrong and Smart 2014b]. Finally, in
Section 6, we show how the rate on the second moments yields a rate of decay on |uε − u| in probability.

2. A subadditive quantity suitable for parabolic equations

Defining µ(Q, ω, `, M). We now define the quantity which will be used extensively throughout the rest
of the paper. This quantity is a functional which measures the amount a function u bends in space and
time. We first recall some geometric objects relevant to the study of parabolic equations and we refer the
reader to [Krylov 1976; Wang 1992; Imbert and Silvestre 2012; Gutiérrez and Huang 2001] for general
references. We consider a subset Q ⊆ Rd+1, a fixed environment ω ∈�, ` ∈ R, and M ∈ Sd . We then
consider the set

S(Q, ω, `,M)= {u ∈ C(Q) : ut + F(M + D2u, x, t, ω)≥ ` in Q},

where the inequality is satisfied in the viscosity sense [Crandall et al. 1992], and, similarly,

S∗(Q, ω, `,M)= {u ∈ C(Q) : ut + F(M + D2u, x, t, ω)≤ ` in Q}.

To simplify the notation, we omit parameters when they are assumed to be 0, e.g., S(Q, ω) refers to the
choice `= 0 and M = 0. We say a function u is parabolically convex if u( · , t) is convex for all t and
u is nonincreasing in t . For any function u, we define the monotone envelope to be the supremum of all
parabolically convex functions lying below u. In particular, 0u has the following standard representation
formula, which can be taken as the definition:

0u(x, t) := sup{p · x + h : p · y+ h ≤ u(y, s) for all (y, s) ∈ Q with s ≤ t}.

We point out that 0u depends on the domain Q, however we typically suppress this dependence.
At any point (x0, t0), we compute the parabolic subdifferential,

P((x0, t0); u) :=
{
(p, h)⊆ Rd+1

: min
x∈U,t≤t0

u(x, t)− p · x = u(x0, t0)− p · x0 = h
}
,

which may be empty.
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We then say that, for a domain Q′ ⊆ Q ⊆ Rd+1,

P(Q′; u) :=
⋃

(x0,t0)∈Q′
P((x0, t0); u)

=
{
(p, h) : min

(x,s)∈Q, s≤t0
u(x, s)− p · x = u(x0, t0)− p · x0 = h for some (x0, t0) ∈ Q′

}
.

We now define the quantity

µ(Q, ω, `,M) :=
1
|Q|

sup{|P(Q;0u)| : u ∈ S(Q, ω, `,M)}, (2-1)

where | · | denotes Lebesgue measure on Rd+1.
At this time, we point out some properties of µ(Q, ω), which are critical for the analysis which follows:

(1) If u is constant in time, then Q(t) is constant in time. The projection of P((x0, t); u) into Rd is
precisely the elliptic subdifferential of the convex envelope of u. We denote the elliptic subdifferential
by ∂0u

[t]( · ; · ). This shows that, after an appropriate projection and renormalization, µ as defined in (2-1)
reduces to the quantity defined in [Armstrong and Smart 2014b].

(2) This quantity respects the scaling on domains with parabolic scaling. For each u ∈ S(Gn, ω), let

un(x, t) := 3−2nu(3nx, 32nt) ∈ S(G0, ω).

Under this scaling, if (p, h) ∈ P(Gn; u), then (3−n p, 3−2nh) ∈ P(G0; un). Thus, we have that

|P(Gn; u)| = 3n(d+2)
|P(G0; un)|.

This shows us that, in order to prove statements forµ(Gn, ω), it is enough to prove statements forµ(G0, ω)

and rescale.

(3) If w ∈ C2(Q) is parabolically convex, then P((x0, t0);w) reduces to

P((x, t);w)= (Dw(x, t), w(x, t)− Dw(x, t) · x).

If we interpret P(( · , · );w) as P[w]( · , · ) : Rd+1
→ Rd+1, then by a standard computation,

det DP[w] = −wt det D2w,

where DP[w] = Dt,x P[w]. We point out that the right-hand side is precisely the Monge–Ampère operator
first introduced in [Krylov 1976; Tso 1985]. Therefore, by applying the area formula [Evans and Gariepy
1992],

1
|Q|
|P(Q;w)| =

1
|Q|

∫
Q

det DP[w] dx dt =
1
|Q|

∫
Q
−wt det D2w dx dt.

This shows the formal connection between the quantity |P(Q;0u)|/|Q| and the parabolic Monge–
Ampère equation. We will explore this connection further in Section 3.
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As introduced in [Armstrong and Smart 2014b], we now define µ∗(Gn, ω), which will serve as the
analogous quantity corresponding to subsolutions. We define the involution operator π(ω)= ω∗ by

F(M, x, t, ω∗) := −F(−M, x, t, ω) for (M, x, t, ω) ∈ Sd
×Rd+1

×�.

(Recall we assumed� is the space of operators F .) We point out that π :�→� is a bijection and ω∗∗=ω.
Moreover, for u ∈ C(Q),

ut + F(−M + D2u, x, t, ω∗)≥−` ⇐⇒ v := −u solves vt + F(M + D2v, x, t, ω)≤ `

in the viscosity sense. Therefore, we define

µ∗(Q, ω, `,M) :=
1
|Q|

sup{|P(Q;0u)| : u ∈ S(Q, ω∗,−`,−M)}

= µ(Q, ω∗,−`,−M)

=
1
|Q|

sup{|P(Q;0−u)| : u ∈ S∗(Q, ω, `,M)}.

(2-2)

Since π(ω)= ω∗ is an F-measurable function on �, we define the pushforward

π#P(E) := P[π−1(E)].

This justifies that µ∗(Q, ω) enjoys the analogous properties of µ(Q, ω) for subsolutions. Throughout the
paper, we will focus on showing results for µ(Q, ω); the analogous statements hold for µ∗(Q, ω).

Regularity properties of µ(Q, ω). First, we show that µ(Q, ω) controls the behavior of supersolutions
on the parabolic boundary from one side.

Lemma 2.1. There exists a constant c1 = c1(d) such that, for every ω ∈ �, (x, t) ∈ Rd+1, n ∈ Z, and
u ∈ S(Gn(x, t), ω),

inf
∂pGn(x,t)

u ≤ inf
Gn(x,t)

u+ c132nµ(Gn(x, t), ω)1/(d+1). (2-3)

Proof. Without loss of generality, in light of the scaling of µ( · , ω), it is enough to prove the state-
ment for G0. Moreover, we assume that a := inf∂pG0 u − infG0 u > 0. Let (x0, t0) ∈ G0 be such that
u(x0, t0)= infG0 u. This implies that, for all |p| ≤ a/

√
d and all (y, s) ∈ ∂pG0,

u(x0, t0)− p · x0 = inf
∂pG0

u− a− p · x0 ≤ u(y, s)− p · y+ p · (y− x0)− a

≤ u(y, s)− p · y+ a− a = u(y, s)− p · y,

since |y− x0| ≤
√

d. This implies that the minimum of the map (x, t)→ u(x, t)− p · x occurs in the
interior of G0. Thus, for all |p| ≤ a/

√
d , there exists a choice of h such that (p, h) ∈ P(G0; u).

For each fixed p with |p| ≤ a/
√

d, we examine which values of h are included in P(G0; u). Recall
that

h = h(t0)= min
(x,t)∈G0,t≤t0

u(x, t)− p · x .
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In particular, for each fixed p, the map h( · ) : R→ R is continuous. This implies that (p, h) ∈ P(G0; u)
for all h ∈

[
u(x0, t0)− p · x0, inf∂pG0(u(x, t)− p · x)

]
.

Combining these observations, this yields that{
(p, h) : |p| ≤

1
√

d
a, inf

G0
u− p · x0 ≤ h ≤ inf

∂pG0
u− p · x

}
⊆ P(G0; u). (2-4)

The left side of (2-4) contains a hypercone in Rd+1 with base radius a/
√

d and height a.
Therefore, we have that, for c = c(d),

cad+1
≤ |P(G0; u)|.

Since P(G0; u)⊆ P(G0;0
u), this yields

a ≤
(

1
c

) 1
d+1

(
|P(G0;0

u)|

|G0|

) 1
d+1
≤ c1µ(G0, ω)

1/(d+1)

with c1 = c1(d). �

We now recall several results regarding the regularity of 0u . These results and their proofs can be
found in [Krylov 1976; Tso 1985; Wang 1992; Imbert and Silvestre 2012].

It is sometimes useful to use an alternative representation formula for the monotone envelope, in terms
of its contact points:

Lemma 2.2 [Imbert and Silvestre 2012, Lemma 4.5]. 0u satisfies the alternative representation formula

0u(x, t)= inf
{ d+1∑

i=1

λi u(xi , ti ) :
d+1∑
i=1

λi xi = x, ti ∈ [0, t],
d+1∑
i=1

λi = 1, λi ∈ [0, 1]
}
.

In particular, if

0u(x0, t0)=

d+1∑
i=1

λi u(x0
i , t0

i ) with λi > 0,

then:

• 0u(x0
i , t0

i )= u(x0
i , t0

i ) for i = 1, . . . , d + 1.

• 0u is constant with respect to t and linear with respect to x in the convex set co{(x0
i , t0), (x0

i , t0
i )}

d+1
i=1 ,

the convex hull of {(x0
i , t0), (x0

i , t0
i )}

d+1
i=1 .

As a consequence of this representation formula, it is natural to expect that 0u inherits regularity
properties of the function u.

Lemma 2.3 [Imbert and Silvestre 2012, Lemma 4.11]. Suppose that ut+M+(D2u)≥−1. The function 0u

is C1,1 with respect to x and Lipschitz continuous with respect to t . In particular, P[0u
] : Rd+1

→ Rd+1

is Lipschitz continuous with respect to (x, t).

In addition, if u is a supersolution to Pucci’s equation, it turns out that 0u is actually a supersolution to
a linear equation almost everywhere:
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Lemma 2.4 [Imbert and Silvestre 2012, Lemma 4.12]. Suppose that ut +M+(D2u)≥−1. The partial
derivatives (0u

t , D20u) satisfy, almost everywhere,

0u
t − λ10

u
≥−1 in Q ∩ {u = 0u

}.

We next establish a lemma which shows that, in fact, |P(Q; u)|= |P(Q;0u)|. As previously mentioned,
it is immediate that P(Q; u)⊆P(Q;0u) and, thus, |P(Q; u)| ≤ |P(Q;0u)|. In order to conclude, it is
enough to show the following lemma, which is the parabolic analogue of Lemma 2.4 of [Armstrong and
Smart 2014b].

Lemma 2.5. Let Q ⊆ Rd+1 denote an open subset, with u ∈ C(Q), (x0, t0) ∈ Q, and r > 0 such that

Qr (x0, t0)⊆ {(x, t) ∈ Q : 0u(x, t) < u(x, t)} = {0u < u}.

Then |P(Qr (x0, t0);0u)| = 0.

Proof. Without loss of generality, we may assume that r < 1. Moreover, by a covering argument, it is
enough to show that |P(Qr (x0, t0);0u)| = 0 assuming that Q3r (x0, t0)⊆ {0u < u}.

Suppose for the purposes of contradiction that |P(Qr (x0, t0);0u)|> 0. Since the measure is positive,
by the Lebesgue density theorem almost every (p, h) ∈P(Qr (x0, t0);0u) is a density point. We mention
that the density theorem still holds for parabolic cylinders and we refer the reader to the appendix of
[Imbert and Silvestre 2012] for a proof. We next have the following claim:

Claim. There exists (x ′, t ′)∈Qr (x0, t0) and (p, h)∈P((x ′, t ′);0u) such that (p, h) is a Lebesgue density
point of P(Qr (x0, t0);0u) and, also, p ∈ ∂0u

[t ′](x ′) is a Lebesgue density point of ∂0u
[t ′](Br (x0)).

This follows from applying the Lebesgue density theorem to both P(Qr (x0, t0);0u) and ∂0u
[t ′](Br (x0))

for some t ′ with |∂0u
[t ′](Br (x0))|> 0. By adding an affine function in space and translating, we may

assume that x0 = 0, t0 = 0, 0u(x ′, t ′)= 0, and (p′, h′)= (0, 0).
Since 0 is a Lebesgue density point of ∂0u

[t ′](Br ), for any x ∈ ∂Br for r sufficiently small there exists
a p ∈ ∂0u

[t ′](Br ) \ 0 such that

p · x ≥ 3
4 |p||x |.

Suppose that p ∈ ∂0u
[t ′](y). Since 0u( · , t ′)≥ 0 in Br , this implies that, for any α ≥ 2,

0u(αx, t ′)≥ 0u(y, t ′)+ p · (αx − y)≥ α p · x − p · y ≥ 3
4αr |p| − r |p|> 0.

This and the monotonicity of 0u allows us to conclude that

0u > 0 on {|x | ≥ 2r, t ≤ t ′}.

Moreover, we point out that, since (0, 0) is a Lebesgue point of P(Qr ;0
u), for each |x | ≤ r < 1 there

exists (p2, h2) ∈ P(Qr ;0
u) \ (0, 0) such that

p2 · x + h2r2 > 3
4 |(p2, h2)||(x, r2)|> 0.
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Let (p2, h2)∈P((y, s);0u) for (y, s)∈ Qr . This implies that, for all t ≤ s and all |x | ≤ r , since h2≥ 0
and r < 1,

0u(x, t)≥ p2 · x + h2 = p2 · x + h2r2
+ h2(1− r2) > 0.

Therefore, for all t ≤−r2, we conclude again that 0u > 0. This implies that

0u > 0 in (Q \ Q2r )∩ {t ≤ t ′}.

However, since u > 0u on Q3r , this implies that u > 0 on all of Q ∩ {t ≤ t ′}. This contradicts that
0u(x ′, t ′)= 0, and hence we have the claim. �

This regularity allows us to establish:

Lemma 2.6. Assume that Q ⊆ Rd+1 is bounded and open, and u ∈ C(Q) satisfies

ut +M+(D2u)≥−1;

then there exists c2 = c2(λ, d) such that

|P(Q;0u)| ≤ c2|{u = 0u
} ∩ Q|. (2-5)

Proof. Given the regularity of 0u established by Lemma 2.3, we apply the area formula for Lipschitz
functions to conclude that

|P(Q;0u)| =

∫
Q

det DP(0u)=

∫
Q∩{u=0u}

−0u
t det D20u

= λ−d
∫

Q∩{u=0u}

−0u
t det D2λ0u .

By applying the geometric–arithmetic mean inequality and Lemma 2.4, we have that

λ−d
∫

Q∩{u=0u}

−0u
t det D2λ0u dx dt ≤ c(λ, d)

∫
Q∩{u=0u}

[−0u
t + λ10

u
]
d+1 dx dt

≤ c
∫

Q∩{u=0u}

1 dx dt = c|{u = 0u
} ∩ Q|,

which yields (2-5). �

We next claim that limn→∞ µ(Gn, ω) exists almost surely. This will follow by an application of the
subadditive ergodic theorem of [Akcoglu and Krengel 1980] to the quantity

sup
u∈S(Gn,ω)

|P(Gn;0
u)|.

We point out that the result of [Akcoglu and Krengel 1980] also holds for cubes with parabolic scaling.
In order to verify the hypotheses, we first show a decomposition property of µ( · , ω):

Lemma 2.7. For each ω ∈�, n ∈ Z, and m ∈ N,

µ(Gn+m, ω)≤ −

∫
Gn+m

µ(Gn(x, t), ω) dx dt. (2-6)
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Proof. Let u ∈ S(Gn+m, ω). By applying Lemma 2.6, we have that, for each (x, t) ∈ Gn+m ,

|P(Gn+m ∩ ∂pGn(x, t);0u)| = 0.

Therefore,

|P(Gn+m;0
u)| ≤

∑
{G=Gn(x,t)⊆Gn+m}

|P(G;0u)| =

∫
Gn+m

|P(Gn(x, t);0u)|

|Gn|
dx dt

≤

∫
Gn+m

|P(Gn(x, t);0ũ)|

|Gn|
dx dt,

where ũ = u�Gn(x,t) for (x, t) ∈ Gn+m . By taking the supremum of both sides, we have (2-6). �

Lemma 2.7 shows that E[µ(Gn, ω)] is nonincreasing in n. We next show universal bounds for µ.

Lemma 2.8. There exists c3 = c3(λ,3, d) > 0 and c4 = c4(λ,3, d) > 0 such that, for every ω ∈ �,
n ∈ Z, M ∈ Sd , and ` ∈ R,

c3 inf
(x,t)∈Gn

(F(M, x, t, ω)− `)d+1
+
≤ µ(Gn, ω, `,M)≤ c4 sup

(x,t)∈Gn

(F(M, x, t, ω)− `)d+1
+
. (2-7)

Proof. We fix M ∈ Sd and, without loss of generality, we assume that `= 0. By Lemma 2.6, the right
inequality holds by scaling and rearranging. To prove the left inequality, we note that, letting

η := inf
(x,t)∈Gn

(F(M, x, t, ω))+ and ϕ(x, t) := −
η

4
t +

η

4d3
|x |2,

for each (x, t) ∈ Gn we have

ϕt + F(M + D2ϕ, x, t, ω)≥ ϕt +M−(D2ϕ)+ F(M, x, t, ω)=−
η

4
−
η

2
+ F(M, x, t, ω)≥ 0.

Therefore, ϕ ∈ S(Gn, ω,M), and hence

µ(Gn, ω,M)≥
|P(Gn;ϕ)|

|Gn|
=

1
|Gn|

∫
−ϕt det D2ϕ = c3η

d+1. �

In particular, we mention that (2-8) implies

c3 inf
(x,t)∈Gn

(F(M, x, t, ω)− `)d+1
+
≤ µ(Gn, ω, `,M)≤ c4[K0(1+ |M |)− `]d+1

+
. (2-8)

Using the previous two lemmas, we establish:

Corollary 2.9. The limit limn→∞ µ(Gn, ω) exists almost surely.

Proof. We apply the subadditive ergodic theorem to the quantity

R(Gn, ω) := sup
u∈S(Gn,ω)

|P(Gn;0
u)|.

We note, by the stationarity of F( · , · , · , ω), it follows that R( · , ω) is stationary. By Lemma 2.7,
Lemma 2.8, and (F4), R( · , ω) is subadditive on parabolic cubes and bounded almost surely. An
application of the subadditive ergodic theorem yields the claim. �
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In light of (F1), the limit is a constant almost surely. If limn→∞ µ(Gn(x, t), ω)= 0, then, by (2-3), we
obtain a type of comparison principle in the limit. In the next section, we will show that, if the limit is
strictly positive, then we obtain control of the growth of an optimizing supersolution.

3. Strict convexity of quasimaximizers

The results in this section are completely deterministic and we suppress all dependencies on the random
parameter ω. We show that |P(Q;0u)| yields geometric information about the function u ∈ S(Q). More
specifically, for some n ≤ 0, if |P(Gn(x, t);0u)|/|Gn| ≈ 1 for all (x, t) ∈ G0, then the optimizing
supersolution for µ(G0) is strictly convex. In particular, up to an affine transformation, the optimizing
supersolution bends upwards on ∂pG0.

Formally, if ϕ is parabolically convex with classical derivatives, then, for n sufficiently small, by the
Lebesgue differentiation theorem,

−ϕt(x, t) det D2ϕ(x, t)≈ −
∫

Gn(x,t)
−ϕs det D2ϕ dy ds =

|P(Gn(x, t);ϕ)|
|Gn|

.

Therefore, if |P(Gn(x, t);ϕ)|/|Gn| ≈ 1 for all (x, t), this is related to solving the parabolic Monge–
Ampère equation−ϕt det D2ϕ= 1. This idea originated in [Armstrong and Smart 2014b], where, given an
equivalent measure condition for the elliptic subdifferential of the convex envelope, the authors conclude
that the optimizing supersolution is strictly convex.

In this article, we first utilize the regularity properties of u ∈ S(G0) to show that the time derivatives
and Hessian of w = 0u are uniformly bounded above almost everywhere. In particular, this bound only
depends on the ellipticity constants and dimension. Using the structure of (1-5), we then obtain that the
time derivative and Hessian are also strictly positive almost everywhere, which allows us to conclude that
the solution must be strictly convex. We mention that this approach can also be applied to the elliptic
setting of [Armstrong and Smart 2014b] to produce an alternative argument.

We first show that, by using that u ∈ S(G0), the monotone envelope 0u satisfies a uniform upper
bound on the time derivative and Hessian at its contact points. Recall that, by Lemma 2.3, 0u is
Lipschitz continuous in time and C1,1 in space. Therefore, we may represent (p, h) ∈ P((x0, t0);0u) by
(D0u(x0, t0), u(x0, t0)− D0u(x0, t0) · x0) ∈ P((x0, t0);0u).

Lemma 3.1. Let u ∈ S(G0) and suppose

|P(G−2(x, t);0u)|

|G−2|
≤ 2 for all (x, t) ∈ G0. (3-1)

There exists γ = γ (λ,3, d) such that, for all (x0, t0) ∈ Q1/4(0, 1) ∩ {u = 0u
}, we have that, for all

(y, s) ∈ Q1/4(x0, t0),

0u(y, s)≤ 0u(x0, t0)+ D0u(x0, t0) · (y− x0)+ γ. (3-2)

Proof. By the monotonicity of 0u , it is enough if we can show that for all y ∈ B1/4(x0) where u(x0, t0)=
0u(x0, t0),

0u(y, t0− 1
16

)
≤ 0u(x0, t0)+ D0u(x0, t0) · (y− x0)+ γ. (3-3)
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We proceed by contradiction. Let w := 0u be defined in G0. Assume that there exists a point (x0, t0)
such that

sup
B1/4(x0,t0)

w
(
· , t0− 1

16

)
>w(x0, t0)+ Dw · (y− x0)+ γ, (3-4)

with γ to be chosen. Without loss of generality, by adding an affine function, we may assume that
(x0, t0)= (0, 1) and 0u(x0, t0)= D0u(x0, t0)= 0.

Choose y ∈ B1/4 so that

w
(
y, 15

16

)
:=max

B1/4

w
(
· , 15

16

)
.

By (3-4),

w
(
y, 15

16

)
> γ.

Since w
(
· , 15

16

)
is convex, and using the definition of y, this implies that

w
(
z, 15

16

)
> γ for all z such that z · y ≥ |y|2.

In particular, let 2 :=
{(

z, 15
16

)
: z ∈ B1/2, z · y ≥ |y|2

}
.

Let Q := B1/2×
( 15

16 , 1
]
. We claim there exists a test function ϕ ∈ C2(Q) which satisfies{

ϕt +M−(D2ϕ)≥ 0 in Q,

ϕ ≥−χ2 on ∂pQ,
(3-5)

and minϕ( · , 1)≤−c for some universal constant c. First, by approximating −χ2 by a smooth function
from above and applying the Evans–Krylov theorem [Krylov 1982], there exists a supersolution which
is C2 satisfying the boundary conditions of (3-5).

By the strong maximum principle, there exists a nonconstant solution such that minϕ( · , 1) ≤ −c.
Moreover, by compactness, this c can be chosen universally for all (x0, t0) ∈ Q1/4(0, 1) by a standard
covering argument. This implies that u+ γ ϕ satisfies

(u+ γ ϕ)t + F(D2(u+ γ ϕ), x, t)≥ 0 in Q,

u+ γ ϕ ≥ 0 on ∂pQ,

minQ(u+ γ ϕ)( · , 1)≤−cγ.

By a similar estimate as in Lemma 2.1, this implies that |P(Q)| ≥ cγ d+1. Therefore, if we consider
covering Q with a collection of G−2(x, t)⊆ G0, then

cγ d+1
≤

∑
G−2(x,t)⊂G0

|P(G−2(x, t))| ≤ 2|G0|.

Choosing γ sufficiently large, depending only on λ, 3, and d, we obtain a contradiction. Therefore,
(3-2) holds. �

By rescaling Lemma 3.1, we actually have that if, for all (x, t) ∈ G0,

|P(Gn(x, t); u)|
|Gn|

≤ 2 and 3n
≤

1
4r,
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then, for any point such that u(x0, t0)= 0u(x0, t0), for all (y, s) ∈ Qr (x0, t0),

0u(y, s)≤ 0u(x0, t0)+ D0u(x0, t0) · (y− x0)+ γ r2. (3-6)

By sending r → 0, this implies that 0u
t ≤ γ and D20u

≤ γ Id at all contact points where u = 0u . By
the construction of the monotone envelope (in particular, Lemma 2.2), this implies that 0u

t ≤ γ and
D20u

≤ γ Id everywhere in G0. The proof is identical to the proof of Lemma 2.3, which can be found in
[Imbert and Silvestre 2012]. We choose to omit it since it follows verbatim.

We highlight that, unlike Lemma 2.3, the upper bound on the time derivatives and Hessian of 0u will
be independent of K0. An observation of [Armstrong and Smart 2014b] is that it does not seem feasible
to obtain an algebraic rate if these upper bounds depend on K0. Recall that our goal is to establish an
estimate which controls supersolutions from the other side of Lemma 2.1. Since we plan on performing
quantitative analysis, it is important that our estimate is scale-invariant. If our estimate depended on K0

then, by (F4), the estimate would depend upon the scaling. In general, the upper bounds on the time
derivative and the Hessian are controlled by the quantity µ(Gn(x, t)). In light of (3-1), this is enough to
conclude that γ is independent of K0.

We next show that these upper bounds are actually enough to conclude strict convexity.

Lemma 3.2. There exists c5 = c5(λ,3, d) > 0 such that, for every ε > 0, there exists n1 = n1(ε, d) < 0
such that, if u ∈ S(G0) and n ≤ n1 satisfies

1≤
|P(Gn(x, t);0u)|

|Gn|
≤ 2 for all (x, t) ∈ G0, (3-7)

then, for all (x0, t0) ∈ Q1/4(0, 1)∩ {u = 0u
} and all (y, s) ∈ Q1/4(x0, t0),

0u(y, s)≥ 0u(x0, t0)+ D0u(x0, t0) · (y− x0)+ c5(t0− s+ |y− x0|
2)− ε. (3-8)

Proof. Fix ε > 0. Suppose for the purposes of contradiction that (3-8) does not hold. Therefore, there
exists a sequence of (un, ŷn, ŝn) ∈ S(G0)×G0 such that un satisfies (3-7) for n and un violates (3-8)
at (ŷn, ŝn). Using the convention that wn := 0

un and, without loss of generality, assuming that wn ≥ 0
in G0 and wn(0, 1)= 0 for each n, this amounts to

wn(ŷn, ŝn) < c(ŝn + |ŷn|
2)− ε (3-9)

for c to be chosen.
By (3-6) and (3-2), the family {wn} is equicontinuous and uniformly bounded in Q1/4(0, 1). By the

Arzelà–Ascoli theorem, this implies that there exists a subsequence converging uniformly to a limiting
function w, with w satisfying

−wt ≤ γ and D2w ≤ γ Id almost everywhere.

By the Lebesgue differentiation theorem and (3-7), w also satisfies

1≤−wt det D2w ≤ 2 almost everywhere.
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Therefore, this yields that −wt ≥ 1/γ d , and det D2w ≥ (1/γ ) Id almost everywhere. Since D2w ≤ γ Id,
this yields that there exists a constant cγ = c(γ, d) such that D2w ≥ cγ Id.

Consider that, by (3-9), since (ŷn, ŝn)∈G0, there exists a subsequence converging to a point (ŷ, ŝ)∈G0

satisfying
w(ŷ, ŝ) < c(ŝ+ |ŷ|2)− ε.

However, for c chosen appropriately in terms of γ , this contradicts −wt ≥ 1/γ d , D2w ≥ (1/γ ) Id almost
everywhere. �

Finally, we show that this implies that u will also be strictly convex on the parabolic boundary.

Theorem 3.3. Let u ∈ S(G1). There exist constants c6 = c6(λ,3, d) and n1 = n1(d) < 0 such that, if
n ≤ n1 satisfies

1≤
|P(Gn(x, t);0u)|

|Gn|
≤ µ(Gn(x, t))≤ 1+ 3n(d+2) for all (x, t) ∈ G1, (3-10)

then there exists a point (x0, t0) ∈ {u = 0u
} ∩Gn(0, 9) and (p0, h0) ∈ P((x0, t0);0u) such that

u(x, t)≥ p0 · x + h0+ c6 for all {t ≤ t0} ∩G1 \G0(0, 9). (3-11)

Proof. In order to prove (3-11), it is enough to obtain a lower bound on inf∂pG0(0,9) 0
u( · , t) for t ≤ t0. We

claim there exists (x0, t0)∈Gn(0, 9) such that u(x0, t0)=0u(x0, t0). By (3-10), for any (y, s)∈Gn(0, 9),

1≤
∫

G0(0,9)

|P(Gn(x, t);0u)|

|Gn|
dx dt

= |P(Gn(y, s);0u)| +

∫
G0(0,9)\Gn(y,s)

|P(Gn(x, t);0u)|

|Gn|
dx dt

≤ |P(Gn(y, s);0u)| + (1− 3n(d+2))(1+ 3n(d+2)).

This shows that |P(Gn(y, s);0u)|> 0 for any (y, s) ∈ G0, which implies, by Lemma 2.6, that

|Gn(0, 9)∩ {u = 0u
}|> 0.

Let (x0, t0)∈Gn(0, 9)∩{u=0u
} and consider (p0, h0)∈P((x0, t0);0u). Let ũ(x, t)=u(x, t)− p0·x−h0.

Then ũ ∈ S(G0(0, 9)) and ũ(x0, t0)= 0ũ(x0, t0)= 0. Moreover, we have that (0, 0) ∈P((x0, t0);0ũ) and
0ũ
≥ 0 for all (x, t) ∈ G0(0, 9)∩ {t ≤ t0}.

By Lemma 3.2, letting ε = 1
2 c5, since Q1/4(x0, t0)⊂ G0(0, 9), this implies that, on ∂pG0(0, 9),

u(x, t)≥ 0u(x, t)≥ 1
2 c5.

Defining c6 :=
1
2 c5 completes the proof. �

For convenience, we also provide a rescaled version of (3-11) which will be used extensively later in
the paper. Let u ∈ S(Gm+n+1). Choose n ≤ n1 so that

α ≤
|P(Gn(x, t);0u)|

|Gn|
≤ µ(Gn(x, t))≤ (1+ 3n(d+2))α for all (x, t) ∈ Gm+n+1.
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There exists a point (x0, t0) ∈ {u = 0u
} ∩Gn(0, 32(m+n+1)) and (p0, h0) ∈ P((x0, t0);0u) such that

u(x, t)≥ p0 · x + h0+ c6α
1/(d+1)32(m+n) for all {t ≤ t0} ∩Gm+n+1 \Gm+n(0, 32(m+n+1)). (3-12)

4. The construction of F and the construction of approximate correctors

We now define the homogenized operator F : Sd
→ R. In addition, we show how one can obtain

“approximate correctors” as in [Lin 2015] using the quantity µ. For each M ∈ Sd , we say that wε is an
approximate corrector of (1-1) if there exists wε satisfying{

wεt + F(M + D2wε, x, t, ω)= F(M) in Q1/ε,

wε = 0 on ∂p Q1/ε,
(4-1)

with ‖ε2wε‖L∞(Q1/ε)→ 0 as ε→ 0. Once wε exists, the qualitative homogenization (the convergence
uε→ u P-a.s.) follows by a standard perturbed test function argument [Evans 1992], as shown in [Lin
2015]. In particular, the uniform ellipticity of F follows from the existence of approximate correctors.

Identifying F. We identify F(M) for each fixed M ∈ Sd . First, we establish a lemma which states that
µ is Lipschitz continuous with respect to the right-hand side `.

Lemma 4.1. There exists C(λ,3, d,M, K0) > 0 such that

0≥ µ(Q, ω, `+ s,M)−µ(Q, ω, `,M)≥−C |Q|s (4-2)

for all s ∈ [0, 1].

Proof. Since S(Q, ω, `+s,M)⊆ S(Q, ω, `,M), the left inequality follows from the comparison principle
for viscosity solutions. To obtain the right inequality, let u ∈ S(Q, ω, `,M) and define us(x, t) :=
u(x, t)+ st , which lies in S(Q, ω, `+ s,M). Let ws denote the monotone envelope of us . We note that
|ws

t |, |D
2ws
| ≤ C(K0, `+ s,M) on the contact set {us

=ws
}, by Lemma 2.3 and Lemma 2.6. Therefore,

by the area formula, this implies that

|P(Q;ws)| =

∫
{us=ws}∩Q

−us
t det D2us dx,

≥

∫
{u=w}∩{ut≤−s}∩Q

−us
t det D2us dx,

≥

∫
{u=w}∩Q

−ut det D2u−Cs|Q|

= |P(Q;w)| −Cs|Q|.

By taking the supremum over u ∈ S(Q, ω, `,M), this yields (4-2). �

Lemma 4.2. Let M ∈ Sd . For every n ∈ N, the map

`→ E[µ(Gn, ω, `,M)] is continuous and nonincreasing.

Similarly, the map

`→ E[µ∗(Gn, ω, `,M)] is continuous and nondecreasing.
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In addition, there exists `(M) ∈ R such that, P-a.s. in ω,

lim
n→∞

µ(Gn, ω, `(M),M)= lim
n→∞

E[µ(Gn, ω, `(M),M)] = lim
n→∞

E[µ∗(Gn, ω, `(M),M)]

= lim
n→∞

µ∗(Gn, ω, `(M),M). (4-3)

Proof. The Lipschitz continuity and monotonicity follow from Lemma 4.1. By (2-8), E[µ(Gn, ω, `)] = 0
for all `≥ K0(1+ |M |). In particular, this implies that

lim
n→∞

E[µ(Gn, ω, `)] = 0 for all `≥ K0(1+ |M |).

Similarly,
lim

n→∞
E[µ∗(Gn, ω, `)] = 0 for all `≤−K0(1+ |M |).

Using the monotonicity in ` and (2-8), there exists a choice of ` such that limn→∞ E[µ(Gn, ω, `)] =

limn→∞ E[µ∗(Gn, ω, `)]. The outer equalities of (4-3) hold in light of the ergodicity assumption (F1)
and the subadditive ergodic theorem. �

Using Lemma 4.2, we define
F(M) := `(M). (4-4)

We will now show that F(M) agrees with the effective operator constructed in [Lin 2015] and thus the
uniqueness follows. To do this, it is enough to show that solutions wε of (4-1) exist and satisfy the desired
limiting behavior.

A qualitative homogenization argument. The construction of approximate correctors (4-1) follows in two
steps. First we show that, for any M ∈Sd , it is impossible for E(`(M),M) := limn→∞ µ(Gn, ω, `(M),M)
and E∗(`,M) := limn→∞ µ

∗(Gn, ω, `(M),M) to both be positive. Applying Lemma 2.1 allows us to
conclude.

For convenience, we provide a precise statement of the Harnack inequality for parabolic equations, as
can be found in [Wang 1992; Imbert and Silvestre 2012]. We will use the notation of this theorem in the
future.

Theorem 4.3 (Harnack inequality). Let u be nonnegative with −| f | ≤ ut +M+(D2u)≤ | f |. Then there
exists a universal C = C(λ,3, d) such that

sup
Q̃

u ≤ C
(

inf
Q
ρ2

u+‖ f ‖Ld+1(Q1)

)
,

where Q̃ := Bρ2/(2
√

2)×
(
−ρ2
+

3
8ρ

4,−ρ2
+

1
2ρ

4
)
⊆ Q1 and ρ = ρ(λ,3, d).

The Harnack inequality implies that E and E∗ must vanish when they are equal:

Lemma 4.4. Fix M ∈ Sd . If ` ∈ R is such that

lim
n→∞

E[µ(Gn, ω, `,M)] = E(`,M)= E∗(`,M)= lim
n→∞

E[µ(Gn, ω
∗,−`,M)], (4-5)

then E(`,M)= E∗(`,M)= 0.
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Proof. We drop the dependence on M since it is fixed throughout the proof. Suppose that both
E(`)= E∗(`) := α > 0. By the subadditive ergodic theorem, there exists a choice of m sufficiently large
such that, for all (x, t) ∈ Gm+n , with n large to be chosen,

1
2α ≤

|P(Gm(x, t);0u)|

|Gm |
≤ µ(Gm, ω, `)≤ 2α.

Without loss of generality, we assume that m = 0. By Theorem 3.3, rescaled, choosing n sufficiently
large, and after an affine transformation, there exists a function u such that

ut + F(D2u, x, t, ω)= ` in Gn(0, 32(n+1)) (4-6)

and (x0, t0) ∈ G0(0, 32(n+1)) such that

u ≥ u(x0, t0)+C32nα1/(d+1) on ∂pGn(0, 32(n+1))∩ {t ≤ t0} (4-7)

and
inf

Gn(0,32(n+1))∩{t≤t0}
u = inf

G0(0,32(n+1))∩{t≤t0}
u = u(x0, t0)= 0.

This is done by extracting u′ ∈ S(Gn+1, ω) such that (3-11) holds. Upon an affine transformation and
solving (4-6) with u = u′ on ∂pGn(0, 32(n+1)), we have the claim. Similarly, there exists u∗ satisfying

u∗t + F(D2u∗, x, t, ω∗)=−` in Gn(0, 32(n+1)) (4-8)

and, for some (x∗0 , t∗0 ) ∈ G0(0, 32(n+1)),

u∗ ≥ u∗(x0, t0)+C32nα1/(d+1) on ∂pGn(0, 32(n+1))∩ {t ≤ t∗0 } (4-9)

and
inf

Gn(0,32(n+1))∩{t≤t∗0 }
u∗ = inf

G0(0,32(n+1))∩{t≤t∗0 }
u∗ = u∗(x∗0 , t∗0 )= 0.

Let t =min{t0, t∗0 }. Notice that w := u+ u∗ satisfies

wt +M+(D2w)≥ ut + u∗t + F(D2u, x, t, ω)+ F(D2u∗, x, t, ω∗)= 0 in Gn(0, 32(n+1))

and
w ≥ C32nα1/(d+1) on ∂pGn(0, 32(n+1))∩ {t ≤ t}.

By the Alexandrov–Backelman–Pucci–Krylov–Tso estimate [Wang 1992; Imbert and Silvestre 2012],
this implies that

w ≥ C32nα1/(d+1) in Gn(0, 32(n+1))∩ {t ≤ t}. (4-10)

Let s be defined as the smallest integer such that ρ23s
≥
√

d , where ρ is defined in the Harnack inequality
(Theorem 4.3). We may assume that s ≤ n, by choosing n larger if necessary. We observe that, in
Gs(0, 32(n+1)), u and u∗ also each satisfy

ut +M+(D2u)≥−|`| − K0 and K0+ |`| ≥ ut +M−(D2u),

u∗t +M+(D2u∗)≥−|`| − K0 and |`| + K0 ≥ u∗t +M−(D2u∗).
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Since infG0(0,32(n+1)) u = infG0(0,32(n+1)) u∗ = 0, and

G0(0, 32(n+1))⊆ Qρ23s (0, 32(n+1))

by our choice of s, this implies, by the Harnack inequality, that there exists C = C(λ,3, d, `, K0) such
that

sup
Q̃

u ≤ C32s and sup
Q̃

u∗ ≤ C32s,

where Q̃ ⊆ Gs(0, 32(n+1)) is a rescaled version of the Q̃ defined in Theorem 4.3. Thus, there exists
C = C(λ,3, d, `, K0) > 0 such that

w ≤ C32s in Q̃ ⊆ Gs(0, 32(n+1)).

By choosing n sufficiently large, depending on `, K0, and α, we obtain a contradiction with (4-10).
Therefore, α = 0. �

We next show that wε solving (4-1) has the desired decay with this definition of F(M). Letting ε= 3−n ,
we relabel (4-1) as {

wn
t + F(M + D2wn, x, t, ω)= F(M) in Gn,

wn
= 0 on ∂pGn,

(4-11)

and we want to show that ‖3−2nwn
‖L∞(Gn)→ 0 as n→∞.

Consider that, since E(F(M),M)= E∗(F(M),M)= 0, this implies that, almost surely,

lim
n→∞

µ(Gn, ω)= 0= lim
n→∞

µ∗(Gn, ω).

By Lemma 2.1 and (4-11), this implies that

0≤ inf
Gn

3−2nwn
+ c1µ(Gn, ω)

1/(d+1)

and 0≥ sup
Gn

3−2nwn
− c1µ

∗(Gn, ω)
1/(d+1).

Taking n→∞, this yields

lim
n→∞
‖3−2nwn

‖L∞(Gn) ≤ lim
n→∞

max{µ(Gn, ω)
1/(d+1), µ∗(Gn, ω)

1/(d+1)
} = 0, (4-12)

as desired.

5. A rate of decay on the second moments

In this section, we obtain a rate of decay on the second moments of µ. The approach of this section
closely follows that of [Armstrong and Smart 2014b]. As before, we suppress the dependence on M . We
simplify the notation by adopting the following conventions. Let

En(`)= E[µ(Gn, ω, `)] and E∗n(`)= E[µ∗(Gn, ω, `)] = E[µ(Gn, ω
∗,−`)].

Also, let

Jn(`)= E[µ(Gn, ω, `)
2
] and J ∗n (`)= E[µ∗(Gn, ω, `)

2
] = E[µ(Gn, ω

∗,−`)2].
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Our next lemma shows that, if the variance of µ and µ∗ are not decaying, then their expectations must
be close to zero. The proof resembles the argument for Lemma 4.4, but avoids the dependence on K0.

Lemma 5.1. Suppose that there exists m, n ∈ N and η, γ > 0 such that

0< Jm(`− γ )≤ (1+ η)E2
m+n(`− γ ) (5-1)

and
0< J ∗m(−`+ γ )≤ (1+ η)E

∗2
m+n(−`+ γ ). (5-2)

Then there exists n0 = n0(λ,3, d) and η0 = η0(λ,3, d) such that, for all n ≥ n0 and all η ≤ η0,

Jm+n(`− γ )+ J ∗m+n(−`+ γ )≤ Cγ 2(d+1). (5-3)

Proof. Without loss of generality, we assume that `= 0 and m= 0. First, we claim that there exists a choice
of environment ω such that µ(Gn, ω) and µ(G0(x, t), ω) are approximately constant for all (x, t) ∈ Gn .

Fix δ > 0. There exists η = η(δ) such that, if (5-1) and (5-2) hold for this η, there exists an ω such
that, for all (x, t) ∈ Gn ,

(1− δ)En(−γ )≤ µ(Gn, ω,−γ )≤ µ(G0(x, t), ω,−γ )≤ (1+ δ)En(−γ ) (5-4)

and, similarly for the lower quantity,

(1− δ)E∗n(γ )≤ µ
∗(Gn, ω, γ )≤ µ

∗(G0(x, t), ω, γ )≤ (1+ δ)E∗n(γ ). (5-5)

Applying Chebyshev’s inequality, we have that, for any (x, t) ∈ Gn ,

P
[
µ(G0(x, t), ω,−γ )≥ (1+ δ)En(−γ )

]
≤ P

[
µ(G0(x, t), ω,−γ )− En(−γ )≥ δEn(−γ )

]
≤ P

[
[µ(G0(x, t), ω,−γ )− En(−γ )]

2
≥ δ2 E2

n(−γ )
]

≤
1

δ2 E2
n(−γ )

E
[
[µ(G0(x, t), ω,−γ )− En(−γ )]

2]
≤

1
δ2 E2

n(−γ )
[J0(−γ )− E2

n(−γ )]

≤ ηδ−2,

where the last inequality follows from (5-1).
Similarly,

P
[
µ(Gn, ω,−γ ) < (1− δ)En(−γ )

]
≤ P

[
(µ(Gn, ω,−γ )− En(−γ ))

2
≥ δ2 En(−γ )

2]
≤

1
δ2 En(−γ )2

E
[
(µ(Gn, ω,−γ )− En(−γ ))

2]
≤

1
δ2 En(−γ )2

(
E[µ(Gn, ω,−γ )

2
] − En(−γ )

2)
≤ ηδ−2.

By identical arguments,

P
[
µ∗(G0(x, t), ω, γ )≥ (1+ δ)E∗n(γ )

]
≤ ηδ−2 and P

[
µ∗(Gn, ω, γ ) < (1− δ)E∗n(γ )

]
≤ ηδ−2.
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By a union bound, this implies that

P
[
(5-4) and (5-5) hold for all (x, t) ∈ Gn

]
≥ 1− 4ηδ−2, (5-6)

so, by choosing η ≤ 1
4δ

2, this has positive probability. Let ω ∈� be an element of this set, which implies
ω satisfies (5-4) and (5-5) for all (x, t) ∈ Gn . Using this particular ω, we next show that there exist
constants c, C , and s ∈ N which only depend on λ, 3, and d such that

c(En(−γ )+ E∗n(γ )−Cγ d+1)≤ (1+ δ)3−2(n−s)(d+1)(En(−γ )+ E∗n(γ )). (5-7)

Consider that, by Theorem 3.3, similar to the proof of Lemma 4.4, there exists n = n(d, λ,3) and
u, u∗ ∈ C(Gn(0, 32(n+1))) such that

ut + F(D2u, x, t, ω)=−γ in Gn(0, 32(n+1))

with

inf
∂pGn(0,32(n+1))∩{t≤t0}

u(x, t)≥ C32n En(−γ )
1/(d+1) and inf

G0(0,32(n+1))
u = inf

Gn(0,32(n+1))
u = 0.

Similarly, u∗ satisfies

u∗t + F(D2u∗, x, t, ω∗)=−γ in Gn(0, 32(n+1)),

with

inf
∂pGn(0,32(n+1))∩{t≤t∗0 }

u∗(x, t)≥ C32n E∗n(γ )
1/(d+1) and inf

G0(0,32(n+1))
u∗ = inf

Gn(0,32(n+1))
u∗ = 0.

Let t̃ =min{t0, t∗0 }. We note that the function u+ u∗ satisfies that

u+ u∗ ≥ C32n(En(−γ )
1/(d+1)

+ E∗n(γ )
1/(d+1)) on ∂pGn(0, 32(n+1))∩ {t ≤ t̃}

and
(u+ u∗)t +M+(D2(u+ u∗))≥−2γ in Gn(0, 32(n+1)).

By the Alexandrov–Backelman–Pucci–Krylov–Tso estimate [Wang 1992; Imbert and Silvestre 2012],
this implies that

u+ u∗ ≥ c32n
[En(−γ )

1/(d+1)
+ E∗n(γ )

1/(d+1)
] −C32nγ in Gn(0, 32(n+1))∩ {t ≤ t̃}. (5-8)

Next, consider the solutions w, w̃ solving{
wt + F(D2w, x, t, ω)=−γ in Gs(0, 32(n+1)),

w = 0 on ∂pGs(0, 32(n+1)),

and {
w∗t + F(D2w∗, x, t, ω∗)=−γ in Gs(0, 32(n+1)),

w∗ = 0 on ∂pGs(0, 32(n+1)),

with s, to be chosen, such that s ≤ n.
We have that

w+w∗ = 0 on ∂pGs(0, 32(n+1))
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and
(w+w∗)t +M−(D2(w+w∗))≤−2γ ≤ 0 in Gs(0, 32(n+1)).

This implies that
w+w∗ ≤ 0 in Gs(0, 32(n+1)). (5-9)

Combining (5-8) and (5-9), we have that, for all (x, t) ∈ Gs(0, 32(n+1))∩ {t ≤ t},

w(x, t)− u(x, t)+w∗(x, t)− u∗(x, t)≤ C32nγ − c32n(En(−γ )
1/(d+1)

+ E∗n(γ )
1/(d+1)). (5-10)

Notice that
w− u ≤ 0 on ∂pGs(0, 32(n+1))

and, in Gs(0, 32(n+1)),

(w− u)t +M+(D2(w− u))≥ 0≥ (w− u)t +M−(D2(w− u)).

This implies thatw−u≤ 0 in Gs(0, 32(n+1)). Consider the Harnack inequality (Theorem 4.3) applied to
u−w≥ 0. By the Harnack inequality, rescaled in Gs(0, 32(n+1)) (where Q̃ corresponds to the rescaled Q̃),

sup
Q̃
(u−w)≤ C inf

Q
ρ23s (0,32(n+1))

(u−w).

This implies that
− sup

Q̃
(u−w)≥−C inf

Q
ρ23s (0,32(n+1))

(u−w),

which yields
inf
Q̃
(w− u)≥ C sup

Q
ρ23s (0,32(n+1))

(w− u). (5-11)

Choose s so that G0(0, 32(m+1))⊆ Qρ23s (0, 32(m+1)). Since (5-10) holds for all

(x, t) ∈ Gs(0, 32(n+1))∩ {t ≤ t̃} and Q̃ ⊆ Gs(0, 32(n+1))∩ {t ≤ t̃},

we may assume without loss of generality that

inf
Q̃
(w− u)≤ 1

2

(
C32nγ − c32n(En(−γ )

1/(d+1)
+ E∗n(γ )

1/(d+1))
)
.

(If not, then we repeat this analysis for w∗− u∗.) By (5-11), this implies that, in Qρ23s (0, 32(n+1)),

w− u ≤ C
(
32nγ − c32n(En(−γ )

1/(d+1)
+ E∗n(γ )

1/(d+1))
)
.

In particular, we have that

inf
Q
ρ23s (0,32(n+1))

w ≤ inf
Q
ρ23s (0,32(n+1))

u+ c
(
C32nγ − 32n(En(−γ )

1/(d+1)
+ E∗n(γ )

1/(d+1))
)
.

Since (x0, t0) ∈ G0(0, 32(n+1))⊆ Qρ23s (0, 32(n+1)), this implies that

inf
Q
ρ23s (0,32(n+1))

u = 0,
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which yields

inf
Q
ρ23s (0,32(n+1))

w ≤ c
(
C32nγ − 32n(En(−γ )

1/(d+1)
+ E∗n(γ )

1/(d+1))
)
. (5-12)

By Lemma 2.1, since w = 0 on ∂pGs(0, 32(n+1)),

0≤ inf
Gs(0,32(n+1))

w+ c132sµ(Gs(0, 32(n+1)), ω,−γ )1/(d+1)

≤ inf
Q
ρ23s (0,32(n+1))

w+ c132sµ(Gs(0, 32(n+1)), ω,−γ )1/(d+1).

By (5-12), this implies

c32(n−s)(d+1)(En(−γ )
1/(d+1)

+ E∗n(γ )
1/(d+1)

−Cγ )d+1
≤ µ(Gs(0, 32(n+1)), ω,−γ )

≤ −

∫
Gs(0,32(n+1))

µ(G0(x, t), ω) dx dt

≤ (1+ δ)En(−γ )

≤ (1+ δ)(En(−γ )+ E∗n(γ )).
This yields

32(n−s)(d+1)c(En(−γ )+ E∗n(γ )−Cγ d+1)≤ (1+ δ)(En(−γ )+ E∗n(γ )),

which is equivalent to (5-7).
To conclude, we just need to choose δ, η, and show there is an n sufficiently large to obtain (5-3).
Rearranging yields

(1− 3−2(n−s)(d+1)
− δ3−2(n−s)(d+1))(En(−γ )+ E∗n(γ ))≤ Cγ d+1.

Choosing δ := 3−2s(d+1) and η ≤ 1
4 3−4s(d+1) yields a choice of ω ∈� such that (5-4) and (5-5) hold, and

(1− 3−2(n−s)(d+1)
− 3−2n(d+1))(En(−γ )+ E∗n(γ ))≤ Cγ d+1.

For any n ≥ 2s, we have that

En(−γ )+ E∗n(γ )≤ C(1− 3−2s(d+1)
− 3−4s(d+1))−1γ d+1

= Cγ d+1.

This implies that

Jn(−γ )+ J ∗n (γ )≤ (1+ η)(En(−γ )
2
+ E∗n(γ )

2)≤ Cγ 2(d+1),

as asserted. �

We next show how the finite range of dependence assumption (F1) yields a relation between Jm+n(`)

and Jm(`) for n > 0.

Lemma 5.2. There exists c7 = c7(d) such that, for any ` and any m, n ≥ 0,

Jm+n(`)≤ E2
m +

c7

3n(d+2) Jm(`). (5-13)
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Similarly,
J ∗m+n(−`)≤ E∗2m +

c7

3n(d+2) J ∗m(−`). (5-14)

Proof. Since ` plays no role, we suppress its dependence. Consider that Gm+n =
⋃3n(d+2)

i=1 Gi
m for some

choice of enumeration of cubes {Gi
m}. Therefore, for each u ∈ S(Gm+n, ω),

|P(Gm+n; u)|2

=

( 3n(d+2)∑
i=1

|P(Gi
m; u)|

)2

=

∑
i

|P(Gi
m; u)|

2
+

∑
i

∑
j 6=i

|P(Gi
m; u)||P(G

j
m; u)|

=

3n(d+2)∑
i=1

|P(Gi
m; u)|

2
+

3n(d+2)∑
i=1

[ ∑
d[Gi

m ,G
j
m ]>1

|P(Gi
m; u)||P(G

j
m; u)| +

∑
d[Gi

m ,G
j
m ]≤1

|P(Gi
m; u)||P(G

j
m; u)|

]
.

This implies that

µ(Gm+n, ω)
2
≤

1
32n(d+2)

3n(d+2)∑
i=1

(µ(Gi
m, u))2

+
1

32n(d+2)

3n(d+2)∑
i=1

[ ∑
d[Gi

m ,G
j
m ]>1

µ(Gi
m, ω)µ(G

j
m, ω)+

∑
d[Gi

m ,G
j
m ]≤1

µ(Gi
m, ω)µ(G

j
m, ω)

]
.

For each i fixed, if d[Gi
m,G j

m]> 1, then, by (1-7), stationarity, and Lemma 2.8,

E[µ(Gi
m, ω)µ(G

j
m, ω)] = E2

m .

If d[Gi
m,G j

m] ≤ 1, then, by the Cauchy–Schwarz inequality and stationarity,

E[µ(Gi
m, ω)µ(G

j
m, ω)] ≤ E[µ(Gm, ω)

2
] = Jm .

For any fixed i , the number of cubes such that d[Gi
m,G j

m] ≤ 1 is at most 3d+1. Therefore, after taking
expectation of both sides, summing over i = 1, . . . , 3n(d+2) copies, this yields that

Jm+n ≤
1

3n(d+2) (Jm + (3n(d+2)
− 3d+1)E2

m + 3d+1 Jm)≤ E2
m +

C
3n(d+2) Jm . �

Our next lemma shows that, by perturbing `, we can make E and E∗ positive.

Lemma 5.3. Let ` be such that

E(`)= lim
n→∞

E[µ(Gn, ω, `)] = lim
n→∞

E[µ∗(Gn, ω, `)] = E∗(`).

There exists c8 = c8(d, λ,3) such that, for any γ > 0 and any n,

E[µ(Gn, ω, `− γ )] ≥ c8γ
d+1. (5-15)



1522 JESSICA LIN AND CHARLES K. SMART

Analogously,
E[µ∗(Gn, ω,−`+ γ )] = E[µ(Gn, ω

∗, `− γ )] ≥ c8γ
d+1. (5-16)

Proof. First, we observe that, by Lemma 4.4, E(`)= 0. By the subadditive ergodic theorem, we choose
N = N (δ) sufficiently large so that E[µ(G N , ω, `)] ≤ δ.

Let w solve {
wt + F(D2w, x, t, ω)= ` in G N ,

w = 0 on ∂pG N .

Since w ∈ S(G N , ω, `), by Lemma 2.1 we have

0≤ inf
G N
w+ c132Nµ(G N , ω, `)

1/(d+1),

which implies that

P
[
w ≤−21/(d+1)c132N δ1/(d+1)]

≤ P
[
µ(G N , ω, `)≥ 2δ

]
≤

1
2 . (5-17)

Let w̃ := w−Cγ
( 1

2 |x |
2
− 32N

)
+

1
2γ (3

2N
− t) for C to be chosen. By (5-17),

P
[
w̃ ≥−2c132N δ1/(d+1)

+Cγ 32N ]
≥

1
2 .

Next we consider that there exists C = C(d, λ) such that w̃ ∈ S(G N , ω, `− γ ). We verify that

w̃t + F(D2w̃, x, t, ω)= wt −
1
2γ + F(D2w−Cγ Id, x, t, ω)

≥ wt −
1
2γ + F(D2w, x, t, ω)+ λ|Cγ Id |

= `− 1
2γ +Cλγ d ≥ `− γ

for C = C(λ, d). Since w̃ ≥ 0 on ∂pG N , by Lemma 2.1 we have

P
[
µ(G N , ω, `− γ )≥ Cγ d+1

−Cδ
]
≥

1
2 .

Therefore, for all n ≤ N ,
E[µ(Gn, ω, `+ γ )] ≥ C(γ d+1

− δ).

Sending δ→ 0, N (δ)→∞, and we have the claim by letting c8 = C . �

We are now ready to obtain a rate of decay on the second moments of µ.

Theorem 5.4. There exists τ = τ(λ,3, d) ∈ (0, 1) and c9 = c9(λ, λ, d) such that, for all m ∈ N and
each M ∈ Sd ,

Jm(F(M),M)+ J ∗m(−F(M),M)≤ c9(1+ |M |)2(d+1)K 2(d+1)
0 τm . (5-18)

Proof. We fix M ∈ Sd and drop the dependence on F(M) (although we mention where it is used). In
order to prove (5-18), it is enough to prove that there exists an increasing sequence of integers {mk} such
that |mk+1−mk | ≤ C = C(d, λ,3) with

Jmk (−3−k)+ J ∗mk
(3−k)≤ C(1+ |M |)2(d+1)K 2(d+1)

0 3−2k(d+1). (5-19)
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Recall that |F(M)| ≤ C K d+1
0 (1+ |M |)d+1. By (2-8) and scaling, it is enough to assume that we work

with

Jk :=
Jk

C(1+ |M |)2(d+1)K 2(d+1)
0

,

so that |Jk | ≤ 1 and then to prove

Jmk (−3−k)+ J ∗mk
(3−k)≤ C3−2k(d+1). (5-20)

Let m0 = 0. Suppose that (5-20) holds for the level mk−1. We would like to find mk satisfying (5-20)
such that mk −mk−1 ≤ C . We aim to set up Lemma 5.1, and then choose γ = 3−k . Given n0 and η0 as in
Lemma 5.1, we seek m satisfying (5-13).

Consider that, by Lemma 5.2,

Jm−n0(−3−k)≤ E2
m−n1

(−3−k)+
c7

3(n1−n0)(d+2) Jm−n1(−3−k). (5-21)

If we can find a choice of m such that, for a fixed n1 and η1,

Em−n1(−3−k)≤ (1+ η1)
1/2 Em(−3−k), E∗m−n1

(3−k)≤ (1+ η1)
1/2 E∗m(3

−k), (5-22)

and

Jm−n1(−3−k)≤ (1+ η1)Jm(−3−k), J ∗m−n1
(3−k)≤ (1+ η1)J ∗m(3

−k), (5-23)

then, substituting this into (5-21),

Jm−n0(−3−k)≤ (1+ η1)

[
E2

m(−3−k)+
c7

3(n1−n0)(d+2) Jm(−3−k)

]
≤ (1+ η1)

[
E2

m(−3−k)+
c7

3(n1−n0)(d+2) Jm−n0(−3−k)

]
,

which implies that [
1− (1+ η1)

c7

3(n1−n0)(d+2)

]
Jm−n0(−3−k)≤ (1+ η1)E2

m(−3−k).

Similarly, by (5-14), [
1− (1+ η1)

c7

3(n1−n0)(d+2)

]
J ∗m−n0

(3−k)≤ (1+ η1)E∗2m (3
−k).

Choosing n1(d, λ,3), η1(d, λ,3) so that[
1− (1+ η1)

c7

3(n1−n0)(d+2)

]−1

(1+ η1)≤ 1+ η0, (5-24)

we may apply Lemma 5.1, to conclude that, for m satisfying (5-22) and (5-23),

Jm(−3−k)+ J ∗m(3
−k)≤ C3−2k(d+1).
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The problem reduces to finding a choice of m satisfying (5-22) and (5-23) such that m is a bounded
distance away from mk−1. This is where we will use the inductive hypothesis. We claim that, for given
n1 and η1, there exists m such that (5-22) and (5-23) hold, and

n1 ≤ m ≤ mk−1+C log
[
C(Jmk−1(−3−(k−1))+ J ∗mk−1

(3−(k−1)))
]
. (5-25)

Consider that, for all m, by Lemma 5.3, since we are solving with right-hand side F(M) (and here is
the only place where we use that the right-hand side is F(M)),

c83−(k−1)(d+1)
≤ Em(−3−(k−1)) and c83−(k−1)(d+1)

≤ E∗m(3
−(k−1)).

This implies that, for any N ,

N∏
j=1

Jmk−1+( j−1)n1(−3−(k−1))

Jmk−1+ jn1(−3−(k−1))
≤ C

Jmk−1(−3−(k−1))

3−2(k−1)(d+1) ,

N∏
j=1

J ∗mk−1+( j−1)n1
(3−(k−1))

J ∗mk−1+ jn1
(3−(k−1))

≤ C
J ∗mk−1

(3−(k−1))

3−2(k−1)(d+1) ,

N∏
j=1

Emk−1+( j−1)n1(−3−(k−1))

Emk−1+ jn1(−3−(k−1))
≤ C

Emk−1(−3−(k−1))

3−(k−1)(d+1) ,

N∏
j=1

E∗mk−1+( j−1)n1
(3−(k−1))

E∗mk−1+ jn1
(3−(k−1))

≤ C
E∗mk−1

(3−(k−1))

3−(k−1)(d+1) .

Since each individual term in the product is bounded from below by 1, this implies that there exists
some element j i for i = 1, 2, 3, 4 such that

Jmk−1+( j1−1)n1(−3−(k−1))

Jmk−1+ j1n1(−3−(k−1))
≤ C

(
Jmk−1(−3−(k−1))

3−2(k−1)(d+1)

) 1
N
,

J ∗mk−1+( j2−1)n1
(3−(k−1))

J ∗mk−1+ j2n1
(3−(k−1))

≤ C
( J ∗mk−1

(3−(k−1))

3−2(k−1)(d+1)

) 1
N
,

Emk−1+( j3−1)n1(−3−(k−1))

Emk−1+ j3n1(−3−(k−1))
≤ C

(
Jmk−1(−3−(k−1))

3−2(k−1)(d+1)

) 1
2N
,

E∗mk−1+( j4−1)n1
(3−(k−1))

E∗mk−1+ j4n1
(3−(k−1))

≤ C
( J ∗mk−1

(3−(k−1))

3−2(k−1)(d+1)

) 1
2N
.

Let

N :=
⌈

C
log
[
32(k−1)(d+1)(Jmk−1(−3−(k−1))+ J ∗mk−1

(3k−1))
]

log(1+ δ1)

⌉
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and set m := mk−1+ jn1 for j :=maxi { j i
} ≤ N . Applying the monotonicity, this choice of m satisfies

(5-22) and (5-23). Define mk := m, and this implies, by the inductive hypothesis, that

mk ≤ mk−1+C log
[
32(k−1)(d+1)(Jmk−1(−3−(k−1))+ J ∗mk−1

(3k−1))
]

≤ mk−1+C log[C32(k−1)(d+1)3−2(k−1)(d+1)
] ≤ mk−1+C.

This completes the induction and the proof of (5-19). By the monotonicity in the right-hand side `, this
actually yields a sequence {mk} such that |mk −mk−1| ≤ C for all k and

Jmk + J ∗mk
≤ C3−2k(d+1).

Using the monotonicity of Jm in m to interpolate between points m=3mk , we obtain (5-18) for some c9. �

Using this rate on the decay of the second moments, we apply Chebyshev’s inequality to obtain a rate
on the decay of µ.

Corollary 5.5. For every p < d + 2, there exists c = c(p, λ,3, d) and α = α(λ,3, p, d) such that, for
all m ∈ N and all ν ≥ 1,

P
[
µ(Gm, ω, F(M),M)≥ (1+ |M |)d+1K d+1

0 3−mαν
]
≤ exp(−cν3mp) (5-26)

and

P
[
µ∗(Gm, ω, F(M),M)≥ (1+ |M |)d+1K d+1

0 3−mαν
]
≤ exp(−cν3mp). (5-27)

Proof. We only prove (5-26), since (5-27) follows by identical arguments. Without loss of generality, we
assume that M = 0 and we drop the dependence on F(0).

Fix m ∈ N and let n ∈ N to be chosen. We consider decomposing Gm+n+1 =
⋃3d+2

i=1 Gi
n , where

Gi
n =

⋃3m(d+2)

j=1 Gi j
n is a collection of subcubes of size Gn such that each of the subcubes of size Gn is

separated by distance at least 1.
By the finite range of dependence assumption (F1), for each i ,

µ(Gi j
n , ω) and µ(Gik

n , ω) are independent if j 6= k. (5-28)

Using this decomposition yields that

log E
[
exp(ν3m(d+2)µ(Gm+n+1, ω))

]
≤ log E

[ 3d+2∏
i=1

3m(d+2)∏
j=1

exp(ν3−(d+2)µ(Gi j
n , ω))

]

≤ 3−(d+2)
3(d+2)∑
i=1

log E

[ 3m(d+2)∏
j=1

exp(νµ(Gi j
n , ω))

]

= 3−(d+2)
3(d+2)∑
i=1

log
( 3m(d+2)∏

j=1

E
[
exp(νµ(Gi j

n , ω))
])

= 3m(d+2) log E
[
exp(νµ(Gn, ω))

]
,
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where the last line holds by stationarity. Moreover, if we choose ν = C K−1/(d+1)
0 , then νµ(Gn, ω)≤ 1

almost surely. Using the elementary inequalities{
exp(s)≤ 1+ 2s for all 0≤ s ≤ 1,
log(1+ s)≤ s for all s ≥ 0,

yields that, for this choice of ν,

log E
[
exp(C K−(d+1)

0 3m(d+2)µ(Gm+n+1, ω))
]
≤ 3m(d+2)E[C K−(d+1)

0 µ(Gn, ω)] ≤ C3m(d+2)τ n (5-29)

by Theorem 5.4.
Therefore, by Chebyshev’s inequality and (5-29), this yields that

P
[
µ(Gm+n+1, ω)≥ K d+1

0 ν
]
≤ P

[
exp(K−(d+1)

0 3m(d+2)µ(Gm+n+1, ω))≥ exp(3m(d+2)ν)
]

≤ C exp(−3m(d+2)(ν− τ n)).

Letting ν = 1
2τ

nν and using that ν ≥ 1, we have that

P
[
µ(Gm+n+1, ω)≥ Cτ n K d+1

0 ν
]
≤ C exp(−3m(d+2)τ nν).

Choosing n ∼ b(mp log 3)/(2(p log 3+ |log τ |))c ≤ 1
2 m implies that c3−mp

≤ τ n
≤ C3−mp, which

yields that
P
[
µ(Gm+n+1, ω)≥ C3−mp K d+1

0 ν
]
≤ C exp(−3m(d+2−p)ν).

Relabeling m = m+ n+ 1 and p = d + 2− p yields that there exists α = α(λ,3, p, d) such that

P
[
µ(Gm, ω)≥ C3−mαK d+1

0 ν
]
≤ C exp(−3mpν). �

6. The proof of Theorem 1.1

We finally present the rate for homogenization in probability using Theorem 5.4. This follows a general
procedure which has been shown in [Caffarelli and Souganidis 2010; Armstrong and Smart 2014b;
Lin 2015]. However, for completeness we provide the argument here as well, similar to the approach
of [Armstrong and Smart 2014b]. As mentioned in the above references, if the limiting function u is
C2(Rd+1) (i.e., C2(Rd)∩C1([0, T ])), then obtaining a rate for the homogenization is straightforward.
Studying limε→0w

ε, where wε solves (4-1), is equivalent to the stochastic homogenization of (1-1) when
the limiting function is of the form u(x, t)= bt + 1

2 x ·Mx . By (4-12) and Chebyshev’s inequality, a rate
on the decay of µ(G1/ε, ω) immediately yields a rate in probability for the decay of wε. If u ∈ C2, then,
by replacing u with its second-order Taylor series expansion with cubic error, we obtain a rate for uε − u.
In general, since u is not necessarily C2, we must argue that one can still approximate u by a quadratic
expansion. This type of approximation is the motivation for the theory of δ-viscosity solutions, which
was introduced in the elliptic setting in [Caffarelli and Souganidis 2010] and generalized to the parabolic
setting by Turanova [2015]. The rate in [Lin 2015] was obtained by using this regularization procedure.

For clarity and for a more general approach, we choose to present the argument in terms of a quantified
comparison principle as in [Armstrong and Smart 2014b]. We revert to quantifying the traditional
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“doubling variables” arguments used in the theory of viscosity solutions (see for example [Crandall et al.
1992; Crandall 1997]). We are informed that this is related to forthcoming work by Armstong and Daniel
[2015], who generalize this method to finite difference schemes for fully nonlinear, uniformly parabolic
equations. The next series of results are entirely deterministic and therefore we suppress the dependence
on the random parameter ω.

We first present a result relating the measure of the parabolic subdifferential to the measure of the
corresponding touching points in physical space-time.

Proposition 6.1. Let u and v be such that

ut +M−(D2u)− R0 ≤ 0≤ vt +M+(D2v)+ R0 in UT . (6-1)

Assume δ > 0 and let V = V ⊆UT ×UT and W ⊆Rd+1
×Rd+1 be such that, for all ((p, h), (q, k)) ∈W ,{

(x, t, y, s) : sup
UT×UT :τ≤t,σ≤s

u(ξ, τ )− v(η, σ )− 1
2δ
[|ξ − η|2+ (τ − σ)2] − p · ξ − q · η

= u(x, t)− v(y, s)− 1
2δ
[|x − y|2+ (t − s)2] − p · x − q · y,

h = u(x, t)− 1
2δ
[|x − y|2+ (t − s)2] − p · x, k =−v(y, s)− 1

2δ
[|x − y|2+ (t − s)2] − q · y

}
⊆ V .

Then there exists a constant C = C(λ,3, d,UT ) such that

|W | ≤ C(R0+ δ
−1)2d+2

|V |. (6-2)

Proof. Without loss of generality, we may assume by scaling that UT ⊆ Q1(0, 1). As usual, we constantly
relabel C for a constant which only depends on λ, 3, and d . For i = 1, 2, let (xi , ti , yi , si , pi , qi , hi , ki )

satisfy

sup
UT×UT ,τ≤ti ,σ≤si

u(x, τ )− v(y, σ )− 1
2δ
(|x − y|2+ (τ − σ)2)− pi · x − qi · y

= u(xi , ti )− v(yi , si )−
1
2δ
(|xi − yi |

2
+ (ti − si )

2)− pi · xi − qi · yi

= hi + ki ,

and let

1= (|x1− x2|
2
+ |y1− y2|

2
+ |t1− t2| + |s1− s2|)

1/2. (6-3)

We claim that

(|p1− p2|
2
+ |q1− q2|

2
+ |h1− h2|

2
+ |k1− k2|

2)1/2 ≤ C(1+ δ−1)1+ o(1) (6-4)

as |1| → 0.
If (6-4) holds, then one can obtain (6-2) using standard measure-theoretic arguments. A priori, this

may not be apparent since the left-hand side of (6-4) corresponds to the Euclidean distance between
points in Rd+1, whereas 1 corresponds to the parabolic distance under the metric d[ · , · ]. However, the
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parabolic cylinders have the appropriate doubling property with respect to Lebesgue measure, and thus
standard measure-theoretic arguments apply.

We prove a series of claims, using standard techniques in the method of doubling variables.

Claim. For each i ,

|ti − si | ≤ δR0+C. (6-5)

Consider that the map

(x, t)→ u(x, t)− 1
2δ
[|x − y1|

2
+ (t − s1)

2
] − p1 · x

achieves its maximum over U × (0, t1] at (x1, t1). Therefore, by (6-1),

1
δ
(t1− s1)+M−(δ−1 Id)≤ R0,

implying that

t1− s1 ≤ δ[R0− (−Cδ−1)] = δR0+C. (6-6)

Similarly, the map

(y, s)→ v(y, s)+ 1
2δ
[|x1− y|2+ (t1− s)2] + q1 · y

achieves its minimum over U × (0, s1] at (y1, s1). By (6-1),

t1− s1 ≥ δ(−R0−Cδ−1)=−δR0−C. (6-7)

Combining (6-6) and (6-7) yields (6-5).

Claim. Let ut +M+(D2u)≥−1 in Q1. Let (p1, h1) ∈P((x1, t1); u) and (p2, h2) ∈P((x2, t2); u). Then

|p1− p2|
2
+ |h1− h2|

2
≤ C(|x1− x2|

2
+ |t1− t2|2+ |x1− x2|

4
+ |t1− t2|). (6-8)

Without loss of generality, by subtracting a plane and translating, we may assume that (p2, h2) =

(0, 0) and (x2, t2) = (0, 0). The claim will follow from the regularity of 0u (Lemma 2.3). Since
(x1, t1), (0, 0) ∈ {u = 0u

} and D0u is Lipschitz continuous, this implies that

|p1| ≤ C(|x1|
2
+ |t1|)1/2.

To estimate |h1|, we again apply the regularity of 0u and the bound on |p1| to conclude that

|h1| = |h1− h2| = |u(x1, t1)− p1 · x1− u(x2, t2)| ≤ C(|x1|
2
+ |t1|)1/2(1+ |x1|).

Therefore,

|h1|
2
≤ C2(|x1|

2
+ |t1|)(1+ |x1|)

2
≤ C(|x1|

2
+ |t1|2+ |x1|

4
+ |t1|).

Combining these observations yields (6-8).
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Next, we apply these observations to the parabolic subdifferentials. For simplicity, we adopt some nota-
tion. Without loss of generality, assume that s1≥ s2. Let Tmin :=min{t1, t2, s2} and Tmax :=max{t1, t2, s1}.
Notice that, by (6-5), Tmax−Tmin ≤ δR0+C+12

:= γ 2. Therefore, (x1, t1), (x2, t2)∈ Qγ (x1, Tmax). Let

ũ(x, t) := −u(x, t)+ 1
2δ
[|x − y1|

2
+ (t − s1)

2
].

This implies that

ũt +M+(D2ũ)=−ut + δ
−1(t − s1)+M+(−D2u+ δ−1 Id)

≥−ut + δ
−1(t − s1)−M−(D2u)− δ−1C

≥−R0−C(1+ δR0+1
2)δ−1

≥−C(R0+ δ
−1(1+12)) in Qγ (x1, TM). (6-9)

We next find elements in the parabolic subdifferential of ũ.

Claim. We have
(−p1, ũ(x1, t1)+ p1 · x1) ∈ P((x1, t1); ũ). (6-10)

Since

u(x1, t1)−
1
2δ
[|x1− y1|

2
+ (t1− s1)

2
] − p1 · x1 ≥ u(x, t)− 1

2δ
[|x − y1|

2
+ (t − s1)

2
] − p1 · x

for all t ≤ t1 and x ∈U , this implies that

ũ(x1, t1)− (−p1 · x1)=−u(x1, t1)+
1
2δ
(|x1− y1|

2
+ (t1− s1)

2)+ p1 · x1 ≤ ũ(x, t)− (−p1 · x)

for all t ≤ t1 and x ∈U . This yields (6-10).

Claim. We have (
−p2+

y2− y1

δ
, ũ(x2, t2)+

(
p2−

y2− y1

δ

)
· x2

)
∈ P((x2, t2); ũ). (6-11)

Since

−u(x, t)+ 1
2δ
[|x − y2|

2
+ (t − s2)

2
] + p2 · x

= ũ(x, t)+ 1
2δ
[|x − y2|

2
+ (t − s2)

2
− |x − y1|

2
− (t − s1)

2
] + p2 · x

= ũ(x, t)+
(1
δ
(−y2+ y1)+ p2

)
· x + 1

2δ
[(t − s2)

2
− (t − s1)

2
+ |y2

2 | − |y1|
2
],

we obtain that

ũ(x2, t2)+
(1
δ
(−y2+ y1)+ p2

)
· x2+

1
2δ
[(t2− s2)

2
− (t2− s1)

2
]

≤ ũ(x, t)+
(1
δ
(−y2+ y1)+ p2

)
· x + 1

2δ
[(t − s2)

2
− (t − s1)

2
].

Simplifying yields that

ũ(x2, t2)+
(1
δ
(−y2+ y1)+ p2

)
· x2+

1
δ
[−(t2− t)(s2− s1)] ≤ ũ(x, t)+

(1
δ
(−y2+ y1)+ p2

)
· x .
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Therefore, for t ≤ t2, since s1 ≥ s2,

ũ(x2, t2)+
(1
δ
(−y2+ y1)+ p2

)
· x2 ≤ ũ(x, t)+

(1
δ
(−y2+ y1)+ p2

)
· x,

which yields the claim.
By combining (6-8), (6-9), (6-10), and (6-11),∣∣∣∣p1− p2+

1
δ
(y2− y1)

∣∣∣∣2+ ∣∣∣∣ũ(x1, t1)+ p1 · x1− ũ(x2, t2)−
(

p2−
1
δ
(y2− y1)

)
· x2

∣∣∣∣2
≤ C[R0+ δ

−1(1+12)]2(|x1− x2|
2
+ |t1− t2|2+ |x1− x2|

4
+ |t1− t2|).

Recall that

−ũ(x1, t1)− p1 · x1 = h1

and

−ũ(x2, t2)−
(

p2−
1
δ
(y2− y1)

)
· x2 = h2+

1
2δ
(|y2|

2
− |y1|

2)+
1
2δ
[(t2− s2)

2
− (t2− s1)

2
]

= h2+
1
2δ
[|y2|

2
− |y1|

2
+ s2

2 − s2
1 − 2t2(s2− s1)].

Collecting terms yields that

|p1− p2|
2
+ |h1− h2|

2
≤ C[R0+ δ

−1(1+12)]2[|x1− x2|
2
+ |t1− t2|2+ |x1− x2|

4
+ |t1− t2|]

+
1
δ2 |y2− y1|

2
+

1
4δ2 [|y2|

2
− |y1|

2
+ s2

2 − s2
1 − 2t2(s2− s1)]

2

≤ C[R0+ δ
−1(1+12)]212

+
1
δ2 o(12)

≤ C[R0+ δ
−1
]
212
+ o(12),

which implies that

(|p1− p2|
2
+ |h1− h2|

2)1/2 ≤ C(R0+ δ
−1)1+ o(1).

An analogous argument yields that

(|q1− q2|
2
+ |k1− k2|

2)1/2 ≤ C(R0+ δ
−1)1+ o(1).

Combined, this yields (6-4). �

Next, we show that, if |u − uε| is large somewhere, then we can find a matrix M∗ and a parabolic
cube G∗ such that µ(G∗, F(M∗),M∗) is very large. We mention that both M∗ and G∗ come from a
countable family of matrices and cubes. In order to select M∗ and G∗, we must construct the appropriate
approximation of u to argue that u is close to a quadratic expansion. We will employ the W 3,α estimate
proven in [Daniel 2015], which yields an estimate on the measure of points which can be well-approximated
by a quadratic expansion. We state the result slightly differently than it appears in [Daniel 2015], in order
to readily apply it for our purposes.
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Theorem 6.2 [Daniel 2015, Theorem 1.2]. Let ut+F(D2u)= 0 in Q1, u = g on ∂p Q1, with F uniformly
parabolic. Let Q ⊆ Q1. For each κ > 0, let

6κ :=
{
(x, t)∈ Q1 : ∃(M, ξ, b)∈Sd

×Rd
×R with |M | ≤ κ such that, for all (y, s)∈ Q1 with s ≤ t,∣∣u(y, s)− u(x, t)− b(s− t)− ξ · (y− x)− 1

2(y− x) ·M(y− x)
∣∣≤ 1

6κ(|x − y|3+ |s− t |3/2)
}
.

There exists C = C(λ,3, d) and α = α(λ,3, d) such that, for every κ > 0,∣∣Q1 \
(
6κ ∩ Q1/2

(
0,− 1

4

))∣∣≤ C
(

κ

supQ1

(
[|u| + |F(0, · , · )|] + ‖g‖C0,1(∂p Q1)

))−α.
We note that 6κ corresponds to the set of points which can be touched monotonically in time by a

quadratic expansion with controllable error. Moreover, the points in 6κ are touched from above and below
by polynomials. We are now ready to show the existence of M∗ and G∗. For simplicity, we say that a
function 8 :UT ×UT achieves a monotone maximum at (x0, t0, y0, s0) if 8(x0, t0, y0, s0)≥8(x, t, y, s)
for all x , y ∈U and all t ≤ t0, s ≤ s0.

Proposition 6.3. Let u and v satisfy{
ut + F(D2u)= f (x, t)= vt + F(D2v, x, t) in UT ,

u = v = g(x, t) on ∂pUT ,

such that

‖F(0)‖L∞(UT )+ sup ‖F(0, · , · )‖L∞(UT )+‖g‖C0,1(∂pUT )+‖ f ‖C0,1(UT ) ≤ R0 <+∞.

There exists an exponent σ = σ(λ,3, d) ∈ (0, 1) and constants c = c(λ,3, d,UT ), C = C(λ,3, d,UT )

such that, for any l ≤ η, if

A := sup
UT

(u− v)≥ C R0η
σ > 0, (6-12)

then there exists M∗ ∈ Sd , (y∗, s∗) ∈UT such that:

• |M∗| ≤ ησ−1,

• l−1 M∗, η−1 y∗, and η−2s∗ have integer entries,

• µ((y∗, s∗)+ ηG0, F(M∗),M∗)≥ cAd+1,

where ηG0 =
(
−

1
2η,

1
2η
]d
× (−η2, 0].

Proof. As usual, c and C will denote constants which depend on universal quantities, which will vary line
by line. We first point out some simplifications which we take without loss of generality. We assume
that R0 = 1 and UT ⊆ Q1(0, 1), and appropriately renormalize.

Next, we claim that we may replace v by ṽ solving{
ṽt + F(D2ṽ, x, t)= f (x, t)+ cA in UT ,

ṽ = v on ∂pUT .
(6-13)
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The Alexandrov–Backelman–Pucci–Krylov–Tso estimate [Wang 1992; Imbert and Silvestre 2012] yields
that

ṽ− v ≤ C A in UT ,

so, by adjusting the constant in (6-12), we may take the replacement at no cost.
Finally, we point out that, by the Krylov–Safonov estimates [Wang 1992; Imbert and Silvestre 2012],

u and v are Hölder continuous and, since R0 ≤ 1, there exists α(λ,3, d) ∈ (0, 1) such that

‖u‖C0,α(U T )
+‖v‖C0,α(U T )

≤ C. (6-14)

Without loss of generality, assume that α ≤ 1
2 . Since u = v on ∂pUT , this implies that, for all

(x, t), (y, s) ∈UT ,

|u(x, t)− v(y, s)| ≤ C
(
d[(x, t), ∂pUT ]

α
+ d[(y, s), ∂pUT ]

α
+ d[(x, t), (y, s)]α

)
.

Consider the function

8(x, t, y, s, p, q)= u(x, t)− v(y, s)− 1
2δ
[|x − y|2+ (t − s)2)] − p · x − q · y.

Suppose there exists a point (x0, t0) such that u(x0, t0)− v(x0, t0)≥ 3
4 A. This implies that

8(x0, t0, x0, t0, 0, 0)≥ 3
4 A.

Let
UT (ρ) := {(x, t) ∈UT ×UT : d[(x, t), ∂pUT ] ≥ ρ}.

Let p, q ∈ Br , where we define r := 1
8 A. We would like to show that 8( · , · , · , · , p, q) achieves it

monotone maximum in UT (ρ)×UT (ρ) for some choice of ρ.
We note that

8(x, t, y, s, p, q)

= u(x, t)− v(y, s)− 1
2δ
[|x − y|2+ (t − s)2] − p · x − q · y

≤ C
(
d[(x, t), ∂pUT ]

α
+ d[(y, s), ∂pUT ]

α
+ d[(x, t), (y, s)]α

)
−

1
2δ
[|x − y|2+ (t − s)2] + 2r.

By Young’s inequality,

|x − y|α = A(2−α)/2[A−(2−α)/α|x − y|2]α/2 ≤ 1
8C

A+C A−(2−α)/α|x − y|2

and
|t − s|α/2 = A(4−α)/4[A−(4−α)/α|t − s|2]α/4 ≤ 1

8C
A+C A−(4−α)/α(t − s)2.

Assume A ≤ 1. This implies that A−(2−α)/α ≤ A−(4−α)/α. Therefore,

8(x, y, t, s, p, q)

≤ Cd[(x, t), ∂pUT ]
α
+Cd[(y, s), ∂pUT ]

α
+

1
4 A+ 1

4 A+C
(

A−(4−α)/α − 1
2δ

)
[|x − y|2+ (t − s)2].
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By letting
δ ≤ 1

2 A(4−α)/α, (6-15)

we have that
8(x, y, t, s, p, q)≤ Cd[(x, t), ∂pUT ]

α
+C[d(y, s), ∂pUT ]

α
+

1
2 A.

Therefore, letting ρ := C A1/α yields that, for any p, q ∈ Br , 8 achieves its monotone maximum
in UT (ρ)×UT (ρ).

Using the language of Proposition 6.1, we choose W ⊆ Rd+1 such that Qr ×Qr ⊆W . This yields that

V :=
{
(x, t, y, s) ∈UT ×UT : for some (p, q) ∈ Br × Br ,

8( · , · , · , · , p, q) achieves its monotone maximum at (x, t, y, s) for appropriate (h, k) ∈ R2}
⊆UT (ρ)×UT (ρ).

By Proposition 6.1, this implies that

|V | ≥ C(1+ δ−1)−2d−2r2d+2
≥ C(1+ A−(4−α)/α)−2d−2 A2d+2

≥ C A(8d+8)/α.

If we define the projection π : Rd+1
×Rd+1

→ Rd+1 by π((A, B))= A, we have that

π(V )≥ |UT |
−1
|V | ≥ |Q1|

−1
|V | ≥ C A(8d+8)/α. (6-16)

Finally, we note that, for every ((x, t), (y, s))∈V , since8(x, t, y, s, p, q)≥0 for some p, q ∈ Br ⊆ B1,
α ≤ 1

2 , and A ≤ 1, this implies that

|x − y|2+ |t − s|2 ≤ Cδ ≤ C A(4−α)/α ≤ C A6. (6-17)

Next, we use (6-16) to show that there are points in π(V ) where u can be approximated by a quadratic
expansion. Let 6κ as in the W 3,α estimate (Theorem 6.2).

By the W 3,α estimate, assuming that UT ⊆ Q1,

|UT \6κ(UT )| ≤
∣∣Q1 \6κ(UT )∩ Q1/2

(
0,− 1

4

)∣∣≤ Cκ−α. (6-18)

Although a priori the two α’s in (6-16) and (6-18) are not necessarily the same, we can assume without
loss of generality they are the same by taking the minimum of the two.

Thus, if we let κ ≥ C A−4(d+2)/α2
, then

|UT \6κ(UT )|< |π(V )|,

which implies that π(V )∩6κ 6=∅. This implies that there are points of π(V ) where u can be touched
monotonically in time by a quadratic expansion with controllable error, and the function 8 achieves it
monotone maximum there.

Finally, we show that there exist M∗, y∗, s∗, and G∗ which satisfy the conclusion of the proposition. By
the previous step, there exists (x1, t1, y1, s1) ∈ V with (x1, t1) ∈6κ . In other words, there exist p, q ∈ Br

such that
8(x1, t1, y1, s1, p, q)= sup

UT (ρ)×UT (ρ),τ≤t1,σ≤s1

8(x, τ, y, σ, p, q),
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and (M, ξ, b) such that |M | ≤ κ and, for all (x, t) ∈UT , t ≤ t1,∣∣u(x, t)− u(x1, t1)− b(t − t1)− ξ · (x − x1)−
1
2(x − x1) ·M(x − x1)

∣∣≤ 1
6κ(|x − x1|

3
+ |t − t1|3/2).

Notice that, since ut + F(D2u) = f (x, t) in UT and u is touched from above and below at (x1, t1) by
polynomials with Hessians equal to M , this implies that b+ F(M)= f (x1, t1). Therefore, defining

φ(x, t) := u(x1, t1)+b(t − t1)+ (ξ − p) · (x − x1)+
1
2(x − x1) ·M(x − x1)−

1
6κ(|x − x1|

3
+|t − t1|3/2),

we have

u(x1, t1)− v(y1, s1)−
1
2δ
[|x1− y1|

2
+ (t1− s1)

2
]

≥ sup
UT×UT ,t≤t1,s≤s1

{
φ(x, t)− v(y, s)− 1

2δ
[|x − y|2+ (t − s)2] − q · (y− y1)

}
. (6-19)

To control the right-hand side from below, we consider that, for any (y, s) ∈UT with s ≤ s1, letting
x = x1+ y− y1 and t = t1+ s− s1 ≤ t1,

sup
(x,t)∈UT ,t≤t1

{
φ(x, t)− 1

2δ
[|x − y|2+ (t − s)2]

}
≥ φ(x1+ y− y1, t1+ s− s1)− 12[|x1− y1|

2
+ (t1− s1)

2
]

= u(x1, t1)+ b(s− s1)+ (ξ − p) · (y− y1)+
1
2(y− y1) ·M(y− y1)

−
1
6κ(|y− y1|

3
+ |s− s1|

3/2)−
1
2δ
[|x1− y1|

2
+ (t1− s1)

2
]. (6-20)

Combining (6-19) and (6-20) yields that

u(x1, t1)− v(y1, s1)−
1
2δ
[|x1− y1|

2
+ (t1− s1)

2
]

≥ sup
(y,s)∈UT ,s≤s1

{
u(x1, t1)+b(s−s1)+(ξ− p)·(y−y1)+

1
2(y−y1)·M(y−y1)−

1
6κ(|y−y1|

3
+|s−s1|

3/2)

−
1
2δ
[|x1− y1|

2
+ (t1− s1)

2
] − v(y, s)− q · (y− y1)

}
.

This implies that

v(y1, s1)≤ inf
(y,s)∈UT ,s≤s1

{
v(y, s)− b(s− s1)− (ξ − p− q) · (y− y1)

−
1
2(y− y1) ·M(y− y1)+

1
6κ(|y− y1|

3
+ |s− s1|

3/2)
}
. (6-21)

Since l ≤ η, choose M∗ ∈ Sd so that M ≤ M∗ ≤ M +Cησ Id and l−1 M∗ has integer entries. Using
that F is uniformly elliptic, F(M∗)≤ F(M)= f (x1, t1)− b. Let

2(y, s) := v(y, s)− b(s− s1)− (ξ − p− q) · (y− y1)

−
1
2(y− y1) · (M −Cησ Id)(y− y1)+

1
6κ(|y− y1|

3
+ |s− s1|

3/2).
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By (6-13),

2s + F(M∗+ D22, y, s)

= vs − b+ 1
4κ|s− s1|

1/2

+ F
(

M∗+ D2v−M +Cησ Id+1
2κ|y− y1| Id+1

2κ
(y− y1)⊗ (y− y1)

|y− y1|
, y, s

)
≥ vs − b+ F(D2v, y, s)−C

(
M∗−M +Cησ Id+C 1

2κ|y− y1| Id
)

≥ f (y, s)+ cA− b−Cησ −C 1
2κ|y− y1|

≥ f (y, s)+ cA− b−Cησ −C 1
2(κ + 1)|y− y1|

≥ F(M)−C A6
+ cA−Cησ −C 1

2(κ + 1)|y− y1|,

where the last line holds by (6-17), using that F(M)= f (x1, t1)− b.
This implies that, in QcA(κ+1)−1(y1, s1),

2s + F(M∗+ D22, y, s)≥ F(M)−C A6
+ cA−Cησ .

In addition, comparing (6-21) and the definition of 2,

2(y1, s1)≤ inf
(y,s)∈UT ,s≤s1

(2−Cησ |y− y1|
2). (6-22)

Let (y∗, s∗) be such that (η−1 y∗, η−2s∗) ∈ Zd+1 and d[(y∗, s∗), (y1, s1)] ≤
√

dη.
Let

G∗ := (y∗, s∗)− ηG0.

Since (y1, s1) ∈ UT (ρ), we have d[(y∗, s∗), ∂pUT ] ≥ ρ −
√

dη ≥
√

dη so long as ρ := C A1/α
≥ Cη

(which is satisfied if σ ≤ α). This implies that G∗ ⊆UT .
We next claim that G∗ ⊆ QcA(κ+1)−1(y1, s1) for an appropriate choice of κ . Let κ := ησ−1 with

σ :=
(
(1+4(d+2))/α2

)−1
≤α. Since A≥Cησ , we may choose the constants so that cA(κ+1)−1

≥
√

dη.
This yields that G∗ ⊆ QcA(κ+1)−1(y1, s1), as asserted.

Therefore,

2s + F(M∗+ D22, y, s)≥ F(M∗) in G∗. (6-23)

By (6-22), we conclude that

inf
G∗
2≤ inf

∂pG∗
2−Cησ . (6-24)

This implies, by Lemma 2.1 and (6-24), that

µ(G∗, F(M∗),M∗)≥ cAd+1

and this completes the proof. �

Finally, we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. We prove a rate in probability for the decay of u− uε. Fix M0 and UT such that
UT ⊂ Q1 and

1+ K0+‖g‖C0,1(∂pUT ) ≤ M0.

We will show that there exists β > 0 and a random variable X :�→ R such that

sup
UT

{u(x, t)− uε(x, t, ω)} ≤ C[1+ ε pX(ω)]εβ .

We mention that a rate on uε − u follows by a completely analogous argument for µ∗, so we choose to
omit it.

Fix ε ∈ (0, 1) and p < d+ 2, and let σ be as in Proposition 6.3. Let α be the α associated with p as in
Corollary 5.5 and let q := 1

4 p. Choose m such that

max{3−m/4, 3−mα/(d+1)
} ≤ ε. (6-25)

In the language of Proposition 6.3, let η := 3−mα/2(d+1) and choose l := 3−mα/2d . Notice that we have
that l ≤ η ≤ ε1/2. This implies that, for any A ≥ Cησ ,{
ω : sup

(x,t)∈UT

u(x, t)− uε(x, t, ω)≥ A
}
⊆

⋃
(y,s,M)∈I(A)

{
ω : µ((y/ε, s/ε2)+ ηε−1G0, ω, F(M),M)≥ cAd+1}

=

⋃
(y,s,M)∈I(A)

{
ω : µ((y/ε, s/ε2)+Gm, ω, F(M),M)≥ cAd+1},

where

I(A) :=
{
(y, s,M) : (y, s) ∈ Q1, (η

−1 y, η−2s) ∈ Zd+1, |M | ≤ 3mα/2(d+1)}.
This is possible since η < 1 and Proposition 6.3 yields that σ < 1, which implies that |M | ≤ ησ−1

≤ η−1
≤

3mα/2(d+1). We mention also that l−1 M ∈ Zd2
∩Sd .

This implies that

sup
(x,t)∈UT

{u(x, t)− uε(x, t, ω)} ≤ cAd+1
+Ym(ω), (6-26)

where

Ym(ω) :=
{
supµ((z, r)+Gm, ω, F(M),M) : (zε−1, rε−2,M) ∈ I(A)

}
. (6-27)

To find the number of elements in I(A), consider that, since η−1z ∈ Zd
∩ Q1/ε and η−2s ∈ Z∩ [0, 1/ε2

],
there are (εη)−(d+2) choices for (z, s). This implies that there are at most 33mα choices. For the matrices,
consider that, since 3mα/2d M ∈Zd2

∩Sd and |M | ≤ 3mα/2(d+1), this implies that there are at most 3mα(d+1)

terms. In total, there are 3mα(d+4) combinations to choose from in I(A).
By Corollary 5.5, for each (z, r,M) ∈ I(A),

P
[
(z, r)+µ(Gm, ω, F(M),M)≥ (1+ |M |)d+13−mατ

]
≤ C exp(−c3mpτ).
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Since |M |d+1
≤ 3mα/2, this implies that

P
[
(z, r)+µ(Gm, ω, F(M),M)≥ 3−mα/2τ

]
≤ exp(−c3mpτ).

Using a union bound and summing over all of the terms in I(A),

P
[
Ym(ω)≥ 3−mα/2τ

]
≤ C3mα(d+4) exp(−c3mpτ)≤ C exp(−c3mpτ).

Replacing τ by τ + 1, we have that, for all τ ≥ 0,

P
[
(3mα/2Ym(ω)− 1)+ ≥ τ

]
≤ C exp(−c3mpτ).

Replacing again τ → 3−mqτ yields that

P
[
3mq3mα/2(Ym(ω)− 1)+ ≥ τ

]
≤ C exp(−c3m(p−q)τ).

Summing over m and using that p > q , this implies that, for all τ ≥ 0,

P
[
sup

m
{3mq3mα/2(Ym(ω)− 1)+} ≥ τ

]
≤

∑
m

P
[
3mq3mα/2(Ym(ω)− 1)+ ≥ τ

]
≤ C exp(−cτ). (6-28)

Letting
X(ω) := sup

m
{3mq(3mα/2Ym(ω)− 1)+} (6-29)

and integrating (6-28) in τ yields that

E
[
exp(X(ω))

]
≤ C. (6-30)

This implies that

sup
(x,t)∈UT

{u(x, t)− uε(x, t, ω)} ≤ Cησ(d+1)
+C(3−mqX(ω)+ 1)3−mα/2

≤ C(1+ ε pX(ω))εβ

for some choice of β, where β(λ,3, d, p). �
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