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SCALING LIMIT FOR THE KERNEL OF THE SPECTRAL PROJECTOR
AND REMAINDER ESTIMATES IN THE POINTWISE WEYL LAW

YAIZA CANZANI AND BORIS HANIN

Let .M;g/ be a compact, smooth, Riemannian manifold. We obtain new off-diagonal estimates as �!1
for the remainder in the pointwise Weyl law for the kernel of the spectral projector of the Laplacian onto
functions with frequency at most �. A corollary is that, when rescaled around a non-self-focal point,
the kernel of the spectral projector onto the frequency interval .�; �C 1� has a universal scaling limit
as �!1 (depending only on the dimension of M ). Our results also imply that, if M has no conjugate
points, then immersions of M into Euclidean space by an orthonormal basis of eigenfunctions with
frequencies in .�; �C 1� are embeddings for all � sufficiently large.

1. Introduction

Suppose that .M;g/ is a smooth, compact, Riemannian manifold without boundary of dimension n� 2.
Let �g be the nonnegative Laplacian acting on L2.M;g;R/ and let f'j gj be an orthonormal basis of
eigenfunctions:

�g'j D �
2
j 'j ; (1)

with 0D �2
0
< �2

1
� �2

2
� � � � . This article concerns the �!1 asymptotics of the Schwartz kernel

E�.x;y/D
X
�j��

'j .x/'j .y/ (2)

of the spectral projection
E� WL

2.M;g/!
M

�2.0;��

ker.�g ��
2/

onto functions with frequency at most �. We are primarily concerned with the behavior of E�.x;y/

at points x, y 2 M for which the Riemannian distance distg.x;y/ is less than the injectivity radius
inj.M;g/, so that the inverse of the exponential map exp�1

y .x/ is well defined. We write

E�.x;y/D
�n

.2�/n

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j
CR.x;y; �/; (3)

where the remainder R.x;y; �/ is a smooth function of x and y. The integral in (3) is over the cotangent
fiber T �y M and it is coordinate-independent because the integration measure d�=

p
jgy j is the quotient
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of the natural symplectic form d� dy on T �M by the Riemannian volume form
p
jgy j dy. The integral

is also symmetric in x and y, which can be seen by changing variables from T �y M to T �xM using the
parallel transport operator (see (28)).

Our main result, Theorem 2, fits into a long history of estimates on R.x;y; �/ as �! C1 (see
Section 1.2 for some background). To state it, we need a definition from [Safarov 1988; Sogge and
Zelditch 2013]:

Definition 1. A point x 2M is said to be non-self-focal if the set of unit covectors

Lx D f� 2 S�x M j expx.t�/D x for some t > 0g (4)

has zero measure with respect to the surface measure induced by g on S�x M .

Theorem 2. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n�2 with no boundary.
Suppose x0 2M is a non-self-focal point and let r� be a nonnegative function with lim�!1 r�D 0. Then

sup
x;y2B.x0;r�/

jR.x;y; �/j D o.�n�1/ (5)

as � ! 1. Here, B.x0; r�/ denotes the geodesic ball of radius r� centered at x0 and the rate of
convergence depends on x0 and r�.

The little-o estimate (5) is not new for x D y (i.e., r� D 0). Both Safarov [1988] and Sogge and
Zelditch [2002] show that R.x;x; �/D o.�n�1/ when x belongs to a compact subset of the diagonal
in M �M consisting only of non-self-focal points (see also [Safarov and Vassiliev 1997]). Safarov
[1988] also obtained o.�n�1/ estimates on R.x;y; �/ for .x;y/ in a compact subset of M �M that does
not intersect the diagonal (under the assumptions of Theorem 6). Theorem 2 simultaneously allows x¤ y

and distg.x;y/! 0 as �!1, closing the gap between the two already-known regimes. We refer the
reader to Section 1.2 for further discussion and motivation for Theorem 2 and to Section 2 for an outline
of the proof.

An elementary corollary of Theorem 2 is Theorem 3, which gives scaling asymptotics for the Schwartz
kernel

E.�;�C1�.x;y/ WD
X

�<�j��C1

'j .x/'j .y/ (6)

of the orthogonal projection

E.�;�C1� DE�C1�E� WL
2.M;g/!

M
�2.�;�C1�

ker.�g ��
2/:

Passing to polar coordinates in (3) and using thatZ
Sn�1

eihv;!i d! D .2�/n=2
J.n�2/=2.jvj/

jvj.n�2/=2
; (7)

it is straightforward to obtain the following result:



SCALING LIMIT FOR THE SPECTRAL PROJECTOR 1709

Theorem 3. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n�2 with no boundary.
Let x0 2M be a non-self-focal point. Consider any nonnegative function r� satisfying r�! 0 as �!1.
Then

sup
x;y2B.x0;r�/

ˇ̌̌̌
E.�;�C1�.x;y/�

�n�1

.2�/n=2

J.n�2/=2.� distg.x;y//
.� distg.x;y//.n�2/=2

ˇ̌̌̌
D o.�n�1/; (8)

where J� is the Bessel function of the first kind with index �, B.x0; r�/ denotes the geodesic ball of
radius r� centered at x0, and distg is the Riemannian distance.

Remark 4. Under the assumptions of Theorem 3, relation (8) holds for E.�;�Cı� with any ı > 0. The
difference is that the Bessel function term is multiplied by ı and that the rate of convergence depends
on ı. Our proof of Theorem 3 is insensitive to the choice of ı.

In normal coordinates at x0, (8) therefore implies

sup
juj;jvj<r0

ˇ̌̌̌
E.�;�C1�

�
x0C

u

�
;x0C

v

�

�
�
�n�1

.2�/n

Z
Sn�1

eihu�v;wi d!

ˇ̌̌̌
D o.�n�1/ (9)

as �!1. The measure d! is the Euclidean surface measure on the unit sphere Sn�1 and the rate of
convergence of the error term depends on r0 and the point x0. The integral over Sn�1 in (9) is the kernel
of the spectral projector onto the generalized eigenspace of eigenvalue 1 for the flat Laplacian on Rn (see
[Helgason 1981; Zelditch 2008, §2.1]).

We believe (5) holds for any number of covariant derivatives rj
xr

k
y of the remainder R.x;y; �/ with

o.�n�1/ replaced by o.�n�1CjCk/. This would immediately imply that the C 0 convergence in (8) can be
upgraded to C k convergence for all k. Proving this is work in progress by the authors. Since E.�;�C1� is
the covariance kernel for asymptotically fixed frequency random waves on M (see [Sarnak and Wigman
2014; Sodin 2012; Zelditch 2009]), this C1 convergence would show that the integral statistics of
monochromatic random waves near a non-self-focal point depend only on the dimension of M . We refer
the reader to Section 1.3 for further discussion and motivation for Theorem 3.

1.1. Applications. Combining Theorem 2 with prior results of Safarov [1988], we obtain little-o estimates
on R.x;y; �/ without requiring x or y to be in a shrinking neighborhood of a single nonfocal point. We
recall the following definition from [Safarov 1988; Sogge and Zelditch 2013]:

Definition 5. Let .M;g/ be a Riemannian manifold. We say that x, y 2M are mutually nonfocal if the
set of unit covectors

L.x;y/D f� 2 S�x M j expx.t�/D y for some t > 0g (10)

has zero measure with respect to the Euclidean surface measure induced by g on S�x M .

Theorem 6. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n�2 with no boundary.
Consider any compact set K �M �M such that, if .x;y/ 2K, then x and y are mutually nonfocal and
either x or y is a non-self-focal point. Then, as �!1, we have

sup
.x;y/2K

jR.x;y; �/j D o.�n�1/: (11)
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Remark 7. Theorem 6 applies with K DM �M if .M;g/ has no conjugate points.

Theorem 6 — proved in Section 7 — can be applied to studying immersions of .M;g/ into Euclidean
space by arrays of high-frequency eigenfunctions. Let f'j1

; : : : ; 'jm�
g be an orthonormal basis forL

�<���C1 ker.�g ��
2/ and consider the maps

‰.�;�C1� WM ! Rm� ; ‰.�;�C1�.x/D

r
.2�/n

2�n�1
.'j1

.x/; : : : ; 'jm�
.x//: (12)

The ��.n�1/=2 normalization is chosen so that the diameter of ‰.�;�C1�.M / in Rm� is bounded above
and below as �!1. Maps related to ‰� are studied in [Bérard et al. 1994; Jones et al. 2008; Potash
2014; Zelditch 2009]. In particular, Zelditch [2009, Proposition 2.3] showed that the maps ‰.�;�C1� are
almost-isometric immersions for large �, in the sense that a certain rescaling of the pullback ‰�

�
.geuc/ of

the Euclidean metric on Rm� converges pointwise to g. A consequence of Theorem 6 is that these maps
are actually embeddings for � sufficiently large:

Theorem 8. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n�2 with no boundary.
If every point x2M is non-self-focal and all pairs x, y2M are mutually nonfocal, then there exists �0>0

such that the maps ‰.�;�C1� WM ! Rm� are embeddings for all �� �0.

We prove Theorem 8 in Section 7. Note that this result does not hold on the round spheres Sn �RnC1,
since even spherical harmonics take on equal values at antipodal points. Since ‰.�;�C1� are embeddings
for � large, it is natural to study ‰.�;�C1�.M / as a metric space equipped with the distance, dist�, induced
by the embedding:

dist2�.x;y/ WD k‰.�;�C1�.x/�‰.�;�C1�.y/k
2
l2.Rm� /

D
.2�/n

2�n�1
.E.�;�C1�.x;x/CE.�;�C1�.y;y/� 2E.�;�C1�.x;y//: (13)

Theorem 9, also proved in Section 7, gives precise asymptotics for dist�.x;y/ in terms of distg.x;y/:

Theorem 9. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n�2 with no boundary.
Suppose further that every x 2M is non-self-focal and all pairs x, y 2M are mutually nonfocal. As
�!1, we have

sup
x;y2M

ˇ̌̌̌
1

�2 dist2g.x;y/

�
dist2�.x;y/�

�
vol.Sn�1/� .2�/n=2

J.n�2/=2.� distg.x;y//
.� distg.x;y//.n�2/=2

��ˇ̌̌̌
D o.1/: (14)

1.2. Discussion of Theorem 2. Theorem 2 is an extension of Hörmander’s pointwise Weyl law [1968,
Theorem 4.4]. Hörmander proved that there exists " > 0 such that, if the Riemannian distance distg.x;y/
between x and y is less than ", then

E�.x;y/D
�n

.2�/n

Z
j�jgy<1

ei� .x;y;�/ d�p
jgy j
CO.�n�1/; (15)

where, in Hörmander’s terminology, the phase function  is adapted to the principal symbol j�jgy
of
p
�g.

After his Theorem 4.4, Hörmander [1968] remarks that the choice of  is not unique. However, every
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adapted phase function satisfies

 .x;y; �/D hx�y; �iCO.jx�yj2j�j/:

In particular, since hexp�1
y .x/; �igy

D hx � y; �i CO.jx�yj2j�j/, Taylor-expanding (15) yields, for
any r0 > 0,

sup
distg.x;y/<r0=�

ˇ̌̌̌
E�.x;y/�

�n

.2�/n

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j

ˇ̌̌̌
DO.�n�1/:

Changing from one adapted phase to another produces, a priori, an error of O.�n�1/ in (15). With
the additional assumption that x and y are near a non-self-focal point, Theorem 2 therefore extends
Hörmander’s result in two ways. First, our careful choice of phase function hexp�1

y .x/; �igy
allows us to

obtain a o.�n�1/ estimate on R while keeping the amplitude equal to 1. Second, we allow distg.x;y/ to
shrink arbitrarily slowly with �.

Hörmander’s phase functions  .x;y; �/ are difficult to analyze directly when x ¤ y, since they
are the solutions to certain Hamilton–Jacobi equations (see [Hörmander 1968, Definition 3.1; 1985b,
(29.1.7)]) which we cannot describe explicitly. Instead, in proving Theorem 2, we use a parametrix for the
half-wave operator U.t/D e�it

p
�g with the geometric phase function � W R�M �T �M W! R given

by �.t;x;y; �/ D hexp�1
y .x/; �i � t j�jgy

. Such a parametrix was previously used by Zelditch [2009],
where a construction for the amplitude was omitted. Our construction, given in Section 3, makes clear
the off-diagonal behavior of E�.x;y/ and uses the results of Laptev, Safarov and Vassiliev [Laptev et al.
1994], who treat Fourier integral operators (FIOs) with global phase functions.

Using the phase function � simplifies our computations considerably, since the half-density factorp
det�x;�.t;x;y; �/, which comes up in the usual parametrix construction for U.t/ acting on half-

densities, is independent of t and � . This makes it easy to obtain the amplitude in a parametrix for U.t/

acting on functions from that of U.t/ acting on half-densities. For more details, see the outline of the
proof of Theorem 2 given in Section 2, as well as Section 3, especially (37).

The error estimate in (15) is sharp on Zoll manifolds (see [Zelditch 1997]), such as the round sphere.
The majority of the prior estimates on R.x;y; �/ actually treat the case x D y. Notably, Bérard [1977]
showed that on all compact manifolds of dimension n� 3 with nonpositive sectional curvatures and on all
Riemannian surfaces without conjugate points we have R.x;x; �/DO.�n= log�/. The O.�n�1/ error
in the Weyl asymptotics for the spectral counting function

#fj W �j 2 Œ0; ��g D

Z
M

E�.x;x/ dvg.x/D
�
�

2�

�n
volg.M / � volRn.B1/C

Z
M

R.x;x; �/ dvg.x/

has also been improved under various assumptions on the structure of closed geodesics on .M;g/ (see
[Bérard 1977; Colin de Verdière 1980; Duistermaat and Guillemin 1975; Ivriı̆ 1984; Nicolaescu 2012;
Petridis and Toth 2002; Randol 1981; Safarov and Vassiliev 1997]). For instance, [Duistermaat and
Guillemin 1975; Ivriı̆ 1984] prove that

R
M R.x;x; �/ dvg.x/D o.�n�1/ if .M;g/ is aperiodic (i.e., the

set of all closed geodesics has measure zero in S�M ).
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Also related to this article are lower bounds for R.x;y; �/ obtained by Jakobson and Polterovich
[2007] as well as estimates on averages of R.x;y; �/ with respect to either y 2M or � 2 R>0 studied
by Lapointe, Polterovich and Safarov [Lapointe et al. 2009].

1.3. Discussion of Theorem 3. The scaling asymptotics (9) were first stated — without proof and without
any assumptions on Lx0

— by Zelditch [2001, Theorem 2.1]. When .M;g/D .S2;ground/ is the standard
2-sphere, the square roots of the Laplace eigenvalues are �kDk �

p
1C 1=k for k 2ZC, and Lx0

DS�x0
M ,

since the geodesic flow is 2�-periodic. There is therefore no x0 2 S2 satisfying the assumptions of
Theorem 3. Nonetheless, (8) holds with E� replaced by the kernel of the spectral projection onto the
�2

k
eigenspace and is known as Mehler–Heine asymptotics (see §8.1 in [Szegő 1975]). More generally,

on any Zoll manifold, the square roots of Laplace eigenvalues come in clusters that concentrate along
an arithmetic progression. The width of the k-th cluster is on the order of k�1 and we conjecture that
the scaling asymptotics (8) hold for the spectral projectors onto these clusters (see [Zelditch 1997] for
background on the spectrum of Zoll manifolds).

If one perturbs the standard metric on S2 or on a Zoll surface, one can create smooth metrics
possessing self-focal points x0 where only a fraction of the measure of initial directions at x0 give
geodesics that return to x0. These points complicate the remainder estimate for the general case.
Indeed, it was pointed out to the authors by Safarov that even on the diagonal there is a two-term
asymptotic formula with the second term of the form Q.x; �/�n�1, where Q is a bounded function.
The function Q is identically zero if x0 is non-self-focal or if a full measure of geodesics emanating
from x0 return to x0 at the same time. In general, however, Q will contribute an extra term on the
order of �n�1 to the asymptotics in (8). We refer the interested reader to §1.8 in [Safarov and Vassiliev
1997].

1.4. Notation. Given a Riemannian manifold .M;g/, let volg.M / be its volume, distg WM �M ! R

be the induced distance function, and inj.M;g/ be its injectivity radius. For x 2M we write S�x M for
the unit sphere in the cotangent fiber T �xM . We denote by h � ; � igx

W T �xM �T �xM ! R the Riemannian
inner product on T �xM and by j � jgx

the corresponding norm. When M D Rn we simply write h � ; � i
and j � j. In addition, for .x; �/ 2 T �M , we will sometimes write g

1=2
x .�/ for the square root of the matrix

gx applied to the covector � and we write jgxj for the determinant of gx .
We denote by Sk the space of classical symbols of degree k, and we will write Sk

hom � Sk for those
symbols that are homogeneous of degree k. We also denote by ‰k.M / the class of pseudodifferential
operators of order k on M .

2. Outline for the proof of Theorem 2

Fix .M;g/ and a non-self-focal point x0 2M . Theorem 2 follows from the existence of a constant c > 0

such that, for all " > 0, there exist Q�" > 0, an open neighborhood U" of x0 and a positive constant c"

such that

sup
x;y2U"

jR.x;y; �/j � c"�n�1
C c"�

n�2 (16)
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for all � � Q�". Indeed, if r� is a positive function with lim�!1 r� D 0, then it suffices to choose
�" WDmaxfQ�"; inff� W B.x0; r�/�U"gg to get

sup
x;y2B.x0;r�/

jR.x;y; �/j � c"�n�1
C c"�

n�2 for all �� �":

By the definition of R in (3) and the definition of E�, (2), we seek to find a constant c > 0 such that,
for all " > 0, there exist Q�" > 0, an open neighborhood U" of x0 and a positive constant c" satisfying

sup
x;y2U"

ˇ̌̌̌
E�.x;y/�

�n

.2�/n

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j

ˇ̌̌̌
� c"�n�1

C c"�
n�2 (17)

for all �� Q�". We prove (17) using the so-called wave kernel method. That is, we use that the derivative
of the spectral function is the inverse Fourier transform of the fundamental solution of the half-wave
equation on .M;g/:

E�.x;y/D

Z �

0

X
j

ı.���j /'j .x/'j .y/ d�D

Z �

0

F�1
t!�.U.t;x;y//.�/ d�; (18)

where F�1 denotes the inverse Fourier transform and U.t;x;y/ is the Schwartz kernel of e�it
p
�g . The

singularities of U.t;x;y/ control the �!1 behavior of E�. We first study the contribution of the
singularity of U.t;x;y/ coming at t D distg.x;y/ by taking a Schwartz function � 2 S.R/ that satisfies
supp. O�/� .� inj.M;g/; inj.M;g// and

O�.t/D 1 for all jt j< 1
2

inj.M;g/: (19)

We prove in Section 5 the following proposition, which shows that (17) holds with E� replaced by ��E�.

Proposition 10 (smoothed projector). Let .M;g/ be a compact, smooth, Riemannian manifold of dimen-
sion n� 2 with no boundary. Then there exist constants c, C > 0 such thatˇ̌̌̌

� �E�.x;y/�
1

.2�/n

Z
j�jgy<�

eihexp�1
y .x/;�igy

d�p
jgy j

ˇ̌̌̌
� c distg.x;y/�n�1

CC�n�2 (20)

for all x, y 2M with distg.x;y/� 1
2

inj.M;g/ and all � > 0.

Note that Proposition 10 does not assume that x and y are near a non-self-focal point. The reason is
that convolving E� with � multiplies the half-wave kernel U.t;x;y/ in (18) by the Fourier transform
O�.t/, which cuts out all but the singularity at t D distg.x;y/. The proof of (20) relies on the construction
in Section 3 of a short-time parametrix for U.t/, which differs from the celebrated Hörmander parametrix
because it uses the coordinate-independent phase function

�.t;x;y; �/ WD hexp�1
y .x/; �igy

� t j�jgy
; .t;x;y; �/ 2 R�M �T �M: (21)

It remains to estimate the difference jE�.x;y/� � �E�.x;y/j, which is the content of the following
result:
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Proposition 11 (smooth vs. rough projector). Let .M;g/ be a compact, smooth, Riemannian manifold of
dimension n� 2 with no boundary. Let x0 2M be a non-self-focal point. Then there exists c > 0 such
that, for all " > 0, there exist an open neighborhood U" of x0 and a positive constant c" with

sup
x;y2U"

jE�.x;y/� � �E�.x;y/j � c"�n�1
C c"�

n�2 (22)

for all �� 1.

The assumption that x and y are near a non-self-focal point x0 guarantees that the dominant contribution
to E�.x;y/ comes from the singularity of U.t;x;y/ at t D distg.x;y/. Following the technique in [Sogge
and Zelditch 2002], we prove Proposition 11 in Section 6 by microlocalizing U.t/ near x0 (see Section 4)
and applying two Tauberian-type theorems (presented in Section 6.1). Relation (17), and consequently
Theorem 2, are a direct consequence of combining Proposition 10 with Proposition 11.

3. Parametrix for the half-wave group

The half-wave group is the one-parameter family of unitary operators U.t/De�it
p
�g acting on L2.M;g/.

It solves the initial value problem�
1

i
@t C

p
�g

�
U.t/D 0; U.0/D Id;

and its Schwartz kernel U.t;x;y/ is related to the kernel of the spectral projector E�.x;y/ via (18).
It is well known (see [Duistermaat and Guillemin 1975; Hörmander 1985b]) that U is a FIO in
I�1=4.R�M;M I�/ associated to the canonical relation

� D
˚
.t; �;x; �;y; �/ 2 T �.R�M �M / j � D�j�jgy

;Gt .y; �/D .x; �/
	
; (23)

where Gt denotes geodesic flow.
Our goal in this section is to construct a short-time parametrix for U.t/ that is similar to Hörmander’s

parametrix [1968; 1985b, §29] but uses the coordinate-independent phase function � WR�M �T �M !R

defined in (21). Such a parametrix was used by Zelditch [2009], where a detailed construction was
omitted. To construct the amplitude we follow [Laptev et al. 1994], who give a detailed treatment of FIOs
that are built using global phase functions such as �. Denote by � 2 C1.Œ0;C1/; Œ0; 1�/ a compactly
supported, smooth cut-off function with

supp�� Œ0; inj.M;g// and �.s/D 1 for s 2
�
0; 1

2
inj.M;g/

�
:

Further, following [Bérard et al. 1994; Berger et al. 1971, Proposition C.III.2], define

‚.x;y/ WD jdetg Dexp�1
x .y/ expxj: (24)

The subscript g means that we use the inner products on Texp�1
x .y/.TxM / and T �y M induced from g and,

as explained in [Berger et al. 1971], ‚.x;y/D
p
jgxj in normal coordinates at y. The main result of this

section is the following:
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Proposition 12. For jt j< inj.M;g/ we have

U.t;x;y/D
�.distg.x;y//
.2�/n‚.x;y/1=2

Z
T �y M

ei�.t;x;y;�/A.t;y; �/
d�p
jgy j

; (25)

where the equality is modulo smoothing kernels. The amplitude A, which is an order-0 polyhomogeneous
symbol, is uniquely determined by � modulo S�1 and satisfies:

� For all y 2M and � 2 T �y M ,
A.0;y; �/D 1: (26)

� For jt j< inj.M;g/ and all .y; �/ 2 T �y M , we have

A.t;y; �/� 1 2 S�1: (27)

There are many choices of amplitude functions in (25) that depend on t , x, y and �. When we
write that A is uniquely determined modulo S�1, we mean that it is unique among amplitudes that are
independent of x. The proof of Proposition 12 is divided into two steps. First, we prove in Section 3.1
that � parametrizes � . Then, in Section 3.2, we construct the amplitude A.

3.1. Properties of the phase function. Throughout this section, we will denote by Ty!x WT
�

y M!T �xM

the parallel transport operator (along the unique shortest geodesic from x to y) for all x and y sufficiently
close. We will use that

Ty!x exp�1
y .x/D� exp�1

x .y/ and Ty!x D T�x!y : (28)

Lemma 13. The phase function �.t;x;y; �/ parametrizes the canonical relation � for jt j < inj.M;g/

and distg.x;y/ < 1
2

inj.M;g/, in the sense that

� D i�.C�/ (29)

is the image of the critical set

C� D

�
.t;x;y; �/ 2 R�M �T �M

ˇ̌̌̌
x D expy

�
t�

j�jgy

��
under the immersion i�.t;x;y; �/D .t; dt�;x; dx�;y;�dy�/.

Proof. When jt j< inj.M;g/, we have that .t;x;y; �/ 2 C� if and only if t D 0 and x D y, or

t D distg.x;y/¤ 0 and
�

j�jgy

D
exp�1

y .x/

distg.x;y/
:

To prove (29) when t D 0, we must show that

i�.0;x;x; �/D f.0;�j�jgx
;x; �;x; �/ j � 2 T �xM g D �jtD0: (30)

Since dxjxDy exp�1
y .x/ is the identity on T �y M ,

dxjxDy�.0;x;y; �/D �:
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Next, using (28), we have

�.0;x;y; �/D h� exp�1
x .y/;Ty!x�igx

:

Therefore,

dy jyDx�.0;x;y; �/D��;

which proves (30). To establish (29) when t ¤ 0, we write

@xk
�.t;x;y; �/D

X
i;j

gij .y/@xk
Œexp�1

y .x/�i�j ; k D 1; : : : ; n: (31)

Since dx distg.x;y/D� exp�1
x .y/= distg.x;y/, evaluating (31) at

� D j�jgy

exp�1
y .x/

distg.x;y/
;

we obtain

dx�.t;x;y; �/D
j�jgy

2 distg.x;y/
dx Œdistg.x;y/2�D j�jgy

dx distg.x;y/D�j�jgy

exp�1
x .y/

distg.x;y/
: (32)

Since Gt .y; exp�1
y .x//D .x;� exp�1

x .y//, it remains to check that

�dy�.t;x;y; �/D j�jgy

exp�1
y .x/

distg.x;y/
;

which we verify in normal coordinates at y. We have that

dzjzDy j�jz D 0 and @zk
jzDy.exp�1

z .x//j D�ıkj :

Thus,

@zk
jzDy�.t;x; z; �/D��k :

Evaluating at � D j�j �x=jxj, we find that

�dy�.t;x;y; �/D j�j �
x

jxj
D j�jgy

exp�1
y .x/

distg.x;y/
;

as desired. �

We need one more lemma before constructing the amplitude A in Proposition 12.

Lemma 14. Let ˇ WM �M !R be any smooth function such that ˇ.x;x/D 1. The kernel of the identity
operator acting on functions relative to the Riemannian volume form

p
jgy j dy admits the following

representation as an oscillatory integral:

ı.x;y/D
�.distg.x;y//

.2�/n
ˇ.x;y/

Z
T �x M

e�ihexp�1
x .y/;�igx

d�p
jgxj

D
�.distg.x;y//

.2�/n
ˇ.x;y/

Z
T �y M

eihexp�1
y .x/;�igy

d�p
jgy j

: (33)
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Proof. Fix x 2M and let f 2 C1.M /. Without loss of generality, assume that f is supported in an
open set U � B.x; inj.M;g// that contains the point x. Set V D exp�1

x .U /� Rn and consider normal
coordinates at x:

h W V ! U; h.z/D expx.z/: (34)

The pairing of the right-hand side of (33) with f is then

1

.2�/n

Z
Rn

Z
Rn

e�ihz;�i�.jzj/f .h.z//ˇ.0; z/
q
jgh.z/j dz d�D �.j0j/f .h.0//

q
jgh.0/jˇ.0; 0/D f .x/:

This proves (33). To explain why the two oscillatory integrals in the statement of the present lemma
define the same distribution, we will use the parallel transport operator (see (28)). We write (33) as

�.distg.x;y//
.2�/n

ˇ.x;y/

Z
T �x M

eihexp�1
y .x/;Ty!x�igy

d�p
jgxj

: (35)

Let .y1; : : : ;yn/ be any local coordinates near x. We note that, for every y, the collection of covectors
fg

1=2
y dyj jyg

n
jD1

is an orthonormal basis for T �y M . Hence, the Lebesgue measure on T �y M in our
coordinates is jgy j

1=2 dy1jy ^ � � � ^ dynjy and, since Ty!x is an isometry,

� D Ty!x� D) d� D
jgy j

1=2

jgxj
1=2

d�:

This allows us to change variables in (35) to obtain the integral over T �y M in the statement of the
lemma. �

3.2. Construction of the amplitude. To construct the amplitude A in Proposition 12, let us write zU .t/
for the wave operator acting on sections of the half-density bundle �1=2.M /. Lemma 13 combined with
Theorem 3.4 in [Laptev et al. 1994] (or Proposition 25.1.5 in [Hörmander 1985b]) shows that there exists
a polyhomogeneous symbol A of order 0 that is supported in a neighborhood of C� for which

zU .t;x;y/D
�.distg.x;y//

.2�/n

Z
T �y M

ei�.t;x;y;�/A.t;y; �/ d�.t;x;y; �/ d� .mod C1/; (36)

where

d� D
q
j det dx;��j 2�

1=2
x .M /˝��1=2

y .M /

is a 1
2

-density in x and a
�
�

1
2

�
-density in y. Since d� behaves like a 1-density in y, zU .t;x;y/ is in

�
1=2
x .M /˝�

1=2
y .M /. The square root of the Riemannian volume form,

g1=4
y D jgy j

1=4
jdyj1=2 2�1=2

y .M /;

identifies L2 global sections �.�1=2.M // with L2.M / via

L2.M /! �.�1=2.M //; f .y/ 7! f .y/ �g1=4
y :
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Then, computing in normal coordinates at y, we have

d�.t;x;y; �/g
1=4
y g�1=4

x D
1

jgxj
1=4
D

1

‚.x;y/1=2
: (37)

In addition, since U.t;x;y/D zU .t;x;y/g
�1=4
x g

�1=4
y , relation (37) gives

U.t;x;y/D
�.distg.x;y//
.2�/n‚.x;y/1=2

Z
T �y M

ei�.t;x;y;�/A.t;y; �/
d�p
jgy j

.mod C1/: (38)

Write A�
P

j�0 A�j for the polyhomogeneous expansion of A. Note that

A0.t;y; �/D 1 for all t;

because the principal symbol zU .t/ is independent of t and equals 1 at t D 0 [Laptev et al. 1994,
Theorem 4.1]. Next, since

zU .0;x;y/D
�.distg.x;y//

.2�/n

Z
T �y M

ei�.t;x;y;�/A.0;y; �/ d�.t;x;y; �/
d�p
jgy j

is a kernel for the identity modulo C1 and A.0;y; �/ is uniquely determined by � mod S�1 (Theorem 3.4
in [Laptev et al. 1994]), it follows from Lemma 14 and (37), with ˇ.x;y/D‚.x;y/�1=2, that

A�j .0;y; �/D 0 for all j � 1;

as desired.

4. Microlocalizing the identity operator at non-self-focal points

In this section we microlocalize the identity operator near a non-self-focal point x0. For every " > 0

we make a microlocal decomposition of the identity, IdD B"CC" near x0, where the operator B" is
supported on the set of “bad” loopset directions and is built so that its support has measure smaller than ".
This construction follows closely that of Sogge and Zelditch [2002].

Lemma 15. There exists a constant 
 > 0 such that, for every " > 0, there is a neighborhood O" of x0,
a function  " 2 C1c .M / and real-valued operators B", C" 2 ‰

0.M / supported in O" satisfying the
following properties:

(1) For every ", supp. "/� O" and  " D 1 on a neighborhood of x0.

(2) For every ",
B"CC" D  

2
" : (39)

(3) U.t/C �" is a smoothing operator for 1
2

inj.M;g/ < jt j< 1
"

.

(4) Denote by b0 and c0 the principal symbols of B" and C" respectively. Then, for all x 2M , we have

1

"

Z
j�jgx�1

jb0.x; �/j
2 d�C

Z
j�jgx�1

jc0.x; �/j
2 d� � 
 (40)

and both b0 and c0 are constant in an open neighborhood of x0.
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Proof. For every x, y 2M and � 2 S�x M , define the loopset function

L�.x;y; �/D infft > 0 j expx.t�/D yg

with L�.x;y; �/DC1 if the infimum is taken over the empty set. Unlike the loopset function studied
in [Sogge and Zelditch 2002], we are interested in x ¤ y (but with distg.x;y/ < 1

2
inj.M;g//.

Fix a coordinate chart .�x0
;Vx0

/ containing x0 with �x0
W Vx0

� Rn !M . We first note that the
function f W Vx0

�Vx0
�Sn�1! R defined as f .x;y; �/D 1=L�.x;y; �/ is upper semicontinuous and

so, by the proof of [Sogge and Zelditch 2002, Lemma 3.1], there exist a neighborhood N" �Vx0
of x0

and an open set �" � Sn�1 for which

L�.x;y; �/ > 1
"

in N" �N" ��
c
"; (41)

j�"j � ": (42)

In addition, there exists a function %" 2 C1.Sn�1; Œ0; 1�/ satisfying that %" � 1 on �", %".�/D %.��/
for all � 2 Sn�1 and j supp.%"/j< 2". In particular,

L�.x;y; �/ >
1

"
on N" �N" � supp.1� %"/:

As in [Sogge and Zelditch 2002], we choose a real-valued function Q " 2C1c .Rn/ with supp. Q "/�N"
that is equal to 1 in a neighborhood of ��1

x0
.x0/. Define symbols on R3n by

Qb".x;y; �/D Q ".x/ Q ".y/%"

�
�

j�j

�
and Qc".x;y; �/D Q ".x/ Q ".y/

�
1� %"

�
�

j�j

��
;

and consider their respective quantizations Op. Qb"/, Op. Qc"/ 2‰0.Rn/. Properties (1) and (2) follow from
setting

B" WD .�
�1
x0
/�Op. Qb"/; C" WD .�

�1
x0
/�Op. Qc"/

and

O" D �x0
.N"/;  " WD .�

�1
x0
/� Q ":

Note that if, for some time, 1
2

inj.M;g/ < t < 1
"
, we have expx.t�=j�j/ D y for some x, y 2 M

and � 2 T �xM , then L�.x;y; �=j�j/� 1
"

, and the latter implies Qc".x;y; �/D 0. Therefore, we see that, if
we write c" for the symbol of C", then

c".x;y; �/D 0 if .t;x;yI �; �; �/ 2 � with 1
2

inj.M;g/ < t < 1
"
;

where � is the canonical relation underlying U.t/ (see (23)). Thus, the kernel of U.t/C �" is a smooth
function for 1

2
inj.M;g/ < t < 1

"
and for .x;y/ in O" � O", which is precisely statement (3). For all

x 2 N", we have that the principal symbols b0 and c0 satisfy the inequality (40), since jsupp %"j < 2".
Also, since b" and c" are real valued and invariant under � 7! �� , we have that B" and C" are real valued
as well. �



1720 YAIZA CANZANI AND BORIS HANIN

Remark 16. By construction, the subprincipal symbols of B" and C" (acting on half-densities) are zero in
a neighborhood of x0. Indeed, the principal symbols are constant as functions of x in a neighborhood of x0

and, in the coordinates �x0
used in Lemma 15, the total symbols of B" and C" are homogeneous functions

of order zero. Thus, in any coordinates, the parts of order �1 of the polyhomogeneous expansions of the
total symbols of B" and C" vanish in a neighborhood of x0.

Remark 17. We record precise asymptotics for the on-diagonal behavior of QEQ�.x;x; �/ for all
x 2 O" and Q2 fId;B";C"g. Write q0 for the principal symbol of Q. Using that the subprincipal symbols
of both Q and QQ� (acting on half-densities) vanish identically in a neighborhood zO" of x0, Lemmas 3.2
and 3.3 in [Sogge and Zelditch 2002] show that there exist constants c, c" > 0 such that, for all x 2 zO",

QEQ�.x;x; �/D
1

.2�/n

Z
j�jgx<�

jq0.x; �/j
2 d�CRQ.x;x; �/

with

jRQ.x;x; �/j � c"�n�1
C c"�

n�2 (43)

for all �� 1. We note that a similar result is obtained in [Safarov and Vassiliev 1997, Theorem 1.8.7],
with the difference that the latter is proved for points x that are nonfocal.

5. Smoothed projector: proof of Proposition 10

Proposition 18 below is our main technical estimate on E�.x;y/. We use it to prove Propositions 10
and 11 in Sections 5 and 6, respectively.

Proposition 18. Let .M;g/ be a compact, smooth, Riemannian manifold of dimension n � 2 with no
boundary. Let " > 0 and Q 2 fId;B";C"g for B" and C", as introduced in Lemma 15. Let q0 be the
principal symbol of Q. Then, for all x, y 2 O" with distg.x;y/� 1

2
inj.M;g/ and all �� 1, we have

@�.� �EQ�/.x;y; �/

D
�n�1

.2�/n‚.x;y/1=2

� Z
S�y M

eihexp�1
y .x/;!igy q0.y; !/

d!p
jgy j

C

Z
S�y M

eihexp�1
y .x/;!igy D

Q
�1
.y; !/

d!p
jgy j

�
CW .x;y; �/: (44)

Here, d! is the Euclidean surface measure on S�y M and the function‚ is as defined in (24). The function
D

Q
�1

belongs to S�1 and there exists C > 0 such that, for every " > 0,

D
B"
�1
.y; �/CD

C"
�1
.y; �/D 0 for all y 2 O"; (45)

sup
x;y2O"

ˇ̌̌̌Z
S�y M

eihexp�1
y .x/;!igy D

Q
�1
.y; !/

d!p
jgy j

ˇ̌̌̌
� C ": (46)

In addition, W is a smooth function in .x;y/ for which there exists C > 0 such that, for all � > 0,

sup
distg.x;y/� 1

2
inj.M;g/

jW .x;y; �/j � C.�n�2 distg.x;y/C .1C�/n�3/: (47)



SCALING LIMIT FOR THE SPECTRAL PROJECTOR 1721

Proof. Let x, y 2M with distg.x;y/� 1
2

inj.M;g/. Note that

@�.� �EQ�/.x;y; �/D
1

2�

Z C1
�1

eit�
O�.t/U.t/Q�.x;y/ dt: (48)

We start by rewriting U.t/Q�.x;y/ using the parametrix (25) for U.t/. We have

U.t/Q�.x;y/D
�.dg.x;y//

.2�/n‚.x;y/1=2

Z
T �y M

eihexp�1
y .x/;�igy�t j�jgy DQ.t;y; �/

d�p
jgy j

(49)

for some DQ 2 S0 with polyhomogeneous expansion DQ �
P

j�0 D
Q
�j . We claim that

D
Q
0
.0;y; �/D q0.y; �/ (50)

and that, for all " > 0,

DB"

�1.0;y; �/CDC "

�1.0;y; �/D 0; (51)

sup
x;y2O"

ˇ̌̌̌Z
S�y M

eihexp�1
y .x/;!igy D

Q
�1
.0;y; �/

d!p
jgy j

ˇ̌̌̌
� C "; (52)

where C is a constant independent of ". Indeed, let zU .t/ zQ� denote the operator U.t/Q� when regarded
as acting on half-densities and note that, by the same computations that deduce (38) from (36), we have

zU .t/ zQ�.x;y/D
�.dg.x;y//

.2�/n

Z
T �y M

eihexp�1
y .x/;�igy�t j�jgy DQ.t;y; �/ d�.t;x;y; �/ d�:

Since the principal symbols of both zU and zQ are independent of t , and zU .0/D Id, we know

D
Q
0
.t;y; �/D q0.y; �/:

Moreover, note that DId
�1
.0;y; �/D 0 by Proposition 12 and that DId is uniquely determined modulo S�1

by the phase function � (see [Laptev et al. 1994]). This proves (51), since on O" we have IdD B"CC".
Finally, by the construction of B", we see that the size of the support of D

B"
�1
.0;y; �/ is smaller than a

constant times ". This proves (52) for QD B" and hence for QD C", since DB"
�1
D�D

C"
�1

.
Combining (48) and (49) and changing coordinates � 7! �r!, where .r; !/ 2 Œ0;C1/�S�y M , we

obtain up to an O.��1/ error that

‚.x;y/1=2 � @�.� �EQ�/.x;y; �/

D
�n

.2�/nC1

Z
R

Z 1
0

O�.t/ei�t.1�r/�.r/rn�1

�Z
S�y M

ei�rhexp�1
y .x/;!igy DQ.t;y; r�!/ d!

�
dr dt; (53)

where �2C1c .R/ is a cut-off function that is identically 1 near r D 1 and vanishes for r 62
�

1
2
; 3

2

�
. Indeed,

on the support of 1��, the operator LD .1= i�.1� r// @t is well defined, preserves ei�t.1�r/, and its
adjoint L� satisfies that, for all k 2 ZC,ˇ̌̌̌

.L�/k
�

rn�1.1��.r// O�.t/

Z
S�y M

ei�rhexp�1
y .x/;!igy DQ.t;y; r�!/ d!

�ˇ̌̌̌
� .1C�/�k

� ck
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for some ck > 0. Define

SQ.t;y; �/ WD q0.y; �/CD
Q
�1
.t;y; �/

to be the two leading terms of DQ. Since DQ�SQ 2 S�2, up to a O.�n�3/ error we have

‚.x;y/1=2 � @�.� �EQ�/.x;y; �/

D
�n

.2�/nC1

Z
R

Z 1
0

O�.t/ei�t.1�r/�.r/rn�1

�Z
S�y M

ei�rhexp�1
y .x/;!igy SQ.t;y; r�!/d!

�
dr dt: (54)

According to [Sogge 1993, Theorem 1.2.1], there exist smooth functions a˙, b˙ 2 C1.M �Rn/ such
that, for all .y; �/ 2M �T �y M ,Z

S�y M

eih�;!igy SQ.t;y; �r!/
d!p
jgy j
D

X
˙

e˙ij�jgy .a˙.y; �/C r�1��1
� b˙.t;y; �// (55)

and

j@˛�a˙.y; �/j � C˛.1Cj�jgy
/�.n�1/=2�j˛j; (56)

j@
ˇ
t @
˛
�b˙.t;y; �/j � C˛;ˇ.1Cj�jgy

/�.n�1/=2�j˛j�1; (57)

for all multi-indices ˛ � 0 and ˇ � 0 and for some C˛, C˛;ˇ > 0 independent of t , y and �. Hence,
(54) equals

�n

.2�/nC1

X
˙

Z
R

Z 1
0

ei� ˙.t;r;x;y/g˙.t; r;x;y; �/ dr dt; (58)

where  ˙.t; r;x;y/D t.1� r/˙ r distg.x;y/ and

g˙.t; r;x;y; �/D
1

.2�/n
rn�1�.r/ O�.t/

�
a˙.y; r� exp�1

y .x//C r�1��1b˙.t;y; r� exp�1
y .x//

�
: (59)

Note that the critical points of  ˙ are .t˙c ; r
˙
c /D .˙ distg.x;y/; 1/ and that

det.Hess ˙.t˙c ; r
˙
c ;x;y//D 1:

Hence, we apply the method of stationary phase to get that (58) is

�n�1e˙i� distg.x;y/
X
˙

.g˙.t
˙
c ; r

˙
c ;x;y; �/� i��1@r@tg˙.t

˙
c ; r

˙
c ;x;y; �//

CO
�
�n�3 sup

.t;r/2supp.g˙/
sup

˛Cˇ�7

j@˛t @
ˇ
r g˙.t; r;x;y; �/j

�
: (60)

We take 7 derivatives in the last term, since, in stationary phase with a quadratic phase over Rk , the
remainder after the first N terms is bounded by k C 1C 2N derivatives of the amplitude. Note that
@t O�.t/D 0 for t D˙ distg.x;y/. Hence, since a˙ are independent of t , we have

i��1@r@tg˙.t
˙
c ; r

˙
c ;x;y; �/DO.��2/: (61)
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Moreover, by (56) and (57), the derivatives of g in t and r are uniformly bounded. Hence,

�n�1

.2�/n

Z
S�y M

eihexp�1
y .x/;!igy .q0.y; !/C�

�1D
Q
�1
.distg.x;y/;y; !//

d!p
jgy j
CO.�n�3/: (62)

Taylor-expanding D
Q
�1
.distg.x;y/;y; !/DD

Q
�1
.0;y; !/CO.distg.x;y// and recalling (51) and (52)

completes the proof. �

Proof of Proposition 10. Proposition 10 follows by integrating (44) with respect to � from 0 to � applied
to QD Id. We have

��E.x;y; �/D

Z �

0

�n�1

.2�/n‚.x;y/1=2

�Z
S�y M

ei�hexp�1
y .x/;!igy

d!p
jgy j

�
d�C

Z �

0

W .x;y; �/ d�: (63)

Changing coordinates to � D �!, we find

� �E.x;y; �/D
�n

.2�/n‚.x;y/1=2

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j
C

Z �

0

W .x;y; �/ d�: (64)

Note that
‚.x;y/�1=2

D 1CO.distg.x;y/2/

and
exp�1

y .x/

i� distg.x;y/2
r�e

i�hexp�1
y .x/;�igy D ei�hexp�1

y .x/;�igy :

Therefore, we may integrate by parts once in (64) to obtain

� �E.x;y; �/D
�n

.2�/n

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j
C

Z �

0

W .x;y; �/ d�

CO

�
distg.x;y/�n�1

Z
j�jgyD1

ei�hexp�1
y .x/;!igy d!

�
:

Since

sup
distg.x;y/<inj.M;g/

ˇ̌̌̌
distg.x;y/

Z
j�jgyD1

ei�hexp�1
y .x/;!igy d!

ˇ̌̌̌
D o.1/

as �!1, we find that

� �E.x;y; �/D
�n

.2�/n

Z
j�jgy<1

ei�hexp�1
y .x/;�igy

d�p
jgy j
C

Z �

0

W .x;y; �/ d�C o.�n�1/:

By (47), we have

sup
x;y2B.x0;inj.M;g/=2/

ˇ̌̌̌Z �

0

W .x;y; �/ d�

ˇ̌̌̌
� c distg.x;y/�n�1

CC�n�2

for some c, C > 0 as claimed. �
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6. Smooth vs. rough projector: proof of Proposition 11

Let x0 2M be a non-self-focal point and fix " > 0. The proof of Proposition 11 amounts to showing
that there exists c > 0 such that, for all " > 0, there is an open neighborhood U" of x0 and a positive
constant c" with

sup
x;y2U"

jE�.x;y/� � �E�.x;y/j � c"�n�1
C c"�

n�2 (65)

for all � � 1. It is at this point that the assumption that x0 is a non-self-focal point is needed. In
Section 4 we construct a partition of the identity operator localized to x0. We use this partition to
split jE�.x;y/� � �E�.x;y/j into different pieces, each of which we shall control using two types
of Tauberian theorems, described in Section 6.1. We conclude this section by presenting the proof of
Proposition 11 in Section 6.2.

To ease the notation, we will write

E.x;y; �/ WDE�.x;y/:

To prove (65), we use the operators B" and C" and the function  " constructed in Lemma 15. We set

˛".x;y; �/ WDEC �" .x;y; �/C
1
2
.E.x;x; �/CC"EC �" .y;y; �//; (66)

ˇ".x;y; �/ WD � �EC �" .x;y; �/C
1
2
.E.x;x; �/CC"EC �" .y;y; �//; (67)

where x and y are any two points in M . Note that

j˛".x;y; �/�ˇ".x;y; �/j D jEC �" .x;y; �/� � �EC �" .x;y; �/j:

In addition, observe that
˛".x;y; �/ WD

1
2

X
�j��

Œ'j .x/C .C"'j /.y/�
2

and so ˛".x;y; �/ is an increasing function of � for any fixed x and y. We also set

g".x;y; �/ WDEB�" .x;y; �/� � �EB�" .x;y; �/: (68)

Since B"CC" D  
2
" and  " D 1 in a neighborhood of x0, relation (65) would hold if we proved that

there exist positive constants c and c" with c independent of ", and a neighborhood U" of x0, such that,
for all �� 1,

sup
x;y2U"

j˛".x;y; �/�ˇ".x;y; �/j � c"�n�1
C c"�

n�2; (69)

sup
x;y2U"

jg".x;y; �/j � c"�n�1
C c"�

n�2: (70)

6.1. Tauberian theorems. To control j˛".x;y; �/�ˇ".x;y; �/j and jg".x;y; �/j we use two different
Tauberian-type theorems. To state the first one, fix a positive function � 2S.R/ such that supp O�� .�1; 1/

and O�.0/D 1. We have written Of for the Fourier transform of f . Define, for each a> 0,

�a.�/ WD
1

a
�
�
�

a

�
; (71)
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so that O�a.t/D O�.at/.

Lemma 19 (Tauberian theorem for monotone functions). Let ˛ be an increasing temperate function with
˛.0/D 0 and let ˇ be a function of locally bounded variation with ˇ.0/D 0. Suppose further that there
exist M0 > 0, a> 0 and a constant ca such that:

(a) There exists m 2 N such thatZ �Ca

��a

jdˇj � aM0.1Cj�j/
m�1
C caj�j

m�2 for all �� 0:

(b) There exist � 2 Z n f�1g with � �m� 1, and Ma > 0, such that

j.d˛� dˇ/��a.�/j �Ma.1Cj�j/
� for all �� 0:

Then there exists c > 0 depending only on � such that

j˛.�/�ˇ.�/j � c
�
aM0j�j

m�1
C caj�j

m�2
CMa.1Cj�j/

�C1
�

(72)

for all �� 0.

Proof. The proof is identical to argument for Lemma 17.5.6 in [Hörmander 1985a]. �

We will also need the following result:

Lemma 20 (Tauberian theorem for nonmonotone functions [Hörmander 1968]). Let g be a piecewise
continuous function such that there exists a > 0 with Og.t/� 0 for jt j � a. Suppose further that, for all
� 2 R, there exist constants m 2 N and c1, c2 > 0 such that

jg.�C s/�g.�/j � c1.1Cj�j/
m
C c2.1Cj�j/

m�1 for all s 2 Œ0; 1�: (73)

Then there exists a positive constant cm;a, depending only on m and a, such that, for all �,

jg.�/j � cm;a

�
c1.1Cj�j/

m
C c2.1Cj�j/

m�1
�
:

6.2. Proof of Proposition 11. As explained above, the proof of Proposition 11 reduces to establishing
relations (69) and (70).

Proof of (69). We seek to apply Lemma 19 to ˛" and ˇ". Let aD ", mD n and � D�2. We first verify
condition (a). From Remark 17, it follows that there exist an open neighborhood U" of x0 and constants
c1, c" > 0 such that, for all x, y 2U" and all �� 1,Z �C"

��"

�
j@�E.x;x; �/jC j@�.C"EC �" /.y;y; �/j

�
d� D

X
j�j��j�"

.'j .x//
2
C .C"'j .y//

2

� c1"�
n�1
C c"�

n�2: (74)

Combining (74) with the estimate in Proposition 18 applied to QD C", we see that there exist positive
constants M0 and c" for which

sup
x;y2U"

Z �C"

��"

j@�ˇ".x;y; �/j d� �M0"�
n�1
C c"�

n�2
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for all �� 1. It remains to verify condition (b). Note that

@�.˛".x;y; � /�ˇ".x;y; � //��".�/D F�1
t!�

�
.1� O�.t// O�".t/.U.t/C

�
" /.x;y/

�
.�/;

where F is the Fourier transform and �" is defined in (71). According to Lemma 15, U.t/C �" is a
smoothing operator for 1

2
inj.M;g/ < jt j< 1

"
. Hence, since

supp O�" �
˚
t W jt j< 1

"

	
and supp.1� O�/�

˚
t W jt j> 1

2
inj.M;g/

	
;

we find that, for each N , there are constants cN;" depending on N and " that satisfy

sup
x;y2M

ˇ̌
@�.˛".x;y; � /�ˇ".x;y; � //��".�/

ˇ̌
� cN;".1Cj�j/

�N

for all � > 0. �

Proof of (70). We seek to apply Lemma 20 to g". First, note that, since

g".x;y; �/DEB�" .x;y; �/� � �EB�" .x;y; �/;

the function g".x;y; � / is piecewise continuous in the � variable. Next, we check that Og".t/ � 0 in a
neighborhood of t D 0. We have

@�g".x;y; �/D F�1
t!�

�
.1� O�.t//.U.t/B�" /.x;y/

�
.�/:

Since O�� 1 on
�
�

1
2

inj.M;g/; 1
2

inj.M;g/
�
, we have F�!t .@�g".x;y; � //.t/D 0 for jt j � 1

2
inj.M;g/.

Equivalently,

t �F�!t .g".x;y; � //.t/D 0; jt j � 1
2

inj.M;g/:

In addition, we must have F�!t .g".x;y; � //.0/D 0, for otherwise g".x;y; � / would include a sum of
derivatives of delta functions but this is not possible, since g".x;y; � / is piecewise continuous. It follows
that

F�!t .g".x;y; � //.t/D 0; jt j � 1
2

inj.M;g/;

as desired. It therefore remains to check that g" satisfies (73). Let s 2 Œ0; 1�, � 2 R and write

g".x;y; �C s/�g".x;y; �/

DEB�" .x;y; �C s/�EB�" .x;y; �/C � �EB�" .x;y; �C s/� � �EB�" .x;y; �/: (75)

To estimate EB�" .x;y; �C s/�EB�" .x;y; �/ we apply the Cauchy–Schwarz inequality:

EB�" .x;y; �C s/�EB�" .x;y; �/D
X

���j��Cs

'j .x/B"'j .y/

�

� X
���j��Cs

.'j .x//
2

�1
2
� X
���j��Cs

.B"'j .y//
2

�1
2

:
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Applying Remark 17 to QD Id and QDB", there exist an open neighborhood U" of x0 and constants
c, c" > 0 such that

jEB�" .x;y; �C s/�EB�" .x;y; �/j � c"�n�1
C c"�

n�2 (76)

for all �� 1, s 2 Œ0; 1� and x, y 2U". The " factor is due to the fact that kb0k1 < ".
To estimate ��EB�" .x;y; �C s/���EB�" .x;y; �/ we apply Proposition 18 to the operator QDB".

Since there exists Qc > 0 with

j@�� �EB�" .x;y; �/j � Qc.kb0k1�
n�1
C�n�2/ for all �� 1

and kb0k1 � ", we get (after possibly enlarging c and c") that

j� �EB�" .x;y; �C s/� � �EB�" .x;y; �/j � c"�n�1
C c"�

n�2 for all �� 1: (77)

Combining (76) and (77) into (75), we conclude the existence of positive constants c and c" such that

jg".x;y; �C s/�g".x;y; �/j � c"�n�1
C c"�

n�2 for all �� 1

and s 2 Œ0; 1�, as desired. Applying Lemma 20 with mD n and aD 1
2

inj.M;g/ proves (70). �

7. Proof of Theorems 6–9

Proof of Theorem 6. Suppose that .M;g/ is a smooth, compact, Riemannian manifold with no boundary.
Let K �M �M be a compact set satisfying that any pair of points in it are mutually nonfocal. We aim
to show that there exists c > 0 such that, for every " > 0, there are constants �" > 0 and c" > 0 such that

sup
.x;y/2K

jR.x;y; �/j � c"�n�1
C c"�

n�2

for all � > �". Fix " > 0 and write ��M �M for the diagonal. Define

zK DK\�:

By (16), there exists �" > 0, a finite collection fxj W j D 1; : : : ;N"g and open neighborhoods U
xj
" of xj

such that
zK �

[
j

U
xj
" �U

xj
"

and
sup

x;y2U
xj
"

jR.x;y; �/j � c"�n�1
C c"�

n�2 (78)

for all � > �". Define
K" WDK n

[
j

U
xj
" �U

xj
" :

Safarov [1988, Theorem 3.3] proved under the mutually nonfocal assumption that

sup
.x;y/2K"

jR.x;y; �/j D o".�
n�1/: (79)
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Combining (78) and (79) completes the proof. �

Proof of Theorem 8. The injectivity of the maps ‰.�;�C1� WM ! Rm� for � large enough is implied by
the existence of positive constants c1, c2, r0 and �r0

such that, if � > �r0
, then

inf
x;yW� distg.x;y/�r0

dist2�.x;y/ > c1 (80)

and

inf
x;yW� distg.x;y/<r0

dist2�.x;y/
�2 distg.x;y/2

> c2: (81)

We first prove (80). By Theorem 6, for all x, y 2M ,

dist2�.x;y/D f .� distg.x;y//C zR.x;y; �/; (82)

where supx;y2M j
zR.x;y; �/j D o.1/ and f W Œ0;C1/! R is the function

f .r/ WD

Z
Sn�1

.1� eir!1/ d!:

Observe that f .r/� 0, with f .r/D 0 only if r D 0. Moreover,

f .r/D �nCO.r�.n�1/=2/ as r !1 and f .r/D r2
� Qf .r/ (83)

for some smooth and positive function Qf , where �n is the volume of Sn�1. According to the first relation
in (83), we may choose r0 > 0 so that

� distg.x;y/� r0 D) jf .� distg.x;y//� �nj �
1
4
�n: (84)

Moreover, by Theorem 6 we may choose �r0
so that, if � > �r0

, then

sup
x;y2M

j zR.x;y; �/j � 1
4
�n: (85)

Combining (82) , (84) and (85), we find that, for all � > �r0
and all x, y 2M with � distg.x;y/� r0,

dist2�.x;y/�
1
2
�n;

as desired. To verify (81), write, as above,

dist2�.x;y/D
.2�/n

2�n�1
.E.�;�C1�.x;x/CE.�;�C1�.y;y/� 2E.�;�C1�.x;y//

and note that the first derivatives of dist2�.x;y/ in x and y all vanish when xD y. Moreover, by [Zelditch
2009, Proposition 2.3], we have that the Hessian of E.�;�C1� may be written as

dx˝ dy

ˇ̌
xDy

E.�;�C1�.x;y/D Cn�
nC1gxC o.�nC1/;

where gx is the metric g on TxM , and Equation (1.2) in [Potash 2014] shows that

Cn D
�n

n.2�/n
:
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Therefore, applying Taylor’s theorem, there exists C0 > 0 for whichˇ̌̌̌
dist2�.x;y/

�2 dist2g.x;y/
�
�n

2n

ˇ̌̌̌
� C0 �� distg.x;y/: (86)

The extra factor of � on the right-hand side of (86) comes from the fact that

sup
j˛jD3

ˇ̌
@˛xjxDyE.�;�C1�.x;y/

ˇ̌
DO.m��

3/;

which is proved, for example, in [Xu 2006, Equation (2.7)]. Equation (86) shows that

inf
� distg.x;y/<�n=.4nC0/

dist2�.x;y/
�2d2

g.x;y/
�
�n

2n
> 0:

If r0 � �n=.4nC0/, then the claim (81) follows. Otherwise, it remains to show that there exists c2 > 0

with

inf
�n=.4nC0/�� distg.x;y/<r0

dist2�.x;y/
�2d2

g.x;y/
> c2 (87)

for all � sufficiently large. Theorem 6 shows that, after possibly enlarging �r0
, we have

sup
x;y2M

j zR.x;y; �/j �

�
�n

4nC0

�2

inf
r<r0

Qf .r/

for all � > �r0
. Then the second relation in (83) combined with (82) yields that, for all � > �r0

,

inf
�n=.4nC0/�� distg.x;y/<r0

dist2�.x;y/�
�
�n

4nC0

�2

inf
r<r0

Qf .r/ > 0:

This completes the proof of (81). �

Proof of Theorem 9. By (13) and Theorem 6 we have that

sup
x;y2M

ˇ̌̌̌
dist2�.x;y/�

Z
Sn�1

.1� ei� distg.x;y/!1/ d!

ˇ̌̌̌
D o.1/

as �!1. Combining this with

1

�2 distg.x;y/2

Z
Sn�1

.1� ei� distg.x;y/!1/ d! D
�n

2n
CO.�2 dist2g.x;y//

and (86) completes the proof. �
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