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Garnett, Killip, and Schul have exhibited a doubling measure µ with support equal to Rd that is 1-
rectifiable, meaning there are countably many curves 0i of finite length for which µ

(
Rd
\
⋃
0i
)
= 0. In

this note, we characterize when a doubling measure µ with support equal to a connected metric space X
has a 1-rectifiable subset of positive measure and show this set coincides up to a set of µ-measure zero
with the set of x ∈ X for which lim infr→0 µ(BX (x, r))/r > 0.

1. Introduction

Recall that a Borel measure µ on a metric space X is doubling if there is Cµ > 0 so that

µ(BX (x, 2r))≤ Cµµ(BX (x, r)) for all x ∈ X and r > 0. (1-1)

Garnett, Killip, and Schul [Garnett et al. 2010] exhibit a doubling measure µ with support equal to Rn ,
n > 1, that is 1-rectifiable in the sense that there are countably many curves 0i of finite length such that
µ
(
Rn
\
⋃
0i
)
= 0. This is surprising given that such measures give zero measure to smooth or bi-Lipschitz

curves in Rd . To see this, note that, for such a curve 0 and for each x ∈ 0, there are rx , δx > 0 so that
for all r ∈ (0, rx) there is BRd (yx,r , δxr) ⊆ BRn (x, rx) \0, so by the Lebesgue differentiation theorem,
µ(0) = 0. If 0 is just Lipschitz and not bi-Lipschitz, however, we only know this property holds for
every point in 0 outside a set of zero length. The aforementioned result shows that Lipschitz curves of
finite length can in some sense be coiled up tightly enough that this zero-length set accumulates on a set
of positive doubling measure.

The notion of rectifiability of a measure that we are using is not universal. In [Azzam et al. 2015],
a measure µ in Euclidean space being d-rectifiable means µ�H d and suppµ is d-rectifiable. In our
setting, however, we don’t require absolute continuity of our measures. To avoid ambiguity, we fix our
definition below, which is the convention used in [Federer 1969, §3.2.14].

Definition 1.1. If µ is a Borel measure on a metric space X , d is an integer, and E ⊆ X a Borel set,
we say E is (µ, d)-rectifiable if µ

(
E \

⋃
∞

i=1 0i
)
= 0 where 0i = fi (Ei ), Ei ⊆ Rd , and fi : Ei → X is

Lipschitz. We say µ is d-rectifiable if suppµ is (µ, d)-rectifiable.

A set E ⊆Rn of positive and finite H d -measure is d-rectifiable if it is (H d , d)-rectifiable (see [Mattila
1995, Definition 15.3] and the few paragraphs preceding it). This is also equivalent to being covered up
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to set of H d -measure zero by Lipschitz graphs [Mattila 1995, Lemma 15.4]. The example from [Garnett
et al. 2010], however, shows that being almost covered by Lipschitz graphs versus Lipschitz images are
not equivalent definitions for rectifiability of a measure.

Since this example was published, it has been an open question to classify which doubling measures
on Rd are rectifiable. Very recently, Badger and Schul have given a complete description. First, for a
general Radon measure in Rd and A compact with µ(A) > 0, define

β
(1)
2 (µ, A)2 = inf

L

∫
A

(
dist(x, L)

diam A

)2 dµ(x)
µ(A)

where the infimum is taken over all lines L ⊆ Rd .

Theorem 1.2 [Badger and Schul 2015b, Corollary 1.12]. If µ is a Radon measure on Rd such that
lim infr→0 β

(1)
2 (µ, BRd (x, r)) > 0 for µ-almost every x ∈ Rd , then µ is 1-rectifiable if and only if∑

x∈Q
`(Q)≤1

diam Q
µ(Q)

<∞ µ-a.e. (1-2)

where the sum is over half-open dyadic cubes Q.

It is not hard to show that, if µ is a doubling measure with suppµ = Rd , d ≥ 2, then there is c > 0
depending on the doubling constant such that β(1)2 (µ, B) ≥ c > 0 for any ball B ⊆ Rd , so the above
theorem characterizes all 1-rectifiable doubling measures with support equal to all of Rd .

In this short note, we take a different approach and provide a complete classification of 1-rectifiable
doubling measures not just with support equal to Rd but with support equal to any topologically connected
metric space. It turns out that the rectifiable part of such a measure coincides up to a set of µ-measure
zero with the set of points where the lower 1-density is positive, where for s > 0 we define the lower
s-density as

Ds(µ, x) := lim inf
r→0

µ(BX (x, r))
r s .

Theorem 1.3 (main theorem). Let µ be a doubling measure whose support is a topologically connected
metric space X , and let E ⊆ X be compact. Then E is (µ, 1)-rectifiable if and only if D1(µ, x) > 0 for
µ-a.e. x ∈ E.

Note that there are no other topological or geometric restrictions on X : the support of µ may have
topological dimension two (like R2 for example), yet if D1(µ, x) > 0 µ-a.e., then µ is supported on a
countable union of Lipschitz images of R. Also observe that the condition D1(µ, x) > 0 is a weaker
condition than (1-2). An interesting corollary of the main theorem and Theorem 1.2 is the following.

Corollary 1.4. If µ is a doubling measure in Rd with connected support such that

lim inf
r→0

β
(1)
2 (µ, BRd (x, r)) > 0

and D1(µ, x) > 0 µ-a.e., then (1-2) holds.
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2. Proof of the main theorem: sufficiency

When dealing with any metric space X , we will let BX (x, r) denote the set of points in X of distance
less than r > 0 from x . If B = BX (x, r) and M > 0, we will denote M B = BX (x,Mr). For a Borel set
A ⊆ X , we define the (spherical) 1-Hausdorff measure as

H 1
δ (A)= inf

{ ∞∑
i=1

2ri : A ⊆
∞⋃

i=1

BX (xi , ri ), xi ∈ A, ri ∈ (0, δ)
}

and H 1(A)= infδ>0 H 1
δ (A).

For A, B ⊆ X , we set
dist(A, B)= inf{|x − y| : x ∈ A, y ∈ B}

and, for x ∈ X , dist(x, A)= dist({x}, A).

Remark 2.1. By the Kuratowski embedding theorem, if X is separable (which happens, for example,
if X = suppµ for a locally finite measure µ), X is isometrically embeddable into C(X), where C(X)
is the Banach space of bounded continuous functions on X equipped with the supremum norm | f | =
supx∈X | f (x)|. Thus, we can assume without loss of generality that X is the subset of a complete Banach
space, and we will abuse notation by calling this space C(X) as well so that X ⊆ C(X).

The forward direction of the main theorem is proven for general measures in Euclidean space by Badger
and Schul [2015a, Lemma 2.7], who in fact prove a higher-dimensional version. Below we provide a
proof that works for metric spaces in the one-dimensional case.

Proposition 2.2. Let µ be a finite measure with X := suppµ a metric space, and suppose µ is 1-rectifiable.
Then D1(µ, x) > 0 for µ-a.e. x ∈ suppµ.

Proof. Let
F = {x ∈ suppµ : D1(µ, x)= 0},

and let ε, δ > 0. Since µ is rectifiable, there are Lipschitz functions fi : Ai → X , where Ai ⊆ [0, 1] are
compact Borel sets of positive measure and i = 1, . . . , N , so that

µ

(
E \

N⋃
i=1

fi (Ai )

)
< δ.

We can extend each fi affinely on the intervals in the complement of Ai to a Lipschitz function
fi : [0, 1] → C(X). Let d = mini=1,...,N diam fi ([0, 1]) so that r ∈ (0, d) and x ∈ G :=

⋃N
i=1 fi ([0, 1])

implies H 1(BC(X)(x, r)∩G)≥ r (simply because now the images of the fi are connected).
For each x ∈ F ∩G, there is rx ∈ (0, d/5) so that µ(BX (x, 5rx)) < εrx . By the Vitali covering theorem

[Heinonen 2001, Lemma 1.2], there are countably many disjoint balls Bi = BX (xi , ri ) with centers in F
so that

⋃
5Bi ⊇ F . Thus,

µ(F ∩G)≤
∑

i

µ(5Bi )≤ ε
∑

i

ri ≤ ε
∑

i

H 1(BC(X)(xi , ri )∩G)≤ εH 1(G).
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Thus,
µ(F) < δ+ εH 1(G).

Keeping δ (and hence G) fixed and sending ε→ 0, we get µ(F) < δ for all δ > 0 and thus µ(F)= 0. �

3. Proof of the main theorem: necessity

What remains is to prove the reverse direction of the main theorem, which we summarize in the next
lemma.

Lemma 3.1. Let µ be a doubling measure with constant Cµ> 0 and support X , a topologically connected
metric space. Then {x ∈ X : D1(µ, x) > 0} is (µ, 1)-rectifiable.

To prove Lemma 3.1, it suffices to show the following lemma.

Lemma 3.2. Let µ be a doubling measure and support X a topologically connected complete metric
space. If E ⊆ X is a compact set for which E ⊆ BX (ξ0, r0/2) for some ξ0 ∈ X , r0 > 0, and

µ(BX (x, r))≥ 2r for all x ∈ E and r ∈ (0, r0), (3-1)

then E = f (A) for some A ⊆ R and Lipschitz function f : A→ X.

Proof of Lemma 3.1 using Lemma 3.2. First, note that, if we define µ(A) = µ(A ∩ X), then µ is a
doubling measure on X , where the closure is in C(X) (recall Remark 2.1). Moreover, the closure X
is still topologically connected but now is a complete metric space since C(X) is complete. Thus, for
proving Lemma 3.1, we can assume without loss of generality that X is complete.

Let F := {x ∈ X : D1(µ, x) > 0}. For j, k ∈ N, let

F j,k = {x ∈ F : µ(BX (x, r))≥ r/j for 0< r < k−1
}.

Then F =
⋃

j,k∈N F j,k . Furthermore, we can write F j,k as a countable union of sets {F j,k,`}`∈N with
diameters less than 1/(3k). It suffices then to show that each one of these sets is 1-rectifiable. Fix
j, k, ` ∈N. Then the measure jµ and the set F j,k,` satisfy the conditions for Lemma 3.2 with r0 = k−1

except that F j,k,` is not necessarily compact. However, F j,k,` is a closed set still satisfying these conditions,
it is totally bounded since µ is doubling, and since X is complete, the Heine–Borel theorem implies
F j,k,` is compact. Thus, we can apply Lemma 3.2 to get that F j,k,` is rectifiable. Since F =

⋃
j,k,` F j,k,`,

we now have that F is also rectifiable. �

The rest of the paper is devoted to proving Lemma 3.2, so fix µ, E , ξ0, and r0 as in the lemma.

Proof of Lemma 3.2. We will require the notion of dyadic cubes on a metric space. This theorem was
originally developed by David [1988] and Christ [1990], but the current formulation we take from Hytönen
and Martikainen [2012].

Theorem 3.3. Let X be a metric space equipped with a doubling measure µ. Let Xn be a nested sequence
of maximal ρn-nets for X where ρ < 1/1000, and let c0 = 1/500. For each n ∈ Z, there is a collection Dn

of “cubes”, which are Borel subsets of X such that:
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(1) For every n, X =
⋃
1∈Dn

1.

(2) If 1,1′ ∈ D =
⋃

Dn and 1∩1′ 6=∅, then 1⊆1′ or 1′ ⊆1.

(3) For 1 ∈ D , let n(1) be the unique integer so that 1 ∈ Dn and set `(1) = 5ρn(1). Then there is
ζ1 ∈ Xn so that

BX (ζ1, c0`(1))⊆1⊆ BX (ζ1, `(1))

and
Xn = {ζ1 :1 ∈ Dn}.

It is not necessary for there to exist a doubling measure but just that the metric space is geometrically
doubling. Moreover, Hytönen and Martikainen [2012] use sequences of sets Xn slightly more general
than maximal nets.

Let Xn be a nested sequence of maximal ρn-nets for X where ρ < 1/1000 and D the resulting cubes
from Theorem 3.3. By picking our net points Xn appropriately, we may assume that E ⊆10 ∈ D .

Lemma 3.4 [Azzam 2014, §3]. Let µ be a Cµ-doubling measure and D the cubes from Theorem 3.3 for
X = suppµ with admissible constants c0 and ρ. Let E ⊆10 ∈D be a Borel set, M > 1, and δ > 0, and set

P = {1⊆10 :1∩ E 6=∅, there exists ξ ∈ BX (ζ1,M`(1)) such that dist(ξ, E)≥ δ`(1)}.

Then there is C1 = C1(M, δ,Cµ) > 0 so that, for all 1′ ⊆10,∑
1⊆1′

1∈P

µ(1)≤ C1µ(1
′). (3-2)

The theorem is stated in [Azzam 2014] in slightly more generality. For the reader’s convenience, we
provide a shorter proof in the Appendix.

Let M, δ > 0, to be decided later, and let P be the set from Lemma 3.4 applied to our set E . Our
goal now is to construct a metric space Y containing X , then a curve 0 ⊆ Y that contains E as a subset,
and then show it has finite length. We will do this by adding bridges through Y between net points
around cubes in P since these are the cubes where E has large holes and thus potentially has big gaps or
disconnections. We don’t need the endpoints of these bridges to be in E , but their union plus the set E
will be connected. We now proceed with the details.

Let X̃ =
⋃

Xn , and equip C(X)⊕RX̃×X̃ (where RX̃×X̃
=
∏
α∈X̃×X̃ R; see [Munkres 1975, p. 112–117]

for the notation) with norm |a⊕ b| =max{|a|, |b|}, where the norm on RX̃×X̃ is the `2 norm.
For x, y ∈ X̃ , let [x, y] denote the straight line segment between them in C(X)⊕RX̃×X̃ , e(x,y) is the

unit vector corresponding to the (x, y) coordinate in RX̃×X̃ , and define

[x, y]∗ :=
[
x, (x, |x − y|e(x,y))

]
∪
[
y, (y, |x − y|e(x,y))

]
∪
[
(x, |x − y|e(x,y)), (y, |x − y|e(x,y))

]
⊆ C(X)⊕RX̃×X̃ .

The set [x, y]∗ is two segments going straight up from x and y, respectively, in the e(x,y) direction
and a segment connecting the endpoints, thus giving a polygonal curve connecting x to y that hops out
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of C(X). Let

Y = X ∪
⋃

x,y∈X̃

[x, y]∗,

and define a metric on Y (also denoted by | · |) by setting

|x − y| = inf
N∑

i=1

|xi − xi+1|

where x1 = x , xN+1 = y, and for each i , {xi , xi+1} ⊆ X or {xi , xi+1} ⊆ [x ′, y′]∗ for some x ′, y′ ∈ X̃ . It is
easy to check that the resulting metric space Y is separable and X is a metric subspace in Y . Moreover,
the following lemma is immediate from the definition of Y .

Lemma 3.5. Let F ⊆ X be compact and x, y ∈ X̃ . Then

dist([x, y]∗, F)= dist({x, y}, F).

We will let

B1 := BY (ζ1, `(1))⊇ BX (ζ1, `(1)).

For 1 ∈ Dn , let

01 =
⋃{
[x, y]∗ ⊆ C(X)⊕RX̃×X̃

: x, y ∈ Xn+n0 ∩M B1
}

where n0 is an integer we will pick later. Note that 01 is connected and contains ζ1.
Now define

0 = E ∪
⋃
1∈P

01.

Lemma 3.6. H 1(0) <∞.

Proof. We first claim that

H 1(E)≤ 10µ(E). (3-3)

Indeed, let 0 < δ < r0. Take any countable collection of balls centered on E of radii less than δ that
cover E . Since µ is doubling, we can use the Vitali covering theorem [Heinonen 2001, Theorem 1.2]
to find a countable subcollection of disjoint balls Bi with radii ri < δ centered on E so that E ⊆

⋃
5Bi .

Then

H 1
δ (E)≤

∑
10ri ≤ 10

∑
µ(Bi )≤ 10µ({x ∈ X : dist(x, E) < δ}).

Since
⋂
δ>0{x ∈ X : dist(x, E) < δ} = E , sending δ→ 0, we obtain H 1(E) ≤ 10µ(E), which proves

the claim.
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With this estimate in hand, we have

H 1(0) ≤ H 1(E)+
∑
1∈P

H 1(01)
(3-3)
≤ 10µ(E)+C

∑
1∈P

`(1)

(3-1)
≤ 10µ(E)+C

∑
1∈P

µ(1)
(3-2)
≤ 10µ(E)+Cµ(10) <∞

where C here stands for various constants that depend only on δ,M, n0, ρ, and the doubling constant Cµ. �

Lemma 3.7. 0 is compact.

Proof. To see this, let xn ∈0 be any sequence. If xn ∈01 infinitely many times for some1∈P or is in E
infinitely many times, then since each of these sets are compact, we can find a convergent subsequence
with a limit in 0. Otherwise, xn visits infinitely many 01. Let xn j be a subsequence so that xn j ∈ 01 j

where each 1 j ∈P is distinct. Then `(1 j )→ 0, and since 1∩ E 6=∅ for all 1 ∈P , dist(xn j , E)→ 0.
Pick x ′n j

∈ E ∩1 j . Since E is compact, there is a subsequence x ′n jk
converging to a point in E , and xn jk

will have the same limit. We have thus shown that any sequence in 0 has a convergent subsequence,
which implies 0 is compact. �

Lemma 3.8. A compact connected metric space X of finite length can be parametrized by a Lipschitz
image of an interval in R; that is, X = f ([0, 1]) where f : [0, 1] → X is Lipschitz.

A proof of this fact for Hilbert spaces is given in [Schul 2007, Corollary 3.7], but the same proof works
in our setting, so we omit it. Hence, to show that 0 (and hence E) is rectifiable, all that remains to show
is that 0 is connected.

Lemma 3.9. The set 0 is connected.

Proof. Suppose for the sake of a contradiction that there exist two open and disjoint sets A and B that
cover 0, and set 0A = 0 ∩ A and 0B = 0 ∩ B. Suppose without loss of generality that 010 ⊆ 0A, which
we may do since 010 is connected. We sort the proof into a series of steps.

(a) 0B ⊆ 2B10 . To see this, suppose instead that there is z ∈ 0B \ 2B10 . Then z ∈ [x, y]∗ ⊆ 01 for some
1 ∈P. Moreover, dist(z, {x, y}) ≤ 2|x − y| ≤ 4M`(1) since x, y ∈ M B1. Since ζ1 ∈ 1 ⊆ 10 and
x ∈ M B1, we get

`(10)≤ dist(z, B10)≤ |z− x | + dist(x, B10)≤ 4M`(1)+M`(1)

= 5M`(1).

For n0 large enough so that 5Mρn0 < 1, this implies ζ1 ∈ Xn+n0∩M B10 and so 01∩010 6=∅. Hence,
01 ⊆ 0A since 01 is connected, contradicting that z ∈ 0B . This proves the claim.

(b) The open sets A′ = A∪ (4B10)
c and B ′ = B ∩ 2B10 are disjoint and cover 0. First, observe that

A′ ∩ B ′ = (A∩ B ∩ 2B10)∪ ((4B10)
c
∩ B ∩ 2B10)

⊆ (A∩ B)∪ ((4B10)
c
∩ 2B10)=∅.
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Moreover, by part (a),

0 ∩ (A′ ∪ B ′)⊇ 0A ∪ (0B ∩ 2B10)= 0A ∪0B = 0,

which completes the proof of this step.

(c) Set 0A′ = 0 ∩ A′ and 0B ′ = 0 ∩ B ′. These sets are disjoint by part (b), and hence, they are compact
since 0 was compact. We define new open sets

A′′ = (4B10)
c
∪

⋃
ξ∈0A′

BY (ξ, dist(ξ, 0B ′)/2)

and

B ′′ =
⋃
ξ∈0B′

BY (ξ, dist(ξ, 0A′)/2).

We claim these sets are disjoint. Suppose there is z ∈ A′′ ∩ B ′′. Then z ∈ BY (ξ, dist(ξ, 0A′)/2) for
some ξ ∈ 0B ′ . If we also have z ∈ BY (ξ

′, dist(ξ ′, 0B ′)/2) for some ξ ′ ∈ 0A′ , then

max{dist(ξ, 0B ′), dist(ξ ′, 0A′)} ≤ |ξ − ξ
′
| ≤ |ξ − z| + |z− ξ |<

dist(ξ, 0B ′)

2
+

dist(ξ ′, 0A′)

2
,

which is a contradiction, so we must have z ∈ (4B10)
c. Since ξ ∈ 0B ′ , we know ξ ∈ 2B10 by part (a),

and ζ10 ∈ 010 ⊆ 0A′ implies dist(ξ, 0A′)≤ 2`(10). Hence,

BY (ξ, dist(ξ, 0A′)/2)⊆ BY (ξ, `(10))⊆ BY (ζ10, 3`(10))= 3B10,

which proves the claim.

(d) Note that X \ (A′′ ∪ B ′′) is nonempty since X is connected and A′′ and B ′′ are disjoint open sets.
Moreover, X\(A′′∪B ′′)⊆4B10 and hence a bounded set; since X is a doubling metric space, X\(A′′∪B ′′)
is in fact totally bounded and thus compact by the Heine–Borel theorem. This implies we can find a point

z ∈ X \ (A′′ ∪ B ′′)⊆ 4B10

of maximal distance from the compact set 0.

(e) Let ξ ∈ E be the closest point to z and 1 the smallest cube containing ξ so that z ∈ 5B1; since
z ∈ 4B10 ⊆ 5B10 , this is well defined. We claim 1 ∈P. If 11 denotes the child of 1 that contains ξ ,
then z 6∈ 5B11 , and so

dist(z, E)= |ξ − z| ≥ |z− ζ11 | − |ζ11 − ξ | ≥ 5`(11)− `(11)

= 4ρ`(1). (3-4)

Thus, for M > 10, BX (z, 4ρ`(1))⊆ M B1 \ E , so if δ < 4ρ, then 1 ∈P, which proves the claim.

(f) Since 1 ∈P, Xn(1)+n0 is a maximal ρn(1)+n0-net,

ρn(1)+n0 < ρn0`(1) < `(1),
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and z ∈ 5B1, we can find

ζ ∈ Xn(1)+n0 ∩ BX (z, ρn(1)+n0) (3-5)

⊆ Xn(1)+n0 ∩ BX (ζ1, 5`(1)+ ρn(1)+n0)

⊆ Xn(1)+n0 ∩ BX (ζ1, 6`(1))⊆ 01, (3-6)

where the last containment follows if we assume M > 6.
Since 01 is connected and A′ and B ′ are disjoint open sets, we may without loss of generality suppose

0A′ ⊇ 01 and let ζ ′ ∈ 0B ′ be the closest point to ζ . Then

|z− ζ | ≥ |ζ − ζ ′|/2= dist(ζ, 0B ′)/2 (3-7)

since otherwise would imply z ∈ BY (ζ, dist(ζ, 0B ′)/2)⊆ A′′, contradicting that z ∈ X \ (A′′ ∪ B ′′).
We may assume ζ ′ ∈ 01′ for some 1′ ∈P , and we assume 1′ is the largest such cube for which this

happens. Note that this implies 01′ ⊆ 0B ′ since ζ ′ ∈ 0B ′ ∩01′ and 01′ is connected. By Lemma 3.5
with F = {ζ }, we can assume ζ ′ ∈ X , and so ζ ′ ∈ Xn(1′)+n0 ∩M B1′ .

(g) We claim that n(1)+ 1≤ n(1′)≤ n(1)+ 2. Note that, since

5ρn(1)+n0 ≤ `(1)ρn0 ≤ ρ`(1) < `(1), (3-8)

we have

|ζ ′− ζ1| ≤ |ζ
′
− ζ | + |ζ − ζ1|

(3-6)
(3-7)
< 2|ζ − z| + 6`(1)

(3-5)
< 2ρn(1)+n0 + 6`(1)

(3-8)
≤ 8`(1). (3-9)

Thus, for M > 8, we must have n(1′) > n(1); otherwise, since ξ ∈1⊆ B1, we would have

ζ ′ ∈ Xn(1′)+n0 ∩ 8B1 ⊆ Xn(1)+n0 ∩M B1 ⊆ 01

so that 01 ∩01′ 6=∅, which implies 0A′ ∩0B ′ 6=∅, a contradiction. Thus, `(1′) < `(1), which proves
the first inequality in the claim.

Note this implies `(1′)≤ ρ`(1). Let ξ ′ ∈1′ ∩ E (which exists since 1′ ∈P). Since ζ ′ ∈ M B1′ ,

4ρ`(1)
(3-4)
≤ dist(z, E)≤ |ξ ′− z| ≤ |ξ ′− ζ1′ | + |ζ1′ − ζ ′| + |ζ ′− ζ | + |ζ − z|

(3-7)
≤ `(1′)+M`(1′)+ 2|ζ − z| + |ζ − z| ≤ (M + 1)`(1′)+ 3ρn(1)+n0

(3-8)
≤ (M + 1)`(1′)+ ρ`(1)

and so
3ρ

M + 1
`(1)≤ `(1′).

Thus, ρ < 3/(M + 1) implies ρ2`(1)≤ `(1′), and so n(1′)≤ n(1)+ 2, which finishes the claim.

(h) Now we’ll show that 01 ∩01′ 6=∅. Observe that

|ζ1− ζ1′ | ≤ |ζ1− ζ
′
| + |ζ ′− ζ1′ |

(3-9)
≤ 8`(1)+M`(1′)≤ (8+Mρ)`(1) < M`(1) (3-10)
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if ρ−1 > M > 9. Since n(1′)≤ n(1)+2, we have that ζ1′ ∈ Xn(1)+n0∩M B1 for n0≥ 2 and so ζ1′ ∈01.
But ζ1′ ∈ Xn(1′)+n0 ∩M B1′ ⊆ 01′ ; thus, 01 ∩01′ 6=∅, which proves the claim.

This gives us a grand contradiction since 01 ⊆ 0A′ and 01′ ⊆ 0B ′ , and we assumed these sets to be
disjoint. �

Combining Lemmas 3.6, 3.7, 3.8, and 3.9, we have now shown that E is contained in the Lipschitz
image of an interval in R. This completes the proof of Lemma 3.2. �

Appendix: Proof of Lemma 3.4

For 1 ∈ D , define B1 = BX (ζ1, `(1)). For 1 ∈P , let ξ1 ∈ M B1 be such that dist(ξ, E)≥ δ`(1). Let
M be the collection of maximal cubes for which 2B1 ⊆ Ec and 1̃∈M be the largest cube containing ξ1.
Then if 1̃1 denotes the parent cube of 1̃, 2B1̃1 ∩ E 6=∅, and so

δ`(1)≤ dist(ξ1, E)≤ diam 2B1̃1 ≤ 4`(1̃1)=
4
ρ
`(1̃). (A-1)

Moreover,

`(1̃)≤
2M
c0
`(1), (A-2)

for otherwise 1̃ ⊇ c0 B1̃ ⊇ M B1 ⊇1, and since 1∩ E 6= ∅, this means 2B1̃ ∩ E 6= ∅, contradicting
our definition of 1̃.

Let N1 be such that
2N1c0`(1̃) > 2M`(1) > 2N1−1c0`(1̃). (A-3)

Then 2N1c0 B1̃ ⊇ M B1, and 2N1 <
4M`(1)

c0`(1̃)
, so

N1 < log2

(
4M`(1)

c0`(1̃)

)
. (A-4)

Thus,
µ(1̃)

µ(1)
≥

µ(c0 B1̃)
µ(1)

(1-1)
≥

µ(2N1c0 B1̃)

C N1
µ µ(1)

(A-3)
≥

µ(M B1)

C N1
µ µ(1)

(A-4)
≥ C log2 c0/(4M)

µ

(
`(1̃)

`(1)

)log2 Cµ (A-1)
≥ C log2 c0/(4M)

µ

(
4
ρ

)log2 Cµ
=: a. (A-5)

Since µ is doubling and 1 and 1′ are always of comparable sizes by (A-1) and (A-2), there is b
depending on M, δ, ρ, c0, and Cµ such that at most b many cubes 1 ∈M with 1̃=1′ for some fixed 1′.
Hence, for 1′ ⊆10 with 1∩ E 6=∅,∑
1⊆1′

1∈P

µ(1)
(A-5)
≤

∑
1⊆1′

1∈P

aµ(1̃)=
∑
1′∈M

1⊆M B10

∑
1⊆1′

1∈P
1̃=1′

aµ(1̃)≤
∑
1′∈M

1⊆M B10

abµ(1′)

≤ abµ(M B10\ E)≤ abµ(M B10)
(1-1)
≤ abC log2 M/c0+1

µ µ(c0 B10)≤ abC log2 M/c0+1
µ µ(10).
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This finishes the proof of Lemma 3.4.
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