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The present paper is devoted to the study of resonances for one-dimensional quantum systems with a
potential that is the restriction to some large box of an ergodic potential. For discrete models, both on a
half-line and on the whole line, we study the distributions of the resonances in the limit when the size of
the box goes to infinity. For periodic and random potentials, we analyze how the spectral theory of the
limit operator influences the distribution of the resonances.

Dans cet article, nous étudions les résonances d’un système unidimensionnel plongé dans un potentiel
qui est la restriction à un grand intervalle d’un potentiel ergodique. Pour des modèles discrets sur la
droite et la demie droite, nous étudions la distribution des résonances dans la limite de la taille de boîte
infinie. Pour des potentiels périodiques et aléatoires, nous analysons l’influence de la théorie spectrale de
l’opérateur limite sur la distribution des résonances.
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0. Introduction

Consider V : Z→ R a bounded potential and, on `2(Z), the Schrödinger operator H =−1+ V defined
by

(Hu)(n)= u(n+ 1)+ u(n− 1)+ V (n)u(n) for all n ∈ Z

for u ∈ `2(Z).
The potentials V we will deal with are of two types:
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Figure 1. The meromorphic continuation.

• V periodic;

• V = Vω, the random Anderson model, i.e., the entries of the diagonal matrix V are independent,
identically distributed, nonconstant random variables.

The spectral theory of such models has been studied extensively (see, e.g., [Kirsch 2008]) and it is
well known that

• when V is periodic, the spectrum of H is purely absolutely continuous;

• when V = Vω is random, the spectrum of H is almost surely pure point, i.e., the operator only has
eigenvalues; moreover, the eigenfunctions decay exponentially at infinity.

Pick L ∈ N∗. The main object of our study is the operator

HL =−1+ V 1[[−L+1,L]] (0-1)

when L is large. Here, [[−L+1, L]] is the integer interval {−L+1, . . . , L}, and 1[[a,b]](n)= 1 if a≤ n≤ b
and 1[[a,b]](n)= 0 if not.

For L large, the operator HL is a simple Hamiltonian modeling a large sample of periodic or random
material in the void. It is well known in this case (see, e.g., [Zworski 2002]) that not only is the spectrum
of HL of importance but also its (quantum) resonances, which we will now define.

As V 1[[−L+1,L]] has finite rank, the essential spectrum of HL is the same as that of the discrete Laplace
operator, that is, [−2, 2], and it is purely absolutely continuous. Outside this absolutely continuous
spectrum, HL has only discrete eigenvalues associated to exponentially decaying eigenfunctions.

We are interested in the resonances of the operator HL in the limit when L→+∞. They are defined
to be the poles of the meromorphic continuation of the resolvent of HL through (−2, 2), the continuous
spectrum of HL (see Figure 1, Theorem 1.3 and, e.g., [loc. cit.]). The resonances widths, that is, their
imaginary part, play an important role in the large time behavior of e−i t HL , especially the resonances of
smallest width that give the leading order contribution (see [loc. cit.]).

Quantum resonances are basic objects in quantum theory. They have been the focus of a vast number of
studies, both mathematical and physical (see, e.g., [loc. cit.] and references therein). Our purpose here is
to study the resonances of HL in the asymptotic regime L→+∞. As L→+∞, HL converges to H in
the strong resolvent sense. Thus, it is natural to expect that the differences in the spectral nature between
the cases V periodic and V random should reflect into differences in the behavior of the resonances in both
cases. We shall see below that this is the case. To illustrate this as simply as possible, we begin by stating
three theorems, one for periodic potentials and two for random potentials, that underline these different
behaviors. These results can be considered as paradigmatic for our main results, presented in Section 1.
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The scattering theory or the closely related questions of resonances for the operator (0-1) or for closely
related one-dimensional models have already been discussed in various works, both in the mathematical
and physical literature (see, e.g., [Faris and Tsay 1989; 1994; Lifshits et al. 1988; Kunz and Shapiro
2006; Texier and Comtet 1999; Comtet and Texier 1997; Kunz and Shapiro 2008; Barra and Gaspard
1999; Kottos 2005; Titov and Fyodorov 2000]). We will make more comments on the literature as we
develop our results in Section 1.

0A. When V is periodic. Assume that V is p-periodic (p∈N∗) and does not vanish identically. Consider
H =−1+ V and let 6Z be its spectrum, 6◦Z be its interior and E 7→ N (E) be its integrated density of
states, i.e., the number of states of the system per unit of volume below energy E (see Section 1B and,
e.g., [Teschl 2000] for precise definitions and details).

Theorem 0.1. There exist

• D, a discrete (possibly empty) set of energies in (−2, 2)∩6◦Z,

• a function h that is real analytic in a complex neighborhood of (−2, 2) and that does vanish on
(−2, 2) \D

such that, for I ⊂ (−2, 2) \D a compact interval such that either I ∩6Z = ∅ or I ⊂ 6◦Z, there exists
c0 > 0 such that, for L sufficiently large with L ∈ pN, one has:

• If I ∩6Z =∅, then HL has no resonance in I + i[−c0, 0].

• If I ⊂6◦Z, one has:

– There are plenty of resonances in I + i[−c0, 0]; more precisely,

1
2L

#{z ∈ I + i[−c0, 0] | z a resonance of HL} =

∫
I

d N (E)+ o(1), (0-2)

where o(1)→ 0 as L→+∞.
– Let (z j ) j be the resonances of HL in I + i[−c0, 0] ordered by increasing real part; then

L ·Re(z j+1− z j )� 1 and L · Im z j = h(Re z j )+ o(1), (0-3)

the estimates in (0-3) being uniform for all the resonances in I + i[−c0, 0] when L→+∞.

After rescaling their width by L , resonances are nicely interspaced points lying on an analytic curve
(see Figure 2). We give a more precise description of the resonances in Theorem 1.7 and Propositions 1.8
and 1.9. In particular, we describe the set of energies D and the resonances near these energies: they lie
further away from the real axis, the maximal distance being of order L−1 log L (see Figure 3). Theorem 0.1
only describes the resonances closest to the real axis. In Section 1B, we also give results on the resonances
located deeper in the lower half of the complex plane.

0B. When V is random. Assume now that V = Vω is the Anderson potential, i.e., its entries are i.i.d.
and distributed uniformly on [0, 1] for concreteness. Consider H =−1+ Vω. Let 6 be its almost sure
spectrum (see, e.g., [Pastur and Figotin 1992] for this and the following notions), E 7→ n(E) its density
of states (i.e., the derivative of the integrated density of states; see also Section 1B) and E 7→ ρ(E)
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Figure 2. The rescaled resonances for the periodic (left) and the random (right) potential.

its Lyapunov exponent (see also Section 1C). The Lyapunov exponent is known to be continuous and
positive; the density of states satisfies n(E) > 0 for a.e. E ∈6 (see, e.g., [Bougerol and Lacroix 1985]).

Define Hω,L := −1+ Vω1[[−L+1,L]]. We prove:

Theorem 0.2. Pick I ⊂ (−2, 2) a compact interval.

• If I ∩6 =∅ then there exists cI > 0 such that ω-a.s., for L sufficiently large,

{z a resonance of Hω,L in I + i(−cI , 0]} =∅.

• If I ⊂6◦ then, for any c > 0, ω-a.s. one has

lim
L→+∞

1
L

#{z a resonance of Hω,L in I + i(−∞,−e−2cL
]} =

∫
I

min
(

c
ρ(E)

, 1
)

n(E) d E .

As the first statement of Theorem 0.2 is clear, let us discuss the second. Define c+ :=maxE∈I ρ(E).
For c ≥ c+, ω-a.s. for L large the number of resonances in the strip {Re z ∈ I, Im z ≤ −e−2cL

} is
approximately 2L

∫
I n(E) d E ; thus, in {Re z ∈ I, −e2c+L

≤ Im z < 0}, one finds at most o(L) resonances.
We shall see that, for δ > 0, ω-a.s. for L large the strip {Re z ∈ I, −e(2c++δ)L ≤ Im z< 0} actually contains
no resonances (see Theorem 1.13).

Define c− := minE∈I ρ(E). For c ≤ c−, ω-a.s. for L large the strip {Re z ∈ I, Im z ≤ −e−2cL
}

contains approximately 2cL
∫

I n(E)/ρ(E) d E resonances. We shall see that, for κ ∈ [0, 1), the number
of resonances in the strip {Re z ∈ I, Im z ≤−e−Lκ

} is O(Lκ), thus o(L) (see Theorem 1.17).
One can also describe the resonances locally. Fix E0 ∈ (−2, 2)∩6◦ such that n(E0) > 0. Let (zL

l (ω))l

be the resonances of Hω,L . We first rescale them. Define

x L
l (ω)= 2Ln(E0)(Re zL

l (ω)− E0) and yL
l (ω)=−

1
2Lρ(E0)

log|Im zL
l (ω)|. (0-4)

Consider now the two-dimensional point process

ξL(E0, ω)=
∑

zL
l resonances of Hω,L

δ(x L
l (ω),y

L
l (ω))

.

We prove:

Theorem 0.3. The point process ξL converges weakly to a Poisson process of intensity 1 in R×[0, 1].

In the random case, the structure of the (properly rescaled) resonances is quite different from that in the
periodic case (see Figure 2). The real parts of the resonances are scaled in such a way that their average
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spacing becomes of order one. By Theorem 0.2, the imaginary parts are typically exponentially small
(in L); when the resonances are rescaled as in (0-4), their imaginary parts are rewritten on a logarithmic
scale so as to become of order 1 too. Once rescaled in this way, the local picture of the resonances of
Hω,L is that of a two-dimensional cloud of Poisson points (see the right-hand side of Figure 2).

Theorem 0.3 is the analogue for resonances of the well-known result on the distribution of eigenvalues
and localization centers for the Anderson model in the localized phase (see, e.g., [Minami 1996; Killip
and Nakano 2007; Germinet and Klopp 2014]).

As in the case of the periodic potential, Theorem 0.3 only describes the resonances closest to the real
axis. In Section 1C, we also give results on resonances located deeper in the lower half of the complex
plane. Up to distances of order L−∞ to the real axis, the cloud of resonances (once properly rescaled)
will have the same Poissonian behavior as described above (see Theorem 1.10).

Besides proving Theorems 0.1 and 0.3, the goal of the paper is to describe the statistical properties
of the resonances and relate them (the distribution of the resonances and of the widths) to the spectral
characteristics of H =−1+ V, and possibly to the distribution of its eigenvalues (see, e.g., [Germinet
and Klopp 2011]).

As they can be analyzed in a very similar way, we will discuss three models:

• The model HL defined above.

• Its analogue on the half-line N, i.e., on HL , we impose an additional Dirichlet boundary condition
at 0.

• The “half-infinite” model on `2(Z), that is,

H∞ =−1+W, where
{

W (n)= 0 for n ≥ 0,
W (n)= V (n) for n ≤−1,

(0-5)

where V is chosen as above, periodic or random.

Though in the present paper we restrict ourselves to discrete models, it is clear that continuous
one-dimensional models can be dealt with essentially using the methods developed here.

1. The main results

We now turn to our main results, a number of which were announced in [Klopp 2012]. Pick V : Z→ R a
bounded potential and, for L ∈ N, consider the operators

• H Z
L =−1+ V 1[[0,L]] on `2(Z);

• H N
L =−1+ V 1[[0,L]] on `2(N) with Dirichlet boundary conditions at 0;

• H∞, defined in (0-5).

Remark 1.1. Here, by “Dirichlet boundary condition at 0”, we mean that H N
L is the operator H Z

L
restricted to the subspace `2(N), i.e., if 5 : `2(Z)→ `2(N) is the orthogonal projector on `2(N), one has
H N

L =5H Z
L5. In the literature, this is sometime called “Dirichlet boundary condition at −1” (see, e.g.,

[Teschl 2000]).
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For the sake of simplicity, in the half-line case we only consider Dirichlet boundary conditions at 0.
But the proofs show that these are not crucial; any selfadjoint boundary condition at 0 would do and,
mutatis mutandis, the results would be the same.

Note also that by a shift of the potential V, replacing L by L+L ′, studying H Z
L is equivalent to studying

HL ,L ′ = −1+ V 1[[−L ′,L]] on `2(Z). Thus, to derive the results of Section 0 from those in the present
section, it suffices to consider the models above, in particular H Z

L .

For the models H N
L and H Z

L , we start with a discussion of the existence of a meromorphic continuation
of the resolvent, then study the resonances when V is periodic and finally turn to the case when V is
random.

As H∞ is not a relatively compact perturbation of the Laplacian, the existence of a meromorphic
continuation of its resolvent depends on the nature of V ; so, it will be discussed when specializing to V
periodic or random.

Remark 1.2 (notations). In the sequel, we write a . b if for some C > 0 (independent of the parameters
coming into a or b) one has a ≤ Cb. We write a � b if a . b and b . a.

1A. The meromorphic continuation of the resolvent. One proves the well-known and simple:

Theorem 1.3. The operator-valued functions z 7→ (z− H N
L )
−1 and z 7→ (z− H Z

L )
−1 for z ∈ C+ admit a

meromorphic continuation from C+ to C \ ((−∞,−2] ∪ [2,+∞)) through (−2, 2) (see Figure 1) with
values in the operators from l2

comp to l2
loc.

Moreover, the number of poles of each of these meromorphic continuations in the lower half-plane is at
most equal to L.

The resonances are defined to be the poles of this meromorphic continuation (see Figure 1).

1B. The periodic case. We assume that, for some p > 0, one has

Vn+p = Vn for all n ≥ 0. (1-1)

Let 6N be the spectrum of H N
= −1+ V acting on `2(N) with Dirichlet boundary condition at 0

and 6Z be the spectrum of H Z
=−1+ V acting on `2(Z). One has the following description for these

spectra:

• 6Z is a union of intervals, i.e., 6Z := σ(H) =
⋃p

j=1[E
−

j , E+j ], where E−j < E+j (1 ≤ j ≤ p) and
a+j−1 ≤ E−j (2≤ j ≤ p) (see, e.g., [van Moerbeke 1976]); the spectrum of H Z is purely absolutely
continuous and the spectral resolution can be obtained via a Bloch–Floquet decomposition (see, e.g.,
[loc. cit.]).

• On `2(N) (see, e.g., [Pavlov 1994]), one has

– 6N =6Z ∪ {v j | 1≤ j ≤ n} and 6Z is the absolutely continuous spectrum of H ;
– the (v j )0≤ j≤n are isolated simple eigenvalues associated to exponentially decaying eigen-

functions.
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It may happen that some of the gaps are closed, i.e., that the number of connected components of 6Z be
strictly less than p. There still is a natural way to write 6Z := σ(H)=

⋃p
j=1[E

−

j , E+j ] (see Section 4A1),
but in this case, for some of the j, one has E+j−1 = E−j ; we shall call the energies E+j−1 = E−j closed gaps
(see Definition 4.5). The existence of closed gaps is nongeneric (see [van Moerbeke 1976]).

The operators H • (for • ∈ {N,Z}) admit an integrated density of states defined by

N (E)= lim
L→+∞

#{eigenvalues of (−1+ V )|[[−L ,L]]∩• in (−∞, E]}
#([[−L , L]] ∩ •)

. (1-2)

Here, the restriction of −1+V to [[−L , L]]∩ • is taken with Dirichlet boundary conditions; this is for
concreteness as it is known that, in the limit L→+∞, other selfadjoint boundary conditions would yield
the same result for the limit (1-2).

The integrated density of states is the same for H N and H Z (see, e.g., [Pastur and Figotin 1992]). It
defines the distribution function of some probability measure on 6Z that is real analytic on 6◦Z. Let n
denote the density of states of H N and H Z, that is, n(E)= d N (E)/d E .

Remark 1.4. When L gets large, as H N
L tends to H N in the strong resolvent sense, interesting phenomena

for the resonances of H N
L should take place near energies in 6N.

Define τk to be the shift by k steps to the left, that is, τk V ( · )= V ( · + k). Then, for (`L)L such that
lL→+∞ and L−`L→+∞ when L→+∞, τ ∗lL

H Z
L τlL tend to H Z in the strong resolvent sense. Thus,

interesting phenomena for the resonances of H Z
L should take place near energies in 6Z.

1B1. Resonance-free regions. We start with a description of resonance-free regions near the real axis.
To this end, we introduce some operators on the positive and the negative half-lattice.

Above we have defined HN; we shall need another auxiliary operator. On `2(Z−) (where Z−={n≤ 0}),
consider the operator H−k =−1+ τk V with Dirichlet boundary condition at 0 (where τk is defined to be
the shift by k steps to the left, that is, τk V ( · )= V ( · + k)). Let 6−k = σ(H

−

k ).
As is the case for H N, one knows that σess(H−k )=6Z and that σess(H−k ) is purely absolutely continuous

(see, e.g., [Teschl 2000, Chapter 7]). H−k may also have discrete eigenvalues in R \6Z.
We prove:

Theorem 1.5. Let I be a compact interval in (−2, 2).

(1) If I ⊂ R \ 6N (resp. I ⊂ R \ 6Z), then there exists c > 0 such that, for L sufficiently large,
H N

L (resp. H Z
L ) has no resonances in the rectangle {Re z ∈ I, Im z ∈ [−c, 0]}.

(2) If I ⊂6Z, then there exists c > 0 such that, for L sufficiently large, H N
L and H Z

L have no resonances
in the rectangle {Re z ∈ I, Im z ∈ [−c/L , 0]}.

(3) Fix 0 ≤ k ≤ p− 1 and assume the compact interval I is such that {v j } = I ◦ ∩6N = I ∩6N and
I ∩6Z =∅ (the (v j ) j are as defined in the beginning of Section 1B).

(a) If I ∩6−k =∅ then there exists c> 0 such that, for L sufficiently large with L ≡ k mod p, H N
L has

a unique resonance in the rectangle {Re z ∈ I, −c≤ Im z ≤ 0}; moreover, this resonance, say z j ,
is simple and satisfies Im z j �−e−ρ j L and |z j − λ j | � e−ρ j L for some ρ j > 0 independent of L.
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(b) If I ∩6−k 6= ∅ then there exists c > 0 such that, for L sufficiently large with L ≡ k mod p,
H N

L has no resonance in the rectangle {Re z ∈ I, −c ≤ Im z ≤ 0}.

So, below the spectral interval (−2, 2), there exists a resonance-free region of width at least of order L−1.
For H N

L , if L ≡ k mod p each discrete eigenvalue of H N that is not an eigenvalue of H−k generates a
resonance for H N

L exponentially close to the real axis (when L is large). When the eigenvalue of H−k is
also an eigenvalue of H N

= H+0 ; it may also generate a resonance but only much further away in the
complex plane, at least at a distance of order 1 to the real axis.

In case (3a) of Theorem 1.5, one can give an asymptotic expansion for the resonances (see Section 5B1).
We now turn to the description of the resonances of H •

L near [−2, 2]. To this end, it will be useful to
introduce a number of auxiliary functions and operators.

1B2. Some auxiliary functions. To H−k defined above, we associate N−k , the distribution function of its
spectral measure (which is a probability measure), i.e., for ϕ ∈ C∞0 (R), we define

∫
R
ϕ(λ) d N−k (λ) :=

ϕ(H−k )(0, 0), where (ϕ(H−k )(x, y))(x,y)∈(Z−)2 denotes the kernel of the operator ϕ(H−k ).
On 6◦Z, the spectral measure d N−k admits a density with respect to the Lebesgue measure, say n−k , and

this density is real analytic (see Proposition 5.6).
For E ∈6◦Z, define

S−k (E) := p.v.
(∫

R

d N−k (λ)
λ− E

)
= lim
ε→0+

(∫ E−ε

−∞

d N−k (λ)
λ− E

−

∫
+∞

E+ε

d N−k (λ)
λ− E

)
. (1-3)

The existence and analyticity of the Cauchy principal value S−k on 6◦Z is guaranteed by the analyticity
of n−k (see, e.g., [King 2009]). Moreover, for E ∈6◦Z, one has

S−k (E)= lim
ε→0+

∫
R

d N−k (λ)
λ− E − iε

− iπn−k (E). (1-4)

In the lower half-plane {Im E < 0}, define the function

4−k (E) :=
∫

R

d N−k (λ)
λ− E

+ e−i arccos(E/2)
=

∫
R

d N−k (λ)
λ− E

+
E
2
+

√(E
2

)2
− 1, (1-5)

where

• in the first formula, the function z 7→ arccos z is the analytic continuation to the lower half-plane of
the branch of arccos z taking values in [−π, 0] on the interval [−1, 1];

• in the second formula, the branch of the square root z 7→
√

z2− 1 has positive imaginary part for
z ∈ (−1, 1).

The function 4−k is analytic in {Im E < 0} and in a neighborhood of (−2, 2) ∩ 6◦Z. Moreover,
4−k vanishes identically if and only if V ≡ 0 (see Proposition 5.7).

From now on we assume that V 6≡ 0. In this case, in {Im E < 0} and on (−2, 2)∩6◦Z, the analytic
function 4−k has only finitely many zeros, each of finite multiplicity (see Proposition 5.7).

We shall need the analogues of the above-defined functions for the already-introduced operator
H+0 := H N

= −1+ V considered on `2(N) with Dirichlet boundary conditions at 0. We define the
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function N+0 as the distribution function of the spectral measure of H+0 , i.e., for ϕ ∈ C∞0 (R), we define∫
R
ϕ(λ) d N+0 (λ) := ϕ(H

+

0 )(0, 0). In the same way as we have defined n−k , S−k and 4−k from H−k , one can
define n+0 , S+0 and 4+0 from H+0 . They also satisfy Proposition 5.6, relation (1-4) and Proposition 5.7.

For the description of the resonances, it will be convenient to define the following functions on 6◦Z:

cN(E) := i +
4−k (E)
πn−k (E)

=
1

πn−k (E)
(S−k (E)+ e−i arccos(E/2)) (1-6)

and

cZ(E) :=

(S+0 (E)+ e−i arccos(E/2))(S−k (E)+ e−i arccos(E/2))

n+0 (E)n
−

k (E)
−π2

π(S+0 (E)+ e−i arccos(E/2))

n+0 (E)
+
π(S−k (E)+ e−i arccos(E/2))

n−k (E)

. (1-7)

We shall see that the zeros of c•− i play a special role for the resonances of H •

L ; therefore, we define

D• = {z ∈6◦Z | c
•(z)= i}. (1-8)

The set D introduced in Theorem 0.1 is the set DZ
∩ (−2, 2).

Remark 1.6. Before describing the resonances, let us explain why the operators H+0 and H−k naturally
occur in this study. They respectively are the strong resolvent limits (when L→+∞ with L ∈ pN+ k)
of the operator H Z

L restricted to [[0, L]] with Dirichlet boundary conditions at 0 and L “seen” from the
left- and the right-hand side, respectively.

Indeed, define HL to be the operator H N
L restricted to [[0, L]] with Dirichlet boundary conditions at L

(see Remark 1.1). Note that HL is also the operator H Z
L restricted to [[0, L]] with Dirichlet boundary

conditions at 0 and L .
Clearly, the operator H+0 is the strong resolvent limit of HL when L→+∞.
If τ̃L denotes the translation by−L that unitarily maps `2([[0, L]]) into `2([[−L , 0]]), then H̃L= τ̃L HL τ̃

∗

L
converges in the strong resolvent sense to H−k when L→+∞ and L ≡ k mod p. Indeed, τL V = τk V as
V is p-periodic.

1B3. Description of the resonances closest to the real axis. Let (λl)0≤l≤L = (λ
L
l )0≤l≤L be the eigenvalues

of HL (that is, the eigenvalues of H N
L or H Z

L restricted to [[0, L]] with Dirichlet boundary conditions; see
Remark 1.1) listed in increasing order. They are described in Theorem 4.2; those away from the edges
of 6Z are shown to be nicely interspaced points at a distance roughly L−1 from one another.

We first state our most general result describing the resonances in a uniform way. We then derive two
corollaries describing the behavior of the resonance, first far from the set of exceptional energies D• and
second close to an exceptional energy.

Pick a compact interval I ⊂ (−2, 2)∩6◦Z. For • ∈ {N,Z} and λl ∈ I , for L large, define the complex
number

z̃•l = λl +
1

πn(λl)L
cot−1

◦c•
[
λl +

1
πn(λl)L

cot−1
◦c•
(
λl − i

log L
L

)]
, (1-9)

where the branch of cot−1 is the inverse of the branch of z 7→ cot z that maps [0, π)×(0,−∞) onto C+\{i}.
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Note that, by Proposition 5.8, for L sufficiently large we know that, for any l such that λl ∈ I , one has

Im c•
(
λl − i

log L
L

)
∈ (0,+∞) \ {1}

and

Im c•
[
λl +

1
πn(λl)L

cot−1
◦c•
(
λl − i

log L
L

)]
∈ (0,+∞) \ {1}.

Thus, the formula (1-9) defines z̃•l properly and in a unique way. Moreover, as the zeros of E 7→c•(E)−i
are of finite order, one checks that

− log L . L · Im z̃•l .−1 and 1. L ·Re(z̃•l+1− z̃•l ), (1-10)

where the implicit constants are uniform for l such that λl ∈ I .
We prove:

Theorem 1.7. Pick • ∈ {N,Z} and k ∈ {0, . . . , p− 1}. Let E0 ∈ (−2, 2)∩6◦Z.
Then there exists η0 > 0 and L0 > 0 such that, for L > L0 satisfying L = k mod p, for each

λl ∈ I := [E0− η0, E0+ η0], there exists a unique resonance of H •

L , say z•l , in the rectangle[ 1
2 Re(z̃•l + z̃•l−1),

1
2 Re(z̃•l + z̃•l+1)

]
+ i[−η0, 0];

this resonance is simple and it satisfies |z•l − z̃•l |. 1/(L log L).

This result calls for a few comments. First, the picture one gets for the resonances can be described as
follows (see also Figure 3). As long as λl stays away from any zero of E 7→ c•(E)− i , the resonances
are nicely spaced points, as the following proposition proves.

Proposition 1.8. Pick • ∈ {N,Z} and k ∈ {0, . . . , p− 1}. Let I ⊂ (−2, 2)∩6◦Z be a compact interval
such that I ∩D• =∅.

Then, for L sufficiently large and each λl ∈ I , the resonance z•l admits the expansion

z•l = λl +
1

πn(λl)L
cot−1

◦c•(λl)+ O
(

1
L2

)
, (1-11)

where the remainder term is uniform in l.

The proof of Proposition 1.8 actually yields a complete asymptotic expansion in powers of L−1 for the
resonances in this zone (see Section 5B5).

Proposition 1.8 implies Theorem 0.1: we choose •= Z and k = 0, then the set D of exceptional points
in Theorem 0.1 is exactly DZ

∩ (−2, 2); to obtain (0-3), it suffices to use the asymptotic form of the
Dirichlet eigenvalues given by Theorem 4.2.

Near the zeros of E 7→ c•(E)− i , the resonances take a “plunge” into the lower half of the complex
plane (see Figure 3) and their imaginary part becomes of order L−1 log L . Indeed, Theorem 1.7 and (1-9)
imply:
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resonances
log L

E0 I

1

Figure 3. The resonances close to the real axis in the periodic case (after rescaling their
imaginary parts by L).

Proposition 1.9. Pick • ∈ {N,Z} and k ∈ {0, . . . , p− 1}. Let E0 ∈ D• be a zero of E 7→ c•(E)− i of
order q in (−2, 2)∩6◦Z.

Then, for α > 0 and L sufficiently large, if l is such that |λl − E0| ≤ L−α, the resonance z•l satisfies

Im z•l =
q

2πn(λl)

log
(
|λl − E0|

2
+
(
q log L/(2πn(λl)L)

)2)
2L

(1+ o(1)), (1-12)

where the remainder term is uniform in l such that |λl − E0| ≤ L−α.

When •= Z, the asymptotic (1-12) shows that there can be a “resonance” phenomenon for resonances:
when the two functions 4−k and 4+0 share a zero at the same real energy, the maximal width of the
resonances increases; indeed, the factor in front of L−1 log L is proportional to the multiplicity of the
zero of 4−k 4

+

0 .

1B4. Description of the low-lying resonances. The resonances found in Theorem 1.7 are not necessarily
the only ones: deeper in the lower complex plane, one may find more resonances. They are related to the
zeros of 4−k when •= N and of 4−k 4

+

0 when •= Z (see Proposition 5.8).
We now study what happens below the line {Im z =−η0} (see Theorem 1.7) for the resonances of H N

L
and H Z

L .
The functions 4−k and 4+0 are analytic in the lower half-plane and, by Proposition 5.7, they don’t

vanish in an neighborhood of −i∞. Hence, the functions 4−k and 4+0 have only finitely many zeros in
the lower half-plane.

We prove:

Theorem 1.10. Pick • ∈ {N,Z} and k ∈ {0, . . . , p− 1}. Let (E •j )1≤ j≤J be the zeros of E 7→ c•(E)− i in
I + i(−∞, 0). Pick E0 ∈ (−2, 2)∩6◦Z.

There exists η0 > 0 such that, for I = E0+ [−η0, η0] and L sufficiently large with L ≡ k mod p, one
has:

• If E0 6∈ {Re E •j | 1≤ j ≤ J }, then in the rectangle I + i(−∞, 0] the only resonances of H N
L and H Z

L
are those given by Theorem 1.7.

• If E0 ∈ {Re E •j | 1≤ j ≤ J }, then
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– in the rectangle I+i[−η0, 0], the only resonances of H N
L and H Z

L are those given by Theorem 1.7;
– in the strip I + i[−∞,−η0], the resonances of H •

L are contained in
⋃J

j=1 D(E •j , e−η0 L);
– in D(E •j , e−η0 L), the number of resonances (counted with multiplicity) is equal to the order of

E •j as a zero of E 7→ c•(E)− i .

We see that the total number of resonances below a compact subset of (−2, 2)∩6◦Z that do not tend to
the real axis when L→+∞ is finite. These resonances are related to the resonances of H∞, to which
we turn now.

1B5. The half-line periodic perturbation. Fix p ∈ N∗. On `2(Z), we now consider the operator H∞ =
1+ V, where V (n)= 0 for n ≥ 0 and V (n+ p)= V (n) for n ≤−1. We prove:

Theorem 1.11. The resolvent of H∞ can be analytically continued from the upper half-plane through
(−2, 2) ∩ 6◦Z to the lower half-plane. The resulting operator does not have any poles in the lower
half-plane or on (−2, 2)∩6◦Z .

The resolvent of H∞ can be analytically continued from the upper half-plane through (−2, 2) \6Z

(resp. 6◦Z \ [−2, 2]) to the lower half-plane; the poles of the continuation through (−2, 2) \6Z (resp.
6◦Z \[−2, 2]) are exactly the zeros of the function E 7→ 1−eiθ(E)

∫
R

1/(λ− E) d N−p−1(λ) when continued
from the upper half-plane through (−2, 2) \6Z (resp. 6◦Z \ [−2, 2]) to the lower half-plane.

Remark 1.12. In Theorem 1.11 and below, every time we consider the analytic continuation of a resolvent
through some open subset of the real line we implicitly assume the open subset to be nonempty.

In Figure 4, to illustrate Theorem 1.11, assuming that 6Z (in blue) has a single gap that is contained
in (−2, 2), we have drawn the various analytic continuations of the resolvent of H∞ and the presence or
absence of resonances for the different continuations.

Using the same arguments as in the proof of Proposition 5.7, one easily sees that the continuations of
the function E 7→ 1− eiθ(E)

∫
R

1/(λ− E) d N−p−1(λ) to the lower half-plane through (−2, 2) \6Z and
6◦Z \ [−2, 2] have at most finitely many zeros and that these zeros are away from the real axis.

resonance no resonance resonance resonance

no resonance

6Z

−2 2

Figure 4. The analytic continuation of the resolvent and resonances for H∞.
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This also implies that the spectrum on H∞ in [−2, 2] ∪6Z is purely absolutely continuous except
possibly at the points of ∂6Z ∪ {−2, 2}, where ∂6Z is the set of edges of 6Z.

1C. The random case. We now turn to the random case. Let V = Vω, where (Vω(n))n∈Z are bounded
independent and identically distributed random variables. Assume that the common law of the random
variables admits a bounded compactly supported density, say g.

Set H N
ω =−1+Vω on `2(N) (with Dirichlet boundary condition at 0 for concreteness). Let σ(H N

ω ) be
the spectrum of H N

ω . Consider also H Z
ω =−1+ Vω acting on `2(Z). Then one knows (see, e.g., [Kirsch

2008]) that, ω-almost surely,

σ(H Z
ω )=6 := [−2, 2] + supp g. (1-13)

One has the following description for the spectra σ(H N
ω ) and σ(H Z

ω ):

• ω-almost surely, σ(H Z
ω ) = 6; the spectrum is purely punctual; it consists of simple eigenvalues

associated to exponentially decaying eigenfunctions (Anderson localization; see, e.g., [Pastur and
Figotin 1992; Kirsch 2008]); one can prove that, under the assumptions made above, the whole
spectrum is dynamically localized (see, e.g., [Cycon et al. 1987] and references therein).

• For H N
ω (see, e.g., [Pastur and Figotin 1992; Carmona and Lacroix 1990]), one has, ω-almost surely,

σ(H N
ω )=6 ∪ Kω, where

– 6 is the essential spectrum of H N
ω and it consists of simple eigenvalues associated to exponentially

decaying eigenfunctions;
– the set Kω is the discrete spectrum of H N

ω , which may be empty and depends on ω.

1C1. The integrated density of states and the Lyapunov exponent. It is well known (see, e.g., [Pastur and
Figotin 1992]) that the integrated density of states of H , say N (E), is defined as the limit

N (E)= lim
L→+∞

#
{
eigenvalues of H Z

ω |[[−L ,L]] in (−∞, E]
}

2L + 1
. (1-14)

The above limit does not depend on the boundary conditions used to define the restriction H Z
ω |[[−L ,L]].

It defines the distribution function of a probability measure supported on 6. Under our assumptions on the
random potential, N is known to be Lipschitz continuous ([Pastur and Figotin 1992; Kirsch 2008]). Let
n(E)= d N (E)/d E be its derivative; it exists for almost all energies. If one assumes more regularity on g,
the density of the random variables (ωn)n , then the density of states n can be shown to exist everywhere
and to be regular (see, e.g., [Cycon et al. 1987]).

One also defines the Lyapunov exponent, say ρ(E), as

ρ(E) := lim
L→+∞

log ‖TL(E, ω)‖
L + 1

,

where

TL(E;ω) :=
(

E − Vω(L) −1
1 0

)
× · · ·×

(
E − Vω(0) −1

1 0

)
(1-15)
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For any E , ω-almost surely, the Lyapunov exponent is known to exist and to be independent of ω
(see, e.g., [Cycon et al. 1987; Pastur and Figotin 1992; Carmona and Lacroix 1990]). It is positive at all
energies. Moreover, by the Thouless formula [Cycon et al. 1987], it is continuous for all E and is the
harmonic conjugate of n(E).

For • ∈ {N,Z}, we now define H •

ω,L to be the operator −1•+ Vω1[[0,L]]. The goal of the next sections
is to describe the resonances of these operators in the limit L→+∞.

As in the case of a periodic potential V, the resonances are defined as the poles of the analytic
continuation of z 7→ (H •

ω,L − z)−1 from C+ through (−2, 2) (see Theorem 1.3).

1C2. Resonance-free regions. We again start with a description of the resonance-free region near a
compact interval in (−2, 2). As in the periodic case, the size of the H •

ω,L -resonance-free region below a
given energy will depend on whether this energy belongs to σ(H •

ω) or not. We prove:

Theorem 1.13. Fix • ∈ {N,Z}. Let I be a compact interval in (−2, 2). Then, ω-a.s., one has:

(1) For • ∈ {N,Z}, if I ⊂ R \ σ(H •

ω) then there exists C > 0 such that, for L sufficiently large, there are
no resonances of H •

ω,L in the rectangle {Re z ∈ I, 0≥ Im z ≥−1/C}.

(2) If I ⊂6◦, then for ε ∈ (0, 1) there exists L0 > 0 such that, for L ≥ L0, there are no resonances of
H •

ω,L in the rectangle {Re z ∈ I, 0≥ Im z ≥−e−2η•ρL(1+ε))}, where
• ρ is the maximum of the Lyapunov exponent ρ(E) on I ,

• η• =

{
1 if •= N,
1
2 if •= Z.

(3) Pick v j = v j (ω) ∈ Kω (see the description of the spectrum of H N
ω just above Section 1C1) and

assume that {v j } = I ◦ ∩ σ(H N
ω ) = I ∩ σ(H N

ω ) and I ∩6 = ∅; then there exists c > 0 such that,
for L sufficiently large, H N

ω,L has a unique resonance in {Re z ∈ I, −c ≤ Im z ≤ 0}; moreover, this
resonance, say z j , is simple and satisfies Im z j � −e−ρ j (ω)L and |z j − λ j | � e−ρ j (ω)L for some
ρ j (ω) > 0 independent of L.

When comparing point (2) of this result with Theorem 1.5(2), it is striking that the width of the
resonance-free region below 6 is much smaller in the random case (it is exponentially small in L) than
in the periodic case (it is polynomially small in L). This a consequence of the localized nature of the
spectrum, i.e., of the exponential decay of the eigenfunctions of H •

ω.

1C3. Description of the resonances closest to the real axis. We will now see that below the resonance-free
strip exhibited in Theorem 1.13 one does find resonances — actually, many of them. We prove:

Theorem 1.14. Fix • ∈ {N,Z}. Let I be a compact interval in (−2, 2)∩
◦

6.

(1) For any κ ∈ (0, 1), ω-a.s. one has

#{z resonance of H •

ω,L | Re z ∈ I, 0> Im z ≥−e−Lκ
}

L
→

∫
I

n(E) d E .

(2) For E ∈ I such that n(E) > 0 and λ ∈ (0, 1), define the rectangle

R•(E, λ, L , ε, δ) :=
{
z ∈ C

∣∣ n(E)|Re z− E | ≤ 1
2ε, −eη•ρ(E)δL

≤ e2η•ρ(E)λL Im z ≤−e−η•ρ(E)δL},
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where η• is as defined in Theorem 1.13; then ω-a.s. one has

lim
δ→0+

lim
ε→0+

lim
L→+∞

#{z resonances of H •

ω,L in R•(E, λ, L , ε, δ)}

Lεδ
= 1. (1-16)

(3) For E ∈ I such that n(E) > 0, define

R•
±
(E, 1, L , ε, δ)=

{
z ∈ C

∣∣ n(E)|Re z− E | ≤ 1
2ε, −e−2η•ρ(E)(1±δ)L ≤ Im z < 0

}
;

then ω-a.s. one has

lim
δ→0+

lim
ε→0+

lim
L→+∞

#{resonances in R•
±
(E, 1, L , ε, δ)}

Lεδ
=

{
1 if ±=−,
0 if ±=+.

(1-17)

(4) For c > 0, ω-a.s. one has

lim
L→+∞

#{z resonances of H •

ω,L in I + i(−∞,−e−2cL
]}

L
=

∫
I

min
(

c
ρ(E)

, 1
)

n(E) d E . (1-18)

The striking fact is that the resonances are much closer to the real axis than in the periodic case; the
lifetime of these resonances is much larger. The resonant states are quite stable, with lifetimes that are
exponentially large in the width of the random perturbation. Point (4) is an integral version of point (2).
Let us also note here that when •= Z, Theorem 1.14(4) is the statement of Theorem 0.2.

Note that the rectangles R•(E, λ, L , ε, δ) are very stretched along the real axis; their side-length in the
imaginary part is exponentially small in L whereas their side-length in the real part is of order 1.

To understand Theorem 1.14(2), rescale the resonances of H •

ω,L , say (z•l,L(ω))l , as

x •l = x •l,L(E, ω)= n(E)L(Re z•l,L(ω)− E) and y•l = y•l,L(E, ω)=−
1

2η•ρ(E)L
log |Im z•l,L(ω)|.

(1-19)
For λ ∈ (0, 1), this rescaling maps the rectangle R•(E, λ, L , ε, δ) into

{
|x | ≤ 1

2 Lε, |y− λ| ≤ 1
2δ
}

and
the rectangles R•

±
(E, 1, L , ε, δ) are mapped into {|x | ≤ Lε/2, 1∓ δ ≤ y}, respectively. The denominator

of the quotient in (1-16) is just the area of the rescaled R•(E, λ, L , ε, δ) for λ ∈ (0, 1) or the rescaled
R•
+
(E, 1, L , ε, δ) \ R•

−
(E, 1, L , ε, 0). So, (2) states that, in the limit with ε and δ small and L large, the

rescaled resonances become uniformly distributed in the rescaled rectangles.
We see that the structure of the set of resonances is very different from the one observed in the periodic

case (see Figure 2). We will now zoom in on the resonance even more so as to make this structure clearer.
We consider the two-dimensional point process ξ •L(E, ω) defined by

ξ •L(E, ω)=
∑

z•l,L resonance of H•ω,L

δ(x•l ,y
•

l )
, (1-20)

where x •l and y•l are defined by (1-19).
We prove:

Theorem 1.15. Fix E ∈ (−2, 2)∩6◦ such that n(E) > 0. Then the point process ξ •L(E, ω) converges
weakly to a Poisson process in R× (0, 1] with intensity 1. That is, for any p ≥ 0, if (In)1≤n≤p (resp.
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(Cn)1≤n≤p) are disjoint intervals of the real line R (resp. [0, 1]), then

lim
L→+∞

P
({
ω
∣∣ #{ j | x •l,L(E, ω) ∈ In, y•l,L(E, ω) ∈ Cn} = kn for n = 1, . . . , p

})
=

p∏
n=1

e−µn
(µn)

kn

kn!
,

where µn := |In||Cn| for 1≤ n ≤ p.

This is the analogue of the celebrated result on the Poisson structure of the eigenvalues and localization
centers of a random system (see, e.g., [Molchanov 1982; Minami 1996; Germinet and Klopp 2014]).

When considering the model for •= Z, Theorem 1.15 is Theorem 0.3.

In [Klopp 2011], we proved decorrelation estimates that can be used in the present setting to prove:

Theorem 1.16. Fix E ∈ (−2, 2)∩6◦ and E ′ ∈ (−2, 2)∩6◦ such that E 6= E ′, n(E) > 0 and n(E ′) > 0.
Then the limits of the processes ξ •L(E, ω) and ξ •L(E

′, ω) are stochastically independent.

Due to the rescaling, the above results only give a picture of the resonances in a zone of the type

E + L−1
[−ε−1, ε−1

] − i[e−2η•(1+ε)ρ(E)L , e−2εη•ρ(E)L ] (1-21)

for ε > 0 arbitrarily small.
When L gets large, this rectangle is of a very small width and located very close to the real axis.

Theorems 1.14, 1.15 and 1.16 describe the resonances lying closest to the real axis. As a comparison
between points (1) and (2) in Theorem 1.14 shows, these resonances are the most numerous.

One can get a number of other statistics (e.g., the distribution of the spacings between the resonances)
using the techniques developed for the study of the spectral statistics of a random system in the localized
phase (see [Germinet and Klopp 2011; 2014; Klopp 2013]) combined with the analysis developed in
Section 6.

1C4. The description of the low-lying resonances. It is natural to question what happens deeper in the
complex plane. To answer this question, fix an increasing sequence of scales (`L)L such that

`L

log L
→+∞ as L→+∞ and

`L

L
→ 0 as L→+∞. (1-22)

We first show that there are only a few resonances below the line {Im z = e−`L }, namely:

Theorem 1.17. Pick (`L)L a sequence of scales satisfying (1-22) and I as above.
Then, ω almost surely, for L large one has{

z resonances of H •

ω,L in {Re z ∈ I, Im z ≤−e−`L }
}
= O(`L). (1-23)

As we shall show now, after proper rescaling the structure of these resonances is the same as that of
the resonances closer to the real axis.

Fix E ∈ I such that n(E) > 0. Recall that (z•l,L(ω))l are the resonances of Hω,L . We now rescale the
resonances using the sequence (`L)L ; this rescaling will select resonances that are further away from the
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real axis. Define

x •l = x •l,`L
(ω)= n(E)`L(Re z•l,L(ω)− E) and y•j = y•l,`L

(ω)=
1

2η•`Lρ(E)
log |Im z•l,L(ω)|. (1-24)

Consider now the two-dimensional point process

ξ •L ,`(E, ω)=
∑

z•l,L resonance of H•ω,L

δ(x•l,`L
,y•l,`L

). (1-25)

We prove the following analogue of the results of Theorems 1.14, 1.15 and 1.16 for resonances lying
further away from the real axis.

Theorem 1.18. Fix E ∈ (−2, 2)∩6◦ and E ′ ∈ (−2, 2)∩6◦ such that E 6= E ′, n(E) > 0 and n(E ′) > 0.
Fix a sequence of scales (`L)L satisfying (1-22). Then one has:

(1) For λ ∈ (0, 1], ω-almost surely,

lim
δ→0+

lim
ε→0+

lim
L→+∞

#{z resonances of H •

ω,L in R•(E, λ, `L , ε, δ)}

`Lεδ
= 1,

where R•(E, λ, L , ε, δ) is as defined in Theorem 1.14.

(2) The point processes ξ •L ,`(E, ω) and ξ •L ,`(E
′, ω) converge weakly to Poisson processes in R×(0,+∞)

of intensity 1.

(3) The limits of the processes ξ •L ,`(E, ω) and ξ •L ,`(E
′, ω) are stochastically independent.

Point (1) shows that, in (1-23), one actually has{
z resonances of H •

ω,L in {Re z ∈ I, Im z ≤−e−`L }
}
� `L .

Notice also that the effect of the scaling (1-24) is to select resonances that live in the rectangle

E + `−1
L [−ε

−1, ε−1
] − i[e−2η•(1+ε)ρ(E)`L , e−2εη•ρ(E)`L ]

This rectangle is now much further away from the real axis than the one considered in Section 1C3.
Modulo rescaling, the picture one gets for resonances in such rectangles is the same we got above in

the rectangles (1-21). This description is valid almost all the way from distances to the real axis that are
exponentially small in L up to distances that are of order e−(log L)α , α > 1 (see (1-22)).

1C5. Deep resonances. One can also study the resonances that are even further away from the real axis
in a way similar to what was done in the periodic case in Section 1B4. Define the random potentials on N

and Z

Ṽ N
ω,L(n)=

{
ωL−n for 0≤ n ≤ L ,
0 for L + 1≤ n,

Ṽ Z
ω,ω̃,L(n)=


0 for n ≤−1,
ω̃n for 0≤ n ≤

[ 1
2 L
]
,

ωL−n for
[ 1

2 L
]
+ 1≤ n ≤ L ,

0 for L + 1≤ n,

(1-26)
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where ω= (ωn)n∈N and ω̃= (ω̃n)n∈N are i.i.d. and satisfy the assumptions of the beginning of Section 1C.
Consider the operators

• H̃ N
ω,L =−1+ Ṽ N

ω,L on `2(N) with Dirichlet boundary condition at 0,

• H̃ Z
ω,ω̃,L =−1+ Ṽ Z

ω,ω̃,L on `2(Z).

Clearly, the random operator H̃ N
ω,L (resp. H̃ Z

ω,L ) has the same distribution as H N
ω,L (resp. H Z

ω,L ). Thus,
for the low lying resonances, we are now going to describe those of H̃ N

ω,L (resp. H̃ Z
ω,L ) instead of those

of H N
ω,L (resp. H Z

ω,L ).

Remark 1.19. The reason for this change of operators is the same as the one why, in the case of the
periodic potential, we had to distinguish various auxiliary operators depending on the congruence of L
modulo the period p: this gives a meaning to the limiting operators when L→+∞.

Define the probability measure d Nω(λ) using its Borel transform by, for Imz 6= 0,∫
R

d Nω(λ)
λ− z

:= 〈δ0, (H N
ω − E)−1δ0〉. (1-27)

Consider the function

4ω(E)=
∫

R

d Nω(λ)
λ− E

+ e−i arccos(E/2)
=

∫
R

d Nω(λ)
λ− E

+
1
2 E +

√( 1
2 E
)2
− 1, (1-28)

where the choice of z 7→ arccos z and z 7→
√

z2− 1 are those described after (1-5).
This random function 4ω is the analogue of 4−k in the periodic case. One has the analogue of

Proposition 5.7:

Proposition 1.20. If ω0 6= 0, one has 4ω(E)∼−ω0 E−2 as |E | →∞, Im E < 0. Thus, ω-almost surely,
4ω does not vanish identically in {Im E < 0}.

Pick I ⊂ 6◦ ∩ (−2, 2) compact. Then, ω-almost surely, the number of zeros of 4ω (counted with
multiplicity) in I + i(−∞, ε] is asymptotic to

∫
I n(E)/ρ(E) d E |log ε| as ε→ 0+; moreover, ω-almost

surely, there exists εω > 0 such that all the zeros of 4ω in I + i[−εω, 0) are simple.

It seems reasonable to believe that, except for the zero at −i∞, ω-almost surely all the zeros of 4ω
are simple; we do not prove it.

For the “deep” resonances, we then prove:

Theorem 1.21. Fix I ⊂6◦∩ (−2, 2) a compact interval. There exists c > 0 such that, with probability 1,
there exists cω > 0 such that, for L sufficiently large, one has:

(1) For each resonance of H̃ N
ω,L (resp. H̃ Z

ω,ω̃,L ) in I + i(−∞,−e−cL
], say E , there exists a unique zero

of 4ω (resp. 4ω4ω̃), say Ẽ , such that |E − Ẽ | ≤ e−cωL .

(2) Reciprocally, to each zero (counted with multiplicity) of 4ω (resp. 4ω4ω̃) in the rectangle
I + i(−∞,−e−cL

], say Ẽ , one can associate a unique resonance of H̃ N
ω,L (resp. H̃ Z

ω,ω̃,L ), say E ,
such that |E − Ẽ | ≤ e−cωL .
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One can combine this result with the description of the asymptotic distribution of the resonances given
by Theorem 1.18 to obtain the asymptotic distributions of the zeros of the function 4ω near a point E− iε
when ε→ 0+. Indeed, let (zl(ω))l be the zeros of 4ω in {Im E < 0}. Rescale the zeros:

xl,ε(ω)= n(E)|log ε|(Re zl(ω)− E) and yl,ε(ω)=−
1

2ρ(E)|log ε|
log |Im zl(ω)|; (1-29)

and consider the two-dimensional point process ξε(E, ω) defined by

ξε(E, ω)=
∑

zl (ω) zeros of 4ω

δ(xl,ε,yl,ε). (1-30)

Then one has:

Corollary 1.22. Fix E ∈ I such that n(E) > 0. Then the point process ξε(E, ω) converges weakly to a
Poisson process in R×R with intensity 1.

The function 4ω has been studied in [Kunz and Shapiro 2006; 2008], where the average density of its
zeros was computed. Here we obtain a more precise result.

1C6. The half-line random perturbation. On `2(Z), we now consider the operator H∞ω = −1+ Vω,
where Vω(n)= 0 for n ≥ 0, Vω(n)= ωn for n ≤−1 and (ωn)n≥0 are i.i.d. and have the same distribution
as above. The spectral theory of the continuous analogue of H∞ω , i.e., the Schrödinger operator on the
real line with a random potential on the half-line, was studied in [Carmona 1983].

Recall that 6 is the almost sure spectrum of H Z
ω (on `2(Z)). We prove:

Theorem 1.23. First, ω-almost surely, the resolvent of H∞ω does not admit an analytic continuation from
the upper half-plane through (−2, 2)∩6◦ to any subset of the lower half plane. Nevertheless, ω-almost
surely, the spectrum of H∞ω in (−2, 2)∩6◦ is purely absolutely continuous.

Second, ω-almost surely, the resolvent of H∞ω does admit a meromorphic continuation from the upper
half-plane through (−2, 2) \6 to the lower half-plane; the poles of this continuation are exactly the zeros
of the function E 7→ 1− eiθ(E)

∫
R

1/(λ− E) d Nω(λ) when continued from the upper half-plane through
(−2, 2) \6 to the lower half-plane.

Third, ω-almost surely, the spectrum of H∞ω in 6◦ \ [−2, 2] is pure point associated to exponentially
decaying eigenfunctions; hence, the resolvent of H∞ω cannot be continued through 6◦ \ [−2, 2].

In Figure 5, to illustrate Theorem 1.23, assuming that 6Z (in blue) has a single gap that is contained in
(−2, 2), we have drawn the analytic continuation of the resolvent of H∞ω and the associated resonances;
we also indicate the real intervals of the spectrum through which the resolvent of H∞ω does not admit an
analytic continuation and the spectral type of H∞ω in the intervals.

Let us also note here that if 0 ∈ supp g (where g is the density of the random variables defining the
random potential) then, by (1-13), one has [−2, 2] ⊂6. In this case, there is no possibility to continue
the resolvent of H∞ω to the lower half-plane passing through [−2, 2].

Comparing Theorem 1.23 to Theorem 1.11, we see that, as for the operator H∞, when continued
through (−2, 2)∩6◦ the operator H∞ω does not have any resonances, but for very different reasons.
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no analytic continutation
but absolutely continuous spectrum

6Z

no analytic continuation

resonances

and dense pure point spectrum

−2 2

Figure 5. The analytic continuation of the resolvent and resonances for H∞ω .

When one does the continuation through (−2, 2) \6, one sees that the number of resonances is finite;
“near” the real axis, the continuation of the function E 7→ 1− eiθ(E)

∫
R

1/(λ− E) d Nω(λ) has nontrivial
imaginary part and near∞ it does not vanish.

Theorem 1.23 also shows that the equation studied in [Kunz and Shapiro 2006; 2008], i.e., 4ω(E)= 0,
does not describe the resonances of H∞ω as is claimed in these papers: these resonances do not exist as there
is no analytic continuation of the resolvent of H∞ω through (−2, 2)∩6! As is shown in Theorem 1.21, the
solutions to the equation 4ω(E)= 0 give an approximation to the resonances of H N

ω,L (see Theorem 1.21).

1D. Outline of and reading guide to the paper. In the present section, we shall explain the main ideas
leading to the proofs of the results presented above.

In Section 2, we prove Theorem 1.3; this proof is classical. As a consequence of the proof, one sees
that, in the case of the half-lattice N (resp. lattice Z), the resonances are the eigenvalues of a rank-one
(resp. rank-two) perturbation of (−1+ V )|[[0,L]] with Dirichlet boundary condition. The perturbation
depends in an explicit way on the resonance. This yields a closed equation for the resonances in terms
of the eigenvalues and normalized eigenfunctions of the Dirichlet restriction (−1+ V )|[[0,L]]. To obtain
a description of the resonances we then are in need of a “precise” description of the eigenvalues and
normalized eigenfunctions. Actually, the only information needed on the normalized eigenfunctions is
their weight at the point L (and the point 0 in the full lattice case), 0 and L being the endpoints of [[0, L]].

In Section 3, we solve the two equations obtained previously under the condition that the weight
of the normalized eigenfunctions at L (and 0) be much smaller than the spacing between the Dirichlet
eigenvalues. This condition entails that the resonance equation we want to solve essentially factorizes
and become very easy to solve (see Theorems 3.1, 3.2 and 3.3), i.e., it suffices to solve it near any given
Dirichlet eigenvalue.

For periodic potentials, the condition that the eigenvalue spacing is much larger than the weight of the
normalized eigenfunctions at L (and 0) is not satisfied: both quantities are of the same order of magnitude
(see Theorem 4.2) for the Dirichlet eigenvalues in the bulk of the spectrum, i.e., the vast majority of
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them. This is a consequence of the extended nature of the eigenfunctions in this case. Therefore, we find
another way to solve the resonance equation. This way goes through a more precise description of the
Dirichlet eigenvalues and normalized eigenfunctions which is the purpose of Theorem 4.2. We use this
description to reduce the resonance equation to an effective equation (see Theorem 5.1) up to errors of
order O(L−∞). It is important to obtain errors of at most that size. Indeed, the effective equation may
have solutions to any order (the order is finite and only depends on V but it is unknown); thus, to obtain
solutions to the true equation from solutions to the effective equation with a good precision, one needs
the two equations to differ by at most O(L−∞). We then solve the effective equation and, in Section 5B,
prove the results of Section 1B.

On the other hand, for random potentials, it is well known that the eigenfunctions of the Dirichlet
restriction (−1+ V )|[[0,L]] are exponentially localized and, for most of them localized, far from the
edge of [[0, L]]. Thus, their weight at L (and 0 in the full lattice case) is typically exponentially small
in L; the eigenvalue spacing however is typically of order L−1. We can then use the results of Section 3
to solve the resonance equation. The real part of a given resonance is directly related to a Dirichlet
eigenvalue and its imaginary part to the weight of the corresponding eigenfunction at L (and 0 in the
full lattice case). The main difficulty is to find the asymptotic behavior of this weight. Indeed, while
it is known that, in the random case, eigenfunctions decay exponentially away from a localization
center and that, for the full random Hamiltonian (i.e., the Hamiltonian on the line or half-line with
a random potential), at infinity this decay rate is given by the Lyapunov exponent, to the best of our
knowledge, before the present work, it was not known at which length scale this Lyapunov behavior sets
in (with a good probability). Answering this question is the purpose of Theorems 6.4 and 6.5 proved
in Section 6C: we show that, for the one-dimensional Anderson model, for δ > 0 arbitrary, on a box of
size L sufficiently large, all the eigenfunctions exhibit an exponential decay (we obtain both an upper
and a lower bound on the eigenfunctions) at a rate equal to the Lyapunov exponent at the corresponding
energy (up to an error of size δ) as soon as one is at a distance δL from the corresponding localization
center.

These bounds give estimates on the weight of most eigenfunctions at the point L (and 0 in the full
lattice case); this is directly related to the distance of the corresponding localization center to the points
L (and 0). One can then transform the known results on the statistics of the (rescaled) eigenvalues and
(rescaled) localization centers into statistics of the (rescaled) resonances. This is done in Section 6B and
proves most of the results in Section 1C.

Finally, Section 6D is devoted to the study of the full line Hamiltonian obtained from the free
Hamiltonian on one half-line and a random Hamiltonian on the other half-line; it contains in particular
the proof of Theorem 1.23.

2. The analytic continuation of the resolvent

Resonances for Jacobi matrices were considered in various works (see, e.g., [Brown et al. 2005; Iantchenko
and Korotyaev 2012] and references therein). For the sake of completeness, we provide an independent
proof of Theorem 1.3. It follows standard ideas that were first applied in the continuous setting, i.e., for
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−2 2
−π 0

θ
E

Figure 6. The mapping E 7→ θ(E).

partial differential operators instead of finite difference operators (see, e.g., [Sjöstrand and Zworski 1991]
and references therein).

The proof relies on the fact that the resolvent of the free Laplace operator can be continued holomorphi-
cally from C+ to C \ ((−∞,−2] ∪ [2,+∞)) as an operator valued function from l2

comp to l2
loc. This is an

immediate consequence of the fact that, by discrete Fourier transformation, −1 is the Fourier multiplier
by the function θ 7→ 2 cos θ .

Indeed, for −1 on `2(Z) and Im E > 0, one has, for (n,m) ∈ Z (assume n−m ≥ 0),

〈δn, (−1− E)−1δm〉 =
1

2π

∫ 2π

0

e−i(n−m)θ

2 cos θ − E
dθ =

1
2iπ

∫
|z|=1

zn−m

z2− Ez+ 1
dz

=
1

2
√( 1

2 E
)2
− 1

( 1
2 E −

√(1
2 E
)2
− 1

)n−m
=

ei(n−m)θ(E)

sin θ(E)
, (2-1)

where E = 2 cos θ(E) and θ = θ(E) is chosen so that Im θ > 0 and Re θ ∈ (−π, 0) for Im E > 0. The
choice satisfies θ(E)= θ(E).

The map E 7→ θ(E) can be continued analytically from C+ to the cut plane C\((−∞,−2]∪[2,+∞))
as shown in Figure 6.

The continuation is one-to-one and onto from C\ ((−∞,−2]∪ [2,+∞)) to (−π, 0)+ iR. It defines a
choice of E 7→ arccos

( 1
2 E
)
= θ(E).

Clearly, using (2-1), this continuation yields an analytic continuation of RZ
0 := (−1− E)−1 from

{Im E > 0} to C \ ((−∞,−2] ∪ [2,+∞)) as an operator from l2
comp to l2

loc.

Let us now turn to the half-line operator, i.e., −1 on N with Dirichlet condition at 0. Pick E such that
Im E > 0 and set E = 2 cos θ , where θ = θ(E) is chosen as above. If, for v ∈ CN bounded and n ≥−1,
one sets v−1 = 0 and

[RN
0 (E)(v)]n =

1
2i sin θ(E)

n∑
j=−1

v j sin((n− j)θ(E))− eiθ(E) sin((n+ 1)θ(E))
2i sin θ(E)

∑
j≥0

ei jθ(E)v j , (2-2)

then, for Im E > 0, a direct computations shows that:

(1) For v ∈ `2(N), the vector RN
0 (E)(v) is in the domain of the Dirichlet Laplacian on `2(N), i.e.,

[RN
0 (E)(v)]−1 = 0.
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(2) For n ≥ 0, one checks that

[RN
0 (E)(v)]n+1+ [RN

0 (E)(v)]n−1− E[RN
0 (E)(v)]n = vn. (2-3)

(3) RN
0 (E) defines a bounded map from `2(N) to itself.

Thus, RN
0 (E) is the resolvent of the Dirichlet Laplacian on N at energy E for Im E > 0.

Using the continuation of E 7→ θ(E), (2-2) yields an analytic continuation of the resolvent RN
0 (E) as

an operator from l2
comp to l2

loc.

Remark 2.1. Note that the resolvent RN
0 (E) at an energy E with Im E < 0 is given by (2-2) with θ(E)

replaced by −θ(E). For (2-2), one has to assume that (v j ) j∈N decays fast enough at∞.

To deal with the perturbation V, we proceed in the same way on Z and on N. Set V L
= V 1[[0,L]]

(viewed as a function on N or Z depending on the case). Letting R0(E) be either RZ
0 (E) or RN

0 (E), we
compute

−1+ V L
− E = (−1− E)(1+ R0(E)V L)= (1+ V L R0(E))(−1L − E).

Thus it suffices to check that the operator R0(E)V L (resp. V L R0(E)) can be analytically continued as
an operator from l2

loc to l2
loc (resp. l2

comp to l2
comp). This follows directly from (2-2) and the fact V L has

finite rank.
To complete the proof of Theorem 1.3, we just note that, since

• E 7→ R0(E)V L (resp. E 7→ V L R0(E)) is a finite-rank, operator-valued function, analytic on the
connected set C \ ((−∞,−2] ∪ [2,+∞)),

• −1 is not an eigenvalue of R0(E)V L (resp. V L R0(E)) for Im E > 0,

by the Fredholm principle, the set of energies E for which −1 is an eigenvalue of R0(E)V L (resp.
V L R0(E)) is discrete. Hence, the set of resonances is discrete.

This completes the proof of the first part of Theorem 1.3. To prove the second part, we will first write
a characteristic equation for resonances. The bound on the number of resonances will then be obtained
through a bound on the number of solutions to this equation.

2A. A characteristic equation for resonances. In the literature, we did not find a characteristic equation
for the resonances in a form suitable for our needs. The characteristic equation we derive will take
different forms depending on whether we deal with the half-line or the full line operator. But in both
cases, the coefficients of the characteristic equation will be constructed from the spectral data (i.e., the
eigenvalues and eigenfunctions) of the operator HL (see Remark 1.6).

2B. In the half-line case. We first consider H N
L on `2(N) and prove:

Theorem 2.2. Consider the operator HL defined as H N
L restricted to [[0, L]] with Dirichlet boundary

conditions at L and define:

• (λ j )0≤ j≤L = (λ j (L))0≤ j≤L are the Dirichlet eigenvalues of H N
L ordered so that λ j < λ j+1.

• aN
j = aN

j (L)= |ϕ j (L)|2, where ϕ j = (ϕ j (n))0≤n≤L is a normalized eigenvector associated to λ j .
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Then an energy E is a resonance of H N
L if and only if

SL(E) :=
L∑

j=0

aN
j

λ j − E
=−e−iθ(E), E = 2 cos θ(E), (2-4)

θ(E) being chosen so that Im θ(E) > 0 and Re θ(E) ∈ (−π, 0) when Im E > 0.

Let us note that

aN
j (L) > 0 for all 0≤ j ≤ L and

L∑
j=0

aN
j (L)=

L∑
j=0

|ϕ j (L)|2 = 1. (2-5)

Proof of Theorem 2.2. By the proof of the first statement of Theorem 1.3 (see the beginning of Section 2),
we know that an energy E is a resonance if and only if −1 if an eigenvalue of R0(E)V L , where R0(E) is
defined by (2-2). Pick E an resonance and let u = (un)n≥0 be a resonant state that is an eigenvector of
R0(E)V L associated to the eigenvalue −1. As V L

n = 0 for n ≥ L + 1, (2-2) yields that, for n ≥ L + 1,
un = βeinθ(E) for some fixed β ∈C∗. As u =−R0(E)V Lu, for n ≥ L+1 it satisfies un+1+un−1 = Eun .
Thus, uL+1 = eiθ(E)uL and, by (2-3), u is a solution to the eigenvalues problem

un+1+ un−1+ Vnun = Eun for all n ∈ [[0, L]],
u−1 = 0,
uL+1 = eiθ(E)uL .

This can be equivalently be rewritten as
V0 1 0 · · · 0
1 V1 1 0
...
. . .

. . .
. . .

0 1 VL−1 1
0 · · · 0 1 VL + eiθ(E)




u0

...

uL

= E


u0

...

uL

 . (2-6)

The matrix in (2-6) is the Dirichlet restriction of H N
L to [[0, L]] perturbed by the rank-one operator

eiθ(E)δL⊗δL . Thus, by rank-one perturbation theory (see, e.g., [Simon 1995]), an energy E is a resonance
if and only if satisfies (2-4).

This completes the proof of Theorem 2.2. �

Proof of Theorem 1.3. Let us now complete the proof of Theorem 1.3 for the operator on the half-line.
Let us first note that, for Im E > 0, the imaginary part of the left-hand side of (2-4) is positive by (2-7).
On the other hand, the imaginary part of the right-hand side of (2-4) is equal to −eIm θ(E) sin(Re θ(E))
and, thus, is negative (recall that Re θ(E) ∈ (−π, 0) (see Figure 1). Thus, as already emphasized, (2-4)
has no solution in the upper half-plane or on the interval (−2, 2).

Clearly, (2-4) is equivalent to the polynomial equation of degree 2L + 2 in the variable z = e−iθ(E)

L∏
k=0

(z2
− 2λkz+ 1)−

L∑
j=0

aN
j

∏
0≤k≤L

k 6= j

(z2
− 2λkz+ 1)= 0. (2-7)
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We are looking for the solutions to (2-7) in the upper half-plane. As the polynomial in the right-hand
side of (2-7) has real coefficients, its zeros are symmetric with respect to the real axis. Moreover, one
notices that, by (2-5), 0 is a solution to (2-7). Hence, the number of solutions to (2-7) in the upper
half-plane is bounded by L . This completes the proof of Theorem 1.3. �

2C. On the whole line. Now consider H Z
L on `2(Z). We prove:

Theorem 2.3. Using the notations of Theorem 2.2, an energy E is a resonance of H Z
L if and only if

det
( L∑

j=0

1
λ j − E

(
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
+ e−iθ(E)

)
= 0, (2-8)

where det ( · ) denotes the determinant of a square matrix, E = 2 cos θ(E) and θ(E) is chosen as in
Theorem 2.2.

So, an energy E is a resonance of H Z
L if and only if −e−iθ(E) belongs to the spectrum of the 2× 2

matrix

0L(E) :=
L∑

j=0

1
λ j − E

(
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
. (2-9)

Proof of Theorem 2.3. The proof is the same as that of Theorem 2.2 except that now E is a resonance if
there exists a nontrivial solution u to the eigenvalues problem

un+1+ un−1+ Vnun = Eun for all n ∈ [[0, L]],
u−1 = eiθ(E)u0

uL+1 = eiθ(E)uL .

This can equivalently be rewritten as
V0+ eiθ(E) 1 0 · · · 0

1 V1 1 0
...

. . .
. . .

. . .

0 1 VL−1 1
0 · · · 0 1 VL + eiθ(E)




u0

...

uL

= E


u0

...

uL

 .

Thus, using rank-one perturbations twice, we find that an energy E is a resonance if and only if(
1+ eiθ(E)

L∑
j=0

|ϕ j (0)|2

λ j − E

)(
1+ eiθ(E)

L∑
j=0

|ϕ j (L)|2

λ j − E

)
= e2iθ(Ek)

∑
0≤ j, j ′≤L

ϕ j (L)ϕ j ′(0)ϕ j ′(L)ϕ j (0)
(λ j − E)(λ j ′ − E)

,

that is, if and only if (2-8) holds. This completes the proof of Theorem 2.3. �

Let us now complete the proof of Theorem 1.3 for the operator on the full line. Let us first show
that (2-8) has no solution in the upper half-plane. If −e−iθ(E) belongs to the spectrum of the matrix
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defined by (2-8) and u ∈ C2 is a normalized eigenvector associated to −e−iθ(E), one has

L∑
j=0

1
λ j − E

∣∣∣∣〈(ϕ j (L)
ϕ j (0)

)
, u
〉∣∣∣∣2 =−e−iθ(E).

This is impossible in the upper half-plane and on (−2, 2) as the two sides of the equation have imaginary
parts of opposite signs.

Note that
L∑

j=0

(
ϕ j (L)
ϕ j (0)

) (
ϕ j (L) ϕ j (0)

)
=

(
1 0
0 1

)
.

Note also that −e−iθ(E) is an eigenvalue of (2-8) if and only if it satisfies

1+ eiθ(E)
L∑

j=0

|ϕ j (L)|2+ |ϕ j (0)|2

λ j − E
=−

1
2 e2iθ(E)

∑
0≤ j, j ′≤L

1
(λ j − E)(λ j ′ − E)

∣∣∣∣ϕ j (0) ϕ j ′(0)
ϕ j (L) ϕ j ′(L)

∣∣∣∣2. (2-10)

As the eigenvalues of HL are simple, one computes∑
0≤ j, j ′≤L

1
(λ j − E)(λ j ′ − E)

∣∣∣∣ϕ j (0) ϕ j ′(0)
ϕ j (L) ϕ j ′(L)

∣∣∣∣2 = 2
∑

0≤ j≤L

1
λ j − E

∑
j ′ 6= j

1
λ j ′ − λ j

∣∣∣∣ϕ j (0) ϕ j ′(0)
ϕ j (L) ϕ j ′(L)

∣∣∣∣2. (2-11)

Thus, (2-10) is equivalent to the polynomial equation of degree 2(L + 1) in the variable z = e−iθ(E)

z
L∏

k=0

(z2
− λkz+ 1)−

L∑
j=0

(2aZ
j z+ bZ

j )
∏

0≤k≤L
k 6= j

(z2
− λkz+ 1)= 0, (2-12)

where we have defined

aZ
j :=

1
2
(|ϕ j (L)|2+ |ϕ j (0)|2)=

1
2

∥∥∥∥(ϕ j (L)
ϕ j (0)

)∥∥∥∥2

=
1
2

∥∥∥∥( |ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)∥∥∥∥ (2-13)

and

bZ
j :=

∑
j ′ 6= j

1
λ j ′ − λ j

∣∣∣∣ϕ j (0) ϕ j ′(0)
ϕ j (L) ϕ j ′(L)

∣∣∣∣2.
The sequence (aZ

j ) j also satisfies (2-5). Taking |E | to +∞ in (2-11), one notes that

L∑
j=0

bZ
j = 0 and

L∑
j=0

λ j bZ
j =−

1
2

∑
0≤ j, j ′≤L

∣∣∣∣ϕ j (0) ϕ j ′(0)
ϕ j (L) ϕ j ′(L)

∣∣∣∣2 =−1. (2-14)

We are looking for the solutions to (2-12) in the upper half-plane. As the polynomial in the right-hand
side of (2-12) has real coefficients, its zeros are symmetric with respect to the real axis. Moreover, one
notices that, by (2-14), 0 is a root of order two of the polynomial in (2-12). Hence, as the polynomial has
degree 2L+3, the number of solutions to (2-12) in the upper half-plane is bounded by L . This completes
the proof of Theorem 1.3.
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3. General estimates on resonances

By Theorems 2.2 and 2.3, we want to solve equations (2-4) and (2-8) in the lower half-plane. We first
derive some general estimates for zones in the lower half-plane free of solutions to equations (2-4)
and (2-8) (i.e., resonant-free zones for the operators H N

L and H Z
L ) and then a result on the existence of

solutions to equations (2-4) and (2-8) (i.e., resonances for the operators H N
L and H Z

L ).

3A. General estimates for resonant-free regions. We keep the notations of Theorems 2.2 and 2.3. To
simplify the notations in the theorems of this section, we will write a j for either aN

j when solving (2-4)
or aZ

j when solving (2-8). We will specify the superscript only when there is risk of confusion.
We first prove:

Theorem 3.1. Fix δ > 0. Then there exists C > 0 (independent of V and L) such that, for any L and
j ∈ {0, . . . , L} with −4+ δ ≤ λ j−1+λ j < λ j+1+λ j ≤ 4− δ, equations (2-4) and (2-8) have no solution
in the set (see Figure 7)

U j :=
{

E ∈ C
∣∣ Re E ∈

[1
2(λ j + λ j−1),

1
2(λ j + λ j+1)

]
, 0≥ C · θ ′δ Im E >−a j d2

j |sin Re θ(E)|
}
, (3-1)

where the map E 7→ θ(E) is as defined in Section 2 and we have set

d j :=min(λ j+1− λ j , λ j − λ j−1, 1) and θ ′δ := max
|E |≤2−δ/2

|θ ′(E)|. (3-2)

In Theorem 3.1 there are no conditions on the numbers (a j ) j or (d j ) j except their being positive. In
our application to resonances, this holds. Theorem 3.1 becomes optimal when a j � d2

j . In our application
to resonances, for periodic operators one has a j � L−1 and d j � L−1 (see Theorem 5.2), and for random
operators one has a j � e−cL and d j & L−4 (see Theorem 6.4 and (6-10)). Thus, in the random case
Theorem 3.1 will provide an optimal strip free of resonances, whereas in the periodic case we will use a
much more precise computation (see Theorem 5.1) to obtain sharp results.

When a j � d2
j , one proves the existence of another resonant-free region near a energy λ j , namely:

Theorem 3.2. Fix δ > 0. Pick j ∈ {0, . . . , L} such that −4+ δ < λ j−1+ λ j < λ j+1+ λ j < 4− δ. There
exists C > 0 (depending only on δ) such that, for any L , if a j ≤ d2

j /C2 then equations (2-4) and (2-8)
have no solution in the set (see Figure 7)

Ũ j :=

{
E ∈C

∣∣∣∣Re E ∈
[ 1

2(λ j+λ j−1), λ j−Ca j
]
∪
[
λ j+Ca j ,

1
2(λ j+λ j+1)

]
, −Ca j ≤ Im E≤−

a j d2
j

C

}
∪

{
E ∈ C

∣∣∣∣ Re E ∈
[ 1

2(λ j + λ j−1),
1
2(λ j + λ j+1)

]
, −

d2
j

C
≤ Im E ≤−Ca j

}
. (3-3)

Theorem 3.2 becomes optimal when a j is small and d j is of order one. This will be sufficient to deal
with the isolated eigenvalues for both the periodic and the random potential. It will also be sufficient to
give a sharp description of the resonant-free region for random potentials. For the periodic potential, we
will rely on much more precise computations (see Theorem 5.1).

Note that Theorem 3.2 guarantees that, if d j is not too small, outside R j (see Theorem 3.3) resonances
are quite far below the real axis.
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λ j−1 λ j λ j+1
U j

Ũ j

R j

Figure 7. The resonance-free zones U j and Ũ j .

Proof of Theorem 3.1. The basic idea of the proof is that, for E close to λ j , SL(E) and the matrix 0L(E)
are either large or have a very small imaginary part while, as −4< λ j−1+ λ j < λ j+1+ λ j < 4, e−iθ(E)

has a large imaginary part. Thus, (2-4) and (2-8) have no solution in this region.
We start with (2-4). Pick E ∈U j for some C large to be chosen later on. Assume first that |E − λ j | ≤

a j d j (2+C0d j )
−1 for C0 := 2e1/C . Recall that 0 < a j , d j ≤ 1. Note that, for C sufficiently large, for

E ∈U j , one has

|Im e−iθ(E)
| = eIm θ(E)

|sin Re θ(E)| = eIm[θ(E)−θ(Re E)]
|sin Re θ(E)|

≥ eθ
′

δ Im E
|sin Re θ(E)| ≥ e−1/C

|sin Re θ(E)| (3-4)

and

|e−iθ(E)
| ≤ 1≤ e1/C . (3-5)

One estimates

|SL(E)| ≥
a j

|λ j − E |
−

∑
k 6= j

ak

|λk − E |
≥

2
d j
+C0−

∑
k 6= j

2ak

mink 6= j |λk − λ j |
≥ C0 = 2e1/C . (3-6)

Thus, comparing (3-6) and (3-5), we see that (2-4) has no solution in U j ∩{|E−λ j | ≤ a j d j (2+Cd j )
−1
}.

Assume now that |E − λ j |> a j d j (2+C0d j )
−1. Then, for E ∈U j , one has

|Im E | ≤
1
θ ′δC

a j d2
j |sin Re θ(E)|. (3-7)

Thus, for E ∈U j ∩ {|E − λ j |> a j d j (2+C0d j )
−1
}, one computes

|Im SL(E)| ≤ |Im E |
(

a j

|λ j −Re E |2+ |Im E |2
+

4
d2

j + |Im E |2

)
≤

1
θ ′δC

a j d2
j |sin(Re θ(E))|

(
(2+C0d j )

2a j

a2
j d

2
j

+
4
d2

j

)
≤

4
θ ′δC

(1+ e1/C)2|sin(Re θ(E))| ≤ 1
2

e−1/C
|sin(Re θ(E))| (3-8)

provided C satisfies 8e1/C(1+ e1/C)2 < θ ′δC .
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Hence, the comparison of (3-4) with (3-8) shows that (2-4) has no solution in

U j ∩ {|E − λ j |> a j d j (2+C0d j )
−1
}

if we choose C large enough (independent of (a j ) j and (λ j ) j ). Thus, we have proved that, for some
C > 0 large enough (independent of (a j ) j and (λ j ) j ), (2-4) has no solution in U j .

Let us now turn to the case of (2-8). The basic ideas are the same as for (2-4). Consider the matrix
0L(E) defined by (2-9). The summands in (2-9) are hermitian, of rank 1, and their norm is given by (2-13).

Assume that E ∈U j is a solution to (2-8). Define the vectors

v j := a−1/2
j

(
ϕ j (L)
ϕ j (0)

)
for j ∈ {0, . . . , L}.

Here, a j = aZ
j .

Note that, by definition of a j , one has ‖v j‖
2
= 2. Pick u in C2 a normalized eigenvector of 0L(E)

associated to the eigenvalue −e−iθ(E). Thus, u satisfies

L∑
j=0

a j 〈v j , u〉v j

λ j − E
=−e−iθ(E)u. (3-9)

Note that, by assumption, one has

sup
E∈U j

∥∥∥∥∑
k 6= j

ak〈vk, u〉vk

λk − E

∥∥∥∥. 1
d j

and
∣∣∣∣Im(∑

k 6= j

ak |〈vk, u〉|2

λk − E

)∣∣∣∣. |Im E |
d2

j
, (3-10)

where the constants are independent of C , the one defining U j .
Taking the (real) scalar product of (3-9) with ū, and then the imaginary part, we obtain

−
a j |〈v j , u〉|2 Im E
|λ j − E |2

+ Im(e−iθ(E))= O
(
|Im E |

d2
j

)
.

Thus, for E ∈U j , as a j ≤ 1, for C in (3-1) sufficiently large (depending only on δ),

a j |〈v j , u〉|2|Im E |
|λ j − E |2

≥
1
2
|sin Re θ(E)|.

Hence, for a solution to (2-8) in U j and u as above, one has

|λ j − E | ≤ |〈v j , u〉|

√
2a j |Im E |
|sin Re θ(E)|

≤ 2

√
a j |Im E |
|sin Re θ(E)|

.

Hence, by the definition of U j , for C large we get∣∣∣∣ a j

λ j − E

∣∣∣∣≥ Cθ ′δ
d j
�

1
d j
. (3-11)
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By (3-10), the operator 0L(E) can be written as

0L(E)=
a j

λ j − E
v j ⊗ v j + R j (E)+ i I j (E), (3-12)

where R j (E) and I j (E) are selfadjoint (I j is nonnegative) and satisfy

‖R j (E)‖.
1
d j

and ‖I j (E)‖.
|Im E |

d2
j
. (3-13)

An explicit computation shows that the eigenvalues of the two-by-two matrix
a j

λ j−E
v j ⊗ v j + R j (E)

satisfy

λ=
a j

λ j − E

(
1+ O

(
d j

Cθ ′δ

))
or |Im λ|.

|Im E |
a j

,

where the implicit constants are independent of the one defining U j .
Thus, by (3-12), using (3-11) and the second estimate in (3-13), we see that the eigenvalues of the

matrix 0L(E) satisfy

λ=
a j

λ j − E

(
1+ O

(
d j

Cθ ′δ

))
or |Im λ| ≤

2
Cθ ′δ

.

Clearly, for C large, no such value can be equal to −e−iθ(E), being too large — by (3-11) — in the first
case or having too small imaginary part in the second. The proof of Theorem 3.1 is complete. �

Proof of Theorem 3.2. Again, we start with the solutions to (2-4). For z ∈ Ũ j , we compute

Im SL(E)=
L∑

k=0

ak Im E

(λk −Re E)2+ Im2 E
=

a j Im E

(λ j −Re E)2+ Im2 E
+

∑
0≤k≤L

k 6= j

−ak Im E

(λk −Re E)2+ Im2 E
. (3-14)

When −d2
j /C ≤ Im E ≤−Ca j , the second equality above and (2-5) yield, for C sufficiently large,

0≤ Im SL(E).
a j

|Im E |
+
|Im E |

d2
j + Im2 E

≤
2
C
. (3-15)

On the other hand, for some K > 0, one has

|Im e−iθ(E)
| ≥ |Im e−iθ(Re E)

| −
K d2

j

C
.

Now, since under the assumptions of Theorem 3.2 one has

min
E∈[(λ j+λ j−1)/2,(λ j+λ j+1)/2]

|Im e−iθ(E)
| ≥

1
4 min(

√
16− (λ j + λ j−1)

2,
√

16− (λ j + λ j+1)
2), (3-16)

we obtain that (2-4) has no solution in Ũ j ∩ {−d j/C ≤ Im E ≤−Ca j }.
Now pick E ∈ Ũ j such that −Ca j ≤ Im E ≤−a j d2

j /C . Then (3-5) and (2-5) yield, for C sufficiently
large,

Im SL(E).
a j Im E

C2a2
j + Im2 E

+
Ca j

d2
j
≤

1
C
+

1
2C
.
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The imaginary part of e−iθ(E) is estimated as above. Thus, for C sufficiently large, (2-4) has no solution
in Ũ j ∩ {−Ca j ≤ Im E ≤−a j d2

j /C}.

The case of (2-8) is studied in exactly the same way except that, as in the proof of Theorem 3.1, one has
to replace the study of SL(E) by that of 〈0L(E)u, u〉 for u a normalized eigenvector of 0L(E) associated
to −e−iθ(E) and, thus, the coefficient ak in (3-14) gets multiplied by a factor |〈vk, u〉|2 that is bounded
by 2.

This completes the proof of Theorem 3.2. �

3B. The resonances near an “isolated” eigenvalue. We will now solve (2-4) near a given λ j under the
additional assumptions that a j � d2

j . By Theorems 3.1 and 3.2, we will do so in the rectangle R j (see
Theorem 3.3 and Figure 7). Actually, we prove that in R j there is exactly one resonance and give an
asymptotic for this resonance in terms of a j , d j and λ j . This result is going to be applied to the case of
random V and to that of isolated eigenvalues (for any V ).

Using the notations of Section 3, for j ∈ {0, . . . , L} we define

SL , j (E) :=
∑
k 6= j

aN
k

λk − E
and 0L , j (E) :=

∑
k 6= j

1
λk − E

(
|ϕk(L)|2 ϕk(0)ϕk(L)
ϕk(0)ϕk(L) |ϕk(0)|2

)
. (3-17)

We prove:

Theorem 3.3. Pick j ∈ {0, . . . , L} such that −4 < λ j−1 + λ j < λ j+1 + λ j < 4. There exists C > 1
(depending only on (λ j−1 + λ j )+ 4 and 4− (λ j+1 + λ j )) such that, for any L , if a j ≤ d2

j /C , (2-4)
and (2-8) have exactly one solution in the set

R j :=

{
E ∈ C

∣∣∣∣ Re E ∈ λ j +Ca j [−1, 1], −Ca j ≤ Im E ≤−
a j d2

j

C

}
. (3-18)

Moreover, the solution to (2-4), say zN
j , satisfies

zN
j = λ j +

aN
j

SL , j (λ j )+ e−iθ(λ j )
+ O((aN

j d−1
j )2) (3-19)

and the solution to (2-8), say zZ
j , satisfies

zZ
j = λ j +

〈(
ϕ j (L)
ϕ j (0)

)
, (0L , j (λ j )+ e−iθ(λ j ))−1

(
ϕ j (L)
ϕ j (0)

)〉
+ O((aZ

j d−1
j )2). (3-20)

Note that, if aN
j d−2

j is small, (3-19) gives the asymptotic of the width of the solution zN
j , namely,

Im zN
j =

aN
j sin θ(λ j )

[SL , j (λ j )+ cos θ(λ j )]2+ sin2 θ(λ j )
(1+ o(1)). (3-21)
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Recall that sin θ(λ j ) < 0 (see Theorem 2.2). For H Z
L , using the bounds (3-28) and (3-29), we see that

the asymptotic of the imaginary part of the solution zZ
j satisfies

−
1
C

aZ
j ≤ Im zZ

j ≤−CaZ
j d2

j . (3-22)

This and (3-21) will be useful when a•j � d2
j , as will be the case for random potentials. The case when

a•j and d j are of the same order of magnitude requires more information. This is the case that we meet in
the next section when dealing with periodic potentials.

The proof of Theorem 3.3 also yields the behavior of the functions E 7→ SL(E) + e−iθ(E) and
E 7→ det(0L(E)+ e−iθ(E)) near their zeros in R j and, in particular, shows the following:

Proposition 3.4. Fix δ > 0. Under the assumptions of Theorem 3.3, there exists c > 0 such that, for
−4+ δ < λ j−1+ λ j < λ j+1+ λ j < 4− δ, one has

inf
0<r<caN

j d−1
j

min
|E−zN

j |=r

|SL(E)+ e−iθ(E)
|

r
≥ c and inf

0<r<caZ
j d−1

j

min
|E−zZ

j |=r

|det(0L(E)+ e−iθ(E))|

r
≥ c.

Proposition 3.4 is a consequence of the analogues of (3-24) and (3-30) on the rectangles

R̃ j = z̃ j + ca•j d
−1
j [−1, 1]× [−1, 1]

for • ∈ {N,Z} and c sufficiently small.

Proof of Theorem 3.3. Let us start with (2-4). To prove the statement in (2-4), in R j we compare the
function E 7→ SL(E)+ e−iθ(E) to the function

E 7→ S̃L , j (E)=
aN

j

λ j − E
+ SL , j (λ j )+ e−iθ(λ j ).

Clearly, in C, the equation S̃L , j (E)= 0 admits a unique solution, given by

z̃ j = λ j +
aN

j

SL , j (λ j )+ e−iθ(λ j )
.

For E ∈ ∂R j , the boundary of R j , one has

|S̃L , j (E)| ≥
1

2C
and

∣∣∣∣ aN
j

λ j − E

∣∣∣∣≥ 1
2C
,

|e−iθ(E)
− e−iθ(λ j )| ≤ CaN

j and |SL , j (E)− SL , j (λ j )| ≤ CaN
j d−2

j .

(3-23)

Hence, as d j ≤ 1, one gets

max
E∈∂R j

|S̃L , j (E)− SL(E)− e−iθ(E)
|

|S̃L , j (E)|
≤ 4CaN

j d−2
j .

Thus, by Rouché’s theorem, (2-4) has a unique solution in R j .
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To obtain the asymptotics of the solution, it suffices to use Rouché’s theorem again with the functions
S̃L , j and SL(E)+ e−iθ(E) on the smaller rectangle R̃ j = z̃ j + K (aN

j d−1
j )2[−1, 1] × [−1, 1]. One then

estimates

max
E∈∂ R̃ j

|S̃L , j (E)− SL(E)− e−iθ(E)
|

|S̃L , j (E)|
≤ 4C K−1. (3-24)

Thus, for K sufficiently large, this completes the proof of the statements on the solutions to (2-4) contained
in Theorem 3.3.

Let us turn to (2-8). On R j , we now compare 0L(E)+ e−iθ(E) to the matrix-valued function

E 7→ 0̃L , j (E) :=
1

λ j − E

(
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
+0L , j (λ j )+ e−iθ(λ j ).

The matrix (
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
has rank 1 and can be diagonalized as(

|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
= Pj

(
aZ

j 0
0 0

)
P∗j ,

where aZ
j is given by (2-13) and

Pj =
1
√

aZ
j

(
ϕ j (L) −ϕ j (0)
ϕ j (0) ϕ j (L)

)
.

Thus, 0̃L , j (E) is unitarily equivalent to

M :=
1

λ j − E

(
aZ

j 0
0 0

)
+ P∗j 0L , j (λ j )Pj + e−iθ(λ j ). (3-25)

As P∗j 0L , j (λ j )Pj is real and the imaginary part of e−iθ(λ j ) does not vanish, M0 := P∗j 0L , j (λ j )Pj+e−iθ(λ j )

is invertible. By rank-1 perturbation theory (see, e.g., [Simon 2005]), we know that M is invertible if and
only if aZ

j [M
−1
0 ]11+ λ j 6= E (where [M]11 is the upper right coefficient of the 2× 2 matrix M). In this

case, one has

M−1
= M−1

0 −
aZ

j

aZ
j [M

−1
0 ]11+ λ j − E

M−1
0

(
1 0
0 0

)
M−1

0 . (3-26)

Hence, 0 is an eigenvalue of M if and only if

E = λ j + aZ
j [(P

∗

j 0L , j (λ j )Pj + e−iθ(λ j ))−1
]11

= λ j +

〈(
ϕ j (L)
ϕ j (0)

)
, (0L , j (λ j )+ e−iθ(λ j ))−1

(
ϕ j (L)
ϕ j (0)

)〉
. (3-27)
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Note that, as 0L , j (λ j ) is real symmetric and ‖0L , j (λ j )‖ ≤ Cd−1
j , one has∣∣∣∣〈(ϕ j (L)

ϕ j (0)

)
, (0L , j (λ j )+ e−iθ(λ j ))−1

(
ϕ j (L)
ϕ j (0)

)〉∣∣∣∣≤ aZ
j

|sin θ(λ j )|
(3-28)

and

Im
(〈(

ϕ j (L)
ϕ j (0)

)
, (0L , j (λ j )+ e−iθ(λ j ))−1

(
ϕ j (L)
ϕ j (0)

)〉)
≤

aZ
j d2

j sin θ(λ j )

1+ d2
j

. (3-29)

Using (3-25), (3-26), (3-28) and (3-29),we see that, for E ∈ ∂R j , the boundary of R j , 0̃L , j (E) is invertible
and that one has

‖[0̃L , j (E)]−1
‖ ≤ 2C and ‖0L , j (E)−0L , j (λ j )‖ ≤ CaZ

j d−2
j .

Hence, as d j ≤ 1, taking (3-23) into account, one gets

max
E∈∂R j

‖1− [0̃L , j (E)]−1(0L(E)+ e−iθ(E))‖ ≤ 4C2aZ
j d−2

j .

In the same way, one proves

max
E∈∂ R̃ j

‖1− [0̃L , j (E)]−1(0L(E)+ e−iθ(E))‖. K−1, (3-30)

where we recall that R̃ j = z̃ j + K (aN
j d−1

j )2[−1, 1]× [−1, 1].
Thus, we can apply Rouché’s theorem to compare the following two functions on ∂R j and ∂ R̃ j (for K

sufficiently large):
det(0̃L , j (E)) and det(0L(E)+ e−iθ(E)),

as

|det(0̃L , j (E))− det(0L(E)+ e−iθ(E))|

|det(0̃L , j (E))|
=
∣∣1− det

(
1−

[
1− [0̃L , j (E)]−1(0L(E)+ e−iθ(E))

])∣∣.
We then conclude as in the case of (2-4). This completes the proof of Theorem 3.3. �

Combining Theorems 3.3, 3.1 and 3.2, we get a pretty clear picture of the resonances near the Dirichlet
eigenvalues in (−2, 2) as long as the associated a•j and d j behave correctly. As said, this and the knowledge
of the spectral statistics for random operators will enable us to prove the results described in Section 1C.
For the periodic case, Theorems 3.1, 3.2 and 3.3 will prove not to be sufficient. As we shall see, in this
case, a•j and d j are of the same order of magnitude. Thus, neighboring Dirichlet eigenvalues have a
sizable effect on the location of resonances. Therefore, in the next section, we compute the Dirichlet
spectral data for the truncated periodic potential.

4. The Dirichlet spectral data for periodic potentials

As we did not find any suitable reference for this material, we first derive a suitable description of the
spectral data (i.e., the (a•j ) j and (λ j ) j ) for the Dirichlet restriction of a periodic operator to the interval
[[0, L]] when L becomes large.
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Consider a potential V :N→R such that, for some p≥ 1, one has Vk = Vk+p for all k ≥ 0. We assume
p to be minimal, i.e., to be the period of V. In our first result, we describe the spectrum of H Z

=−1+V
on `2(Z) and H N

=−1+V on `2(N) (with Dirichlet boundary conditions at 0). In the second result we
turn to HL , the Dirichlet restriction H N to [[0, L]] and describe its spectral data, i.e., its eigenvalues and
eigenfunctions.

We recall:

Theorem 4.1. The spectrum of H Z, say 6Z, is a union of at most p disjoint intervals that all consist in
purely absolutely continuous spectrum.

The spectrum of H N is the union of 6Z and at most finitely many simple eigenvalues outside 6Z,
say (v j )0≤ j≤n . 6Z consists of purely absolutely continuous spectrum and the eigenfunctions associated to
(v j )0≤ j≤n , say (ψ j )0≤ j≤n , are exponentially decaying at infinity.

Except for the exponential decay of the eigenfunctions, the proof of the statement for the periodic
operator on Z and N is classical and can, e.g., be found in a more general setting in [Teschl 2000, Chapters
2, 3 and 7] (see also [van Moerbeke 1976; Reed and Simon 1980]). The exponential decay is an immediate
consequence of Floquet theory for the periodic Hamiltonian on Z and the fact that the eigenvalues lie in
gaps of 6Z.

For H Z, one can define its Bloch quasimomentum (see the beginning of Section 4A for details), which
we denote by θp; it is continuous and strictly increasing on 6Z and real analytic on 6◦Z, the interior of 6Z.
Decompose 6Z into its connected components, i.e., 6Z =

⋃q
r=1 Br , where q ≤ p. Let cq be the number

of closed gaps contained in q. Then θp is continuous and strictly increasing on Br and real analytic on
B◦r , the interior of the r-th band. Moreover, on this set, its derivative can be expressed in terms of the
density of states, defined in (1-2) as

n(λ)= 1
π
θ ′p(λ). (4-1)

We first describe the eigenvalues of HL .

Theorem 4.2. One has:

(1) For any k ∈ {0, . . . , p− 1}, there exists hk :6Z→ R, a continuous function that is real analytic in a
neighborhood of 6◦Z such that, for L sufficiently large with L ≡ k mod p,

(a) for 1≤ r ≤ q, the function hk maps Br into (−(cr + 1)π, (cr + 1)π);
(b) the function

θp,L := θp −
hk

L − k
(4-2)

is continuous and strictly monotonous on each Br (1≤ r ≤ q);
(c) for 1 ≤ r ≤ q, the eigenvalues of HL in Br , the r-th band of 6Z, say (λr

j ) j , are the solutions
(in 6Z) to the quantization conditions

θp,L(λ
r
j )=

jπ
L − k

, j ∈ Z. (4-3)
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(2) There exists c > 0 such that, if λ is an eigenvalue of HL outside 6Z, then for L = N p+ k sufficiently
large there exists λ∞ ∈6+0 ∪6

−

k \6Z such that one has |λ− λ∞| ≤ e−cL .

Recall that 6+0 and 6−k are the spectra of H+0 and H−k , respectively, defined in Section 1B2.
In Theorem 4.2, when solving (4-3), one has to do it for each band Br and, for each band and each j

such that jπ/(L − k) ∈ θp,L(Br ), (4-3) admits a unique solution. But, it may happen that one has two
solutions to (4-3) for a given j belonging to neighboring bands. In the sequel, to simplify the notations,
we will not distinguish between the different bands, i.e., we will write eigenvalues (λ j ) j not referring to
the band they belong to.

Let us now describe the associated eigenfunctions.

Theorem 4.3. Recall that (λ j ) j are the eigenvalues of HL in 6Z (enumerated as in Theorem 4.2).

(1) There exist p + 2 positive functions, say f +0 , ( f −k )0≤k≤p−1 and f̃ , that are real analytic in a
neighborhood of 6◦Z such that there exists σr ∈ {+1,−1} such that, for L = N p+ k sufficiently large
and λ j in B◦r , the interior of r-th band of 6Z, one has

|ϕl(L)|2 =
f −k (λ j )

L − k

(
1+

f̃ (λ j )

L − k

)−1

, |ϕl(0)|2 =
f +0 (λ j )

f −k (λ j )
|ϕl(L)|2,

and ϕl(L)ϕl(0)= σr eiπl
|ϕl(L)||ϕl(0)| = σr ei(L−k)θp(λ j )−hk(λ j )|ϕl(L)||ϕl(0)|. (4-4)

(2) Let λ be an eigenvalue of HL outside 6Z (see Theorem 4.2(2)). If ϕ is a normalized eigenfunction
associated to λ and HL , one has one of the following alternatives for L large:

(a) If λ∞ ∈6+0 \6
−

k , one has

|ϕ(L)| � e−cL and |ϕ(0)| � 1. (4-5)

(b) If λ∞ ∈6−k \6
+

0 , one has

|ϕ(L)| � 1 and |ϕ(0)| � e−cL . (4-6)

(c) If λ∞ ∈6−k ∩6
+

0 , one has

|ϕ(L)| � 1 and |ϕ(0)| � 1. (4-7)

For later use, let us define θp,L , f0,L and fk,L by

fk,L(λ)= f −k (λ)
(

1+
f̃ (λ)

L − k

)−1

and f0,L(λ)= f +0 (λ)
(

1+
f̃ (λ)

L − k

)−1

, (4-8)

where θp, hk , f0, fk and f̃ are as defined in Theorem 4.2.
As a consequence of Theorem 4.2, we obtain:
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Corollary 4.4. For λ ∈6◦Z, for L ≡ k mod p sufficiently large, one has

d N−k
dλ

(λ)= n−k (λ)= f −k (λ)n(λ)=
1
π

f −k (λ)θ
′

p(λ)=
1
π

fk,L(λ)θ
′

p,L(λ), (4-9)

d N+0
dλ

(λ)= n+0 (λ)= f +0 (λ)n(λ)=
1
π

f +0 (λ)θ
′

p(λ)=
1
π

f0,L(λ)θ
′

p,L(λ). (4-10)

Here, θP , f +0 and f −k are the functions defined in Theorem 4.2.

Proof of Corollary 4.4. To prove the first equalities in (4-9) and (4-10), it suffices to prove that, for any
χ ∈ C∞0 (6

◦

Z),

〈δ0, χ(H−k )δ0〉 =

∫
R

χ(λ) d N−k (λ)=
1
π

∫
R

χ(θ−1
p (k)) f −k (θ

−1
p (k)) dk = 1

π

∫
R

χ(λ) f −k (λ)θ
′

p(λ) dλ,

(4-11)

〈δ0, χ(H+0 )δ0〉 =

∫
R

χ(λ) d N+0 (λ)=
1
π

∫
R

χ(θ−1
p (k)) f +0 (θ

−1
p (k)) dk = 1

π

∫
R

χ(λ) f +0 (λ)θ
′

p(λ) dλ,

(4-12)

the full statement then following by standard density argument. The operator HL converges to H+0
in the norm resolvent sense. Thus, we know that 〈δ0, χ(H+0 )δ0〉 = limL→+∞〈δ0, χ(HL)δ0〉. Now, by
Theorem 4.2, as χ is supported in 6◦Z, using the Poisson formula one computes

〈δ0, χ(HL)δ0〉 =
∑

j

χ(λ j )||ϕ j (0)|2 =
1

L − k

∑
l

χ

(
θ−1

p,L

(
lπ

L − k

))
f0,L

(
θ−1

p,L

(
lπ

L − k

))

=
1

L − k

∑
j∈Z

∫
R

e−i2π jλχ

(
θ−1

p,L

(
πλ

L − k

))
f0,L

(
θ−1

p,L

(
πλ

L − k

))
dλ

=
1
π

∑
j∈Z

∫
R

e−i2(L−k) jθp,L (λ)χ(λ) f0,L(λ)θ
′

p,L(λ) dλ.

Thus, using the nonstationary phase, i.e., integrating by parts, one gets, for any N ≥ 2,∣∣∣∣〈δ0, χ(HL)δ0〉−
1
π

∫
R

χ(λ) f0,L(λ)θ
′

p,L(λ) dλ
∣∣∣∣≤∑

j≥1

CN ,K‖χ‖CN (| j |(L − k))−N

≤ CN ,K‖χ‖CN ((L − k))−N . (4-13)

Here we have used the analyticity of the functions θp,L and f0,L .
To deal with H−k , we recall the operator H̃L (which is unitarily equivalent to HL ) defined in Remark 1.6.

One has 〈δL , HLδL〉 = 〈δ0, χ(H̃L)δ0〉; thus, as H−k is the strong resolvent sense limit of H̃L , one gets
〈δ0, χ(H−k )δ0〉 = limL→+∞〈δL , χ(HL)δL〉.

Then (4-11) and (4-12) — and, thus, the first equalities in (4-9) and (4-10) — follow, as θ ′p,L , f0,L

and fk,L converge (locally uniformly on 6◦Z) to θ ′p, f +0 and f −k , respectively (see (4-8) and Theorem 4.2).
Let us now prove the second equalities in (4-9) and (4-10). To this end, we use an almost analytic

extension (see [Mather 1971]) of χ , say χ̃ , that is, a function χ̃ : C→ C satisfying
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(1) χ̃(z)= χ(z) for z ∈ R,

(2) supp(χ̃)⊂ {z ∈ C | | Im(z)|< 1},

(3) χ̃ ∈ S({z ∈ C | | Im(z)|< 1}),

(4) the family of functions x 7→ ∂χ̃(x+ iy)/∂ z̄ · |y|−n (for 0< |y|< 1) is bounded in S(R) for any n ∈N.

Moreover, χ̃ can be chosen so that one has the following estimates: for n ≥ 0, α ≥ 0, β ≥ 0, there
exists Cn,α,β > 0 such that

sup
0<|y|≤1

sup
x∈R

∣∣∣∣xα ∂β∂xβ

(
|y|−n ∂χ̃

∂ z̄
(x + iy)

)∣∣∣∣≤ Cn,α,β sup
β ′≤n+β+2α′≤α

sup
x∈R

∣∣∣∣xα′ ∂β ′χ∂xβ ′
(x)
∣∣∣∣. (4-14)

By the definition of χ , the right-hand side of (4-14) is bounded uniformly in E complex.
Let χ ∈ C∞0 (R) and χ̃ be an almost analytic extension of χ(x). Then, by [Helffer and Sjöstrand 1990;

Klopp 1995], we know that, for any n and ω ∈�,

χ(H•)=
i

2π

∫
C

∂χ̃

∂ z̄
(z)(z− H•)−1 dz ∧ dz̄, (4-15)

where H• equals HL , H̃L , H+0 or H−k .
Using the geometric resolvent equation (see, e.g., [Kirsch 2008, Theorem 5.20]) and the Combes–

Thomas estimate (see, e.g., [Kirsch 2008, Theorem 11.2]), we know that for some C > 0, for Imz 6= 0,∣∣〈δ0, [(H̃L− z)−1
− (H−k − z)−1

]δ0〉
∣∣+ ∣∣〈δ0, [(HL− z)−1

− (H+0 − z)−1
]δ0〉

∣∣≤ C
|Im z|

e−L|Im z|/C . (4-16)

Plugging (4-16) into (4-15) and using (4-14), we get∣∣∣∣ L∑
j=0

χ(λ j )|ϕ j (0)|2−
∫

R

χ(λ) d N+0 (λ)
∣∣∣∣≤ C̃N

∫
|y|≤1
|y|N−1e−L|y|/C dy ≤ CN L−N .

Thus, by (4-12) and (4-13), we obtain that, for χ ∈ C∞0 (6
◦

Z) and any N ≥ 0, there exists CN > 0 such
that∣∣∣∣∫

R

χ(λ)[ f0,L(λ)θ
′

p,L(λ)− f +0 (λ)θ
′

p(λ)] dλ
∣∣∣∣

=

∣∣∣∣∫
R

χ(λ) f0,L(λ)θ
′

p,L(λ) dλ−
∫

R

χ(λ) d N+0 (λ)
∣∣∣∣≤ CN L−N . (4-17)

Now, by (4-3) and (4-8), the function f0,Lθ
′

p,L − f +0 θ
′
p admits an expansion in inverse powers of L that

converges uniformly on compact subsets of 6◦Z, namely,

f0,Lθ
′

p,L − f +0 θ
′

p =
∑
k≥1

L−kαk .

Thus, (4-17) immediately yields that, for any k ≥ 1, one has αk ≡ 0 on 6◦Z. Hence, f0,Lθ
′

p,L ≡ f +0 θ
′
p

on 6◦Z. This completes the proof of Corollary 4.4. �
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4A. The proofs of Theorems 4.2 and 4.3. We will first describe some objects from the spectral theory
of H Z, use them to describe the spectral theory of H N, prove Theorem 4.2 and finally prove Theorem 4.3.

4A1. The spectral theory of H Z. This material is classical (see, e.g., [van Moerbeke 1976; Teschl 2000]);
we only recall it for the reader’s convenience. For 0≤ j ≤ p− 1, define T̃ j = T̃ j (E) to be a monodromy
matrix for the periodic finite difference operator H Z, that is,

T̃ j (E)= T j+p−1, j (E)= T j+p−1(E) · · · T j (E)=:

(
a j

p(E) b j
p(E)

a j
p−1(E) b j

p−1(E)

)
, (4-18)

where

T j (E)=
(

E − V j −1
1 0

)
. (4-19)

The coefficients of T̃ j (E) are monic polynomials in the energy E ; a j
p(E) has degree p and b j

p(E) has
degree p− 1. Clearly, det T̃ j (E)= 1. As j 7→ V j is p-periodic, so is j 7→ T̃ j (E). Moreover, for j ′ < j ,
one has

T̃ j (E)T j, j (E)= T j+p−1, j ′+p−1(E)T̃ j ′(E)= T j, j ′(E)T̃ j ′(E). (4-20)

Thus, the discriminant 1(E) := tr T̃ j (E)= a j
p(E)+ b j

p−1(E) is a polynomial of degree p that is inde-
pendent of j ; so are ρ(E) and ρ−1(E), the eigenvalues of T̃ j (E). One defines the Bloch quasimomentum
E 7→ θp(E) by

1(E)= ρ(E)+ ρ−1(E)= 2 cos(pθp(E)). (4-21)

Let us recall some basic properties of the discriminant 1 and the coefficients of T̃ j , the proofs of which
can be found in [van Moerbeke 1976]:

(1) If 1′(E)= 0 then |1(E)| ≥ 2.

(2) The zeros of 1′ are simple.

(3) E is a zero of 1′ such that |1(E)| = 2 if and only if T̃ j (E) ∈ {+ Id,− Id} (for any j).

(4) The polynomials b j
p and a j

p−1 only vanish in the set {|1(E)| ≥ 2}; they keep a fixed sign in each of
the connected components of the set {|1(E)|< 2}.

Note that 1(E) is real when E is real. Thus, for E real, |1(E)| ≤ 2 implies that ρ−1(E) = ρ(E)
and |1(E)| > 2 implies that ρ(E) is real. When |1(E)| ≤ 2 we will fix ρ(E) := ei pθp(E) and when
|1(E)|> 2 we will fix ρ(E) so that |ρ(E)|< 1.

E belongs to the spectrum of H Z (i.e., −1+ V on `2(Z)) if and only if |1(E)| ≤ 2 (see, e.g., [Teschl
2000]).

Properties (1)–(3) above imply that, for E0 a zero of 1′ such that 1(E0) = ±2, θp is real analytic
near E0 and θ ′p(E0) 6= 0.

Definition 4.5. E0 is said to be a closed gap if and only if |1(E0)| = 2 and 1′(E0)= 0 or, equivalently,
if and only if T̃0(E0) is diagonal.
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Consider ∂6Z. It is the set of energies that are solutions to |1(E)| = 2 where T̃0(E) is not diagonal; it
is also the set of roots of |1(E)| = 2 that are not closed gaps. From the upper half of the complex plane,
one can continue E 7→ θp(E) analytically to the universal cover of C \ ∂6Z. Each of the points in ∂6Z is
a branch point of θp of square root type. Moreover, for E 6∈ ∂6Z, there exist two linearly independent
solutions to the eigenvalue equation (−1+ V − E)u = 0, say ϕ±(E), satisfying, for n ∈ Z,

ϕ±(n+ p, E)= e±i pθp(E)ϕ±(n, E). (4-22)

4A2. The spectral theory of H N. Let us now turn to the spectrum of the operator on the half-lattice.

The operator H+0 . For the operator H+0 = H N (that is, −1 + V on `2(N) with Dirichlet boundary
conditions at 0), E is in the spectrum if and only if

• either |1(E)| ≤ 2,

• or |1(E)|> 2 and [T̃0(E)]n
( 1

0

)
stays bounded as n→+∞.

The second condition is equivalent to requiring that [T̃ j (E)]nT j−1(E) · · · T0(E)
( 1

0

)
stay bounded

as n→+∞.
When |1(E)| 6= 2 and a0

p−1(E) 6= 0, one can diagonalize T̃0(E) in the following way(
a0

p−1(E) ρ(E)− a0
p(E)

−a0
p−1(E) a0

p(E)− ρ
−1(E)

)
T̃0(E)=

(
ρ(E) 0

0 ρ−1(E)

)(
a0

p−1(E) ρ(E)− a0
p(E)

−a0
p−1(E) a0

p(E)− ρ
−1(E)

)
. (4-23)

Thus, using∣∣∣∣ρ(E)− a0
p(E) −b0

p(E)
−a0

p−1(E) ρ(E)− b0
p−1(E)

∣∣∣∣= ∣∣∣∣ρ(E)− a0
p(E) −b0

p(E)
−a0

p−1(E) a0
p(E)− ρ

−1(E)

∣∣∣∣= 0 (4-24)

for n ∈ Z, one computes

(T̃0(E))n =
(

t̃11
0,n(E) t̃12

0,n(E)
t̃21
0,n(E) t̃22

0,n(E)

)
, (4-25)

where

t̃11
0,n(E) := ρ

n(E)
a0

p(E)− ρ
−1(E)

ρ(E)− ρ−1(E)
+ ρ−n(E)

ρ(E)− a0
p(E)

ρ(E)− ρ−1(E)
,

t̃12
0,n(E) := (ρ

−n(E)− ρn(E))
b0

p(E)

ρ(E)− ρ−1(E)
,

t̃21
0,n(E) := (ρ

n(E)− ρ−n(E))
a0

p−1(E)

ρ(E)− ρ−1(E)
,

t̃22
0,n(E) := ρ

−n(E)
a0

p(E)− ρ
−1(E)

ρ(E)− ρ−1(E)
+ ρn(E)

ρ(E)− a0
p(E)

ρ(E)− ρ−1(E)
.

(4-26)

Clearly, the formulas (4-23), (4-25) and (4-26) stay valid even if a0
p−1(E)= 0. They also stay valid if

|1(E)| = 2 and 1′(E)= 0. Indeed, by points (1)–(3) in Section 4A1, the functions ρ− ρ−1, a0
p − ρ

−1,
−ρ− a0

p, b0
p and a0

p−1 are analytic near and have simple zeros at such points.
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We have thus proved:

Lemma 4.6. For E 6∈ ∂6Z, (T̃0(E))n has the form (4-25)–(4-26)

Simple computations then show that E is in the spectrum of H+0 if and only if one of the following
conditions is satisfied:

(1) |1(E)| ≤ 2: moreover, the set {E ∈ R | |1(E)| ≤ 2} is contained in the absolutely continuous
spectrum of H+0 .

(2) |1(E)|> 2 and

a0
p−1(E)= 0 and |a0

p(E)|< 1. (4-27)

Thus, on 6Z, the spectrum of H+0 is purely absolutely continuous; it does not contain any embedded
eigenvalues.

Note that, in case (2), [T̃0(E)]n
( 1

0

)
actually decays exponentially fast. In this case, E is an eigenvalue

associated to the (nonnormalized) eigenfunction (ul)l∈N, where, for n ≥ 0 and j ∈ {0, . . . , p− 1},

unp+ j (E)=
〈
T j−1(E) · · · T0(E)

(
1
0

)
,

(
1
0

)〉
· [a0

p(E)]
n
= a j (E)[a0

p(E)]
n, (4-28)

writing

T j−1(E) · · · T0(E)=:
(

a j (E) b j (E)
a j−1(E)b j−1(E)

)
. (4-29)

It is well known that, for any j , the zeros of a j and b j are simple (see, e.g., [Teschl 2000, Section 4]),
and the roots of a j+1 (resp. b j+1) interlace those of a j (resp. b j ). Let E ′ be an eigenvalue of H+0 .
Differentiating (4-24) at the energy E ′, we compute

b0
p(E
′)

da0
p−1

d E
(E ′)+ (ρ(E ′)− ρ−1(E ′))

d(ρ− a0
p)

d E
(E ′)= 0. (4-30)

The eigenvalues of the operator H−k . Let us now turn to H−k . Recalling (4-29) and using the representa-
tion (4-25), we obtain that the eigenvalues of H−k outside 6Z satisfy(

ρ(E)− a0
p(E) −a0

p−1(E)
−b0

p(E) a0
p(E)− ρ

−1(E)

)(
ak+1(E)
bk+1(E)

)
= 0. (4-31)

As for H+0 , the eigenfunction associated to E and H−k decays exponentially fast. Indeed, the eigenvalues
of H−k in the region |1(E)|> 2 can be analyzed in the same way as we analyzed those of H+0 , i.e., they are
the energies such that [T̃k(E)]−n

( 0
1

)
stays bounded; this yields the quantization conditions bk

p(E)= 0 and
|bk

p−1(E)|< 1. In this case, E is an eigenvalue associated to the (nonnormalized) eigenfunction (ul)−l∈N,
where, for n ≥ 0 and k ∈ {0, . . . , p− 1},

u−np−k(E)= bk(E)[bk
p−1(E)]

−n. (4-32)
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Common eigenvalues to H+0 and H−k . Assume now that E ′ is simultaneously an eigenvalue of H−k and H+0 .
In this case, one has a0

p−1(E
′) = 0, |a0

p(E
′)| < 1 and b0

p(E
′)bk+1(E ′) = ak+1(E ′)(ρ−1(E ′)− ρ(E ′)).

So (4-31) (see also (4-30)) becomes(
d(ρ− a0

p)(E
′)/d E −da0

p−1(E
′)/d E

−b0
p(E) a0

p(E
′)− ρ−1(E ′)

)(
ak+1(E ′)
bk+1(E ′)

)
= 0. (4-33)

Hence, the analytic function E 7→ ak+1(E)(a0
p(E)− ρ(E))− bk+1(E)a0

p−1(E) has a root of order at
least 2 at E ′. It also implies that ak+1(E ′) 6= 0. Indeed, if ak+1(E ′)= 0, (4-33) implies bk+1(E ′)= 0 as
da0

p−1(E
′)/d E 6= 0.

Conversely, if E ′∈σ(H+0 ) is such that |1(E ′)|>2 and E 7→ak+1(E)(a0
p(E)−ρ(E))−bk+1(E)a0

p−1(E)
has a root of order at least 2 at E ′, then (4-33) holds and E ′ is an eigenvalue of H−k .

We have thus proved:

Lemma 4.7. E0 ∈ σ(H+0 ) ∩ σ(H
−

k ) \ Z if and only if |1(E0)| > 2 and E0 is a double root of E 7→
ak+1(E)(a0

p(E)− ρ(E))− bk+1(E)a0
p−1(E).

4A3. The Dirichlet eigenvalues for a periodic potential: the proof of Theorem 4.2. Let us now turn to the
study of the eigenvalues and eigenvectors of HL , i.e., to the proof of Theorem 4.2. We first prove the
statements for the eigenvalues and then, in the next section, turn to the eigenvectors.

Recall that L ≡ k mod p; we write L = N p+ k. By definition, E is an eigenvalue of −1+ V on
[[0, L]] with Dirichlet boundary conditions if and only if

0= det
(

TL+1(E)TL(E)TL−1(E) · · · T0(E)
(

1
0

)
,

(
0
1

))
= det

(
Tk(E) · · · T0(E) · [T̃0(E)]N

(
1
0

)
,

(
1
0

))
, (4-34)

where T̃k(E) is the monodromy matrix defined above.
We use the notations of sections 4A2 and 4A1. Let us first show Theorem 4.2(1), namely:

Lemma 4.8. For L large, one has

∂6Z ∩ σ(HL)= {E0 | ak+1(E0)= a0
p−1(E0)= 0 and b0

p(E0) 6= 0}.

Proof. For E0 ∈ ∂6Z, we know that |1(E0)| = 2 and T̃0(E0) is not diagonal. Assume 1(E0)= 2 (the
case 1(E0) = −2 is dealt with in the same way); hence, T̃0(E0) has a Jordan normal form, i.e., there
exists a 2× 2 invertible matrix P and α ∈ R∗ such that

T̃0(E0)= P−1
(

1 0
α 1

)
P, where P =

(
p11 p12

p21 p22

)
. (4-35)
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Thus, by (4-34), E0 ∈ σ(HL) if and only if

0=
∣∣∣∣(ak+1(E0) bk+1(E0)

ak(E0) bk(E0)

)
(T̃0(E0))

N
(

1
0

)
,

(
0
1

)∣∣∣∣
=

∣∣∣∣(ak+1(E0) bk+1(E0)

ak(E0) bk(E0)

)
P−1

(
1 0

Nα 1

)
P
(

1
0

)
,

(
0
1

)∣∣∣∣; (4-36)

that is,

0=
∣∣∣∣( 1 0

Nα 1

)
P
(

1
0

)
, P

(
−bk+1(E0)

ak+1(E0)

)∣∣∣∣= (det P)ak+1(E0)− Nαp11(−p11bk+1(E0)+ p12ak+1(E0)).

For N large, this expression vanishes if and only if

(det P)ak+1(E0)= 0 and αp11(−p11bk+1(E0)+ p12ak+1(E0))= 0.

Since P is invertible, |bk+1(E0)| + |ak+1(E0)| 6= 0 and α 6= 0, one has ak+1(E0)= 0 and p11 = 0.
In this case, using bk+1(E0) 6= 0, we can then rewrite the eigenvalue equation (4-36) as

0=
∣∣∣∣(T̃0(E0))

N
(

1
0

)
,

(
1
0

)∣∣∣∣= t̃21
0,N (E0). (4-37)

For E ∈6◦Z close to E0, by (4-26) we have

t21
0,N (E)=

(ρN (E)− ρ−N (E))a0
p−1(E)

ρ(E)− ρ−1(E)
= ρN−1

( N−1∑
j=0

ρ−2 j (E)
)

a0
p−1(E).

As ρ is continuous at E0 and ρ2(E0)= 1, taking E to E0 we get

a0
p−1(E0)= 0.

As T̃0(E0) is not diagonal, this implies b0
p(E0) 6= 0. This completes the proof of Lemma 4.8. �

Now, pick E 6∈ ∂6Z. Then, by Lemma 4.6, the quantization condition (4-34) becomes∣∣∣∣∣∣∣∣
ρN (E)

a0
p(E)− ρ

−1(E)

ρ(E)− ρ−1(E)
+ ρ−N (E)

ρ(E)− a0
p(E)

ρ(E)− ρ−1(E)
−bk+1(E)

(ρN (E)− ρ−N (E))
a0

p−1(E)

ρ(E)− ρ−1(E)
ak+1(E)

∣∣∣∣∣∣∣∣= 0. (4-38)

The eigenvalues outside of6Z. Let us first study the eigenvalues outside6Z, i.e., in the region |1(E)|> 2.
If, for j ∈ N, we define

α j (E) := a j (E)
a0

p(E)− ρ
−1(E)

ρ(E)− ρ−1(E)
+ b j (E)

a0
p−1(E)

ρ(E)− ρ−1(E)

and β j (E) := a j (E)
ρ(E)− a0

p(E)

ρ(E)− ρ−1(E)
− b j (E)

a0
p−1(E)

ρ(E)− ρ−1(E)
,

(4-39)
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(4-38) can be rewritten as βk+1(E)+ ρ2N (E)αk+1(E)= 0; using

αk+1(E)+βk+1(E)= ak+1(E), (4-40)

(4-38) becomes

βk+1(E)=−
ρ2N (E)

1− ρ2N (E)
ak+1(E). (4-41)

We first show:

Lemma 4.9. There exists η > 0 such that, for L sufficiently large, σ(HL)∩ [(6Z+ [−η, η]) \6Z] =∅.

Proof. Using (4-39), we rewrite (4-41) as

ak+1(E)(ρ(E)− a0
p(E))− bk+1(E)a0

p−1(E)= ρ
2N+1(E)

1− ρ2(E)
1− ρ2N (E)

ak+1(E). (4-42)

Pick E0 ∈ ∂6Z . Then, by our choice for ρ, for η > 0 small we know that, for E ∈ [E0− η, E0+ η] \6Z,
ρ2(E)= e−c0

√
|E−E0|(1+O(

√
|E−E0|)). Hence, for E ∈ [E0− η, E0+ η] \6Z, one has∣∣∣∣ρ2N+1(E)

1− ρ2(E)
1− ρ2N (E)

∣∣∣∣.min
(√
|E − E0|,

1
N

)
. (4-43)

Thus, if ak+1(E0)(ρ(E0)−a0
p(E0))−bk+1(E0)a0

p−1(E0) 6=0, (4-42) has no solution in [E0−η, E0+η]\6Z

for η small and L sufficiently large.
Let us now assume that ak+1(E0)(ρ(E0)− a0

p(E0))− bk+1(E0)a0
p−1(E0)= 0.

• If ak+1(E0) 6= 0, one computes

ak+1(E)(ρ(E)− a0
p(E))− bk+1(E)a0

p−1(E)= ak+1(E0)(ρ(E)− ρ(E0))(1+ o(1))

and
ρ2N+1(E)

1− ρ2(E)
1− ρ2N (E)

ak+1(E)=−(ρ(E)− ρ(E0))ak+1(E0)
ρ2(N+1)(E)
1− ρ2N (E)

(1+ o(1)).

Hence, for η > 0 small and E ∈ [E0− η, E0+ η] \6Z, the two sides of (4-42) have opposite signs; there
is no solution to (4-42) in this interval.

• If ak+1(E0)=0, then bk+1(E0) 6=0, a0
p−1(E0)=0, ρ(E0)=a0

p(E0) and (a0
p−1)

′(E0) 6=0; one computes

ak+1(E)(ρ(E)− a0
p(E))− bk+1(E)a0

p−1(E)=−bk+1(E0)(a0
p−1)

′(E0)(E − E0)(1+ o(1))

and, by (4-43), for η > 0 small and E ∈ [E0− η, E0+ η] \6Z,∣∣∣∣ρ2N+1(E)
1− ρ2(E)

1− ρ2N (E)
ak+1(E)

∣∣∣∣. |E − E0|min
(√
|E − E0|,

1
N

)
.

Hence, for η > 0 small and E ∈ [E0− η, E0+ η] \6Z, there is no solution to (4-42) in this interval.

This completes the proof of Lemma 4.9. �

In Lemma 4.8, we saw that, if E0 ∈ ∂6Z satisfies

ak+1(E0)= 0 and ak+1(E0)(ρ(E0)− a0
p(E0))− bk+1(E0)a0

p−1(E0)= 0,
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then E0 is an eigenvalue of HL for L large.
By Lemma 4.9, it now suffices to consider energies such that |1(E)| > 2+ η for some η > 0. In

this case, we note that the left-hand side in (4-41) is the left-hand side of the first equation in (4-31)
(up to the factor ρ − ρ−1, which does not vanish outside 6Z). On the other hand, the right-hand side
in (4-41) is uniformly exponentially small for large N on {E ∈ R | |1(E)|> 2+ η}. Thus, for L large,
the solutions to (4-41) are exponentially close to E ′, which is either an eigenvalue of H+0 or one of H−k .
One distinguishes between the following cases:

(1) If E ′ is an eigenvalue of H+0 but not of H−k , then E ′ is a simple root of the function E 7→ βk+1(E)
(see Section 4A2); one has to distinguish two cases depending on whether ak+1(E ′) vanishes or not.
Assume first ak+1(E ′) = 0; then, by (4-28), we know that the eigenvector of H+0 actually satisfies the
Dirichlet boundary conditions at L; thus, E ′ is a solution to (4-41), i.e., an eigenvalue of HL , and (4-28)
gives a (nonnormalized) eigenvector.

Assume now that ak+1(E ′) 6= 0; then, by Rouché’s theorem, the unique solution to (4-41) close to E ′

satisfies

E − E ′ =−
ρ2N (E ′)
β ′k+1(E

′)
ak+1(E ′)(1+ o(ρ2N (E ′))). (4-44)

(2) If E ′ is an eigenvalue of H−k but not of H+0 , mutatis mutandis, the analysis is the same as in point (1).

(3) If E ′ is an eigenvalue of both H+0 and H−k , then we are in a resonant tunneling situation. The
analysis done in the Appendix shows that, near E ′, HL has two eigenvalues, say E±, satisfying, for some
constant α > 0,

E±− E ′ =±αρN (E ′))
(
1+ O(Nρ(E ′)N )

)
. (4-45)

This completes the proof of the statements of Theorem 4.2 for the eigenvalues outside 6Z.

The eigenvalues inside 6Z. We now study the eigenvalues in the region 6◦Z. One can express ρ(E) in
terms of the Bloch quasimomentum θp(E) and use ρ−1(E)= ρ(E). Notice that, on 6◦Z, one has:

• Im ρ(E) does not vanish.

• The function E 7→ ρ(E) is real analytic.

• The functions E 7→ a0
p(E), E 7→ a0

p−1(E), E 7→ ak+1(E) and E 7→ bk+1(E) are real-valued
polynomials.

We prove:

Lemma 4.10. The function αk+1 is analytic and does not vanish on 6◦Z.

Proof. Assume that the function αk+1 vanishes at a point E0 in 6◦Z.

• If ρ(E0) 6= ρ
−1(E0), then one has ak+1(E0)(a0

p(E0)−ρ
−1(E0))+bk+1(E0)a0

p−1(E0)= 0; as ρ(E0) 6=

ρ−1(E0) and E0 ∈6
◦

Z, one has ρ−1(E0)= ρ(E0) 6∈ R; thus, for

ak+1(E0)(a0
p(E0)− ρ

−1(E0))− bk+1(E0)a0
p−1(E0)
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to vanish, one needs ak+1(E0) = 0 and a0
p−1(E0) = 0 (as bk+1 and ak+1 don’t vanish together); this

implies that ρ(E0)=±1 and contradicts ρ(E0) 6= ρ
−1(E0).

• If ρ(E0)= ρ
−1(E0), such a point E0 is a simple root of the three functions a0

p−1, ρ− ρ−1 and a0
p − ρ

that are analytic near E0 (see points (1)–(4) in Section 4A1). Moreover, one checks that the derivatives of
these functions at that point are respectively real, purely imaginary and neither real nor purely imaginary;
for E close to E0, one has

a0
p−1(E)= A(E − E0)(1+ O(E − E0)),

ρ(E)− ρ−1(E)= 2iC(E − E0)(1+ O(E − E0)),

a0
p(E)− ρ

−1(E)= (B+ iC)(E − E0)(1+ O(E − E0)), where (A, B,C) ∈ (R∗)3.

(4-46)

Now, as ak+1 and bk+1 are real-valued and can’t vanish at the same point, we see that αk+1(E0) 6= 0.
This complete the proof of Lemma 4.10 �

Now, as L = N p+ k, the characteristic equation (4-38) (valid for E ∈6◦Z) becomes

ρ2N (E)= e2i N pθp(E) =−
αk+1(E)
αk+1(E)

=−
βk+1(E)

βk+1(E)

=
ak+1(E)(ρ(E)− a0

p(E))− bk+1(E)a0
p−1(E)

ak+1(E)(ρ(E)− a0
p(E))− bk+1(E)a0

p−1(E)
=: e2ihk(E). (4-47)

By Lemma 4.10, the function E 7→ hk(E) defined in (4-47) is real analytic on 6◦Z. Clearly, as we are
inside 6Z, ρ is real only at bands’ edges or closed gaps, hk takes values in πZ only at bands’ edges or
closed gaps. This implies Theorem 4.2(a). We prove:

Lemma 4.11. The function hk can be extended continuously from 6◦Z to 6Z; for E0 ∈ ∂6Z, one has

hk(E0) ∈

{π
2 +πZ if ak+1(E0) 6= 0 and ak+1(E0)(ρ(E0)− a0

p(E0))− bk+1(E0)a0
p−1(E0)= 0,

πZ if not.

The function θp,L is strictly increasing on the bands of 6Z.

Proof. Pick E0 ∈ ∂6Z. It suffices to study the behavior of, for E ∈6Z,

E 7→ s(E) := ak+1(E)(ρ(E)− a0
p(E))− bk+1(E)a0

p−1(E)

near E0 inside 6Z. Write E = E0± t2 for t real and positive; here, the sign ± depends on whether E0 is
a left or right edge of 6Z and is chosen so that E = E0± t2

∈6◦Z for t small.
First, t 7→ ρ(E0± t2) is analytic near 0; thus, so is t 7→ s(E0± t2). Solving the characteristic equation

ρ2(E)−1(E)ρ(E)+ 1= 0, one finds

ρ(E0± t2)= ρ(E0)+ iat + bt2
+ O(t3), a ∈ R∗, b ∈ R.

Thus,

s(E0± t2)= s(E0)+ iak+1(E0) · a · t + c · t2
+ O(t3),
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where

c :=a′k+1(E0)(ρ(E0)−a0
p(E0))+ak+1(E0)(b−(a0

p)
′(E0))−(b′k+1(E0)a0

p−1(E0)+bk+1(E0)(a0
p−1)

′(E0)).

Hence:

• If s(E0) 6= 0, then s(E0± t2)= s(E0)+ O(t); hence, hk(E0± t2)= πn+ O(t) for some n ∈ Z.

• If s(E0)= 0 and ak+1(E0) 6= 0, one has s(E0± t2)= iak+1(E0) · a · t + O(t2); thus, hk(E0± t2)=
π
2 +πn+ O(t) for some n ∈ Z.

• If s(E0)=ak+1(E0)=0, one has bk+1(E0) 6=0, a0
p−1(E0)=0, ρ(E0)=a0

p(E0) and (a0
p−1)

′(E0) 6=0;
thus s(E0± t2)=−bk+1(E0)(a0

p−1)
′(E0)t2

+0(t2); hence, hk(E0± t2)= πn+O(t) for some n ∈Z.

This completes the proof of the statement of Lemma 4.11 on the function hk .

Let us now control the monotony of θp,L (see Theorem 4.2) on the bands of 6Z. It is well known that,
keeping the above notations, θp(E0 ± t2)− θp(E0) = ±αt (1+ tg0(t)) with α > 0. The computations
done in the previous paragraph show that hk(E0± t2)= hk(E0)+ atk(1+ tg1(t)), k ≥ 1. Hence:

• If k > 1, we have θp,L(E0± t2)− θp,L(E0)=±αt (1+ tg2(t)).

• If k = 1, we have θp,L(E0± t2)− θp,L(E0)= (±α+ a/(L − k))t (1+ tg2(t)).

Hence, θp,L is strictly increasing inside the band near E0 for L sufficiently large. Outside a neighborhood
of the edges of a band, by analyticity of hk , as the bands are compact, we have |θ ′p,L − θ

′
p|. L−1. As θp

is strictly increasing on each band, θp,L is also strictly increasing outside a neighborhood of the edges of
a band. This completes the proof of Lemma 4.11. �

One proves:

Lemma 4.12. Let E0 be a closed gap for H Z (see Definition 4.5). Then, for any L = N p+ k,

E0 ∈ σ(HL) ⇐⇒ hk(E0) ∈ πZ ⇐⇒ ak+1(E0)= 0 ⇐⇒ αk+1(E0) ∈ iR∗. (4-48)

Proof. The proof of the first equivalence follows immediately from Definition 4.5 and the quantization
condition (4-47); the second follows from (4-39) and the expansions in (4-46); the third follows from
Lemma 4.11, (4-39) and (4-47). �

Let us note that, in particular, closed gaps where ak+1 vanishes are eigenvalues of HL for all L= N p+k.

Remark 4.13. The characteristic equation (4-47) and the computations done at the end of the proof of
Lemma 4.10 show that, for L = N p+ k large, an energy E0 such that ρ(E0)= ρ

−1(E0) is an eigenvalue
of HL if and only if ak+1(E0)= 0. This is an extension of Lemma 4.8.

In view of the definition and monotony of θp,L , the quantization condition (4-47) is clearly equivalent
to (4-3). This completes the proof Theorem 4.1 on the eigenvalues of HL . Let us now turn to the
computation of the associated eigenfunctions.
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4A4. The Dirichlet eigenfunctions for a truncated periodic potential: the proof of Theorem 4.3. Recall
that we assume L = N p+ k. First, if (u j

l )
L
l=0 is an eigenfunction associated to the eigenvalue λ j , the

eigenvalue equation reads(
u j

l+1
u j

l

)
= Tl(λ j )

(
u j

l
u j

l−1

)
for 0≤ l ≤ L , where u j

L+1 = u j
−1 = 0.

To normalize the solution, we assume that u j
0 = 1. The coefficients we want to compute are

|ϕ j (L)|2 = |u
j
L |

2
( L∑

l=0

|u j
l |

2
)−1

and |ϕ j (0)|2 =
( L∑

l=0

|u j
l |

2
)−1

. (4-49)

Fix l = np+m. Thus, using the notations of Section 4A3 and the expressions (4-25), (4-26) and (4-23),
one computes(

u j
l

u j
l−1

)
= Tm−1,0(λ j )(T̃0(λ j ))

n
(

1
0

)
=

(
αm(λ j )ρ

n(λ j )+βm(λ j )ρ
−n(λ j )

αm−1(λ j )ρ
n(λ j )+βm−1(λ j )ρ

−n(λ j )

)
, (4-50)

where αm and βm are as defined in (4-39).

The eigenvectors associated to eigenvalues inside 6Z. As ρ−1(λ j ) = ρ(λ j ), βm(λ j ) = αm(λ j ) and as
the functions (αm)0≤m≤p−1 do not vanish on 6◦Z, we compute

|u j
np+m |

2
= 2|αm(λ j )|

2
(

1+Re
[
αm(λ j )

αm(λ j )
ρ2n(λ j )

])
. (4-51)

As L = N p+ k, using the quantization condition (4-47), we obtain that

L∑
l=0

|u j
l |

2

= 2
k∑

m=0

|αm(λ j )|
2
(

1+Re
[
αm(λ j )

αm(λ j )
ρ2N (λ j )

])
+ 2

p−1∑
m=0

|αm(λ j )|
2

N−1∑
n=0

(
1+Re

[
αm(λ j )

αm(λ j )
ρ2n(λ j )

])
= N p f (λ j )

(
1+

1
N p

f̃ (λ j )

)
, (4-52)

where we have defined

f (E) := 2
p

p−1∑
m=0

|αm(E)|2 (4-53)

and, using the quantization condition (4-47), computed

f̃ (E) :=
2

f (E)
Re
[( p−1∑

m=0

α2
m(E)

)
1

1− ρ2(E)

(
1+

αk+1(E)
αk+1(E)

)]

+
2

f (E)

k∑
m=0

|αm(E)|2
(

1−Re
[
αm(E)αk+1(E)

αm(E)αk+1(E)

])
. (4-54)
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The function E 7→ f (E) is real analytic and does not vanish on 6◦Z.
We prove:

Proposition 4.14. For E0, a closed gap, one has
∑p−1

m=0 α
2
m(E0)= 0.

Proof. By the definition of (a j , b j )— see (4-29) — and that of α j (E)— see (4-39) — the sequence
(α j (E)) j∈Z satisfies the equation α j+1+α j−1+(V j−E)α j =0. As T̃0(E)=Tp−1(E) · · · T0(E), by (4-23),
for j ∈Z one has α j+p(E)=ρ(E)α j (E). Hence, the column vector A(E)= (α1(E), . . . , αp(E))t satisfies

(Hρ − E)A(E)= 0, where Hρ =



V1 1 0 · · · 0 ρ(E)
1 V2 1 0 · · · 0
0 1 V3 1 · · · 0
...

. . .
...

0 · · · 0 1 Vp−1 1
ρ−1(E) 0 · · · 0 1 Vp


.

Thus, we have

〈(Hρ − E)A(E), A(E)〉R = 0, (4-55)

where 〈 · , · 〉R denotes the real scalar product over Cp, i.e.,

〈z1
...

z p

 ,
z′1
...

z′p

〉
R

=

p∑
j=1

z j z′j .

The functions E 7→ A(E) and E 7→ ρ(E) being analytic over 6◦Z (see Section 4A1 and Lemma 4.10),
one can differentiate (4-55) with respect to E to obtain

0=−〈A(E), A(E)〉R+ (ρ(E)− ρ−1(E))
(
ρ−1(E)ρ ′(E)α1(E)αp(E)−αp(E)α′1(E)+α1(E)α′p(E)

)
.

(4-56)
Here we have used the fact that, if H t

ρ is the transpose of the matrix Hρ , then

H t
ρ − Hρ = (ρ(E)− ρ−1(E))


0 · · · 0 −1
0 · · · 0 0
...

...

0 0 · · · 0
1 0 · · · 0

 .

At E0, a closed gap, one has ρ(E0)= ρ
−1(E0). Hence, (4-56) implies

0= 〈A(E0), A(E0)〉R =

p−1∑
m=0

α2
m(E0).

This completes the proof of Proposition 4.14. �
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In view of (4-54), the function f̃ is real analytic on 6◦Z; indeed, the only poles of the function
E 7→ [ρ(E)− ρ−1(E)]−1 in 6◦Z are the closed gaps; they are simple poles of this function and, by
Proposition 4.14, the real analytic function E 7→

∑p−1
m=0 α

2
m(E) vanishes at these poles.

Now that we have computed the normalization constant, let us compute the coefficient u j
L defined

in (4-49). As L = N p+ k, the characteristic equation for λ j — that is, (4-47) — reads

αk+1(λ j )ρ
N (λ j )=−βk+1(λ j )ρ

−N (λ j )=−αk+1(λ j )ρN (λ j ). (4-57)

Hence, one computes

u j
L = αk(λ j )ρ

N (λ j )+αk(λ j )ρN (λ j )= ρ
N (λ j )

αk(λ j )αk+1(λ j )−αk(λ j )αk+1(λ j )

αk+1(λ j )

=
−ρN (λ j )a0

p−1(λ j )

(ρ(λ j )− ρ−1(λ j ))αk+1(λ j )
=

−ei[N pθp(λ j )−hk(λ j )]a0
p−1(λ j )∣∣ak+1(λ j )(a0

p(λ j )− ρ−1(λ j ))+ bk+1(λ j )a0
p−1(λ j )

∣∣
=

−eiπ j a0
p−1(λ j )∣∣ak+1(λ j )(a0

p(λ j )− ρ−1(λ j ))+ bk+1(λ j )a0
p−1(λ j )

∣∣ , (4-58)

where we have used the quantization condition satisfied by λ j , the last equality in (4-47), and that

∣∣∣∣αk+1(λ j ) αk(λ j )

αk+1(λ j ) αk(λ j )

∣∣∣∣=
∣∣∣∣∣∣∣∣∣

a0
p−1(λ j )

ρ(λ j )− ρ−1(λ j )

a0
p(λ j )− ρ

−1(λ j )

ρ(λ j )− ρ−1(λ j )

−
a0

p−1(λ j )

ρ(λ j )− ρ−1(λ j )

ρ(λ j )− a0
p(λ j )

ρ(λ j )− ρ−1(λ j )

∣∣∣∣∣∣∣∣∣
∣∣∣∣bk+1(λ j ) bk(λ j )

ak+1(λ j ) ak(λ j )

∣∣∣∣
and ∣∣∣∣∣∣∣∣∣

1
a0

p(λ j )− ρ
−1(λ j )

ρ(λ j )− ρ−1(λ j )

−1
ρ(λ j )− a0

p(λ j )

ρ(λ j )− ρ−1(λ j )

∣∣∣∣∣∣∣∣∣=
∣∣∣∣bk(λ j ) bk+1(λ j )

ak(λ j ) ak+1(λ j )

∣∣∣∣= 1.

Lemma 4.15. Define the function f̃ −k (E) by

f̃ −k (E) :=
|a0

p−1(E)|
2

|ak+1(E)(a0
p(E)− ρ−1(E))+ bk+1(E)a0

p−1(E)|
2
.

Then the function f̃ −k does not vanish on 6◦Z.

Proof. By the definition of αk+1, one has

f̃ −k (E)=
|a0

p−1(E)|
2

|ρ(E)− ρ−1(E))|2|αk+1(E)|2
.

That this expression is well defined and does not vanish on 6◦Z follows from Lemma 4.10 and the
computations made in the proof thereof. �
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Plugging (4-58) into this and (4-51) into (4-49), recalling that u j
0 = 1, outside the bad closed gaps we

obtain (4-4) if

• in addition to (4-53) and (4-54), we set f +0 (E) := 1/ f (E) and f −k (E)= f +0 (E) · f̃ −k (E),

• we remember that the function a0
p−1 only changes sign in the gaps of the spectrum 6Z (see point (4)

in Section 4A1) and set σr to be the sign of −a0
p−1 on Br , the r -th band.

By (4-49) and (4-51), we obtain (4-4) using Lemma 4.15. This completes the proof of the statements
in Theorem 4.3 on the eigenfunctions of HL associated to eigenvalues in 6◦Z.

Remark 4.16. To complete our study let us also see what happens to the eigenfunctions near the edges
of the spectrum. Pick E0 ∈ ∂6Z. One then knows that, for E ∈6Z with E close to E0, one has

θp(E)− θp(E0)= a
√
|E − E0|(1+ o(1)) (4-59)

(see the proof of Lemma 4.11).
Let us rewrite f̃ (see (4-54)) as

f̃ (E)=
2

f (E)

[ p−1∑
m=0

|αm(E)|2 cos
(
hk(E)− 2hm−1(E)− pθp(E)

)] sin(hk(E))
sin(pθp(E))

+
2

f (E)

k∑
m=0

|αm(E)|2
(
1− cos

(
2(hk(E)− hm−1(E))

))
.

(4-60)

Let us first show:

Lemma 4.17. For any 0≤ m ≤ p− 1, E 7→ 2|αm(E)|2/(p f (E)) can be extended continuously from 6◦Z
to 6Z.

Proof. For p = 1 there is nothing to be done as 2|αm(E)|2/(p f (E))≡ 1.
For p ≥ 2, we note that for 0≤ m ≤ m+ 1≤ p− 1, as∣∣∣∣am+1(E) bm+1(E)

am(E) bm(E)

∣∣∣∣= 1

by (4-29),
0= am+1(E0)(a0

p(E0)− ρ
−1(E0))+ bm+1(E0)a0

p−1(E0)

= am(E0)(a0
p(E0)− ρ

−1(E0))+ bm(E0)a0
p−1(E0)

if and only if a0
p−1(E0)= 0 (as this implies a0

p(E0)− ρ
−1(E0)= 0).

Let us assume this is the case. As p ≥ 2, we know that
∑p−1

j=0 |a j (E0)|
2
6= 0. By (4-46), for at least

one m0 ∈ {0, . . . , p − 1} one has am0(E0) 6= 0 and αm0(E) = bc−1am0(E0)+ O(
√
|E − E0|). Hence,

E 7→ 2|αm(E)|2/(p f (E)) can be continued to E0, setting

2|αm(E0)|
2

p f (E0)
=

|am(E0)|
2

|a0(E0)|2+ · · ·+ |ap−1(E0)|2
.
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Actually, f (E) can be continued at E0 by setting

f (E0)= |a0(E0)|
2
+ · · ·+ |ap−1(E0)|

2. (4-61)

Let us now assume that a0
p−1(E0) 6= 0. We study the behavior of αm near E0. Recall (4-39). Then one has

(1) either dm := am(E0)(a0
p(E0)− ρ

−1(E0))+ bm(E0)a0
p−1(E0) 6= 0, in which case, by (4-46), one has

αm(E)= (dmc−1/
√
|E − E0|)(1+ o(1));

(2) or dm = am(E0)(a0
p(E0)−ρ

−1(E0))+bm(E0)a0
p−1(E0)= 0, in which case, since for some Am ∈R∗

and km ≥ 1 one has

am(E)(a0
p(E)− ρ

−1(E0))+ bm(E)a0
p−1(E)= Am(E − E0)

km (1+ o(1)),

by (4-46), one can continue αm to E0 by setting αm(E0)=
1
2am(E0).

As a0
p−1(E0) 6= 0, we know that for some m0 ∈ {0, . . . , p− 1} we are in case (a). Hence, one has

f (E)=
2

p|E − E0|

p−1∑
m=0

∣∣am(E0)(a0
p(E0)− ρ

−1(E0))+ bm(E0)a0
p−1(E0)

∣∣2(1+ o(1)) (4-62)

and E 7→ 2|αm(E)|2/(p f (E)) can be continued to E0, setting

2|αm(E0)|
2

p f (E0)
=

|dm |
2

|d0|2+ · · ·+ |dp−1|2

(using the notation introduced in point (a)).
This completes the proof of Lemma 4.17. �

By Lemma 4.11, we know that, for 1 ≤ k ≤ p and E0 ∈ ∂6Z, one has 2hk(E0) ∈ πZ. Thus, for
1 ≤ k ≤ p, 1 ≤ m ≤ p and E0 ∈ ∂6Z, one has cos(hk(E0)− 2hm−1(E0)− pθp(E0)) sin(hk(E0)) = 0.
Using the expansions leading to the proof of Lemma 4.11, one gets

cos(hk(E)− 2hm−1(E)− pθp(E)) sin(hk(E))= c
√
|E − E0|(1+ o(1)).

Recalling (4-59) and the fact that pθp(E0)∈πZ, Lemma 4.17 implies that f̃ can be extended continuously
up to E0. Hence, the expansion (4-52) again yields

L∑
l=0

|u j
l |

2
� N p f (λ j ). (4-63)

Let us now review the computation (4-58) in this case. We distinguish two cases:

(1) If a0
p−1(E0)= 0, then (4-58) and the fact that ak+1(E0) 6= 0 (this case was dealt with in point (1)),

yields that, for |λ j − E0| sufficiently small,

|u j
L | �

√
|λ j − E0|.
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By (4-61) and (4-63), we obtain

|ϕ j (L)|2 �
|λ j − E0|

N p
and |ϕ j (0)|2 �

1
N p

. (4-64)

(2) If a0
p−1(E0) 6= 0, then

(a) if dk+1 6= 0 (see case (a) in the proof of Lemma 4.17), by (4-62) and (4-63) one has

|ϕ j (0)|2 �
|λ j − E0|

N p
and |ϕ j (L)|2 �

|λ j − E0|

N p
. (4-65)

(b) if dk+1 = 0, by (4-62) and (4-63) one has

|ϕ j (0)|2 �
|λ j − E0|

N p
and |ϕ j (L)|2 �

1
N p

. (4-66)

The eigenvectors associated to eigenvalues outside 6Z. Let us now turn to the eigenfunctions associated
to eigenvalues HL in the gaps of 6Z, i.e., in the region {E | |1(E)| > 2}. On R \6Z, the eigenvalue
E 7→ρ(E) is real-valued (recall that we pick it so that |ρ(E)|<1) and so are all the functions (αm)0≤m≤p−1

and (βm)0≤m≤p−1 (see (4-39)). For 0≤ m ≤ p− 1, (4-50) yields

|u j
np+m |

2
= α2

m(E)ρ
2n(E)+β2

m(E)ρ
−2n(E)+ 2αm(E)βm(E). (4-67)

As when we studied the eigenvalues of HL , let us now distinguish the cases when E is close to an
eigenvalue of H+0 or to an eigenvalue of H−k :

(1) Pick E ′ an eigenvalue of H+0 but not an eigenvalue of H−k ; then recall that a0
p−1(E

′) = 0 =
a0

p(E
′)− ρ(E ′). Thus, for 0 ≤ m ≤ p − 1, one has βm(E ′) = 0. Assume that E is close to E ′. As

E satisfies (4-44), using (4-41), (4-67) becomes

|u j
np+m |

2
= ρ2n(E ′)

∣∣∣∣αm(E ′)−
β ′m(E

′)

β ′k+1(E
′)

ak+1(E ′)[ρ(E ′)− ρ−1(E ′)]ρ2(N−n)(E ′)+ O(ρ2N (E))
∣∣∣∣2

for 0≤ m ≤ p− 1 if 0≤ n ≤ N − 1 and 0≤ m ≤ k if n = N .
Using (4-40), one computes

|u j
np+m |

2
= ρ2n(E ′)

∣∣∣∣am(E ′)−
β ′m(E

′)

β ′k+1(E
′)

ak+1(E ′)ρ2(N−n)(E ′)+ O(ρ2N (E))
∣∣∣∣2. (4-68)

This yields

L∑
l=0

|u j
l |

2
=

p−1∑
m=0

N−1∑
n=0

ρ2n(E ′)a2
m(E

′)+ O(Nρ2N (E))=
1

1− ρ2(E ′)

p−1∑
m=0

a2
m(E

′)+ O(Nρ2N (E)).

Moreover, by (4-49), (4-67) and (4-39), as a0
p−1(E

′)= 0= a0
p(E
′)− ρ(E ′), we obtain

|ϕ j (L)|2 = ρ2N (E ′)
(1− ρ2(E ′))a2

k+1(E
′)

[β ′k+1(E
′)]2

∑p−1
m=0 a2

m(E ′)

∣∣∣∣ β ′k(E ′) ak(E ′)
β ′k+1(E

′) ak+1(E ′)

∣∣∣∣2+ O(Nρ4N (E))

= γρ2N (E ′)+ O(Nρ4N (E)),
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where

γ :=
(1− ρ2(E ′))a2

k+1(E
′)

[β ′k+1(E
′)]2

∑p−1
m=0 a2

m(E ′)

(da0
p−1

d E
(E ′)

)2

> 0.

Hence, |ϕ j (L)| is exponentially small in L (recall |ρ(E)|< 1).

(2) If E ′ is an eigenvalue of H−k but not of H+0 , then, inverting the parts of H−k and H+0 , we see that
|ϕ j (L)| is of order 1. A precise asymptotic can be computed but it won’t be needed.

(3) If E ′ is an eigenvalue of H+0 and of H−k , the double well analysis done in the Appendix shows that,
for normalized eigenvectors, say ϕ j , j = 1, 2, associated to the two eigenvalues of HL close to E ′, the four
coefficients |ϕ j (0)| and |ϕ j (L)|, j = 1, 2, are of order 1. Again, precise asymptotics can be computed
but won’t be needed.

This completes the description of the eigenfunctions given by Theorem 4.3 and completes the proof of
this result.

5. Resonances in the periodic case

We are now in the state to prove the results stated in Section 1B. We first study the function E 7→ SL(E)
and E 7→ 0L(E) in the complex strip I + i(−∞, 0) for I ⊂6◦Z.

5A. The matrix 0L in the periodic case. Using Theorem 4.2, we first prove:

Theorem 5.1. Fix I ⊂ 6◦Z a compact interval. There exists εI > 0 and σI ∈ {+1,−1} such that, for
any N ≥ 0, there exists CN > 0 such that, for L sufficiently large with L ≡ k mod p, one has

sup
Re E∈I

−εI<Im E<0

|0L(E)−0eff
L (E)| ≤ CN L−N , (5-1)

where

0eff
L (E)=−

θ ′p(E)

sin uL(E)

(
e−iuL (E) f −k (E) σI

√

f −k (E) f +0 (E)
σI
√

f −k (E) f +0 (E) e−iuL (E) f +0 (E)

)

+

(∫
R

1/(λ− E) d N−k (λ) 0
0

∫
R

1/(λ− E) d N+0 (λ)

)
(5-2)

and uL(E) := (L − k)θp,L(E) (see (4-2)),

The sign σI only depends on the spectral band containing I .
Deeper in the lower half-plane, we obtain the following simpler estimate:

Theorem 5.2. There exists C > 0 such that, for any ε > 0 and L ≥ 1 sufficiently large with L = N p+ k,
one has

sup
Re E∈I

Im E<−ε

∣∣∣∣0L(E)−
(∫

R
1/(λ− E) d N−k (λ) 0

0
∫

R
1/(λ− E) d N+0 (λ)

)∣∣∣∣≤ Cε−2e−εL/C . (5-3)
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In Section 5B, the approximations (5-1) and (5-3) will be used to prove Theorems 1.5, 1.7 and 1.10.
Let us note that, as cot z = i + O(e−2i Im z), for ε ∈ (0, εI ) the asymptotics given by Theorems 5.1

and 5.2 coincide in the region {Re E ∈ I, Im E ∈ (−εI ,−ε)}; indeed, one has

sup
Re E∈I

−εI<Im E<−ε

∥∥∥∥ θ ′p(E)

sin uL(E)

(
e−iuL (E) f −k (E) σI

√

f −k (E) f +0 (E)
σI
√

f −k (E) f +0 (E) e−iuL (E) f +0 (E)

)∥∥∥∥≤ e−εL/C .

Let us now turn to the proofs of Theorems 5.1 and 5.2.

5A1. The proof of Theorem 5.1. To prove Theorem 5.1, we split the sum SL(E) into two parts, one
containing the Dirichlet eigenvalues “close” to Re E , the other containing those “far” from Re E . By
“far”, we mean that the distance to Re E is bounded from below by a small constant independent of L . The
“close” eigenvalues are then described by Theorem 4.2. For the “far” eigenvalues, the strong resolvent
convergence of HL to H+0 , that of H̃L to H−k (see Remark 1.6), and Combes–Thomas estimates enable
us to compute the limit and to show that the prelimit and the limit are O(L−∞) close to each other. For
the “close” eigenvalues, the sum occurring in (2-9), the definition of 0L , is a Riemann sum. We use the
Poisson summation formula to obtain a precise approximation.

As I is a compact interval in6◦Z, we pick ε > 0 such that, for E ∈ I , one has [E−6ε, E+6ε]⊂6◦Z. Let
χ ∈ C∞0 (R) be a nonnegative cut-off function such that χ ≡ 1 on [−4ε, 4ε] and χ ≡ 0 outside [−5ε, 5ε].
For E ∈ I , define χE( · )= χ( · − E).

We first give the asymptotic for the sum over the Dirichlet eigenvalues far from Re E . We prove:

Lemma 5.3. For any N > 1, there exists CN > 0 such that, for L sufficiently large with L ≡ k mod p,
one has

sup
E∈C

∣∣∣∣ L∑
j=1

1−χRe E(λ j )

λ j − E

(
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
− M̃(E)

∣∣∣∣≤ CN L−N , (5-4)

where

M̃(E) :=
(∫

R
(1−χRe E)(λ)/(λ− E) d N−k (λ) 0

0
∫

R
(1−χRe E)(λ)/(λ− E) d N+0 (λ)

)
. (5-5)

Proof of Lemma 5.3. Recall (see Theorem 2.2) that HL is the operator H+0 restricted to [[0, L]] with
Dirichlet boundary condition at L; as L ≡ k mod p, it is unitarily equivalent to the operator H−k restricted
to [[−L , 0]] with Dirichlet boundary condition at −L (see Remark 1.6).

Pick χ̃ ∈ C∞0 such that χ̃ ≡ 1 on σ(H+0 )∪ σ(H
−

k ). First, we compute

L∑
j=0

(1−χRe E)(λ j )
|ϕ j (0)|2

λ j − E
−

∫
R

(1−χRe E)(λ)
d N+0 (λ)
λ− E

=
〈
δ0, [χ̃(1−χRe E)](HL)(HL − E)−1δ0

〉
−
〈
δ0, [χ̃(1−χRe E)](H+0 )(H

+

0 − E)−1δ0
〉
,
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L∑
j=0

(1−χRe E)(λ j )
|ϕ j (L)|2

λ j − E
−

∫
R

(1−χRe E)(λ)
d N−k (λ)
λ− E

=
〈
δL , [χ̃(1−χRe E)](HL)(HL − E)−1δL

〉
−
〈
δL , [χ̃(1−χRe E)](H−k )(H

−

k − E)−1δL
〉
,

and
L∑

j=0

(1−χRe E)(λ j )
ϕ j (L)ϕ j (0)
λ j − E

=
〈
δL , [χ̃(1−χRe E)](HL)(HL − E)−1δ0

〉
.

By the definition of χRe E , the function λ 7→ (λ− E)−1χ̃(λ)(1− χRe E)(λ) is C∞0 on R; moreover, its
seminorms (see (4-14)) are bounded uniformly in E ∈ C. Thus there exists an almost analytic extension
of [χ̃(1−χRe E)]( · )( · − E)−1 such that, uniformly in E , one has (4-14).

In the same way as we obtained (4-16), we obtain∣∣〈δL , [(H̃L−z)−1
−(H−k −z)−1

]δL
〉∣∣+∣∣〈δ0, [(HL−z)−1

−(H+0 −z)−1
]δ0
〉∣∣+|〈δ0, (HL−z)−1δL〉|

≤
C
|Im z|2

e−L|Im z|/C . (5-6)

Plugging (5-6) into (4-15) and using (4-14) for [χ̃(1−χRe E)]( · )( · − E)−1, we get

sup
L≥1

L≡k mod p

L K
∣∣∣∣ L∑

j=0

(1−χRe E)(λ j )
|ϕ j (0)|2

λ j − E
−

∫
R

(1−χRe E)(λ)
d N+0 (λ)
λ− E

∣∣∣∣<+∞ for all K ∈ N.

This entails (5-4) and completes the proof of Lemma 5.3. �

Let us now estimate the part of 0L(E) associated to the Dirichlet eigenvalues close to Re E . Define

0
χ

L (E)=
L∑

j=1

χRe E(λ j )

λ j − E

(
|ϕ j (L)|2 ϕ j (0)ϕ j (L)
ϕ j (0)ϕ j (L) |ϕ j (0)|2

)
. (5-7)

We prove:

Lemma 5.4. There exists ε > 0 such that, for N ≥ 1, there exists CN such that, for L sufficiently large
with L ≡ k mod p, one has

sup
Re E∈I
−ε<Im E<0

|0
χ

L (E)−0
eff
L (E)+ M̃(E)| ≤ CN L−N ,

where M̃ is as defined in (5-5).

Clearly Lemmas 5.3 and 5.4 immediately yield Theorem 5.1.

Proof of Lemma 5.4. Recall that the quasimomentum θp defines a real analytic one-to-one monotonic
map from the interior of each band of spectrum onto the set (0, π), (−π, 0) or (−π, π) (depending on
the spectral band containing I +[−4ε, 4ε], where ε > 0 has been fixed above) (see, e.g., [Teschl 2000]).
Moreover, the derivative θ ′p is positive in the interior of a spectral band. Thus, for L sufficiently large, the
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real part of the derivative θ ′p,L (see (4-2)) is positive I+[−3ε, 3ε] and θp,L is real analytic one-to-one on a
complex neighborhood of (I +[−3ε, 3ε])+ i[−3ε, 3ε] (possibly at the expense of reducing ε somewhat).

By (2-9), (4-8) and Theorem 4.2, one may write

0
χ

L (E)=
1

L − k

∑
j∈Z

χRe E
(
θ−1

p,L(π j/(L − k))
)

θ−1
p,L(π j/(L − k))− E

M
(
θ−1

p,L

(
π j

L − k

))
, (5-8)

where

M(λ) :=
(

fk,L(λ) σI ei(L−k)θp,L (λ)
√

fk,L(λ) f0,L(λ)

σI ei(L−k)θp,L (λ)
√

fk,L(λ) f0,L(λ) f0,L(λ)

)
(5-9)

and the matrix M is analytic in the rectangle (I + [−3ε, 3ε])+ i[−3ε, 3ε]. Thus, the Poisson formula
tells us that

0
χ

L (E)=
1

L − k

∑
j∈Z

∫
R

e−2iπ j x
χRe E

(
θ−1

p,L(πx/(L − k))
)

θ−1
p,L(πx/(L − k))− E

M
(
θ−1

p,L

(
πx

L − k

))
dx

=

∑
j∈Z

1
π

∫
R

e−2i j (L−k)θp,L (λ)
χRe E(λ)

λ− E
θ ′p,L(λ)M(λ) dλ

=

∑
j∈Z

1
π

∫
R

M j,χ (E, λ, λ) dλ (5-10)

by the definition of χRe E ; here, we have set

M j,χ (E, λ, β) := e−2i j (L−k)θp,L (β+Re E) χ(λ)

β − i Im E
θ ′p,L(β +Re E)M(β +Re E).

Let us now study the individual terms in the last sum in (5-10). Recall that, on [−4ε, 4ε], χ is identically 1
and that λ 7→ θp,L(λ+ Re E) and λ 7→ M(λ) are analytic in (I + [−3ε, 3ε])+ i[−3ε, 3ε]; moreover,
by (4-3), for some δ > 0 one has

lim inf
L→+∞

inf
λ∈[−4ε,4ε]

θ ′p,L(λ+Re E)≥ lim inf
L→+∞

inf
E∈I

θ ′p,L(E)≥ δ. (5-11)

Recall also that Im E < 0. Consider χ̃ : R→ [0, 1] smooth such that χ̃ = 1 on [−2ε, 2ε] and χ̃ = 0
outside [−3ε, 3ε].

In the complex plane, consider the paths γ± : R→ C defined by

γ±(λ)= λ± 2iεχ̃(λ).

As −ε ≤ Im E < 0, by contour deformation we have∫
R

M j,χ (E, λ, λ) dλ=
∫

R

M j,χ (E, λ, γ+(λ)) dλ

=−2iπe−2i j (L−k)θp,L (E)θ ′p,L(E)M(E)+
∫

R

M j,χ (E, λ, γ−(λ)) dλ.

We then estimate:
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• For j < 0, using a nonstationary phase argument since the integrand is the product of a smooth function
with an rapidly oscillating function (using | j |(L − k) as the large parameter), one then estimates∫

R

M j,χ (E, λ, γ+(λ)) dλ= O
(
(| j |L)−∞

)
.

The phase function is complex but its real part is nonpositive as Im θp,L(γ+( · )+Re E)≥ 0 on the support
of χ (by (5-11)). Note that the off-diagonal terms of M(λ) also carry a rapidly oscillating exponential
(see (5-9)) but it clearly does not suffice to counter the main one.

• In the same way, for j > 0, one has∫
R

M j,χ (E, λ, γ−(λ)) dλ= O((| j |L)−∞).

Thus, we compute ∫
R

M j,χ (E, λ, λ) dλ= O
(
(| j |L)−∞

)
for j < 0, (5-12)∫

R

M j,χ (E, λ, λ) dλ=−2iπe−2i j (L−k)θp,L (E)θ ′p,L(E)M(E)+ O((| j |L)−∞) for j > 0. (5-13)

Finally, for j = 0, the contour deformation along γ+ yields∫
R

χ(λ)

λ− i Im E
M(λ+Re E) dλ=

∫
R

χRe E(λ)

λ− E
θ ′p,L(λ)

(
fk,L(λ) 0

0 f0,L(λ)

)
dλ+ O(L−∞)

=

∫
R

χRe E(λ)

λ− E

(
d N−k (λ) 0

0 d N+0 (λ)

)
+ O(L−∞)

by Corollary 4.4.
Plugging this, (5-12) and (5-13) into (5-10) and computing the geometric sum immediately yields the

asymptotic expansion (where the remainder term is uniform on the rectangle I + i[−ε, 0))

0
χ

L (E)=−2i
∑
j>0

e−2i j (L−k)θp,L (E)θ ′p,L(E)M(E)+
∫

R

χRe E(λ)

λ−E

(
d N−k (λ) 0

0 d N+0 (λ)

)
+O(L−∞)

=
−e−i(L−k)θp,L (E)

sin((L−k)θp,L(E))
θ ′p,L(E)M(E)+

∫
R

χRe E(λ)

λ−E

(
d N−k (λ) 0

0 d N+0 (λ)

)
+O(L−∞). (5-14)

This completes the proof of Lemma 5.4. �

5A2. The proof of Theorem 5.2. To prove (5-1), for Im E <−ε it suffices to write

L∑
j=0

|ϕ j (0)|2

λ j − E
−

∫
R

d N+0 (λ)
λ− E

= 〈δ0, (HL − E)−1δ0〉− 〈δ0, (H+0 − E)−1δ0〉

= 〈δ0, (HL − E)−1δL〉〈δL+1, (H+0 − E)−1δ0〉
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and
L∑

j=0

|ϕ j (L)|2

λ j − E
−

∫
R

d N−k (λ)
λ− E

= 〈δ0, (HL − E)−1δL〉〈δL+1, (H−k − E)−1δ0〉,

L∑
j=0

ϕ j (L)ϕ j (0)
λ j − E

= 〈δL , (HL − E)−1δ0〉,

and to use the Combes–Thomas estimate (5-6). This completes the proof of Theorem 5.2.

5B. The proofs of Theorems 1.5, 1.7 and 1.10. We will now use Theorems 5.1 and 5.2 to prove Theo-
rems 1.5, 1.7 and 1.10.

5B1. The proof of Theorem 1.5. The first statement of Theorem 1.5 is an immediate consequence of the
characteristic equations for the resonances (2-4) and (2-8) and the description of the eigenvalues of HL

given in Theorem 4.2.
When • = N, i.e., for the operator on the half-line, if I ⊂ (−2, 2) does not meet 6N, there exists

C > 0 such that, for L sufficiently large, dist(I, σ (HL)) > 1/C . Thus, on the set I − i[0,+∞), one has
Im SL(E)≤ Im E/C . Since on I one has Im θp(E)>1/C (see Section 2), the characteristic equation (2-4)
admits a solution E such that Re E ∈ I only if Im E < 1/C2. This completes the proof of Theorem 1.5(1)
for •= N.

For • = Z, i.e., to study (2-8), one reasons in the same way except that one replaces the study of
SL(E) by that of 〈0L(E)u, u〉 for u an arbitrary vector in C2 of unit length. This completes the proof of
Theorem 1.5(1).

Point (3a) is an immediate consequence of Theorems 3.3 and 3.2 and the description of the eigenvalues
of HL outside 6Z. Notice that, in the present case, d j in Theorems 3.3 and 3.2 is bounded from below by
a constant independent of L , and a•j is exponentially small and described by Theorem 4.2.

Point (3b) is an immediate consequence of the description of the eigenvalues of HL outside 6Z in
Theorems 5.2(2) and 3.1. Indeed, in the present case, d j and a•j are both of order 1; thus, Theorem 3.1
guarantees, around the common eigenvalue for H−k and H+0 , a rectangle of width of order 1 free of
resonances.

Let us now turn to the proof of point (2). We first prove the following corollary of Theorem 5.1:

Corollary 5.5. Fix I ⊂6◦Z compact. There exists η0 > 0 such that, for L sufficiently large, one has

min
Re E∈I

Im E∈[−η0/L ,0)

|SL(E)+ e−iθ(E)
| ≥ η0 and min

Re E∈I
Im E∈[−η0/L ,0)

|det(0L(E)+ e−iθ(E))| ≥ η0. (5-15)

Clearly, Corollary 5.5 implies that neither (2-4) nor (2-8) can have a solution in I + i]−η0/L , 0]. This
proves Theorem 1.5(2).

Before proving Corollary 5.5, we first prove Propositions 5.7 and 5.8, as these will be used in the proof
of Corollary 5.5.
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5B2. Results on the auxiliary functions defined in Section 1B2. Recall that N−k is defined in Section 1B2.
We prove:

Proposition 5.6. For k ∈ {0, . . . , p− 1}, d N−k is a positive measure that is absolutely continuous on 6Z.
Moreover, its density, say E 7→ n−k (E), is real analytic on 6◦Z and there exists f −k :6

◦

Z→ R a positive
real analytic function such that, on 6◦Z, one has n−k (E)= f −k (E)n(E).

Proof. Proposition 5.6 is an immediate consequence of Theorems 5.1 and 5.2 and Corollary 4.4. �

For 4−k defined in (1-5), we prove:

Proposition 5.7. 4−k vanishes identically if and only if V ≡ 0, i.e., V vanishes identically. Moreover, if
V 6≡ 0 then there exists ξ−k 6= 0 and α−k ∈ {2, 3, . . . } such that 4−k (E)∼ ξ

−

k E−α
−

k as |E | →∞, Im E < 0.

Proof. We will do the proofs for the function 4−k . Proposition 5.7 is an immediate consequence of the
fact that, in the lower half-plane, the function E 7→ −e−i arccos(E/2)

=−
1
2 E −

√
1
4 E2
− 1 (i.e., the choice

of it defined above) is equal to the Stieltjes (or Borel) transform of the spectral measure associated to
the Dirichlet Laplacian on N and the vector δ0; this follows from a direct computation (see Remark 2.1
and (2-2) for n = 0). Now, if one lets W be the symmetric of τk V with respect to 0, the spectral measure
d N−k is also the spectral measure of the Schrödinger operator Hk =−1+W on N associated to δ0. The
equality of the Borel transforms implies the equality of the measures but δ0 is cyclic for both operators,
so the operators have equal spectral measures. This implies that the two operators are equal and, thus, the
symmetric of τk V has to vanish identically on N. As V is periodic, V must vanish identically.

As for the second point, if the function 4−k were to vanish to infinite order at E = −i∞, as each
of the terms

∫
R

1/(λ− E) d N−k (λ) and −1
2 E −

√
1
4 E2
− 1 admits an infinite asymptotic expansion in

powers of E−1, these two expansions would be equal. The n-th coefficient of these expansions are the
n-th moments of the spectral measures of Hk and −1+0 , respectively (associated to the cyclic vector δ0).
So these moments would coincide and, thus, the spectral measures would coincide. One concludes as
above. �

For c• defined in (1-6) and (1-7), we prove:

Proposition 5.8. Pick • ∈ {N,Z}. Let I ⊂ (−2, 2)∩6◦Z be a compact interval.
There exists a neighborhood of I such that, in this neighborhood, the function E 7→ c•(E) is analytic

and has a positive imaginary part.
The function cN (resp. cZ) takes the value i only at the zeros of 4−k (resp. 4−k 4

+

0 ).

Proof. On {Im E < 0}, define the functions

g−k (E) := i +
4−k (E)
πn−k (E)

=
1

πn−k (E)
(S−k (E)+ e−i arccos(E/2)), (5-16)

g+0 (E) := i +
4+0 (E)

πn+0 (E)
=

1
πn+0 (E)

(S+0 (E)+ e−i arccos(E/2)). (5-17)

First, the analyticity of g−k and g+0 is clear; indeed, all the functions involved are analytic and the
functions n+0 and n−k stay positive on 6◦Z. Moreover, these functions can be analytically continued through
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(−2, 2)∩6◦Z . By (1-4), for E real one has Im g−k (E)= Im g+0 (E)= Im e−iθ(E), which is positive (see
Section 2). Thus the functions E 7→ g−k (E) and E 7→ g+0 (E) do not vanish on I . Moreover, as

g+0 (E)g
−

k (E)− 1
g+0 (E)+ g−k (E)

=−
1

g+0 (E)+ g−k (E)
+

1
1/g+0 (E)+ 1/g−k (E)

, (5-18)

this function has a positive imaginary part on I .
This proves the first two properties of c• stated in Proposition 5.8. By the very definition of c• and g−k ,

the last property stated in Proposition 5.8 is obviously satisfied in the case of the half-line; for the full
line, i.e., if •= Z, the last property is a consequence of the computation

cZ(E)− i =
g+0 (E)g

−

k (E)− 1
g+0 (E)+ g−k (E)

− i =
(g+0 (E)− i)(g−k (E)− i)

g+0 (E)+ g−k (E)

=
4+0 (E)4

−

k (E)

2iπ2n+0 (E)n
−

k (E)+πn−k (E)4
+

0 (E)+πn+0 (E)4
−

k (E)
. (5-19)

This completes the proof of Proposition 5.8. �

5B3. The proof of Corollary 5.5. In view of Theorem 5.1, to obtain (5-15) it suffices to prove that there
exists η0 > 0 such that, for L sufficiently large, one has

min
Re E∈I

Im E∈[−η0/L ,0)

∣∣∣∣θ ′p,L(E) f −k (E)e
−iuL (E)

sin uL(E)
−

∫
R

d N−k (λ)
λ− E

− e−iθ(E)
∣∣∣∣≥ η0,

where uL(E) := (L − k)θp,L(E).
We compute

θ ′p,L(E) f −k (E)e
−iuL (E)

sin uL(E)
−

∫
R

d N−k (λ)
λ− E

− e−iθ(E)
= θ ′p,L(E) f −k (E)(cot uL(E)− g−k (E)), (5-20)

where g−k is as defined in (5-16).
Thus, ∣∣∣∣θ ′p,L(E) f −k (E)e

−iuL (E)

sin uL(E)
−

∫
R

d N−k (λ)
λ− E

− e−iθ(E)
∣∣∣∣& |cot uL(E)− g−k (E)|

as, for η sufficiently small and L ≥ 1, one has

0< min
Re E∈I

Im E∈[−η/L ,0)

|θ ′p,L(E) f −k (E)| ≤ max
Re E∈I

Im E∈[−η/L ,0)

|θ ′p,L(E) f −k (E)|<+∞.

Now notice that by Corollary 4.4, for E ∈ I , one has

Im
(∫

R

d N−k (λ)
λ− E

)
=−θ ′p,L(E) f −k (E)=−

1
π

n−k (E). (5-21)

Thus, as E 7→ Im e−iθ(E) is positive on I , the analytic function E 7→ g−k (E) has positive imaginary
part larger than, say 2η̃ on I ; hence, it has imaginary part larger than, say, η̃ in some neighborhood
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of I + D(0, η0) (for sufficiently small η0 > 0). Let M be the maximum modulus of this function
on I + D(0, η0). Then, as maxRe E∈I, Im E∈[−η0/L ,0) |θ

′

p,L(E)|. 1, one has

max
Re E∈I

Im E∈[−η0/L ,0)
|cot(uL (E))|<2M

|Im cot uL(E)|. (M2
+ 1)η0.

Possibly reducing η0, this guarantees that, for Re E ∈ I and Im E ∈ [−η0/L , 0), one has

|cot uL(E)− g−k (E)| ≥ 2M −M ≥ M or Im(cot uL(E)− g−k (E))≤−η̃+
1
2 η̃ =−

1
2 η̃.

This completes the proof of the first lower bound in (5-15) in Corollary 5.5.
To prove the second bound in (5-15), using (5-2) we compute

det(0eff
L (E)+ e−iθ(E))

n−k (E)n
+

0 (E)
= (cot uL(E)− g−k (E))(cot uL(E)− g+0 (E))−

1

sin2 uL(E)

=−(g+0 (E)+ g−k (E))
(

cot uL(E)−
g+0 (E)g

−

k (E)− 1
g+0 (E)+ g−k (E)

)
, (5-22)

where g−k and g+0 are defined by (5-16) and (5-17).
Using Proposition 5.8, one then concludes the nonvanishing of E 7→ det(0eff

L (E)+ e−iθ(E)) in the
complex rectangle {Re E ∈ I, Im E ∈ [−η0/L , 0)} (for η0 sufficiently small) in the same way as above.
This completes the proof of Corollary 5.5.

5B4. The proof of Theorem 1.7. To solve (2-4) and (2-8), by Theorem 5.1, we first solve the equations

θ ′p,L(E) f −k (E)e
−iuL (E)

sin uL(E)
=

∫
R

d N−k (λ)
λ− E

− e−iθ(E) and det(0eff
L (E)+ e−iθ(E))= 0 (5-23)

in a rectangle I + i[−η,−η̃/L]. Indeed, in such a rectangle, by Theorem 5.1 equations (2-4) and (2-8)
are equivalent to

θ ′p,L(E) f −k (E)e
−iuL (E)

sin uL(E)
=

∫
R

d N−k (λ)
λ− E

− e−iθ(E)
+ O(L−∞)

and det(0eff
L (E)+ e−iθ(E))= O(L−∞),

(5-24)

respectively, where the terms O(L−∞) are analytic in a rectangle Ĩ + i[−2η,−0) (where I ⊂ Ĩ ) and the
bound O(L−∞) holds in the supremum norm.

Thanks to (5-20) for •= N and to (5-22) for •= Z, to solve the equations (5-23) it suffices to solve

cot uL(E)= c•(E), (5-25)

where we recall uL(E) := (L − k)θp,L(E), g+0 and g−k are as defined in (5-17) and (5-16), respectively,
and, as in Section 1B3, we have set

• cN(E) := g−k (E) in the case of the half-line,
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• cZ(E) :=
g+0 (E)g

−

k (E)− 1
g+0 (E)+ g−k (E)

in the case of the line.

We want to solve (5-25) is a rectangle I + i[−ε, 0) for some ε small but fixed. Using Proposition 5.8,
we pick ε so small that, in the rectangle I + i[−ε, 0], the only zeros of c•− i are those on the real line
and Im c• is positive in I + i[−ε, 0).

To solve (5-25), we change variables u = (L − k)θp,L(E), that is, we write

E = θ−1
p,L

(
u

L − k

)
.

As, for L0 sufficiently large, infL≥L0, E∈I+i[−ε,0) Re θ ′p,L(E) > c > 0, at the cost of possibly re-
ducing ε this real analytic change of variables maps I + [−ε, ε] + i[−ε, 0) into, say, DL such that
IL+ i[−η(L−k), 0] ⊂ DL (for some η > 0), where IL = (L−k)θp,L

(
I +

[
−

1
2ε,

1
2ε
])

; the inverse change
of variable maps IL+ i[−η(L−k), 0] into some domain, say D̃L , such that I+[−ε′, ε′]+ i[−ε′, 0] ⊂ D̃L

(for some 0< ε′ < ε). Now, to find all the solutions to (5-25) in I + i[−ε′, 0), we first solve the following
equation in IL + i[−η(L − k), 0]:

cot u = c• ◦ θ−1
p,L

(
u

L − k

)
(5-26)

As u 7→ cot u is π -periodic, we split IL + i[−η(L − k), 0] into vertical strips of the type

lπ + [0, π] + i[−η(L − k), 0], l− ≤ l ≤ l+, (l−, l+) ∈ Z2.

Without loss of generality, we may assume that IL = [l−, l+]π . To solve (5-26) on the rectangle
lπ+[0, π]+i[−η(L−k), 0], we shift u by lπ and solve the following equation on [0, π]+i[−η(L−k), 0]:

cot u = c•l,L(u), where c•l,L( · ) := c• ◦ θ−1
p,L

(
· + lπ
L − k

)
. (5-27)

In proving Theorem 1.5, we have already shown that, for some η̃ > 0 (independent of L sufficiently
large and l− ≤ l ≤ l+), (5-27) does not have a solution in [0, π] + i[−η̃, 0]. The cotangent is an
analytic one-to-one mapping from [0, π)+ i(−∞, 0] to C+ \ {i}. Thus, for L sufficiently large and η̃
sufficiently small, the cotangent defines a one-to-one mapping from [0, π)+ i[−η(L − k),−η̃] onto
TL = D(z+, r+) \ D(z−, r−), analytic in the interior of [0, π)+ i[−η(L − k),−η̃] and continuous up to
the boundary, where we have defined

z+ = i
e4η(L−k)

+ 1
e4η(L−k)− 1

, z− = i
e4η̃
− 1

e4η̃− 1
, r+ =

2e2η̃

e4η̃− 1
, r− =

2e2η(L−k)

e4η(L−k)− 1
.

Moreover, the boundaries {0}+ i[−η(L − k),−η̃] and {π}+ i[−η(L − k),−η̃] are mapped onto the
interval [z−+ ir−, z++ ir+].

Let Z̃ • denote the finite set of zeros of E 7→ c•(E)− i in I . Then, by a Taylor expansion near the zeros
of c− i , we know that, for η sufficiently small, there exist ε0 > 0 and k̃ ≥ 1 such that, for L sufficiently
large:
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• For ε ∈ (0, ε0), there exists 0< η− such that, for l− ≤ l ≤ l+, if one has∣∣∣∣θ−1
p,L

(
lπ

L − k

)
− Ẽ

∣∣∣∣≥ ε for all Ẽ ∈ Z̃ •,

then one has η− ≤ |Im c•l,L(u)− 1| for all u ∈ [0, π] + i[−η(L − k), 0].

• For u ∈ [0, π] + i[−η(L − k), 0] and Ẽ the point in Z̃ • closest to θ−1
p,L(lπ/(L − k)), one has

ε0 ≤ (1− Im c•l,L(u)) ·
[∣∣∣∣θ−1

p,L

(
Re u+ lπ

L − k

)
− Ẽ

∣∣∣∣+ |Im u|
L − k

]−k̃

≤
1
ε0
, (5-28)

where k̃ is the order of Ẽ as a zero of E 7→ c•(E)− i .

As a consequence of the above description of c•l,L , we obtain:

Lemma 5.9. There exists η̃ and η small such that, for L sufficiently large, for all l− ≤ l ≤ l+, u 7→ c•l,L(u)
maps the rectangle [0, π]+ i[−η(L − k),−η̃] into a compact subset of D(z+, r+) \ D(z−, r−) in such a
way that

sup
u∈∂([0,π ]+i[−η(L−k),−η̃])

|cot u− c•l,L(u)|&
(∣∣∣∣Ẽ − θ−1

p,L

(
lπ

L − k

)∣∣∣∣+ η̃

L − k

)k̃

, (5-29)

where Ẽ is the root of E 7→ c•(E)− i closest to θ−1
p,L(lπ/(L − k)) and k̃ is the order of this root.

Note that, under the assumptions of Lemma 5.9, (5-29) implies that

sup
u∈∂([0,π ]+i[−η(L−k),−η̃])

|cot u− c•l,L(u)|& L−k̃ .

Thus we can define the analytic mapping cot−1
◦c•l,L on [0, π]+ i[−η(L− k),−η̃]; it maps the rectangle

[0, π] + i[−η(L − k),−η̃] into a compact subset of (0, π)+ i(−η(L − k),−η̃). Equation (5-27) on
[0, π] + i[−η(L − k),−η̃] is, thus, equivalent to the fixed point equation on the same rectangle,

u = cot−1
◦c•l,L(u) (5-30)

We note that, for α ∈ (0, 1) and L sufficiently large, if for some Ẽ ∈ Z̃ • of multiplicity k̃ one has
|θ−1

p,L(lπ/(L − k))− Ẽ |< L−α, then (5-27) has no solution in [0, π]+ i[−η(L − k),−η̃] outside of the
set

Rl,L := [0, π] + i
[
−η(L − k),

αk̃
4

log
[∣∣∣∣θ−1

p,L

(
lπ

L − k

)
− Ẽ

∣∣∣∣+ 1
L

]]
.

Indeed, for u ∈ ([0, π] + i[−η(L − k),−η̃]) \ Rl,L , by (5-28), that is, for

0≤ Re u ≤ π and −
αk̃
4

log L ≤
αk̃
4

log
[∣∣∣∣θ−1

p,L

(
lπ

L − k

)
− Ẽ

∣∣∣∣+ 1
L

]
≤ Im u ≤−η̃,

one has |c•l,L(u)− i |. L−αk̃ and |cot u− i |& L−αk̃/2.
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So if for some Ẽ ∈ Z̃ • one has |θ−1
p,L(lπ/(L − k))− Ẽ |< L−α , it suffices to solve (5-30) on Rl,L . We

compute the derivative of c•l,L in the interior of Rl,L :

d
du
(cot−1

◦c•l,L)(u)=−
1

L − k

c′ ◦ θ−1
p,L((u+ lπ)/(L − k))

1+ (c•l,L(u))2
·

1

θ ′p,L
(
θ−1

p,L((u+ lπ)/(L − k))
)

=
1

L − k

c′ ◦ θ−1
p,L((u+ lπ)/(L − k))

c•l,L(u)− i
·

1
c•l,L(u)+ i

·
1

θ ′p,L
(
θ−1

p,L((u+ lπ)/(L − k))
) .

Thus, fixing α ∈ (0, 1):

• If l is such that for some Ẽ ∈ Z̃ • one has |θ−1
p,L(lπ/(L− k))− Ẽ |< L−α , then for u ∈ Rl,L we estimate∣∣∣∣ d

du
(cot−1

◦c•l,L)(u)
∣∣∣∣

.
1

L − k

[∣∣∣∣θ−1
p,L

(
lπ

L − k

)
− Ẽ

∣∣∣∣+ |Im u|
L − k

]−1

.
1

(L − k)|θ−1
p,L(lπ/(L − k))− Ẽ | +

∣∣log
[
|θ−1

p,L(lπ/(L − k))− Ẽ | + η̃/(L − k)
]∣∣

.
1

log L
. (5-31)

• If l is such that for all Ẽ ∈ Z̃ • one has |θ−1
p,L(lπ/(L−k))− Ẽ |≥ L−α , for u ∈[0, π]+i[−η(L−k),−η̃]

we estimate ∣∣∣∣ d
du
(cot−1

◦c•l,L)(u)
∣∣∣∣. 1

L − k

[∣∣∣∣θ−1
p,L

(
lπ

L − k

)
− Ẽ

∣∣∣∣+ |Im u|
L − k

]−1

.
1

(L − k)|θ−1
p,L(lπ/(L − k))− Ẽ |

.
1

L1−α . (5-32)

Hence, for L sufficiently large, cot−1
◦c•l,L is a contraction on Rl,L . Equation (5-30) thus admits a

unique solution, say ũ•l,L , in the rectangle [0, π] + i[−η(L − k),−η̃]. This solution is a simple root of
u 7→ u− cot−1

◦c•l,L(u). Hence, ũ•l,L is the only solution to (5-27) in [0, π] + i[−η(L − k),−η̃].
By (5-24), for L sufficiently large and l− ≤ l ≤ l+, both the equations

SL ◦ θ
−1
p,L

(
u+ lπ
L − k

)
+ e−iθ(θ−1

p,L ((u+lπ)/(L−k)))
= 0,

det
(
0L ◦ θ

−1
p,L

(
u+ lπ
L − k

)
+ e−iθ(θ−1

p,L ((u+lπ)/(L−k)))
)
= 0,

(5-33)

can be rewritten as

u = cot−1(c•l,L(u)+ O(L−∞))= cot−1
◦c•l,L(u)+ O(L−∞) (5-34)

in [0, π] + i[−η(L − k),−η̃].
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Thus each of the equations in (5-33) admits a single solution in [0, π]+ i[−η(L−k),−η̃] and this root
is simple; moreover, this solution, say ul,L , satisfies |u•l,L − ũ•l,L | = O(L−∞); indeed, the bounds (5-31)
and (5-32) guarantee that one can apply Rouché’s theorem on the disk D(ũ•l,L , L−k) for any k ≥ 0.

Thus, we have proved:

Lemma 5.10. Pick I as above. Then there exists η > 0 such that, for L sufficiently large with L = N p+k,
the resonances in I + i[−η, 0] are the energies (z•l )l−≤l≤l+ defined by

z•l = θ
−1
p,L

(u•l,L + lπ

L − k

)
, (5-35)

belonging to I + i[−η, 0].

Let us complete the proof of Theorem 1.14, that is, prove that, for η sufficiently small and L sufficiently
large such that L ≡ k mod p, z•l is the unique resonance in

[1
2 Re(z̃•l + z̃•l−1),

1
2 Re(z̃•l + z̃•l+1)

]
+ i[−η, 0];

recall that z̃•l is defined in (1-9).
We first note that the Taylor expansion of θ−1

p,L , (4-1) and the quantization condition (4-3) imply that

z•l = λl +
1

πn(λl)L
u•l,L + O

((
log L

L

)2)
as Re ul,L ∈ [0, π) and − log L . Im ul,L .−1.

Moreover, as

c•l,L(u)= c•
[
λl +

u
πn(λl)L

+ O
(

u2

L2

)]
,

using (1-9) and (5-35) we compute

z•l − z̃•l =
1

πn(λl)L

(
u•l,L − cot−1

◦c•
[
λl +

1
πn(λl)L

cot−1
◦c•
(
λl − i

log L
L

)])
+ O

((
log L

L

)2)
.

Thus, one has

z•l − z̃•l =
1

πn(λl)L

(
u•l,L − cot−1

◦c•l,L
[
cot−1

◦c•l,L(−iπn(λl) log L)
])
+ O

((
log L

L

)2)
.

As ul,L solves (5-34), sing (5-31) and (5-32) we thus obtain that

|z•l − z̃•l |.
1

L log L

∣∣u•l,L − cot−1
◦c•l,L(−iπn(λl) log L)

∣∣+( log L
L

)2

.
|u•l,L | + log L

L log2 L
+

(
log L

L

)2

.
1

L log L
,

using again Re ul,L ∈ [0, π) and − log L . Im ul,L .−1.
Taking into account (1-10), this completes the proof of Theorem 1.7.
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5B5. The proofs of Propositions 1.8 and 1.9. Proposition 1.9 is an immediate consequence of Theorem 1.7,
the definition (1-9) of z̃•l and the standard asymptotics of cot near−i∞, i.e., cot z= i+2ie−2i z

+O(e−4i z).

To prove Proposition 1.8, it suffices to notice that, under the assumptions of Proposition 1.8, the
bound (5-32) on the derivative of cot−1

◦c•l,L on the rectangle Rl,L becomes∣∣∣∣ d
du
(cot−1

◦c•l,L)(u)
∣∣∣∣. 1

L
.

Thus, as a solution to (5-30), u•l,L admits an asymptotic expansion in inverse powers of L . Plugging this
into (5-35) yields the asymptotic expansion for the resonance. Then (1-11) follows from the computation
of the first terms.

5B6. The proof of Theorem 1.10. Theorem 1.10 is an immediate consequence of Theorem 5.2, the fact
that the functions are analytic in the lower complex half-plane and have only finitely many zeros there,
and the argument principle.

5C. The half-line periodic perturbation: the proof of Theorem 1.11. Using the same notations as above,
we can write

H∞ =
(

H−
−1 |δ−1〉〈δ0|

|δ0〉〈δ−1| −1
+

0

)
,

where −1+0 is the Dirichlet Laplacian on `2(N).
Define the operators

0(E) := H−
−1− E −〈δ0|(−1

+

0 − E)−1
|δ0〉|δ−1〉〈δ−1|,

0̃(E) := −1+0 − E −〈δ−1|(H−−1− E)−1
|δ−1〉|δ0〉〈δ0|.

For Im E 6= 0, 〈δ−1|(H−−1− E)−1
|δ−1〉 and 〈δ0|(−1

+

0 − E)−1
|δ0〉 have a nonvanishing imaginary part

of the same sign; hence, the complex number(
〈δ0|(−1

+

0 − E)−1
|δ0〉

)−1
−〈δ−1|(H−−1− E)−1

|δ−1〉

does not vanish. Thus, by rank-one perturbation theory, (see, e.g., [Simon 2005]), we know that 0(E)
and 0̃(E) are invertible and their inverses are given by

0−1(E) := (H−
−1− E)−1

+

∣∣(H−
−1− E)−1

|δ−1〉〈δ−1|(H−−1− E)−1
∣∣(

〈δ0|(−1
+

0 − E)−1|δ0〉
)−1
−〈δ−1|(H−−1− E)−1|δ−1〉

(5-36)

and

0̃−1(E) := (−1+0 − E)−1
+

∣∣(−1+0 − E)−1
|δ0〉〈δ0|(−1

+

0 − E)−1
∣∣(

〈δ−1|(H−−1− E)−1|δ−1〉
)−1
−〈δ0|(−1

+

0 − E)−1|δ0〉
. (5-37)

Thus, for Im E 6= 0, using Schur’s complement formula we compute

(H∞− E)−1
=

(
0(E)−1 γ (E)
γ ∗(E) 0̃(E)−1

)
, (5-38)
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where γ ∗(E) is the adjoint of γ (E) and

γ (E) := −|0(E)−1
|δ−1〉〈δ0|(−1

+

0 − E)−1
|.

Now, when coming from Im E > 0 and passing through (−2, 2)∩6◦Z, the complex numbers

〈δ−1|(H−−1− E)−1
|δ−1〉 and 〈δ0|(−1

+

0 − E)−1
|δ0〉

keep imaginary parts of the same positive sign; thus, the two operator-valued functions E 7→ 0−1(E)
and E 7→ (H∞− E)−1 can be analytically continued through (−2, 2)∩6◦Z from the upper to the lower
complex half-plane (as operators from `2

comp(N) to `2
loc(N) and from `2

comp(Z) to `2
loc(Z), respectively).

When coming from the upper half-plane and passing through (−2, 2) \6Z and 6◦Z \ [−2, 2], (5-38)
also provides an analytic continuation of (H∞− E)−1. Definition (5-36) and formula (5-38) immediately
show that the poles of these continuations only occur at the zeros of the function

E 7→ 1−〈δ−1|(H−−1− E)−1
|δ−1〉〈δ0|(−1

+

0 − E)−1
|δ0〉 = 1− eiθ(E)

∫
R

d N−p−1(λ)

λ− E

when continued from the upper half-plane through the sets (−2, 2) \6Z and 6◦Z \ [−2, 2] (these sets are
finite unions of open intervals).

This completes the proof of Theorem 1.11.

6. Resonances in the random case

As for the periodic potential, for the random potential we start with a description of the function
E 7→ 0L(E) (see (2-9)), that is, with a description of the spectral data for the Dirichlet operator Hω,L .

6A. The matrix 0L in the random case. We recall a number of results on the Dirichlet eigenvalues of
Hω,L that will be used in our analysis.

It is well known that, under our assumptions, in dimension one the whole spectrum of Hω is in the
localization region (see, e.g., [Kunz and Souillard 1980; Cycon et al. 1987; Carmona and Lacroix 1990]),
that is:

Theorem 6.1. There exists ρ > 0 and α ∈ (0, 1) such that one has

sup
L∈N∪{+∞}

y∈[[0,L]]
Im E 6=0

E

{ ∑
x∈[[0,L]]

eρ|x−y|
|〈δx , (Hω,L − E)−1δy〉|

α

}
<∞ (6-1)

and

sup
L∈N∪{+∞}

y∈[[0,L]]

E

{ ∑
x∈[[0,L]]

eρ|x−y| sup
supp f⊂R
| f |≤1

|〈δx , f (Hω,L)δy〉|

}
<∞, (6-2)

where Hω,+∞ := H N
ω and [[0,+∞]] =N. The supremum is taken over the functions f that are Borelian

and compactly supported.

As a consequence, one can define localization centers, e.g., by means of the following results:
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Lemma 6.2 [Germinet and Klopp 2014]. Fix (lL)L a sequence of scales, i.e., lL →+∞ as L→+∞.
There exists ρ > 0 such that, for L sufficiently large, with probability larger than 1− e−`L , if

(1) ϕ j,ω is a normalized eigenvector of Hω,L associated to E j,ω in 6,

(2) x j (ω) ∈ [[0, L]] is a maximum of x 7→ |ϕ j,ω(x)| in [[0, L]],

then for x ∈ [[0, L]] one has

|ϕ j,ω(x)| ≤
√

Le2`L e−ρ|x−x j (ω)|. (6-3)

Note that Lemma 6.2 is of interest only if `L . L; otherwise (6-3) is obvious. This result can, for
example, be applied for the scales lL = 2 log L . In this case, the probability estimate of the bad sets (i.e.,
when the conclusions of Lemma 6.3 does not hold) is summable. The point x j (ω) is a localization center
for E j,ω or ϕ j,ω. It is not defined uniquely, but, one easily shows that there exists C > 0 such that for any
two localization centers, say x and x ′, one has |x − x ′| ≤ C log L (see [Germinet and Klopp 2014]). For
concreteness, we set the localization center associated to the eigenvalue E j,ω to be the leftmost maximum
of x 7→ ‖ϕ j,ω‖x .

We show:

Lemma 6.3. For any p > 0, there exist C > 0 and L0 > 0 (depending on α and p) such that, for L ≥ L0,
for any sequence satisfying (1-22), with probability at least 1− L−p there exist at most C`L eigenvalues
having a localization center in [[0, `L ]] ∪ [[L − `L , L]].

We will now use the fact that we are dealing with one-dimensional systems to improve upon the
estimate (6-3). We prove:

Theorem 6.4. For any δ > 0 and p ≥ 0, there exist C > 0 and L0 > 0 (depending on p and δ) such
that, for L ≥ L0, with probability at least 1 − L−p if E j,ω is an eigenvalue in 6 associated to the
eigenfunction ϕ j,ω and the localization center x j,ω then:

• If x j,ω ∈ [[0, L −C log L]], one has

−ρ(E j,ω)− δ ≤
log |ϕ j,ω(L)|

L − x j,ω
≤−ρ(E j,ω)+ δ. (6-4)

• If x j,ω ∈ [[C log L , L]], one has

−ρ(E j,ω)− δ ≤
log |ϕ j,ω(0)|

x j,ω
≤−ρ(E j,ω)+ δ. (6-5)

To analyze the resonances of H N
ω,L (resp. H Z

ω,L ), we shall use (6-4) (resp. (6-4) and (6-5)).
We now use these estimates as the starting point of a short digression from the main theme of this

paper. Let us first state a corollary to Theorem 6.4; we prove:

Theorem 6.5. For any δ > 0 and p ≥ 0, for L sufficiently large (depending on p and δ), with probability
at least 1− L−p, if E j,ω is an eigenvalue in 6 associated to the eigenfunction ϕ j,ω and the localization
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center x j,ω then, for |x − x j,ω| ≥ δL and 1≤ x ≤ L , one has

−ρ(E j,ω)− δ ≤
log
(
|ϕ j,ω(x)| + |ϕ j,ω(x − 1)|

)
|x − x j,ω|

≤ −ρ(E j,ω)+ δ. (6-6)

Compare (6-6) to (6-3). There are two improvements. First, the unknown rate of decay ρ is replaced
by the Lyapunov exponent ρ(E j,ω), which was expected to be the correct decay rate. Indeed, for the
one-dimensional discrete Anderson model on the half-axis, it is well known (see, e.g., [Bougerol and
Lacroix 1985; Carmona and Lacroix 1990; Pastur and Figotin 1992]) that, ω-almost surely, the spectrum is
localized and the eigenfunctions decay exponentially at infinity at a rate given by the Lyapunov exponent.
In Theorem 6.5, we state that, with good probability, this is true for finite volume restrictions.

Second, in (6-6), we get both an upper and lower bound on the eigenfunction. This is more precise
than (6-3).

To our knowledge, such a result was not known until the present paper. The strategy that we use to
prove this result can be applied in a more general one-dimensional setting to obtain analogues of (6-6)
(see [Klopp ≥ 2016]).

We complement this with the much simpler:

Lemma 6.6. For any C > 0 and p ≥ 0, there exists K > 0 and L0 > 0 (depending on p and C) such that,
for L ≥ L0, with probability at least 1− L−p if E j,ω is an eigenvalue in 6 associated to the eigenfunction
ϕ j,ω and the localization center x j,ω then:

• If x j,ω ∈ [[L −C log L , L]], one has L−K
≤ |ϕ j,ω(L)|.

• If x j,ω ∈ [[0,C log L]], one has L−K
≤ |ϕ j,ω(0)|.

The proof of this result is obvious and only uses the fact that the matrices in the cocycle defining the
operator (see Section 6C) are bounded, that is, equivalently, that the solutions to the Schrödinger equation
grow at most exponentially at a rate controlled by the potential.

Let us return to the resonances in the random case and the description of the function SL . Recall that
in (2-4) the values (λ j ) j are the eigenvalues (E j,ω)0≤ j≤L of Hω,L and the coefficients (a•j ) j are defined
in Theorem 2.2 and by (2-13). Thus, Theorem 6.4 describes the coefficients (a•j ) j coming into SL and 0L

(see (2-4) and (2-8)). Let us now state a few consequences of Theorem 6.4.
Fix a compact interval I in 6, the almost sure spectrum of Hω. For • ∈ {N,Z}, define

d•j,ω =
{

L − x j,ω for •= N,

min(x j,ω, L − x j,ω) for •= Z.
(6-7)

Taking p > 2 in Theorem 6.4 and using a Borel–Cantelli argument, we obtain:

ω-almost surely, for δ > 0 and L sufficiently large,

if λ j = E j,ω ∈ I and d•j,ω ≥ C log L then − 2ρ(λ j )− δ ≤
log a•j
d•j,ω

≤−2ρ(λ j )+ δ. (6-8)
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This and the continuity of the Lyapunov exponent (see, e.g., [Bougerol and Lacroix 1985; Carmona
and Lacroix 1990; Pastur and Figotin 1992]) guarantees that

ω-almost surely, for any δ > 0 and L large, one has − 2η• sup
E∈I

ρ(E)(1+ δ)L ≤ inf
λ j∈I

log a•j , (6-9)

where η• is as defined in Theorem 1.13.
To use the analysis performed in Section 3, we also need a description for the (λ j ) j , i.e., the Dirichlet

eigenvalues of Hω,L . To this end, we will use the results of [Germinet and Klopp 2014; Klopp 2011;
2013] (see also [Germinet and Klopp 2011]).

We first recall the Minami estimate satisfied by Hω,L (see, e.g., [Combes et al. 2009] and references
therein): there exists C > 0 such that, for I ⊂ R, one has

P
(
tr(1I (Hω,L))≥ 2

)
≤ E

(
tr(1I (Hω,L))

[
tr(1I (Hω,L))− 1

])
≤ C |I |2(L + 1)2.

Here 1I (H) denotes the spectral projector for the selfadjoint operator H onto the energy interval I .
By a simple covering argument, this entails the estimate

P(|λi − λ j | ≤ L−q for some i 6= j)≤ C L−q+2.

Thus, for q > 3, a Borel–Cantelli argument yields that

ω-almost surely, for L sufficiently large, min
i 6= j
|λi − λ j | ≥ L−q . (6-10)

6B. The proofs of the main results in the random case. We are now going to prove the results stated in
Section 1C.

6B1. The proof of Theorem 1.13. As for Theorem 1.5, this result follows from Theorem 3.1. Point (1)
is proved exactly as Theorem 1.5(1). Point (2) follows immediately from Theorem 3.1 and (6-9). This
completes the proof of Theorem 1.13.

6B2. The proof of Theorem 1.14. Recall that κ ∈ (0, 1). To prove (1) we proceed as follows. The
standard result guaranteeing the existence of the density of states N (see, e.g., [Bougerol and Lacroix
1985; Carmona and Lacroix 1990; Pastur and Figotin 1992]) implies that, ω-almost surely, one has

#{λ j ∈ I }
L + 1

→

∫
I

d N (E). (6-11)

This, in particular, shows that if I ⊂6◦ is a compact interval then, ω-almost surely, for L sufficiently
large I is covered by intervals of the form [λ j , λ j+1] and their number is of size � L (actually this holds
for λ j ∈ I + [−ε, ε] if ε > 0 is chosen small enough). Moreover, the estimate (6-10) guarantees that
d j ≥ L−q (for any q > 3 fixed) for all λ j ∈ I . Thus, Theorems 3.1, 3.2 and 3.3 and the estimate (6-8)
guarantee that, ω-almost surely, all the resonances in the strip I−i[e−Lκ , 0) are described by Theorem 3.3.
Indeed, for such a resonance the imaginary part must be larger than −e−Lκ; thus, by Theorem 3.1, for
every rectangle

[ 1
2(λ j +λ j−1),

1
2(λ j +λ j+1)

]
− i[e−Lκ , 0) containing a resonance, one has a•j . e−Lκ L2q

Thus, a•j � d2
j and one can apply Theorem 3.3 to compute the resonance.
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Let us count the number of those resonances. To this end, let `L = τ Lκ, where τ is to be chosen.
By (6-8) and (6-10), ω-almost surely one has a•j � d2

j for all j such that λ j ∈ I as long as the Dirichlet
eigenvalue λ j is associated to a localization center in [[0, L−`L ]] (actually this holds for λ j ∈ I +[−ε, ε]
if ε > 0 is chosen small enough); thus, we can apply Theorems 3.3 and 3.2 to each of the (λ j ) j that are
associated to a localization center in [[0, L−`L ]]. By (3-19), each of these eigenvalues gives rise to a single
simple resonance, the imaginary part of which is of size� a•j ; they lie above the line {Imz≥ e−ρ`L = e−Lκ

}

for τρ = 1. Actually, the estimate (6-10) guarantees that d j ≥ L−q (for any q > 3 fixed) and Theorem 3.2
shows that these resonances are the only ones above the line Imz ≥−L−q. Moreover, by Lemma 6.3, we
know there at most C`L eigenvalues λ j that do not have their localization center in [[0, L − `L ]]. Thus
we obtain, ω-almost surely,

lim
L→+∞

1
L

#
{
z resonance of Hω,L with Re z ∈ I, Im z ≥−e−Lκ}

=

∫
I

d N (E).

Point (2) is proved in the same way. Pick λ ∈ (0, 1). In addition to what was used above, one uses the
continuity of the density of states E 7→ n(E) and the Lyapunov exponent E 7→ ρ(E). Assume E is as in
point (2). Then, ω-almost surely, the reasoning done above shows that, for any η > 0, there exists ε0 > 0
such that, for ε ∈ (0, ε0) and δ ∈ (0, δ0), for L sufficiently large one has

#
{
λl eigenvalue of H N

ω,L in E+
ε

2n(E)
[−1+η, 1−η] with −eη•ρ(E)δL.e2η•ρ(E)λLa•l .−e−η•ρ(E)δL

}
≤ #

{
z resonance of H •

ω,L in R•(E, λ, L , ε, δ)
}

≤ #
{
λl eigenvalue of H N

ω,L in E +
ε

2n(E)
[−1− η, 1+ η]

with − eη•ρ(E)δL . e2η•ρ(E)λLa•l .−e−η•ρ(E)δL
}
.

Using Theorem 6.4 and the continuity of the Lyapunov exponent in conjunction with the definition
of a j (see (2-4) and (2-13)), we obtain that, ω-almost surely, for any η > 0 there exists ε0 > 0 such that,
for ε ∈ (0, ε0) and δ ∈ (0, δ0), for L sufficiently large one has

#
{

eigenvalue of H N
ω,L in E +

ε

2n(E)
[−1+ η, 1− η]with localization center in I •(L , δ,−η)

}
≤ #

{
z resonance of H •

ω,L in R•(E, λ, L , ε, δ)
}

≤ #
{

eigenvalue of H N
ω,L in E +

ε

2n(E)
[−1− η, 1+ η] with localization center in I •(L , δ, η)

}
,

where I N(L , λ, δ, η) is the interval — here [r ] denotes the integer part of r ∈ R —

I N(L , λ, δ, η)= [Lλ] + [[−Lδ(1+ η), Lδ(1+ η)]]

and I Z(L , λ, δ, η) is the union of intervals

I Z(L , λ, δ, η)=
([1

2 Lλ
]
+ [[−Lδ(1+ η), Lδ(1+ η)]]

)
∪
([

L
(
1− 1

2λ
)]
+ [[−Lδ(1+ η), Lδ(1+ η)]]

)
.
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Now, using the exponential localization of the eigenfunctions, one has that, ω-almost surely, for any
η > 0 there exists ε0 > 0 such that, for ε ∈ (0, ε0) and δ ∈ (0, δ0), for L sufficiently large one has

#
{

eigenvalue of H N
ω,L ,λ,δ,−2η,• in E +

ε

2n(E)
[−1+ 2η, 1− 2η]

}
≤ #

{
z resonance of H •

ω,L in R•(E, λ, L , ε, δ)
}

≤ #
{

eigenvalue of H N
ω,L ,λ,δ,2η,• in E +

ε

2n(E)
[−1− 2η, 1+ 2η]

}
, (6-12)

where H N
ω,L ,λ,δ,η,• = (H

N
ω,L)|I •(L ,λ,δ,η) with Dirichlet boundary conditions at the edges of the interval

I •(L , λ, δ, η).
This immediately yields point (2) for λ ∈ (0, 1), using (6-11) for the operators H N

ω,L ,λ,δ,η,•. The case
λ= 1 is dealt with in the same way.

As already said, point (3) is an “integral” version of point (2). Using the same ideas as above,
partitioning I =

⋃P
p=0 Ip so that |Ip| ∼ ε centered in E p, one proves

P∑
p=0

#
{

eigenvalue of H−ω,p,L ,• in E p +
ε

2n(E p)
[−1+ 2η, 1− 2η]

}
≤ #

{
z resonance of H •

ω,L in I + [−e−Lκ ,−e−cL
]
}

≤

P∑
p=0

#
{

eigenvalue of H+ω,p,L ,• in E p +
ε

2n(E p)
[−1− 2η, 1+ 2η]

}
,

where

• H−ω,p,L ,• is the operator H N
ω restricted to

– [[2Lκ , (inf(cρ−1(E p), 1)− η)L]] if •= N,
– [[2Lκ , (inf(cρ−1(E p), 1)/2− η)L]] ∪ [[(1− inf(cρ−1(E p), 1)/2+ η)L , L − 2Lκ ]] if •= Z;

• H+ω,p,L ,• is the operator H N
ω restricted to

– [[Lκ/2, (inf(cρ−1(E p), 1)+ η)L]] if •= N,
– [[Lκ/2, (inf(cρ−1(E p), 1)/2+ η)L]] ∪ [[(1− inf(cρ−1(E p), 1)/2− η)L , L − Lκ/2]] if •= Z.

In the computation above, we used the continuity of both the density of states E 7→ n(E) and the
Lyapunov exponent E 7→ ρ(E). Thus, we obtain

#
{
z resonance of H •

ω,L in I + (−∞, e−cL
]
}

= L
( P∑

p=0

inf(cρ−1(E p), 1)n(E p)|Ip| + o(1)
)
+ #{z resonance of H •

ω,L in I + (−∞, e−Lκ
]}.

The last term being controlled by Theorem 1.17, one obtains point (3) as the Riemann sum in the
right-hand side above converges to the integral in the right-hand side of (1-18) as ε→ 0. This completes
the proof of Theorem 1.14.
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6B3. The proof of Theorem 1.15. The proof of Theorem 1.15 relies on [Germinet and Klopp 2014, Theo-
rem 1.13], which describes the local distribution of the eigenvalues and localization centers (E j,ω, x j,ω);
namely, one has

lim
L→+∞

P
({
ω
∣∣ #{n | E j,ω ∈ E+L−1 In, x j,ω ∈ LCn} = kn for n= 1, . . . , p

})
=

p∏
n=1

e−µ̃n
(µ̃n)

kn

kn!
, (6-13)

where µ̃n := n(E)|In||Cn| for 1≤ n ≤ p.
Recall that (zL

j (ω)) j are the resonances of Hω,L . By the argument used in the proof of Theorem 1.14,
we know that, ω-almost surely, all the resonances in KL := [E − ε, E + ε]+ i[−e−Lκ , 0] are constructed
from the (λ j , a•j ) by formula (3-19). Thus, up to renumbering, the rescaled real and imaginary parts
(see (1-19)) become

x j = (Re z•l,L(ω)− E)L = (λ j − E)L + O(La j )= (E j,ω− E)L + O(Le−Lκ ),

y j =−
1

2L
log|Im z•l,L(ω)| = −

log a•j
2L
+ O(1/L)= ρ(E)

d•j,ω
L
+ o(1),

where λ j = E j,ω and d•j,ω is defined as in (6-7); here we used the continuity of E 7→ ρ(E).
On the other hand, for the resonances below the line in {Im z=−e−Lκ

}, one has y j . Lκ−1. So all these
resonances are “pushed upwards” towards the upper half-plane. Hence, the statement of Theorem 1.15 is
an immediate consequence of (6-13).

6B4. The proof of Theorem 1.16. Using the computations of the previous section, as E 6=E ′, Theorem 1.16
is a direct consequence of [Klopp 2011, Theorem 1.2] (see also [Germinet and Klopp 2014, Theorem 1.11]).

6B5. The proof of Theorem 1.17. Consider equations (2-4) and (2-8). By Theorem 6.4 and Lemma 6.3,
ω-almost surely, for L large the number of (a•j ) j larger than e−10`L is bounded by C`L . Solving (2-4)
and (2-8) in the strip {Re E ∈ I, Im E <−e−`L }, we can write SL(E)= S−L (E)+ S+L (E), where

S−L (E) :=
∑

aN
j ≤e−10`L

aN
j

λ j − E
and S+L (E) :=

∑
aN

j >e−10`L

aN
j

λ j − E
,

and similarly decompose 0L(E)= 0−L (E)+0
+

L (E). For L large, one then has

sup
Im E<−e−`L

‖S−L (E)‖+‖0
−

L (E)‖ ≤ e−8`L . (6-14)

The count of the number of resonances given by the proof of Theorems 2.2 and 2.3 then shows that the
equations (2-4) and (2-8), where SL and 0L are respectively replaced by S+L and 0+L , have at most C`L

solutions in the lower half-plane. We will call the equations where SL and 0L are replaced by S+L and 0+L
the +-equations. The analogues of Theorems 3.1, 3.2 and 3.3 for the +-equations and Theorem 6.4 show
that the only solutions to the +-equations in the strip {Re E ∈ I, −e−4`L/5 < Im E <−e−3`L/4} are given
by formulas (3-19) and (3-20) for the eigenvalues of the Dirichlet problem associated to a localization
center in

[[
L − 2`L , L − 1

2`L
]]

if •= N and in
[[ 1

2`L , 2`L
]]
∪
[[

L − 2`L , L − 1
2`L

]]
if •= Z. Thus, these
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λ j−1 λ j λ j+1
U j

Ũ j

R j

new path

Figure 8. The new path (in blue).

zeros are simple and separated by a distance at least L−4 from each other (recall (6-10)). Moreover, we
can cover the interval I by intervals of the type

[ 1
2(λ j + λ j−1),

1
2(λ j + λ j+1)

]
, that is, one can write

I ⊂
j+⋃

j= j−

[ 1
2(λ j + λ j−1),

1
2(λ j + λ j+1)

]
, (6-15)

where λ j−−1 6∈ I , λ1+ j+ 6∈ I , λ j− ∈ I and λ j+ ∈ I .
Consider now the line {Im E =−e−`L } and its intersection with the vertical strip[1

2(λ j + λ j−1),
1
2(λ j + λ j+1)

]
− iR+.

Three things may occur:

(1) e−`L < a•j d
2
j |sin θ(λ j )|/C (the constant C is defined in Theorem 3.1); then, on the interval[ 1

2(λ j + λ j−1),
1
2(λ j + λ j+1)

]
− ie−`L ,

one has
|S+L (E)+ e−iθ(E)

|& 1 and |det(0+L (E)+ e−iθ(E))|& 1; (6-16)

this follows from the proof of Theorem 3.1 (see in particular (3-5), (3-6), (3-7) and (3-8)) for some
fixed c > 0; recall that, on the interval I + ie−`L , one has |sin θ(E)|& 1.

(2) e−`L > Ca•j (the constant C is defined in Theorem 3.2); then, on the interval[ 1
2(λ j + λ j−1),

1
2(λ j + λ j+1)

]
− ie−`L ,

one has again (6-16) for a possibly different constant; this follows from the proof of Theorem 3.2 (see in
particular (3-15) and (3-16)).

(3) If we are neither in case (1) nor in case (2), then the line {Im E = −e−`L } may cross R j (defined
in Theorem 3.3; see also Figure 7); we change the contour {Im E =−e−`L } so as to enter Ũ j until we
reach the boundary of R j and then follow this boundary, getting closer to the real axis, turning around R j

and finally reaching the line {Im E = −e−`L } again on the other side of R j and following it up to the
boundary of Ũ j (see Figure 8); on this new line, the bound (6-16) again holds; moreover, this new line is
closer to the real axis than the line {Im E =−e−`L }.
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Let us call C` the path obtained by gluing together the paths constructed in points (1)–(3) for j−≤ j≤ j+

and the half-lines 1
2(λ j− + λ j−−1)− i[e−`L ,+∞) and 1

2(λ j+ + λ j++1)− i[e−`L ,+∞) (see (6-15)). One
can then apply Rouché’s theorem to compare the +-equations to the equations (2-4) and (2-8): by (6-14)
and (6-16), on the line C` one has |S−L |< |S

+

L + e−iθ
| and

|det(0L(E)+ e−iθ(E)) det(0+L (E)+ e−iθ(E))| ≤ 1
2 |det(0L(E)+ e−iθ(E))|.

Thus, the number of solutions to equations (2-4) and (2-8) below the line C` is bounded by C`L ; as
C` lies above {Im E =−e−`L }, in the half-plane {Im E <−e−`L } the equations (2-4) and (2-8) have at
most C`L solutions. We have proved Theorem 1.17.

6B6. The proof of Theorem 1.18. The first point in Theorem 1.18 is proved in the same way as point (2)
in Theorem 1.14 up to the change of scales, L being replaced by `L . Pick scales (`′L)L satisfying (1-22)
such that `′L � `L . One has:

Lemma 6.7. Fix two sequences (aL)L and (bL)L such that aL <bL . With probability one, for L sufficiently
large,

#
{
eigenvalue of Hω,`L−2`′L/ρ in [aL + e−`

′

L , bL − e−`
′

L ]
}

≤ #
{
eigenvalue of Hω,L in [aL , bL ] with localization center in [[0, `L ]]

}
≤ #

{
eigenvalue of Hω,`L+2`′L/ρ in [aL − e−`

′

L , bL + e−`
′

L ]
}
,

where ρ is given by Lemma 6.2.

Proof. To prove Lemma 6.7, we apply Lemma 6.2 to L = `L + `
′

L (i.e., for the operator Hω restricted to
the interval [[0, `L + `

′

L ]]) and lL = `
′

L . The probability of the bad set is the O(L−∞), thus summable
in L . Using the localization estimate (6-3), one proves that

• each eigenvalue of Hω,`L−2`′L/ρ is at a distance of at most e−`
′

L of an eigenvalue of Hω,L with
localization center in [[0, `L ]];

• each eigenvalue of Hω,L with localization center in [[0, `L ]] is at a distance of at most e−`
′

L of an
eigenvalue of Hω,`L+2`′L/ρ .

Lemma 6.7 follows. �

The first point in Theorem 1.18 is then Theorem 1.14(2) for the operators Hω,`L−2`′L/ρ and Hω,`L+2`′L/ρ

and the fact that `′L � `L .

The proof of the second statement in Theorem 1.18 is very similar to that of Theorem 1.15. Fix
a compact interval I in 6◦. As `L satisfies (1-22), one can find `′L < `′′L also satisfying (1-22) such
that e−`

′′

L � e−`L � e−`
′

L . For the same reasons as in the proof of Theorem 1.15, after rescaling all
the resonances in I − i(−∞, 0) outside the strip I − i[e−`

′

L , e−`
′′

L ) are then pushed to either 0 or i∞
as L→+∞.

On the other hand, the resonances in the strip I − i[e−`
′

L , e−`
′′

L ) are described by (3-19). The rescaled
real and imaginary parts of the resonances (see (1-24)) now become x j = (E j,ω − E)`L + o(1) and
y j = ρ(E)d j,ω/`L + o(1).
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Now, to compute the limit of P(#{ j | x j ∈ I, y j ∈ J } = k), using the exponential decay property (6-3)
it suffices to use [Germinet and Klopp 2014, Theorem 1.14]. Let us note here that [Germinet and Klopp
2014, Condition (1.50)] on the scales (`L)L is slightly stronger than (1-22). That condition (1-22) suffices
is a consequence of the stronger localization property known in the present case (compare Theorem 6.4
to [Germinet and Klopp 2014, Assumption (Loc)]). This completes the proof of the second point in
Theorem 1.18. The final statement in 1.18 is proved in exactly the same way as Theorem 1.16.

The proof of Theorem 1.18 is complete.

6B7. The proofs of Proposition 1.20 and Theorem 1.21. Localization for the operator H N
ω can be described

by the following:

Lemma 6.8. There exists ρ > 0 and q > 0 such that, ω-almost surely, there exists Cω > 0 such that, for
L sufficiently large, if

(1) ϕ j,ω is a normalized eigenvector of Hω,L associated to E j,ω in 6,

(2) x j (ω) ∈ N is a maximum of x 7→ |ϕ j,ω(x)| in N,

then, for x ∈ N, one has
|ϕ j,ω(x)| ≤ Cω(1+ |x j (ω)|

2)q/2e−ρ|x−x j (ω)|. (6-17)

Moreover, the mapping ω 7→ Cω is measurable and E(Cω) <+∞.

This result for our model is a consequence of Theorem 6.1 (see, e.g., [Kunz and Souillard 1980; Cycon
et al. 1987; Carmona and Lacroix 1990]) and [Germinet and Klopp 2014, Theorem 6.1].

We thus obtain the representation for the function 4ω

4ω(E)=
∑

j

|ϕ j,ω(0)|2

E j,ω− E
+ e−i arccos(E/2). (6-18)

As H N
ω satisfies a Dirichlet boundary condition at −1, one has

|ϕ j,ω(0)|> 0 for all j and
∑

j

|ϕ j,ω(0)|2 = 1. (6-19)

As E→−i∞, the representation (6-18) yields

4ω(E)=−E−2
∑

j

|ϕ j,ω(0)|2 E j,ω+ O(E−3)=−E−2
〈δ0, H N

ω δ0〉+ O(E−3)=−ω0 E−2
+ O(E−3).

This proves the first point in Proposition 1.20.
As a direct consequence of Theorem 6.1 and the computation leading to Theorem 5.2 (see Section 5A2),

we obtain that there exists c̃ > 0 such that, for L sufficiently large, with probability at least 1− e−c̃L one
has

sup
Im E≤−e−c̃L

∣∣∣∣∫
R

d Nω(λ)
λ− E

−〈δ0, (Hω,L − E)−1δ0〉

∣∣∣∣≤ e−c̃L . (6-20)

Taking
L = Lε ∼ c−1

|log ε| (6-21)
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for some sufficiently small c > 0, this and Rouché’s theorem implies that, with probability 1− ε3, the
number of zeros of 4ω (counted with multiplicity) in I + i(−∞, ε] is bounded

• from above by the number of resonances of Hω,Lε in I+ε + i(−∞,−ε− ε2
],

• from below by the number of resonances of Hω,Lε in I−ε + i(−∞,−ε+ ε2
],

where I+ε = [a− ε, b+ ε] and I+ε = [a+ ε, b− ε] if I = [a, b].
Here, to apply Rouché’s theorem, we apply the same strategy as in the proof of Theorem 1.17 and con-

struct a path bounding a region larger (resp. smaller) than I+ε +i(−∞,−ε−ε2
] (resp. I−ε +i(−∞,−ε+ε2

])
on which one can guarantee |SL(E)+ e−iθ(E)

|& 1.
Now, we choose the constant c (see (6-21)) to be so small that c <minE∈I ρ(E). Applying point (3)

of Theorem 1.14 to Hω,Lε with this constant c, we obtain that the number of resonances of Hω,Lε in
I+ε + i(−∞, ε− ε2

] (resp. I−ε + i(−∞, ε+ ε2
]) is bounded from above (resp. bounded from below) by

Lε

∫
I

min
(

c
ρ(E)

, 1
)

n(E) d E (1+ O(1))=
|log ε|

c

∫
I

c
ρ(E)

n(E) d E (1+ O(1))

= |log ε|
∫

I

n(E)
ρ(E)

d E (1+ O(1)).

Hence, we obtain the second point of Proposition 1.20. The last point of this proposition is then an
immediate consequence of the arguments developed to obtain the second point if one takes into account
the following facts:

• The minimal distance between the Dirichlet eigenvalues of H N
ω,L is bounded from below by L−4

(see (6-10)).

• The growth of the function E 7→ SL(E)+e−iθ(E) near the resonances (i.e., its zeros) is well controlled
by Proposition 3.4.

Indeed, this implies that the resonances of H N
ω,L are simple in I + i[−e−

√
L , 0) (one can choose larger

rectangles) and that near each resonance one can apply Rouché’s theorem to control the zero of 4ω. Note
that this also yields, ω-almost surely, there exists cω such that

min
z zero of 4ω

z∈I+i(−εω,0)

inf
0<r<εω(Im z)3/2

min
|E−z|=r

|4ω(E)|
r

& 1. (6-22)

This completes the proof of Proposition 1.20.

Theorem 1.21 is a consequence of the following:

Theorem 6.9. There exists c̃ > 0 such that, ω-almost surely, for L ≥ 1 sufficiently large one has

sup
Re E∈I

Im E<−e−c̃L

∣∣∣∣0L ,ω,ω̃(E)−
(∫

R
1/(λ− E) d Nω̃(λ) 0

0
∫

R
1/(λ− E) d Nω(λ)

)∣∣∣∣+∣∣∣∣SL ,ω(E)−
∫

R

d Nω(λ)
λ− E

∣∣∣∣≤e−c̃L ,

where 0L ,ω,ω̃(E) (resp. SL ,ω(E)) is the matrix 0L(E) (resp. the function SL(E)) — see (2-9) — con-
structed from the Dirichlet data on [[0, L]] of −1 + V Z

ω,ω̃,L (resp. −1 + V N
ω,L ) (see (1-26)) using

formula (2-9) (resp. (2-4)).
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Theorem 6.9 is proved exactly as Theorem 5.2 except that one uses the localization estimates (6-2)
instead of the Combes–Thomas estimates.

Theorem 1.21 is then an immediate consequence of the estimate (6-20). Indeed, this implies that if z is
a resonance for, e.g., H N

ω,L in I + i(−∞, ec̃L
], then |4ω(z)| ≤ e−c̃L . By the last point of Proposition 1.20,

ω-almost surely we know that the multiplicity of the zeros of 4ω is bounded by Nω. Moreover, for the
zeros of 4ω in I + i(−εω, 0), we know the bound (6-22). This bound and (6-20) imply that

max
z zero of 4ω

z∈I+i(−εω,e−c̃L )

max
|E−z|=e−c̃L

|4ω(E)− (Sω,L(E)+ e−iθ(E))|

|4ω(E)|
< e−c̃L .

This yields Theorem 1.21(2) by an application of Rouché’s theorem. Point (1) is obtained in the same
way, using Proposition 3.4, which gives

max
z resonance of H N

ω,L

z∈I+i(−εω,e−c̃L )

max
|E−z|=e−c̃L

|4ω(E)− (Sω,L(E)+ e−iθ(E))|

|Sω,L(E)+ e−iθ(E)|
< e−c̃L .

The case of H Z
ω,ω̃,L is dealt with in the same way.

This completes the proof of Theorem 1.21.

6C. Estimates on the growth of eigenfunctions. In the present section we are going to prove Theo-
rems 6.4 and 6.5. At the end of the section, we also prove the simpler Lemma 6.3.

The proof of Theorem 6.4 relies on locally uniform estimates on the rate of growth of the cocycle (1-15)
attached to the Schrödinger operator, which we present now. Define

TL(E, ω)= T (E, ωL) · · · T (E, ω0), (6-23)

where

T (E, ω j )=

(
E −ω j −1

1 0

)
.

We start with an upper bound on the large deviations of the growth rate of the cocycle that is uniform
in energy. Fix α > 1 and δ ∈ (0, 1). For one part, the proof of Theorem 6.4 relies on the following:

Lemma 6.10. Let I ⊂ R be a compact interval. For any δ > 0, there exists Lδ > 0 and η > 0 such that,
for L ≥ Lδ and any K > 0, one has

P

(
log ‖TL(E; τ k(ω))u‖

L + 1
≤ ρ(E)+ δ for all 0≤ k ≤ K , E ∈ I, ‖u‖ = 1

)
≥ 1− K e−η(L+1), (6-24)

where we recall that τ :�→� denotes the left shift (i.e., if ω = (ωn)n≥0 then [τ(ω)]n = ωn+1 for n ≥ 0)
and τ n

= τ ◦ · · · ◦ τ n times.

At the heart of this result is a large deviation principle for the growth rate of the cocycle (see [Bougerol
and Lacroix 1985, Section I and Theorem 6.1]). As it also serves in the proof of Theorem 6.4, we recall
it now. One has:
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Lemma 6.11. Let I ⊂ R be a compact interval. For any δ > 0, there exists Lδ > 0 and η > 0 such that,
for L ≥ Lδ, one has

sup
E∈I
‖u‖=1

P

(∣∣∣∣ log ‖TL(E;ω)u‖
L + 1

− ρ(E)
∣∣∣∣≥ δ)≤ e−η(L+1). (6-25)

While this result is not stated as is in [Bougerol and Lacroix 1985], it can be obtained from their
Lemma 6.2 and Theorem 6.1. Indeed, by inspecting the proof of these results, it is clear that the quantities
involved (in particular, the principal eigenvalue of T (z; E) = T (z) in [loc. cit., Theorem 4.3]) are
continuous functions of the energy E . Thus, taking this into account, the proof of [loc. cit., Theorem 6.1]
yields, for our cocycle, a convergence that is locally uniform in energy, that is, (6-25).

To prove Theorem 6.4, in addition to Lemma 6.10 we also need to guarantee a uniform lower bound
on the growth rate of the cocycle. We need this bound at least on the spectrum of Hω,L with a good
probability. Actually, this is the best one can hope for: a uniform bound in the style of (6-24) will not hold.

We prove:

Lemma 6.12. Fix I a compact interval and δ > 0. Pick u ∈C2 with ‖u‖ = 1. For 0≤ j ≤ L , if j ≤ L−1,
define

K+j (ω, L , δ, u) :=
{

E ∈ I
∣∣∣ ∣∣∣∣ log ‖T−1

L−( j+1)(E, τ
j+1(ω))u‖

L − j
− ρ(E)

∣∣∣∣> δ}
and, if 1≤ j , define

K−j (ω, L , δ, u) :=
{

E ∈ I
∣∣∣ ∣∣∣∣ log ‖T j−1(E, ω)u‖

j
− ρ(E)

∣∣∣∣> δ};
finally, define K+L (ω, L , δ, u)=∅= K−0 (ω, L , δ, u).

Recall that (E j,ω)0≤ j≤L are the eigenvalues of Hω,L and let x j,ω be the associated localization centers.
For 0≤ `≤ L , define the sets

�+B (L , `, δ, u) := {ω | L − x j,ω ≥ ` and E j,ω ∈ K+x j,ω
(ω, L , δ, u) for some j}

and

�−B (L , `, δ, u) := {ω | x j,ω ≥ ` and E j,ω ∈ K−x j,ω
(ω, L , δ, u) for some j}.

Then the sets �±B (L , `, δ, u) are measurable and, for any δ > 0, there exist η > 0 and `0 > 0 such that,
for L ≥ `≥ `0, one has

max
(
P(�+B (L , `, δ, u)), P(�−B (L , `, δ, u))

)
≤
(L + 1)|I |e−η(`−1)

1− e−η
. (6-26)

Here, the constant η is the one given by (6-25).

First, let us explain the meaning of Lemma 6.12. Since by Lemma 6.10 we already control the growth
of the cocycle from above, we see that in the definitions of the sets K−j (ω, L , δ, u) and K+j (ω, L , δ, u) it
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would have sufficed to require

log ‖T j−1(E, ω)u‖
j

− ρ(E)≤−δ and
log ‖T−1

L−( j+1)(E, τ
j+1(ω))u‖

L − ( j + 1)
− ρ(E)≤−δ,

respectively.
Hence, what Lemma 6.12 measures is that the probability that the cocycle at energy En,ω leading from

a localization center xn,ω to either 0 or L decays at a rate smaller than the rate predicted by the Lyapunov
exponent.

The sets �±B (L , `, δ, u) are the sets of bad configurations, i.e., the events when the rate of decay of the
solution is far from the Lyapunov exponent. Indeed, for ω outside �±B (L , `, δ), i.e., if the reverse of the
inequalities defining K±j (ω, L , δ, u) hold, when j = xn,ω and E = En,ω we know that the eigenfunction
ϕn,ω has to decay from the center of localization xn,ω (which is a local maximum of its modulus) towards
the edges of the intervals at a rate larger than γ (En,ω)− δ. The eigenfunction being normalized, at the
localization center it is of size at least L−1/2. This will entail the estimates (6-4) and (6-5) with a good
probability.

There is a major difference in the uniformity in energy obtained in Lemmas 6.12 and 6.10. In
Lemma 6.12, we do not get a lower bound on the decay rate that is uniform all over I : it is merely
uniform over the spectrum inside I (which is sufficient for our purpose, as we shall see). The reason for
this difference in the uniformity between Lemma 6.10 and 6.12 is the same that makes the Lyapunov
exponent E 7→ ρ(E) in general only upper semicontinuous and not lower semicontinuous (in the present
situation, it actually is continuous).

We postpone the proofs of Lemmas 6.10 and 6.12 to the end of this section and turn to the proofs of
Theorems 6.4 and 6.5.

6C1. The proof of Theorem 6.4. By Lemma 6.10, as TL(E, ω) ∈ SL(2,R), with probability at least
1− K Le−η(L+1), for L ≥ Lδ and any K > 0, one also has

∀0≤ k ≤ K ∀E ∈ I ∀‖u‖ = 1
log ‖T−1

L (E; τ k(ω))u‖
L + 1

≤ ρ(E)+ δ.

Now pick `=C log L , where C > 0 is to be chosen later on. We know that, with probability P satisfying

P≥ 1− L2e−η`, (6-27)

for L ≥ Lδ, any l ∈ [`, L] and any k ∈ [0, L], one also has

∀E ∈ I ∀‖u‖ = 1
log ‖T−1

l (E; τ k(ω))u‖
l + 1

≤ ρ(E)+ δ. (6-28)

Let ϕ j,ω be a normalized eigenfunction associated to the eigenvalue E j,ω ∈ I with localization
center x j,ω. By the definition of the localization center, one has

1
L + 1

≤

∥∥∥∥( ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥2

≤ 1 and
1

L + 1
≤

∥∥∥∥(ϕ j,ω(x j,ω+ 1)
ϕ j,ω(x j,ω)

)∥∥∥∥2

≤ 1. (6-29)
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By the eigenvalue equation, for x ∈ [[0, L]] one has

(
ϕ j,ω(x)

ϕ j,ω(x − 1)

)
=


Tx−x j,ω(E; τ

x j,ω(ω))

(
ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)
if x ≥ x j,ω,

T−1
x j,ω−x(E; τ

x(ω))

(
ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)
if x ≤ x j,ω.

(6-30)

Hence, by (6-24) and (6-28), with probability at least 1− 2L2e−η` − L−p, if |x j,ω − x | ≥ ` then for
x j,ω < x ≤ L one has

e−(ρ(E j,ω)+δ)|x−x j,ω|

√
L + 1

≤ e−(ρ(E j,ω)+δ)|x−x j,ω|

∥∥∥∥( ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥
≤

∥∥∥∥Tx−x j,ω(E; τ
x j,ω(ω))

(
ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥= ∥∥∥∥( ϕ j,ω(x)
ϕ j,ω(x − 1)

)∥∥∥∥ (6-31)

and for 0≤ x < x j,ω one has∥∥∥∥( ϕ j,ω(x)
ϕ j,ω(x − 1)

)∥∥∥∥= ∥∥∥∥T−1
x−x j,ω

(E; τ x j,ω(ω))

(
ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥
≥ e−(ρ(E j,ω)+δ)|x−x j,ω|

∥∥∥∥( ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥≥ e−(ρ(E j,ω)+δ)|x−x j,ω|

√
L + 1

(6-32)

On the other hand, by the definition of the Dirichlet boundary conditions, we know that(
ϕ j,ω(0)
ϕ j,ω(−1)

)
= ϕ j,ω(0)

(
1
0

)
and

(
ϕ j,ω(L + 1)
ϕ j,ω(L)

)
= ϕ j,ω(L)

(
0
1

)
.

Thus,

ϕ j,ω(0)Tx j,ω−1(E;ω)
(

1
0

)
=

(
ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)
and

ϕ j,ω(L)
(

0
1

)
= TL−x j,ω−1(E; τ x j,ω+1(ω))

(
ϕ j,ω(x j,ω+ 1)
ϕ j,ω(x j,ω)

)
.

Thus, for ω 6∈ �+B (L , `, δ, u+)∪�−B (L , `, δ, u−), where we have set u− :=
( 0

1

)
and u+ :=

( 1
0

)
, we

know that

e−(ρ(E j,ω)−δ)(L−x j,ω) ≤
∥∥T−1

L−x j,ω−1(E; τ
x j,ω+1(ω))u+

∥∥ and e−(ρ(E j,ω)−δ)x j,ω ≤ ‖Tx j,ω−1(E;ω)u−‖.

Thus we obtain that, for ω 6∈�+B (L , `, δ, u+)∪�−B (L , `, δ, u−), one has

|ϕ j,ω(L)| =
∥∥∥∥T−1

L−x j,ω
(E; τ x j,ω+1(ω))

(
0
1

)∥∥∥∥−1∥∥∥∥(ϕ j,ω(x j,ω+ 1)
ϕ j,ω(x j,ω)

)∥∥∥∥≤ e−(ρ(E j,ω)−δ)(L−x j,ω−1) (6-33)

and

|ϕ j,ω(0)| =
∥∥∥∥Tx j,ω

(E; τ x j,ω(ω))

(
0
1

)∥∥∥∥−1∥∥∥∥( ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥≤ e−(ρ(E j,ω)−δ)(x j,ω−1). (6-34)
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The estimates given by Lemma 6.12 on the probability of �+B (L , `, δ, u+) and �−B (L , `, δ, u−) for
`= C log L and the estimate (6-27) then imply that, with a probability at least 1− 4L2e−η(`−1)

− L−p,
the bounds (6-31), (6-32), (6-33) and (6-34) hold. Thus, picking `= C log L for C > 0 sufficiently large
(depending only on η and, thus, on δ and p), these bounds hold with a probability at least 1− L−p. This
completes the proof of Theorem 6.4.

Remark 6.13. One may wonder whether the uniform growth estimate given by Lemmas 6.10 and 6.12 is
actually necessary in the proof of Theorem 6.4. That they are necessary is due to the fact that both the
eigenvalue E j,ω and the localization center x j,ω (and, thus, the vector∥∥∥∥( ϕ j,ω(x j,ω)

ϕ j,ω(x j,ω− 1)

)∥∥∥∥
also) depend on ω. Thus, (6-25) is not sufficient to estimate the second term in the left-hand sides of (6-31)
and (6-32).

6C2. The proof of Theorem 6.5. To prove Theorem 6.5, we follow the strategy that led to the proof of
Theorem 6.4. First, note that (6-31) and (6-32) provide the expected lower bounds on the eigenfunction
with the right probability. As for the upper bound, by (6-30), using the conclusions of Theorem 6.4 and
the bounds given by Lemma 6.10, we know that, e.g., for 0≤ x < x j,ω,∥∥∥∥( ϕ j,ω(x)

ϕ j,ω(x − 1)

)∥∥∥∥= ∥∥∥∥Tx(E;ω)
(

1
0

)∥∥∥∥|ϕ j,ω(0)| ≤ e(ρ(E j,ω)+δ)x e−(ρ(E j,ω)−δ)x j,ω ≤ e−(ρ(E j,ω)−Cδ)|x−x j,ω|

if (1+C)x ≤ (C − 1)x j,ω, i.e., 2(1+C)−1x j,ω ≤ x j,ω− x .
For x ≥ x j,ω one reasons similarly and, thus, completes the proof of Theorem 6.5.

Remark 6.14. Actually, as the proof shows, the results one obtains are more precise than the claims
made in Theorem 6.5 (see [Klopp ≥ 2016]).

6C3. The proof of Lemma 6.12. The proofs for the two sets �±B (L , `, δ, u) are the same. We will only
write out the one for �+B (L , `, δ, u). Let us first address the measurability issue for �+B (L , `, δ, u).
The functions ω 7→ E j,ω and ω 7→ ϕ j,ω are continuous (as the eigenvalues and eigenvectors of finite-
dimensional matrices depending continuously on the parameter ω = (ω j )0≤ j≤L ). Thus, for fixed j , the
sets {ω | E j,ω ∈K−j (ω, L , δ, u)} and {ω | x j,ω > j} are open (we used the definition of x j,ω as the leftmost
localization center (see Theorem 6.4)). This yields the measurability of �+B (L , `, δ, u).

We claim that
1

L + 1
1�+B (L ,`,δ,u) ≤

L+1−`∑
j=0

〈δ j , 1K+j (ω,L ,δ,u)
(Hω,L)δ j 〉, (6-35)

where 1K+j (ω,L ,δ,u)
(Hω,L) denotes the spectral projector associated to Hω,L on the set K+j (ω, L , δ, u).

Indeed, if one has E j,ω 6∈ K+x j,ω
(ω, L , δ, u) for all j then the left-hand side of (6-35) vanishes and

the right-hand side is nonnegative. On the other hand, if, for some j , one has 0 ≤ x j,ω ≤ L − ` and
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E j,ω ∈ K+x j,ω
(ω, L , δ, u), then we compute

L−∑̀
l=0

〈δl, 1K+j (ω,L ,δ,u)
(Hω,L)δl〉=

L−∑̀
l=0

∑
k

Ek,ω∈K+j (ω,L ,δ,u)

|ϕk,ω(l)|2≥|ϕ j,ω(x j,ω)|
2
≥

1
L + 1

≥
1

L + 1
1�+B (L ,`,δ,u)

by the definition of x j,ω.
An important fact is that, by construction (see Lemma 6.12), the set of energies K+j (ω, L , δ, u) does not

depend on ω j . Hence, denoting by Eω j ( · ) the expectation with respect to ω j and Eω̂ j ( · ) the expectation
with respect to ω̂ j = (ωk)k 6= j , we compute

E

( L−∑̀
j=0

〈δ j , 1K+j (ω,L ,δ,u)
(Hω,L)δ j 〉

)
=

L−∑̀
j=0

Eω̂ j

(
Eω j

(
〈δ j , 1K+j (ω,L ,δ,u)

(Hω,L)δ j 〉
))
.

As ω j is assumed to have a bounded, compactly supported distribution and as K+j (ω, L , δ, u) does not
depend on ω j , a standard spectral averaging lemma (see, e.g., [Simon 2005, Theorem 11.8]) yields

Eω j

(
〈δ j , 1K+j (ω,L ,δ,u)

(Hω,L)δ j 〉
)
≤ |K+j (ω, L , δ, u)|,

where | · | denotes the Lebesgue measure. Thus, we obtain

E

( L−∑̀
j=0

〈δ j , 1K+j (ω,L ,δ,u)
(Hω,L)δ j 〉

)
≤

L−∑̀
j=0

Eω̂ j

(
|K+j (ω, L , δ, u)|

)
=

L−∑̀
j=0

E
(
|K+j (ω, L , δ, u)|

)
. (6-36)

By Lemma 6.11 and the Fubini–Tonelli theorem, we know that

E
(
|K+j (ω, L , δ, u)|

)
= E

(∫
I

1K+j (ω,L ,δ,u)
(E) d E

)
=

∫
I

E(1K+j (ω,L ,δ,u)
(E)) d E

≤ |I | sup
E∈I

P

(∣∣∣∣ log ‖T−1
L−( j+1)(E, ω)u‖

L − j
− ρ(E)

∣∣∣∣> δ)
≤ |I |r−η(L− j).

Taking the expectation of both sides of (6-35) and plugging this into (6-36), we obtain

P(�+B (L , `, δ, u))≤ (L + 1)|I |e−η(`−1)
L−∑̀
j=0

e−η j
≤
(L + 1)|I |e−η(`−1)

1− e−η
.

In the same way, one obtains

P(�−B (L , `, δ, u))≤
(L + 1)|I |e−η(`−1)

1− e−η
.

This completes the proof of Lemma 6.12.

Remark 6.15. This proof can be seen as the analogue for products of finitely many random matrices of
the so-called Kotani trick (see, e.g., [Cycon et al. 1987]).
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6C4. The proof of Lemma 6.10. The basic idea of this proof is to use the estimate (6-25), in particular,
the exponentially small probability and some perturbation theory for the cocycles so as to obtain a uniform
estimate.

Let η be given by (6-25). Fix η′ < 1
2η and write

I =
⋃
j∈J

[E j , E j+1], where 1
2 e−η

′(L+1)
≤ E j+1− E j ≤ 2e−η

′(L+1)
; (6-37)

thus, #J . eη
′(L+1).

We now want to estimate what happens for E ∈ [E j , E j+1]. Using (1-15) and(
E − Vω(n) −1

1 0

)
−

(
E j − Vω(n) −1

1 0

)
= (E − E j )1T, where 1T :=

∣∣∣∣(1
0

)〉〈(
1
0

)∣∣∣∣,
we compute

TL(E, ω)= TL(E j , ω)+

L∑
l=1

(E − E j )
l Sl, (6-38)

where

Sl :=
∑

n1<n2<···<nl

Tn1(E j , τ
L−n1ω)×1T ×Tn2−n1−1(E j , τ

n2ω)×1T ×· · ·×1T ×TL−nl−1(E j , τ
nlω)

=

∑
n1<n2<···<nl

l∏
m=2

〈(
1
0

)
, Tnm−nm−1−1(E j , τ

nmω)

(
1
0

)〉∣∣∣∣Tn1(E j , τ
L−n1ω)

(
1
0

)〉〈(
1
0

)∣∣∣∣TL−nl−1(E j , τ
nlω).

Clearly, as the random variables have compact support, one has the uniform bound

sup
E∈I
ω∈�

‖TL(E;ω)‖ ≤ eC L . (6-39)

Thus one has

sup
ω∈�

‖Sl‖ ≤ L leC L . (6-40)

Hence, for l0 fixed, one computes∥∥∥∥ L∑
l=l0

(E − E j )
l Sl

∥∥∥∥≤ L∑
l=l0

(E − E j )
l
‖Sl‖ ≤

L∑
l=l0

e−η
′(L+1)l L leC L

≤ 1 (6-41)

if η′l0 > 2C and L is sufficiently large (depending only on η′ and C).
We now assume that l0 satisfies η′l0 > 2C and pick 1 ≤ l ≤ l0. Pick δ0 ∈ (0, 1) small, to be fixed

later. Assume moreover that L is such that δ0L ≥ Lδ, where Lδ is as defined in Lemma 6.11. Then, by
Lemma 6.11, for m ∈ {2, . . . , l} one has

(1) either nm − nm−1 ≤ Lδ, in which case one has

‖Tnm−nm−1−1(E j , τ
nm−1ω)‖ ≤ eC(nm−nm−1);
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(2) or nm − nm−1 ≥ Lδ, in which case, by (6-25), with probability at least equal to 1− e−η(nm−nm−1)/2,
one has

‖Tnm−nm−1−1(E j , τ
nm−1ω)‖ ≤ e(nm−nm−1)(ρ(E j )+δ).

Define

Gn1,...,nl = {m ∈ {2, . . . , l} | nm − nm−1 ≥ Lδ} and Bn1,...,nl = {2, . . . , l} \Gn1,...,nl .

By definition, one has∑
m∈Bn1,...,nl

(nm − nm−1)≤ l Lδ and
∑

m∈Gn1,...,nl

(nm − nm−1)≥ L − l Lδ. (6-42)

For a fixed sequence n1 < n2 < · · · < nm , the random variables (Tnm′−nm′−1−1(E j , τ
nm′ω))1≤m′≤m are

independent. Hence, by (6-25), for a fixed (m1, . . . ,mK ) ∈ Gn1,...,nl , one has

P
(

inf
1≤k≤K

∥∥Tnmk−nmk−1−1(E j , τ
nmkω)

∥∥≥ e(ρ(E j )+δ)(nmk−nmk−1)
)
≤ e−η

∑K
k=1 nmk−nmk−1 .

Thus, for ε ∈ (0, 1), one has

P

(
inf

1≤k≤K
‖Tnmk−nmk−1−1(E j , τ

nmk−1ω)‖ ≥ e(ρ(E j )+δ)(nmk−nmk−1)

for some (m1, . . . ,mK ) ∈ Gn1,...,nl with
K∑

k=1

nmk − nmk−1 ≥ εL
)
≤ L le−ηεL .

Hence, with probability at least 1− L le−ηεL , we know that there exists (m1, . . . ,mK ) ∈ Gn1,...,nl such
that

K∑
k=1

nmk − nmk−1 ≥ L − l Lδ − εL and ‖Tnmk−nmk−1−1(E j , τ
nmk−1ω)‖ ≤ e(ρ(E j )+δ)(nmk−nmk−1)

for all 1≤ k ≤ K . Using the estimates (6-42) and (6-39) for the remaining terms in the product below,
for any given m-tuple (n1, . . . , nm) one obtains

P

( l∏
m=1

‖Tnm−nm−1−1(E j , τ
nmk−1ω)‖ ≤ e(ρ(E j )+δ)(1−ε)(L−l Lδ)+C(εL+l Lδ)

)
≥ 1− L le−ηεL .

Hence, with probability at least 1− l0L l0e−ηεL , for 1≤ l ≤ l0 we estimate

‖Sl‖ ≤
∑

n1<n2<···<nl

l∏
m=1

‖Tnm−nm−1−1(E j , τ
nmkω)‖

≤ L le(ρ(E j )+δ)(1−ε)L+CεL+(C−(ρ(E j )+δ)(1−ε))l Lδ

≤ L le[ρ(E j )+δ+(C−ρ(E j )−δ)ε]L+[C−(ρ(E j )+δ)(1−ε)]Lδl

≤ L l0e[ρ(E j )+δ+(C−ρ(E j )−δ)ε]L+[C−(ρ(E j )+δ)(1−ε)]Lδl0 . (6-43)
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It remains now to choose the quantities η′, l0 and ε so that the following requirements are satisfied:

η′l0 > 2C, (C − ρ(E j )− δ)ε ≤
δ

2
, l0L l0e−ηεLeη

′(L+1)
� 1

and
[C − (ρ(E j )+ δ)(1− ε)]Lδl0

L + 1
≤

δ

2(ρ(E j )+ δ)
. (6-44)

Fixing ε small, picking 0< η′ < 1
3ηε and setting l0 = Lα , where α ∈ (0, 1), we see that all the conditions

in (6-44) are satisfied for L sufficiently large. Moreover, one has

l0L l0e−ηεLeη
′(L+1)

≤ e−ηεL/2.

Plugging this and the last estimate in (6-43) into (6-38), we obtain that, with probability at least 1−e−ηεL/2,
for any j ∈ J (see (6-37)) and E ∈ [E j , E j+1] one has

‖TL(E, ω)− TL(E j , ω)‖ ≤ 1+
l0∑

l=1

e−η
′l(L+1)L le(ρ(E j )+2δ)L

≤ 1+ e(ρ(E j )+2δ)(L+1). (6-45)

As ρ is continuous (see, e.g., [Bougerol and Lacroix 1985]), one gets that, for any δ > 0 and L sufficiently
large, with probability at least 1− e−ηεL/2, one has, for any E ∈ I ,

‖TL(E, ω)‖. e(ρ(E)+2δ)(L+1).

Hence, as TL(E, ω) ∈ SL(2,R), one has ‖T−1
L (E, ω)‖. e(ρ(E)+2δ)(L+1).

Using the fact that the probability measure on � is invariant under the shift (it is a product measure),
we obtain (6-24). This completes the proof of Lemma 6.10.

6C5. The proof of Lemma 6.3. Assume the realization ω is such that the conclusions of Lemma 6.2
hold in I for the scales lL = 2 log L . Fix α > 0 and let EL ,ω be the set of indices of the eigenvalues
(E j,ω)0≤ j≤L of Hω,L having a localization center in [[L − `L , L]]. Fix C > α > 0 and consider the
projector 5C := 1[[L−C`L ,L]] in `2([[0, L]]).

Consider the Gram matrices

G(EL ,ω)=
(
(〈ϕ j,ω, ϕ j,ω〉)

)
(n,m)∈EL ,ω×EL ,ω

= IdN ,

where N = #EL ,ω, and

Gπ (EL ,ω)=
(
(〈5Cϕ j,ω,5Cϕ j,ω〉)

)
(n,m)∈EL ,ω×EL ,ω

.

By definition, the rank of Gπ (EL ,ω) is bounded by the rank of 5C , i.e., by C`L . Moreover, as by (6-3)
one has ‖(1−5C)ϕ j,ω‖ ≤ Lqe−ρηC`L , one has

‖IdN −Gπ (EL ,ω)‖ ≤ L2+qe−ρηC`L ≤ L2+q−Cρη.

Thus, picking Cηρ > q + 2 yields that, for L sufficiently large, Gπ (EL ,ω) is invertible and its rank
is N . This yields #EL ,ω = N ≤ C`L and the proof of Lemma 6.3 is complete.
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6D. The half-line random perturbation: the proof of Theorem 1.23. Using the same notations as in
Section 5C, we can write

H∞ =
(

H−ω,−1 |δ−1〉〈δ0|

|δ0〉〈δ−1| −1
+

0

)
,

where

• −1+0 is the Dirichlet Laplacian on `2(N),

• H−ω,−1 =−1+ Vω on `2({n ≤−1}) with Dirichlet boundary conditions at 0.

Define the operators

0ω(E) := −1+0 − E −〈δ−1|(H−ω,−1− E)−1
|δ−1〉|δ0〉〈δ0|,

0̃ω(E) := H−ω,−1− E −〈δ0|(−1
+

0 − E)−1
|δ0〉|δ−1〉〈δ−1|.

For Im E 6= 0, the numbers 〈δ−1|(H−ω,−1− E)−1
|δ−1〉 and 〈δ0|(−1

+

0 − E)−1
|δ0〉 have nonvanishing

imaginary parts of the same sign; hence, the complex number

(〈δ−1|(H−ω,−1− E)−1
|δ−1〉)

−1
−〈δ0|(−1

+

0 − E)−1
|δ0〉

does not vanish. Thus, by rank-one perturbation theory (see, e.g., [Simon 2005]), we thus know that
0ω(E) and 0̃ω(E) are invertible for Im E 6= 0 and that

0−1
ω (E)= (−1+0 − E)−1

+
|(−1+0 − E)−1

|δ0〉〈δ0|(−1
+

0 − E)−1
|(

〈δ−1|(H−ω,−1− E)−1|δ−1〉
)−1
−〈δ0|(−1

+

0 − E)−1|δ0〉
(6-46)

0̃−1
ω (E)= (H−ω,−1− E)−1

+
|(H−ω,−1− E)−1

|δ−1〉〈δ−1|(H−ω,−1− E)−1
|(

〈δ0|(−1
+

0 − E)−1|δ0〉
)−1
−〈δ−1|(H−ω,−1− E)−1|δ−1〉

. (6-47)

Thus, for Im E 6= 0, using Schur’s complement formula we compute

(H∞ω − E)−1
=

(
0̃−1
ω (E) γ (E)
γ ∗(E) 0−1

ω (E)

)
, (6-48)

where γ ∗(E) is the adjoint of γ (E) and

γ (E) := −
∣∣(H−ω,−1− E)−1

|δ−1〉〈δ0|0
−1
ω (E)

∣∣
6D1. The continuation through (−2, 2)\6. Let us start with the analytic continuation through (−2, 2)\6.

One easily checks that the function E 7→ 〈δ−1|(H−ω,−1−E)−1
|δ−1〉

−1 is analytic outside6, the essential
spectrum of H−ω,−1, and has simple zeros at the isolated eigenvalues of H−ω,−1. Hence, E 7→ 0−1

ω (E) can
be analytically continued near an isolated eigenvalue of H−ω,−1 different from −2 and 2.

As for 0̃−1
ω , using the spectral decomposition of (H−ω,−1 − E)−1, as for any eigenvector of H−ω,−1,

say ϕ, one has 〈δ−1, ϕ〉 6= 0; for E0 an isolated eigenvalue of H−ω,−1 different from −2 and 2, doing a
polar decomposition of 0̃−1

ω near E0 one checks that E 7→ 0̃−1
ω (E) can be analytically continued to a

neighborhood of E0.
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Finally let us check what happens with γ . We compute

γ (E)=−〈δ−1|(H−ω,−1− E)−1
|δ−1〉

−1∣∣(H−ω,−1− E)−1
|δ−1〉〈δ0|(−1

+

0 − E)−1∣∣.
As E 7→ 〈δ−1|(H−ω,−1− E)−1

|δ−1〉
−1(H−ω,−1− E)−1 is analytic near any isolated eigenvalue of H−ω,−1,

we see that E 7→ γ (E) can be can be analytically continued to a neighborhood of an isolated eigenvalue
of H−ω,−1.

Hence, the representation (6-48) immediately shows that the resolvent (H∞ω − E)−1 can be continued
through (−2, 2) \6, the poles of the continuation being given by the zeros of the function

E 7→ 1−〈δ0|(−1
+

0 − E)−1
|δ0〉〈δ−1|(H−ω,−1− E)−1

|δ−1〉 = 1− eiθ(E)
∫

R

d Nω(λ)
λ− E

.

6D2. No continuation through (−2, 2)∩6◦. Let us study the analytic continuation through (−2, 2)∩6◦.
Considering the lower right coefficient of this matrix, we see that, when coming from upper half-plane
through (−2, 2)∩6◦, E 7→ (H∞ω − E)−1 can be continued meromorphically to the lower half plane (as
an operator from `2

comp(Z) to `2
loc(Z)) only if E 7→ 0−1

ω (E) can be continued meromorphically (as an
operator from `2

comp(N) to `2
loc(N)).

As E 7→ (−1+0 − E)−1 can be analytically continued (see Section 2), by (6-46) the meromorphic
continuation of E 7→ 0−1

ω (E) will exist if and only if the complex-valued map

E 7→ gω(E) :=
1(

〈δ−1|(H−ω,−1− E)−1|δ−1〉
)−1
−〈δ0|(−1

+

0 − E)−1|δ0〉

can be meromorphically continued from the upper half-plane through (−2, 2)∩6◦. Fix ω such that the
spectrum of H−ω,−1 is equal to 6 and pure point (this is almost sure; see, e.g., [Carmona and Lacroix
1990; Pastur and Figotin 1992]). As δ−1 is a cyclic vector for H−ω,−1, for E an eigenvalue of H−ω,−1 one
then has

lim
ε→0+

(
〈δ−1|(H−ω,−1− E − iε)−1

|δ−1〉
)−1
= 0. (6-49)

Hence, if the analytic continuation of gω would exist on (−2, 2)∩6◦ it would be equal to

gω(E + i0)=−
1

〈δ0|(−1
+

0 − E − i0)−1|δ0〉
. (6-50)

By analyticity of both sides, this in turn would imply that (6-50) holds on the whole upper half-plane;
thus, in view of the definition of gω, that (6-49) holds on the whole upper half plane: this is absurd! Thus,
we have proved that, ω-almost surely, E 7→ (H∞ω − E)−1 does not admit a meromorphic continuation
through (−2, 2)∩6◦.

6D3. Absolutely continuity of the spectrum of H∞ω in (−2, 2)∩6◦. Let us now prove that the spectral
measure of H∞ω in (−2, 2) ∩6◦ is purely absolutely continuous. It suffices (see, e.g., [Teschl 2000,
Section 2.5; Simon 2005, Theorem 11.6]) to prove that, for all E ∈ (−2, 2)∩6◦, one has

lim sup
ε→0+

∣∣〈δ0, (H∞ω − E − iε)−1δ0〉
∣∣+ ∣∣〈δ−1, (H∞ω − E − iε)−1δ−1〉

∣∣<+∞.
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Using (6-46), (6-47) and (6-48), for Im E 6= 0 we compute

〈δ−1, (H∞ω − E)−1δ−1〉 =
〈δ−1|(H−ω,−1− E)−1

|δ−1〉

1−〈δ0|(−1
+

0 − E)−1|δ0〉 · 〈δ−1|(H−ω,−1− E)−1|δ−1〉
, (6-51)

〈δ−n, (H∞ω − E)−1δm〉 =
−〈δ−n|(H−ω,−1− E)−1

|δ−1〉〈δ0|(−1
+

0 − E)−1
|δm〉

1−〈δ0|(−1
+

0 − E)−1|δ0〉 · 〈δ−1|(H−ω,−1− E)−1|δ−1〉
(6-52)

for n ≥ 1 and m ≤ 0, and

〈δ0, (H∞ω − E)−1δ0〉 =
〈δ0|(−1

+

0 − E)−1
|δ0〉

1−〈δ0|(−1
+

0 − E)−1|δ0〉 · 〈δ−1|(H−ω,−1− E)−1|δ−1〉
. (6-53)

Thus, to prove the absolute continuity of the spectral measure of H∞ω in (−2, 2)∩6◦, it suffices to
prove that, for E ∈ (−2, 2)∩6◦, one has

lim sup
ε→0+

(∣∣∣∣ 1(
〈δ−1|(H−ω,−1− E − iε)−1|δ−1〉

)−1
−〈δ0|(−1

+

0 − E − iε)−1|δ0〉

∣∣∣∣
+

∣∣∣∣ 1(
〈δ0|(−1

+

0 − E − iε)−1|δ0〉
)−1
−〈δ−1|(H−ω,−1− E − iε)−1|δ−1〉

∣∣∣∣)<∞.
This is the case, as

• the signs of the imaginary parts of−
(
〈δ−1|(H−ω,−1−E−iε)−1

|δ−1〉
)−1 and 〈δ0|(−1

+

0 −E−iε)−1
|δ0〉

are the same (negative if Im E < 0 and positive if Im E > 0),

• for E ∈ (−2, 2), 〈δ0|(−1
+

0 − E − iε)−1
|δ0〉 has a finite limit when ε→ 0+,

• for E ∈ (−2, 2), the imaginary part of 〈δ0|(−1
+

0 −E− iε)−1
|δ0〉 does not vanish in the limit ε→ 0+.

So, we have proved the part of Theorem 1.23 concerning the absence of analytic continuation of the
resolvent of H∞ω through (−2, 2)∩6◦ and the nature of its spectrum in this set.

6D4. The spectrum of H∞ω is pure point in 6◦ \ [−2, 2]. Let us now prove the last part of Theorem 1.23.
The proof relies again on (6-48). We pick β ∈

(
0, 1

2α
)
, where α is determined by Theorem 6.1 for H−ω,−1.

Then, for n ≥ 1 and m ≤ 0, using the Cauchy–Schwartz inequality, for Im E 6= 0 we compute

E
(∣∣〈δ−n, (H∞ω − E)−1δm〉

∣∣β)2

≤
∣∣〈δ0|(−1

+

0 − E)−1
|δm〉

∣∣2 · E(∣∣〈δ−n|(H−ω,−1− E)−1
|δ−1〉

∣∣2β)
· E

(∣∣∣∣ 1
1−〈δ0|(−1

+

0 − E)−1|δ0〉 · 〈δ−1|(H−ω,−1− E)−1|δ−1〉

∣∣∣∣2β). (6-54)

For a compact interval J ⊂ (−2, 2) \6, we know that, for n ≥ 1 and m ≤ 0,

• supIm E 6=0

∣∣〈δ0|(−1
+

0 − E)−1
|δm〉

∣∣. e−cm by the Combes–Thomas estimates;

• supIm E 6=0 E
(∣∣〈δ−n|(H−ω,−1 − E)−1

|δ−1〉
∣∣2β) . e−2βρn by the characterization (6-1) of localization

in 6 for H−ω,−1.
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It suffices now to estimate the last term in (6-54) using a standard decomposition of rank-one perturba-
tions (see, e.g., [Simon 2005; Aizenman and Molchanov 1993]); one writes

1
1−〈δ0|(−1

+

0 − E)−1|δ0〉 · 〈δ−1|(H−ω,−1− E)−1|δ−1〉
=
ω−1− b
ω−1− a

,

where a and b only depend on (ω−n)n≥2. Thus, as (ω−n)n≥1 have a bounded density, for Im E 6= 0 one
has

E

(∣∣∣∣ 1
1−〈δ0|(−1

+

0 −E)−1|δ0〉·〈δ−1|(H−ω,−1−E)−1|δ−1〉

∣∣∣∣2β)≤E(ω−n)n≥2Eω−1

(∣∣∣∣ω−1−b
ω−1−a

∣∣∣∣2β)≤Cβ<+∞.

Thus, we have proved that, for a compact interval J ⊂6 \ [−2, 2], for β ∈
(
0, 1

2α
)

and some ρ̃ > 0,
for n ≥ 1 and m ≤ 0 one has

sup
Im E 6=0
Re E∈I

E
(∣∣〈δ−n, (H∞ω − E)−1δm〉

∣∣β)< Cβe−ρ̃(m−n).

In the same way, using (6-51) and (6-53), one proves that

sup
Im E 6=0
Re E∈I

E
(∣∣〈δ0, (H∞ω − E)−1δ0〉

∣∣β + ∣∣〈δ−1, (H∞ω − E)−1δ−1〉
∣∣β)<+∞.

Thus, we have proved that, for some ρ̃ > 0, one has

sup
Im E 6=0
Re E∈I

sup
m∈Z

E

(∑
n∈Z

eρ̃(m−n)
∣∣∣∣〈δ−n, (H∞ω − E)−1δm〉

∣∣∣∣β)<+∞.
Hence, we know that the spectrum of H∞ω in 6 \ [−2, 2] (as J can be taken arbitrarily, contained

in this set) is pure point associated to exponentially decaying eigenfunctions (see, e.g., [Aizenman and
Molchanov 1993; Aizenman 1994; Aizenman et al. 2001]). This completes the proof of Theorem 1.23.

Appendix

In this section we study the eigenvalues and eigenvectors of HL (see Remark 1.6) near an energy E ′ that
is an eigenvalue of both H+0 and H−k (see the ends of Sections 4A3 and 4A4). We keep the notations of
Sections 4A3 and 4A4.

Let ϕ+ ∈ `2(N) (resp. ϕ− ∈ `2(Z−)) be normalized eigenvectors of H+0 (resp. H−k ) associated to E−.
Thus, by (4-28) and (4-32), we can pick, for n ≥ 0 and l ∈ {0, . . . , p− 1},

ϕ+np+l = cal(E ′)ρn(E ′) and ϕ−
−np−l = c−bl(E ′)ρn(E ′). (A-1)

Assume L = N p+ k and, for l ∈ {0, . . . , L}, define ϕ±,L ∈ `2([[0, L]]) by

ϕ
+,L
l := ϕ+l , ϕ

+,L
−1 = ϕ

+,L
L+1 := ϕ

+

−1 = 0, ϕ
−,L
l := ϕ−l−L and ϕ

−,L
−1 = ϕ

−,L
L+1 := ϕ

−

0 = 0. (A-2)
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Thus, one has

HLϕ
+,L
= E ′ϕ+,L +ϕ+L+1δL , HLϕ

−,L
= E ′ϕ−,L +ϕ−

−L−1δ0 and 〈ϕ+,L , ϕ−,L〉 = O(NρN (E)).
(A-3)

Recall that ak(E ′) 6= 0 6= bk(E ′) (see Sections 4A3 and 4A4); thus, by (A-1), one has

|ϕ−
−L−1| � |ρ(E

′)|n � |ϕ+L+1|. (A-4)

Moreover, as HL converges to H+0 in the strong resolvent sense, for ε > 0 sufficiently small and L
sufficiently large, HL has no spectrum in the compact E ′+

[
−2ε,− 1

2ε
]
∪
[ 1

2ε, 2ε
]
. Let 5L be the spectral

projector onto the interval
[
−

1
2ε,

1
2ε
]
, that is, 5L := 1/(2iπ)

∫
|z−E ′|=ε(HL − z)−1 dz. By (A-3), one

computes

(1−5L)ϕ
+,L
=
ϕ+L+1

2iπ

∫
|z−E ′|=ε

(E ′− z)−1(HL − z)−1δ0 dz.

Thus, one gets
‖(1−5L)ϕ

+,L
‖+‖(1−5L)ϕ

−,L
‖. |ρ(E ′)|N . (A-5)

Define

χ̃+,L =
1

‖5Lϕ+,L‖
5Lϕ

+,L and χ̃−,L =
1

‖5Lϕ−,L‖
5Lϕ

−,L .

The Gram matrix of (χ̃+,L , χ̃−,L) then reads Id+O(NρN (E)). Orthonormalizing (χ̃+,L , χ̃−,L) into
(χ+,L , χ−,L) and computing the matrix elements of 5L(HL − E ′) in this basis, we obtain(

ϕ+L+1〈δL , ϕ
+,L
〉 ϕ+L+1〈δ0, ϕ

+,L
〉

ϕ−
−L−1〈δL , ϕ

−,L
〉 ϕ−
−L−1〈δ0, ϕ

−,L
〉

)
+ O(N 2ρ2N (E))= αρN (E)

(
0 1
1 0

)
+ O(N 2ρ2N (E))

Thus, we obtain that the eigenvalues of HL near E ′ are given by E ′±αρN (E)+O(N 2ρ2N (E)) and the
eigenvectors by 1

√
2
(ϕ+,L±ϕ−,L)+O(ρN (E)). In particular, their components at 0 and L are asymptotic

to nonvanishing constants.
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