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ON CHARACTERIZATION OF THE SHARP STRICHARTZ INEQUALITY
FOR THE SCHRÖDINGER EQUATION

JIN-CHENG JIANG AND SHUANGLIN SHAO

We study the extremal problem for the Strichartz inequality for the Schrödinger equation on R× R2.
We show that the solutions to the associated Euler–Lagrange equation are exponentially decaying in the
Fourier space and thus can be extended to be complex analytic. Consequently, we provide a new proof of
the characterization of the extremal functions: the only extremals are Gaussian functions, as investigated
previously by Foschi, Hundertmark and Zharnitsky.

1. Introduction

We begin with some notation. For a Schwarz function f on Rd , d ≥ 1, define the Fourier transform

F( f )(ξ)= f̂ (ξ)=
∫

Rd
e−i x ·ξ f (x) dx, ξ ∈ Rd .

The inverse of the Fourier transform,

F−1( f )(x)= f ∨(x)=
1

(2π)d

∫
Rd

ei x ·ξ f (ξ) dξ, x ∈ Rd .

The linear Strichartz inequality for the Schrödinger equation [Keel and Tao 1998; Tao 2006] asserts that

‖ei t1 f ‖L2+4/d
t,x (R×Rd )

≤ Cd‖ f ‖L2(Rd ), (1)

where ei t1 f (x)= (1/(2π)d)
∫

Rd ei x ·ξ+i t |ξ |2 f̂ (ξ) dξ . We specify d = 2 and consider

‖ei t1 f ‖L4
t,x (R×R2) ≤ R‖ f ‖L2(R2), (2)

where

R := sup
{
‖ei t1 f ‖L4

t,x (R×R2)

‖ f ‖L2(R2)

: f ∈ L2, f 6= 0
}
. (3)

We define an extremal function or extremal to (2) to be a nonzero function f ∈ L2 such that the
inequality is optimized, in the sense that

‖ei t1 f ‖L4
t,x (R×R2) = R‖ f ‖L2(R2). (4)

The extremal problem of (2) concerns:

(i) Whether there exists an extremal function?
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(ii) How to characterize the extremal functions? What are the explicit forms of extremal functions? Are
they unique up to the symmetry of the inequality?

From Foschi [2007] and Hundertmark and Zharnitsky [2006], it is known that the Gaussian functions
are the only extremal functions of the linear Strichartz inequality (2) for the dimensions d = 1, 2. Here
Gaussian functions Rd

→ C, d = 1, 2, are of the form

eA|x |2+B·x+C

with A, C ∈ C, B ∈ Cd and the real part of A negative. The existence of extremizers was established
previously by Kunze [2003] for the Strichartz inequality (1) when d = 1. When d ≥ 3, existence of
extremizers is proved by the second author in [Shao 2009] .

In this note, we are interested in the problem of how to characterize extremals for (2) via the study of
the associated Euler–Lagrange equation. We show that the solutions of this generalized Euler–Lagrange
equation enjoy fast decay in the Fourier space and thus can be extended to be complex analytic; see
Theorem 1.1. Then, as an easy consequence, we give an alternative proof that all extremal functions to
(2) are Gaussians, based on solving a functional equation of extremizers derived in [Foschi 2007]; see (7)
and Theorem 1.2. Indeed, in the proof given below we use the information that f is twice continuously
differentiable, i.e., f ∈C2, which can be lowered to continuity by a more refined argument. The functional
inequality (7) is a key ingredient in Foschi’s proof. To prove f in (7) to be a Gaussian function, local
integrability of f is assumed in [Foschi 2007], which is further reduced to measurable functions in
[Charalambides 2013].

Let f be an extremal function to (2) with the constant R. Then f satisfies the generalized Euler–
Lagrange equation

ω〈g, f 〉 = Q(g, f, f, f ) for all g ∈ L2, (5)

where ω = Q( f, f, f, f )/‖ f ‖2L2 > 0 and Q( f1, f2, f3, f4) is the integral∫
(R2)4

f̂ 1(ξ1) f̂ 2(ξ2) f̂3(ξ3) f̂4(ξ4)δ(ξ1+ ξ2− ξ3− ξ4)δ(|ξ1|
2
+ |ξ2|

2
− |ξ3|

2
− |ξ4|

2) dξ1 dξ2 dξ3 dξ4 (6)

for fi ∈ L2(R2), 1 ≤ i ≤ 4, and δ(ξ) = (2π)−d
∫

Rd eiξ ·x dx in the distribution sense for d = 1, 2. The
proof of (5) is standard; see, e.g., [Evans 2010, p. 489] or [Hundertmark and Lee 2012, Section 2] for
similar derivations of Euler–Lagrange equations.

Theorem 1.1. If f solves the generalized Euler–Lagrange equation (5) for some ω > 0, then there exists
µ > 0 such that

eµ|ξ |
2

f̂ ∈ L2(R2).

Furthermore, f can be extended to be complex analytic on C2.

To prove this theorem, we follow the argument in [Hundertmark and Shao 2012]. Similar reasoning
has appeared previously in [Erdoğan et al. 2011; Hundertmark and Lee 2009]. It relies on a multilinear
weighted Strichartz estimate and a continuity argument. See Lemmas 2.1 and 2.2.
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Next we prove that the extremals to (2) are Gaussian functions. We start with the study of the functional
equation derived in [Foschi 2007], which reads

f (x) f (y)= f (w) f (z) (7)

for any x , y, w, z ∈ R2 such that

x + y = w+ z and |x |2+ |y|2 = |w|2+ |z|2. (8)

Note that x , y, w, z ∈ R2 satisfy the relation (8) if and only if these four points form a rectangle in R2

with vertices x , y, w and z. Indeed, by (8), these four points x , y, w and z form a parallelogram on R2

and x ·y=w·z. Secondly, w−x is perpendicular to z−x , since (w−x)·(z−x)=w·z−w·x−x ·z+|x |2=
w · z − (x + y) · x + |x |2 = w · z − y · x = 0. This proves that x , y, w and z form a rectangle on R2.
In [Foschi 2007], it is proven that f ∈ L2 satisfies (7) if and only if f is an extremal function to (2).
Basically, this comes from two aspects. One is that, in the Foschi’s proof of the sharp Strichartz inequality,
only the Cauchy–Schwarz inequality is used at one place besides equality. So the equality in the Strichartz
inequality (2), or equivalently the equality in Cauchy-Schwarz, yields the same functional equation as (7),
where f is replaced by f̂ . The other one is that the Strichartz norm for the Schrödinger equation satisfies
the identity

‖ei t1 f ‖L4(R×R2) = C‖ei t1 f ∨‖L4(R×R2) (9)

for some C > 0.
Foschi [2007] is able to show that all the solutions to (7) are Gaussians under the assumption that f is

a locally integrable function. This can be viewed as an investigation of the Cauchy functional equation (7)
for functions supported on the paraboloids. To characterize the extremals for the Tomas–Stein inequality
for the sphere in R3, [Christ and Shao 2012] studies the same functional equation (7) for functions
supported on the sphere and prove that they are exponentially affine functions. Charalambides [2013]
generalizes the analysis in [Christ and Shao 2012] to some general hypersurfaces in Rn that include the
sphere, paraboloids and cones as special examples and proves that the solutions are exponentially affine
functions. In [Charalambides 2013; Christ and Shao 2012], the functions are assumed to be measurable
functions.

By the analyticity established in Theorem 1.1, equations (7) and (8) have the following easy consequence,
which recovers the result in [Foschi 2007; Hundertmark and Zharnitsky 2006].

Theorem 1.2. Suppose that f is an extremal function to (2). Then

f (x)= eA|x |2+B·x+C , (10)

where A, C ∈ C, B ∈ C2 and <(A) < 0.

Let f be an extremal function to (2). Then, by Theorem 1.1, f is continuous. This, together with (7)
and (8), implies that any nontrivial f is nowhere vanishing on R2; see, e.g., [Foschi 2007, Lemma 7.13].
For any a ∈ R2, there is a disk D(a, r)⊂ C2, r > 0, such that f is C2 by Theorem 1.1 and f is nowhere
vanishing. Then log f is C2 on D(a, r); see, e.g., [Krantz 1992, Lemma 6.1.9]. Similar claims can be
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made for log f 2. Then, up to a multiple of 2π ,

log f 2(a)= log f (a)+ log f (a).

After restriction to R2, f satisfies (7) for x , y, w and z satisfying (8). So, by taking r sufficiently small,

log f (x)+ log f (y)= log f (w)+ log f (z)

for x , y, w, z ∈ B(a, r) ⊂ R2 related as in (8). Since log f is twice differentiable, it is not hard to see
that log f is a quadratic polynomial on B(a, r). So log f is a quadratic polynomial on R2. Indeed, let
a = 0 and φ(x1)= log f (x1, 0), ψ(0, x2)= log f (0, x2). Then, since the four points (x1, x2), (x2,−x1),
(x1+ x2, x2− x1) and (0, 0) satisfy (8), we see that

[φ(x1)+ψ(x2)] + [φ(x2)+ψ(−x1)] = [φ(x1+ x2)+ψ(x2− x1)] + log f (0, 0).

By differentiating firstly in x1 and then in x2, we see that φ′′ = ψ ′′ is a constant. Thus f is a quadratic
polynomial. It is easy to see that this argument generalizes to any a ∈ R2.

2. Complex analyticity

In this section, we show that the solutions to the generalized Euler–Lagrange equation (5) can be extended
to be complex analytic.

We define
η := (η1, η2, η3, η4) ∈ (R

2)4,

a(η) := η1+ η2− η3− η4,

b(η) := |η1|
2
+ |η2|

2
− |η3|

2
− |η4|

2.

Let ε ≥ 0 and µ≥ 0. For ξ ∈ R2, define

F(ξ) := Fµ,ε(ξ)=
µ|ξ |2

1+ ε|ξ |2
. (11)

Define the weighted multilinear integral for hi ∈ L2(R2), 1≤ i ≤ 4, by

MF (h1, h2, h3, h4) :=

∫
(R2)4

eF(η1)−
∑4

j=2 F(η j )

4∏
j=1

|h(η j )|δ(a(η))δ(b(η)) dη. (12)

The multilinear estimate we need shows the weak interaction of Schrödinger waves between the high and
low frequency. More precisely:

Lemma 2.1. Let hi ∈ L2(R2), 1≤ i ≤ 4, and let s > 1 be a large number. If the Fourier transforms of h1

and h2 are supported in {ξ : |ξ | ≤ s} and {ξ : |ξ | ≥ Ns} with N > 1 a large number, respectively, then

MF (h1, h2, h3, h4)≤ C N−1/2
4∏

j=1

‖h j‖L2 . (13)



ON CHARACTERIZATION OF THE SHARP STRICHARTZ INEQUALITY FOR THE SCHRÖDINGER EQUATION 357

Proof. The proof of this lemma needs the following two inequalities:

MF (h1, h2, h3, h4)≤

∫
(R2)4

4∏
j=1

|h j (η j )|δ(a(η))δ(b(η)) dη (14)

and
‖ei t1h1ei t1h2‖L2

t,x
≤ C N−1/2

‖h1‖L2‖h2‖L2 . (15)

Together with the Cauchy–Schwarz inequality and the L2
→ L4 Strichartz inequality, the inequality (13)

follows from (14) and (15). Note that (15) is established in [Bourgain 1998]. Thus it remains to
establish (14), where we follow [Erdoğan et al. 2011; Hundertmark and Shao 2012].

On the support of η determined by δ(a(η)) and δ(b(η)), we have

η1+ η2 = η3+ η4 and |η1|
2
+ |η2|

2
= |η3|

2
+ |η4|

2.

Thus,
|η1|

2
≤ |η2|

2
+ |η3|

2
+ |η4|

2.

Since the function x 7→ x/(1+ εx) is increasing on the interval [0,∞), we have

|η1|
2

1+ ε|η1|2
≤

∑4
j=2 |η j |

2

1+
∑4

j=2 ε|η j |
2
=

4∑
j=2

|η j |
2

1+
∑4

j=2 ε|η j |
2
≤

4∑
j=2

|η j |
2

1+ ε|η j |
2 .

This implies that F(η1)≤
∑4

j=2 F(η j ), since µ≥ 0. Hence,

eF(η1)−
∑4

j=2 F(η j ) ≤ 1.

Therefore (14) follows by taking the absolute value in the integral. �

If f ∈ L2 satisfies the generalized Euler–Lagrange equation (5), the following bootstrap lemma shows
that f gains certain regularity; namely, there is a constant µ > 0 depending on the function f such
that eµ|ξ |

2
f̂ ∈ L2. This is enough to conclude that f can be extended to be complex analytic.

Lemma 2.2. If f solves the generalized Euler–Lagrange equation (5) for some ω > 0 and ‖ f ‖L2 = 1,
then for f̂> := f̂ 1|ξ |≥s2 with s > 0, there is a large constant s� 1 such that, for µ= s−4,

ω‖eF( · ) f̂>‖L2 ≤ o1(1)‖eF( · ) f̂>‖L2 +C‖eF( · ) f̂>‖
2
L2 +C‖eF( · ) f̂>‖

3
L2 + o2(1), (16)

where lims→∞ oi (1) = 0 uniformly for all ε > 0, i = 1, 2, and the constant C > 0 is independent of ε
and s.

Proof. Define h(ξ)= eF(ξ) f̂ (ξ) and h>(ξ)= eF(ξ) f̂>, where f̂> = f̂ 1|ξ |≥s2 . Let P denote the symbol of
differentiation −i∂x ; under the Fourier transform, P̂ = |ξ |. Correspondingly, we write F(P) with the
Fourier symbol µ|ξ |2/(1+ ε|ξ |2).

We expand

‖eF( · ) f̂>‖
2
L2 = 〈eF( · ) f̂>, eF( · ) f̂>〉 = 〈e

2F( · ) f̂>, f̂ 〉 = 〈e2F(P) f>, f 〉.
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Thus, in the generalized Euler–Lagrange equation (5), setting g = e2F(P) f>, we see that

ω‖eF(P) f>‖2L2 = Q(e2F(P) f>, f, f, f ). (17)

Since f̂ = e−F(ξ)h and e2F(ξ) f̂> = eF(ξ)h>,

Q(e2F(P) f>, f, f, f )=
∫
(R2)4

e2F(ξ1) f̂ >(ξ1) f̂ >(ξ2) f̂ (ξ3) f̂4(ξ4)δ(a(ξ))δ(b(ξ)) dξ

=

∫
(R2)4

eF(ξ1)h>(ξ1)e−F(ξ2)h(ξ2)e−F(ξ3)h(ξ3)e−F(ξ4)h(ξ4)δ(a(ξ))δ(b(ξ)) dξ

=

∫
(R2)4

eF(ξ1)−
∑4

j=2 F(ξ j )h>(ξ1)h(ξ2)h(ξ3)h(ξ4)δ(a(ξ))δ(b(ξ)) dξ,

where a(ξ) = ξ1 + ξ2 − ξ3 − ξ4 and b(ξ) = |ξ1|
2
+ |ξ2|

2
− |ξ3|

2
− |ξ4|

2 for ξ = (ξ1, ξ2, ξ3, ξ4) ∈
(
R2
)4.

Thus,

ω‖eF(P) f>‖2L2 ≤ MF (h>, h, h, h). (18)

Define

h∼ = h1s≤|ξ |≤s2, h� = h1|ξ |<s and h< = h�+ h∼ .

We split the integral MF (h>, h, h, h) into the following pieces:

MF (h>, h<, h<, h<)+
∑

j2, j3, j4

MF (h>, h j2, h j3, h j4)=: A+ B,

where h jk is either h> or h<, but at least one is h>. We further split A into two terms,

MF (h>, h�, h<, h<)+MF (h>, h∼, h<, h<);

we estimate this term by using Lemma 2.1:

A . s−1/2
‖h>‖L2‖h�‖L2‖h<‖2L2 +‖h>‖L2‖h∼‖L2‖h<‖2L2 . ‖h>‖L2(s−1/2

‖h�‖L2 +‖h∼‖L2)‖h<‖2L2 .

Since ‖ f ‖L2 = 1,

‖h<‖L2 ≤ eµs4
‖ f ‖L2 = eµs4

,

‖h�‖L2 ≤ eµs2
,

‖h∼‖L2 ≤ eµs4
‖ f
∼
‖L2,

where f
∼

is defined by f̂
∼
= f̂ 1s≤|ξ |≤s2 . Thus we have

A . e3µs4
‖h>‖L2(s−1/2eµs2

−µs4
+‖ f

∼
‖L2). (19)

Similarly we estimate the term B. We split B as B1+ B2, where B1 =
∑

j2, j3, j4 MF (h>, h j2, h j3, h j4)

contains exactly one h> in {h j2, h j3, h j4}, while B2 =
∑

j2, j3, j4 MF (h>, h j2, h j3, h j4) contains two or
more h>.
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To estimate B1,

B1 . eµs4
‖h>‖2L2‖h<‖L2(s−1/2eµs2

−µs4
+‖ f

∼
‖L2). e2µs4

‖h>‖2L2(s−1/2eµs2
−µs4
+‖ f

∼
‖L2). (20)

To estimate B2,

B2 . ‖h>‖3L2‖h<‖L2 +‖h>‖4L2 . eµs4
‖h>‖3L2 +‖h>‖4L2 . (21)

Thus, from (19), (20) and (21), we obtain

‖eF( · ) f̂>‖
2
L2

.e3µs4
‖h>‖L2(s−1/2eµs2

−µs4
+‖ f

∼
‖L2)+e2µs4

‖h>‖2L2(s−1/2eµs2
−µs4
+‖ f

∼
‖L2)+eµs4

‖h>‖3L2+‖h>‖4L2 .

Since lims→∞ ‖ f
∼
‖L2 = 0, we take s sufficiently large and set µ= s−4:

ω‖eF( · ) f̂>‖L2 ≤ o1(1)‖eF( · ) f̂>‖L2 +C‖eF( · ) f̂>‖
2
L2 +C‖eF( · ) f̂>‖

3
L2 + o2(1), (22)

which completes the proof of Lemma 2.2. �

Remark 2.3. Clearly the choice of µ in the preceding lemma depends on the function f itself.

Now we conclude that f in Lemma 2.2 gains certain regularity.

Proof of Theorem 1.1. Let f ∈ L2 and f 6= 0. We normalize f so that ‖ f ‖L2 = 1. In Lemma 2.2, we
choose s sufficiently large such that o1(1) ≤ 1

2ω and o2(1) ≤ 1
2 M , where M = sup{G(x) : x ∈ [0,∞)},

and

G(x) := 1
2ωx −Cx2

−Cx3, x ∈ [0,∞), (23)

and C is the same constant as in (16). It is easy to see that 0 ≤ M < ∞. Then G(x) ≤ M for all
x ∈ [0,∞) by Lemma 2.2. Also the function G is continuous on [0,∞). On the other hand, G ′′(x) < 0
for all x ∈ (0,∞); thus G is concave. The line G = 1

2 M intersects at two points of the positive x axis,
x = x0 and x = x1 > 0.

We define H : (0,∞)→ [0,∞) via

H(ε)=
(∫
|ξ |≥s2

|eFs−4,ε(ξ) f̂ |2 dξ
)1

2

.

The function H is continuous on (0,∞) by the dominated convergence theorem and H(0,∞) is connected.
Hence G−1

([
0, 1

2 M
])

is either contained in [0, x0] or [x1,∞); only one alternative holds. For ε = 1
and s sufficiently large, H(1)≥ x1 is impossible. Hence the first alternative holds.

Therefore G−1
([

0, 1
2 M

])
⊂ [0, x0], which yields that

‖eF( · ) f̂>‖L2 ≤ C0, that is, ‖es−4
|ξ |2/(1+ε|ξ |2) f̂>‖L2 ≤ C0, (24)

uniformly in all ε > 0. By the monotone convergence theorem,

‖es−4
|ξ |2 f̂>‖L2 ≤ C0 <∞.
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It is clear that es−4
|ξ |2 f̂ 1|ξ |≤s2 ∈ L2. Therefore,

es−4
|ξ |2 f̂ ∈ L2.

Let µ= s−4. This proves the first half of Theorem 1.1.
To prove that f can be extended to be complex analytic on C2, we observe that, by the Cauchy–Schwarz

inequality, for any λ ∈ R,

eλ|ξ | f̂ (ξ)= eλ|ξ |−µ|ξ |
2
eµ|ξ |

2
f̂ (ξ) ∈ L2(R2). (25)

So it is not hard to see that f can be extended to be complex analytic on C2; see, e.g., [Reed and Simon
1975, Theorem IX.13]. Alternatively, analyticity can be obtained in the following way. Similarly to in
(25) for k ∈ N∪ {0}, |ξ |keλ|ξ | f̂ ∈ L1(R2). For z ∈ C2, we choose λ > |z|, then

f (z)= (2π)−2
∫

R2
ei z·ξ−λ|ξ |eλ|ξ | f̂ (ξ) dξ.

Then, by taking differentiation under the integral sign, complex analyticity follows. �
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