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Dedicated to Professor M.V. Safonov

We construct a new counterexample to the Hopf–Oleinik boundary point lemma. It shows that for convex
domains, the C 1;Dini assumption on @� is the necessary and sufficient condition providing the estimates
of Hopf–Oleinik type.

1. Introduction

The influence of the properties of a domain on the behavior of a solution is one of the most important
topics in the qualitative analysis of partial differential equations.

The significant result in this field is the Hopf–Oleinik lemma, known also as the “boundary point
principle”. This celebrated lemma states:

Lemma. Let u be a nonconstant solution to a second-order homogeneous uniformly elliptic nondivergence
equation with bounded measurable coefficients, and let u attend its extremum at a point x0 located on the
boundary of a domain �� Rn. Then .@u=@n/.x0/ is necessarily nonzero provided that @� satisfies the
proper assumptions at x0.

This result was established in a pioneering paper of S. Zaremba [1910] for the Laplace equation in
a 3-dimensional domain � having an interior touching ball at x0 and generalized by G. Giraud [1932;
1933] to equations with Hölder-continuous leading coefficients and continuous lower-order coefficients in
domains � belonging to the class C 1;˛ with ˛ 2 .0; 1/.

Notice that a related assertion about the negativity on @� of the normal derivative of the Green’s
function corresponding to the Dirichlet problem for the Laplace operator was proved much earlier for
2-dimensional smooth domains by C. Neumann [1888] (see also [Korn 1901]). The result of [Neumann
1888] was extended for operators with lower-order coefficients by L. Lichtenstein [1924]. The same
version of the boundary point principle for the Laplacian and 3-dimensional domains satisfying a more
flexible interior paraboloid condition was obtained by M. V. Keldysch and M. A. Lavrent’ev [1937].

A crucial step in studying the boundary point principle was made by E. Hopf [1952] and O. A. Oleı̆nik
[1952], who simultaneously and independently proved the statement for the general elliptic equations
with bounded coefficients and domains satisfying an interior ball condition at x0.

Later the efforts of many mathematicians were focused on the generalization of the boundary point
principle in several directions (for the details, we refer the reader to [Alvarado et al. 2011; Alvarado
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2011] and references therein). Among these directions are the extension of the class of operators and the
class of solutions, as well as the weakening of assumptions on the boundary.

The widening of the class of operators to singular/degenerate ones was made in the papers [Kamynin and
Himčenko 1975; 1977; Alvarado et al. 2011], while the uniform elliptic operators with unbounded lower-
order coefficients were studied in [Safonov 2010; Nazarov 2012] (see also [Nazarov and Uraltseva 2009]).
We mention also the publications [Tolksdorf 1983; Mikayelyan and Shahgholian 2015], where the boundary
point principle was established for a class of degenerate quasilinear operators including the p-Laplacian.

We note that before 2010, all the results were formulated for classical solutions, i.e., u 2 C 2.�/. The
class of solutions was expanded in [Safonov 2010] to strong generalized solutions with Sobolev’s second-
order derivatives. The latter requirement seems to be natural in the study of nondivergent elliptic equations.

The reduction of the assumptions on the boundary of� up to C 1;Dini-regularity was realized for various
elliptic operators in the papers [Widman 1967; Himčenko 1970; Lieberman 1985] (see also [Safonov
2008]). A weakened form of the Hopf–Oleinik lemma (the existence of a boundary point x1 in any
neighborhood of x0 and a direction ` such that .@u=@`/.x1/¤ 0) was proved in [Nadirashvili 1983] for
a much wider class of domains including all Lipschitz ones. We mention also the paper [Sweers 1997],
where the behavior of superharmonic functions near the boundary of a 2-dimensional domain with corners
is described in terms of the main eigenfunction of the Dirichlet Laplacian.

The sharpness of some requirements was confirmed by corresponding counterexamples constructed in
[Widman 1967; Himčenko 1970; Kamynin and Himčenko 1975; Safonov 2008; Alvarado et al. 2011;
Nazarov 2012]. In particular, the counterexamples from [Widman 1967; Himčenko 1970; Safonov 2008]
show that the Hopf–Oleinik result fails for domains lying entirely in non-Dini paraboloids.

The main result of our paper is a new counterexample (see Theorem 4.2) showing the sharpness of the
Dini condition for the boundary of �. The simplest version of this counterexample can be formulated as
follows:

Counterexample. Let � be a convex domain in Rn, let @� in a neighborhood of the origin be described
by the equation xn D F.x0/ with F > 0 and F.0/D 0, and let u 2W 2

n;loc.�/\C.�/ be a solution of the
uniformly elliptic equation

�aij .x/DiDj uD 0 in �:

Suppose also that uj@� vanishes at a neighborhood of the origin. If , in addition, the function

ı.r/D sup
jx0j6r

F.x0/

jx0j

is not Dini-continuous at zero, then .@u=@n/.0/D 0.

Thus, it turns out that for convex domains, the Dini-continuity assumption on ı.r/ is necessary and
sufficient for the validity of the boundary point principle. We emphasize that in our counterexample the
Dini condition fails for the supremum of F.x0/=jx0j, while in all the previous results of this kind, it fails
for the infimum of F.x0/=jx0j. In other words, we show that violating the Dini condition just in one
direction causes the failure of the Hopf–Oleinik lemma.
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Notation and conventions. Throughout the paper we use the following notation:

� x D .x0;xn/D .x1; : : : ;xn�1;xn/ is a point in Rn.

� Rn
C D fx 2 Rn W xn > 0g.

� jxj; jx0j are the Euclidean norms in the corresponding spaces.

� �E denotes the characteristic function of the set E � Rn.

� � is a bounded domain in Rn with boundary @�.

� Pr;h. Nx
0/D fx 2 Rn W jx0� Nx0j< r; 0< xn < hg and Pr . Nx

0/D Pr;r . Nx
0/.

� Pr;h D Pr;h.0/ and Pr D Pr .0/.

� Br .x
0/ is the open ball in Rn with center x0 and radius r ; Br D Br .0/.

� For r1 < r2, we define the annulus B.x0; r1; r2/D Br2
.x0/ nBr1

.x0/.

� vC Dmaxfv; 0g and v� Dmaxf�v; 0g.

� k � k1;� denotes the norm in L1.�/.

� We adopt the convention that the indices i and j run from 1 to n. We also adopt the convention
regarding summation with respect to repeated indices.

� Di denotes the operator of (weak) differentiation with respect to xi .

� D D .D0;Dn/D .D1; : : : ;Dn�1;Dn/.

� L is a linear uniformly elliptic operator with measurable coefficients

Lu��aij .x/DiDj uC bi.x/Diu; �In � .a
ij .x//� ��1In; (1)

where In is the n� n identity matrix. We define b.x/D .b1.x/; : : : ; bn.x//.

� We use the letters C and N (with or without indices) to denote various constants. To indicate that,
say, C depends on some parameters, we list them in parentheses: C. � � � /.

Definition 1.1. We say that a function � W Œ0; 1�! RC belongs to the class D1 if

� � is increasing, �.0/D 0, and �.1/D 1;

� �.t/=t is summable and decreasing.

Remark 1.2. Our assumption about the decay of �.t/=t is not restrictive. Indeed, for any increasing
function � W Œ0; 1�! RC satisfying �.0/D 0 and �.1/D 1 and having summable �.t/=t , we can define

Q�.t/D t sup
�2Œt;1�

�.�/

�
; t 2 .0; 1/:

It is easy to see that Q� 2 D1, Q�.t/=t decreases and �.t/6 Q�.t/ for all t 2 .0; 1�.

Definition 1.3. Let a function � belong to the class D1. We define the function J� as

J� .s/ WD
sZ

0

�.�/

�
d�: (2)



442 DARYA E. APUSHKINSKAYA AND ALEXANDER I. NAZAROV

Remark 1.4. The decreasing of �.t/=t implies

�.t/6 J� .t/ 8t 2 Œ0; 1�: (3)

In addition, for t 6 t0 6 1, we have

�.t=t0/D
�.t=t0/

t=t0
� t=t0 6

�.t/

t
� t=t0 D

�.t/

t0
; (4)

and, similarly,

J� .t=t0/6
J� .t/

t0
: (5)

Definition 1.5. We say that a function � satisfies the Dini condition at zero if

j�.r/j6 C�.r/;

and � belongs to the class D1.

2. Preliminaries

Properties of �. Let � be a bounded domain in Rn. Without loss of generality, we may assume 0 2 @�.
Suppose that � is locally convex in a neighborhood of the origin. Without restriction, the latter means

that for some 0<R0 6 1, we have

PR0
\�D

˚
.x0;xn/ 2 Rn

W jx0j6R0; F.x0/ < xn <R0

	
;

where F is a convex nonnegative function satisfying F.0/D 0.
For r 2 .0;R0/, we define the functions ı D ı.r/ and ı1 D ı1.r/ by the formulas

ı.r/ WD max
jx0j6r

F.x0/

jx0j
; ı1.r/ WD max

jx0j6r
jrF.x0/j: (6)

Lemma 2.1. The following statements hold:

(a) ı1.r/! 0 as r ! 0 if and only if ı.r/! 0 as r ! 0.

(b) ı1.r/ satisfies the Dini condition at zero if and only if ı.r/ satisfies the Dini condition at zero.

Proof. By the convexity of F , we have for any x0 and z0, the estimate

F.z0/> F.x0/CrF.x0/ � .z0�x0/: (7)

Therefore,

jrF.x0/j> rF.x0/ �
x0

jx0j
> F.x0/

jx0j
;

and, consequently,
ı1.r/> ı.r/: (8)

On the other hand, for any r < 1
2
R0, we can find a point x0� such that

jrF.x0�/j D ı1.r/:
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Choosing

z0 D x0�C r
rF.x0�/

jrF.x0�/j
;

we easily deduce from (7) the inequalities

jz0j6 2r and F.z0/> rı1.r/;

which provide
ı.2r/> ı.jz0j/> 1

2
ı1.r/: (9)

Combining (8) and (9), we conclude that statement (a) is obvious and the integrals

R0Z
0

ı.r/

r
dr and

R0Z
0

ı1.r/

r
dr

converge simultaneously. �
If ı.r/ does not converge to zero as r ! 0, we can easily see that the domain � is contained in a

dihedral wedge with the angle less than � and the edge going through the origin. For this case, the
statement of Theorem 4.2 is proved already in [Apushkinskaya and Nazarov 2000, Theorem 4.3]. For
this reason, we will assume throughout this paper that

ı.r/! 0 as r ! 0: (10)

In view of (10), it is evident that ı and ı1 are moduli of continuity at the origin of the functions
F.x0/=jx0j and jrF.x0/j, respectively.

Properties of X .�/. Let X .�/ be a function space with the norm k �kX ;�. For �1 ��, we will assume

kf kX ;�1
D kf ���1

kX ;�:

We suppose that X .�/ has the following properties:

(i) For an arbitrary measurable function g defined in � and any function f 2 X .�/, the inequality
jg.x/j6 jf .x/j implies g 2 X .�/ and kgkX ;� 6 kf kX ;�.

(ii) For fk 2 X .�/, the convergence fk & 0 a.e. in � implies kfkkX ;�! 0.

Using the terminology of the classic monograph of Kantorovich and Akilov [1982], we may say
that X .�/ is the ideal functional space with order continuous monotone norm (see [Kantorovich and
Akilov 1982, §3, Chapter IV, Part I] for more details).

We will also assume that

(iii) Xloc.�/ contains the Orlicz space Lˆ;loc.�/ with ˆ.�/D e� � � � 1.

Finally, the basic assumption about X .�/ is the Aleksandrov-type maximum principle. Namely,
we denote by W2

X ;loc.�/ the set of the functions u satisfying D.Du/ 2 Xloc.�/, and suppose that
if u 2W2

X ;loc.�/\ C.�/, uj@� � 0, and jbj 2 X .�/ then

u6N0.n; �; kbkX ;�/ � diam.�/ � k.Lu/CkX ;fu>0g: (11)
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Remark 2.2. It is well known from [Aleksandrov 1960; 1963; Bakel0man 1961] (see also the survey
[Nazarov 2005] for further references) that Ln.�/ has property (11). It is also evident that properties
(i)–(iii) are satisfied in Ln.�/. Therefore, Ln.�/ can be treated as a “basic” example of X .�/. As other
examples of the space X .�/, we mention some Lebesgue weighted spaces with power weights (see
[Nazarov 2001]).

Remark 2.3. Unlike the natural properties (i)–(ii), assumption (iii) is a rather “technical” one. With-
out (iii), our arguments from the proof of Step 3 in Theorem 4.1 are not applicable to the approximating
operator L". So, we cannot withdraw (iii) in abstract setting. However, in all known examples of X .�/,
property (iii) is satisfied.

Remark 2.4. Some of the statements that will be referred to in the sequel were proved earlier just for the
case X .�/DLn.�/. However, if all the arguments are based only on the Aleksandrov-type maximum
principle, these statements remain valid for an arbitrary considered space X .�/. In such cases, we will
refer to this remark without any further explanation.

We also need the following convergence lemmas.

Lemma 2.5. Let ffj g be a sequence of measurable functions on �, and let f 2 X .�/. Suppose also that
fj ! 0 in measure on �, and jfj .x/j6 jf .x/j.

Then
kfjkX ;�! 0 as j !1: (12)

Proof. We argue by a contradiction. Suppose (12) fails. Then there exists a subsequence ffjk
g satisfying

kfjk
kX ;� > " > 0 8k 2 N: (13)

Due to the Riesz theorem, there exists also a subsubsequence ffjkl
g such that

fjkl
! 0 a.e. in �:

For simplicity of notation, we renumber the latter subsequence ffjkl
g and denote its elements again by fj .

Setting Qfk WD supj>k jfj j, we can easily see that Qfk & 0 a.e. in �. Now, taking into account
properties (i) and (ii) of the space X .�/, we immediately get a contradiction with inequalities (13). �

Lemma 2.6. Let f 2 X .�/, and let �.�/ WD sup
x2�

kf kX ;B�.x/\�.

Then
�.�/! 0 as �! 0:

Proof. For every � > 0, there exists a point x� D x�.�/ 2� such that

kf kX ;B�.x�/\� >
1
2
�.�/:

Next, for the sequence f� WD f ��B�.x�/, it is evident that jf�j ! 0 in measure on �. An application
of Lemma 2.5 finishes the proof. �

Remark 2.7. We call�.�/WDsupx2� kf kXB�.x/\� the modulus of continuity of the function f in X .�/.
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Lemma 2.8. Let D.Du/ 2 X .�/, let L be defined by (1), and let Lu 2 X .�/. There exists the family of
operators

L" D�aij
" .x/DiDj C bi

".x/Di

with smooth coefficients a
ij
" and bounded coefficients bi

" satisfying

�In � .a
ij
" .x//� �

�1In; x 2�; (14)

jbi
".x/j6 jbi.x/j; x 2�; (15)

k.L�L"/ukX ;�! 0 as "! 0: (16)

Proof. We start with the extension of aij on the whole Rn by the identity matrix and denote by a
ij
"

the standard mollification of extended functions aij . By construction, the coefficients a
ij
" are smooth

functions converging as "! 0 to aij a.e. in �. Moreover, it is clear that inequalities (14) are true.
Further, we set

Qbi
".x/ WDminfjbi.x/j; "�1

g � sign bi.x/: (17)

In view of (17), it is evident that Qbi
"Diu converges as "! 0 to biDiu a.e. in �. We claim that it is

possible to change Qbi
" such that the “corrected coefficients” bi

" satisfy

jbi
"Diuj6 jbiDiuj in �: (18)

Indeed, if j Qbi
"Diuj 6 jbiDiuj in � then (18) holds with bi

" �
Qbi
". Otherwise, consider a point x0 2 �,

where j Qbi
".x

0/Diu.x
0/j> jbi.x0/Diu.x

0/j.

(a) Let Qbi
".x

0/Diu.x
0/ > bi.x0/Diu.x

0/ > 0. In this case, we decrease all the coefficients Qbi
".x

0/

corresponding to the positive summands such that the sums bi
"Diu and biDiu become equal.

(b) Let Qbi
".x

0/Diu.x
0/ < bi.x0/Diu.x

0/ 6 0. In this case, we decrease all the coefficients Qbi
".x

0/

corresponding to the negative summands such that the sums bi
"Diu and biDiu become equal.

(c) Finally, let Qbi
".x

0/Diu.x
0/ and bi.x0/Diu.x

0/ have different signs. In this case, we apply to
�bi

".x
0/ the arguments from case (a) or from case (b), respectively.

Due to construction, the “corrected sum” bi
"Diu also converges as "! 0 to biDiu a.e. in �, and the

pointwise inequalities (15) hold true.
Finally, taking into account (18) and applying Lemma 2.5, we get (16). �

3. Gradient estimates near the boundary

Lemma 3.1. Let N � Rn
C be an open set, let 
 D �=

p
n� 1, let � > 0, and let

…� D
˚
y 2 Rn

W jyi j< � for i D 1; : : : ; n� 1I 0< yn < 
�
	
:

We assume that jbj 2 X .N / and a function v satisfies the conditions

v 2W2
X ;loc.N /; v > 0 in …�; v > k D constant> 0 on @N \…�:
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Then
v > C1k �C2kkbkX ;N\…� �C3�k.Lv/�kX ;N\…� in N \B
�

4
.z/;

where zD .0; : : : ; 0; 1
2

�/, while C1D

1
16
.1�
 2/, C2DC2.n; �; kbkX ;N /, and C3 D C3.n; �; kbkX ;N /.

Proof. The proof is similar in spirit to [Apushkinskaya and Ural0tseva 1995, Lemma 1].
Consider the barrier function

 .y/D k

��
1�

yn


�

�2

�
jy0j2

�2

�
:

An elementary computation gives

L 6 k

�
2.n� 1/

�2
��1
�

2


 2�2
�

�
CjbjjD j6N1.n; �/jbj

k

�
in…�:

Moreover, setting

S1 D fy 2 @.N \…�/ W jyi j D � for some i D 1; : : : ; n� 1g;

S2 D fy 2 @.N \…�/ W yn D 
�g;

we have
 
ˇ̌
S1[S2

6 06 v;

 
ˇ̌
@N\…�

6 k 6 v
ˇ̌
@N\…�

:

Applying inequality (11) in N \…� to the difference  � v, we obtain

 � v 6N0 � diam.…�/ � k.L �Lv/CkX ;N\…� in N \…�;

and, consequently,

v > k

��
1�

3
4

�


�

�2

�

 2�2

16�2

�
�C2kkbkX ;N\…� �C3�k.Lv/�kX ;N\…�

D
1

16
.1� 
 2/k �C2kkbkX ;N\…� �C3�k.Lv/�kX ;N\…� in N \B
�

4
.z/: �

Our next statement is a version of [Nazarov 2012, Theorem 2.3].

Lemma 3.2. Let v 2 W2
X ;loc.�/\ C.�/, let vj@� D 0, and let jbj 2 X .�/. Suppose also that for all

� 6 �� 6 1, the inequalities

kbn
kX ;P�\� 6B�.�=��/; k.Lv/CkX ;P�\� 6 F�.�=��/

hold true. Here B and F are some positive constants, while the function � belongs to D1.
Then

sup
0<xn<�

v.0;xn/

xn
6 C4

�
��1 sup

P�\�
vCFJ� .�=��/

�
8� 6 ��: (19)

Here the constant C4 depends on n, �, B, � , and on the moduli of continuity of jb0j in X .P��\�/,
whereas J� is a function defined by formula (2).
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Remark 3.3. We recall that 0 2 @�.

Proof. First, we assume that � 6 N�, where N� 6 �� will be fixed later. Following [Nazarov 2012], we
introduce the sequence of cylinders P�k ;hk

, with k > 0, where �k D 2�k� and hk D �k�k , while the
sequence �k # 0 will be chosen later.

We set wk D v�Mkxn, where the quantities Mk , with k > 1, are defined as

Mk D sup
P�k ;hk�1

\�

v.x/

max fxn; hkg
> sup
fP�k ;hk�1

nP�k ;hk
g\�

v.x/

xn
:

It is easy to see that wk 6 0 on @�\P�k ;hk
, while the definition of Mk gives wk 6 0 on the top of the

cylinder P�k ;hk
.

Let x0 2 P�k�hk ;hk
\�. Taking into account Remark 2.4, we apply the so-called “boundary growth

lemma” (see, for instance, [Ladyzhenskaya and Ural0tseva 1985, Lemma 2.50], [Safonov 2010, Lemma 2.6]
or [Nazarov 2012, Lemma 2.2]) to the (positive) function Mkhk � wk in Phk

.x00/\�. It gives for
x 2 Phk=2;hk

.x00/\�,

Mkhk �wk.x/>Mkhk

�
# �N2kbkX ;P�k

\�

�
�N3hkk.Lwk/CkX ;Phk

.x00/\�; (20)

where # D #.n; �; �;B/ 2 .0; 1/ and the positive constant N2 depends on the same parameters as # ,
whereas the positive constant N3 is completely defined by the values of n, � and B. We suppose that N� is
so small that the quantity in the square brackets is greater than #=2. Further, direct calculation shows that
the assumptions of our lemma imply

k.Lwk/CkX ;Phk
.x00/\� 6 k.Lv/CkX ;Phk

.x00/\�CMkkb
n
kX ;Phk

.x00/\�

6 .FCMkB/�.�k=��/:

Substituting the last inequality into (20) and taking the supremum with respect to x0, we obtain

sup
P�k�hk ;hk

\�

wk 6Mkhk

�
1�#=2CN2B�.�k=��/

�
CN3hkF�.�k=��/:

Repeating previous arguments provides for all integers m6 �k=hk the inequalities

sup
P�k�mhk ;hk

\�

wk 6Mkhk

�
.1�#=2/mCN2B

�.�k=��/

#=2

�
CN3hkF

�.�k=��/

#=2
:

Setting mD b�kC1=hkc, we arrive at

sup
P�kC1;hk

\�

wk 6
Mkhk

1�#=2

�
exp

�
��
�kC1

hk

�
CN2B

�.�k=��/

#=2

�
CN3hkF

�.�k=��/

.1�#=2/#=2
;

where �D� ln .1�#=2/ > 0.
Therefore, for x 2 P�kC1;hk

\�,

wk.x/

max fxn; hkC1g
6Mk
k CN3F

�.�k=��/

.1�#=2/#=2
�

2�k

�kC1

; (21)
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where


k D
1

1�#=2

2�k

�kC1

�

�
exp

�
�
�

2�k

�
CN2B

�.�k=��/

#=2

�
:

Estimate (21) implies

MkC1 6Mk.1C 
k/CN3F
�.�k=��/

.1�#=2/#=2
�

2�k

�kC1

6M1 �

kY
jD1

.1C 
j /C 2N3F �

kX
jD1

�.�j=��/
�j

�jC1

�

k�1Y
lDj

.1C 
l/:

We set �kD1=.kCk0/ and choose k0 so large and N�=�� so small that 
16 1
2

. Note that k0Dk0.n; �; �;B/,
whereas N�=�� depends on the same parameters as k0 and, in addition, on the moduli of continuity of jb0j
in X .P�� \�/.

Now we observe that the first term in 
k forms a convergent series. The same is true for the second
term, since

1X
kD1

�.2�k�=��/�

1Z
0

�.2�s�=��/ ds � J� .�=��/:

Therefore, the infinite product …D
Q

k.1C 
k/ also converges, and we obtain for k > 1, the inequality

Mk 6… �
�

M1C 2N3F �

kX
jD1

�.�j=��/
�j

�jC1

�
6… �

�
M1CN4.n; �; �;B/FJ� .�=��/

�
: (22)

Thus, all Mk are bounded. It remains only to note that

M1 6
1

h1
sup

P�=2\�

v: (23)

Combining (22) and (23), we arrive at

sup
0<xn<�=2

v.0;xn/

xn
6N5.n; �; �;B/

�
��1 sup

P�=2\�

vCFJ� .�=��/
�
: (24)

Further, it is easy to find a majorant for v.0;xn/=xn for any xn 2 Œ�=2; �/ since

sup
�=26xn<�

v.0;xn/

xn
6 2��1 sup

�=26xn<�

v.0;xn/6 2��1 sup
P�\�

v: (25)

Combining (24) and (25) implies (19) with C4 Dmax fN5; 2g for � 6 N�.
Now, we consider � > N�. If xn < N� then the estimate

v.0;xn/

xn
6 2N5

�
N��1 sup

P�\�
vCFJ� .�=��/

�
(26)

follows from the above arguments. Otherwise, i.e., for xn > N�, inequality (26) is especially true. Thus,
for � > N�, we again arrive at (19) with C4 Dmax fN5; 2g N�

�1. �
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4. Main results

Recall that � satisfies the assumptions on page 442. Throughout this section, we shall suppose that L is
defined by (1), jbj 2 X .�/, and a function u satisfies the assumptions

u 2W2
X ;loc.�/\ C.�/; LuD 0 in �; uj@�\PR0

D 0: (27)

Theorem 4.1. Let the inequality

sup
x2PR0=2

kbn
kX ;P�.x0/\� 6B�.�=R0/

hold true for all � 6 1
2
R0. Here B is a positive constant, and a function � 2 D1 satisfies

J� .t/D o.ı.t// as t ! 0: (28)

Then, there exists a sufficiently small positive number R0 completely defined by n, �, R0, B, by the
functions � , ı, and by the moduli of continuity of jb0j in X .�/ such that for any r 2

�
0; 1

2
R0

�
, we have

osc
�\Pr=4

u.x/

xn
6 .1� ~ı.r// osc

�\P2r

u.x/

xn
: (29)

Here the constant ~ 2 .0; 1/ is completely determined by n, �.

Proof. The proof will be divided into 3 steps.

Step 1: Our arguments are adapted from [Apushkinskaya and Ural0tseva 1995, Lemma 2; Ural0tseva
1996, Lemma 3]. Let us denote

m˙ D sup
�\P2r

˙
u.x/

xn
; ! DmCCm� D osc

�\P2r

u.x/

xn
:

Since uj@� D 0, we have m˙ > 0. Therefore, at least one of the numbers m˙ is not less than 1
2
!, and

both of the numbers m˙ are less than !.
Let mC > 1

2
! for definiteness. Then we consider the nonnegative function v.x/ D mCxn � u.x/

in �\P2r ; if m� > 1
2
! then we consider the function v.x/Dm�xnCu.x/.

Due to the definition of ı, for any sufficiently small r > 0, we can find a point x� 2 @Pr \ @� such
that x�n D rı.r/. Without loss of generality, we may assume that x�

1
D r and x�� D 0 for � D 2; : : : ; n�1.

Next we assign to x� a local orthogonal coordinate system y1; : : : ;yn such that

(a) the y1-axis is directed along the projection of the vector .x�
1
; : : : ;x�

n�1
/ onto a tangential hyperplane

to @� at x�;

(b) the y2-, : : : , yn�1-axes are parallel to the x2-, : : : , xn�1-axes, respectively;

(c) the yn-axis is directed inside �.

Due to the extremal property of x�, the axes y1; : : : ;yn�1 lie in the supporting hyperplane to @�
at x�. Moreover, if x� is a smooth point of @� then yn is directed along the inward normal to @�.



450 DARYA E. APUSHKINSKAYA AND ALEXANDER I. NAZAROV

ϕ

rδ(r)

B   (z  )0
0ρ

γr/2
r/2

r

x*

r x1

xn

yn

y
1

ϕΩ

∂Ω

Π

Figure 1. Schematic view of … and B�0
.z0/.

Setting 
 D �=
p

n� 1, we consider in y-coordinates the cylinder

… WD
˚
y 2 Rn

W
ˇ̌
y1�

1
2
r
ˇ̌
< 1

2
r; jy� j<

1
2
r; 0< yn <

1
2

 r
	
;

and the ball B�0
.z0/ with �0 D

1
8

 r and z0 D

�
1
2
r; 0; : : : ; 0; 1

4

 r
�
.

It should be emphasized that from now on, all considerations will be carried out in x-coordinates.
We claim that

B�0
.z0/��: (30)

Indeed, assume that (30) fails. Then there is a point Ox 2 B�0
.z0/ satisfying (in x-coordinates) the

inequalities
F. Ox0/> Oxn > z0

n � �0: (31)

Since Ox 2 B�0
.z0/, it is clear that j Ox0j6 2r and

F. Ox0/6 2rı.2r/:

On the other hand, denoting by ' the angle between the xn- and yn-axes (see Figure 1), we conclude that

z0
n � �0 D rı.r/C 1

2
r sin'C 1

4

 r cos' � 1

8

 r > 1

8

 r.2 cos' � 1/:

Thus (31) is transformed into

 .2 cos' � 1/6 16ı.2r/: (32)

In view of (10) and Lemma 2.1, one can choose R0 so small that ı1.R0/ 6 3
4

. It guarantees for all
r 6 1

2
R0, the inequalities

cos' D
1p

1C tan2 '
> 1p

1C ı2
1
.r/
> 1p

1C ı2
1
.R0/

> 4

5
: (33)

Now, combining (33) and (32), we get a contradiction with relation (10) provided ı.R0/ is small enough.
The proof of (30) is complete.
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Step 2: With (30) at hand, we observe that

inffxn W x 2�\…g> rı.r/:

On the other hand, the condition uD 0 for x 2 @�\… gives the estimate

v DmCxn > 1
2
!xn on @�\…:

Hence,
v > 1

2
!rı.r/DW k0 on @�\…: (34)

So, we can apply Lemma 3.1 to the function v in cylinder …. This gives the estimate

inf
B�0

.z0/
v >

�
k0

�
C1�C2kbkX ;�\P2r

�
�C3!rkbn

kX ;�\P2r

�
C
;

where C1, C2 and C3 are the constants from Lemma 3.1. Decreasing R0, if necessary, we may assume
that kbkX ;�\PR0

6 C1=.2C2/. Thus, we arrive at

inf
B�0

.z0/
v >

�
k0

1
2
C1�C3!rkbnkX ;�\P2r

�
C
DW k1: (35)

Consider now an arbitrary point QzD .Qz0; 1
4
rC 1

8
�0/ such that jQz0j6 1

4
r . Observe also that B�0

.Qz/��,
otherwise we get a contradiction with the definition of ı.r/.

We claim that
inf

B�0=8.Qz/
v >

�
k0
zC1�

zC2!rkbn
kX ;�\P2r

�
C
; (36)

where zC1 D
zC1.n; �/, whereas zC2 is determined completely by n, �, and kbkX ;�. Indeed, due to the

convexity of �, for l running from 1 to a finite number NDN.n; �/ chosen so that

4

3�0
jz0
� Qzj6N6 2

�0
jz0
� Qzj; (37)

and for points zŒl� WD z0� .l=N/.z0� Qz/, we have B�0
.zŒl�/��. It should be emphasized that the lower

and the upper bounds in (37) do not depend on r .
In view of (35), we can compare in B.zŒ1�; 1

8
�0; �0/ the function v with the standard barrier function

w.x/D k1

jx� zŒ1�j�s � ��s
0�

1
8
�0

��s
� ��s

0

:

If s D n��2 then elementary calculation guarantees the estimates

Lw 6 jbjjDwj6 c.n; �/k1jbj�
�1
0 in B.zŒ1�; 1

8
�0; �0/;

w.x/D k1 6 v.x/ on the sphere jx� zŒ1�j D 1
8
�0;

w.x/D 06 v.x/ on the sphere jx� zŒ1�j D �0:

Applying the maximum principle (11) in B
�
zŒ1�; 1

8
�0; �0

�
to the difference w� v gives us the inequality

v.x/>
�
k1

�
w.x/� 2cN0kbkX ;�\P2r

�
�N0

1
4

 r!kbnkX ;�\P2r

�
C
:
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Since B�0=8.z
Œ2�/� B

�
zŒ1�; 1

8
�0;

7
8
�0

�
, the evident bound w > �.n; �/ holds true in B�0=8.z

Œ2�/.
Decreasing R0, if necessary, we ensure that kbkX ;�\PR0

6 .4cN0/
�1� . This implies

inf
B�0=8.zŒ2�/

v.x/>
�

1
2
k1� �N0

1
4

 r!kbnkX ;�\P2r

�
C
DW k2:

Repeating this procedure for B
�
zŒl�; 1

8
�0; �0

�
and l D 2; : : : ;N, we arrive at (36) with zC1D

�
1
2
�
�N and

zC2 DN0
1
4

 �

1�
�

1
2
�
�N

1� 1
2
�

:

Furthermore, it is clear that�
k0
zC1�

zC2r!kbn
kX ;�\P2r

�
C
> !r

�
1
2
zC1ı.r/� zC2B�.r=R0/

�
C
;

while inequalities (3) and (4) guarantee that

�.r=R0/6
J� .r/
R0

:

Decreasing R0 again and taking into account the assumption (28) and the above inequalities, we can
transform (36) into the form

inf
B�0=8.Qz/

v > 1
4
zC1!rı.r/DW Qk: (38)

Step 3: Now, we take a small � > 0, define the set

A� WD B
�
Qz; 1

8
�0; Qzn

�
\�\

˚
x 2 PR0

W F.x0/C � < xn <R0

	
and introduce in A� the barrier function

W .x/D � Qk
jx� Qzj�s � .Qzn/

�s�
1
8
�0

��s
� .Qzn/�s

;

where s D n��2 and 0< �6 1.
Notice that D.Du/ 2 X .A�/. Using Lemma 2.8, we construct the family of operators L" satisfying

kL"ukX ;A� ! 0 as "! 0.
Arguing in the spirit of the proof of Lemma 4.2 [Ladyzhenskaya and Ural0tseva 1988], we define v1.x/

and v2.x/ as solutions of the problems�
L"v1 D bi

"DiW in A�;
v1 D v on @A�;

�
L"v2 D bi

"DiW � bn
"mC in A�;

v2 D 0 on @A�:

It is well known (see, for instance, [Krylov 2008, Chapter 6]) that D.Dv1/ and D.Dv2/ belong to
the space BMOloc.A�/. Moreover, the John–Nirenberg theorem [1961] (see also [Duoandikoetxea 2001,
§4, Chapter 6]) implies that D.Dvi/, with i D 1; 2, belong to the Orlicz space Lˆ;loc.A�/ with ˆ.�/D
e����1. So, taking into account the property (iii), we may conclude that vi 2W2

X ;loc.A�/, with i D 1; 2.



A COUNTEREXAMPLE TO THE HOPF–OLEINIK LEMMA (ELLIPTIC CASE) 453

Furthermore, in view of (38) and by direct calculation, we have the inequalities

L"W 6 bi
"DiW in A�;

W .x/D � Qk 6 v.x/D v1.x/ on the sphere jx� Qzj D 1
8
�0;

W .x/D 06 v.x/D v1.x/ on @A� \fx 2 Rn
W jx� Qzj D Qzng:

On the rest of @A�, we have xn D F.x0/C � and, consequently, distfx; @�g6 �. Since u 2 C.�/, the
latter inequality implies the estimate u6H.�/ there, and therefore,

v1.x/D v.x/DmCxn�u> 1
2
!xn�H.�/;

where H is a nonnegative function tending to zero as �! 0.
In addition, it is easy to verify that

W .x/6 �N6.n; �/ zC1!ı.r/xn in B
�
Qz; 1

8
�0; Qzn

�
:

Choosing �Dminf1; .2N6
zC1/
�1g, we get

v1.x/>W .x/�H.�/ on @A�:

The maximum principle (11) applied to the difference W �H.�/� v1 in A� provides the inequality

v1.x/>W .x/�H.�/> �N7.n; �/ zC1!ı.r/.Qzn� jx� Qzj/�H.�/:

It follows from the last inequality with x D .Qz0;xn/ 2� and 0< xn 6 Qzn�
1
8
�0 D

1
4
r that

v1.Qz
0;xn/>N8.n; �/ ! ı.r/xn�H.�/: (39)

Next, we look for a majorant for v2. With this aim in view, we extend the coefficients a
ij
" continuously

and the coefficients bi
" by zero to the whole annulus B

�
Qz; 1

8
�0; Qzn

�
, and denote by Qv2.x/ the solution of

the problem

L" Qv2 D

�
.L"v2/C in A�;
0 in B

�
Qz; 1

8
�0; Qzn

�
nA�;

Qv2 D 0 on @B
�
Qz; 1

8
�0; Qzn

�
:

The maximum principle guarantees
v2 6 Qv2 in A�: (40)

Direct computations show that for � 6 1
4
r the barrier function W satisfies in the set

E� WD P�.Qz0; 0/\B
�
Qz; 1

8
�0; Qzn

�
the following inequalities

jDnW j6 jDW j6N9.n; �/ �
Qk

r
6N9 ! ı.r/;

jD0W j6N9�
Qk�

r2
6N9 !

ı.r/�

r
:
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So, in view of (15) and (10), we have for all � 6 1
4
r , the bounds

k.L" Qv2/CkX ;E� 6 kbn
kX ;E�

�
mCCkDnW k1;E�

�
Ckb0kX ;E�kD

0W k1;E�

6N10.n; �/ !

�
B�

�
�

R0

�
C
ı.r/

r
�kb0kX ;A�

�
:

Since the function � 7!
�
B�.�=R0/C .ı.r/=r/�kb0kX ;A�

�
satisfies the Dini condition at zero, there

exist the uniquely defined function �1 2 D1 and a constant B1 such that

B�

�
�

R0

�
C
ı.r/

r
�kb0kX ;A� DB1�1

�
4�

r

�
:

Thus, we may apply Lemma 3.2 to the function Qv2. It gives for �D 1
4
r the estimate

sup
0<xn<r=4

Qv2.Qz
0;xn/

xn
6 C4

��
1
4
r
��1 sup

Er=4

Qv2CN10!B1J�1
.1/
�
: (41)

It is easy to see that

B1J�1
.1/DBJ�

�
r

4R0

�
C

1
4
ı.r/kb0kX ;A� :

Furthermore, applying (11) to Qv2 and to the operator L" in B
�
Qz; 1

8
�0; Qzn

�
, we obtain

sup
Er=4

Qv2 6 sup
B.Qz;�0=8;Qzn/

Qv2 6N11.n; �; kbkX ;�/ !r
�
B�

�
r

R0

�
C ı.r/kb0kX ;A�

�
:

Substitution of the above estimates in (41) and consideration of (3) provide

sup
0<xn<r=4

Qv2.Qz
0;xn/

xn
6N12 !

�
BJ�

�
r

R0

�
C ı.r/kb0kX ;A�

�
; (42)

where the constant N12 depends only on n, � and kbkX ;�.
Taking into account the inequality (5), the assumption (28), and the evident relation kb0kX ;A D o.1/

as r ! 0, we decrease R0 such that the property

BJ�
�

r

R0

�
C ı.r/kb0kX ;A� 6

N8

2N12

ı.r/ (43)

holds true for all r 6R0.
Finally, combining (39)–(40) with (42)–(43), we arrive at the estimate

v1.Qz
0;xn/� v2.Qz

0;xn/> 1
2
N8!ı.r/xn�H.�/ (44)

for r 6R0 and x D .Qz0;xn/ 2� with xn 2
�
F.Qz0/C �; 1

4
r
�
.

Considering in A� the function v3.x/D v.x/� v1.x/C v2.x/, one can easily see that

L"v3 D�L"u! 0 in X .A�/ as "! 0:
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In addition, v3 D 0 on @A�. Applying the maximum principle (11) to ˙v3 and to the operator L", we
obtain that the difference v1.x/� v2.x/ converges to v.x/ uniformly in A�. Therefore, passing in (44)
first to the limit as "! 0 and then as �! 0, we get

v.x/

xn
> 1

2
N8!ı.r/ (45)

for r 6R0 and x D .Qz0;xn/ 2� with xn 2 ŒF.Qz
0/; 1

4
r �.

Since Qz0 can be chosen arbitrarily with only jQz0j6 1
4
r , the estimate (45) gives (29) with ~ D 1

2
N8. �

Theorem 4.2 (main theorem). Let the assumptions of Theorem 4.1 hold, and suppose

ı.r/D max
jx0j6r

F.x0/

jx0j

does not satisfy the Dini condition at zero.
Then for any function u satisfying (27), the equality

@u

@n
.0/D 0

holds true.

Proof. Consider the sequence rk D 8�kR0, with k > 0, where R0 is the constant from Theorem 4.1.
Applying Theorem 4.1 to u guarantees for k > 0 the inequalities

osc
�\PrkC1

u.x/

xn
6
�
1� ~ı

�
1
2
rk

��
osc

�\Prk

u.x/

xn
6 osc
�\PR0

u.x/

xn
�

kY
jD0

�
1� ~ı

�
1
2
rj
��
:

Since
1X

jD0

ln
�
1� ~ı

�
1
2
rj
��
��

1X
jD0

ı
�

1
2
rj
�
��

r0Z
0

ı.r/

r
dr D�1;

we have
kY

jD0

�
1� ~ı

�
1
2
rj
��
! 0 as k!1:

We recall also that Lemma 3.2 implies the finiteness of the quantity osc
�\PR0

.u.x/=xn/.

Thus, taking into account that uj@�\PR0
D 0, we getˇ̌̌̌

@u

@n
.0/

ˇ̌̌̌
D

ˇ̌̌̌
lim

xn!0

u.0;xn/

xn

ˇ̌̌̌
6 lim

k!1

ˇ̌̌̌
osc

�\Prk

u.x/

xn

ˇ̌̌̌
D 0: �
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