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This article resolves some errors in the paper “Scattering threshold for the focusing nonlinear Klein–
Gordon equation”, Anal. PDE 4:3 (2011), 405–460. The errors are in the energy-critical cases in two and
higher dimensions.

1. The errors and the missing ingredient

This article resolves some errors in [Ibrahim et al. 2011]. One correction affects also [Ibrahim et al. 2014;
2015]; henceforth, we refer to these papers by their years only. The major errors are the following three,
one in [2011, Section 2] for the existence of mass-shifted ground state in the two-dimensional energy-
critical case, and two in [2011, Section 5] for the nonlinear profile decomposition in the higher-dimensional
energy-critical case:

(1) In the proof of [2011, Lemma 2.6], it is not precluded that the weak limit Q in [2011, (2-67)] is zero.
Hence the existence of Q in the case c ≤ 1 is not proved.

(2) In [2011, (5-56)], we do not have ‖
→

Vn(τn) −
→

V∞(τn)‖L2
x
→ 0 when h∞ = 0, τ∞ = ±∞ and

lim infn→∞ |τnh2
n|>0. Indeed, assuming that τnh2

n→m∈[−∞,∞] after extraction of a subsequence,
we have

‖
→

Vn(τn)−
→

V∞(τn)‖L2
x
→

{
‖(eim/(2|∇|)

− 1)ψ‖L2
x
(|m|<∞),

√
2‖ψ‖L2

x
(m =±∞).

(1-1)

(3) In the proof of [2011, Lemma 5.6], the global bound [2011, (5-96)] does not follow from the uniform
bound on finite time intervals, since the required largeness of n depends on the size of the interval I .

(1) is concerned only with a very critical case of exponential nonlinearity in two dimensions (d = 2).
More precisely, it is problematic only if

0< lim sup
|u|→∞

e−κ0|u|2 |u|2 f (u) <∞, (1-2)
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where κ0 is the exponent in [2011, (1-29)]. Errors (2)–(3) are crucial only in the H 1 critical case of higher
dimensions d ≥ 3, with h∞ = 0: the concentration by scaling in the nonlinear profile, where we need to
modify the definition of the nonlinear concentrating waves and then solve the massless limit problem for
the nonlinear Klein–Gordon equation (NLKG) (see Theorem 3.1 below). In the other case, i.e., with the
subcritical or exponential nonlinearity or with h∞ = 1, we still need to take care of (3), but it is a rather
superficial change.

2. Correction for (1)

We do not know if [2011, Lemma 2.6] holds true in the very critical case (1-2). So we add the assumption

lim sup
|u|→∞

e−κ0|u|2 |u|2 f (u) ∈ {0,∞} (2-1)

in [2011, Proposition 1.2(3)] and [2011, Lemma 2.6]. The existence of Q was used in [2011] only to
characterize the threshold energy m, so the rest of the paper is not affected by it.

In [2014, (1.24)], the existence of Q is mentioned to characterize the threshold m(c). It should also be
restricted by (2-1), but the rest of [2014] does not really need Q. Removing Q, [2014, (2.3)] should be
replaced with

m ≤ H (c)
p (ϕ), (2-2)

[2014, (2.6)] should be replaced with

m ≤ J (c)(λϕ)= H (c)
p (λϕ)≤ H (c)

p (ϕ), (2-3)

and [2014, (2.7)] with

ÿ = (2+ p)‖u̇‖2L2 + 2p(H (1)
p (u)−m)= (4+ ε)‖u̇‖2L2 + (1− c)ε‖u‖2L2 + 2p(H (c)

p (u)−m)

≥
(
1+ 1

4ε
)
ẏ2/y+ (1− c)εy. (2-4)

The existence of Q is also mentioned in [2015, Theorem 5.1]. It should be also restricted by (2-1).
The rest of [2015] remains unaffected.

We still need to prove [2011, Lemma 2.6] under the new restriction (2-1). If the limit (2-1) is infinite,
then [2015, Theorem 1.5(B)] implies C?

TM(F)=∞> 1. In this case, the proof of [2011, Lemma 2.6]
remains valid. If the limit (2-1) is zero, then [2015, Theorem 1.5(B)] implies C?

TM(F) <∞. In this case,
we do not argue as in [2011], but rely on the compactness [2015, Theorem 1.5(C)]. Let ϕn ∈ H 1(R2) be a
normalized maximizing sequence for C?

TM(F), i.e.,

‖ϕn‖L2 = 1, κ0‖∇ϕn‖
2
L2 ≤ 4π, 2F(ϕn)→ C := C?

TM(F) ∈ (0,∞). (2-5)

By the standard rearrangement and the H 1 boundedness, we may assume that the ϕn are radially decreasing
and ϕn→ϕ weakly in H 1(R2) for some ϕ. By [2015, Theorem 1.5(C)], we have 2F(ϕn)→2F(ϕ)=C>0.
In particular, ϕ 6= 0. Since κ0‖∇ϕ‖

2
L2 ≤ 4π and ‖ϕ‖L2 ≤ 1 by the weak convergence, we deduce from

the definition of C?
TM(F) that ‖ϕ‖L2 = 1 and ϕ is a maximizer. Hence, for a Lagrange multiplier µ≥ 0,

f ′(ϕ)−Cϕ =−µ1ϕ. (2-6)



CORRECTION: SCATTERING THRESHOLD FOR THE FOCUSING NONLINEAR KLEIN–GORDON EQUATION 505

That µ 6= 0 is obvious by the decay order of f ′ as ϕ→ 0. Hence µ > 0 and so κ0‖∇ϕ‖
2
L2 = 4π , since

otherwise we could increase both F(ϕ) and ‖∇ϕ‖2L2 by the L2 scaling ϕλ1,−1 with λ > 0, using the L2

supercritical condition [2011, (1-21)]. Then Q(x) := ϕ(µ−1/2x) ∈ H 2(R2) satisfies

−1Q+C Q = f ′(Q), κ0‖∇Q‖2L2 = 4π, 2F(Q)= C‖Q‖2L2 . (2-7)

Hence J (C)(Q)= 1
2‖∇Q‖2L2 = 2π/κ0. The rest of the proof of [2011, Lemma 2.6], namely the proof of

mα,β = m0,1 = 2π/κ0, remains valid.

3. Correction for (2)–(3)

For (2)–(3), we do not have to modify the main results, but need to correct the proof, including the
definition of the nonlinear profile decomposition. Henceforth, we always assume that 0 < hn → h∞,
(tn, xn) ∈ R1+d and τn =−tn/hn→ τ∞ ∈ [−∞,∞] are sequences. The main problematic case is when
the energy concentrates, namely h∞= 0, which can happen only in the energy critical case [2011, (1-28)]

d ≥ 3, f (u)=
|u|2

?

2?
, 2? =

2d
d − 2

. (3-1)

First we modify the vector notation in [2011, (4-1)]. For any real-valued function a(t, x), the complex-
valued functions →a, ⇀a and ⇁a are defined by

→a := (〈∇〉− i∂t)a,
⇀a := (〈∇〉n − i∂t)a,

⇁a := (〈∇〉∞− i∂t)a, (3-2)

where 〈∇〉∗ =
√

h2
∗
−1 as in [2011, (5-1)]. Hence a is recovered from either of them by

a = Re 〈∇〉−1→a = Re 〈∇〉−1
n

⇀a = Re 〈∇〉−1
∞

⇁a. (3-3)

Note that (⇁a, a) was denoted by (→a, â) in [2011], but it was confusing. Indeed, u(n) in [2011, (5-55)] did
not make sense if h∞ = 0, since →u(n) in [2011, (5-54)] was not in the form [2011, (4-1)]. So we replace
[2011, (5-54)] with

→u(n) = Tn
⇀

U(n)((t − tn)/hn), (3-4)

where
⇀

U(n) is defined by

⇀

Vn := ei t〈∇〉nψ,
⇀

U(n) =
⇀

Vn − i
∫ t

τ∞

ei(t−s)〈∇〉n f ′(U(n)) ds. (3-5)

Then u(n) = hnTnU(n)((t − tn)/hn) is a solution of NLKG satisfying

lim
t→τ∞
‖(
→u(n)−

→
vn)(thn + tn)‖L2

x
= 0. (3-6)

In other words, we keep NLKG in defining the profiles, even if h∞ = 0. Note that if h∞ = 1 then
⇀

U(n) =
→

U∞ and so u(n) is unchanged.
By the change of [2011, (5-54)] to (3-4), the problematic [2011, (5-56)] is replaced with

‖
→un(0)−

→u(n)(0)‖L2
x
=

∥∥∥∥∫ 0 (=τnhn+tn)

τ∞hn+tn
e−is〈∇〉 f ′(u(n)) ds

∥∥∥∥
L2

x

→ 0. (3-7)
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In order to prove the last limit as well as the global Strichartz approximation for (3), we need the
convergence in the massless limit of the H 1 critical NLKG:

Theorem 3.1. Assume [2011, (1-28)] and h∞ = 0. Let
⇁

U∞ be the solution of

⇁

V∞ := ei t |∇|ψ,
⇁

U∞ =
⇁

V∞− i
∫ t

τ∞

ei(t−s)|∇| f ′(U∞) ds. (3-8)

Let
⇀

U(n) be the solution of (3-5) and →u(n)(t) := Tn
⇀

U(n)((t− tn)/hn). Suppose that U∞ ∈ [W ]•2(J ) for some
interval J whose closure in [−∞,∞] contains τ∞. Then for any bounded subinterval I ⊂ J we have,
as n→∞,

‖
⇀

U(n)−
⇁

U∞‖L∞t∈I L2
x
+‖U(n)−U∞‖([W ]•2∩[M]0)(J )+‖u(n)‖[W ]0(J )→ 0,

‖u(n)‖([W ]2∩[M]0)(hn J+tn) ∼ ‖U∞‖([W ]•2∩[M]0)(J )+ o(1).
(3-9)

Postponing the proof of the above theorem to the next section, we continue to correct [2011, Section 5].
Equation (3-7) in the case of h∞ = 0 follows from the above estimate and τn→ τ∞ via Strichartz:∥∥∥∥∫ 0

τ∞hn+tn
e−is〈∇〉 f ′(u(n)) ds

∥∥∥∥
L2

x

. ‖ f ′(u(n))‖[W ∗(1)]2(In)
. ‖u(n)‖2

?
−1

([W ]2∩[M]0)(In)

. ‖U∞‖2
?
−1
[W ]•2∩[M]0(Jn)

+ o(1)= o(1), (3-10)

where In := (0, τ∞hn + tn)∪ (τ∞hn + tn, 0) and Jn := (τn, τ∞)∪ (τ∞, τn).
We modify the definition of ST in [2011, (5-59)–(5-60)] in the Ḣ 1 critical case [2011, (1-28)] to

ST = [W ]2, ST ∗ = [W ∗(1)]2+ L1
t L2

x , ST♦
∞
:=

{
[W ]2 (h♦

∞
= 1),

[W ]•2 (h♦
∞
= 0).

(3-11)

Indeed, [K ]2 and [K ∗(1)]2 norms are not needed in the Ḣ 1 critical case. Then we simply discard the
estimates [2011, (5-61)–(5-62)].

Next we reprove [2011, Lemma 5.5], extending it to unbounded intervals I . The above theorem implies
that we can replace [2011, (5-64)] with the stronger1

lim sup
n→∞

‖u j
(n)‖ST (R) . ‖U j

∞
‖ST j

∞(R)
(3-12)

if h j
∞= 0, while it is trivial if h j

∞= 1. The proof of [2011, (5-65)] for h j
∞= 1 did not use the boundedness

of I, so we may assume that all h j
∞ are 0. Then the above theorem implies that ‖u<k

(n)‖[W ]0(R)→0 as n→∞,
so it suffices to estimate the homogeneous norm [W ]•2(R). We have

‖u<k
(n)‖[W ]•2(R) ∼

d∑
l=1

∥∥∥∥∑
j<k

ǔ j,l
n,m

∥∥∥∥
L p

t `
2
m∈Z Lq

x

(3-13)

with (1/p, 1/q, s)=W and

ǔ j,l
n,m := 2smδl

mh j
nT j

n U j
(n)((t − t j

n )/h j
n). (3-14)

1Recall that Û j
∞ in [2011] is denoted by U j

∞ in this correction according to (3-2).
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Defining ǔ j,l
n,m,R by [2011, (5-77)], we have

‖ǔ j,l
n,m − ǔ j,l

n,m,R‖L p
t `

2
m Lq

x
. ‖2smδl

mU j
(n)‖L p

t `
2
m Lq

x (|t |+|m|+|x |>R)→ 0 as R→∞, (3-15)

which is still uniform in n since, by the above theorem, U j
(n) is approximated by U j

∞ in [W ]•2(R), which
is equivalent to the last norm without the restriction by R. Thus we obtain [2011, (5-65)] by the disjoint
support property for large n.

According to the change of u j
(n), we replace the nonlinear decomposition [2011, (5-66)] with the

simpler form

lim
n→∞

∥∥∥∥ f ′(u<k
(n))−

∑
j<k

f ′(u j
(n))

∥∥∥∥
ST ∗(I )

= 0, (3-16)

which is the same as [2011, (5-66)] if h j
∞ = 1. In that case, however, we used that I was bounded in

[2011, (5-82)]. We replace it with an interpolation between [2011, (4-84)] and

‖ f ′S(u)‖[((1−θ0)K+θ0W )∗(1)]2(I ) . ‖u‖[K ]2(I )‖u‖
p1
[K ]0(I ) . ‖u‖

p1+1
[K ]2(I ), (3-17)

where we can choose some θ0 ∈ (0, 1) since p1 > 4/d (choosing p1 close enough to 4/d if necessary).
Since Z := ((1− θ0)K + θ0W )∗(1) is an interior dual-admissible exponent, we can find some θ1 ∈ (0, 1)
such that θ1Y + (1− θ1)Z is also a dual-admissible exponent. Interpolating (3-17) with [2011, (4-84)],
we have

‖ f ′S(u)− f ′S(v)‖[θ1Y+(1−θ1)Z ]2(I ) . ‖(u, v)‖
p1+1−θ1
[K ]2(I )∩[Q]2p1 (I )

‖u− v‖θ1
[P]2(I ). (3-18)

Thus we obtain [2011, (5-66)] on any subset I in the subcritical and exponential cases. In the Ḣ 1 critical
case [2011, (1-28)], we discard u j

〈n〉 in [2011, (5-85)] and prove (3-16) directly, putting

U j
n,R(t, x) := χR(t, x)U j

(n)(t, x)×
∏{

(1−χh j,l
n R)(t − t j,l

n , x − x j,l
n )

∣∣ 1≤ l < k, hl
n R < h j

n
}
. (3-19)

It is still uniformly bounded in ([H ]•2∩[W ]
•

2)(R), and U j
n,R−χRU j

(n)→ 0 in [M]0(R) as n→∞ thanks
to the above theorem, as well as in [L]0, and also χRU j

(n)→U j
(n) as R→∞. Hence we may replace u j

(n)
in (3-16) by u j

(n),R := h j
nT j

n U j
n,R((t − t j

n )/h j
n), using [2011, (4-62)] for d ≤ 5, and a similar interpolation

argument as above for d ≥ 6; see (4-16)–(4-19) below. Then we obtain (3-16) by the disjoint support
property, in the same way as [2011, (5-94)].

With the above corrections, we now reprove [2011, Lemma 5.6]. First, [2011, (5-100)] holds for any
subset I ⊂R, by the above improvement of [2011, Lemma 5.5]. Now, thanks to the change of u j

(n), [2011,
(5-101)] is simplified to

eq(u<k
(n))= f ′(u<k

(n))−
∑
j<k

f ′(u j
(n)), (3-20)

which is vanishing by (3-16). Hence we obtain [2011, (5-103)]. We also obtain [2011, (5-104)] on R by
the same nonlinear estimates as we used above. Then, applying [2011, Lemma 4.5] on R, we obtain the
desired [2011, Lemma 5.6].
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Section 6 of [2011] is almost unchanged, except for the obvious modification in [2011, (6-6)] due to
the change of u(n), namely

→u j
(n) = T j

n
⇀

U j
(n)((t − t j

n )/h j
n), (3-21)

and the notational change in [2011, (6-7)–(6-9)] from ( EU 0
∞
, Û 0
∞
) to (

⇁

U 0
∞
,U 0
∞
) due to (3-2). Since the

case h∞ = 0 is eliminated in the proof of [2011, Lemma 6.1], the errors (2)–(3) do not affect the rest of
the paper.

4. Massless limit of scattering for the critical NLKG

It remains to prove Theorem 3.1. Throughout this section, we assume [2011, (1-28)]. The main idea is
to decompose the time interval into a bounded subinterval and neighborhoods of ±∞. On the bounded
part, we have strong convergence in the massless limit. In the neighborhoods of t =±∞, we do not have
strong convergence, but the Strichartz norms are uniformly controlled via the asymptotic free profiles.

The first ingredient concerns the uniform Strichartz bound for free waves.

Lemma 4.1. Let →vn = ei t〈∇〉Tnψ , h∞ = 0,
⇁

V∞ = ei t |∇|ψ , and let Z ∈
[
0, 1

2

]
×
[
0, 1

2

)
× [0, 1) satisfy

reg0(Z)= 1 and str0(Z)≤ 0, namely a wave-admissible Strichartz exponent except for the energy norm.
Then we have

lim sup
n→∞

‖vn‖[Z ]2(0,∞) . ‖V∞‖[Z ]•2(0,∞) and lim
n→∞
‖P<1vn‖[Z ]2(0,∞) = 0, (4-1)

where P<a denotes the smooth cut-off for the Fourier region |ξ |<2a defined by P<aϕ=ad30(ax)∗ϕ, with
30∈S(Rd) in the proof of [2011, Lemma 5.1]. If Z3=0, then we have also ‖vn‖[Z ]0(0,∞)→‖V∞‖[Z ]0(0,∞).

Proof. Let →vn(t)= Tn
⇀

Vn(t/hn). The Strichartz estimate for the Klein–Gordon and the wave equations

‖vn‖[Z ]2(0,∞) . ‖Tnψ‖L2 = ‖ψ‖L2, ‖V∞‖[Z ]•2(0,∞) . ‖ψ‖L2 (4-2)

implies that it suffices to consider ψ in a dense subset of L2(Rd). Hence we may assume that Fψ is C∞

with a compact supp Fψ 63 0. Since 0< 〈ξ〉n −〈ξ〉∞ ≤ h2
n/|ξ |,

|(ei t〈ξ〉n 〈ξ〉−1
n − ei t |ξ |

|ξ |−1)|. |t |h2
n|ξ |
−2
+ h2

n|ξ |
−3, (4-3)

and so, under the above assumption on ψ , for any s ∈ R and any sequence Sn > 0,

‖Vn − V∞‖L∞(0,Sn;H s) ≤ 〈Sn〉h2
nC(s, ψ). (4-4)

Hence, by Sobolev in x and Hölder in t ,

‖Vn − V∞‖([Z ]•2∩[Z ]0)(0,Sn) ≤ 〈Sn〉
1+Z1h2

nC(s, ψ). (4-5)

We deduce that if Sn→∞ and S1+Z1
n h2

n→ 0 then, using the (approximate) scale-invariance of [Z ]•2,

‖vn‖[Z ]2(0,hn Sn) ∼ ‖vn‖[Z ]•2(0,hn Sn)+‖P<1vn‖[Z ]0(0,hn Sn),

‖vn‖[Z ]•2(0,hn Sn) ∼ ‖Vn‖[Z ]•2(0,Sn)→‖V∞‖[Z ]•2(0,∞),

‖P<1vn‖[Z ]0(0,hn Sn) ∼ ‖h
Z3
n P<hn Vn‖[Z ]0(0,Sn)→ 0,
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and similarly, if Z3 = 0 then ‖vn‖[Z ]0(0,hn Sn) = ‖Vn‖[Z ]0(0,Sn)→‖V∞‖[Z ]0(0,∞).
Next, the dispersive decay of wave-type for the Klein–Gordon equation

‖ei t〈∇〉ϕ‖B0
q,2
. |t |−(d−1)α

‖ϕ‖Bs
q′,2
, α := 1

2 −
1
q ∈

[
0, 1

2

]
, s := (d + 1)α, (4-6)

together with the embedding Lq ′
⊂ B0

q ′,2 implies that

‖vn(t)‖Bσq,2 . |t |
−(d−1)α

‖〈∇〉
σ+s−1Tnψ‖Lq′ = |t |−(d−1)αh1−α−σ

n ‖〈∇〉
σ+s−1
n ψ‖Lq′ , (4-7)

and so, putting α = 1
2 − Z2,

‖vn‖[Z ]2(hn Sn,∞) ≤ C(ψ)h1−α−Z3
n ‖t−(d−1)α

‖
L

1/Z1
t (hn Sn,∞)

∼ C(ψ)h1−α−Z3
n (hn Sn)

Z1−(d−1)α
= C(ψ)Sα−1+Z3

n → 0, (4-8)

where we used that reg0(Z)= Z3− Z1+ dα = 1 in the last identity and

α− 1+ Z3 = reg0(Z)+ str0(Z)− 1− Z1 < 0 (4-9)

in taking the limit. Note that the above exponent is zero at the energy space Z =
(
0, 1

2 , 1
)
, which

is excluded by the assumption. The estimate in [Z ]0(hn Sn,∞) for Z3 = 0 is done in the same way.
Combining them with the above estimates on (0, hn Sn) leads to the conclusion via a density argument. �

The second ingredient is convergence or propagation of small disturbance on finite intervals, which is
uniformly controlled by the Strichartz norm of U∞.

Lemma 4.2. For any 0< M, ε <∞, there exists δ = δ(ε,M) ∈ (0, 1) with the following property. Let
h∞= 0 and let U∞ be a solution of NLW on some interval J satisfying ‖U∞‖([H ]•2∩[W ]•2)(J )≤M. Then, for
any bounded subinterval I ⊂ J with 0 ∈ I and any ϕn ∈ L2(Rd) with ‖ϕn‖L2 < δ, the unique solution Un

of

(∂2
t −1+ h2

n)Un = f ′(Un),
⇀

Un(0)=
⇁

U∞(0)+ϕn, (4-10)

exists on I for large n, satisfying

‖
⇀

Un −
⇁

U∞‖L∞t L2
x (I )+‖Un −U∞‖([W ]•2∩[M]0)(I ) < ε, (4-11)

and ‖hnTnUn((t − tn)/hn)‖[W ]0(hn I+tn) . δ for large n.

Proof. We give the detail only in the harder case d ≥ 6, where we need the exotic Strichartz norms. Let
γn :=Un −U∞ and 99K

γ n :=
⇀

Un −
⇁

U∞, then

(∂2
t −1)γn = f ′(U∞+ γn)− f ′(U∞)− h2

nUn. (4-12)

Note however that 99K
γ n is not written only by γn . It suffices to prove the following:

Claim. There exist constants θ ∈ (0, 1) and C > 1 such that if

‖U∞‖([W ]•2∩[M̃]•2p)(0,S)
≤ η, ‖

99K
γ n(0)‖L2 � 1, (4-13)
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for some 0< S <∞ and 0< η� 1, where p = 2?− 2= 4/(d − 2), then

‖
99K
γ n‖L∞t (0,S;L2

x )
+‖γn‖[W ]•2(0,S) ≤ C[‖ 99Kγ n(0)‖L2 +‖

99K
γ n(0)‖

θ
L2η

(p+1)(1−θ)
]. (4-14)

Proof of the claim. The exotic Strichartz estimate for the wave equation yields, on the time interval (0, S),

‖γn‖[Ñ ]•2
. ‖⇁γn(0)‖L2 +‖ f ′(U∞+ γn)− f ′(U∞)‖[Y ]2 +‖h

2
nUn‖L1

t L2
x
, (4-15)

while the nonlinear estimate in the Besov space yields

‖ f ′(U∞+ γn)− f ′(U∞)‖[Y ]2 . ‖(U∞, γn)‖
p
[M]0‖γn‖[Ñ ]•2

+‖(U∞, γn)‖
p
[M̃]•2p
‖γn‖[N ]0, (4-16)

and we have ‖⇁γn(0)‖L2 . ‖ 99Kγ n(0)‖L2 + o(1). The L1
t L2

x norm is estimated by

‖h2
nUn‖L1

t L2
x
≤ ‖hn

⇀

Un‖L1
t L2

x
≤ hn S‖ 99Kγ n +

⇁

U∞‖L∞t L2
x
. (4-17)

Define W , O ∈
[
0, 1

2

]3 by

W :=W − 1
2

(
0, 1

d
, 1
)
=

( d−1
2(d+1)

,
d2
−2d−1

2d(d+1)
, 0
)
,

O :=W + pW =
(
(d+2)(d−1)
2(d+1)(d−2)

,
d3
+d2
−6d−4

2(d−2)d(d+1)
,

1
2

)
.

(4-18)

Then O is an interior dual exponent of the standard Strichartz, and so there is small θ ∈ (0, 1) such that
θY + (1− θ)O is also a dual exponent. Hence the standard Strichartz yields, for any wave-admissible
exponent Z ,

‖γn‖[Z ]•2 +‖
⇁
γn‖L∞t L2

x
. ‖⇁γn(0)‖L2 +‖ f ′(U∞+ γn)− f ′(U∞)‖[θY+(1−θ)O]•2 +‖h

2
nUn‖L1

t L2
x
, (4-19)

where the nonlinear part is already estimated in [Y ]•2, while

‖ f ′(U∞+ γn)‖[O]•2 +‖ f ′(U∞)‖[O]•2 . η
p+1
+‖γn‖

p+1
[W ]•2

. (4-20)

Hence we have

‖γn‖[Ñ ]•2
. ‖⇁γn(0)‖L2 + A+ B,

‖γn‖[W ]•2∩[M̃]
•

2p
+‖

⇁
γn‖L∞t L2

x
. ‖⇁γn(0)‖L2 + Aθ (η+‖γn‖[W ]•2)

(1−θ)(p+1)
+ B,

A . (η+‖γn‖[M̃]•2p
)p
‖γn‖[Ñ ]•2

,

B . Shn‖
99K
γ n‖L∞t L2

x
+ o(1).

(4-21)

Assuming that ‖γn‖[M̃]•2p
� 1 and that ‖ 99Kγ n‖L∞t L2

x
is bounded in n, we deduce from the above estimates

that
A�‖γn‖[Ñ ]•2

. ‖⇁γn(0)‖L2 + o(1), B = o(1),

‖γn‖[W ]•2∩[M̃]
•

2p
+‖

⇁
γn‖L∞t L2

x
. ‖⇁γn(0)‖L2 +‖

⇁
γn(0)‖θL2η

(1−θ)(p+1)
+ o(1).

(4-22)

It remains to prove the uniform bound on ‖ 99Kγ n‖L∞t L2
x
. Let V∞, Vn , vn be the free solutions defined by

⇁

V∞ := ei t |∇| ⇁U∞(0),
⇀

Vn := ei t〈∇〉n
⇀

Un(0), Evn = Tn
⇀

Vn(t/hn). (4-23)
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For any 0< Rn→ 0 such that hn/Rn→ 0, we have

‖F
99K
γ n‖L∞(0,S;L2(|ξ |>Rn)) . ‖

⇁
γn‖L∞(0,S;L2

x )
+ o(1). (4-24)

For the lower frequency, we have, by the energy inequality, Hölder and Sobolev,

‖
⇀

Un −
⇀

Vn‖L∞t Ḣ−1
x (0,S) . ‖ f ′(Un)‖L1

t Ḣ−1
x (0,S)

. S‖Un‖
p+1
L∞t Ḣ1

x (0,S)
. S(‖

⇁

U∞‖L∞t L2
x (0,S)+‖

⇁
γn‖L∞t L2

x (0,S))
p+1, (4-25)

and similarly ‖
⇁

U∞−
⇁

V∞‖L∞t Ḣ−1
x (0,S) . S‖

⇁

U∞‖
p+1
L∞t L2

x
. Since |〈ξ〉n −〈ξ〉∞| ≤ hn , we have also ‖

⇀

Vn(t)−
⇁

V∞(t)‖L2
x
. |t |hn‖

⇁

U∞(0)‖L2 + δ. Hence

‖F
99K
γ n‖L∞(0,S;L2(|ξ |<Rn))

≤ Rn‖
⇀

Un −
⇀

Vn‖L∞t Ḣ−1
x (0,S)+‖

⇀

Vn −
⇁

V∞‖L∞t L2
x (0,S)+ Rn‖

⇁

V∞−
⇁

U∞‖L∞t Ḣ−1
x (0,S)

. o(1)S‖⇁γn‖
p+1
L∞t L2

x (0,S)
+ δ+ o(1) (4-26)

Adding this to (4-24), we obtain

‖
99K
γ n‖L∞t L2

x (0,S) . ‖
⇁
γn‖L∞t L2

x (0,S)+ o(1)S‖⇁γn‖
p+1
L∞t L2

x (0,S)
+ δ+ o(1). (4-27)

Combining this with the estimates (4-22), we deduce that both 99K
γ n and ⇁

γn are bounded in L∞t L2
x(0, S). �

To prove (4-11) from this claim, we decompose I into subintervals I j such that ‖U∞‖([W ]•2∩[M̃]•2p)(I j )
≤η

for each j . Then applying the above claim iteratively to the subintervals for small δ > 0 yields (4-11),
where the bound on [M]0 is derived by interpolation and Sobolev embedding of [H ]•2 and [W ]•2.

For the estimate in [W ]0, we have, by scaling,

‖hnTnUn((t − tn)/hn)‖[W ]0(hn I+tn)

∼ h1/2
n ‖Un‖[W ]0(I ) . h1/2

n ‖Un‖[W ]•2(I )+‖P<1vn‖[W ]0(I )+ h1/2
n ‖P<hn (Un − Vn)‖[W ]0(I ), (4-28)

where
⇀

Vn := ei t〈∇〉n
⇀

Un(0) and Evn = Tn
⇀

Vn(t/hn). The first term on the right is vanishing since ‖Un‖[W ]•2(I )

is bounded as shown above. The second term is O(δ) by Lemma 4.1. The third term is bounded — using
Sobolev, Hölder and the same estimate as in (4-25) — by

|I |W1h1/2+d(1/2−W2)
n ‖Un − Vn‖L∞t L2

x (I ) . (|I |hn)
3/2−1/(d+1)(‖

⇁

U∞‖L∞t L2
x (I )+ ε)

p+1
= o(1), (4-29)

hence (4-28) is O(δ) for large n. This concludes the proof of the lemma for d ≥ 6.
The case d ≤ 5 is the same, but the nonlinear estimate is much simpler. In (4-13), [M̃]•2p is replaced

with [M]0, and by the standard Strichartz we have

‖γn‖[W ]•2∩[M]0 +‖
⇁
γn‖L∞t L2

x
. ‖⇁γn(0)‖L2 +‖ f ′(U∞+ γn)− f ′(U∞)‖[W ∗(1)]•2 +‖h

2
nUn‖L1

t L2
x

(4-30)

and
‖ f ′(U∞+ γn)− f ′(U∞)‖[W ∗(1)]•2 . ‖(U∞, γn)‖

p
[W ]•2∩[M]0

‖γn‖[W ]•2∩[M]0

. (η+‖γn‖[W ]•2∩[M]0)
p
‖γn‖[W ]•2∩[M]0 . (4-31)
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Then, estimating ‖h2
nUn‖L1

t L2
x (0,S)

in the same way as for d ≥ 6, we obtain (4-14) without the last term.
Equation (4-28) is the same as above. �

Proof of Theorem 3.1. Let vn , Vn , V∞ be the free solutions defined by
⇀

Vn = ei t〈∇〉nψ,
⇁

V∞ = ei t |∇|ψ, Evn = TnVn((t − tn)/hn), (4-32)

and
M := ‖U∞‖[W ]•2(J ). (4-33)

First consider the case τ∞ =∞. Let 0< ε < 1 and choose S > 0 so large that

δ0 := ‖V∞‖([W ]•2∩[M]0)(S,∞) ≤ δ(ε,M), (4-34)

where δ( · , · ) is given by Lemma 4.2. Then Lemma 4.1 implies that

‖vn‖([W ]2∩[M]0)(hn S+tn,∞) . δ0 (4-35)

for large n. If δ0� 1, then the standard scattering argument for NLKG using the Strichartz norms implies
that u(n) exists on (hn S+ tn,∞), satisfying

‖
→u(n)−

→
vn‖L∞t L2

x (hn S+tn,∞)+‖u(n)− vn‖([W ]2∩[M]0)(hn S+tn,∞) . δ
2?−1
0 � δ0 (4-36)

and also, for NLW,

‖
⇁

U∞−
⇁

V∞‖L∞t L2
x (S,∞)+‖U∞− V∞‖([W ]•2∩[M]0)(S,∞) . δ

2?−1
0 � δ0. (4-37)

Thus we obtain

‖u(n)‖([W ]2∩[M]0)(hn S+tn,∞) . ‖V∞‖([W ]•2∩[M]0)(S,∞) ∼ ‖U∞‖([W ]•2∩[M]0)(S,∞) (4-38)

and, for large n,

‖
⇀

U(n)(S)−
⇀

Vn(S)‖L2
x
+‖

⇀

Vn(S)−
⇁

V∞(S)‖L2
x
+‖

⇁

V∞(S)−
⇁

U∞(S)‖L2
x
� δ0. (4-39)

The next step is to go from S to the negative time direction. If J is bounded from below, then
let S′ := inf J . Otherwise, choose S′ < S so that

‖U∞‖([W ]•2∩[M]0)(−∞,S′) < ε. (4-40)

Applying Lemma 4.2 to U∞ and U(n) backward in time from t = S, we obtain

‖
⇀

U(n)−
⇁

U∞‖L∞t L2
x (S′,S)+‖U(n)−U∞‖([W ]•2∩[M]0)(S′,S) < ε (4-41)

and ‖u(n)‖[W ]0(hn S′+tn,hn S+tn) . δ0 for large n.
If J is unbounded from below, we have still to go from S′ to −∞. The standard argument for small

data scattering of NLW for t→−∞ implies that

‖Re |∇|−1ei t |∇| ⇁U∞(S′)‖([W ]•2∩[M]0)(−∞,0) ∼ ‖U∞‖([W ]•2∩[M]0)(−∞,S′) < ε. (4-42)
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Then Lemma 4.1 applied backward in t implies, for large n,

‖Re 〈∇〉−1ei t〈∇〉Tn
⇁

U∞(S′)‖([W ]2∩[M]0)(−∞,0) . ε. (4-43)

Let wn be the solution of NLKG with →
wn(0) = Tn

⇀

U(n)(S′). Then the above estimate together with
‖
⇀

U(n)(S′)−
⇁

U∞(S′)‖L2
x
< ε and the scattering for NLKG implies

‖wn‖([W ]2∩[M]0)(−∞,0) . ε. (4-44)

Since wn = hnTnU(n)(t/hn + S′)= u(n)(t + hn S′+ tn), we deduce that

‖U(n)‖([W ]•2∩[M]0)(−∞,S
′) ∼ ‖u(n)‖([W ]•2∩[M]0)(−∞,hn S′+tn)

. ‖u(n)‖([W ]2∩[M]0)(−∞,hn S′+tn) = ‖wn‖([W ]2∩[M]0)(−∞,0) . ε. (4-45)

Thus we obtain, in the case τ∞ =∞,

‖U(n)−U∞‖([W ]•2∩[M]0)(J )+‖un‖[W ]0(hn J+tn) . ε+ δ0 (4-46)

for large n. Since ε and δ0 can be chosen as small as we wish, this implies

lim
n→∞
‖U(n)−U∞‖([W ]•2∩[M]0)(J )+‖un‖[W ]0(hn J+tn) = 0 (4-47)

and, by scaling,

‖u(n)‖([W ]2∩[M]0)(hn J+tn)∼‖U∞‖([W ]•2∩[M]0)(J )+‖u(n)‖[W ]0(hn J+tn)=‖U∞‖([W ]•2∩[M]0)(J )+o(1). (4-48)

Since S→∞ and S′→ inf J as ε, δ→+0, we also obtain

lim
n→∞
‖
⇀

U(n)−
⇁

U∞‖L∞t L2
x (I ) = 0 (4-49)

for any finite subinterval I . The case τ∞ =−∞ is the same by the time symmetry.
If τ∞ ∈ R then ‖

⇀

U(n)(τ∞)−
⇁

U∞(τ∞)‖L2
x
→ 0. Hence the same argument as we used above to go from

S to −∞ yields

0= lim
n→∞
‖
⇀

U(n)−
⇁

U∞‖L∞t L2
x (S′,τ∞) = lim

n→∞
‖U(n)−U∞‖([W ]•2∩[M]0)(inf J,τ∞) (4-50)

for any S′ ∈ (inf J, τ∞), and also on (τ∞, sup J ) by the time symmetry. Thus we obtain (4-47) and (4-49)
for any τ∞ ∈ [−∞,∞]. �
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