Vol. 9, No. 2, 2016

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
Resonances for large one-dimensional “ergodic” systems

Frédéric Klopp

Vol. 9 (2016), No. 2, 259–352
Abstract

The present paper is devoted to the study of resonances for one-dimensional quantum systems with a potential that is the restriction to some large box of an ergodic potential. For discrete models, both on a half-line and on the whole line, we study the distributions of the resonances in the limit when the size of the box goes to infinity. For periodic and random potentials, we analyze how the spectral theory of the limit operator influences the distribution of the resonances.

Dans cet article, nous étudions les résonances d’un système unidimensionnel plongé dans un potentiel qui est la restriction à un grand intervalle d’un potentiel ergodique. Pour des modèles discrets sur la droite et la demie droite, nous étudions la distribution des résonances dans la limite de la taille de boîte infinie. Pour des potentiels périodiques et aléatoires, nous analysons l’influence de la théorie spectrale de l’opérateur limite sur la distribution des résonances.

Keywords
resonances, random operators, periodic operators
Mathematical Subject Classification 2010
Primary: 35B34, 47B80, 47H40, 60H25, 82B44
Milestones
Received: 2 October 2012
Revised: 29 August 2015
Accepted: 30 January 2016
Published: 24 March 2016
Authors
Frédéric Klopp
Institute de Mathématiques Jussieu — Paris Rive Gauche, UMR 7586, CNRS
Université Pierre et Marie Curie
Case 186, 4 place Jussieu
75252 Paris
France