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1. Introduction

In this paper, we consider the linearized Calderón problem with local partial data and related problems.
We first briefly review Calderón’s problem including the case of partial data. For a more complete review,
see [Uhlmann 2009].

Calderón’s problem is, roughly speaking, the question of whether one can determine the electrical
conductivity of a medium by making voltage and current measurements at the boundary of the medium.
This inverse method is also called electrical impedance tomography. We describe the problem more
precisely below.

Let�⊆Rn be a bounded domain with smooth boundary. The electrical conductivity of� is represented
by a bounded and positive function γ (x). In the absence of sinks or sources of current, the equation for
the potential is given by

∇ · (γ∇u)= 0 in � (1-1)

since, by Ohm’s law, γ∇u represents the current flux. Given a potential f ∈ H 1/2(∂�) on the boundary,
the induced potential u ∈ H 1(�) solves the Dirichlet problem

∇ · (γ∇u)= 0 in �,

u|∂� = f.
(1-2)
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The Dirichlet-to-Neumann (DN) map, or voltage-to-current map, is given by

3γ ( f )=
(
γ
∂u
∂ν

)∣∣∣∣
∂�

, (1-3)

where ν denotes the unit outer normal to ∂�. The inverse problem is to determine γ knowing 3γ .
The local Calderón problem, or the Calderón problem with partial data, is the question of whether

one can determine the conductivity by measuring the DN map on subsets of the boundary for voltages
supported in subsets of the boundary. In this paper, we consider the case when the support of the voltages
and the induced current fluxes are measured in the same open subset 0. More conditions on this open set
will be stated later. If γ ∈C∞(�), the DN map is a classical pseudodifferential operator of order 1. It was
shown in [Sylvester and Uhlmann 1986] that its full symbol computed in boundary normal coordinates
near a point of 0 determines the Taylor series of γ at the point giving another proof of the result of Kohn
and Vogelius [1984]. In particular, this shows that real-analytic conductivities can be determined by
the local DN map. This result was generalized in [Lee and Uhlmann 1989] to the case of anisotropic
conductivities using a factorization method related to the methods of this paper. Interior determination
was shown in dimension n ≥ 3 for C2 conductivities [Sylvester and Uhlmann 1987]. This was extended
to C1 conductivities in [Haberman and Tataru 2013]. In two dimensions, uniqueness was proven for C2

conductivities in [Nachman 1996] and for merely L∞ conductivities in [Astala and Päivärinta 2006]. The
case of partial data in dimension n ≥ 3 was considered in [Bukhgeim and Uhlmann 2002; Kenig et al.
2007; Isakov 2007; Kenig and Salo 2013; Imanuvilov and Yamamoto 2013]. The two-dimensional case
was solved in [Imanuvilov et al. 2010]. See [Kenig and Salo 2014] for a review. However, it is not known
at the present whether one can uniquely determine the conductivity if one measures the DN map on an
arbitrarily open subset of the boundary applied to functions supported in the same set. We refer to these
types of measurements as the local DN map.

The map γ →3γ is not linear. In this paper, we consider the linearization of the partial-data problem
at a real-analytic conductivity for real-analytic 0. We prove that the linearized map is injective. In fact,
we prove a more general statement (see Theorem 1.6)

As in many works on Calderón’s problem, one can reduce the problem to a similar one for the
Schrödinger equation (see for instance [Uhlmann 2009]). This result uses that one can determine from
the DN map the conductivity and the normal derivative of the conductivity. This result is only valid for
the local DN map. One can then consider the more general problem of determining a potential from the
corresponding DN map. The same is valid for the case of partial data and the linearization. It was shown in
[Dos Santos Ferreira et al. 2009] that the linearization of the local DN map at the 0 potential is injective. We
consider the linearization of the local DN map at any real-analytic potential assuming that the local DN map
is measured on an open real-analytic set. We now describe more precisely our results in this setting.

Consider the Schrödinger operator P = 1− V on the open set � b Rn , where the boundary ∂� is
smooth (and later assumed to be analytic in the most interesting region). Assume that 0 is not in the
spectrum of the Dirichlet realization of P . Let G and K denote the corresponding Green and Poisson
operators. Let γ :C∞(�)→C∞(∂�) be the restriction operator and ν the exterior normal. If x0 ∈ ∂�, we
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can choose local coordinates y = (y1, . . . , yn), centered at x0 so that � is given by yn > 0 and ν =−∂yn .
If ∂� is analytic near x0, we can choose the coordinates to be analytic.

The Dirichlet-to-Neumann (DN) operator is

3= γ ∂ν(x, ∂x)K . (1-4)

Consider a smooth deformation of smooth real-valued potentials

neigh(0,R) 3 t 7→ Pt =1− Vt ,

Vt(x)= V (t, x) ∈ C∞(neigh(0,R)×�;R).
(1-5)

Let G t and Kt be the Green and Poisson kernels for Pt so that(
Pt

γ

)
: C∞(�)→ C∞(�)×C∞(∂�)

has the inverse (
G t Kt

)
.

Then, denoting t-derivatives by dots,(
Ġ t K̇t

)
=−

(
G t Kt

) (Ṗt

0

) (
G t Kt

)
=−

(
G t Ṗt G t G t Ṗt Kt

)
;

that is,
Ġ =−G ṖG, K̇ =−G Ṗ K , (1-6)

and consequently,
3̇=−γ ∂νG Ṗ K . (1-7)

Using the Green formula, we see that
γ ∂νG = K t, (1-8)

where K t denotes the transposed operator.
In fact, write the Green formula,∫

�

((Pu1)u2− u1 Pu2) dx =
∫
∂�

(∂νu1u2− u1∂νu2)S(dx),

put u1 = Gv and u2 = Kw for v ∈ C∞(�) and w ∈ C∞(∂�),∫
�

vKw =
∫
∂�

(γ ∂νGv)wS(dx),

and (1-8) follows.
Equation (1-7) becomes

3̇=−K t Ṗ K = K tV̇ K . (1-9)

The linearized Calderón problem is: if Vt = V + tq, determine q from 3̇t=0. The corresponding
partial-data problem is to recover q or some information about q from local information about 3̇t=0.
From now on, we restrict the attention to t = 0. In this paper, we shall study the following linearized
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baby problem. Assume that V and ∂� are analytic near some point x0 ∈ ∂�. We also assume that V
is smooth. If 3̇ (for t = 0) is an analytic pseudodifferential operator near x0, can we conclude that q is
analytic near x0? Here,

3̇= K tq K , (1-10)

and we shall view the right-hand side as a Fourier integral operator acting on q .
Actually this problem is overdetermined in the sense that the symbol of a pseudodifferential operator

on the boundary is a function of 2(n− 1) variables while q is a function on n variables and 2(n− 1)≥ n
for n ≥ 2 with equality precisely for n = 2. In order to have a nonoverdetermined problem, we shall only
consider the symbol σ3̇(y

′, η′) of 3̇ along a half-ray in η′; i.e., we look at σ3̇(y
′, tη′0) for some fixed

η′0 6= 0 and for some local coordinates as above. Assuming this restricted symbol to be a classical analytic
symbol near y′ = 0 and the potential V = V0 to be analytic near y = 0 (i.e., near x0), we shall show that
q is real-analytic up to the boundary near x0 (corresponding to y = 0).

In order to formulate the result more precisely, we first make some remarks about the analytic singular
support of the Schwartz kernels of K and K tq K and then we recall the notion of classical analytic
pseudodifferential operators. Assume that W ⊂ Rn is an open neighborhood of x0 ∈ ∂O and that

∂� and V are analytic in W . (1-11)

For simplicity, we shall use the same symbol to denote operators and their Schwartz kernels. Then:

Lemma 1.1. The Schwartz kernel K (x, y′) is analytic with respect to y′, locally uniformly on the set

{(x, y′) ∈�× (∂�∩W ) : x 6= y′}.

Proof. Using (1-8), we can write K (x, y′)= γ ∂νu(y′), where u = G(x, · ) solves the Dirichlet problem

(1− V )u = δ( · − x), γ u = 0,

and from analytic regularity for elliptic boundary-value problems, we get the lemma. (When x ∈ ∂�, we
view G(x, y) away from y = x as the limit of G(x j , y) when � 3 x j → x .) �

Lemma 1.2. The Schwartz kernel (K tq K )(x ′, y′) is analytic on the set

{(x ′, y′) ∈ (∂�∩W )2 : x ′ 6= y′}. (1-12)

Proof. Let (x ′0, y′0) belong to the set (1-12). After decomposing q into a sum of two terms, we may assume
that x ′0 /∈ supp(q) or that y′0 /∈ supp(q). In the first case, it follows from Lemma 1.1 that (K tq K )(x ′, y′) is
analytic in x ′ uniformly for (x ′, y′) in a neighborhood of (x ′0, y′0), and since the kernel is symmetric, we
can exchange the roles of x ′ and y′ and conclude that (K tq K )(x ′, y′) is analytic in y′ uniformly for (x ′, y′)
in a neighborhood of (x ′0, y′0). In the second case, we have the same conclusion about analyticity in x ′ and
in y′ separately. It then follows that (K q K )(x ′, y′) is analytic near (x ′0, y′0) (by using the Fourier–Bros–
Iagolnitzer (FBI) definition of the analytic wave-front set and which can also (most likely) be deduced from
a classical result on logarithmic convexity of Reinhardt domains [Hörmander 1990, Theorem 2.4.6]). �
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Remark 1.3. By the same proof, K tq K (x ′, y′) is analytic near

{(x ′, x ′) ∈ (∂�∩W )2 : (x ′, 0) /∈ supp q}.

We next define the notion of a symbol up to exponentially small contributions. For that purpose, we
assume that X is an analytic manifold and consider an operator

A : C∞0 (X)→ C∞(X) (1-13)

that is also continuous
E ′(X)→ D′(X). (1-14)

Assume (as we have verified for K tq K with n replaced by n−1 and with X = ∂�∩W ) that the distribution
kernel A(x, y) is analytic away from the diagonal. After restricting to a local analytic coordinate chart,
we may assume that X ⊂ Rn is an open set. The symbol of A is formally given on T ∗X by

σA(x, ξ)= e−i x ·ξ A(ei( · )·ξ )=

∫
e−i(x−y)·ξ A(x, y) dy.

In the usual case of C∞-theory, we give a meaning to this symbol up to O(〈ξ〉−∞) by introducing a
cutoff χ(x, y) ∈ C∞(X × X) that is properly supported and equal to 1 near the diagonal. In the analytic
category, we would like to have an exponentially small indeterminacy, and the use of special cutoffs
becoming more complicated, we prefer to make a contour deformation.

For x in a compact subset of X , let r > 0 be small enough and define for ξ 6= 0

σA(x, ξ)=
∫

x+0r,ξ

ei(y−x)·ξ A(x, y) dy, (1-15)

where

0r,ξ : B(0, r) 3 t 7→ t + iχ
( t

r

)
r
ξ

|ξ |
∈ Cn

and χ ∈ C∞(B(0, 1); [0, 1]) is a radial function that vanishes on B(0, 1
2) and is equal to 1 near ∂B(0, 1).

Thus, the contour x+0r,ξ coincides with Rn near y = x and becomes complex for t close to the boundary
of B(0, r). Notice that along this contour

|ei(y−x)·ξ
| = e−χ(t/r)r |ξ |

is bounded by 1 and for t close to ∂B(0, r) it is exponentially decaying in |ξ |. Thus, from Stokes’ formula,
it is clear that σA(x, ξ) will change only by an exponentially small term if we modify r . More generally,
for (x, ξ) in a conic neighborhood of a fixed point (x0, ξ0) ∈ X × Sn−1, we change σA(x, ξ) only by an
exponentially small term if we replace the contour in (1-15) by x0+0r,ξ0 , and we then get a function that
has a holomorphic extension to a conic neighborhood of (x0, ξ0) in Cn

× (Cn
\ {0}).

Remark 1.4. Instead of using contour deformation to define σA, we can use an almost-analytic cutoff in
the following way. Choose C > 0 so that

1=
∫

Ch−n/2e−(y−t)2/2h dt,
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and put
et(y)= χ̃(y− t)Ch−n/2e−(y−t)2/2h,

where χ̃ ∈ C∞0 (R
n) is equal to 1 near 0 and has its support in a small neighborhood of that point. Then if

χ̂ is another cutoff of the same type, we see by contour deformation that

σA(x, ξ)= e−i x ·ξ A
(∫

χ̂(t)et e( · )·ξ
)

up to an exponentially decreasing term.

Definition 1.5. We say that A is a classical analytic pseudodifferential operator of order m ∈ R if σA is a
classical analytic symbol (cl.a.s.) of order m on X ×Rn in the following sense.

There exist holomorphic functions pm− j (x, ξ) on a fixed complex conic neighborhood V of X × Ṙn

such that

pk(x, ξ) is positively homogeneous of degree k in ξ, (1-16)

for all K b V ∩ {(x,ξ) : |ξ | = 1}, there exists C = CK such that |pm− j (x,ξ)| ≤ C j+1 j j on K , (1-17)

for all K b X and every C1 > 0 large enough, there exists C2 > 0

such that
∣∣∣∣σA(x, ξ)−

∑
0≤ j≤|ξ |/C1

pm− j (x, ξ)
∣∣∣∣≤ C2e−|ξ |/C2 with (x, ξ) ∈ K ×Rn and |ξ | ≥ 1. (1-18)

The formal sum
∑
∞

0 pm− j (x, ξ) is called a formal cl.a.s. when (1-16) and (1-17) hold. We define cl.a.s.
and formal cl.a.s. on open conic subsets of X × Ṙn and on other similar sets by the obvious modifications
of the above definitions. If p(x, ξ) is a cl.a.s. on X ×Rn and if ξ0 ∈ Ṙn , then

q(x, τ ) := p(x, τξ0)

is a cl.a.s. on X ×R+.

The main result of this work is:

Theorem 1.6. Let x0 ∈ ∂�, and assume that ∂� and V are analytic near that point. Let q ∈ L∞(�).
Choose local analytic coordinates y′= (y1, . . . , yn−1) on neigh(x0, ∂�), centered at x0, so that the symbol
σ3̇(y

′, η′) becomes well defined up to an exponentially small term on neigh(0)× Ṙn−1. Let η′0 ∈ Ṙn−1.
If σ3̇(y

′, τη′0) is a cl.a.s. on neigh(0,Rn−1)×R+, then q is analytic up to the boundary in a neighbor-
hood of x0.

We also have the converse statement.

We have a simpler direct result.

Proposition 1.7. Let x0, ∂�, and V be as in Theorem 1.6, and choose analytic coordinates as done there.
If q ∈ L∞(�) is analytic up to the boundary near x0, then 3̇ is an analytic pseudodifferential operator
near y′ = 0.

We get the following immediate consequence.



LOCAL ANALYTIC REGULARITY IN THE LINEARIZED CALDERÓN PROBLEM 521

Corollary 1.8. Under the conditions of the previous theorem, the map

q→ 3̇

is injective.

This follows from the previous result since q must be analytic on W and, if the Taylor series of q
vanishes on W , then q = 0 on the set where q is analytic.

Most of the paper will be devoted to the proof of Theorem 1.6, and in Section 7, we will prove
Proposition 1.7.

2. Heuristics and some remarks about the Laplace transform

Let us first explain heuristically why some kind of Laplace transform will appear. Assume that x0 ∈ ∂�

and that V and ∂� are analytic near that point. Choose local analytic coordinates

y = (y1, . . . , yn−1, yn)= (y′, yn)

centered at x0 such that the set � coincides near x0 (i.e., y= 0) with the half-space Rn
+
= {y ∈Rn

: yn > 0}.
Assume also (for this heuristic discussion) that we know that q(y)= q(y′, yn) is analytic in y′ and that
the original Laplace operator remains the standard Laplace operator also in the y coordinates. Then up to
a smoothing operator, the Poisson operator is of the form

K u(y)=
1

(2π)n−1

∫
ei(y′−w′)·η′−yn |η

′
|a(y, η′)u(w′) dw′ dη′,

where the symbol a is equal to 1 to leading order. We can view K , q, and K t as pseudodifferential
operators in y′ with operator-valued symbols. K has the operator-valued symbol

K (y′, η′) : C 3 z 7→ ze−yn |η
′
|a(y, η′) ∈ L2([0,+∞[yn ). (2-1)

The symbol of multiplication with q is independent of η′ and equals multiplication with q(y′, · ). The
symbol of K t is

K t(y′, η′) : L2([0,+∞[yn ) 3 f (yn) 7→

∫
∞

0
e−yn |η

′
|a(y,−η′) f (yn) dyn ∈ C. (2-2)

For simplicity, we set a = 1 in the following discussion. To leading order, the symbol of 3̇ is

σ3̇(y
′, η′)=

∫
∞

0
e−2yn |η

′
|q(y′, yn) dyn = (Lq(y′, · ))(2|η′|), (2-3)

where

L f (τ )=
∫
∞

0
e−tτ f (t) dt

is the Laplace transform.
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Now we fix η′0 ∈ Ṙn−1 and assume that σ3̇(y
′, τη′0) is a cl.a.s. on neigh(0,Rn−1)×R+:

σ3̇(y
′, τη′0)∼

∞∑
1

nk(y′, τ ), (2-4)

where nk is analytic in y′ in a fixed complex neighborhood of 0, (positively) homogeneous of degree −k
in τ , and satisfies

|nk(y′, τ )| ≤ Ck+1kk
|τ |−k . (2-5)

More precisely for C > 0 large enough, there exists C̃ > 0 such that∣∣∣∣σ3̇(y′, τη′0)− [|η
′
|/C]∑
1

nk(y′, τ )
∣∣∣∣≤ C̃ exp(−τ/C̃) (2-6)

on the real domain.
From (2-3), we also have∣∣∣∣(Lq(y′, · ))(2|η′0|τ)−

[|η′|/C]∑
1

nk(y′, τ )
∣∣∣∣≤ exp(−τ/C̃) (2-7)

for y′ ∈ neigh(0,Rn−1) and τ ≥ 1. In this heuristic discussion, we assume that (2-7) extends to y′ ∈
neigh(0,Cn−1). It then follows that q(y′, yn) is analytic for yn in a neighborhood of 0, from the following
certainly classic result about Borel transforms.

Proposition 2.1. Let q ∈ L∞([0, 1]), and assume that for some C, C̃ > 0∣∣∣∣Lq(τ )−
[τ/C]∑

0

qkτ
−(k+1)

∣∣∣∣≤ e−τ/C̃ , τ > 0, (2-8)

|qk | ≤ C̃k+1kk . (2-9)

Then q is analytic in a neighborhood of t = 0. The converse also holds.

Proof. We shall first show the converse statement, namely that, if q is analytic near t = 0, then (2-8)
and (2-9) hold. We start by computing the Laplace transform of powers of t .

For τ > 0, a > 0, and k ∈ N, ∫
∞

0
e−tτ tk dt =

k!
τ k+1 . (2-10)

In fact, the integral to the left is equal to

(−∂τ )
k
(∫

∞

0
e−tτdt

)
= (−∂τ )

k
(1
τ

)
.

Next, for a > 0, we look at

1
k!

∫ a

0
e−tτ tk dt =

1
τ k+1

(
1−

τ k+1

k!

∫
∞

a
e−tτ tk dt

)
=

1
τ k+1

(
1−

∫
∞

aτ
e−s sk

k!
ds
)
. (2-11)
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First let τ ∈ ]0,∞[ be large. For 0< θ < 1 to be optimally chosen, we write for s ≥ 0

sk

k!
e−s
= θ−k (θs)k

k!
e−θs︸ ︷︷ ︸
≤1

e−(1−θ)s ≤ θ−ke−(1−θ)s .

Thus, ∫
∞

aτ
e−s sk

k!
ds = θ−k

∫
∞

aτ
e−(1−θ)s ds =

θ−ke−(1−θ)aτ

1− θ
. (2-12)

We will estimate this for k ≤ aτ/O(1). Under the a priori assumption that θ ≤ 1− 1/O(1), we look for θ
that minimizes the numerator

θ−ke−(1−θ)aτ = e−[(1−θ)aτ+k ln θ ].

Setting the derivative of the exponent equal to 0, we are led to the choice θ = k/(aτ). Assume that

k
aτ
≤ θ0 < 1. (2-13)

Then,

(1− θ)aτ + k ln θ = aτ
(

1− k
aτ
+

k
aτ

ln k
aτ

)
= aτ

(
1− f

( k
aτ

))
,

where

f (x)= x + x ln
1
x
, 0≤ x ≤ 1.

Clearly f (0)= 0 and f (1)= 1, and for 0< x < 1, we have f ′(x)= ln(1/x)> 0, so f is strictly increasing
on [0, 1]. In view of (2-13),

(1− θ)aτ + k ln θ ≥ aτ(1− f (θ0)),

and (2-12) gives ∫
∞

aτ
e−s sk

k!
ds ≤

e−aτ(1− f (θ0))

1− θ0
. (2-14)

Using this in (2-11), we get

1
k!

∫ a

0
e−tτ tk dt =

1
τ k+1 (1+O(1)e−aτ/C(θ0)) for

k
aτ
≤ θ0 < 1, where C(θ0) > 0. (2-15)

Now, assume that q ∈ C([0, 1]) is analytic near t = 0. Then for t ∈ [0, 2a], 0< a� 1, we have

q(t)=
∞∑
0

q(k)(0)
k!

tk,

where
|q(k)(0)|

k!
≤ C̃

1
(2a)k

, (2-16)

so ∣∣∣∣q(t)− [τ/C]∑
0

q(k)(0)
k!

tk
∣∣∣∣≤ C̃e−τ/C̃ , 0≤ t ≤ a.
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Hence,

Lq =
[τ/C]∑

0

q(k)(0)
τ k+1 +O(e−τ/C̃)+L(1[a,1]q)(τ )︸ ︷︷ ︸

=O(e−τ/C̃ )

and we obtain (2-8) with qk = q(k)(0) while (2-9) follows from (2-16).
We now prove the direct statement in the proposition, so we take q ∈ L∞([0, 1]) satisfying (2-8)

and (2-9). For a > 0 small, put

q̃(t)= q(t)− 1[0,a](t)
∞∑
0

qk

k!
tk .

The proof of the converse part shows that

|Lq̃(τ )| ≤ e−τ/C̃ , (2-17)

where C̃ is a new positive constant, and it suffices to show that

q̃ vanishes in a neighborhood of 0. (2-18)

We notice that Lq̃ is a bounded holomorphic function in the right half-plane. We can therefore apply
the Phragmén–Lindelöf theorem in each sector arg τ ∈ [0, π2 ] and arg τ ∈ [−π2 , 0] to the holomorphic
function

eτ/C̃Lq̃(τ )

and conclude that this function is bounded in the right half-plane:

|Lq̃(τ )| ≤O(1)e−<τ/C̃ , <τ ≥ 0. (2-19)

Now, Lq̃(iσ)= F q̃(σ ), where F denotes the Fourier transform, and the Paley–Wiener theorem allows us
to conclude that supp q̃ ⊂ [1/C̃, 1]. �

3. The Fourier integral operator q 7→ σ3̇

Assume that ∂� and V are analytic near the boundary point x0. Let y′ = (y1, . . . , yn−1) be local analytic
coordinates on ∂�, centered at x0. Then we can extend y′ to analytic coordinates y= (y1, . . . , yn−1, yn)=

(y′, yn) in a full neighborhood of x0, where y′ is an extension of the given coordinates on the boundary
and such that � is given (near x0) by yn > 0 and

−P = D2
yn
+ R(y, Dy′), (3-1)

where R is a second-order elliptic differential operator in y′ with positive principal symbol r(y, η′). (Here
we neglect a contribution f (y)∂yn , which can be eliminated by conjugation.) Then there is a neighborhood
W ⊂ Rn of y = 0 and a cl.a.s. a(y, ξ ′) on W ×Rn−1 of order 0 such that

K u(y)=
1

(2π)n−1

∫∫
ei(φ(y,ξ ′)−ỹ′·ξ ′)a(y, ξ ′)u(ỹ′) d ỹ′ dξ ′+ Kau(y) (3-2)
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for y ∈ W and u ∈ C∞0 (W ∩ ∂�). The distribution kernel of Ka is analytic on W × (W ∩ ∂�), and we
choose a realization of a that is analytic in y. Here φ is the solution of the Hamilton–Jacobi problem

(∂ynφ)
2
+ r(y, φ′y′)= 0, =∂ynφ > 0,

φ(y′, 0, ξ ′)= y′ · ξ ′.
(3-3)

This means that we choose φ to be the solution of

∂ynφ− ir(y, φ′y′)
1/2
= 0 (3-4)

with the natural branch of r1/2 with a cut along the real negative axis.
To see this, recall (by the analytic Wentzel–Kramers–Brillouin (WKB) method [Sjöstrand 1982,

Chapter 9]) that we can construct the first term Kfopu in the right-hand side of (3-2) such that P Kfop

has analytic distribution kernel and γ Kfop = 1. It then follows from local analytic regularity in elliptic
boundary-value problems that the remainder operator Ka has analytic distribution kernel.

We notice that
K (ei x ′·ξ ′)= eiφ(y,ξ ′)a(y, ξ ′)+O(e−|ξ

′
|/C) (3-5)

since the first term to the right solves the problem

Pu = 0, u|yn=0 = eiy′·ξ ′,

with an exponentially small error in the first equation. K is a real operator, so K (ei x ′·(−ξ ′))= K (ei x ′·ξ ′).
It follows that

φ(y,−ξ ′)=−φ(y, ξ ′), a(y,−ξ ′)= a(y, ξ ′) (3-6)

without any error in the last equation when viewing a as a formal cl.a.s. Notice also that, since K is real,
K t
= K ∗.
We shall now view 3̇= K tq K = K ∗q K as a pseudodifferential operator in the classical quantization.

In this section, we proceed formally in order to study the associated geometry. A more efficient analytic
description will be given later for the left composition with an FBI transform in x ′. The symbol becomes

σ3̇(x
′, ξ ′)= e−i x ′·ξ ′Ṅ (ei( · )·ξ ′)= (2π)1−n

∫∫
ei(x ′·(η′−ξ ′)−φ∗(y,η′)+φ(y,ξ ′))a∗(y, η′)a(y, ξ ′)q(y) dy dη′,

where in general we write f ∗(z)= f (z) for the holomorphic extension of the complex conjugate of a
function f .

Actually, rather than letting ξ ′ tend to∞, we replace ξ ′ with ξ ′/h, where the new ξ ′ is of length � 1
and h→ 0. This amounts to viewing Ṅ as a semiclassical pseudodifferential operator with semiclassical
symbol σ3̇(x

′, ξ ′; h)= σ3̇(x
′, ξ ′/h). Thus,

σ3̇(x
′, ξ ′; h)= e−i x ′·ξ ′/hṄ (ei( · )·ξ ′/h)

= (2πh)1−n
∫∫

e(i/h)(x ′·(η′−ξ ′)−φ∗(y,η′)+φ(y,ξ ′))a∗(y, η′; h)a(y, ξ ′; h)q(y) dy dη′,

where a(y, ξ ′; h)= a(y, ξ ′/h) and similarly for a∗.
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We have

φ(y, ξ ′)= y′ · ξ ′+ψ(y, ξ ′), φ∗(y, η′)= y′ · η′+ψ∗(y, η′), (3-7)

where

=ψ,=ψ∗ � yn, <ψ,<ψ∗ =O(y2
n) (3-8)

uniformly on every compact set that does not intersect the zero section. Equation (3-6) tells us that <ψ is
odd and =ψ is even with respect to the fiber variables ξ ′ (and also positively homogeneous of degree 1 of
course). Using (3-7) in the formula for the symbol of 3̇, we get

σ3̇(x
′, ξ ′; h)= (2πh)1−n

∫∫
e(i/h)8M (x ′,ξ ′,y,η′)a∗(y, η′; h)a(y, ξ ′; h)q(y) dy dη′

=: Mq(x ′, ξ ′; h), (3-9)

where

8M(x ′, ξ ′, y, η′)= (x ′− y′) · (η′− ξ ′)+ψ(y, ξ ′)−ψ∗(y, η′) (3-10)

and η′ are the fiber variables. We shall see that this is a nondegenerate phase function in the sense of
Hörmander [1971] except for the fact that 8M is not homogeneous in η′ alone, so q 7→ Mhq(x ′, ξ ′) :=
Mq(x ′, ξ ′; h) is a semiclassical Fourier integral operator, at least formally.

We fix a vector ξ ′0 ∈ Ṙn−1 and consider 8M in a neighborhood of (x ′, y, ξ ′, η′) = (0, 0, ξ ′0, ξ
′

0) ∈

C4(n−1)+1
= C4n−3. The critical set C8M of the phase 8M is given by ∂η′8M = 0, which means that

x ′− y′− ∂η′ψ∗(y, η′)= 0 or equivalently

x ′ = y′+ ∂η′ψ∗(y, η′). (3-11)

This is a smooth submanifold of codimension n − 1 in C4n−3 that is parametrized by (y, η′, ξ ′) ∈
neigh((0, ξ ′0, ξ

′

0),C3n−2). We also see that8M is a nondegenerate phase function in the sense that d∂η′18M ,

. . . , d∂η′n−1
8M are linearly independent on C8M . Using the above parametrization, we express the graph

of the corresponding canonical relation κ : C2n
y,y∗→ C

4(n−1)
x ′,ξ ′,x ′∗,ξ ′∗ (where we notice that 4(n−1)≥ 2n with

equality for n = 2 and strict inequality for n ≥ 3):

graph(κ)= {(x ′, ξ ′, ∂x ′8M , ∂ξ ′8M ; y,−∂y8M) : (x ′, ξ ′, y, η′) ∈ C8M }

=
{(

y′+ ∂η′ψ∗(y, η′), ξ ′, η′− ξ ′, ∂ξ ′ψ(y, ξ ′)− ∂η′ψ∗(y, η′);

y,−∂y′ψ(y, ξ ′)+ ∂y′ψ
∗(y, η′)+ η′− ξ ′,−∂ynψ(y, ξ

′)+ ∂ynψ
∗(y, η′)

)}
. (3-12)

The restriction to yn = 0 of this graph is the set of points

(y′, ξ ′, η′− ξ ′, 0; y′, 0, η′− ξ ′,−∂ynψ(y
′, 0, ξ ′)+ ∂ynψ

∗(y′, 0, η′)). (3-13)

It contains the point

(0, ξ ′0, 0, 0; 0, 0,−2∂ynψ(0, ξ
′

0))= (0, ξ
′

0, 0, 0; 0, 0,−2ir(0, ξ ′0)
1/2). (3-14)
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The tangent space at a point where yn = 0 is given by{(
δy′ +ψ

∗′′

η′,yn
δyn , δξ ′, δη′ − δξ ′, (ψ

′′

ξ ′,yn
(y, ξ ′)−ψ∗′′η′,yn

(y, η′))δyn ;

δy, (−ψ
′′

y′,yn
(y, ξ ′)+ψ∗′′y′,yn

(y, η′))δyn + δη′ − δξ ′,

(−ψ ′′yn,y(y, ξ
′)+ψ∗

′′

yn,y(y, η
′))δy + (−ψ

′′

yn,ξ ′
δξ ′ +ψ

∗′′

yn,η′
δη′)

)}
. (3-15)

From (3-15), we see that, at every point of graph(κ) with yn = 0 and with η′ ≈ ξ ′,

(1) the projection graph(κ)→ C2n
y,y∗ has surjective differential and

(2) the projection graph(κ)→ C
4(n−1)
x ′,ξ ′,x ′∗,ξ ′∗ has injective differential.

In fact, since κ is a canonical relation, (1) and (2) are pointwise equivalent, so it suffices to verify (2). In
other words, we have to show that, if

0= δy′ +ψ
∗′′

η′,yn
δyn ,

0= δξ ′,

0= δη′ − δξ ′,

0= (ψ ′′ξ ′,yn
(y, ξ ′)−ψ∗′′η′,yn

(y, η′))δyn ,

(3-16)

then δy′ = 0, δyn = 0, δξ ′ = 0, and δη′ = 0.
When yn = 0, we have ψ∗ =−ψ , and when in addition η′ ≈ ξ ′, we see that the (n− 1)× 1 matrix in

the fourth equation is nonvanishing, so this equation implies that δyn = 0. Then the first equation gives
δy′ = 0, and from the second and third equations, we get δξ ′ = 0 and δη′ = 0 and we have verified (2).

As an exercise, let us determine the image under κ of the complexified conormal bundle of the boundary,
given by yn = 0 and y∗′ = 0. From (3-13), we see that this image is the set of all points

(x ′, ξ ′, 0, 0). (3-17)

The subset of real points in (3-17) is the image of the set of points (y′, 0, 0, y∗n ) such that y′ is real and
y∗n ∈ −iR+.

Now restrict (x ′, ξ ′) to the set of (x ′, tη′0) with x ′ ∈Cn−1 and t ∈C, where 0 6= η′0 ∈Rn−1. This means
that we restrict the symbol of Ṅ to the radial direction ξ ′ ∈ Cη′0 and consider

σ3̇(x
′, tη′0; h)= Mq(x ′, tη′0; h)=: Mnewq(x ′, t; h)

= (2πh)1−n
∫∫

ei8Mnew (x
′,t,y,η′)/ha∗(y, η′; h)a(y, ξ ′; h)q(y) dy dη′, (3-18)

where

8Mnew(x
′, t, y; η′)=8M(x ′, tη′0, y; η′)= ψ(y, tη′0)−ψ

∗(y, η′)+ (x ′− y′) · (η′− tη′0). (3-19)
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We will soon drop the subscripts “new” when no confusion is possible. This is again a nondegenerate
phase function. The new canonical relation κnew : C2n

y,y∗→ C2n
x ′,t,x ′∗,t∗ has the graph

graph(κnew)=
{(

y′+ ∂η′ψ∗(y, η′), t, η′− tη′0, η
′

0 · ∂ξ ′ψ(y, tη′0)− η
′

0 · ∂ξ ′ψ
∗(y, η′);

y,−∂y′ψ(y, tη′0)+ ∂y′ψ
∗(y, η′)+ η′− tη′0,−∂ynψ(y, tη′0)+ ∂ynψ

∗(y, η′)
)}
. (3-20)

This graph is conic with respect to the dilations

R+ 3 λ 7→ (x ′, λt, λx ′∗, t∗; y, λy∗).

The restriction of the graph to yn = 0 is

{(y′, t, η′− tη′0, 0; y′, 0, η′− tη′0,−∂ynψ(y
′, 0, tη′0)+ ∂ynψ

∗(y′, 0, η′))},

where

∂ynψ(y
′, 0, ξ ′)= ir(y′, 0, ξ ′)1/2, ∂ynψ

∗(y′, 0, ξ ′)=−ir(y′, 0, ξ ′)1/2,

so the restriction is

{(y′, t, η′− tη′0, 0; y′, 0, η′− tη′0,−i(r1/2(y′, 0, tη′0)+ r1/2(y′, 0, η′)))}. (3-21)

If we take η = tη′0 and use that r1/2 is homogeneous of degree 1 in the fiber variables, we get

{(y′, t, 0, 0; y′, 0, 0,−2i tr1/2(y′, 0, η′0))}. (3-22)

This is the graph of a diffeomorphism

neigh(0, ∂�)× (−iR+y∗n
)→ neigh(0; ∂�)×R+t .

The tangent space at a point where yn = 0 is given by{(
δy′ + (ψ

∗)′′η′,yn
δyn , δt , δη′ − δtη

′

0, η
′

0 · (ψ
′′

ξ ′,yn
− (ψ∗)′′η′,yn

)δyn ;

δy, (−ψ
′′

y′,yn
+ (ψ∗)′′y′,yn

)δyn + δη′ − δtη
′

0, (−ψ
′′

yn,y + (ψ
∗)′′yn,y)δy −ψ

′′

yn,ξ ′
δtη
′

0+ (ψ
∗)′′yn,η′

δη′
)}
. (3-23)

The projection onto the first component is injective as can be seen exactly as in the proof of the property (2)
stated after (3-15). Now κnew is a canonical relation between spaces of the same dimension, so we conclude
that κnew is a canonical transformation or more precisely near each point of its graph. Combining this
with the observation right after (3-22), we get:

Proposition 3.1. Equation (3-20) is the graph of a bijective canonical transformation

κnew : neigh((0; 0,−i),Cn
y ×Cn

y∗)→ neigh((0, 1; 0),Cn
x ′,t ×Cn

x ′∗,t∗).

The neighborhoods can be taken to be conic with respect to the actions R+ 3 λ 7→ (y, λy∗) and R+ 3 λ 7→

(x, λt, λx ′∗, t∗), and κnew intertwines the two actions (so κnew is positively homogeneous of degree 1 with
y∗ as the fiber variables on the departure side and with t and x ′∗ as the fiber variables on the arrival side).



LOCAL ANALYTIC REGULARITY IN THE LINEARIZED CALDERÓN PROBLEM 529

Basically, the same exercise as the one leading to (3-17) shows that the image under κnew of the
complexified conormal bundle, given by yn = 0 and (y∗)′ = 0, is the zero section

{(x ′, t : (x ′∗, t∗)= 0)}. (3-24)

Consider the image of T ∗∂�× iR−y∗n
= {(y, y∗) : y′, (y∗)′ ∈ Rn−1, yn = 0, y∗n ∈ iR−} under κnew. On

that image,

x ′ = y′ ∈ Rn−1,

η′− tη′0 ∈ Rn−1,

t∗ = η′0 · ∂ξ ′ψ(y, tη′0)− η
′

0 · ∂ξ ′ψ
∗(y, η′)= 0.

If we restrict the attention to t ∈ R+ so that η′ = (y∗)′+ tη′0 ∈ Rn−1, we see that

y∗n =−∂ynψ(y
′, 0, tη′0)+ ∂ynψ(y

′, 0, η′) ∈ iR−.

Thus, the image contains locally

{(x ′, t, (x∗)′, 0) : x ′, (x∗)′ ∈ Rn−1, t ∈ R+},

which has the right dimension 2(n− 1)+ 1
Similarly, the image of T ∗∂�× neigh(iR−y∗n

,Cy∗n ) is obtained by dropping the reality condition on t
but keeping that on η′− tη′0, and we get

κnew(T ∗∂�× neigh(iR−y∗n
,Cy∗n ))= {(x

′, t, x ′∗, 0) : x ′, (x∗)′ ∈ Rn−1, t ∈ neigh(R+,C)}. (3-25)

4. Some function spaces and their FBI transforms

We continue to work locally near a point x0 where the boundary is analytic, and we use analytic coordinates
y centered at x0 as specified in the beginning of Section 3.

We start by defining some piecewise-smooth I-Lagrangian manifolds, some of which will be associated
with function spaces below.

• The cotangent space T ∗� that we identify with (neigh(0)∩Rn
+
)×Rn .

• The real conormal bundle N ∗∂�⊂ T ∗Rn . In the local coordinates y,

N ∗∂�= {(y, η) ∈ R2n
: yn = 0, η′ = 0}.

It will sometimes be convenient to write N ∗∂�= ∂�×R∗, where of course the second expression
appeals to the use of special coordinates as above. More invariantly, N ∗∂� is the inverse image of
the zero-section in T ∗∂� for the natural projection map πT ∗∂� : T ∗∂�Rn

→ T ∗∂�.

We will also need some complex sets.

• The complexified zero-section in the complexification T̃ ∗Rn = Cn
y ×Cn

η defined to be

neigh(0,Cn)×{η = 0} ⊂ Cn
y ×Cn

η.

We denote it by Cn
y × 0η for short.
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• The complexification Ñ ∗∂� of N ∗∂� defined to be

{(y, η) ∈ Cn
y ×Cn

η : y ∈ neigh(0,Cn), yn = 0, η′ = 0}.

• The space π−1(T ∗∂�), where π : T ∗∂�Rn
⊗C→ T ∗∂�⊗C is the natural projection and ⊗C indicates

fiberwise complexification. In special coordinates, it is {(y, η) : (y′, η′) ∈ R2(n−1), yn = 0, ηn ∈ C}.
We will denote it by T ∗∂�×C or T ∗∂�×Cηn for simplicity. It contains the subset T ∗∂�×C−ηn

(easy to define invariantly), where C− is the open lower half-plane. Notice that

T ∗∂�× ∂C− = T ∗∂�×R= T ∗∂�Rn.

• The piecewise-smooth (Lipschitz) manifold

F = T ∗�∪ (T ∗∂�×C−ηn
).

Notice that the two components to the right have T ∗∂�Rn as their common boundary.

• The piecewise-smooth (Lipschitz) manifold (Cn
y × 0η)∪ Ñ ∗∂�, where the two constituents contain

∂̃�× 0η. Here ∂̃� denotes a complexification of the boundary (near x0).

Let

T u(z; h)= Ch−3n/4
∫

Rn
e(i/h)φ(z,y)u(y) dy, z ∈ Cn, (4-1)

be a standard FBI transform [Sjöstrand 1982], sending distributions with compact support on Rn to
holomorphic functions on (in general some subdomains of) Cn . For simplicity, we let φ be a holomorphic
quadratic form so that T can also be viewed as a generalized Bargmann transform and a metaplectic
Fourier integral operator (see for instance [Sjöstrand 1990]). We work under the standard assumptions

=φ′′y,y > 0, detφ′′z,y 6= 0. (4-2)

We let C > 0 be the unique positive constant for which T : L2(R2)→ H80(C
n) is unitary, where

80(z)= sup
y∈Rn
−=φ(z, y)=−=φ(z, y(z)) (4-3)

is a strictly plurisubharmonic (real) quadratic form on Cn and H80 is the complex Hilbert space
Hol(Cn)∩ L2(e−280/h L(dz)) with L(dz) denoting the Lebesgue measure on Cn

' R2n . Let

κT : C
2n
3 (y,−φ′y(z, y)) 7→ (z, φ′z(z, y)) ∈ C2n (4-4)

be the complex (linear) canonical transformation associated to T , and let

380 =

{(
z,

2
i
∂80

∂z
(z)
)
: z ∈ Cn

}
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be the R-symplectic1 and I-Lagrangian2 manifold of C2n , actually a real-linear subspace since φ is
quadratic. Then we know that

380 = κT (R
2n). (4-5)

More explicitly,

κ−1
T

(
z,

2
i
∂80

∂z

)
= (y(z), η(z)) ∈ R2n, (4-6)

where y(z) appeared in (4-3).
Let

8ext
1 (z)= sup

y∈∂Rn
+

−=φ(z, y)=−=φ(z, ỹ(z)), (4-7)

where ỹ(z) = (ỹ′(z), 0) and ỹ′(z) is the unique point of maximum in Rn−1 of y′ 7→ −=φ(z, y′, 0). If
supp u ⊂ {y ∈ Rn

: yn ≥ 0}, then T u ∈ H loc
81

, where

81(z)= sup
y∈Rn

+

−=φ(z, y)=
{
80(z) if yn(z)≥ 0,
8ext

1 (z) if yn(z)≤ 0.
(4-8)

Notice that

• −=∂ynφ(z, ỹ(z))≥ 0 in the first case and

• −=∂ynφ(z, ỹ(z))≤ 0 in the second case.

Notice that
2
i
∂81

∂z
(z)=

2
i

(
∂

∂z
(−=φ)

)
(z, ỹ(z))= φ′z(z, ỹ(z))

and η̃(z)=−φ′y(z, ỹ(z)) satisfies η̃′(z) ∈ Rn−1. When 81(z)=8ext
1 (z),

η̃′(z) ∈ Rn−1, =η̃n(z)≤ 0. (4-9)

This means that
38ext

1
= κT (T ∗∂�×C∗ηn

)

and that
381 = κT (F), (4-10)

where F was defined above:

F = T ∗(�)∪ {(y′, 0; η′, ηn) : (y′, η′) ∈ T ∗∂�, =ηn ≤ 0}. (4-11)

It is a Lipschitz manifold. The second component is a union of complex half-lines; consequently in the
region where 81 <80, 381 is a union of complex half-lines. If we project these lines to the complex
z-space, we get a foliation of Cn

z into complex half-lines and the restriction of 81 to each of these is
harmonic.

1i.e., symplectic with respect to <σ , where σ = dζ ∧ dz is the complex symplectic form
2i.e., Lagrangian with respect to =σ
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We introduce the real hyperplane
H = πzκT (T ∗∂�Rn),

which is the common boundary of the two half-spaces

H+ = πzκT (T ∗�),

H− = πzκT ({(y′, 0; η) : (y′, η′) ∈ T ∗∂�, =ηn < 0}).

Here, πz : C
n
z ×Cn

ζ → Cn is the natural projection. We have

80−81

{
= 0 in H+,
� dist(z, H)2 in H−.

(4-12)

Similarly, recall the definition of the complexified normal bundle Ñ ∗∂� at the beginning of this section.
It is a C-Lagrangian manifold.3 We have κT (Ñ ∗∂�)=383 , where 83 is pluriharmonic:

83(z)= vcy′∈Cn−1(−=φ(z, y′, 0)).

Similarly κT (C
n
y × 0η) (with the notation from the beginning of this section) is of the form 384 , where

84(z)= vcy∈Cn (−=φ(z, y)).

The complex zero-section Cy×0η and T ∗Rn intersect transversally along the real zero-section Rn
y×0η.

Correspondingly, we check that

80(z)−84(z)� dist(z, πz ◦ κT (R
n
× 0η))2. (4-13)

Similarly,
8ext

1 (z)−83(z)� dist(z, πz ◦ κT ((∂�× 0)×C∗ηn
))2, (4-14)

where ∂�× 0 denotes the zero-section in T ∗∂�, so that

(∂�× 0)×C∗ηn
= N ∗∂�⊗C

is the fiberwise complexification of N ∗∂�. (Here we work locally near y = 0.)
Let u be real-analytic in a neighborhood of �, and consider

v(z)= T (1�u)(z), (4-15)

where we restrict our attention to z∈Cn such that the critical point y84(z) in the definition of84(z) belongs
to a small complex neighborhood of � or equivalently to z ∈ Cn in a small neighborhood of κT (�× 0η).
By the method of steepest descent, we see that v ∈ H loc

85
, where first of all 85 ≤81 and further

85(z)=84(z) when both
{
<y84(z) ∈�,
|=y84(z)| � dist(<y84(z), ∂�),

(4-16)

85(z)=83(z) when both
{
<y84(z) /∈�,
|=y84(z)| � dist(<y84(z), ∂�).

(4-17)

3i.e., a holomorphic manifold that is Lagrangian for the complex symplectic form σ
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Actually, in the last case, we can relax the condition that y84(z) belongs to a small (u-dependent)
neighborhood of �. The appropriate restriction is then that the critical point y83(z) ∈ ∂̃� in the definition
of 83 belongs to a small (u-dependent) neighborhood of ∂�.

5. Expressing M with the help of FBI transforms

From now on, we work with Mnew, 8Mnew , and κnew and we drop the corresponding subscript “new”.
Then from (3-18),

Mq(x ′, t)=
1

(2πh)n−1

∫∫
e(i/h)8M (x ′,t,y,η′)a∗(y, η′; h)a(y, tη′0; h)q(y) dy dη′ (5-1)

with 8M given in (3-19).
We want to express Mq with the help of T q, where T is as in (4-1), and we start by recalling some

general facts about metaplectic Fourier integral operators of this form, following [Sjöstrand 1982] for the
local theory and [Sjöstrand 1990] for the simplified global theory in the metaplectic framework (i.e., all
phases are quadratic and all amplitudes are constant). To start with, we weaken the assumptions on the
quadratic phase in T and assume only that φ(x, y) is a holomorphic quadratic form on Cn

×Cn satisfying
the second part of (4-2):

detφ′′x,y(x, y) 6= 0. (5-2)

To T we can still associate a linear canonical transformation κT as in (4-4). Let 81 and 82 be plurisub-
harmonic quadratic forms on Cn related by

382 = κT (381). (5-3)

Then we can define T : H81 → H82 as a bounded operator as in (4-1) with the modification that Rn

should be replaced by a so-called good contour, which is an affine subspace of Cn of real dimension n,
passing through the nondegenerate critical point yc(x) the function

y 7→ −=φ(x, y)+81(y) (5-4)

and along which this function is 82(x)− (� |y− yc(x)|2). (Actually in this situation, it would have been
better to replace the power h−3n/4 by h−n/2 since we would then get a uniform bound on the norm.)

Remark 5.1. Recall also that, if only 81 is given as above, the existence of a quadratic form 82 as in
(5-3) is equivalent to the fact that (5-4) has a nondegenerate critical point and the plurisubharmonicity
of 82 is equivalent to the fact that the signature of the critical point is (n,−n) (which represents the
maximal number of negative eigenvalues of the Hessian of a plurisubharmonic quadratic form). This in
turn is equivalent to the existence of an affine good contour as above.

In this situation, T : H81 → H82 is bijective with the inverse

Sv(y)= T−1v(y)= C̃h−n/4
∫

e−(i/h)φ(z,y)v(z) dz, (5-5)
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which can be realized the same way with a good contour, and here the constant C̃ does not depend on the
choice of 8 j , j = 1, 2.

Remark 5.2. Let us introduce the formal adjoints of T and S,

T tv(y)= Ch−3n/4
∫

Rn
e(i/h)φ(z,y)v(x) dx, y ∈ Cn,

Stu(x)= C̃h−n/4
∫

e−(i/h)φ(x,y)u(y) dy.

Let 91 and 92 be plurisubharmonic quadratic forms such that κSt(391) = 392 . Then as above,
T t
: H92 → H91 and St

: H91 → H92 are bijective and St
= const(T t)−1. We claim that St is the

inverse of T t. In fact, this statement is independent of the choice of 8 j and 9 j as above, and we can
choose them to be pluriharmonic in such a way that 38 j intersects 3−9 j transversally for one value of j
and then automatically for the other value. Then for j = 1, 2, we can define

〈u | v〉 =
∫
γ j

u(x)v(x) dx

for u ∈ H8 j and v ∈ H9 j (or rather for functions that are O(e8 j/h) and e9 j/h , respectively — the space
of such functions is of dimension 1, which suffices for our purposes) if we let γ j be a good contour
for 8 j +9 j . For u =O(e82/h) and v =O(e92/h) nonzero,

0 6= 〈u | v〉 = 〈T Su | v〉 = 〈Su | T tv〉 = 〈u | StT tv〉,

and knowing already that StT t is a multiple of the identity, we see that it has to be equal to the identity.

Now return to the discussion of an FBI transform T whose phase satisfies (4-2). When letting T act on
suitable H8-spaces, it has the inverse S in (5-5). However, if we let T act on L2(Rn) so that T u ∈ H80

(with 380 = κT (R
2n)), the best possible contour in (5-5) is

0(y)= {z ∈ Cn
: y(z)= y}.

This follows from the property

80(z)+=φ(z, y)� dist(z, 0(y))2 � |y(z)− y|2, (5-6)

so 80(z)+=φ(z, y)= 0 on 0(y) and e−(i/h)φ(z,y)+(1/h)80(z) is bounded there. This is not sufficient for a
straightforward definition of Sv(y), v ∈ H80 , since we would need some extra exponential decay along
the contour near infinity, but it does suffice to give a precise meaning up to exponentially small errors of
the formula

T̃ u = (T̃ S)T u (5-7)

in a local situation, where T̃ : L2
→ H8̃0

is a second FBI transform and where T̃ S : H80 → H8̃0
is

defined by means of a good contour.
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Proposition 5.3. Let (y0, η0) ∈ R2n , (z0, ζ0) = κT (y0, η0), and (w0, ω0) = κT̃ (y0, η0). We realize T u
and T̃ u (T̃ Su modulo exponentially small terms) in H80,z0 and H8̃0,w0

(and H8̃0,w0
) by choosing good

contours restricted to neighborhoods of y0 and y0 (and z0), respectively. Then (5-7) holds (modulo an
exponentially small error) in H8̃0,w0

. Here u ∈ D′(Rn) is either independent of h or of temperate growth
in D′(Rn) as a function of h.

Proof. The left-hand side of (5-7) is

const h−3n/4−n
∫∫∫

e(i/h)(φ̃(w,x)−φ(z,x)+φ(z,y))u(y) dy dz dx,

and all good contours being homotopic, we can write it as

C̃h−3n/4
∫ (

const h−n
∫∫

e(i/h)(−φ(z,x)+φ(z,y))e(i/h)φ̃(w,x) dx dz
)

u(y) dy.

The expression in the big parentheses is nothing but T tSt(e(i/h)φ̃(w,· ))(y), which by Remark 5.2 is equal
to e(i/h)φ̃(w,y), and (5-7) follows. (In the proof, we have chosen not to spell out the various exponentially
small errors due to the fact that the integration contours are confined to various small neighborhoods of
certain points.) �

We now return to the operator M in (5-1). Choose adapted analytic coordinates centered at x0 as
in the beginning of Section 3. In that section (see (3-25)), we have seen that there is a well defined
canonical transformation κM from a neighborhood of (0, 0,−i) ∈ C2n

y,η to a neighborhood of (0, 1, 0, 0)
in Cn−1

x ′ ×Ct ×Cn−1
x ′∗ ×Ct∗ mapping T ∗∂�× iR− to Rn−1

x ′ ×Rt ×Rn−1
x ′∗ ×{t

∗
= 0}. This means that we

have a microlocal description of Mq near (0, 1, 0, 0) and not a local one near x ′ = 0 and t = 0. We shall
therefore microlocalize in (x ′, x ′∗) by means of an FBI transform in the x ′ variables.

Let

T̂ u(w′)= Ĉh(1−n)/2
∫

Rn−1
e(i/h)φ̂(w′,x ′)u(x ′) dx ′, w′ ∈ Cn−1, (5-8)

be a second FBI transform as in (4-1) though acting on n− 1 variables and with a different normalization.
Assume (for concreteness) that

κT̂ (C
n−1
x ′ ×{0})= Cn−1

w′ ×{0}. (5-9)

Then
κT̂ (T

∗Rn−1)=38̂0
, (5-10)

where 8̂0 is a strictly plurisubharmonic quadratic form. In view of (5-9) and the fact that the zero-section
Cn−1

×{0} is strictly positive with respect to the real phase space, we also know that

8̂0(w
′)� |w′|2 (5-11)

or equivalently that the quadratic form 8̂0 is strictly convex.
By slight abuse of notation, we also let T̂ act (as T̂ ⊕ 0) on functions of n variables by

T̂ (u)(w′, t)= (T̂ u( · , t))(w′).
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The presence of T̂ leads to a formula for T̂ M that is simpler than the one for M in (5-1):

T̂ Mq(w′, t)= T̂
(
e−(i/h)( · )·tη′0 K tq K

(
e(i/h)( · )·tη′0

))
(w′)

= Ĉh(1−n)/2
∫∫∫

e(i/h)(φ̂(w′,x̃ ′)−x̃ ′·tη′0)K (y, x̃ ′)q(y)K (y, x ′)e(i/h)x ′·tη′0 dx ′ dy dx̃ ′

=

∫
K
(
e(i/h)(φ̂(w′,· )−( · )·tη′0)

)
(y)q(y)K

(
e(i/h)( · )·tη′0

)
(y) dy.

Up to exponentially small errors, we have (see (3-5))

K
(
e(i/h)( · )·tη′0

)
(y)= e(i/h)φ(y,tη′0)a(y, tη′0; h)

and
K
(
e(i/h)φ̂(w′,· ))(y)= e(i/h)ψ̃(w′,tη′0,y)b(w′, y, tη′0; h),

where b is an elliptic analytic symbol of order 0 and ψ is the solution of the eikonal equation in y

∂yn ψ̃ = ir(y, ∂y′ψ)
1/2, ψ̃ |yn=0 = φ̂(w

′, y′)− y′ · tη′0.

Thus, up to exponentially small errors, we get for q ∈ L∞(�)

T̂ Mq(w′, t)=
∫

e(i/h)ψ(w′,t,y)c(w′, t, y; h)q(y) dy, (w′, t) ∈ neigh((0, 1),Cn−1
×C), (5-12)

where c is an elliptic analytic symbol of order 0 and

ψ(w′, t, y)= ψ̃(w′, t, y)+φ(y, tη′0)

satisfies

ψ |yn=0 = φ̂(w
′, y′), (5-13)

∂ynψ |yn=0 = i
(
r(y′, 0, ∂y′ φ̂(w

′, y′)− tη′0)
1/2
+ r(y′, 0, tη′0)

1/2). (5-14)

Assume for simplicity that r(0, 0, η′0)=
1
4 . Then, at the point (w′ = 0, t = 1, y = 0),

(∂w′ψ, ∂tψ,−∂y′ψ,−∂ynψ)= (0, 0, 0,−i),

so κT̂ M(0, 0,−i)= (0, 1, 0, 0).4 Also, κT̂ M = κT̂ ◦ κM and

κM(0, 0,−i)= (0, 1, 0, 0),

κT̂ (0, 1, 0, 0)= (0, 1, 0, 0).
Recall from (3-25) that

κM : neigh((0; 0,−i), T ∗∂�×C−y∗n
)→ neigh

(
(0, 1; 0, 0),Rn−1

x ′ ×Ct ×Rn−1
x ′∗ ×{t

∗
= 0}

)
,

so
κT̂ M : neigh((0, 0,−i), T ∗∂�×C−y∗n

)→ neigh((0, 1, 0, 0),38̂0⊕0).

4We can verify directly that det ∂w′,t∂yψ 6= 0.
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On the other hand, we have seen in Section 4 that κT (F)=381 and that the part T ∗∂�×C−y∗n
of F is

mapped to 38ext
1

. More locally,

κT : neigh((0, 0,−i), T ∗∂�×C−y∗n
)→ neigh(κT (0, 0,−i),38ext

1
)

κS : neigh(κT (0, 0,−i),38ext
1
)→ neigh((0, 0,−i), T ∗∂�×C−y∗n

).

Using also (3-25), we get

κT̂ M S : neigh(πzκT (0, 0,−i),38ext
1
)→ neigh((0, 1, 0, 0),38̂0⊕0). (5-15)

We then also know that
8̂0(w

′)= vcy,z(−=ψ(w
′, t, y)+=φT (z, y)).

This means that the formal composition

T̂ M Sv(w′, t)= C̃h−n/4
∫∫

e(i/h)(ψ(w′,t,y)−φT (z,y))c(w′, t, y; h)v(z) dz dy (5-16)

gives a well defined operator

T̂ M S : H8ext
1 ,πzκT (0,0,−i)→ H8̂0⊕0,(0,1) (5-17)

that can be realized with the help of a good contour.
We shall next show that

T̂ Mu = (T̂ M S)T u in H8̂0⊕0,(0,1) (5-18)

when u is supported in {yn ≥ 0}. The proof is the same as the one for (5-7). The right-hand side in (5-18)
is equal to

const h−n
∫∫∫

e(i/h)(ψ(w′,t,x)−φT (z,x)+φT (z,y))c(w′, t, x; h)u(y) dy dz dx,

where the y-integration is over Rn
+

, and we may assume without loss of generality that u has its support
in a small neighborhood of y = 0. The dz dx integration is, to start with, over the good contour in (5-16).
This last integration can be viewed as T tSt acting on e(i/h)ψ(w′,t,· )c(w′, t, · ; h), and here T tSt is the
identity operator that can be realized with a good contour, so we get

(T̂ M S)T u(w′, t)=
∫

e(i/h)ψ(w′,t,x)c(w′, t, x; h)u(x) dx = T̂ Mu(w′, t),

and we have verified (5-18).
Above, we have established (5-17) as the quantum version of (5-15). It follows by an easy adaptation

of the exercise leading to (3-17) that

κM(neigh((0, 0,−i),Cn−1
×{0}×C−ηn

))= neigh((0, 0, 1, 0),Cn−1
x ′ ×{x

′∗
= 0}×Ct×{t∗= 0}), (5-19)

and hence,
κT̂ M S(neigh(κT (0, 0,−i),383))= neigh((0, 0, 1, 0),30⊕0). (5-20)
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The quantum version of (5-20) is

T̂ M S : H loc
83,πz(neigh(κT (0,0,−i)))→ H loc

0⊕0,(0,1). (5-21)

We also know that T̂ M S is an elliptic Fourier integral operator. Consequently, (5-17) and (5-21) have
continuous inverses. We also have the following result.

Proposition 5.4. If u ∈ H loc
81,πz(neigh(κT (0,0,−i))) and T̂ M Su ∈ H loc

0⊕0,(0,1), then u ∈ H loc
83,πz(neigh(κT (0,0,−i))).

6. End of the proof of the main result

We will work with FBI and Laplace transforms of functions that are independent of h or that have some
special h-dependence. Consider a formal Fourier integral operator u 7→ T u, given by

T u(x; h)= Chα
∫

e(i/h)φ(x,y)u(y) dy, (6-1)

where φ = φT is a quadratic form on C2n
x,y satisfying

detφ′′xy 6= 0 (6-2)

and hence generating a canonical transformation that will be used below.

Proposition 6.1. If u is independent of h,(
h Dh +

1
h

Pα(x, h D; h)
)

T u = 0, (6-3)

where

Pα = p(x, h D)+ ih
(
α+ 1

2 tr(φ′′xxφ
′′

yx
−1
φ′′yyφ

′′

xy
−1
)
)
, (6-4)

p(x, ξ)= 1
2φ
′′

xx x · x + x · (ξ −φ′′xx x)+ 1
2φ
′′

yx
−1
φ′′yyφ

′′

xy
−1
(ξ −φ′′xx x) · (ξ −φ′′xx x)

=−
1
2φ
′′

xx x · x + 1
2φ
′′

xxφ
′′

yx
−1
φ′′yyφ

′′

xy
−1
φ′′xx x · x

+ x · ξ −φ′′yx
−1
φ′′yyφ

′′

xy
−1
φ′′xx x · ξ + 1

2φ
′′

yx
−1
φ′′yyφ

′′

xy
−1
ξ · ξ. (6-5)

Proof. We have

h Dh
(
e(i/h)φ(x,y))

=−
1
h

e(i/h)φ(x,y),

h Dh(hα)=
α

i
hα,

h DhT u(x; h)=−
1
h

hα
∫

e(i/h)φ(x,y)(ihα+φ(x, y))u(y) dy.

Try to write φ(x, y)= p(x, φ′x(x, y)) for a suitable quadratic form p(x, ξ) (that will turn out to be the
one given in (6-5)). We have

φ(x, y)= 1
2φ
′′

xx x · x +φ′′xy y · x + 1
2φ
′′

yy y · y, (6-6)

φ′x = φ
′′

xx x +φ′′xy y, i.e., y = φ′′xy
−1
(φ′x −φ

′′

xx x), (6-7)
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and using the last relation from (6-7) in (6-6), we get

φ(x, y)= 1
2φ
′′

xx x · x +φ′′yx x ·φ′′xy
−1
(φ′x −φ

′′

xx x)+ 1
2φ
′′

yyφ
′′

xy
−1
(φ′x −φ

′′

xx x) ·φ′′xy
−1
(φ′x −φ

′′

xx x), (6-8)

where the φ′′yx and φ′′xy
−1 in the second term cancel and we get p(x, φ′x) with p as in (6-5).

To verify (6-4), it suffices to notice that

e−(i/h)φ(x,y) p(x, h Dx)
(
e(i/h)φ(x,y))

− p(x, φ′x)=
1
2φ
′′

yx
−1
φ′′yyφ

′′

xy
−1h Dx · (φ

′

x)

=
1
2φ
′′

yx
−1
φ′′yyφ

′′

xy
−1h Dx · (φ

′′

xx x)

=
h
2i
φ′′xxφ

′′

yx
−1
φ′′yyφ

′′

xy
−1
∂x · x

=
h
2i

tr
(
φ′′xxφ

′′

yx
−1
φ′′yyφ

′′

xy
−1)
. �

Remark 6.2. Let κT : (y,−φ′y(x, y)) 7→ (x, φ′x(x, y)) be the canonical transformation associated to T ,
which can also be written

κT : (y,−(φ′′yx x +φ′′yy y)) 7→ (x, φ′′xx x +φ′′xy y)

or still κT : (y, η) 7→ (x, ξ), where

x =−φ′′yx
−1
(η+φ′′yy y),

ξ = (φ′′xy −φ
′′

xxφ
′′

yx
−1
φ′′yy)y−φ

′′

xxφ
′′

yx
−1
η.

We see that the following three statements are equivalent.

• κT maps the Lagrangian space η = 0 to ξ = 0.

• φ′′xy −φ
′′
xxφ
′′
yx
−1
φ′′yy = 0.

• p(x, 0)= 0 and p′ξ (x, 0) for all x .

Example 6.3. Consider

T̂Lu(x; h)= Ch(1−n)/2
∫

e(i/h)(φ(x ′,y′)+i xn yn)u(y) dy, φ = φT̂ .

If P ′(x ′, h Dx ′; h) is the operator associated to T̂ in n− 1 variables, we get when u is independent of h(
h Dh +

1
h
(P ′(x ′, h Dx ′; h)+ xnh Dxn )

)
T̂Lu = 0. (6-9)

Similarly (though not a direct consequence of Proposition 6.1 but rather of its method of proof), we have
for L alone that (

h Dh +
1
h

xnh Dxn

)
Lu = 0. (6-10)

Example 6.4. Let T be as above, and assume that we are in the situation of Remark 6.2 so that p(x, 0)= 0
and p′ξ (x, 0)= 0. Then

p(x, h D)= bh D · h D,
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where b is a constant symmetric matrix. Then

Pα = p(x, h D)+ ih(α+ f0), f0 =
n
2
,

and (6-3) reads
(h Dh + (hbD · D+ i(α+ f0)))T u = 0. (6-11)

If T u =
∑
∞

m hkvk ∈ H0 and u is independent of h, we can plug this expression into (6-11) and get the
sequence of equations (

m
i
+ i(α+ f0)

)
vm = 0,(

m+ 1
i
+ i(α+ f0)

)
vm+1+ bD · Dvm = 0,(

m+ 2
i
+ i(α+ f0)

)
vm+2+ bD · Dvm+1 = 0,
...

so unless v ≡ 0, we get m = α+ f0. We can choose vm ∈ H0 arbitrarily, and vm+1, vm+2, . . . are then
uniquely determined.

Now, consider the situation in Theorem 1.6 and let q ∈ L∞(�) be independent of h and such that
σ3̇(y

′, tη′0) is a cl.a.s. on neigh({0}×R+,Rn−1
×R+) of order −1 (see (2-4)):

σ3̇(y
′, tη′0)∼

∞∑
1

nk(y′, t), (6-12)

where nk(y′, t) is homogeneous of degree −k in t .

|nk(y′, t)| ≤ Ck+1kk
|t |−k, y′ ∈ neigh(0,Cn−1). (6-13)

For the moment, we shall only work with formal cl.a.s. and neglect remainders in the asymptotic expansions.
The semiclassical symbol of 3̇ is then

σ3̇(y
′, tη′0/h)∼

∞∑
1

nk(y′, t/h)=
∞∑
1

hhnk(y′, t), (y′, t) ∈ neigh((0, 1),Rn−1
×R+). (6-14)

Recall that σ3̇(y
′, tη′0/h) = Mq(y′, t; h). From (6-14), we infer that T̂ Mq is a cl.a.s. near w′ = 0

and t = 1:

T̂ Mq ∼
∞∑
1

hkmk(w
′, t). (6-15)

Formally,
T̂ M = (T̂ ML−1)L. (6-16)

The canonical transformation κL is given by

(y, η) 7→ (y′, iηn, η
′, iyn).
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It maps the complex manifold η′=0 and yn=0 to the manifold {(z, 0)} and the point (0; 0,−i) to (0, 1; 0),
so κL−1 = κ−1

L maps ζ = 0 to η′ = 0 and yn = 0. We noticed in (3-24) (see (3-22)) that κM takes the
complexified conormal bundle to the zero-section, and it maps the point (0; 0,−i) to (0, 1; 0). Thus,
κML−1 maps the zero-section ζ = 0 to the zero-section and in particular (0, 1; 0) to (0, 1; 0). (We may
notice that this is global in the sense that we can extend zn to an annulus, and we then get t in an annulus.)
Since κT̂ maps the zero-section to the zero-section, we have the same facts for κT̂ M .

From the above, it is clear that T̂ ML−1 maps formal cl.a.s. to formal cl.a.s.
Recalling (6-14) for σ3̇(y

′, tη′0/h)=Mq(y′, t; h) and using that T̂ ML−1 is an elliptic Fourier integral
operator whose canonical transformation maps the zero-section to the zero-section, we see that there
exists a unique formal cl.a.s.

v ∼

∞∑
1

vk(z′, zn)hk, z ∈ neigh((0, 1),Cn), (6-17)

such that in the sense of formal stationary phase

T̂ Mq = T̂ ML−1v. (6-18)

Now q is independent of h, so Mq satisfies a compatibility equation of the form(
h Dh +

1
h

PT̂ M

)
Mq = 0. (6-19)

This gives rise to a similar compatibility condition for v(
h Dh +

1
h

PLM−1 T̂−1 T̂ M

)
v = 0

or simply (
h Dh +

1
h

PL

)
v = 0,

which is the same as (6-10):
(h∂h + zn∂zn )v = 0. (6-20)

Application of this to (6-17) gives
(k+ zn∂zn )vk = 0, (6-21)

i.e.,
vk(z)= qk(z′)z−k

n , |qk(z′)| ≤ Ck+1kk . (6-22)

Thus,

v ∼

∞∑
1

qk(z′)
(

h
zn

)k

=

∞∑
0

qk+1(z′)
(

h
zn

)k+1

,

and we see as in Section 2 that

v ∼ Lq̃(z; h), q̃(y)= 1[0,a](yn)

∞∑
0

qk+1(y′)
k!

yk
n , (6-23)

with a > 0 small enough to assure the convergence of the power series.



542 JOHANNES SJÖSTRAND AND GUNTHER UHLMANN

More precisely (and now we end the limitation to formal symbols), as in (5-18) and (5-7), we check that

T̂ Mq̃ ≡ (T̂ ML−1)Lq̃ in H0,(0,1) (6-24)

(up to an exponentially small error). By the construction of q̃ , the right-hand side is ≡ T̂ Mq in the same
space.

Put r = q − q̃ . Then

T̂ Mr ≡ 0 in H0,(0,1). (6-25)

Now, we replace L with T and consider in light of (5-18)

(T̂ M S)T r ≡ 0 in H0,(0,1), (6-26)

which implies that T r ∈ H81 satisfies

T r ≡ 0 in H8ext
1 ,πzκT (0;0,−i). (6-27)

As we saw in Section 4, 381 contains the closure 0 of the complex curve

0 = κT ({(0; 0, ηn) : =ηn < 0}),

and κT ((0; 0,−i)) ∈ 0. Consequently, 81|πz0 is harmonic and (6-27) and the maximum principle imply
that

T r ≡ 0 in H81 on πz(0). (6-28)

In particular,

T r ≡ 0 in H81,0 (6-29)

and a fortiori

T r ≡ 0 in H80,0. (6-30)

This implies that r = 0 near y = 0. Hence, q = q̃ near y = 0, which gives the theorem.

7. Proof of Proposition 1.7

We choose local coordinates y= (y′, yn) as in the beginning of Section 2. As in Proposition 1.7, we assume
that q is analytic in a neighborhood of 0. We adopt the alternative definition of symbols in Remark 1.4.
It will also be convenient to consider the semiclassical symbol of 3̇, σ3̇(y

′, η′; h)= σ3̇(y
′, η′/h). For

y′ ∈ neigh(0,Rn−1),

σ3̇(y
′, η′; h)=−∂yn Gq K

(∫
χ(t ′)et ′( · ; h)ei( · )·η′/h dt ′

)
(y′, 0)e−iy′·η′/h, (7-1)

where χ and et were defined in Remark 1.4 with n there replaced by n− 1. By analytic WKB (as we
already used), we have up to an exponentially small error

K (et ′( · ; h)ei( · )·η′/h)= Ch(1−n)/2a(y, η′; h)eiφ(y,t,η′)/h, (7-2)
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where φ is the solution of the eikonal problem

∂ynφ = ir(y, ∂y′φ)
1/2, φ|yn=0 = y′ · η′+

i
2
(y′− t)2 (7-3)

and a is an cl.a.s. of order 0 obtained from solving a sequence of transport equations with the “initial”
condition a(y′, 0, η′; h)= 1.

Using again the analytic WKB method, we can find a cl.a.s. b of order 0 in h that solves the following
inhomogeneous problem up to exponentially small errors:{

(h21− h2V )
(
h(3−n)/2b(y, t, η′; h)e(i/h)φ(y,t,η′))

= Ch(5−n)/2ae(i/h)φ,

b(y′, 0, t, η′; h)= 0.

Then up to exponentially small errors,

Gq K (et( · ; h)ei( · )·η′/h)≡ h(3−n)/2b(y, t, η′; h)e(i/h)φ(y,t,η′)

and similarly for the gradients, so

−(∂yn )yn=0Gq K (et( · ; h)ei( · )·η′/h)≡−h(3−n)/2(∂yn b)(y′, 0, t, η′; h)e(i/h)(y′·η′+(i/2)(y′−t ′)2).

Multiplying with χ(t ′) and integrating in t ′, we see that σ3̇(y
′, η′; h) is a cl.a.s. in the semiclassical sense,

and this implies that σ3̇(y
′, η) is a cl.a.s.
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