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ON THE WELL-POSEDNESS OF
THE GENERALIZED KORTEWEG-DE VRIES EQUATION
IN SCALE-CRITICAL L"-SPACE

SATOSHI MASAKI AND JUN-ICHI SEGATA

The purpose of this paper is to study local and global well-posedness of the initial value problem for the
generalized Korteweg—de Vries (gKdV) equation in Lr = feSR) Nfljr= ||f||L,/ < oo}. We
show (large-data) local well-posedness, small-data global well-posedness, and small-data scattering for
the gKdV equation in the scale-critical i,’-space. A key ingredient is a Stein—Tomas-type inequality for
the Airy equation, which generalizes the usual Strichartz estimates for L" -framework.

1. Introduction
We consider the initial value problem for the generalized Korteweg—de Vries (gKdV) equation

deu+03u = udx(lu|*tu), t,xeR,
u(0, x) = uo(x), x €R,

(1-1)

where u : R x R — R is an unknown function, u¢ : R — R is a given function, and p € R\{0} and « > 1
are constants. We say that (1-1) is defocusing if p > 0 and focusing if p < 0.

The class of equations (1-1) arises in several fields of physics. Equation (1-1) with = 2 is the notable
Korteweg—de Vries equation [1895], which models long waves propagating in a channel. Equation (1-1)
with @ = 3 is also well-known as the modified Korteweg—de Vries equation, which describes a time
evolution for the curvature of certain types of helical space curves [Lamb 1977].

Equation (1-1) has the following scale invariance: if u(¢, x) is a solution to (1-1), then

uy(t, x):= )Laleu(k?’t,)Lx)

is also a solution to (1-1) with initial data u (0, x) = Aﬁuo(kx) for any A > 0. In what follows,
a Banach space for initial data is referred to as a scale-critical space if its norm is invariant under
ug(x) — /\%uo(/\x).

The purpose of this paper is to study (large-data) local well-posedness, small-data global well-posedness
and scattering for (1-1) in a scale-critical space L% . Forre [1, o0], the function space L" is defined by

L'=L"R):={f €S®) : Ifllzr =l fll~ < oo},
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where f stands for the Fourier transform of f* with respect to the space variable and r’ denotes the Holder
conjugate of r. We use the conventions 1" = 0o and oo’ = 1. Our notion of well-posedness consists of
existence, uniqueness, and continuity of the data-to-solution map. We also consider the persistence property
of the solution; that is, the solution describes a continuous curve in the function space X whenever ug € X .

Local well-posedness of the initial value problem (1-1) in a scale-subcritical Sobolev space H*(R),
S > 8q 1= % — (ﬁ, has been studied by many authors [Bourgain 1993; Griinrock 2005b; Guo 2009; Kato
1983; Kenig et al. 1993; 1996; Kishimoto 2009; Molinet and Ribaud 2003], where s,,, a scale-critical
exponent, is the unique number such that H*» becomes scale critical. A fundamental work on local
well-posedness is due to Kenig, Ponce, and Vega [Kenig et al. 1993]. They proved that (1-1) is locally
well-posed in H*(R) with s > % (@=2, 5= —%), 5= % (=3, s53= —%), 5= ﬁ (=4, 54= —é)
and s = sq (o = 5). Introducing Fourier restriction norms, Bourgain [1993] obtained local (and globall)
well-posedness of the KdV equation (i.e., (1-1) with @ = 2) in LZ(R). In [Kenig et al. 1996], Kenig,
Ponce, and Vega improved the previous results for the KdV equation to H*(R) with s > —%. Further,
Guo [2009] and Kishimoto [2009] extended the result of Kenig et al. in H -3 (R). (See also [Buckmaster
and Koch 2015] on the existence of a weak solution to the KdV equation at H ~1) Griinrock [2005b] has
shown local well-posedness of the quartic KAV equation ((1-1) with & = 4) in H® with s > s4. Notice
that all of the above results are based on the contraction mapping principle for the corresponding integral
equation. Hence, a data-solution map associated with (1-1) is Lipschitz continuous.?

Concerning the well-posedness of (1-1) in the scale-critical H-space, Kenig et al. [1993] proved
local well-posedness and global well-posedness for small data in the scale-critical space H* when o = 5.
Since the scale-critical exponent s, is negative in the mass-subcritical case a < 5, the well-posedness
of (1-1) in H becomes rather a difficult problem. Tao [2007] proved local well-posedness and global
well-posedness for small data for (1-1) with the quartic nonlinearity® o = 4 in H*4. Later on, the above
results were extended to a homogeneous Besov space B;"‘oo by Koch and Marzuola [2012] (¢ = 4) and
Strunk [2014] (o = 5). As far as we know, local well-posedness and small-data global well-posedness of
(1-1) in H*« for the mass-subcritical case o < 5 were open except for the case o = 4.

Local and global well-posedness for a class of nonlinear dispersive equations is currently being
intensively investigated also in the framework of L -space. For the one-dimensional nonlinear Schrédinger

equation,
10,0 —03%v = plv|* v, t,xeR,

(1-2)
v(0, x) = vo(x), x €R,

where € R\{0}, Griinrock [2005a] has shown local and global well-posedness for (1-2) with o = 3
in L". Hyakuna and Tsutsumi [2012] extended Griinrock’s result in L’ to all mass-subcritical cases
1 <« < 5. Griinrock and Vega [Griinrock 2004; Griinrock and Vega 2009] proved local well-posedness

ISince (1-1) preserves the L2-norm of a solution in ¢, local well-posedness in L? yields global well-posedness in L2 if o < 5.

21n fact, if the nonlinear term is analytic, then the data-solution map associated with (1-1) is analytic.

3Strictly speaking, the local well-posedness is shown not for pdy (|u|3u) but for 113y (u*). These two are not necessarily
equivalent.
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for the modified KdV equation (i.e., (1-1) with « = 3) in H 7, where
[y . 2,38 2
Hi={feS :|flg =10+ )2 SOl < oo}

However, the above results are not in scale-critical settings.
It would be interesting to compare the scale-critical space L “Z with some other scale-critical spaces in
view of symmetries.* Other than the scaling, the L “2" -norm is invariant under the three group operations

(i) translation in physical space, (T, f)(x) = f(x —a), where a € R,
(i) translation in Fourier space, (Pg f)(x) = e7*¢ f£(x), where £ € R,
(iii) Airy flow, (Ai(r) £)(x) = e~*%% f(x), where ¢ € R.

The critical Lebesgue space L 3" is invariant under the former two symmetries but not under the Airy flow.
The critical Sobolev space H*e (or homogeneous Triebel-Lizorkin and homogeneous Besov spaces A';‘fq,
with 1 < ¢ < oo, more generally) is not invariant with respect to Pg if s4 # 0. The critical weighted
Lebesgue space H% S« := L2(R, |x|~2% dx) is not invariant with respect to T, and Ai(z). Further,
when o = 5, these four spaces coincide with L2, which is invariant under the above three symmetries.
Thus, among the above four critical spaces, ZaT_l possesses the richest symmetries, and, in some sense,

~o—

1. . . . .
L7 is close to L2-space. Inclusion relations between these spaces are summarized in Appendix B.

Local well-posedness. Before we state our main results, we introduce several notations.

Definition 1.1. Let (s,r) € Rx[1, 00]. A pair (s, r) is said to be acceptable if % € [O, %) and

_1 2 Ffo<l<l
s [ 2r’r] lfo\rSZ’
2 55 3 P | 1 3
(F-33-7) if3<3<3

For an interval / C R and an acceptable pair (s, r), we define a function space X(/; s, r) of space-time
functions with the norm

where the exponents in the above norm are given by

2 1 1 1 2
+ =, - + =
pGs,r) qls,ry 1o pls,r) - q(s,r)

()= 6)

We refer to X(I;s,r) as an L"-admissible space.
4Here, a symmetry is an isometric bijection which possesses a group structure. Some of them are also “symmetries of (1-1)”
in such a sense that an image of a solution of (1-1) again solves the equation.

s, (1-3)

or equivalently,

NI W=
= N

Our main theorems are as follows.
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Theorem 1.2 (local well- posedness 1n LT ) For &= 21 <a <2, the problem (1-1) is locally well-posed
in L7 . Namely, for any ug € L 2z ([R) there exzsts an mterval I = I(ug) such that a unique solution

ueC(I;LET (R)N N X(I s, “21) (1-4)

(s, ) acceptable

to (1-1) exists. Furthermore, for any given submterval I’ C 1, there exists a neighborhood V of ug
in f,)% (R) such that the map ug — u from V into the class defined by (1-4) with I’ instead of I is
Lipschitz continuous.

Remark 1.3. Theorem 1.2 (and all results below) holds for more general nonlinearity of the form 9, G (1)
with G € Lipa. For the precise condition on G, see Remark 3.5.

The proof of Theorem 1.2 is based on a contraction argument, with the help of a space-time estimate
for the Airy equation in L™ A key ingredient is a Stein—Tomas-type inequality for the Airy equation, a
special case of [Griinrock 2004, Corollary 3.6]:

D17 £l ry < CUF 50 (1-5)

where r € (4, oo]. This inequality is a generalization of a well-known Strichartz estimate,

1102157 Fl s (rumy < CIf 2.

Moreover, interpolations between the above Stein—Tomas-type inequality (1-5) and the Kenig—Ruiz

estimate or Kato’s local smoothing effect give us the following generalized Strichartz estimate for the Airy
equation in L"-framework (Proposition 2.1): if (s, r) is an acceptable pair then there exists C such that

_+93
le™% fllx@ss.ry < CILf Iz (1-6)

for f eL". Furthermore, combining the homogeneous estimate and the Christ—Kiselev lemma (Lemma 2.6),
we also obtain a generalized version of inhomogeneous Strichartz estimates. The estimate (1-5) can be
regarded as a kind of restriction estimate of the Fourier transform, which goes back to Stein [Fefferman
1970] and Tomas [1975] (for more information on the restriction theorem, see, e.g., [Tao et al. 1998]).
It is worth mentioning that the L’ -spaces have naturally come out in this context.

We set S(I;r):= X(1;0,r). The S(I;r)-norm is the so-called scattering norm. It is understood that
a key for obtaining a closed estimate for the corresponding integral equation from which local well-
posedness immediately follows, is to bound the scattering norm S ( ) In the proof of Theorem 1.2,
the scattering norm is handled by means of the above generalized Strlchartz estimate (1-6). Notice that the

pair (O 5 1) is acceptable only if o« > %= 21

, which leads to our restriction. For the upper bound on «, see
Remark 4.1 below. Alternatively, Sobolev s embedding also yields a bound on the scattering norm, pro-

vided o = 5. In such case, we obtain local well-posedness in H* asin [Kenig et al. 1993] (see Remark 4.4).

Persistence of regularity. We establish two persistence-of-regularity-type results for L7 -solutions
given in Theorem 1.2. More specifically, we consider persistence of L -regularity for r # "‘T—l and
H*-regularity for —1 < s < . These results yield local well-posedness in other L"-like spaces such as
L™ N L, where ry < "‘T_l <ry,and HS N LT
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Theorem 1 4 (persistence of L’- -regularity). Assume 2?1 <a< ? Let uo € L 2 ([R{) and let u €
C(; LT ([R?)) be a corresponding solution given in Theorem 1.2. If ug € L for some % <ap < 233,
where ag # o, then
ag—1
oz : Olo_—1>
wueC(:L, 2 (R)N N X(I,s, =)
(s,aoz_ 1)acceptable
Theorem 1 5 (persistence of H’-regularity). Assume % <ua< ? Let ugy € ZQT_I([R) and let u €

C(, LT ([R)) be a corresponding solution given in Theorem 1.2. If ug € HU(R) for some —1 <0 < «,
ID:[CueCU:L* RN ()  X(I:s.2).
(s,2) acceptable
As a corollary, we obtain the following well-posedness results.

Corollary 1.6. We have the following.

@) If 2L <2 3 3 then (1-1) is locally well-posed in L''NL"™ as long as = 8 <1 < Tl <r< %.

2
a—1"

() If % 21 < a < 5then (1-1) is locally well-posed in HSNL*% , where s = % —

Since L7 ¢ H% does not hold (see Lemma B.2), the second is weaker than well-posedness in H .
Here we remark that an L “Z" -solution has conserved quantities, provided the solution has appropriate
. . ~a—1 .
regularity. More precisely, when ug € L “2° N L2, asolution u(t) has a conserved mass

Mu(®)] = [u@®)I7
Similarly, if ug € L' N H! then the energy

E[u(0)]:= 3l19xu(®)|7> +

n
N7

is invariant.

Blowup and scattering. We next consider long time behavior of solutions given in Theorem 1.2. To this
end, we give the definitions of blowup and scattering of (1-1) for the initial data ug € L’,. Set

Thax : = sup{T > 0 : the solution u to (1-1) can be extended to [0, T)},
Tiin : = sup{T > 0 : the solution u to (1-1) can be extended to (-7 0]}.

Denote the lifespan of u(z) as (—Tin, Tmax). We say a solution u(¢) blows up in finite time for positive
(resp. negative) time direction if Ty < +00 (resp. Tmin < +00). We say a solution u(z) scatters for
positive time direction if Tinax = 400 and there exists a unique function ¥ € L, such that

dim () =™ Bz =o0.

-t 3xu+ is a solution to the Airy equation d;v + a;u = 0 with initial condition v(0, x) = u4. The

where e
scattering of u for negative time direction is defined in a similar fashion.

Roughly speaking, a solution scatters if a linear dispersion effect dominates the nonlinear interaction.
A typical case is when the data (and the corresponding solution) is small. Here, we state this small-data

scattering for (1-1).
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a 1
Theorem 1.7 (small-data scattering). Let 2 o< 23 . There exists £9 >0 such that if ugeL,? (R) satisfies
HMOHE?‘*”/Z < &g,

then the solution u(t) to (1-1) given in Theorem 1.2 is global in time and scatters for both time directions.
Moreover,

||u||L?O(R;Z(xa—1)/2) + ”“”S(R;"‘—;') < 2||u0”i§f‘_”/2‘

We now give criterion for blowup and scattering.

Theorem 1.8 (blowup criterion). Assume % <a<Z. LetugeL “T and let u(t) be a corresponding

unique solution of (1-1) given in Theorem 1.2. If Tmax < o0 then

el s o, ry; 5y = 00

as T 1 Thax- A similar statement is true for negative time direction.

. . . a—1
Theorem 1.9 (scattering criterion). Assume %1 <<% Letuge LT and let u(t) be a corresponding

unique solution of (1-1) given in Theorem 1.2. The solunon u(t) scatters forward in time if and only if
Tmax = +00 and ||u ”S([o 00):251) < 00. A similar statement is true for negative time direction.

Finally, we glve a crlterlon for scattering in terms of the energy We note that if an L 2" -solution u(t)

scatters (in the LT —sense) as t — *oo and if ug € L (resp. if ug € H %) then u(t) scatters as
0—1

t — o0 also in the L -sense (resp. H "—sense)

Theorem 1.10. Let A aw<Z Ifuye LT nH! satisfies ugy # 0 and Eug] <0 then u(t) does not
scatter as t — :I:oo.

The rest of the paper is organized as follows. In Section 2, we prove some linear space-time estimates
for solutions to the Airy equation, in L"-framework. The generalized Strichartz estimates are established
in Propositions 2.1 and 2.5. Section 3 is devoted to several nonlinear estimates. We also introduce several
function spaces to work with in this section. Then, in Section 4, we prove our theorems. In Appendix A,
we prove a fractional chain rule in space-time function space (Lemma 3.7). Finally in Appendix B, we
briefly collect some inclusion relations for L.

The following notation will be used throughout this paper: | Dx|* = (—8%)% and (Dx)* = — 8)26)%
denote the Riesz and Bessel potentials of order —s, respectively. For 1 < p,g < oo and I C R, let us
define a space-time norm

17 1zs ey = NAE I e@l oy

1A ez zeay = 1LFC 0L e wy-
2. Linear estimates for the Airy equation

In this section, we consider the space-time estimates of solutions to the Airy equation

8tu—|—8)3€u=F(t,x), tel, x eR,

(2-1)
u(0,x) = f(x), x €R,
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Figure 1. The range of (p, ¢) satistfying the assumptions of Proposition 2.1.

where I C Ris an interval and F : I xR — R and f : R — R are given functions.
Let {9 },cg be an isometric isomorphism group in L” defined by e~1%% = F~1e/’8* £ or more
precisely by

(€% f)(x) = EHIEY £(g) dE.

1 [e.e]
— e
£V, 2 /—oo
Using the group, the solution to (2-1) can be written as

t
u(t) = e 1% f 4 / e~ R E(ydr.
0
We first show a homogeneous estimate associated with (2-1).

Proposition 2.1. Let I be an interval. Let (p, q) satisfy

1 1 1 1 1
OSE<Z, Osc—]<§—;.
Then, for any f € L,
D¢ ™% £l o pagry < ClLF NIz, (2-2)
where
2112
rp dq P 4

and the positive constant C depends only on r and s.

Figure 1 shows the range of (p, ¢) satisfying the assumptions of Proposition 2.1, where A = (% O),
B = (%, %), and C = (O, %) The line segments OA and OC are included, but the other parts of the
border are excluded.

To prove Proposition 2.1, we show three lemmas. The first one is a Stein—Tomas-type estimate.

Lemma 2.2 (Stein—Tomas-type estimate). For any r € (4, o], there exists a positive constant C depending
only on r such that for any f € L3,

||Dx|7 e~ 1|

LT () < C||f||zr/3- (2-3)
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Proof of Lemma 2.2. Although a more general version is proved in [Griinrock 2004, Corollary 3.6], here
we give a direct proof, based on the fact that the exponents for the space variable and time variable on the
left-hand side coincide.

It suffices to prove (2-3) for the case I = R. For notational simplicity, we omit R. The case r = oo
follows from the Hausdorff—Young inequality. Let r < co. Squaring both sides, we may show that

[[1Dx7e™ % £ [*] 2 < CILLIZ

2 e (2-4)

The left-hand side of (2-4) is equal to

H Jli eix@—n)“f@s—"”wnﬁf(é)%)dsdn“ /
R2 Lr2

r.x
Changing variables by a = £ —n and b = £3 — 3, we have

L= H || e tientt 76 F ) gy da b

D*—ta3
JiDatre-r P .

LyZ
We now use the Hausdorff—Young inequality to deduce that

pre <Cllgnl £ @7 1E =17 Lo

:c(/f Enl =2 1/ @172 1/ )= dgdn)l‘? 05
S I R

Notice that 5 > 2. We now split the integral region R? into {£7 > 0} and {£n < 0}. We only consider the
first case, since the other can be treated essentially in the same way. For (&, ) with £n = 0, we have

E+mn?
R

|[1Dx] 7% £ P2

En <

and so

[ VORI by, fOIE I 0 o
om0 [§—nl72 I+ 0l o JE—yl7

By the Holder inequality and the Hardy—Littlewood—Sobolev inequality, we have

[ O ety < 17175 | oas 61722 17175
£n=0 1§ —nlr=2

Lr—2

<CIFI o = CIA I @)

as long as =5 < I, that is, r > 4. Combining (2-5), (2-6) and (2-7), we obtain the result. O
The second is a Kenig—Ruiz-type estimate [1983].

Lemma 2.3 (Kenig—Ruiz-type estimate). There exists a universal constant C such that for any interval 1
and any f € L2,

D175 | 4 poogry < CILf D2 (2-8)
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Proof of Lemma 2.3. See [Kenig et al. 1991, Theorem 2.5]. O
The last estimate is an L9-version of Kato’s local smoothing effect [1983].

Lemma 2.4 (Kato’s smoothing effect). For any g € [2, 00], there exists a positive constant C depending
only on q such that for any interval I and for any f € L4,

[1D217e™ £l oo oy < CIlF e (2:9)

Proof of Lemma 2.4. We show (2-9) by slightly modifying the argument due to Kenig, Ponce, and Vega
[Kenig et al. 1991, Theorem 2.5]. We prove (2-9) for the case / = R only.
The case g = oo is treated in Lemma 2.2. Hence, we may suppose g < co. A direct computation shows

2 _ 1 . s 2 A
IDx[7e ta;f:E/Re’x“”@léiqf@)ds
1
32w

where we have used a change of variable n = £ to yield the last line. Take the L‘t]-norm and apply the

. 2 24 1
e XNt n 130 =5 £ (n3) dn,
R

Hausdorff—Young inequality to obtain

1Dl e 1| g < C L™ 15 F ) g < CI Al = €Az
Since the right-hand side is independent of x, we obtain (2-9). |
Proof of Proposition 2.1. Interpolating (2-3), (2-8), and (2-9), we obtain (2-2). O
Next we show an inhomogeneous estimate associated with (2-1).

Proposition 2.5. Let 3 <r <4 and let (pj.q;) (j = 1.2) satisfy

pj 4 g 2 pj
Then, the inequalities

t
—(t—t)33 / / —s52
e YE() di <Ci||D:"2F| ;0 o (2-10)
‘/o L (LY 10+ “L?Li’z(n
and )
D | e R EEy ar < G|||D<|2F| 1 o 2-11
“| N /0 O I il @-11)
hold for any F satisfying |Dx| 52 F € L,IgzL?z, where
L_2,0 o2 121 12
rprr qi P14 r P2 42 P2 42

and where the constant Cy depends on r, s1 and I, and the constant C, depends on r, sp and 1.

To prove Proposition 2.5, we employ the following lemma, which is essentially due to Christ and
Kiselev [2001]. The version of this lemma that we use is the one presented in [Molinet and Ribaud 2004].
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Lemma 2.6. Let [ C R be an interval and let K : S(I x R) — C(R3). Assume that

<
< C”F”L;UL;’Z(])

H/ K@t t"F(t")dt
I

LYVLTN(TD)

for some 1 < py, pa,q1,q2 < oo withmin(py, q1) > max(pz, q2). Then

H/t K@t t"F(@'ydt
0

S C|Fllpr2po2
L§1L?1(1) x t ()

Moreover, the case g1 = o0 and p3, qr < o0 is allowed.

Proof of Lemma 2.6. See [Molinet and Ribaud 2004, Lemma 2]. O

Proof of Proposition 2.5. We first prove the inequality (2-10). Since the group {e~’ aJ3c} teR 18 isometric
in L", the duality argument and Proposition 2.1 yield

t 7’93
‘ A =‘/ eF @yl
L% 0 L%
o /opt
= sup (/ (/ e 3XF(t/,x)dt’)g(x)dx)
gl =1\/—00 AJ0

t o0
= sup (/f |Dx|—SZF(z/,x)|Dx|sze—’f’ig(x)dz/dx)
0 J—oo

t
/ e~ =% p(t1) dy’
0

gl =1
- o
) "g”S;rI’;l”lel stHLfZ/ZLf’/z(I) [1Dx2e™ g 22 02 g
5 o y
=€ ||g||S;,I?=1“|DX| FHLJIZZsz([)”g”L;
=Clibx2F] (2-12)

ph b s
LX*L,>(I)

where the constant C is independent of ¢. Hence we have (2-10).
Next we prove the inequality (2-11). Since the case r = 2 was already proved in [Kenig et al. 1993],
we consider the case where r # 2. To prove (2-11), it suffices to show

< C||Dx|™F|

;o 2-13
L2 L (1) LYL7 (D) (2-13)

”ler” f TRy dr!
1

Indeed, since min(p1,¢1) > max(pj, g,) follows from

_r_
r—1

) if % <r <2,
min(p1,41) =
r

r if%<r< 2,
max(p3. 45) = { . X

if2<r <4, —— if2<r <4,

r—1
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we see that the combination of the Christ—Kiselev lemma (Lemma 2.6) with (2-13) implies (2-11).
Therefore we concentrate our attention on proving (2-13). By Proposition 2.1,

“wxf‘ / e =% () dr
I

— ”|Dx|sle—t8§; / et’ag’cF([/) d[/
1

LIV L{N(T) LI'LIN(D

<C / R F ) dt (2-14)
I .
By the duality argument similar to (2-12), we obtain
33 NS, —s
*F(t") dt SC||Dx|2F| o0 o - 2-15
[ rary 1 SCIDATF g @15)
Combining (2-14) and (2-15), we obtain (2-13). O

3. Nonlinear estimates

In this section, we prove several nonlinear estimates which are used to prove main theorems. We introduce
several function spaces. Let us recall that a pair (s, r) € Rx[1, oo] is said to be acceptable if % € [0, %) and

LAl s
(2_§ §_§) if%<

’

1
Sz
3
<17

N = Y

Definition 3.1. Let (s,7) € R x [1, 00]. A pair (s, r) is said to be conjugate-acceptable if (1 —s,r") is
acceptable, where % =1 —% e[o,1].

Figure 2 shows the ranges of acceptable pairs (quadrangle OABC) and conjugate-acceptable pairs
(quadrangle DEFG). Here, O = (0.0), A= (3.—%), B=(3.4).C=(3.1), D=(1.1), E=(3.2),
F=(%.2),and G = (3.0).

4’
s E
»‘\
F /15
T B
s
o G| 1
K r
\LA

Figure 2. The ranges of acceptable pairs (quadrangle OABC) and conjugate-acceptable
pairs (quadrangle DEFG).
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For an interval / C R and a conjugate-acceptable pair (s, ), we define a function space Y (/;s, r) by

||f ”Y(I,s,r) = H |Dx |sf HL)[;)(SJ) (R’L?(Y,I)(I))s
where the exponents are given by

2 N 1 - 1 1 N 2
~ ~ = - = ~ =S’
p(s.r)  q(s,r) r p(s.r)  q(s,r)

_1 _1 2 _1 4
1 - 2 1 1) 1 2]
q(s,r) 553 2+ q(s,r) 5

With this terminology, Propositions 2.1 and 2.5 can be reformulated as follows:

(3-1)

or equivalently,

Proposition 3.2. Let I be an interval.

(i) Let (s, r) be an acceptable pair. Then, there exists a positive constant C depending only on s and r
such that

—193 —133 -
le™™ " fllpoo:iry + le = fllxws,ry < Csrll fllzr
forany f € L.

(ii) Let (s1,r) be an acceptable pair and let (s, r) be a conjugate-acceptable pair. Then, there exists a
positive constant depending only on s; and r such that for any tg € I CRandany F € Y(I;52,r),

t
/ e~ F (') dt!
t

0

. <C ”F”Y(I;sz,r)-
LU L)NX(;51,7)

To handle X(/;s,r)- and Y(I;s, r)-spaces, the following lemma is useful.

Lemma 3.3. Let 1 < p;,q; <ocoands; €R fori =1,2. Let p,q and s satisfy

1:i+ﬂ’ l:i-i—ﬂ, s=0s1+(1—-0)s2
P pr1 P2 9 491 92

for some 0 € (0, 1). Then, there exists a positive constant C, depending on p1, p2,41,q2,51,52 and 9,
such that

1D f [ag < NP F gz 105177 125 22
holds for any f such that |Dx|*' f € LE'L9" and |Dx |2 f € LE? L%,

Proof of Lemma 3.3. For z € C, define an operator T, = | D |1 717252 L et ¢(¢) and h(x) be R-valued
simple functions and G, (¢) and H;(x) be extensions of these functions defined by

1-(z/q1+(1=2)/q2)
Gz (1) :=[g ()] 1=174 sign g(1)

and
I—¢/p1+1=2)/p3) |
H;(x) := |h(x)] 1=1/p signh(x),
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respectively, for z € C with 0 <Rez < 1. Put

YU(z):= // T, f(t,x)G,(t)H;(x)dt dx.
R2
By density and duality, it suffices to show
|W(0)| < C|||D«|* f HLWI |1 Dx |5 f HLﬂquz (3-2)

for any f € S(R?) with compact Fourier support and any simple functions g(¢) and /(x) such that
Il =11l p =1.

Let us now prove (3-2). It is easy to see that W(z) is analytic in 0 < Rez < 1 and continuous in
0 < Rez < 1. By a variant of the multiplier theorem by Fernandez [1987, Theorem 6.4], we see that
| Dx|" is a bounded operator in L' L?' with norm C(1 + |y|). Therefore, for any y € R,

[W(1+iy)| <] |Dx|iy(S1_S2)(|DX|SIf)”Lf;lL;“ ||G1+in1+iy||Lga %

SCU+ [y =)D 1D £ o1 g glzq 171

SC+|y(si—s2)) | |Dx|s1fHL§1L;11- (3-3)

The same argument yields
(W) < CA+[y(s1=s)D 1D f |2 2. (3-4)
From (3-3), (3-4) and Hirschman’s lemma [1952], we obtain (3-2) (see also [Stein 1956]). O

Estimates on nonlinearity. In this subsection, we establish an estimate on nonlinearity. For this, we
introduce a Lipschitz y-norm (i > 0) as follows. Write 4 = N + 8 with N € Z and 8 € (0, 1]. For a
function G : C — C, we define

S 6D 6™ ()= GM ()

G llLip e == sup ————— + sup ;
o Z(:)ZGR\{O} |Z[#77 0 xy |x — y|P

where G/) is j-th derivative of G. We say G € Lip u if G € CV (R) and |G |Lip u < 00.
The main estimate of this subsection is as follows:

Lemma 3.4. Suppose that G(z) € Lip « for some % <a<?2 % . Let (s, 1) be a pair which is acceptable

and conjugate-acceptable. Then, the following two assertions hold.

1) Ifue S(I; %) NX(I;s,r) then G(u) € Y(I;s,r). Moreover, there exists a constant C such that
”G(u)”Y(I S,r) X < C”“”S([ a— l)llu”X(I;s,r)
foranyueS( )ﬂX(Isr)

(i1) There exists a constant C such that
166G @) ly(ris) < € (Iulxcrsn 10 lxcrson) (1l sgrsity vl rsemsy) 2 lu=vll ety
+C (lull g sasnyF 0l seresty) ™ Tu=vllxcr;sm
foranyu,ve S(I; %5 NX(I;s, 7).
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Remark 3.5. Itis easy to see that |z|*!z € Lip a.. The validity of the above lemma is the only assumption
on the nonlinearity that we need. Hence, the all results of this article hold for an equation with generalized
nonlinearity d,u + d2u = dx(G(u)), provided G(z) € Lipa.

To prove the above lemma, we recall the following two lemmas.

Lemma 3.6. Let I be an interval. Assume that s = 0. Let p,q, pi,qi. € (1,00) (i =1,2,3,4). Then,

D2 (D Lo pary < CUIDEF o por iy 18 L2 poo gy + 1 W23 pos gy 11| oa s py)-
provided that

P ptop2 ps opa 4 @1 42 43 g4
where the constant C is independent of I and f.

o1 1 _ 11 1_1 1 _ 1.1

Proof of Lemma 3.6. If s € Z then (the classical) Leibniz rule, Holder’s inequality, and Lemma 3.3 give
us the result. By a similar argument, it suffices to consider the case 0 < s < 1 to handle the general case.
However, that case follows from [Kenig et al. 1993, Theorem A.8] and Lemma 3.3. O

Lemma 3.7. Suppose that u > 1 and s € (0, u). Let G € Lip w. If p, p1, p2.9,491, 42 € (1, 00) satisfy
1 -1 1 1 -1 1
pol pol

p pm P24 @ q
then there exists a positive constant C depending on |, s, p1, p2,41,q2 and I such that

”|Dx| G(f)”Lqu(I) < C”G”Llpu ”f”Lpqul(I) Hlelsf”Li’ZL?Z(])

holds for any f satisfying f € LY LT (I) and |Dx|* f € LE>L(1).

Although Lemma 3.7 is essentially the same as [Kenig et al. 1993, Theorem A.6; Christ and Weinstein
1991, Proposition 3.1], we give the proof of this lemma in Appendix A for self-containedness and in
order to clarify the necessity of the assumption G € Lip p.

Proof of Lemma 3.4. We prove the second assertion since the first immediately follows from the second
by letting v = 0. For simplicity, we name S = S(I; “T_l), L=X({:;s,r),and N =Y(I;s,r).
Let us write

1
Gu)—GW) = (u— v)/0 G'(u+ (1—=0)v)db.

Lemma 3.6 implies that
1
IG(u) = G)llxy < Cllu—vls / [IDx*(G" (O + (1= 0)v)) | o1 pr dB
0

1
-|—C||u—v||L/0 H(G’(9u+(1—9)1}))”L§2L?2 do
=11+ 1,

1/p\ _ (1/5G,r))  (1/p(0.%51)\ _ 1/p(0,%5%) 1/p(s,7)
(1/611)_(1/67(&’))_(1/61(0 e-1) =@-2) 1/4(0, %1) +(1/61(s r))

where
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(1/P2) _ (l/ﬁ(s,r)) _ (l/p(s,r)) — [P0 1)
l/qz l/é(s,r) I/Q(S,r) I/Q(O, %) .

It is easy to see that |G ||Lip(a—1) < |G Lipa < 4-00. By the definition of || - [|ip(@—1). We estimate 15 as

and

1
12 < Cllu=vl 16 luptamy [ 183+ (10001 2 a8

1
scuu—an[O (Julls + [vlls)*" d6

< C(llulls + llvlls)*™Hu—vlL.

On the other hand, we see from Lemma 3.7 that
[1D<*(G"(Ou + (1 =0)) | o1 pr < CUG ILipta—n 10w + (1 = O[> [0 + (1= O)v]L
for any 6 € (0, 1). Hence, we find the following estimate on /;:

It < Cllu = v s 16" ILipe—n (lulls + 1vlls)* > (lullz + [[vllz).-

Collecting the above inequalities, we obtain the result. O

4. Proofs of the main theorems

In this section, we prove the main theorems. Recall the notation S(/;r) = X(/;0,r). Now, take a
number sy, () so that a pair (s, (), %5*) is acceptable and conjugate-acceptable. We define L(7; %51) =
X(I;sp(e). %) and N (1: %51) = Y (150 (@), 2451).

1

=1 Works.

Remark 4.1. If % <o < ? then s7 (o) with the above property exists. Indeed, sz (@) = % —
Our upper bound on o comes from this point.

Local well-posedness in a scale-critical space. Let us prove Theorem 1.2. To prove this theorem, we
show the following lemma.

~a—1 .
Lemma 4.2. Assume % <o < 2—33’ and ug € L;T. Let to € R and I be an interval with to € I. Then,

there exists a universal constant § > 0 such that, if a tempered distribution uy and an interval I > ty

satisfy

_ . e —(t—10)d3 —(t—10)d3
e=¢(l;ug,t0):=|e 0 XM0||S(1;L51)+||€ 0 XuollL(l,aTﬂ)$5,

~a=l
then there exists a unique solutionu € C(I; Ly? ) to the initial value problem

deu+3u = iy (Ju|*1u), t,xeR,
u(to, x) = uo(x), xeR

(in the sense of the corresponding integral equation) that satisfies

”M”S(];“T—l) + ”u”L(I;“T_l) < 2e.
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If ug € L , in addition, then
”u”Loo(];Z(ot—l)/Z) < luollf@—1y/2 +Ce*

holds for some constant C > 0 and u belongs to all L -admissible spaces X (I ) S, %)

Proof of Lemma 4.2. For R > 0, define a complete metric space
Zr={ueL(;%5)NS(I: %) : |lullz <R},
hellz 2= Nl ooty + el grimsty.  dzev) = Ju—vlz.

. e e (t—)33
For given tempered distribution u¢ with e @ ’0)3xu0 € Zs and v € ZR, we define

t
D)(t) 1= e 10y 4y f e~ =R (lv|* 1) () dt

to
We show that there exists § > 0 such that ® : Z,, — Z5, is a contraction map for any 0 < & < 6.
To this end, we prove that there exist constants C1, C> > 0 such that for any u,v € Zg,
| @)z < lle~ % ug|| 2 + C1 R, (@-1)
dz(®(u), ®(v)) < C2R* Ydz(u,v). (4-2)

Let u € Zg. We infer from Proposition 3.2(ii) that
193 _
121z < lle™ P uollz +C [l u v, esny.

We then apply Lemma 3.4(i) with r = “T_l and s = s7, (o) to obtain (4-1). A similar argument, employing
Lemma 3.4(ii), shows (4-2).
Now let us choose § > 0 so that

C1(26)* '<l 8 < (4-3)

1
S35
Then, we conclude from (4-1), (4-2), and the smallness assumption that ® is a contraction map on Z»,.

Therefore, the Banach fixed point theorem ensures that there exists a unique solution u € Z,, to (1-1).
We now suppose that ug € L . By means of Proposition 3.2, we have

”u”Loo([ Le-1/2) S luoll7@—1)2 +Ce*
as in (4-1). The same argument shows u € X (I s, —) for any s such that ( > 1) is acceptable. [
Proof of Theorem 1.2. By Lemma 4.2, we obtain a unique solution
ueL¥(— TT] )ﬂS([ T,T); ¢ )ﬂL([ T,T]; % )

for small T = T (ug) > 0. We repeat the above argument to extend the solution, and then obtain a solution
which has a maximal lifespan. The regularity property (1-4) and the continuous dependence of solution
on the initial data are shown by a usual way. This completes Theorem 1.2. O
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Blowup criterion and scattering criterion. In this subsection we prove Theorems 1.7, 1.8, and 1.9.

Proof of Theorem 1.8. Assume for contradiction that Ty, < 0o and |u| S([0. T): 65 1) < O

Step 1. We first show that the above assumption yields

1ellz o, Ty)s 5y < 0©-
Fix T so that 0 < T < Tyax. Let sz, («) be as in the previous section (see Remark 4.1). If we take 8 € (0, 1)
so that (QSL (), “T_l) is conjugate-acceptable then it follows from Proposition 3.2 that

—1
Il o, 73, 51) < € Mol ass + Cl* ™ ully o, 7105, (@, 251)-

Then, Lemma 3.4(i) with r = % and Lemma 3.3 give us

Il o, ryse5ty < Cltollzags + Clluelgh ety 15 go ey
By assumption,
s o, ryie5ty < Mllsqo. Tezty < +00
for any T € (0, Thnax)- Plugging this to the previous estimate, we see that there exist constants A, B > 0
such that
”M”L([O T];% 1) < A + B”M”L([O T); %= 1)
for any T € (0, Thhax), which gives us the desired bound since 6 < 1.

Step 2. Let 79 € (0, Tax). Since
t
u(t) = e~ (t0) 4+ 1 / R0 (ul* @) i’
to
for ¢ € (0, Thhax), the above estimate yields the following bound on e _’0)333%0:

—(t—10)d3
||€ ( 0) ,CM(IO)”S([t() Tnax); a— 1)ﬂL([l‘() Tmax; %5 )

< ”“”S<[to,Tmax>;“T*‘)nL([ro,me, sty + Clul§ g 7 e oy [l Lo, Tz 51y < 00

Step 3. Let us now prove that we can extend the solution beyond Ti.x. Let § be the constant given in
Lemma 4.2. We see from the bound in the previous step that there exists 7y € (0, Tiax) such that

le™ OB (19) | 5 4 7 Tosesty + e OB (t0) o Tow)s2sl) < 36.

Hence, one can take t > 0 so that

||e_(t 10)03 —(t—10)d3

o)l 5 (1rg, Ty to); 51y T lle o)l (1o, Ty t-o); 251y <9

Then, just as in the proof of Theorem 1.2 (or Lemma 4.2), we can construct a solution #(¢) to (1-1) in the
interval (—Tin, Tmax + 7), which contradicts the definition of Tiax. O

Proof of Theorem 1.9. We first assume that T, = 400 and ||u]| S([0,00);251) < - Then, as in the first

. . —_+93 . .
step of the proof of Theorem 1.8, one obtains ||u ||L([0 00); 251y < O0. Since {e~"%%};cp is an isometry
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~a—1

in L7 , it suffices to show that {e’axu(t)}teR is a Cauchy sequence in nL%7 ast— 0. Let0 <1y <1p.
By an argument similar to the proof of (4-2), we obtain

He’za«%u(tg) —e“aiu(ll)Hz(a—n/z <C| |u|a_1uHN([t1,oo);aT_l)

< Cllull,

S([t1 ,00);251) el 11y 00); 251y = O as t1 — oo

Hence, we find that the solution to (1-1) scatters to a solution of the Airy equation as ¢t — oo.
Conversely, if u(¢) scatters forward in time then we can choose T > 0 so that

193 33
le™ ™04 7,00y 051 + e ™ Sttt 7,00y 51) < 36
where 4 = lim;_, o0 €’ 833614(t) € L% and § is the constant given in Lemma 4.2. Moreover, it holds for
sufficiently large 7o € [T, 00) that
—td3 (1003 —td3 (1003 .
He . (e 0 M(ZO) _u"')HS([T,oo);"‘—_l) + He (e 0 M(IO) u-i-)“L([T oo)'@)
< Clle S ulto) = u | fan/ < 38

by means of (2-2). We then see that

”e_(t_m)ax“(t())”S([T,oo);“%‘) + ”e_(t_m)ax”(t())”L([T,oo);“—;‘) <S$.
Then, Lemma 4.2 implies that ”u”S([T,oo);"‘z;l) < 26. O
Proof of Theorem 1.7. By (2-2), we have

—193 _+93
lle taXMOHL(R;"T*l)""”e ta"“0||S(R;“T*1)$C8-

Then, in light of Lemma 4.2, we see that u exists globally in time and satisfies ||u||s < 2Ce, provided ¢
is small compared with the constant § given in Lemma 4.2. Theorem 1.9 ensures that u scatters for both
time directions. O

Persistence of regularity. In this subsection, we prove Theorems 1.4 and 1.5, and then Theorem 1.10.
Proof of Theorem 1.4. Let us prove that u € L(I ; %) As in the proof of Lemma 4.2, one deduces
from Proposition 3.2 and Lemma 3.4(i) that

< Clluol o 1>/2+C”|“|a 1””N(I;%T*l)

< Clluollzry + Cllull, [l

S ety L0ty

Since we already know ||u|| S(1;e51) < O by assumption, we have the desired bound
||“||L(I;a02—l) < 2C Juoll f@o-n/2
for a sufficiently short interval /. Then, again by Proposition 3.2,

< Cslluoll ao-1r2 + Csllull, <400

””||L;>°(1;iﬁ?o‘”/z)mxu;s,“ 5(1 asty [l 0ty

for any acceptable pair (s, “02_ 1 ) Finite-time use of this argument yields the result. O
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Proof of Theorem 1.5. Suppose that 0 < 0 < «. Take a number ¢ so that 0 < ¢ < min(l, o — 0).

—193

Since | Dy |° commutes with e %% and since (¢, 2) is acceptable and conjugate-acceptable, we see from

Proposition 3.2 that

H |Dx|a”(’)HX(1;g,z) <C| |Dx|0“0HL2 +C| |Dx|0(|”|a_1”)”Y(I;s,z)'
Since 0 + ¢ < «, arguing as in the proof of Lemma 3.6, one sees that

D1 (| ) | Y(le2) = 11D 17 ([u]* ) ”L;)(S.Z)L?(E.Z)(l)

|o+£

-1
<C ||U||Zp(0.(a71)/2)L?(0.(a71)/2)(1) H |Dx 2 HLgc»(a.z)Ltq(a.z)(I)

= Clull§ e asny 11Px17u | xqrse 0y

Hence, we obtain an upper bound for H |Dx|%u H X(I:6.2) for a small interval. Then, the result follows as
in Theorem 1.4.
Next, let —1 <0 < 0. Set e = —0 € (0, 1). As in the previous case, we have

” |DX|UM(Z)HX(I;8,2) <C ”|Dx|0”0HL2 +C H |Dx|g(|“|a_1”)HY(1;s,2)
since (e, 2) is acceptable and conjugate-acceptable. Then,
| 1D (e IM)HY(I £2) — = [[lul*” ””LP‘F 2 pae S ”””3(1 -1y H|DX|GMHX(I;8,2)
by Holder’s inequality. The rest of the argument is the same. O

Remark 4.3. In the above proposition, the upper bound s < « is natural in view of the regularity that the

|a—1

nonlinearity |u u possesses. When « is an odd integer, that is, if & = 5, 7, then the nonlinearity u> or

7

u’ is analytic (in #) and so we can remove the upper bound and treat all s > 0. We omit the details.

Remark 4.4. By modifying the proof of Theorem 1.5, we easily reproduce the local well-posedness

in H% for o = 5. More precisely, by Lemma 3.3,

”M“ a . HlD |Sau”5(a 1 H|D |%u”%
Szezh) = I X(I;—4.2) 117X LEe1/2(py

By Sobolev’s embedding in space and Minkowski’s inequality,
D.|G e <clip Sa— T0ee=1%)
H| x| k u”lfg—m)/zu) < ”| x| DHu HL§5a—13)/2L§4(5a—13))/<5a—17)(I)
So
< C||IDx] ””X(I;—iJrsofﬁ,z)'
Hence, estimating as in the proof of Theorem 1.5, we obtain a closed estimate in
|Dx|**X(I;6,2) N |Dx| X (I: =% + =255.2) N | Dx| X (I: 1. 2).,
which yields local well-posedness in Hb 5

3 Strictly speaking, we should work with pairs (—% + 11, 2) and (—% + ﬁ — 12, 2) for small n; = n; (a) > 0 because
the critical case q(—%, 2) = o0 is excluded in Lemma 3.3. However, the modification is obvious.
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Proof of Theorem 1.10. We suppose for contradiction that u(#) scatters to U4 € LT ast — oo. Since
ug € H', Theorems 1.4 and 1.5 imply that u(¢) € C(R; H'). Further, u(¢) scatters also in H! and so we
see that | dxu(t)| ;2 = ||8xeta)3€u(t)||L2 — [ut|l g1 ast — oo.

On the other hand, by the Gagliardo—Nirenberg inequality and mass conservation,

a3 2 o

o o

||u(t)||Lg+1 <C ||”0||L2 ” | Dx|3@=Du(r) HL(3(a—1))/2'
X X

Since u(t) scatters as 1 — oo, we see that u € X ([0, o0); 3(%_1)

Therefore, we can take a sequence {t,}, with t, — 0o as n — oo so that ||u(t,)||fe+1 — 0 as n — oco.

“2;1) as in the proof of Theorem 1.9.

Thus, by conservation of energy,
I
02 Efuo] = Elu(tn)] = J1su()F2 = A I — S,

as n — oo. Hence, E[ug] < 0 yields a contradiction. If Eug] = 0 then we see that u+ = 0, and so
luollz2 = llu+|z2 = 0. This contradicts ug # 0. O
Appendix A: Proof of Lemma 3.7

In this appendix, we prove Lemma 3.7. To prove this lemma, we need the following space-time bounds
of the maximal function

1 x+R
(M) = sup 5 [ )l dy.
R>0 x—R

Lemma A.1. Let I be an interval. Assume 1 < p,q < 0.

(1) There exists a positive constant C depending on p,q and I such that

IMSllzray < Clf Lz (A-1)
forany f e LELI(I).
(ii) There exists a positive constant C depending on p,q and I such that

”Mfk”Lf(’L?ei(I) $C||fk||L§ng%(1) (A-2)

forany { fitk € LYLIG (D).
Proof of Lemma A.1. See [Fefferman and Stein 1971] for (A-1) and [Kenig et al. 1993, Lemma A.3(e)]
for (A-2). O

Proof of Lemma 3.7. We follow [Sickel 1989] (see also [Runst and Sickel 1996]). Let {¢ (Dx)}72 _ be
a Littlewood—Paley decomposition with respect to the x-variable. From [Kenig et al. 1993, Lemma A.3],
we see

Dl £ Lo po ~ 12K 0 (D) fll g 92 (A-3)
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Step 1. Write u = N + B with N € Z and B € (0, 1]. We remark that N > 1 since u > 1. We first note
that Taylor’s expansion of G gives us
G(l)(a) Iy Z(z—p)N-1
G(z) = — A
(2)= Z C-a'+ | “H o

G(N)(v) dv

(N —1)!

1=0

N ~0) Z(z—v)N-

ZG (a)( _a)1+/ w(G(N)(u)—G(N)(G))dU
;

2

l Nlell) I-j z (r_ \N—1
Z )(ﬁ—j)!(;l!)a o, (Z(Nv—)l)! (6N 0) =N @) dv

Hence, applying the above expansion with z = f(y) and a = f(x),

e FG(N(x) = C/ (F o) (x=y)G(f (y)) dy

(=D GO(f(x)(f(x)) 1 j
clgo,zzo R | F =) ds
IO (fF)-vV 1w (N)
+c/ (F o) (x— y)/ ERCEE (G*()=-GY¥ (f(x))) dvdy
=.T1’k+T2’k.

(A-4)

We first estimate 7} k. Since | Flor(y) dy = ¢ (0) = 0, the summand in T x vanishes if j = 0. By
the estimate

IGOFN| < NG lLipp | f )P,

we have N
12T ello o2 < CIGILipn Y1147 2% (DD o962
j=1
<C||G||LWZ||f||Lp1Lq1 [P (f )] pr2s 2.
where

T L N
1_p=i, 1_pw=j

pop P4 @1 G
Further, a recursive use of Lemma 3.6 yields

NDel D 2 o2 < G Nt o 11D f | 72

for j = 2, which completes the estimate of T .
Next, we estimate T’ j. First note that

f) —p)N-1
‘/f() (f((y]é _”1))‘ (GM () =GN (f(x))) dv| < ClIGlLipp | f(x) = F()*
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by the definition of ||G ||Lip .. Further, for any M > 0, there exists Cps such that

(F o) (x — )| = 2 |(F o) (2K (x — y))| < Cu2F (1 + 2K |x — y ™.

Therefore,
)= FOI N
Toal S CXNGlhun | 7 e =y ¥ <€ 12202" MU D).
where
1 f(x) = f Gt 2) = f)Fdz =27 f G+ 275 2) — f* de.
|z|<2— lz|<1

We now claim that ‘
12°CFDUE Dliperaa < ClDxI f ] wr pua- (A-3)

This claim completes the proof. Indeed, combining the above estimates, we see that

o0
—M) ||~ (k-1 L
12 Ta el prg < € D 2T PREDCDV@E N Lppg < DI f g o
=0
provided we choose M > s + 1. By Lemma 3.3, we conclude that

. 1 1
”|Dx|ﬁf”L§:PL/tW < ||f||;)PCIML?1 H|DX|SfHZ)1?2L;12'

Step 2. We prove claim (A-5). Let Ay, be the difference operator Ay, f(x) = f(x + h) — f(x). Since
f = mer Pk+m(Dx) f for any k € Z, one sees that

2 [ B 1 d:
VAR

2kS/

|z]<1

2kS/
lz|<1

=:A+ B.

H2k<s+1)(1,§‘f)(x)”u:m% N

LYriez

"w
< dz

-1
Api; Y Pram(D)f(x)

m=—0o0

Api; Y Pram(D) f(x)

m=0

LRLY ez

“w
+ dz

LiLrie

We estimate A. Take a € (i, 1). Letk € Z. If m < 0 and |h| < 27F then we have

| AT " ok m T F1)| < RV F 7 @k 4mF SN x +6h)|

R

o T e D )
=~ va veR 1+|2k+my|a

F! Fflx—
< C2" sup | [‘Pk+mk+f 1(x =)
yeR 1+ [2fFmy|a

m
<2" sup
lyls27%
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for any x € R, where we have used the estimate

IVF HpoF f1(x — y)| <C | F oo F f1(x — y)
< C sup
yeR 1+ ]yl@ yeR 1+ |yl

(see [Runst and Sickel 1996, Section 2.1.6, Proposition 2(i)]) to obtain the last line. We define the
Peetre—Fefferman—Stein maximal function by

|F i Ff1(x =yl
YER 1+|2jy|a

o f) =

By the above estimates, we have
-1
2% sup | Agippym(D) f(0)]"

m=—oo0 1Z|<1

A<C

e <€ Z omit| ok gra fHLwszu

t*k m=-—00
sC Z amu S)”2(k+m)7(pl:-fmfHL‘”’L“qZZM \anku‘pk fHL‘”’L“qEz‘“
m=—00

where we used the fact that s < . Since ((p;:’af)(x) = ((p;’a(@k(Dx)f)(z;k))(ka), [Triebel 1983,
Lemma 2.3.6] yields

(03" F)x) < C(MI@r(Dx) )" (),
where @ = Zl-l:_l @k +i- Then, (A-2), the embedding ¢% < €9 (2 < g < 00), and (A-3) lead us to
|25 g HLgI’L;WegM < C|[2%@ Mg (D) f )é]”}t;“n?“qei““
sC szﬁ(@k(Dx)f)é ”ng’L?wg%
<C |}2ki¢k(Dx)fHL§pL;4qzi/a < C|1Dxl f | o o

since ﬁ <a<l1.

Let us proceed to the estimate of B. We first note that

/|z|$1

“w
dz

Api; O @ksm(D) f(x)
m=0

[z|<1

/| oy Z 2| Ayt 0t 4m (D) f ()| dz

7
Zz WM™ Ay, Qrm (D) f(¥)| dz

ey oo / 180spem(D) S0 d2

m=0 |z|<

e sz sup | Ay k@t 4m (D) (1)) Y [| | I\Az—kzmm(mf(x)\“dz,
Z|<

m=0 |Z|\
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where A € (0,1). For m = 0 and |h| < 27%, the triangle inequality gives us

|ARF ek 4mF f1(x)| <2 sup k‘f_l[¢k+mff](X—y)‘ < CY"pl, (),
lyl<2~

where a € ( o 1) Further,

/ |<1|AZ_"z(pk-f-m(Dx)f(x)‘M}L dz < CM[l(pk-f-m(D)xfWA](x)-

Using these inequalities, one deduces from Holder’s inequality, the embedding £2 < {4 (2 < g < 00),
(A-2), and (A-3) that

oo

2% 3" 2" M| @ggm (D) f11H 2 A8 (o fyI=H)

m=0

B<C

LELY

/N

WK

C ym(etan(1=2)) HZSkM[|<Pk+m(Dx)f|MA](‘pk+mf)M(l -1 “L”L"€2

3
Il
o

/A
@)
Mg

metapi=2)=s) HM[|2“ <Pk(Dx)f|M]HLp/ALq/AKz/A H2“k o "ﬂﬁfﬂ:lp}?qziu

8ﬁ
(=]

/

<C 3 DI D £ [

m=0

< 1Dl £ |7 o

aslongase+au(l—A)—s <0. Sincea € (ﬁ 1), we are able to choose A € (0, 1) and & > 0 suitably. [

Appendix B: Inclusion relations of L™

In this appendix, we briefly summarize some inclusion relations between L" and other frequently used
spaces such as Lebesgue spaces or Sobolev spaces. Here, H* = H%5(R) stands for a weighted L2-space

with norm || f'| go.s = H|x| f”L2‘
Lemma B.1. We have the following:
() L" > L"if1<r<2andL" < L" if 2 <r < co.
(i) H%7—2 (—>Z’ if1<r<2andzr~'—>l-'10’%_% if2<r <oo.
(iii) L’<—>32 zf1<r<2andB r

2r,’L>L’if2§r§oo.

Proof of Lemma B.1. The first assertion follows from the Hausdorff—Young inequality. The Sobolev
embedding (in the Fourier side) yields the second. We omit the details.
The third is also immediate from the Holder inequality. Indeed, if 2 < r < oo then

A~ L_l A
||f||Lr’({2n$|E|$2n+l}) < Czn(2 r)||f||L2({2"$|§|$2”+1})
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for any n € Z. Taking the K,’z/—norm, we obtain the desired embedding. The case 1 < r < 2 follows in the
same way. O

Let HS = H*(R) be a homogeneous Sobolev space with norm

LS 1l s = 161 F o

. . . w11 I S |
Notice that the above inclusions are the same as for H 27 r. Namely, we can replace L” with H27r

in Lemma B.1 (except for the endpoint case r = 1, oo in (i)). Indeed, (i) is a Sobolev embedding, (ii)
follows from Hardy’s inequality, and a basic property of Besov spaces gives us (iii). However, there is no
inclusion between L” and H 2~ * for r #£ 2.

LemmaB.2. For | <r <oo(r#2),L" & H> 7 and H>"7 o> L.

Proof of Lemma B.2. If 2 < r < 0o, we have the following counterexamples: Let us define f,(x) by
fa¢)=1forn <& <n+1and f, (&) =0 elsewhere. Then, f,(x) satisfies || /5 ”H%_% — 00 as 1 — 00,

while || fn||;,=1. Hence. L /> H>~7. On the other hand, for some p € (%, %), take g, (x) (n = 3) so

that g, (§) = E_% [log &|~P for % <EL % and g, (&) = 0 elsewhere. Then, || gn ”H%_% is bounded but
|gnll7» — oo as n — oo. This shows H2 v /> L.

The case 1 < r < 2 follows by duality.

Let us consider the case r = 1. We note that 8o (x) € L \H _%, where 8o (x) is the Dirac delta function.

Therefore, L' &> H~2. On the other hand,
-1
Ja(x) = (log(1+ 7)) F 1[1{1s$s1+5}](x)

. Sl A
is a counterexample for H~2 o L1 O
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