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We investigate the interior nodal sets Nλ of Steklov eigenfunctions on connected and compact surfaces
with boundary. The optimal vanishing order of Steklov eigenfunctions is shown be Cλ. The singular
sets Sλ consist of finitely many points on the nodal sets. We are able to prove that the Hausdorff measure
H 0(Sλ) is at most Cλ2. Furthermore, we obtain an upper bound for the measure of interior nodal sets,
H 1(Nλ)≤ Cλ3/2. Here the positive constants C depend only on the surfaces.

1. Introduction

Let (M, g) be a smooth, connected and compact surface with smooth boundary ∂M. The main goal of
this paper is to obtain an upper bound of interior nodal sets

Nλ = {z ∈M | eλ = 0}

for Steklov eigenfunctions, which satisfy{
4geλ = 0, z ∈M,

∂eλ(z)/∂ν = λeλ(z), z ∈ ∂M,
(1-1)

where ν is a unit outward normal on ∂M. The Steklov eigenfunctions were introduced by Steklov in 1902
for bounded domains in the plane. They interpret the steady state temperature distribution in domains
where the heat flux on the boundary is proportional to the temperature. They also have applications
in quite a few physical fields, such as fluid mechanics, electromagnetism and elasticity. In particular,
the model (1-1) was studied by Calderón [1980] as solutions can be regarded as eigenfunctions of the
Dirichlet-to-Neumann map. The interior nodal sets of Steklov eigenfunctions represent the stationary
points in M. In the context of quantum mechanics, nodal sets are the sets where a free particle is least
likely to be found.

It is well known that the spectrum λ j of the Steklov eigenvalue problem is discrete with

0= λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · and lim
j→∞

λ j =∞.

There exists an orthonormal basis {eλ j } of eigenfunctions such that

eλ j ∈ C∞(M) and
∫
∂M

eλ j eλk dVg = δ
k
j .
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Estimating the Hausdorff measure of nodal sets has always been an important subject concerning the
study of eigenfunctions. This subject centers around the famous Yau conjecture. Recently, much work
has been devoted to the bounds of nodal sets

Zλ = {z ∈ ∂M | eλ(z)= 0}

of Steklov eigenfunctions on the boundary. Bellová and Lin [2015] proved H m−1(Zλ) ≤ Cλ6 with C
depending only on M if M is an m+1-dimensional analytic manifold. Zelditch [2014] improved their
results and gave the optimal upper bound H m−1(Zλ) ≤ Cλ for analytic manifolds using microlocal
analysis. For the smooth manifold M, Wang and Zhu [2015] recently established a lower bound

H m−1(Zλ)≥ Cλ(3−m)/2.

Before presenting our results for interior nodal sets, let’s briefly review the literature about the nodal
sets of classical eigenfunctions. The interested reader may refer to the book [Han and Lin 2008] and
survey [Zelditch 2008] for detailed accounts about this subject. Let eλ be L2 normalized eigenfunctions
of the Laplace–Beltrami operator on compact manifolds (M, g) without boundary,

−4geλ = λ2eλ. (1-2)

Yau’s conjecture states that, for any smooth manifolds, one should control the upper and lower bounds of
nodal sets of classical eigenfunctions as

cλ≤ H n−1(Nλ)≤ Cλ, (1-3)

where C and c depend only on the manifold M. The conjecture is only verified for real analytic manifolds,
by Donnelly and Fefferman [1988]. Lin [1991] also showed the upper bound for analytic manifolds by
a different approach. For smooth manifolds, the conjecture is still not settled. For the lower bound of
nodal sets with n ≥ 3, Colding and Minicozzi [2011] and Sogge and Zelditch [2011; 2012] independently
obtained that

H n−1(Nλ)≥ Cλ(3−n)/2

for smooth manifolds. See also [Hezari and Sogge 2012] for deriving the same bound by adapting the
idea in [Sogge and Zelditch 2011]. For the upper bound, Hardt and Simon [1989] gave an exponential
upper bound

H n−1(Nλ)≤ Ceλ ln λ.

In surfaces, better results have been obtained. Brüning [1978] and Yau (unpublished) derived the same
lower bound as (1-3). The best estimate to date for the upper bound is

H 1(Nλ)≤ Cλ3/2

by Donnelly and Fefferman [1990a] and Dong [1992] using different methods.
Let us return to the Steklov eigenvalue problem (1-1). By the maximum principle, there exist nodal

sets in the manifold M and those sets must intersect the boundary ∂M. Thus it is natural to study the size
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of interior nodal sets in M. We can also ask Yau-type questions about the Hausdorff measure of nodal
sets. The natural and corresponding conjecture for Steklov eigenfunctions should be exactly the same
as (1-3). See also the open questions in the survey by Girouard and Polterovich [2014]. Recently, Sogge,
Wang and the author [Sogge et al. 2015] obtained a lower bound for interior nodal sets

H n−1(Nλ)≥ Cλ(2−n)/2

for n-dimensional manifolds M. Very recently, Polterovich, Sher and Toth [Polterovich et al. 2015]
verified the Yau-type conjecture for (1-1) on real analytic Riemannian surfaces.

An interesting topic related to the measure of nodal sets is about doubling inequalities. Based on
doubling inequalities, one can obtain the vanishing order of eigenfunctions, which characterizes how
fast the eigenfunctions vanish. For the classical eigenfunctions of (1-2), Donnelly and Fefferman [1988;
1990b] obtained that the maximal vanishing order of eλ is of order at most Cλ everywhere. To achieve it,
a doubling inequality ∫

B(z0,2r)
e2
λ ≤ Ceλ

∫
B(z0,r)

e2
λ (1-4)

is derived using Carleman estimates, where B(p, c) denotes a ball centered at p with radius c. The
doubling estimate (1-4) plays an important role in obtaining the bounds of nodal sets for analytic manifolds
in [Donnelly and Fefferman 1988] and the upper bound of nodal sets for smooth surfaces in [Donnelly and
Fefferman 1990a]. For the Steklov eigenfunctions, we obtain a doubling inequality on the boundary ∂M

and derive that the sharp vanishing order is less than Cλ on the boundary ∂M. For Steklov eigenfunctions
in M, we are also able to get the doubling inequality; see Proposition 5. With the aid of doubling estimates
and Carleman inequalities, the following optimal vanishing order for Steklov eigenfunctions can be
obtained:

Theorem 1. The vanishing order of the Steklov eigenfunction eλ of (1-1) in M is everywhere less than Cλ.

Its sharpness can be seen in the case that the manifold M is a ball. Notice that the doubling estimates
in Proposition 5 and the vanishing order in Theorem 1 hold for any n-dimensional compact manifolds.

Singular sets
Sλ = {z ∈M | eλ = 0, ∇eλ = 0}

are contained in nodal sets. In Riemannian surfaces, those singular sets consist of finitely many points
in the 1-dimensional nodal sets. It is interesting to count the number of those singular sets. Based on a
Carleman inequality with singularities, we are able to show an upper bound of singular sets.

Theorem 2. Let (M, g) be a smooth, connected and compact surface with smooth boundary ∂M. Then

H 0(Sλ)≤ Cλ2 (1-5)

holds for Steklov eigenfunctions in (1-1).

For the nodal sets of Steklov eigenfunctions, we are able to build a similar type of Carleman inequality
as [Donnelly and Fefferman 1990a], and show the following result:
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Theorem 3. Let (M, g) be a smooth, connected and compact surface with smooth boundary ∂M. Then

H 1(Nλ)≤ Cλ3/2 (1-6)

holds for Steklov eigenfunctions in (1-1).

The outline of the paper is as follows. Section 2 is devoted to reducing the Steklov eigenvalue problem
into an equivalent elliptic equation without boundary. Then we obtain the optimal doubling inequality
and show Theorem 1. In Section 3, we establish the Carleman inequality with singularities at finitely
many points. Under additional assumptions on those singular points, a stronger Carleman inequality is
derived. We measure the singular sets in Section 4. Sections 5, 6 and 7 are devoted to obtaining the nodal
length of Steklov eigenfunctions. Under the condition of slow growth of L2 norm, we find out the nodal
length in Section 6. Based on a similar type of Calderón and Zygmund decomposition procedure, we
show the slow growth at almost every point. Then the measure of nodal sets is derived by summing up
the nodal length in each small square. The letters c, C , Ci , di denote generic positive constants and do
not depend on λ. They may vary in different lines and sections.

2. Vanishing order of Steklov eigenfunctions

In this section, we will reduce the Steklov eigenvalue problem to an equivalent model on a boundaryless
manifold. The presence of eigenvalues on the boundary ∂M will be reflected in the coefficient functions
of a second-order elliptic equation. Let d(z)= dist{z, ∂M} denote the geodesic distance function from
x ∈ M to the boundary ∂M. Since M is smooth, there exists a ρ-neighborhood of ∂M in M such that
d(x) is smooth in the neighborhood. Let’s denote it as Mρ . We extend d(z) smoothly in M by

δ(z)=
{

d(z), z ∈Mρ,

l(z), z ∈M\Mρ,
(2-1)

where l(z) is a smooth function in M\Mρ . Note that the extended function δ(z) is a smooth function
in M. We first reduce the Steklov eigenvalue problem into an elliptic equation with Neumann boundary
condition. Let

v(z)= eλ exp{λδ(z)}.

It is known that v(z)= eλ(z) on ∂M. For z ∈ ∂M, we have ∇gδ(z)=−ν(z). Recall that ν(z) is the unit
outer normal on z ∈ ∂M. We can check that the new function v(z) satisfies{

4gv+ b(z) · ∇gv+ q(z)v = 0 in M,

∂v/∂ν = 0 on ∂M,
(2-2)

with {
b(z)=−2λ∇gδ(z),
q(z)= λ2

|∇gδ(z)|2− λ4gδ(z).
(2-3)

In order to get rid of the boundary condition, we attach two copies of M along the boundary and consider
the double manifold M=M∪M. The metric g extends to M with Lipschitz-type singularity along ∂M,
since the lift metric g′ of g on M to the double manifold M is Lipschitz. There also exists a canonical
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involutive isometry F :M→M that interchanges the two copies of M. Then the function v(x) can be
extended to M by v ◦F= v. Therefore, v(z) satisfies

4g′v+ b̄(z) · ∇g′v+ q̄(z)v = 0 in M. (2-4)

From (2-3), one can see that {
‖b̄‖W 1,∞(M) ≤ Cλ,
‖q̄‖W 1,∞(M) ≤ Cλ2.

(2-5)

After this procedure, we can instead study the nodal sets for the second-order elliptic equation (2-4) with
assumption (2-5). Note that M is a manifold without boundary.

We present a brief proof of Theorem 1. It is a small modification of the argument in [Zhu 2015], where
the sharp vanishing order of Steklov eigenfunctions on the boundary ∂M is shown to be less than Cλ. To
achieve it, we derive the double inequality in a neighborhood of the boundary by quantitative Carleman
estimates.

Proof of Theorem 1. Recall the strategy in [Zhu 2015]; we do an even reflection in a small neighborhood
of the boundary. Then we deal with a second-order elliptic equation with a Lipschitz-continuous leading
coefficient function and satisfying the same conditions as (2-5). By the regularity argument for dealing
with a Lipschitz metric in [Donnelly and Fefferman 1990b], the same Carleman estimates in [Zhu 2015]
hold for (2-4). Let r(z) be the distance function from z to the fixed point z0. If u ∈C∞0 (Br0(z0)\{z0}) and
τ > C1(1+‖b̄‖W 1,∞ +‖q̄‖1/2W 1,∞), following the arguments in [Zhu 2015] and choosing the test function
φ̃(z)= ln r(z)− r ε(z) there instead, we have the Carleman inequality

C‖r2eτφ(r)(4g′u+ b̄ · ∇g′u+ q̄u)‖L2 ≥ τ 3/2
‖r ε/2eτφ(r)u‖L2 + τ 1/2

‖r1+ε/2eτφ(r)∇u‖L2,

where φ(r) = − ln r(z) + r ε(z). See also, e.g., [Bakri and Casteras 2014] for similar estimates on
manifolds with smooth metric. In particular, we have the following lemma:

Lemma 4. Let u ∈ C∞0
( 1

2ε1 < r < ε0
)
. If τ > C1(1+‖b̄‖W 1,∞ +‖q̄‖1/2W 1,∞). Then∫

r4e2τφ(r)
|4g′u+ b̄ · ∇g′u+ q̄u|2 dr dω ≥ C2τ

3
∫

r εe2τφ(r)u2 dr dω, (2-6)

where φ(r)=− ln r(z)+ r ε(z) and 0< ε0, ε1, ε < 1 are some fixed constants. Moreover, (r, ω) are the
standard polar coordinates.

Using this Carleman estimate and choosing suitable test functions, a Hadamard three-ball result can
be obtained in M following the arguments in [Zhu 2015]. There exist constants r0, C and 0 < γ < 1
depending only on M such that, for any solutions of (2-4), 0< r < r0 and z0 ∈M, one has∫

B(z0,r)
v2
≤ eC(1+‖b̄‖W 1,∞+‖q̄‖

1/2
W 1,∞ )

(∫
B(z0,2r)

v2
)1−γ(∫

B(z0,r/2)
v2
)γ
. (2-7)

Based on a propagation of smallness argument using the three-ball result and Carleman estimates (2-6),
as that in [Zhu 2015], taking the assumptions (2-5) into account, we are able to obtain the doubling
inequality in M.
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Proposition 5. There exist constants r0 and C depending only on M such that, for any 0 < r < r0

and z0 ∈M,
‖v‖L2(B(z0,2r)) ≤ eCλ

‖v‖L2(B(z0,r)) (2-8)

for any solutions of (2-4).

One can see that the doubling estimate holds in M if B(z0, 2r) ⊂M. By standard elliptic estimates,
one can have the L∞ norm doubling inequality

‖v‖L∞(B(z0,2r)) ≤ eCλ
‖v‖L∞(B(z0,r)).

Since M is compact, we can derive that

‖v‖L∞(B(z0,r)) ≥ rCλ

for any z0 ∈M, which implies the vanishing order for v is less than Cλ. So is the vanishing order of u.
This completes Theorem 1. �

3. Carleman estimates

This section is devoted to establishing Carleman inequalities involving weighted functions at finitely
many points. From this section on, M is a compact Riemannian surface. We construct suitable conformal
coordinate charts near ∂M⊂M following the arguments in [Donnelly and Fefferman 1990a, p. 342–343],
where the same construction is established for a Lipschitz double manifold. By the Riemann mapping
theory in [Jost 1984], we first construct charts around ∂M⊂M. We map a half disk centered on the x-axis
in the (x, y)-plane into the manifold M with the x-axis mapped to ∂M. Thus, the metric is locally given
as ḡ(x, y)(dx2

+ dy2) with y > 0. The differentiable structure and the definition of the metric on the
double manifold M correspond to reflection about the x-axis. Thus, we have the required the conformal
charts with ḡ(x, |y|)(dx2

+ dy2) on the double manifold M. Then we will consider the behavior of
v in a conformal coordinate patch. There exists a finite number N of conformal charts (Ui , φi ) with
φi :Ui ⊂M→Vi ⊂R2 and i ∈ {1, 2, . . . , N }. On each of these charts, the metric is conformally flat and
there exists a positive function gi such that g′ = gi (x, y)(dx2

+ dy2). By the compactness of the surface,
there are positive constants c and C such that 0< c < gi < C for each i . Under this equivalent metric,
4g′ = g−1

i 4, where 4 is the Euclidean Laplacian. Hence, (2-4) can be written as

4v+ b̄(z) · ∇v+ q̄(z)v = 0 in Vi , (3-1)

where ∇ is the Euclidean gradient and z = (x, y). We use the same notations b̄(z) and q̄(z) as in (3-1),
since they satisfy the same conditions as (2-5). They only differ by some function about gi .

By restricting to a small ball B(p, 3c) contained in the conformal chart, we consider v in the small
ball. Let v̄(z)= v(cz). It follows from (3-1) that

4v̄+ b̃(z) · ∇v̄+ q̃(z)v̄ = 0 in B3, (3-2)

with b̃ = cb̄ and q̃ = c2q̄ . If c is sufficiently small, b̃ and q̃ are arbitrarily small.
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The crucial tool in [Donnelly and Fefferman 1990a] is a Carleman inequality for classical eigenfunctions
involving weighted functions with singularities at finitely many points. We will obtain the corresponding
Carleman inequality for the second-order elliptic equation (3-2). We adapt the approach in [Donnelly and
Fefferman 1990a] to obtain the desirable Carleman estimate for (3-2).

Let D ⊂ C be an open set and ψ ∈ C∞0 (D) be a real-valued function. We introduce the differential
operators

∂ =
1
2

(
∂

∂x
− i ∂

∂y

)
and ∂̄ =

1
2

(
∂

∂x
+ i ∂

∂y

)
.

Direct computation shows that ∂̄∂ψ = 1
44ψ . By the Cauchy–Riemann equation, u is holomorphic if

and only if ∂̄u = 0. For completeness, we present the elementary inequality in [Donnelly and Fefferman
1990a].

Lemma 6. Let 8 be a smooth positive function in D. Then∫
D
|∂̄u|28≥ 1

4

∫
D
(4 ln8)|u|28. (3-3)

Here the integral is taken with respect to the Lebesgue measure.

We want the weight function to involve those singular points. To specialize the choice of 8, we
construct the following function ψ0:

Lemma 7. There exists a smooth function ψ0 defined for |z|> 1− 2a satisfying the following properties:

(i) a1 ≤ ψ0(z)≤ a2 with constants a1, a2 > 0.

(ii) ψ0 = 1 on {|z|> 1}.

(iii) 4 lnψ0 ≥ 0 on {|z|> (1− 2a)}.

(iv) If 1− 2a < |z|< 1− a, then 4 lnψ0 ≥ a3 > 0.

The existence of such a ψ0 follows from existence and uniqueness theory of ordinary differential
equations.

We assume that
Dl = {z | |z− zl | ≤ δ}.

Let Dl be a finite collection of pairwise disjoint disks that are contained in a unit disk centered at the
origin. Let

Dl(a)= {z | |z− zl | ≤ (1− 2a)δ}

be the smaller concentric disk. We define a smooth weight function 90(z) as

90(z)=
{

1 if z 6∈
⋃

l Dl,

ψ0((z− zl)/δ) if z ∈ Dl .

We also introduce the domain

Al = {(1− 2a)δ ≤ |z− zl | ≤ (1− a)δ}.
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From the last lemma, 90(z) satisfies these properties:

(i) a1 ≤90(z)≤ a2.

(ii) 4 ln90 ≥ 0 for z ∈ R2
\
⋃

l Dl(a).

(iii) 4 ln90 ≥ a3δ
−2 for z ∈ Al .

Note that the ai in the above are positive constants independent of λ. Let

A =
⋃

l

Al .

Suppose that τ is a nonnegative constant. We introduce 8(z)=90(z)eτ |z|
2
. For u ∈ C∞0 (R

2
\
⋃

l Dl(a)),
we assume that D contains the support of u and A ⊂ D⊂ R2

\∪l Dl(a). Obviously,

ln8(z)= ln90(z)+ τ |z|2.

Substituting 8 in Lemma 6 gives that∫
D
|∂̄u|290(z)eτ |z|

2
≥ C1τ

∫
D
|u|290(z)eτ |z|

2
+C2δ

−2
∫

A
|u|2eτ |z|

2
, (3-4)

where we have used the properties (ii) and (iii) for 90. The boundedness of 90(z) yields that∫
D
|∂̄u|2eτ |z|

2
≥ C3τ

∫
D
|u|2eτ |z|

2
+C4δ

−2
∫

A
|u|2eτ |z|

2
. (3-5)

Define the holomorphic function

P(z)=
∏

l

(z− zl).

Then ∂̄(u/P)= ∂̄u/P . Replacing u by u/P in (3-5), it follows that∫
D
|∂̄u|2|P|−2eτ |z|

2
≥ C3τ

∫
D
|u|2|P|−2eτ |z|

2
+C4δ

−2
∫

A
|u|2|P|−2eτ |z|

2
. (3-6)

We will establish a Carleman inequality for second-order elliptic equations like (3-2). Write b̃(x)=
(b̃1(x), b̃2(x)). Let

u = ∂ f + 1
2(b̃1− i b̃2) f,

where f ∈ C∞0
(
R2
\
⋃

l Dl(a)
)

is a real-valued function. Then

∂̄u = 1
4

[
4 f + div b̃ f + b̃ · ∇ f + i

(
∂(b̃1 f )
∂y

−
∂(b̃2 f )
∂x

)]
.
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Plugging the above u into (3-6), we obtain∫
D

[
|4 f + b̃ · ∇ f |2+ |div b̃ f |2+

∣∣∣∣∂(b̃1 f )
∂y

−
∂(b̃2 f )
∂x

∣∣∣∣2]|P|−2eτ |z|
2

≥ C3τ

∫
D
|∇ f |2|P|−2eτ |z|

2
−C3τ

∫
D
|b̃|2| f |2|P|−2eτ |z|

2

+C4δ
−2
∫

A
|∇ f |2|P|−2eτ |z|

2
−C4δ

−2
∫

A
|b̃|2| f |2|P|−2eτ |z|

2
. (3-7)

If we choose u = f in (3-6), we get∫
D
|∇ f |2|P|−2eτ |z|

2
≥ C3τ

∫
D
| f |2|P|−2eτ |z|

2
. (3-8)

Since the norm of b̃ is chosen small enough, it is smaller than τ , which will be chosen large enough.
With the aid of (3-8), we can incorporate the terms involving b̃ in the left-hand side of (3-7) into the first
term in the right-hand side of (3-7):∫

D
|4 f + b̃ · ∇ f |2|P|−2eτ |z|

2

≥ C5τ

∫
D
|∇ f |2|P|−2eτ |z|

2
+C4δ

−2
∫

A
|∇ f |2|P|−2eτ |z|

2
−C4δ

−2
∫

A
|b̃|2| f |2|P|−2eτ |z|

2
. (3-9)

Furthermore, if u = f , the inequality (3-6) implies that∫
D
|∇ f |2|P|−2eτ |z|

2
≥ C4δ

−2
∫

A
| f |2|P|−2eτ |z|

2
. (3-10)

Applying (3-10) to the last term in the right-hand side of (3-9) gives that∫
D
|4 f + b̃ · ∇ f |2|P|−2eτ |z|

2
≥ C6τ

2
∫

D
| f |2|P|−2eτ |z|

2
+C7δ

−2
∫

A
|∇ f |2|P|−2eτ |z|

2
. (3-11)

We continue to get a refined estimate for the last term of (3-11). In order to achieve this goal, we need
the following hypotheses for the geometry of the disk Dl and the parameter τ > 1:

(R1) The radius δ of each disk Dl is less than a4τ
−1.

(R2) The distance between any two distinct zl is at least 2a5τ
1/2δ.

(R3) The total number of disks Dl is at most a6τ .

Under the those assumptions, we have these comparison estimates from [Donnelly and Fefferman
1990a]:

Lemma 8. If z̄1 and z̄2 are any points in the same component Al of A, then:

(i) a7 < eτ |z̄1|
2
/eτ |z̄2|

2
< a8.

(ii) a9 < |P(z̄1)|/|P(z̄2)|< a10.
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We also need the following Poincaré-type inequality on each annulus: if f ∈ C∞(Al) and f vanishes
on the inner boundary of Al , then ∫

Al

|∇ f |2 ≥ a11δ
−2
∫

Al

| f |2. (3-12)

The proof of (3-12) can be found in [Donnelly and Fefferman 1990a]. Let zl ∈ Al be chosen arbitrarily.
By Lemma 8, it follows that∫

Al

|∇ f |2|P(z)|−2eτ |z|
2
≥ C8

∑
l

eτ |zl |
2
|P(zl)|

−2
∫

Al

|∇ f |2.

Since f ∈ C∞0
(
R2
\
⋃

l Dl(a)
)
, the inequality (3-12) yields that∫

Al

|∇ f |2|P(z)|−2eτ |z|
2
≥ C9

∑
l

eτ |zl |
2
|P(zl)|

−2δ−2
∫

Al

| f |2.

Using Lemma 8 again, we obtain∫
Al

|∇ f |2|P(z)|−2eτ |z|
2
≥ C10δ

−2
∫

A
| f |2|P(z)|−2eτ |z|

2
.

Substituting the last inequality into the last term in (3-11) leads to∫
D
|4 f + b̃ · ∇ f |2|P|−2eτ |z|

2
≥ C6τ

2
∫

D
| f |2|P|−2eτ |z|

2
+C11δ

−4
∫

A
| f |2|P|−2eτ |z|

2
. (3-13)

We summarize the above arguments in the following proposition:

Proposition 9. Assume f ∈ C∞0
(
R2
\
⋃

l Dl(a)
)
. Then:

(i) It holds that ∫
D
|4 f + b̃ · ∇ f |2|P|−2eτ |z|

2
≥ Cτ 2

∫
D
| f |2|P|−2eτ |z|

2
. (3-14)

(ii) If the additional assumptions (R1)–(R3) for Dl hold, the stronger inequality (3-13) is satisfied.

4. Measure of singular sets

Let M be a compact smooth surface. In Section 2, we have shown that the Steklov eigenfunction eλ
vanishes at all points to order at most Cλ. By the implicit function theorem, outside the singular sets, the
nodal set is locally a 1-dimensional C1 manifold. Adapting the arguments in [Donnelly and Fefferman
1990a] for (3-2), we can estimate those singular points in a quantitative way. We are able to obtain an
upper bound for the singular points in terms of the eigenvalue λ.

Lemma 10. Singular sets consist of at most finitely many points.

Proof. Without loss of generality, we assume that 0 ∈ Sλ and choose normal coordinates (x, y) at the
origin. Next we prove there are finitely many singular points in M. Using Taylor expansion, we expand
v locally at the origin. Then v(x, y) = F j (x, y)+W j+1(x, y), where F j (x, y) consists of the leading
nonvanishing term with homogenous order j ≥ 2 and W j+1(x, y) is a higher-order reminder term. Since
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4v+ b̄(z)·∇v+q̄(z)v= 0 and the coordinate is normal, we obtain that4F j = 0. Under polar coordinates,
we find that F j = r j (a1 cos( jθ)+ a2 sin( jθ)). Obviously, r−1 ∂F j/∂θ and ∂F j/∂r have no common
zero if r 6= 0. Since

|∇F j |
2
=

∣∣∣∣∂F j

∂r

∣∣∣∣2+ 1
r2

∣∣∣∣∂F j

∂θ

∣∣∣∣2,
there exists a small neighborhood U of the origin such that U∩Sλ = 0. Since M is compact, the lemma
follows. �

We plan to count the number of singular points in a sufficiently small ball. Let p ∈M. Consider a
geodesic ball B(p, cλ−1/2). If c is small enough, then this geodesic ball is contained in a conformal chart.
If we choose

w(z)= v(cλ−1/2z)

with c sufficiently small then, from (3-1), w satisfies

4w+ b̂(x) · ∇w+ q̂(x)w = 0 in B(0, 4), (4-1)

with b̂(x)= cλ−1/2b̄(x) and q̂(x)= c2λ−1q̄(x). From (2-5), we obtain{
‖b̂‖W 1,∞(B(0,4)) ≤ cλ1/2,

‖q̂‖W 1,∞(B(0,4)) ≤ c2λ,
(4-2)

with c sufficiently small.
Next we will count the total order of the vanishing of singular points for w in the sufficiently small

ball. We study w in (4-1).

Proposition 11. Suppose zl ∈ Sλ ∩B(p, cλ−1/2), where v vanishes to order nl + 1. Then
∑

l nl ≤ Cλ.

Proof. It suffices to count the number of singular points of w in a small Euclidean ball with radius 1
10

centered at the origin. Suppose that w vanishes to order nl + 1. Let nl = ml + 1. We first consider the
case nl ≥ 2. Then ml ≥ 1. Define the polynomial

P(z)=
∏
(z− zl)

ml

with |zl | <
1
10 . Let D = B(0, 2) and let Dl be small disjoint disks of radius δ centered at zl . If

f ∈ C∞0
(
R2
\
⋃

l Dl
)
, the inequality (3-14) in Proposition 9 implies that∫
D
(|4 f |2+ |b̂ · ∇ f |2)|P|−2ed1λ|z|2 ≥ C2λ

2
∫

D
| f |2|P|−2ed1λ|z|2, (4-3)

where τ = d1λ. We choose a cut-off function θ(z) such that θw has compact support in D. We select the
cut-off function θ ∈ C∞0

(
D\

⋃
l Dl

)
with the following properties:

(i) θ(z)= 1 if |z|< 3
2 and |z− zl |> 2δ.

(ii) |∇θ |< C3 and |4θ |< C4 if |z|> 3
2 .

(iii) |∇θ |< C5δ
−1 and |4θ |< C6δ

−2 if |z− zl |< 2δ.
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Substituting f = θw into (4-3) yields that∫
(|z|<3/2)∪(3/2≤|z|≤2)

|4(θw)+ b̃ · ∇(θw)|2|P|−2ed1λ|z|2 ≥ C2λ
2
∫
|z|<3/2

|w|2|P|−2ed1λ|z|2 .

From (4-1),

4(θw)+ b̂ · ∇(θw)=−q̂θw+4θw+ 2∇θ · ∇w+ b̂ · ∇θw.

By the assumption on θ , we obtain

|4θw| + |∇θ · ∇w| + |∇θw| ≤ C7δ
ml if |z− zl | ≤ 2δ.

Taking δ→ 0, by the dominated convergence theorem, we have

cλ2
∫
|z|<3/2

|w|2|P|−2ed1λ|z|2 +C9(1+ λ)2
∫

3/2≤|z|≤2
(|w|2+ |∇w|2)|P|−2ed1λ|z|2

≥ C10λ
2
∫
|z|<3/2

|w|2|P|−2ed1λ|z|2 . (4-4)

Since c is sufficiently small, we can absorb the first term in the left-hand side of (4-4) into the right-hand
side. Then ∫

3/2≤|z|≤2
(|w|2+ |∇w|2)|P|−2ed1λ|z|2 ≥ C11

∫
|z|≤1/2

|w|2|P|−2ed1λ|z|2 . (4-5)

Obviously, it follows that

max
|z|≥3/2

|P|−2
∫

3/2≤|z|≤2
(|w|2+ |∇w|2)ed1λ|z|2 ≥ C11

(
min
|z|≤1/2

|P|−2) ∫
|z|≤1/2

|w|2. (4-6)

By standard elliptic theory, the last inequality implies

max
|z|≥3/2

|P|−2ed2λ

∫
|z|≤5/2

|w|2 ≥ C11
(

min
|z|≤1/2

|P|−2) ∫
|z|≤1/2

|w|2. (4-7)

We claim that

ed3
∑

ml ≤
min|z|≤1/2 |P|−2

max|z|≥3/2 |P|−2 . (4-8)

To prove (4-8), it suffices to verify

e−d4
∑

ml min
|z|≥3/2

|P| ≥ max
|z|≤1/2

|P| (4-9)

away from the singular point zl . Clearly,

max
|z|≤1/2

|P| ≤
( 1

2

)∑ml
.

Since zl ∈ B
(
0, 1

10

)
, we have ( 3

4

)∑ml
≤ min
|z|≥3/2

|P|.
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Combining the last two inequalities, we obtain (4-9). The claim is shown. Let’s return to (4-7); we get

min|z|≤1/2 |P|−2

max|z|≥3/2 |P|−2 ≤
ed5λ

∫
|z|≤5/2 |w|

2

C11
∫
|z|≤1/2 |w|

2 ≤ ed6λ, (4-10)

where we applied doubling estimates in the last inequality. Thanks to (4-8), we obtain∑
ml ≤ d7λ.

Since nl = ml + 1≤ 2ml , we complete the lemma for nl ≥ 2.
If the vanishing order for the singular point is two, i.e., nl = 1. We consider Q(z) =

∏
(z − zl)

nl/2

instead of P(z). In this case, Q(z) may not be defined as a single-valued holomorphic function on C. We
pass to a finite-branched cover of the disk D punctured at zl . The Carleman estimates in the previous
sections still work. The same conclusion will follow. �

Based on the vanishing order estimate in Proposition 11, we are able to count the number of singular
points.

Proof of Theorem 2. We cover the double manifold M by geodesic balls with radius Cλ−1/2. Since M is
compact, the order of those balls is Cλ. From Proposition 11, the conclusion in Theorem 2 follows. �

Remark 12. Thanks to Proposition 11, we can actually show a stronger result. Let zl ∈M be a singular
point with vanishing order nl + 1. Then

∑
l nl ≤ Cλ2.

5. Growth of eigenfunctions

In this section, we will show that the eigenfunctions do not grow rapidly on too many small balls. We still
restrict v to the small geodesic ball B(p, cλ−1/2) in the conformal chart. Let w(z)= v(cλ−1/2z). Then w
satisfies the elliptic equation (4-1) with assumptions (4-2) in a Euclidean ball of radius 4 centered at the
origin. If we suppose that w grows rapidly, that is,

C1

∫
(1−3a)δ≤|z−zl |≤(1−3a/4)δ

w2
≤

∫
(1−3a/2)δ≤|z−zl |≤(1−a)δ

w2 (5-1)

for all l and some large C1, then the following proposition is valid:

Proposition 13. Suppose Dl are disks contained in a Euclidean ball of radius 1
30 centered at the origin.

Furthermore, assume that

(R1) δ < d1λ
−1, and

(R2) |zl − zk |> d2λ
1/2δ when l 6= k.

If (5-1) holds for all l, the number of disks Dl is less than d3λ.

Proof. We will use the stronger Carleman estimates in (3-13) in Proposition 9. We prove it by contradiction.
Suppose that the collection Dl = {z | |z− zl | ≤ δ} are disjoint disks satisfying the hypotheses (R1)–(R3)
in Section 3. Without loss of generality, we require that all the Dl are in a ball centered at the origin with
radius 1

30 . As before, Dl(a)= {z | |z− zl | ≤ (1−2a)δ}, where a is a suitably small positive constant. Let
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D be a ball centered at the origin with radius 2. We choose a cut-off function θ ∈ C∞0
(
D\

⋃
l Dl

)
and

assume θ(z) satisfies the following properties:

(i) θ(z)= 1 if |z|< 1 and |z− zl |>
(
1− 3

2a
)
δ for all l.

(ii) |∇θ | + |4θ |< C2 if |z|> 1.

(iii) |∇θ |< C3δ
−1 and |4θ |< C4δ

−2 if |z− zl |<
(
1− 3

2a
)
δ.

Substituting f = θw into (3-13) gives that∫
D
|4(θw)+b̂·∇(θw)|2|P|−2ed4λ|z|2≥C5λ

2
∫

D
|θw|2|P|−2ed4λ|z|2+C6δ

−4
∫

A
|θw|2|P|−2ed4λ|z|2 . (5-2)

We also assume τ = d4λ. Recall that A =
⋃

l Al and Al = {z | (1− 2a)δ ≤ |z− zl | ≤ (1− a)δ}. We first
consider the integral in the left-hand side of the last inequality. Again, by (4-1),

4(θw)+ b̂ · ∇(θw)=−q̂θw+4θw+ 2∇θ · ∇w+ b̂ · ∇θw.

Thus,

|4(θw)+ b̂ · ∇(θw)|2 ≤ C(cλ2θ2w2
+ |4θ |2w2

+ |∇θ |2|∇w|2+ cλ|∇θ |2w2),

where c is sufficiently small. We will absorb the term involving θ2w2 into the right-hand side of (5-2).
Since c is small enough, we get∫

D
(|4θ |2w2

+ c|∇θ |2w2
+ |∇θ |2|∇w|2)|P|−2ed4λ|z|2

≥ C7λ
2
∫

D
|θw|2|P|−2ed4λ|z|2 +C8δ

−4
∫

A
|θw|2|P|−2ed4λ|z|2 . (5-3)

Using the properties of θ(z) and taking into account that each Dl lies in the ball centered at the origin
with radius 1

30 , we obtain∫
D
(|4θ |2w2

+ c|∇θ |2w2
+ |∇θ |2|∇w|2)|P|−2ed4λ|z|2

≥ C7λ
2
∫

1/4≤|z|≤1/2
|w|2|P|−2ed4λ|z|2 +C9δ

−4
∑

l

∫
(1−3a/2)δ≤|z−zl |≤(1−a)δ

|w|2|P|−2ed4λ|z|2 . (5-4)

Next we want to control the left-hand side of the last inequality. Write∫
D
(|4θ |2w2

+ c|∇θ |2w2
+ |∇θ |2|∇w|2)|P|−2ed4λ|z|2 = I +

∑
l

Il, (5-5)

where

I =
∫

1≤|z|≤2
(|4θ |2w2

+ c|∇θ |2w2
+ |∇θ |2|∇w|2)|P|−2ed4λ|z|2,

Il =

∫
(1−2a)δ≤|z−zl |≤(1−3a/2)δ

(|4θ |2w2
+ c|∇θ |2w2

+ |∇θ |2|∇w|2)|P|−2ed4λ|z|2 .
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By standard elliptic estimates,

I ≤ ed5λ max
|z|≥1
|P|−2

∫
3/4≤|z|≤5/2

w2. (5-6)

Similarly, via elliptic estimates,

Il ≤ C10δ
−4(max

Al
|P|−2ed4λ|z|

) ∫
(1−3a)δ≤|z−zl |≤(1−3a/4)δ

w2. (5-7)

Thanks to Lemma 8,

Il ≤ C11δ
−4(min

Al
|P|−2ed4λ|z|

) ∫
(1−3a)δ≤|z−zl |≤(1−3a/4)δ

w2. (5-8)

Combining these inequalities together in (5-4) leads to

ed5λ max
|z|≥1
|P|−2

∫
3/4≤|z|≤5/2

w2
+C11δ

−4
∑

l

(
min

Al
|P|−2ed4λ|z|

) ∫
(1−3a)δ≤|z−zl |≤(1−3a/4)δ

w2

≥C12 min
|z|≤1/2

|P|−2
∫

1/4≤|z|≤1/2
|w|2+C13δ

−4
∑

l

min
Al
(|P|−2ed4λ|z|2)

∫
(1−3a/2)δ≤|z−zl |≤(1−a)δ

w2. (5-9)

Performing similar arguments as for (4-8) shows that

min
|z|≤1/2

|P|−2 >max
|z|≥1
|P|−2ed5

∑
l ml .

If the number of the Dl is d3λ, then

min
|z|≤1/2

|P|−2 >max
|z|≥1
|P|−2ed6λ. (5-10)

We claim that

eC14λ

∫
1/4≤|z|≤1/2

w2
≥

∫
3/4≤|z|≤5/2

w2. (5-11)

We prove the claim by doubling estimates shown in Proposition 5. We choose a ball B
(
x0,

1
8

)
⊂{

z
∣∣ 1

4 ≤ |z| ≤
1
2

}
. It is clear that ∫

1/4≤|z|≤1/2
w2
≥

∫
B(x0,1/8)

w2.

Using doubling estimates, we have

eC15λ

∫
B(x0,1/8)

w2
≥

∫
B(x0,2/8)

w2.

By finite iterations, we can find a large ball B(x0, 3) that contains
{
z
∣∣ 3

4 ≤ |z| ≤
5
2

}
. This yields that∫

B(x0,3)
w2
≥

∫
3/4≤|z|≤5/2

w2.

Then the combination of these inequalities verifies the claim.
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If we choose d3 suitably large, since the number of disks Dl is d3λ, also d6 is suitably large. From the
inequalities (5-10) and (5-11), it follows that

ed5λ max
|z|≥1
|P|−2

∫
3/4≤|z|≤5/2

w2 < C12 min
|z|≤1/2

|P|−2
∫

1/4≤|z|≤1/2
w2. (5-12)

This contradicts the estimates (5-1) and (5-9). The proposition is proved. �

6. Growth estimates and nodal length

The purpose of this section is to find the connection between growth of eigenfunctions and nodal length. A
suitable small growth in L2 norm implies an upper bound on nodal length. We consider the second-order
elliptic equations

4w+ b∗ · ∇w+ q∗w = 0 in B(0, 4). (6-1)

Assume that there exists a positive constant C such that ‖b∗‖W 1,∞ ≤ C and ‖q∗‖W 1,∞ ≤ C . The following
lemma relies on the Carleman estimates in Lemma 4. Suppose ε1 is a sufficiently small positive constant.

Lemma 14. Suppose that w satisfies the growth estimate∫
(1−3a/2)ε0<r<(1−a)ε0

w2
≤ C3

∫
(1−3a)ε0<r<(1−4a/3)ε0

w2, (6-2)

where a and ε0 are fixed small constants. Then, for 0< ε1 <
1

100ε0, we have

max
r≤ε1
|w| ≥ C4

(
ε1

ε0

)C5
(
−

∫
B(0,(1−4/3a)ε0)

w2
)1

2

, (6-3)

where −
∫

denotes the average of the integration.

Proof. We select a radial cut-off function θ ∈ C∞0
( 1

2ε1 < r <
(
1− 11

10a
)
ε0
)

that satisfies the properties:

(i) θ(r)= 1 for 3
4ε1 < r <

(
1− 10

9 a
)
ε0.

(ii) |∇θ | + |4θ | ≤ C6 for r >
(
1− 10

9 a
)
ε0.

(iii) |∇θ | ≤ C7ε
−1
1 and |4θ |< C8ε

−2
1 for r ≤ 3

4ε1.

From (6-1), we get

4(θw)+ b∗ · ∇(θw)+ q∗θw =4θw+ 2∇θ · ∇w+ b∗ · ∇θw.

Assume that τ > C is large enough. Substituting u = θw in Lemma 4 yields that

C2τ
3
∫

r εe2τφ(r)θ2w2 dr dω ≤ I, (6-4)

where

I =
∫

r4e2τφ(r)
|4θw+ 2∇θ · ∇w+ b∗ · ∇θw|2 dr dω.
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Note that φ(r) is a decreasing function. Furthermore, by the assumptions on θ(z), we obtain

I ≤ e2τφ(ε1/2)
∫
ε1/2<r<3ε1/4

|4θw+ 2∇θ · ∇w+ b∗ · ∇θw|2r dr dω

+ e2τφ((1−10a/9)ε0)

∫
(1−10a/9)ε0<r<(1−11a/10)ε0

|4θw+ 2∇θ · ∇w+ b∗ · ∇θw|2r dr dω.

By standard elliptic estimates, we derive that

I ≤ C9e2τφ(ε1/2)
∫
ε1/4<r<ε1

w2r dr dω+C10e2τφ((1−10a/9)ε0)

∫
(1−3a/2)ε0<r<(1−a)ε0

w2r dr dω. (6-5)

Taking the inequality (6-4) and assumptions of θ into account, we have

C10e2τφ((1−10a/9)ε0)

∫
(1−3a/2)ε0<r<(1−a)ε0

w2r dr dω+C9e2τφ(ε1/2)
∫
ε1/4<r<ε1

w2r dr dω

≥ C2τ
3
∫

3ε1/4<r<(1−10a/9)ε0

r εe2τφ(r)w2 dr dω

≥ C2τ
3((1− 10

9 a
)
ε0
)ε−1

∫
3ε1/4<r<(1−10a/9)ε0

e2τφ(r)w2r dr dω. (6-6)

Since ε and ε0 are fixed positive constants, taking τ large enough we obtain

1
2C2τ

3((1− 10
9 a
)
ε0
)ε−1

> C10.

Taking the hypothesis (6-2) into consideration, we can incorporate the first term in the left-hand side
of (6-6) into the right-hand side. It follows that

C9e2τφ(ε1/2)
∫
ε1/4<r<ε1

w2r dr dω ≥ C10e2τφ((1−10a/9)ε0)

∫
3ε1/4<r<(1−10a/9)ε0

w2r dr dω. (6-7)

Fix such a τ ; adding the term

e2τφ((1−10a/9)ε0)

∫
r<3ε1/4

w2r dr dω

to both sides of the last inequality yields that

e2τφ(ε1/2)
∫

r<ε1

w2r dr dω ≥ C11e2τφ((1−10a/9)ε0)

∫
r<(1−4a/3)ε0

w2r dr dω, (6-8)

where we have used the fact that φ is decreasing. Straightforward calculations show that

e2τ(φ((1−10a/9)ε0)−φ(ε1/2)) ≥ C13

(
ε1

ε0

)C12

.

Thus, ∫
r<ε1

w2r dr dω ≥ C13

(
ε1

ε0

)C12 ∫
r<(1−4a/3)ε0

w2r dr dω. (6-9)

This completes the lemma. �
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Our next goal is to find the relation between Lemma 14 and nodal length. We assume that the estimate
(6-2) exists. Then the conclusion (6-3) in Lemma 14 holds. For ε1 ≤

1
100ε, if |z|< ε1 then using Taylor’s

expansion gives that∣∣∣∣w(z)− ∑
|α|≤C5

1
α!

∂αw

∂zα
(0)zα

∣∣∣∣≤ sup
|z|≤ε1

sup
|α|=C5+1

d1

∣∣∣∣∂αw∂zα
(z)
∣∣∣∣ε1

C5+1,

where α = (α1, α2) and ∂/∂zα = ∂/∂z1
α1 · ∂/∂z2

α2 . To control the right-hand side of the last inequality,
by elliptic estimates and a rescaling argument we have∣∣∣∣w(z)− ∑

|α|≤C5

1
α!

∂αw

∂zα
(0)zα

∣∣∣∣≤ d2

(
−

∫
B(0,(1−4a/3)ε0)

w2
)1

2
(
ε1

ε0

)C5+1

.

Using the estimate (6-3) in Lemma 14, we get∣∣∣∣w(z)− ∑
|α|≤C5

1
α!

∂αw

∂zα
(0)zα

∣∣∣∣≤ d3

(
ε1

ε0

)
max
|z|≤ε1
|w|.

Choosing ε1/ε0 sufficiently small, by the triangle inequality we obtain

sup
|α|≤C5

∣∣∣∣∂αw∂zα
(0)
∣∣∣∣ε1
|α|
≥ d4 max

|z|≤ε1
|w|.

Applying again the estimate (6-3) to the right-hand side of the last inequality yields that

sup
|α|≤C5

∣∣∣∣∂αw∂zα
(0)
∣∣∣∣ε0
|α|
≥ d5

(
−

∫
B(0,(1−4a/3)ε0)

w2
)1

2

. (6-10)

By standard elliptic estimates, we also have

sup
|z|≤ε0/2

sup
|α|≤C5+1

∣∣∣∣∂αw∂zα
(z)
∣∣∣∣ε0
|α|
≤ d6

(
−

∫
B(0,(1−4a/3)ε0)

w2
)1

2

. (6-11)

The basic relationship between derivatives and nodal length in two dimensions is shown in [Donnelly
and Fefferman 1990a].

Lemma 15. Suppose that w satisfies (6-10) and (6-11). Then

H 1(z ∣∣ |z| ≤ d7ε̄ and w(z)= 0
)
≤ d8ε̄.

With the aid of the last lemma, we can readily obtain an upper nodal length estimate.

Proposition 16. Let w be the solution of (6-1). Suppose that ε̄ ≤ ε0 and w satisfies the growth condition∫
(1−3a/2)ε̄<r<(1−a)ε̄

w2
≤ C3

∫
(1−3a)ε̄<r<(1−4a/3)ε̄

w2. (6-12)

Then
H 1(z ∣∣ |z| ≤ d9ε̄ and w(z)= 0

)
≤ d10ε̄.
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Proof. Since the inequalities (6-10) and (6-11) can be derived from (6-12) by Lemma 14, the proposition
follows from the last lemma. �

7. Total nodal length

As Proposition 13 indicates, the eigenfunctions cannot grow rapidly on too many small balls. If they grow
slowly, we have an upper bound on the local length of nodal sets by Proposition 16. In this section, we
will link these two arguments together. To achieve it, we will employ a process of repeated subdivision
and selection of squares. The idea is inspired by [Donnelly and Fefferman 1990a].

Assume that B(p, cλ−1/2) is a geodesic ball of the double manifold M. Choosing c to be small, it is
contained in a conformal chart. Let w(z)= v(cλ−1/2z) with c sufficiently small. We know that w satisfies

4w+ b̂(x) · ∇w+ q̂(x)w = 0 in B(0, 4). (7-1)

We consider the square P =
{
(x, y)

∣∣max(|x |, |y|)≤ 1
60

}
in B(0, 4) and divide it into a grid of closed

squares Pl with side δ ≤ a1λ
−1. If (5-1) holds for some point zl ∈ Pl and for some sufficiently large C1,

we call Pl a square of rapid growth. With the aid of Proposition 13, we are able to obtain the following
result:

Lemma 17. There are at most Cλ2 squares with side δ where w is of rapid growth.

Proof. Let I1 be the collection of those indices l for which Pl is a square of rapid growth. For each l ∈ I1,
there exists some point zl ∈ Pl such that (5-1) holds. Let |I1| denote the cardinality of I1. Define

P∗l = {z | |z− zl |< d1δλ
1/2
}.

The collection of disks P∗l covers the collection of squares Pl for l ∈ I1. We choose a maximal collection
of disjoint disks of P∗l and denote it as I2. If l ∈ I2, we define

P∗∗l = {z | |z− zl |< 4d1δλ
1/2
}.

Since the collection of disks in I2 is maximal and they are disjoint, we obtain that⋃
l∈I2

P∗∗l ⊇
⋃
l∈I1

P∗l ⊇
⋃
l∈I1

Pl .

Thus,
|I2| × 16d2

1δ
2λ≥ |I1|δ

2,

which implies
|I2|λ≥ d2|I1|.

Recall from Proposition 13 that |I2| ≤ d3λ. Therefore, we obtain the desirable estimate |I1| ≤ d4λ
2. �

Now we introduce an iterative process of bisecting squares. We begin by dividing the square into a
grid of squares Pl(1) with side δ(1) = a1λ

−1, then separate them into two categories Rl(1) and Sl(1).
Rl(1) are those where w is of rapid growth and Sl(1) are those where (5-1) fails for w. We continue to
bisect each square Rl(1) to obtain squares Pl(2) with side δ(2)= 1

2δ(1). Again, we split Pi (2) into the
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subcollection Rl(2) with rapid growth and Sl(2) with slow growth. We repeat the process at each step k.
Then there are squares Rl(k) and Sl(k) with δ(k)= 1

2k δ(1). We count the number of Rl(k) and Sl(k) at
step k:

Lemma 18. (i) The number of squares Rl(k) is at most C2λ
2.

(ii) The number of squares Sl(k) is at most C3λ
2.

Proof. The conclusion (i) follows directly from Lemma 17. We only need to show (ii). If k = 1, the
conclusion (ii) follows because the total number of squares is at most of order λ2. If k ≥ 2 then, by
construction of those squares,

|Sl(k)| ≤ 4|Rl(k− 1)| ≤ C4λ
2,

where we have used (i) in the last inequality. The lemma is done. �

The next lemma tells that almost every point lies in some Rl(k) with slow growth. It is Lemma 6.3 in
[Donnelly and Fefferman 1990a].

Lemma 19.
⋃

k,l Sl(k) covers the square P except for singular points S= {z ∈ P |w(x)= 0,∇w = 0}.

We are ready to give the proof of Theorem 3.

Proof of Theorem 3. Consider w(z) = w(zl + ε
−1
0 δ(k)z). Then w(z) satisfies (6-1). Choosing a finite

collection of zl ∈ Sl(k) and applying Proposition 16, we have

H 1(z ∣∣ w(z)= 0 and z ∈ Sl(k)
)
≤ C52−kλ−1. (7-2)

Furthermore, thanks to Lemma 19,

H 1(z ∣∣ w(z)= 0 and max(|x |, |y|)≤ 1
60

)
≤

∑
l,k

H 1(z ∣∣ w(z)= 0 and z ∈ Sl(k)
)

≤ λ2
∑

k

C52−kλ−1
≤ C6λ, (7-3)

where we have used (ii) in Lemma 18 and (7-2). Since w(z)= v(cλ−1/2z), by the rescaling argument,
we obtain

H 1(
{v(z)= 0} ∩B(p, cλ−1/2)

)
≤ C6λ

1/2.

Finally, covering M with order λ of geodesic balls with radius cλ−1/2, we readily deduce that

H 1(z ∈M | v(z)= 0)≤ C7λ
3/2.

Thus, so is H 1(Nλ). �
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