Vol. 9, No. 4, 2016

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11
Issue 3, 555–812
Issue 2, 263–553
Issue 1, 1–261

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Some counterexamples to Sobolev regularity for degenerate Monge–Ampère equations

Connor Mooney

Vol. 9 (2016), No. 4, 881–891
Abstract

We construct a counterexample to W2,1 regularity for convex solutions to

detD2u 1,u| Ω =  const.

in two dimensions. We also prove a result on the propagation of singularities of the form |x2||logx2| in two dimensions. This generalizes a classical result of Alexandrov and is optimal by example.

Keywords
degenerate Monge–Ampère, Sobolev regularity
Mathematical Subject Classification 2010
Primary: 35B65, 35J96
Milestones
Received: 23 September 2015
Accepted: 11 March 2016
Published: 3 July 2016
Authors
Connor Mooney
Department of Mathematics
University of Texas at Austin
Austin, TX 78712
United States