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EXISTENCE, UNIQUENESS AND OPTIMAL REGULARITY RESULTS
FOR VERY WEAK SOLUTIONS TO NONLINEAR ELLIPTIC SYSTEMS

MIROSLAV BULÍČEK, LARS DIENING AND SEBASTIAN SCHWARZACHER

We establish existence, uniqueness and optimal regularity results for very weak solutions to certain
nonlinear elliptic boundary value problems. We introduce structural asymptotic assumptions of Uhlenbeck
type on the nonlinearity, which are sufficient and in many cases also necessary for building such a theory.
We provide a unified approach that leads qualitatively to the same theory as the one available for linear
elliptic problems with continuous coefficients, e.g., the Poisson equation.

The result is based on several novel tools that are of independent interest: local and global estimates for
(non)linear elliptic systems in weighted Lebesgue spaces with Muckenhoupt weights, a generalization of
the celebrated div-curl lemma for identification of a weak limit in border line spaces and the introduction
of a Lipschitz approximation that is stable in weighted Sobolev spaces.

1. Introduction

We study the following nonlinear problem: for a given n-dimensional domain �⊂Rn with n ≥ 2, a given
f : �→ Rn×N with N ∈ N arbitrary and a given mapping A : �×Rn×N

→ Rn×N , find u : �→ RN

satisfying

− div(A(x,∇u))=− div f in �,

u = 0 on ∂�.
(1-1)

Owing to a significant number of problems originating in various applications, it is natural to require
that A is a Carathéodory mapping, satisfying the natural coercivity, growth and (strict) monotonicity
conditions. It means that

A( · , η) is measurable for any fixed η ∈ Rn×N , (1-2)

A(x, · ) is continuous for almost all x ∈�, (1-3)
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and there exist positive constants c1 and c2 such that for almost all x ∈� and all η1, η2 ∈ Rn×N

c1|η1|
2
− c2 ≤ A(x, η1) · η1 (coercivity), (1-4)

|A(x, η1)| ≤ c2(1+ |η1|) (growth), (1-5)

0≤ (A(x, η1)− A(x, η2)) · (η1− η2) (monotonicity). (1-6)

If for all η1 6= η2 the inequality (1-6) is strict, then A is said to be strictly monotone.
Under the assumptions (1-2)–(1-6), it is standard to show (with the help of the Minty method [1963])

that, for any f ∈ L2(�;Rn×N ), there exists u ∈W 1,2
0 (�;RN ) that solves (1-1) in the sense of distribution.

In addition if A is strictly monotone, then this solution is unique in the class of W 1,2
0 (�;RN )-weak

solutions.
An important question that immediately arises is whether such a result can be extended to a more

general setting. Namely,

whether for any f ∈ Lq(�;Rn×N ) with q ∈ (1,∞)
there exists a (unique) u ∈W 1,q

0 (�;RN ) solving (1-1) in the weak sense.
(Q)

If q 6= 2, then we call the problem of existence and uniqueness to (1-1) beyond the natural pairing. If
q > 2 and f ∈ Lq(�;Rn×N ), then f ∈ L2(�;Rn×N ) as well, and the standard monotone operator theory
in the duality pairing provides a W 1,2

0 (�;RN ) solution to (1-1). Thus, in this case, (Q) calls only for
improvement of the integrability of ∇u. If q < 2, then the considered question is more challenging as
the existence of an object with which to start any kind of analysis is unclear. This is the reason why,
for 1< q < 2, W 1,q

0 (�;RN )-solutions are called very weak solutions.
Our general aim is to establish, for a given f ∈ Lq(�;Rn×N ) with q ∈ (1,∞) \ 2, the existence of a

(unique) W 1,q
0 (�;RN ) solution to (1-1)–(1-6), i.e., to give the affirmative answer to (Q). However, for

general operators, this is not possible due to the following two reasons:

(i) the way how the nonlinearity A(x, η) depends on η,

(ii) the way how the nonlinearity A(x, η) depends on x .

We shall discuss each of these points from two perspectives: the available counterexamples and so far
established affirmative results (that were rather sporadic and had several limitations).

First, we consider (1-1) with A depending only on η. If q ≥ 2, then there always exists a (unique) weak
solution and the only difficult part is to obtain appropriate a priori estimates in the space W 1,q

0 (�;RN ).
On the one hand, for general operators, such a priori estimates are not true for large q � 2. This
follows from the counterexamples due to Nečas [1977] and Sverák and Yan [2002], where they found a
mapping A that does not depend on x and satisfies1 (1-2)–(1-6) and showed that the corresponding unique
weak solution is not in C1 or is even unbounded for smooth f . This directly contradicts the general
theory for q � 2. The singular behavior of solutions in the above-mentioned counterexamples is due to
the fact that the mapping A depends highly nonlinearly on the vectorial variable η. On the other hand,

1Not only does the mapping A satisfy (1-2)–(1-6), it has even more structure. It is given as a derivative of a uniformly convex
smooth potential F , which makes the counterexamples even stronger.
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if q ∈ [2, 2+ε), then the W 1,q
0 (�;RN ) theory can be built for general mappings fulfilling only (1-2)–(1-6),

where ε > 0 depends on c1 and c2. For such q , it is known that, if f ∈ Lq(�;Rn×N ), then there exists a
solution u ∈W 1,q

0 (�;RN ) to (1-1). Such a result can be obtained by using the reverse Hölder inequality
(see, e.g., [Giaquinta 1983]) and holds also for more general growth conditions, including operators of
p-Laplacian type. For the p-Laplacian itself, A(x, η) := |η|p−2η with p ∈ (1,∞), various positive results
are known for large exponents (in this case q ∈ (p,∞) or even BMO estimates) [Iwaniec 1983; Caffarelli
and Peral 1998; Diening et al. 2012]. The theory is built on the seminal works of Uraltseva [1968] (the
scalar case) and Uhlenbeck [1977] (the vectorial case).

For q < 2, the situation is even more delicate. In this case, the existence of any solution is not
straightforward at all. Indeed, a general existence theory for operators satisfying (1-2)–(1-6) alone might
be impossible to get. Up to now, the only general result holds for q ∈ (2− ε, 2+ ε) with ε depending
only on c1 and c2 and A being uniformly monotone and also uniformly Lipschitz continuous, i.e., for all
η1, η2 ∈ Rn×N and almost all x ∈�,

|A(x, η1)− A(x, η2)| ≤ c2|η1− η2|. (1-7)

In this case, we know that for all f ∈ Lq(�;Rn×N ) there exists a unique solution u ∈ W 1,q
0 (�;RN )

to (1-1) whenever q ∈ (2−ε, 2+ε) [Bulíček 2012], and we also recall [Greco et al. 1997] for the result in
the so-called grand Lebesgue spaces L(2)(�). Moreover, for a general operator satisfying only (1-4)–(1-5),
it may be shown with the help of the technique developed in [Bulíček 2012] that any very weak solution
to (1-1) satisfies the uniform estimate∫

�

|∇u|q dx ≤ C(c1, c2, q, �)
∫
�

| f |q dx for all q ∈ (2− ε, 2+ ε). (1-8)

However, any existence theory for q “away” from 2 is either missing or impossible.
More positive results are available in the scalar case N =1 (and even for a more general class of operators

including the p-Laplacian) but for the smoother right-hand side, i.e., the case when f ∈ W 1,1(�;Rn)

or at least f ∈ BV(�;Rn). Then the existence of a very weak solution is known; see the pioneering
works [Boccardo and Gallouët 1992; Stampacchia 1965]. Furthermore, one can study further qualitative
properties of such a solution [Mingione 2013]. Moreover, in case f ∈W 1,1(�;Rn), the uniqueness of
a solution can be shown in the class of entropy solutions [Bénilan et al. 1995; Boccardo et al. 1996;
Dal Maso et al. 1997; 1999]. On the other hand, in case f ∈ BV(�;Rn), or more precisely if div f is
only a Radon measure, the uniqueness is not known. An exception is the case when div f is a finite
sum of Dirac measures. In that case, the study on isolated singularities by Serrin implies the uniqueness
for very general nonlinear operators including the p-Laplace equation; see [Serrin 1965; Friedman and
Véron 1986] and references therein. To conclude this part, we would like to emphasize that all results
for smoother right-hand side surely do not cover the full generality of the result we would like to have,
which may be easily seen in the framework of the Sobolev embedding. Indeed, if f ∈W 1,1(�;Rn), then
f ∈ Ln/(n−1)(�;Rn) and we see that the case q ∈ (2, n′(p−1)) remains untouched even in the scalar case.2

2Throughout the paper, we use the notation of dual exponents q ′ := q/(q − 1).
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The second obstacle, related to (ii), is the possible discontinuity of the operator with respect to the
spatial variable. To demonstrate this in more detail, we consider the linear problem

− div(a(x)∇u)=− div f in �,

u = 0 on ∂�,
(1-9)

with a uniformly elliptic matrix a. Note here that (1-9) is a particular case of (1-1) with A(x, η) := a(x)η
and A fulfilling (1-2)–(1-6) with N = 1. In case a is continuous and � is a C1-domain, one can
use the singular operator theory and show that for any f ∈ Lq(�;Rn) there exists a unique weak
solution u ∈W 1,q

0 (�) to (1-9) [Dolzmann and Müller 1995, Lemma 2]. This can be weakened to the case
when a has coefficients with vanishing mean oscillations; see [Iwaniec and Sbordone 1998] or [Di Fazio
1996]. However, the same is not true in the case that a is uniformly elliptic with general measurable
coefficients. Even worse, it was shown by Serrin [1964] that for any q ∈ (1, 2) and f ≡ 0 there exists
an elliptic matrix a with measurable coefficients such that one can find a distributive solution (called a
pathological solution) v ∈W 1,q

0 (�) \W 1,2
0 (�) that satisfies (2-5). These pathological solutions should

be excluded as only the zero function itself is the natural solution, which of course is the unique weak
solution u ∈W 1,2

0 (�) in case f ≡ 0. This indicates that any reasonable theory for q ∈ (1, 2) must be able
to avoid the existence of such pathological solutions.

Thus, to get a theory for all q ∈ (1,∞), the counterexamples mentioned above indicate that we need to
assume more structural assumptions on A, which we shall describe in detail in the next section, where we
recall our problem, introduce the structural assumptions on A and formulate the main results of this paper.

2. Results

As discussed above, we study the problem (1-1) with a mapping A fulfilling (1-2)–(1-6). Further, inspired
by the counterexamples recalled in the previous section and also by the available positive results, we shall
assume in what follows that the mapping A is asymptotically Uhlenbeck; i.e., we will assume that there
exists a continuous mapping Ã :�→ Rn×N

×Rn×N fulfilling the following:

for all ε > 0, there exists k > 0 such that,
for almost all x ∈� and all η ∈ Rn×N satisfying |η| ≥ k,

|A(x, η)− Ã(x)η| ≤ ε|η|. (2-1)

This assumption combined with (1-4)–(1-6) implies that Ã necessarily satisfies

c1|η|
2
≤ Ã(x)η · η ≤ c2|η|

2 for all η ∈ Rn×N . (2-2)

Although the above assumption might seem to be restrictive, it enables us to cover many cases used in
applications. The prototypical example is of the form

A(x, η)= a(x, |η|)η with lim
λ→∞

a(x, λ)= ã(x), where ã ∈ C(�). (2-3)

Note that a may be measurable with respect to x and the required continuity must hold only for ã. The
assumptions (1-4)–(1-6) are met if a is strictly positive and bounded and if the function a(x, λ)λ is
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nondecreasing with respect to λ for almost all x ∈ �. The fact that, besides (1-2)–(1-6), we will not
assume anything more than (2-1) makes our approach general.

Moreover, to obtain the uniqueness of the solution, we will consider a stronger version of (2-1). Namely,
we shall assume that A is strongly asymptotically Uhlenbeck; i.e., we will assume that there exists a
continuous mapping Ã :�→ Rn×N

×Rn×N fulfilling the following:

for all ε > 0, there exists k > 0 such that,
for almost all x ∈� and all η ∈ Rn×N satisfying |η| ≥ k,

∣∣∣∣∂A(x, η)
∂η

− Ã(x)
∣∣∣∣≤ ε. (2-4)

Concerning the example (2-3), the condition (2-4) follows if a(x, λ) is differentiable with respect to λ for
λ� 1 and limλ→∞|a′(x, λ)λ| = 0. This includes the approximations for the p-Laplace operator

a(x, |η|)=max{µ, |η|p−2
} for p ∈ (1, 2),

a(x, |η|)=min{µ−1, |η|p−2
} for p ∈ (2,∞),

which are (for small µ) arbitrary close to the original setting.
The first main result of the paper giving the answer to (Q) is the following:

Theorem 2.1. Let � be a bounded C1-domain and A satisfy (1-2)–(1-6) and (2-1). Then for any
f ∈ Lq(�;Rn×N ) with q ∈ (1,∞), there exists u ∈W 1,q

0 (�;Rn×N ) such that∫
�

A(x,∇u) · ∇ϕ dx =
∫
�

f · ∇ϕ dx for all ϕ ∈ C0,1
0 (�;RN ). (2-5)

Moreover, every very weak solution ũ ∈W 1,q̃
0 (�,RN ) to (2-5) with some q̃ > 1 satisfies∫

�

|∇ũ|q dx ≤ C(A, q, �)
(

1+
∫
�

| f |q dx
)
. (2-6)

In addition, if A is strictly monotone and strongly asymptotically Uhlenbeck, i.e., (2-4) holds, then the
solution is unique in any class W 1,q̃

0 (�;RN ) with q̃ > 1.

Notice here that (2-5) is nothing else than the weak formulation of (1-1). Next, we would like to
emphasize the novelty of the above result. First, to derive the estimate (2-6), one can use the comparison
of (2-5) with the system with A(x, η) replaced by Ã(x)η to end up with (2-6) provided that the left-hand
side of (2-6) is finite a priori. From this point of view, the a priori estimate (2-6) is indeed clear. On the
other hand, and what is not obvious, is that (2-6) holds for all very weak solutions to (2-5) that belong to
some W 1,q̃

0 (�;RN ) for some q̃ > 1.
Second, Theorem 2.1 implies that we can construct solutions for the whole range q ∈ (1,∞), which

makes the existence theory identical to the theory for linear operators with continuous coefficients since
we know that the linear theory is not true for q = 1 or q =∞.

Third, Theorem 2.1 provides the uniqueness of the very weak solution for vector-valued nonlinear
elliptic systems without any additional qualitative properties of a solution, e.g., the entropy inequality. In
particular, the result of Theorem 2.1 directly leads to the uniqueness of a solution when div f is a general
vector-valued Radon measure. As this is of independent interest, we formulate this result in the following
corollary, where we shall denote by the symbol M(�;RN ) the space of RN -valued Radon measures.
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Corollary 2.2. Let � be a bounded C1-domain and A satisfy (1-2)–(1-6) and (2-1). Then for any
f ∈M(�;RN ), there exists u ∈W 1,n′−ε

0 (�;Rn×N ) with arbitrary ε > 0 such that∫
�

A(x,∇u) · ∇ϕ dx = 〈 f, ϕ〉 for all ϕ ∈ C0,1
0 (�;RN ). (2-7)

Moreover, every very weak solution ũ ∈W 1,q̃
0 (�,RN ) to (2-7) with some q̃ > 1 satisfies for all q ∈ (1, n′)∫

�

|∇ũ|q dx ≤ C(A, q, �)(1+‖ f ‖qM). (2-8)

In addition, if A is strictly monotone and strongly asymptotically Uhlenbeck, i.e., (2-4) holds, then the
solution is unique in any class W 1,q̃

0 (�;RN ) with q̃ > 1.

Although Theorem 2.1 gives the final answer to (Q), it is actually a consequence of the following
stronger result. It shows the existence of a solution that is optimally smooth with respect to the right-hand
side in weighted spaces. For p ∈ [1,∞), we denote by Ap the Muckenhoupt class of nonnegative weights
on Rn (see Section 3 for the precise definition) and define the weighted Lebesgue space L p

ω(�) :=

{ f ∈ L1(�);
∫
�
| f |pω dx <∞}. Then we have the following result.

Theorem 2.3. Let � be a bounded C1-domain, A satisfy (1-2)–(1-6) and (2-1) and f ∈ L p0
ω0(�;R

n×N )

for some p0 ∈ (1,∞) and ω0 ∈Ap0 . Then there exists a u ∈W 1,1
0 (�;RN ) solving (2-5) such that for all

p ∈ (1,∞) and all weights ω ∈Ap the estimate∫
�

|∇u|pω dx ≤ C(Ap(ω),�, A, p)
(

1+
∫
�

| f |pω dx
)

(2-9)

holds whenever the right-hand side is finite. Moreover, every very weak solution ũ ∈ W 1,q̃
0 (�,RN )

to (2-5) with some q̃ > 1 satisfies (2-9). In addition, if A is strictly monotone and strongly asymptotically
Uhlenbeck, i.e., (2-4) holds, then the solution is unique in any class W 1,q̃

0 (�;RN ) with q̃ > 1.

Clearly, Theorem 2.1 is an immediate consequence of Theorem 2.3. Observe that (2-9) is an optimal
existence result with respect to the weighted spaces. It cannot be generalized to more general weights,
which is demonstrated by the theory for the Laplace equation in the whole Rn , where one can prove that
(2-9) holds in general if and only if ω ∈Ap. This follows from the singular integral representation of the
solution and the fundamental result of Muckenhoupt [1972] on the continuity of the maximal function in
weighted spaces.

At this point, we wish to present the following corollary of Theorem 2.3. It shows that if f ∈
Lq(�;Rn×N ) the solution constructed by Theorem 2.3 implies an estimate in terms of a Hilbert space
that therefore inherits the spirit of duality. Denoting by M f the Hardy–Littlewood maximal function (see
the Section 3 for the precise definition), we have the following corollary.

Corollary 2.4. Let � be a bounded C1-domain and A satisfy (1-2)–(1-6) and (2-1). Then for any
f ∈ Lq(�;Rn×N ) with q ∈ (1, 2], there exists u ∈ W 1,q

0 (�;RN ) satisfying (2-5). Moreover, any very
weak solution ũ ∈W 1,q̃

0 (�;RN ) with some q̃ > 1 fulfilling (2-5) satisfies the estimate∫
�

|∇ũ|2

(1+M f )2−q dx ≤ C(A, q, �, f )
(

1+
∫
�

| f |q dx
)
. (2-10)
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As mentioned above, the estimate (2-10) preserves the natural duality pairing in terms of weighted L2

spaces, and as will be seen in the proof, the estimate (2-10) plays the key role in the convergence analysis
of approximate solutions to the desired one. Indeed, the weighted L2 integrability is the key property
of the system, and we wish to emphasize that the only Lq-a priori information (with q < 2) does not
seem to be sufficient to pass to the limit with the nonlinearity of approximating sequences. The reason
for such a speculation is that all known methods for identification of the weak limit in the nonlinearity
A(∇u) are based on the identification of the “weak” limit of A(∇u) · ∇u on “large” sets. However,
having only Lq-estimates with q < 2, any identification of this type is impossible. On the other hand,
we believe (based on the result of the paper) that the key estimate should reflect the duality pairing with
possibly Muckenhoupt weight exactly as in (2-10). Having such an estimate, the new technique developed
in the paper allows us to reconstruct the nonlinearity, although it is governed by a weakly converging
subsequence only. It highly relies on the weighted theory that allows us to use the weighted biting div-curl
lemma; see Theorem 2.6. To support the conjecture about the only possible choice of estimates in the
weighted spaces preserving the duality pairing and reflecting the right-hand side, we quote the recent result
[Bulíček and Schwarzacher 2016]. Here the theory for general operators with measurable coefficients and
having a p-Laplacian-like structure is developed for all q ∈ (p− ε, p] with ε > 0 depending only on the
nonlinearity. Observe that the Lq -estimates for these p-Laplacian-like operators and q ∈ (p− ε, p] have
been known for some time [Lewis 1993; Greco et al. 1997] but the existence even in that case was not
possible. Moreover, we wish to mention that the proof for the a priori estimates by Lewis [1993] already
relied on the characterization of Muckenhoupt weights via the maximal operator. Therefore, we strongly
believe that the effort to establish the very weak solution for the p-Laplace problem should not be blindly
focused on obtaining Lq -estimates for q < p but we should rather focus on the weighted L p-estimates.

Next, we formulate new results that are on the one hand essential for the proof of Theorems 2.3 and 2.1
but on the other hand of independent interest in the fields of harmonic analysis and the compensated
compactness theory. These results are mainly related to two critical problems: first to the a priori
estimate (2-9) and second to the stability of the nonlinearity A(x,∇u) under the weak convergence of ∇u.
To solve the first problem, we use the linear system as a comparison to provide (2-9). The weighted theory
for linear problems is known for � = Rn in the case of constant coefficients (see, e.g., [Coifman and
Fefferman 1974, p. 244]) but seems to be missing for bounded domains and linear operators continuously
depending on x . Therefore, another essential contribution of this paper is the following theorem.

Theorem 2.5. Let � ⊂ Rn be a bounded C1-domain, ω ∈ Ap for some p ∈ (1,∞) be arbitrary and
Ã ∈ C(�;Rn×N×n×N ) satisfy for all z ∈ Rn×N and all x ∈�

c1|η|
2
≤ Ã(x)η · η ≤ c2|η|

2 (2-11)

with some positive constants c1 and c2. Then for any f ∈ L p
w(�;R

n×N ), there exists unique v ∈
W 1,1

0 (�;RN ) solving∫
�

Ã(x)∇v(x) · ∇ϕ(x) dx =
∫
�

f (x) · ∇ϕ(x) dx for all ϕ ∈ C0,1
0 (�;RN ) (2-12)
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and fulfilling ∫
�

|∇v|pω dx ≤ C(�,Ap(ω), p, c1, c2)

∫
�

| f |pω dx . (2-13)

In addition, if v ∈W 1,q
0 (�;RN ) for some q > 1 fulfills (2-12), then v = v.

We wish to point out that we include natural local weighted estimates in the interior as well as on the
boundary that are certainly of independent interest (see Lemmas 5.1 and 5.2).

The second obstacle we have to deal with is an identification of the weak limit, and for this purpose,
we invent a generalization of the celebrated div-curl lemma.

Theorem 2.6 (weighted, biting div-curl lemma). Let � ⊂ Rn be an open bounded set. Assume that
for some p ∈ (1,∞) and given ω ∈ Ap we have a sequence of vector-valued measurable functions
(ak, bk)∞k=1 :�→ Rn

×Rn such that

sup
k∈N

∫
�

|ak
|

pω+ |bk
|

p′ω dx <∞. (2-14)

Furthermore, assume that, for every bounded sequence {ck
}
∞

k=1 from W 1,∞
0 (�) that fulfills

∇ck ⇀∗ 0 weakly∗ in L∞(�),

there holds

lim
k→∞

∫
�

bk
· ∇ck dx = 0, (2-15)

lim
k→∞

∫
�

ak
i ∂x j c

k
− ak

j∂xi c
k dx = 0 for all i, j = 1, . . . , n. (2-16)

Then there exists a subsequence (ak, bk) that we do not relabel, and there exists a nondecreasing sequence
of measurable subsets E j ⊂� with |� \ E j | → 0 as j→∞ such that

ak ⇀ a weakly in L1(�;Rn), (2-17)

bk ⇀ b weakly in L1(�;Rn), (2-18)

ak
· bkω⇀ a · bω weakly in L1(E j ) for all j ∈ N. (2-19)

The original version of this lemma, first invented by Murat [1978; 1981] and Tartar [1978; 1979], was
designed to identify many types of nonlinearities appearing in many types of partial differential equations.
However, they assumed stronger assumptions on ak and bk than (2-15)–(2-16), which lead to (2-19)
for E j ≡�. To be more specific, they did not assume weighted spaces and considered ω ≡ 1 and they
required that (2-15) hold for any ck converging weakly in W 1,p and (2-16) for any ck converging weakly
in W 1,p′ . The first result more in the spirit of Theorem 2.6 is due to Conti et al. [2011], who worked
with ω ≡ 1 and kept (2-15)–(2-16) but assumed the equi-integrability of the sequence ak

· bk . Such a
result is then based on the proper use of the Lipschitz approximation of Sobolev functions introduced
in [Acerbi and Fusco 1984], which we shall use here as well. The first use of the biting version of this
result is in [Bulíček 2015], where the very similar technique for identification of the nonlinearity as in
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this paper is used but yet without the presence of Muckenhoupt weights. In this paper, we finally use
the full strength of the weighted biting div-curl lemma, which is able to cover a borderline case in two
ways: the integrability assumptions on ak and bk are minimal with respect to Lebesgue spaces (2-14)
and the convergence assumptions (2-15)–(2-16) on div(bk) and curl(ak) are minimal. In addition, exactly
this version of the div-curl lemma was one of the key results of this manuscript used in the recent paper
[Bulíček and Schwarzacher 2016] to treat the p-Laplacian problem.

The proof of Theorem 2.6 relies on the original proof but is completed by using the Chacon biting
lemma [Brooks and Chacon 1980; Ball and Murat 1989] and also a very improved Lipschitz approximation
method in the framework of weighted spaces, which is yet another essential result of the paper.

Theorem 2.7 (Lipschitz approximation). Let � ⊂ Rn be an open set with Lipschitz boundary. Let
g ∈W 1,1

0 (�;RN ). Then for all λ > 0, there exists a Lipschitz truncation gλ ∈W 1,∞
0 (�;RN ) such that

gλ = g and ∇gλ =∇g in {M(∇g)≤ λ}, (2-20)

|∇gλ| ≤ |∇g|χ{M(∇g)≤λ}+Cλχ{M(∇g)>λ} almost everywhere. (2-21)

Further, if ∇g ∈ L p
ω(�;R

n×N ) for some 1≤ p <∞ and ω ∈Ap, then∫
�

|∇gλ|pω dx ≤ C(Ap(�),�, N , p)
∫
�

|∇g|pω dx,∫
�

|∇(g− gλ)|pω dx ≤ C(Ap(�),�, N , p)
∫
�∩{M(∇g)>λ}

|∇g|pω dx .
(2-22)

This result has its origin in the paper [Acerbi and Fusco 1988]. The approach was considerably
improved and successfully used for the existence theory in the context of fluid mechanics; see, e.g.,
[Frehse et al. 2000; Diening et al. 2008; 2013; Diening 2013] or [Breit et al. 2012; 2013] for divergence-
free Lipschitz approximation. However, these results do not contain the weighted estimates (2-22) and
for this reason we also provide its proof in this paper.

Finally, for the sake of completeness, we present straightforward generalizations of the above results.
First, we establish the theory for the nonhomogeneous Dirichlet problem.

Theorem 2.8. Let � be a bounded C1-domain, A satisfy (1-2)–(1-6) and (2-1), f ∈ L p0
ω0(�;R

n×N ) and
u0 ∈ W 1,1(�;RN ) be such that ∇u0 ∈ L p0

ω0(�;R
n×N ) for some p0 ∈ (1,∞) and ω0 ∈ Ap0 . Then there

exists a solution u of (2-5) such that u − u0 ∈ W 1,1
0 (�;Rn×N ), and for all p ∈ (1,∞) and all weights

ω ∈Ap, the estimate∫
�

|∇u|pω dx ≤ C(Ap(ω),�, A, p)
(

1+
∫
�

(| f |p + |∇u0|
p)ω dx

)
(2-23)

holds whenever the right hand side is finite. Moreover, every very weak solution u of (2-5) fulfilling ũ−u0∈

W 1,q̃
0 (�,RN ) with some q̃ > 1 satisfies (2-23). In addition, if A is strictly monotone and strongly asymp-

totically Uhlenbeck, i.e., (2-4) holds, then the solution is unique in any class W 1,q̃(�;RN ) with q̃ > 1.

Second, we remark that, for the theory for (1-1), the assumptions (2-1)–(2-4) are not necessary and
can be weakened.
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Remark 2.9. At this point, we wish to discuss possible relaxations of the conditions (2-1) and (2-4)
that might be useful for further application of the theory developed here. The proofs of existence or
uniqueness do not require that the matrix A(x, η) converge uniformly to a continuous target matrix Ã(x)
but rather that the two matrices are “close” for values |η|> k for some k. Indeed, it is possible to quantify
the necessary closeness in accordance with the ellipticity and continuity parameters of Ã(x) and ∂�. A
different relaxation of (2-1) and (2-4) could be done in a nonpointwise manner by replacing the pointwise
asymptotic conditions by asymptotic conditions in terms of vanishing mean oscillations (VMO).

We conclude this section by highlighting the essential novelties of this paper:

(1) A complete unified W 1,q
0 (�;RN )-theory for nonlinear elliptic systems with the asymptotic Uhlenbeck

structure satisfying (1-2)–(1-6), (2-1) and (2-4) has been developed in such a way that the theory is
identical with that for linear operators with continuous coefficients: Theorems 2.1 and 2.8. Moreover,
the new estimate suitable for numerical purposes is established in Corollary 2.4.

(2) A maximal regularity in weighted spaces of any very weak solution is established as well as its
uniqueness, which in particular leads to the uniqueness of very weak solutions to the problems with
measure right-hand side: Theorem 2.3 for the nonlinear case and Theorem 2.5 for the linear setting.

(3) A new tool in harmonic analysis, the Lipschitz approximation method in weighted spaces, is
developed: Theorem 2.7.

(4) A new tool for identification of a weak limit of the nonlinear operator, the biting weighted div-curl
lemma, is invented: Theorem 2.6. Such a tool has a potential to improve the known methods in
compensated compactness theory in significant manner.

To summarize, this paper proposes a new way to attack more general elliptic problems than those discussed
in Section 2. Indeed, it seems that the only missing point in the analysis of more general problems,
e.g., the p-Laplace equation, is the formal a priori estimates beyond the duality pairing. Once such
a priori estimates are available, one can follow the method introduced in this paper and gain an existence
and uniqueness theory for general problems beyond the natural duality. Indeed, the first step in this
direction was already done in [Bulíček and Schwarzacher 2016], where more general operators having
the p structure are treated.

The structure of the paper is somewhat in reversed order. After introducing some auxiliary tools and
some necessary notation in Section 3, we first prove the main Theorems 2.1 and 2.3 in Section 4. For that
result, we use the (technical) theorems, which are each independently proved in Sections 5–8. Finally
Section 9 is dedicated to the proofs of the corollaries.

3. Auxiliary tools

3A. Muckenhoupt weights and the maximal function. We start this part by recalling the definition of
the Hardy–Littlewood maximal function. For any f ∈ L1

loc(R
n), we define

M f (x) := sup
R>0
−

∫
BR(x)
| f (y)| dy with −

∫
BR(x)
| f (y)| dy :=

1
|BR(x)|

∫
BR(x)
| f (y)| dy,
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where BR(x) denotes a ball with radius R centered at x ∈ Rn . We shall use similar notation for vector- or
tensor-valued functions as well. Note here that we could replace balls in the definition of the maximal
function by cubes with sides parallel to the axes without any change. We will also use in what follows
the standard notion for Lebesgue and Sobolev spaces. Further, we say that ω : Rn

→ R is a weight if it
is a measurable function that is almost everywhere finite and positive. For such a weight and arbitrary
measurable �⊂ Rn , we denote the space L p

ω(�) with p ∈ [1,∞) as

L p
ω(�) :=

{
u :�→ Rn

; ‖ f ‖L p
ω
:=

(∫
�

|u(x)|pω(x) dx
)1/p

<∞

}
.

Note that our weights are defined on the whole space Rn . Next, for p ∈ [1,∞), we say that a weight ω
belongs to the Muckenhoupt class Ap if and only if there exists a positive constant A such that for every
ball B ⊂ Rn (

−

∫
B
ω dx

)(
−

∫
B
ω−(p

′
−1) dx

)1/(p′−1)

≤ A if p ∈ (1,∞), (3-1)

Mω(x)≤ Aω(x) if p = 1. (3-2)

In what follows, we denote by Ap(ω) the smallest constant A for which the inequality (3-1) or (3-2)
holds. Due to the celebrated result of Muckenhoupt [1972], we know that ω ∈ Ap is for 1 < p <∞
equivalent to the existence of a constant A′ such that for all f ∈ L p(Rn)∫

|M f |pω dx ≤ A′
∫
| f |pω dx . (3-3)

Further, if p∈[1,∞) andω∈Ap, then we have an embedding L p
ω(�) ↪→ L1

loc(�) since for all balls B⊂Rn

−

∫
B
| f | dx ≤

(
−

∫
B
| f |pω dx

)1/p(
−

∫
B
ω−(p

′
−1) dx

)1/p′

≤ (Ap(ω))
1/p
(

1
ω(B)

∫
B
| f |pω dx

)1/p

.

In particular, the distributional derivatives of all f ∈ L p
ω are well defined. Next, we summarize some

properties of Muckenhoupt weights in the following lemma.

Lemma 3.1 [Turesson 2000, Lemma 1.2.12]. Let ω ∈Ap for some p ∈ [1,∞). Then ω ∈Aq for all q ≥ p.
Moreover, there exists s = s(p, Ap(ω)) > 1 such that ω ∈ Ls

loc(R
n) and we have the reverse Hölder

inequality, i.e., (
−

∫
B
ωs dx

)1/s

≤ C(n, Ap(ω)) −

∫
B
ω dx . (3-4)

Further, if p ∈ (1,∞), then there exists σ = σ(p, Ap(ω)) ∈ [1, p) such that ω ∈Aσ . In addition, ω ∈Ap

is equivalent to ω−(p
′
−1)
∈Ap′ .

In the paper, we also use the following improved embedding L p
ω(�) ↪→ Lq

loc(�) valid for all ω ∈Ap

with p ∈ (1,∞) and some q ∈ [1, p) depending only on Ap(ω). Such an embedding can be deduced by a
direct application of Lemma 3.1. Indeed, since ω ∈Ap, we have ω−(p

′
−1)
∈Ap′ . Thus, using Lemma 3.1,
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there exists s = s(Ap(ω)) > 1 such that(
−

∫
B
ω−s(p′−1) dx

)1/s

≤ C(Ap(ω)) −

∫
B
ω−(p

′
−1) dx .

Consequently, for q := sp/(p+ s− 1) ∈ (1, p), we can use the Hölder inequality to deduce that(
−

∫
B
| f |q dx

)1/q

≤

(
−

∫
B
| f |pω dx

)1/p(
−

∫
B
ω−s(p′−1) dx

)1/(sp′)

≤ C(Ap(ω))

(
1

ω(B)

∫
B
| f |pω dx

)1/p

, (3-5)

which implies the desired embedding.
The next result makes another link between the maximal function and Ap-weight.

Lemma 3.2 [Torchinsky 1986, p. 229–230; Turesson 2000, p. 5]. Let f ∈ L1
loc(R

n) be such that M f <∞
almost everywhere in Rn . Then for all α ∈ (0, 1), we have (M f )α ∈A1. Furthermore, for all p ∈ (1,∞)
and all α ∈ (0, 1), there holds (M f )−α(p−1)

∈Ap.

We would also like to point out that the maximum ω1 ∨ω2 and minimum ω1 ∧ω2 of two Ap-weights
are again Ap-weights. For p = 2, we even have A2(ω1∧ω2)≤ A(ω1)+ A2(ω2), which follows from the
simple computation

−

∫
B
ω1 ∧ω2 dx −

∫
B

1
ω1 ∧ω2

dx ≤
[(
−

∫
B
ω1 dx

)
∧

(
−

∫
B
ω2 dx

)]
−

∫
B

1
ω1
+

1
ω2

dx

≤ A2(ω1)+ A2(ω2). (3-6)

3B. Convergence tools. The results recalled in the previous sections shall give us a direct method for
a priori estimates for an approximative problem (1-1). However, to identify the limit correctly, we use
Theorem 2.6, which is based on the following biting lemma.

Lemma 3.3 (Chacon’s biting lemma [Ball and Murat 1989]). Let � be a bounded domain in Rn , and let
{vn
}
∞

n=1 be a bounded sequence in L1(�). Then there exists a nondecreasing sequence of measurable
subsets E j ⊂ � with |� \ E j | → 0 as j →∞ such that {vn

}n∈N is precompact in the weak topology
of L1(E j ), for each j ∈ N.

Note here that precompactness of vn is equivalent to the following: for every j ∈ N and every ε > 0,
there exists a δ > 0 such that for all A ⊂ E j with |A| ≤ δ and all n ∈ N∫

A
|vn
| dx ≤ ε. (3-7)

3C. Lq-theory for linear systems with continuous coefficients. The starting point for getting all a priori
estimates in the paper is the following:

Lemma 3.4 [Dolzmann and Müller 1995, Lemma 2]. Let � be a C1-domain and B ∈ C(�,Rn×N×n×N )

be a continuous, elliptic tensor that satisfies for all η ∈ Rn×N and all x ∈�

c1|η|
2
≤ B(x)η · η ≤ c2|η|

2 (3-8)
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for some c1, c2> 0. Then for any f ∈ Lq(�;Rn×N ) with q ∈ (1,∞), there exists uniquew∈W 1,q
0 (�;RN )

solving
− div(B∇w)=− div f in �

in the sense of distribution. Moreover, there exists a constant C depending only on B, q and the shape
of � such that

‖∇w‖Lq (�) ≤ C(B, q, �)‖ f ‖Lq (�). (3-9)

4. Proof of Theorems 2.1 and 2.3

First, it is evident that Theorem 2.1 directly follows from Theorem 2.3 by setting ω ≡ 1, which is surely
an Ap-weight. Therefore, we focus on the proof of Theorem 2.3. We split the proof into several steps.
We start with the uniform estimates, which heavily rely on Theorem 2.5, then provide the existence proof,
for which we use the result of Theorem 2.6, and finally show the uniqueness of the solution, again based
on Theorem 2.5.

4A. Uniform estimates. We start the proof by showing the uniform estimate (2-9) for arbitrary u ∈
W 1,q

0 (�;RN ) with q > 1 solving (2-5). Without loss of generality, we can restrict ourselves to the case
q ∈ (1, 2). First, we consider the case when f ∈ L2

ω(�;R
n×N ) with some weight ω ∈A2. For j ∈N, we

define the auxiliary weight ω j := ω∧ j (1+M |∇u|)q−2. Then it follows from Lemma 3.2 and the fact
that q ∈ (1, 2) that w j ∈A2. Moreover, we have

A2(ω j )≤ A2(ω)+ A2( j (1+M |∇u|)q−2)= A2(ω)+ A2((1+M |∇u|)q−2)≤ C(u, ω)

and also that ∇u, f ∈ L2
ω j
(�;Rn×N ). Next, using (2-5), we see that for all ϕ ∈ C0,1

0 (�;RN )∫
�

Ã(x)∇u · ∇ϕ dx =
∫
�

( f − A(x,∇u)+ Ã(x)∇u) · ∇ϕ dx . (4-1)

Since the right-hand side belongs to L2
ω j
(�;Rn×N ), we can use Theorem 2.5 and the assumptions (1-5)

and (2-2) to get the estimate∫
�

|∇u|2ω j dx ≤ C( Ã, A2(ω j ),�, c1, c2)

∫
�

| f − A(x,∇u)+ Ã(x)∇u|2ω j dx

≤ C( Ã, u, ω,�, c1, c2)

(∫
�

| f |2ω j dx +
∫
�

|A(x,∇u)− Ã(x)∇u|2ω j dx
)

≤ C( Ã, u, ω,�, c1, c2)

∫
�

(| f |2+ k2)ω j dx

+C( Ã, u, ω,�, c1, c2)

∫
{|∇u|≥k}

|A(x,∇u)− Ã(x)∇u|2

|∇u|2
|∇u|2ω j dx .

Finally, we set

ε2
:=

1

2C( Ã, u, ω,�, c1, c2)
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and according to (2-1) we can find k such that

|A(x,∇u)− Ã(x)∇u|2

|∇u|2
≤

1

2C( Ã, u, ω,�, c1, c2)
,

provided that |∇u| ≥ k. Inserting this inequality above, we deduce that∫
�

|∇u|2ω j dx ≤ C( Ã, u, ω,�, c1, c2)

∫
�

(| f |2+ k2)ω j dx +
1
2

∫
�

|∇u|2ω j dx .

Since we already know that ∇u ∈ L2
ω j
(�;Rn×N ) and k is fixed independently of j , we can absorb the

last term into the left-hand side to get∫
�

|∇u|2ω j dx ≤ C( Ã, u, ω,�, c1, c2)

∫
�

(| f |2+ 1)ω j dx .

Next, we let j→∞ in the above inequality. For the right-hand side, we use the fact that ω j ≤ ω, and for
the left-hand side, we use the monotone convergence theorem (notice here that ω j ↗ω since M |∇u|<∞
almost everywhere) to obtain∫

�

|∇u|2ω dx ≤ C( Ã, u, ω,�, c1, c2)

(
1+

∫
�

| f |2ω dx
)
.

Although this estimate is not uniform yet, since the right-hand side still depends on the A2 constant
of (1+ M |∇u|)q−2, it implies that ∇u ∈ L2

ω(�;R
n×N ) for the original weight ω. Therefore, we can

reiterate this procedure; i.e., going back to (4-1) and applying Theorem 2.5, we find that∫
�

|∇u|2ω dx ≤ C( Ã, A2(ω),�, c1, c2)

∫
�

| f − A(x,∇u)+ Ã(x)∇u|2ω dx

≤ C( Ã, A2(ω),�, c1, c2)

∫
�

(| f |2+ k)ω dx

+C( Ã, A2(ω),�, c1, c2)

∫
{|∇u|≥k}

|A(x,∇u)− Ã(x)∇u|2

|∇u|2
|∇u|2ω dx .

Since we already know that ∇u ∈ L2
ω(�;R

n×N ), we can use the same procedure as above and absorb the
last term into the left-hand side to get∫

�

|∇u|2ω dx ≤ C(c1, c2, A2(ω),�, Ã)
(

1+
∫
�

| f |2ω dx
)
. (4-2)

We would like to emphasize that the constant C in (4-2) depends on ω only through its A2-constant.
Therefore, by the miracle of extrapolation [Cruz-Uribe et al. 2006, Theorem 3.1] (see also [Rubio de
Francia 1984]) applied to the couples (∇u, f ), we can extend this estimate valid for all A2-weights to all
Ap-weights. In particular, we find that∫

�

|∇u|pω dx ≤ C(c1, c2, Ap(ω),�, Ã)
(

1+
∫
�

| f |pω dx
)

for all 1< p <∞ and ω ∈Ap,

which is just (2-9) from our claim.
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4B. Existence of a solution. Let f ∈ L p
ω(�;R

n×N ) with some p ∈ (1,∞) and ω ∈ Ap be arbitrary.
Then according to (3-5), there exists some q0 ∈ (1, 2) such that L p

ω(�) ↪→ Lq0(�). Therefore, defining
ω0 := (1+M f )q0−2, we can use Lemma 3.2 to obtain that ω0 ∈A2 and it is evident that f ∈ L2

ω0
(�;Rn×N ).

The construction of the solution is based on a proper approximation of the right-hand-side f and a
limiting procedure. We first extend f outside of � by zero and define f k

:= f χ{| f |<k}. Then f k are
bounded functions, | f k

| ↗ | f | and

f k
→ f strongly in L2

ω0
∩ Lq0(Rn

;Rn×N ). (4-3)

For such an approximative f k , we can use the standard monotone operator theory to find a solution
uk
∈W 1,2

0 (�;RN ) fulfilling∫
�

A(x,∇uk) · ∇ϕ dx =
∫
�

f k
· ∇ϕ dx for all ϕ ∈W 1,2

0 (�;RN ). (4-4)

Hence, we can use the already proven estimate (2-9) to deduce that∫
�

|∇uk
|
2ω0 dx ≤ C(c1, c2, A2(ω0),�, Ã)

(
1+

∫
�

| f k
|
2ω0 dx

)
≤ C(c1, c2, q0, f, A2(ω0), Ã)

(
1+

∫
�

| f |2ω0 dx
)

≤ C(c1, c2, �, Ã, f, ω). (4-5)

Using the estimate (4-5), the reflexivity of the corresponding spaces, the embedding L2
ω0
(�) ↪→ Lq0(�)

and the growth assumption (1-5), we can pass to a subsequence (still denoted by uk) such that

uk ⇀ u weakly in W 1,q0
0 (�;RN ), (4-6)

∇uk ⇀ ∇u weakly in L2
ω0
∩ Lq0(�;Rn×N ), (4-7)

A(x,∇uk) ⇀ A weakly in L2
ω0
∩ Lq0(�;Rn×N ). (4-8)

Next, using (4-5)–(4-7), the weak lower semicontinuity and the unique identification of the limit u
in W 1,1(�), we obtain∫

�

|∇u|2ω0 dx ≤ C(c1, c2, A2(ω0),�, Ã)
(

1+
∫
�

| f |2ω0 dx
)
. (4-9)

The last step is to show that u is a solution to our problem, i.e., that it satisfies (2-5). Using (4-4), (4-3)
and (4-8), it follows that∫

�

A · ∇ϕ dx =
∫
�

f · ∇ϕ dx for all ϕ ∈ C0,1
0 (�;RN ). (4-10)

Hence, to complete the existence part of the proof of Theorem 2.3, it remains to show that

A(x)= A(x,∇u(x)) in �. (4-11)
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To do so, we use3 Theorem 2.6. We denote ak
:= ∇uk and bk

:= A(x,∇uk). By using (4-5) and (1-5),
we find that (2-14) is satisfied with the weight ω0. Also the assumption (2-15) holds, which follows
from (4-3), (4-4) and (4-10). Finally, (2-16) is valid trivially since ak is a gradient. Therefore, Theorem 2.6
can be applied, which implies the existence of a nondecreasing sequence of measurable sets E j such that
|� \ E j | → 0 and

A(x,∇uk) · ∇ukω0 ⇀ A · ∇uω0 weakly in L1(E j ). (4-12)

For any B ∈ L2
ω0
(�;Rn×N ), we have that Bω0 and also A( · , B)ω0 belong to L2

1/ω0
(�;Rn×N ), and

therefore using (4-7) and (4-8), we can observe that

(A(x,∇uk)− A(x, B)) · (∇uk
− B)ω0 ⇀ (A− A(x, B)) · (∇u− B)ω0 weakly in L1(E j ). (4-13)

Due to the monotonicity of A, we see that the term on the left-hand side is nonnegative and consequently
its weak limit is nonnegative as well and we have that∫

E j

(A− A(x, B)) · (∇u− B)ω0 dx ≥ 0 for all B ∈ L2
ω0
(�;Rn×N ) and all j ∈ N. (4-14)

Therefore, it follows that∫
�

(A− A(x, B)) · (∇u− B)ω0 dx ≥
∫
�\E j

(A− A(x, B)) · (∇u− B)ω0 dx,

and letting j→∞ (note that the integral is well defined due to (4-7) and (4-8)) and using the fact that
|� \ E j | → 0 as j→∞ and the Lebesgue dominated convergence theorem, we obtain∫

�

(A− A(x, B)) · (∇u− B)ω0 dx ≥ 0 for all B ∈ L2
ω0
(�;Rn×N ).

Hence, setting B := ∇u− εG where G ∈ L∞(�;Rn×N ) is arbitrary and dividing by ε, we get∫
�

(A− A(x,∇u− εG)) ·Gω0 dx ≥ 0 for all G ∈ L∞(�;Rn×N ).

Finally, using the Lebesgue dominated convergence theorem, the assumption (1-5) and the continuity
of A with respect to the second variable, we can let ε→ 0+ to deduce∫

�

(A− A(x,∇u)) ·Gω0 dx ≥ 0 for all G ∈ L∞(�;Rn×N ).

Since ω0 is strictly positive almost everywhere in �, the relation (4-11) easily follows by setting, e.g.,

G := −
A− A(x,∇u)

1+ |A− A(x,∇u)|
.

Thus, (4-10) follows and u is a very weak solution.

3Although Theorem 2.6 is formulated for vector-valued functions, it is an easy extension to use it also for matrix-valued
functions, which is the case here.
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4C. Uniqueness. Let u1, u2 ∈W 1,q
0 (�;RN ) with q > 1 be two very weak solutions to (2-5) for some

given f ∈ L p
ω(�;R

n×N ), where p ∈ (1,∞) and ω ∈Ap. Then it directly follows that∫
�

(A(x,∇u1)− A(x,∇u2)) · ∇ϕ dx = 0 for all ϕ ∈ C0,1
0 (�;Rn×N ). (4-15)

First, consider the case that f ∈ L2(�;Rn×N ). Then using the result of the previous part, we see that
u1, u2 ∈W 1,2

0 (�;RN ), and therefore due to the growth assumption (1-5), we see that (4-15) is valid for all
ϕ ∈W 1,2

0 (�;RN ). Consequently, the choice ϕ := u1−u2 is admissible, and due to the strict monotonicity
of A, we conclude that ∇u1 =∇u2 almost everywhere in � and due to the zero trace also that u1 = u2.

Thus, it remains to discuss the case f /∈ L2(�;Rn×N ). But since f ∈ L p
ω(�;R

n×N ) with p > 1 and ω
being the Ap-weight, we can deduce that f ∈ L p0(�;Rn×N ) for some p0 > 1; see (3-5). Consequently,
following Lemma 3.2, we can define the A2-weightω0 := (1+M f )p0−2 and we get that f ∈ L2

ω0
(�;Rn×N ).

Therefore, the weighted a priori estimates imply that ∇ui ∈ L2
ω0
(�;Rn×N ) for i = 1, 2. Hence, defining

a new weight wn
:= 1 ∧ (nω0), which is bounded, we also get that for each n the solutions satisfy

∇ui ∈ L2
ωn (�;Rn×N ). Moreover, we have the estimate A2(ω

n)≤ A2(1)+ A2(nω0)= 1+ A2(ω0)≤C( f ).
Hence, rewriting the identity (4-15) into the form∫
�

Ã(x)(∇u1−∇u2) ·∇ϕ dx =
∫
�

(
Ã(x)∇u1− A(x,∇u1)− ( Ã(x)∇u2− A(x,∇u2))

)
·∇ϕ dx, (4-16)

which is valid for all ϕ ∈ C0,1
0 (�;Rn×N ), we can use Theorem 2.5 to obtain∫

�

|∇u1−∇u2|
2ωn dx ≤ C

∫
�

| Ã(x)∇u1− A(x,∇u1)− ( Ã(x)∇u2− A(x,∇u2))|
2ωn dx (4-17)

with some constant C independent of n. Moreover, due to the properties of the solution and ωn , we can
deduce that the integral appearing on the right-hand side is finite. In order to continue, we first recall the
following algebraic result, whose proof can be found at the end of this subsection.

Lemma 4.1. Let A fulfill (1-4), (1-5), (2-1) and (2-4). Then for every δ > 0, there exists C such that for
all x ∈� and all η1, η2 ∈ Rn×N

|A(x, η1)− A(x, η2)− Ã(x)(η1− η2)| ≤ δ|η1− η2| +C(δ). (4-18)

Next, using the estimate (4-18) in (4-17), we find that for all δ > 0∫
�

|∇u1−∇u2|
2ωn dx ≤ C

∫
�

δ|∇u1−∇u2|
2ωn
+C(δ)ωn dx . (4-19)

Thus, setting δ := 1/(2C), we can deduce that∫
�

|∇u1−∇u2|
2ωn dx ≤ C(δ)

∫
�

ωn dx ≤ C, (4-20)

where the last inequality follows from the fact that � is bounded and ωn
≤ 1. Hence, letting n→∞ in

(4-20), using that ωn
↗ 1 (which follows from the fact that ω0 > 0 almost everywhere) and using the
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monotone convergence theorem, we find that∫
�

|∇u1−∇u2|
2 dx ≤ C.

Hence, we see that u1− u2 ∈W 1,2
0 (�;RN ). In addition, using (4-18) again,∫

�

|A(x,∇u1)− A(x,∇u2)|
2 dx

≤ 2
∫
�

|A(x,∇u1)− Ã(x)∇u1− A(x,∇u2)+ Ã(x)∇u2|
2 dx + 2

∫
�

| Ã(x)∇u1− Ã(x)∇u2|
2 dx

≤ C
(

1+
∫
�

|∇u1−∇u2|
2 dx

)
≤ C.

Therefore, (4-15) holds for all ϕ ∈W 1,2
0 (�;Rn×N ) and consequently also for ϕ := u1− u2 and the strict

monotonicity finishes the proof of the uniqueness. It remains to prove Lemma 4.1.

Proof of Lemma 4.1. Let δ be given and fixed. According to (2-1) and (2-4), we can find k > 0 (depending
on δ) such that for all x ∈� and all |η| ≥ k

|A(x, η)− Ã(x)η|
|η|

+

∣∣∣∣∂A(x, η)
∂η

− Ã(x)
∣∣∣∣≤ δ4 . (4-21)

To prove (4-18), we shall discus all possible cases of values η1 and η2. Recall here that δ and k are already
fixed.

The case |η1| ≤ 2k and |η2| ≤ 2k. In this case, we can simply use (1-5) to show that

|A(x, η1)− A(x, η2)− Ã(x)(η1− η2)| ≤ C(1+ |η1| + |η2|)≤ C(1+ 4k)

and (4-18) follows.

The case |η1| ≤ 2k and |η2|> 2k. In this case, we again use (1-5), which combined with (4-21) leads to

|A(x, η1)− A(x, η2)− Ã(x)(η1− η2)| ≤ C(1+ |η1|)+

∣∣∣∣ Ã(x)η2− A(x, η2)

|η2|

∣∣∣∣|η2| ≤ C(1+ 2k)+
δ|η2|

2

≤ C(1+ 2k+ |η1|)+
δ|η2− η1|

2
≤ C(1+ 4k)+ δ|η2− η1|.

Therefore, (4-18) holds. Moreover, the case |η1| ≥ 2k and |η2| ≤ 2k is treated similarly.

The case |η1|> 2k and |η2|> 2k. First, let us also assume that

|η2| ≤ 2|η1− η2| and |η1| ≤ 2|η1− η2|. (4-22)

In this setting, we use (4-21) to conclude

|A(x, η1)− A(x, η2)− Ã(x)(η1− η2)| ≤

∣∣∣∣ Ã(x)η1− A(x, η1)

|η1|

∣∣∣∣|η1| +

∣∣∣∣ Ã(x)η2− A(x, η2)

|η2|

∣∣∣∣|η2|

≤
δ

4
(|η1| + |η2|)≤ δ|η1− η2|,
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which again directly implies (4-18). Finally, it remains to discuss the case when at least one of the
inequalities in (4-22) does not hold. For simplicity, we consider only the case when |η1| > 2|η1− η2|

since the second case can be treated similarly. First of all, using the assumption on η1 and η2, we deduce
that for all t ∈ [0, 1]

|tη2+ (1− t)η1| = |η1− t (η1− η2)| ≥ |η1| − t |η1− η2| ≥ |η1| − |η1− η2| ≥
|η1|

2
≥ k.

Hence, since any convex combination of η1 and η2 is outside of the ball or radius k, we can use the
assumption (4-21) to conclude

|A(x, η2)− A(x, η1)− Ã(x)(η2− η1)|

=

∣∣∣∣∫ 1

0

d
dt

(
A(x, tη2+ (1− t)η1)− Ã(x)(tη2+ (1− t)η1)

)
dt
∣∣∣∣

=

∣∣∣∣∫ 1

0

(
∂A(x, tη2+ (1− t)η1)

∂(tη2+ (1− t)η1)
− Ã(x)

)
(η2− η1) dt

∣∣∣∣≤ ∫ 1

0

δ

4
|η2− η1| dt ≤ δ|η2− η1|

and (4-18) follows. �

5. Proof of Theorem 2.5

We start the proof by getting the a priori estimate in the standard nonweighted Lebesgue spaces, which is
available due to Lemma 3.4. Let us fix a ball Q0 such that�⊂Q0. Since ω∈Ap, we can use (3-5) to show
that for some q̃ > 1 we have L p

ω(Q0) ↪→ L q̃(Q0). Thus, f ∈ L p
ω(�;R

n×N ) implies that f ∈ L q̃(�;Rn×N ).
The starting point of further analysis is the use of Lemma 3.4, which leads to the existence of a unique
solution u ∈W 1,q̃

0 (�;RN ) to (2-12) with the a priori bound(∫
�

|∇u|q̃ dx
)1/q̃

≤ C(A, q̃, �)
(∫

�

| f |q̃ dx
)1/q̃

.

Consequently, using (3-5), we deduce(
1
|Q0|

∫
�

|∇u|q̃ dx
)1/q̃

≤ C(A, p, �,Ap(ω))

(
1

ω(Q0)

∫
�

| f |pω dx
)1/p

. (5-1)

It remains to prove the a priori estimate (2-13). We divide the proof into several steps. In the first one, we
shall prove the local (in �) estimates. Then we extend such a result up to the boundary, and finally we
combine them to get Theorem 2.5.

5A. Interior estimates. This part is devoted to the estimates that are local in �; i.e., we shall prove the
following:

Lemma 5.1. Let B ⊂Rn be a ball, ω ∈Ap arbitrary with some p ∈ (1,∞) and A ∈ L∞(2B;Rn×N×n×N )

arbitrary satisfying

c1|η|
2
≤ A(x)η · η ≤ c2|η|

2 for all x ∈ 2B and all η ∈ Rn×N .
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Then there exists δ > 0 depending only on p, c1, c2 and Ap(ω) such that, if

|A(x)− A(y)| ≤ δ for all x, y ∈ 2B,

then for arbitrary f ∈ L p
ω(2B;Rn×N ) and u ∈W 1,q̃(2B;RN ) with some q̃ > 1 satisfying∫

2B
A(x)∇u(x) · ∇ϕ(x) dx =

∫
2B

f (x) · ∇ϕ(x) dx for all ϕ ∈ C0,1
0 (2B;RN ),

the following holds:(
−

∫
B
|∇u|pω dx

)1/p

≤ C
(
−

∫
2B
| f |pω dx

)1/p

+C
(
−

∫
2B
ω dx

)1/p(
−

∫
2B
|∇u|q̃ dx

)1/q̃

, (5-2)

where the constant C depends only on p, c1, c2 and Ap(ω).

Proof. First, we introduce some more notation. For ω, we denote ω(S) :=
∫

S ω dx . Next, using Lemma 3.1,
we can find q ∈ (1, q̃) such that ω ∈ Ap/q . Note here that u ∈ W 1,q(2B;RN ), which follows from the
fact that 2B is bounded. In what follows, we fix such q and introduce the centered maximal operator
with power q

(Mq(g))(x) := sup
r>0

(
−

∫
Br (x)
|g|q dy

)1/q

.

Since Mq(g)= (M(|g|q))1/q , we see from the definition and the choice of q (which leads to ω∈Ap/q(R
n))

that the operator Mq is bounded in L p
ω(R

n). We shall also use the restricted maximal operator

(M<ρ
q (g))(x)= sup

ρ≥r>0

(
−

∫
Br (x)
|g|q dy

)1/q

,

and it directly follows that for every Lebesgue point x of g

|g(x)| ≤ (M<ρ
q (g))(x)≤ (Mq(g))(x).

The inequality (5-2) will be proven using the proper estimates on the level sets for |∇u| defined through

Oλ := {x ∈ Rn
;Mq(χ2B∇u)(x) > λ}.

Please observe that Oλ are open. Next, we use the Calderón–Zygmund decomposition. Thus, for fixed
λ > 0 and x ∈ B ∩ Qλ, using the continuity of the integral with respect to the integration domain, we can
find a ball Qrx (x) such that

λq < −

∫
Qrx (x)
|χ2B∇u|q dx ≤ 2λq and −

∫
Qr (x)
|χ2B∇u|q dx ≤ 2λq for all r ≥ rx . (5-3)

Next, using the Besicovich covering theorem, we can extract a countable subset Qi := Qri (xi ) such that
the Qi have finite intersection, i.e., there exists a constant C depending only on n such that for all i ∈ N

#{ j ∈ N; Qi ∩ Q j 6=∅} ≤ C.
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In addition, it follows from the construction that

Oλ ∩ B =
⋃
i∈N

(Qi ∩ B). (5-4)

Then we set

3 :=

(
−

∫
2B
|∇u|q dx

)1/q

,

and it directly follows that for any Q ⊂ Rn(
−

∫
Q
|χ2B∇u|q dx

)1/q

≤

(
|2B|
|Q|

)1/q

3.

Consequently, assuming that λ≥ 22n3, we can deduce for every Qi that

22n3≤ λ <

(
−

∫
Qi

|χ2B∇u|qdx
)1/q

≤

(
|2B|
|Qi |

)1/q

3= 22n/q
(
|B|
|2Qi |

)1/q

3.

Since q ≥ 1, this inequality directly leads to |2Qi | ≤ |B|. Therefore, using the fact that Qi = Qri (xi )

with some xi ∈ B, we observe that 2Qi ⊂ 2B. Moreover, it is evident that for some constant C depending
only on the dimension n

|Qi | ≤ C(n)|Qi ∩ B|. (5-5)

Since ω ∈Ap, the above relation implies (see, e.g., [Stein 1993, §V.1.7])

ω(Qi )≤ C(n, Ap(ω))ω(Qi ∩ B). (5-6)

Next, for arbitrary ε > 0 and k ≥ 1, we introduce the redistributional set

Uλ
ε,k := Okλ ∩ {x ∈ Rn

;Mq( f χ2B)(x)≤ ελ}.

Finally, we shall assume the following (recall that δ comes from the assumption of Lemma 5.1):

there exists k ≥ 1 depending only on c1, c2, n, p,
and Ap(ω) such that for all ε∈(0, 1) and all λ≥22n

3
|Qi∩Uλ

ε,k∩B|≤C(c1,c2,n)(ε+δ)|Qi |. (5-7)

We postpone the proof of (5-7) and continue assuming that it holds true with fixed k such that (5-7)
is valid. Hence, using (5-7), the Hölder inequality and the reverse Hölder inequality (which follows for
Ap-weights from (3-4)) and (5-6), we obtain for some r > 1 depending only on n, p and Ap(ω)

ω(Qi ∩Uλ
ε,k ∩ B)≤ C(n)|Qi |

(
−

∫
Qi

ωr dx
)1/r( |Qi ∩Uλ

ε,k ∩ B|

|Qi |

)1/r ′

≤ C(n, p, Ap(ω), c1, c2)(ε+ δ)
1/r ′ω(Qi )≤ C(n, p, Ap(ω), c1, c2)(ε+ δ)

1/r ′ω(Qi ∩ B).

By using the finite intersection property of the Qi , we find

ω(Uλ
ε,k ∩ B)≤ C(n, Ap(ω), c1, c2)(ε+ δ)

1/r ′ω(Oλ ∩ B). (5-8)
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Finally, using the Fubini theorem, we obtain∫
B
|∇u|pω dx = p

∫
∞

0
ω({(∇u)χB > λ})λ

p−1 dλ≤3pω(B)+ p
∫
∞

3

λp−1ω(Oλ ∩ B) dλ. (5-9)

Therefore, to get the estimate (5-2), we need to estimate the last term on the right-hand side. To do so,
we use the definition of Uλ

ε,k and the substitution theorem, which leads for all m > k3 to∫ m

k3
λp−1ω(Oλ ∩ B) dλ≤

∫ m

k3
λp−1ω(Uλ/k

ε,k ∩ B) dλ+
∫ m

k3
λp−1ω

({
Mq( f χ2B) > ε

λ

k

})
dλ

(5-8)
≤ C(ε+ δ)1/r

′

∫ m

k3
λp−1ω(Oλ/k ∩ B) dλ+

k p

pε p

∫
Rn
|Mq( f χ2B)|

pω dx

≤ C(p, q, ε, Ap(ω))

∫
2B
| f |pω dx +Ck p(ε+ δ)1/r

′

∫ m/k

3

λp−1ω(Oλ ∩ B) dλ

≤ C(p, q, ε, Ap(ω))

∫
2B
| f |pω dx +Ck p(ε+ δ)1/r

′

∫ k3

3

λp−1ω(Oλ ∩ B) dλ

+Ck p(ε+ δ)1/r
′

∫ m

k3
λp−1ω(Oλ ∩ B) dλ,

where we used the fact that ω ∈ Ap/q . Finally, assuming (note that k is already fixed by (5-7), and at
this point, we fix the maximal value of δ arising in the assumption of Lemma 5.1) that δ is so small
that Ck pδ1/r ′

≤
1
8 , we can find ε ∈ (0, 1) such that Ck p(ε+ δ)1/r

′

≤
1
2 . Consequently, we absorb the last

term into the left-hand side, and letting m→∞, we find that∫
∞

k3
λp−1ω(Oλ ∩ B) dλ≤ C(k, p, q, Ap(ω))

(∫
2B
| f |pω dx +3pω(B)

)
.

Substituting this into (5-9), we find (5-2). To finish the proof, it remains to find k ≥ 1 such that (5-7)
holds.

Hence, assume that Qi ∩ B ∩Uλ
ε,k 6=∅. Then it follows from the definition of Uλ

ε,k that(
−

∫
2Qi

| f |q dx
)1/q

≤ 2nελ. (5-10)

For λ≥ 22n3 (which implies 2Qi ⊂ 2B), we compare the original problem with

− div(Ai∇h)= 0 in 2Qi ,

h = u on ∂(2Qi ),
(5-11)

where the matrix Ai is defined as Ai := A(xi ). Lemma 3.4 ensures the existence of such a solution (just
consider u− h with zero boundary data). Moreover, the matrix Ai is constant and elliptic and therefore
we have the local L∞− L1 estimate for h, i.e.,

sup
(3/2)Qi

|∇h| ≤ C −
∫

2Qi

|∇h| dx, (5-12)
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where the constant C depends only on n, c1 and c2. Further, since u solves our original problem, we find

− div(Ai∇(u− h))=− div((A− Ai )∇u− f ) in 2Qi ,

u− h = 0 on ∂2Qi .

Therefore, we can use Lemma 3.4 to observe

−

∫
2Qi

|∇(u− h)|q dx ≤ C −
∫

2Qi

|A− Ai |
q
|∇u|q dx +C −

∫
2Qi

| f |q dx ≤ C(εq
+ δq)λq , (5-13)

where for the second inequality we used (5-3), (5-10) and the assumption that |A(x)− A(y)| ≤ δ for
all x, y ∈ B. Then using the definition of Qi , we see that, for all y ∈ Qi and all r > ri/2, we have that
Br (y)⊂ B3r (xi ) and Qi ⊂ B3r (xi ). Consequently,

−

∫
Br (y)
|χ2B∇u|q dx ≤ 3n

−

∫
B3r (xi )

|χ2B∇u|q dx ≤ 6nλq ,

where we used (5-3). Choosing k ≥ 6n and assuming that ε, δ ≤ 1, we get by the previous estimate,
the sublinearity of the maximal operator and the weak Harnack inequality (5-12) that for all x ∈ Qi ∩

{Mq(∇u) > kλ}

Mq(∇u)(x)= M<ri/2
q (∇u)(x)≤ M<ri/2

q (∇h)(x)+M<ri/2
q (∇u−∇h)(x)

≤ C
(
−

∫
2Qi

|∇h|q dx
)1/q

+M<ri/2
q (∇u−∇h)(x)≤ Cλ+M<ri/2

q (∇u−∇h)(x).

Hence, setting k :=max{C + 1, 6n
}, we can use the weak Lq -estimate for the maximal functions and the

estimate (5-13) to conclude

|{Mq(∇u) > kλ} ∩ Qi | ≤ |{M<ri/2
q (∇u−∇h)≥ λ} ∩ Qi | ≤

C
λq

∫
2Qi

|∇(u− h)|q dx

≤ C(ε+ δ)|Qi |,

which finishes the proof of (5-7) and Lemma 5.1. �

5B. Estimates near the boundary. In this part, we generalize the result from the previous paragraph and
extend its validity also to the neighborhood of the boundary.

Lemma 5.2. Let �⊂ Rn be a domain with C1 boundary, ω ∈Ap be arbitrary with some p ∈ (1,∞) and
A ∈ L∞(�;Rn×N×n×N ) be arbitrary satisfying

c1|η|
2
≤ A(x)η · η ≤ c2|η|

2 for all x ∈ 2B and all η ∈ Rn×N .

Then there exists r∗ > 0 and δ > 0 depending only on �, p, c1, c2 and Ap(ω) such that, if

sup
x,y∈�;|x−y|≤r∗

|A(x)− A(y)| ≤ δ,
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then for arbitrary f ∈ L p
ω(�;R

n×N ) and u ∈W 1,q̃
0 (�;RN ) with some q̃ > 1 satisfying∫

�

A∇u · ∇ϕ dx =
∫
�

f · ∇ϕ dx for all ϕ ∈ C0,1
0 (�;RN ), (5-14)

we have for all x0 ∈� and all r ≤ r∗ the estimate

−

∫
Br (x0)∩�

|∇u|pω dx ≤ −
∫

B2r (x0)∩�

C | f |pω dx + −
∫

B2r (x0)∩�

ω dx
(
−

∫
B2r (x0)∩�

C |∇u|q̃ dx
)p/q̃

. (5-15)

First notice that in case B2r (x0)⊂� the inequality (5-15) follows from Lemma 5.1. Therefore, we
focus only on the behavior near the boundary. Hence, let x0 ∈ ∂� be arbitrary. Since � ∈ C1, we know
that there exist α, β > 0 and r0 > 0 such that (after a possible change of coordinates)

B+r0
:= {(x ′, xn); |x ′|< α, a(x ′)−β < xn < a(x ′)} ⊂�,

B−r0
:= {(x ′, xn); |x ′|< α, a(x ′) < xn < a(x ′)+β} ⊂�c.

Here, we abbreviated (x1, . . . , xn) := (x ′, xn). Moreover, we know that for all r ≤ r0/2 it holds that
B2r (x0)∩� ⊂ B+r0

and B2r (x0)∩�
c
⊂ B−r0

. In addition, we have a ∈ C1([−α, α]n−1) and ∇a(0) ≡ 0.
For later purposes, we also denote

Br0 := B+r0
∪ B−r0

∪ {(x, xn); |x ′|< α, a(x ′)= xn}

and define a mapping T : B+r0
→ B−r0

as

T (x ′, xn) := (x ′, 2a(x ′)− xn) with J (x) := ∇T (x), i.e., (J (x))i j := ∂x j (T (x))i .

It directly follows from the definition that |det J (x)| ≡ 1 and also that T and T−1 are C1 mappings.
Finally, we extend all quantities into B−r0

as follows:

ũ(x) :=
{

u(x) for x ∈ B+r0
,

−u(T−1(x)) for x ∈ B−r0
,

Ã(x) :=
{

A(x) for x ∈ B+r0
,

J (T−1x)A(T−1x)J T (T−1x) for x ∈ B−r0
,

f̃ (x) :=
{

f (x) for x ∈ B+r0
,

−J (T−1x) f (T−1(x)) for x ∈ B−r0
,

ω̃(x) :=
{
ω(x) for x ∈ B+r0

,

ω(T−1(x)) for x ∈ B−r0
.

It also directly follows from the definition and the fact that u has zero trace on ∂� that ũ ∈W 1,q(Br0;R
N ).

Finally, we show that for all ϕ ∈ C0,1
0 (Br0;R

N ) the following identity holds:∫
Br0

Ã∇ũ · ∇ϕ dx =
∫

Br0

f̃ · ∇ϕ dx . (5-16)
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For this, we observe that for any ϕ ∈ C0,1
0 (B−r0

;RN ) and ϕ̂ := ϕ ◦ T ∈ C0,1
0 (B+r0

;RN )∫
B−r0

( Ã∇ũ− f̃ ) · ∇ϕ dx =
∫

B−r0

(
Ãµνi j (x)

∂ ũν(x)
∂x j

− f̃ µi (x)
)
∂ϕµ(x)
∂xi

dx

=

∫
B−r0

(
− Ãµνi j (x)

∂(uν(T−1x))
∂x j

− f̃ µi (x)
)
∂(ϕ̂µ(T−1(x)))

∂xi
dx

=

∫
B−r0

(
− Ãµνi j (x)

∂uν(T−1x)
∂(T−1(x))k

J−1
k j (T

−1(x))− f̃ µi (x)
)
∂ϕ̂µ(T−1(x))
∂(T−1(x))m

J−1
mi (T

−1(x)) dx

=

∫
B+r0

(
− Ãµνi j (T x)

∂uν(x)
∂xk

J−1
k j (x)J

−1
mi (x)− f̃ µi (T x)J−1

mi (x)
)
∂ϕ̂µ(x)
∂xm

dx

=−

∫
B+r0

(A(x)∇u(x)− f (x)) · ∇ϕ̂(x) dx .

In particular, for all ϕ ∈ C0,1
0 (B+r0

;RN )∫
B−r0

( Ã∇ũ− f̃ ) · ∇(ϕ ◦ T−1) dx =−
∫

B+r0

(A∇u− f ) · ∇ϕ dx . (5-17)

Thus, if we define for ϕ ∈ C0,1
0 (Br0;R

N ) the function

ϕ :=

{
ϕ ◦ T−1 on B−r0

,

ϕ on B+r0
,

then ϕ ∈ C0,1
0 (Br0;R

N ) and (5-17) implies∫
Br0

( Ã∇ũ− f̃ ) · ∇ϕ dx = 0.

Therefore,∫
Br0

( Ã∇ũ− f̃ ) · ∇ϕ dx =
∫

Br0

( Ã∇ũ− f̃ ) · ∇(ϕ−ϕ) dx =
∫

B−r0

( Ã∇ũ− f̃ ) · ∇(ϕ−ϕ) dx .

Using (5-17) again, we get∫
Br0

( Ã∇ũ− f̃ ) · ∇ϕ dx =−
∫

B+r0

(A∇u− f ) · ∇((ϕ−ϕ) ◦ T−1) dx .

Since (ϕ−ϕ) ◦ T−1
= 0 on ∂�, we finally deduce with the help of (5-14) that∫

Br0

( Ã∇ũ− f̃ ) · ∇ϕ dx = 0

for all ϕ ∈ C0,1
0 (Br0;R

N ), which proves (5-16).
Consequently, we see that (5-16) holds, and therefore, we shall apply the local result stated in Lemma 5.1.

To do so, we need to check the assumptions. First, the ellipticity of Ã can be shown directly from the
definition and the fact that J is a regular matrix. Moreover, the constant of ellipticity of Ã depends only



1140 MIROSLAV BULÍČEK, LARS DIENING AND SEBASTIAN SCHWARZACHER

on the same constant for A and on the shape of �. Further, to be able to use (5-2), we need to show small
oscillations of Ã. Since T is C1,

sup
x,y∈B−r0

| Ã(x)− Ã(y)| ≤ sup
x,y∈B+r0

|J (x)A(x)J T (x)− J (y)A(y)J T (y)|

≤ C sup
x,y∈B+r0

|A(x)− A(y)| +C sup
x,y∈B+r0

|J (x)− J (y)|.

Similarly, we can also deduce that

sup
x∈B−r0 ,y∈B+r0

| Ã(x)− Ã(y)| ≤ sup
x,y∈B+r0

|J (x)A(x)J T (x)− A(y)|

≤ C sup
x,y∈B+r0

|A(x)− A(y)| +C sup
x∈B+r0

|J (x)A(x)J T (x)− A(x)|

≤ C sup
x,y∈B+r0

|A(x)− A(y)| +C sup
x∈B+r0

|∇a(x ′)|.

Therefore, due to the continuity of J and the fact that ∇a(0)= 0, we see that for any δ > 0 we can find
r∗ > 0 such that

C sup
x,y∈B+r∗

|J (x)− J (y)| +C sup
x∈B+r∗

|∇a(x ′)|<
δ

2
.

Thus, assuming that

sup
x,y∈�;C |x−y|≤r∗

|A(x)− A(y)| ≤
δ

2
,

we can conclude that

sup
x,y∈Br∗

| Ã(x)− Ã(y)| ≤ δ.

We find δ > 0 and fix r∗ such that all assumptions of Lemma 5.1 are satisfied and we consequently have(
−

∫
Br∗ (x0)

|∇ũ|pω̃ dx
)1/p

≤ C
(
−

∫
B2r∗ (x0)

| f̃ |pω̃ dx
)1/p

+C
(
−

∫
B2r∗ (x0)

ω̃ dx
)1/p(

−

∫
B2r∗ (x0)

|∇ũ|q̃ dx
)1/q̃

and (5-15) follows directly.

5C. Global estimates. Finally, we focus on the proof of Theorem 2.5. Recall that the ball Q0 is a superset
of �. Since A is continuous, we can find for any δ > 0 some r∗ such that

sup
x,y∈�;|x−y|≤r∗

|A(x)− A(y)| ≤ δ.

Therefore on any sufficiently small ball, we can use the estimate (5-15). Since � has C1 boundary, we
can find a finite covering of � by balls Bi of radius at most equal to r∗ such that |Bi ∩�| ≥ c|Bi |. Then



VERY WEAK SOLUTIONS TO NONLINEAR ELLIPTIC SYSTEMS 1141

it follows from (5-15) and (5-1) that∫
�

|∇u|pω dx ≤ C
∫
�

| f |pω dx +C
∑

i

ω(2Bi )

|2Bi |
p/q̃

(∫
�

|∇u|q̃ dx
)p/q̃

≤ C
∫
�

| f |pω dx +C(p, q̃, A, �)ω(Q0)

(∫
�

|∇u|q̃ dx
)p/q̃

≤ C(A, �, Ap(ω))

∫
�

| f |pω dx,

which finishes the proof of Theorem 2.5.

6. Proof of Theorem 2.6

We start the proof by observing that (2-14) leads to the estimate∫
�

|ak
· bk
|ω dx ≤

∫
�

|ak
|

pω+ |bk
|

p′ω dx ≤ C.

Consequently, we can use Lemma 3.3 to conclude that there is a nondecreasing sequence of measurable
sets E j ⊂� fulfilling |� \ E j | → 0 as j→∞ such that for any j ∈N and any ε > 0 there exists a δ > 0
such that for each U ⊂ E j fulfilling |U | ≤ δ

sup
k∈N

∫
U
|ak
· bk
|ω dx ≤ sup

k∈N

∫
U
|ak
|

pω+ |bk
|

p′ω dx ≤ ε. (6-1)

Consequently, for any E j , we can extract a subsequence that we do not relabel such that

ak
· bkω⇀ a · bω weakly in L1(E j ), (6-2)

where a · bω denotes in our notation the weak limit. Further, since L p
ω(�) and L p′

ω (�) are reflexive, we
can pass to a (nonrelabeled) subsequence with

ak ⇀ a weakly in L p
ω(�;R

n),

bk ⇀ b weakly in L p′
ω (�;R

n).
(6-3)

Our goal is to show that
a · bω = a · bω almost everywhere in �. (6-4)

Indeed, if this is the case, then it follows that not only a subsequence but the whole sequence fulfills (6-2).
Since ω ∈Ap, we can find by (3-5) some q > 1 such that L p

ω(�) ↪→ Lq(�). This implies

ak ⇀ a weakly in Lq(�;Rn). (6-5)

Moreover, since the mapping g 7→ gω1/s is an isometry from Ls
ω(�) to Ls(�), we also have

akω1/p ⇀ aω1/p weakly in L p(�;Rn), (6-6)

bkω1/p′ ⇀ bω1/p′ weakly in L p′(�;Rn). (6-7)

Then, extending ak by zero outside �, we can introduce dk such that

1dk
= ak in Rn

;
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i.e., we set dk
:= ak

∗G, where G denotes the Green function of the Laplace operator on the whole Rn .
Then, using (6-5), we see that

dk ⇀ d weakly in W 2,q
loc (R

n
;Rn), (6-8)

where

1d = a in Rn.

In addition, using (2-14) and the weighted theory for Laplace equation on Rn [Coifman and Fefferman
1974, p. 244], we can deduce

∇
2dk ⇀ ∇2d weakly in L p

ω(R
n
;Rn×n×n). (6-9)

Hence, to show (6-4), it is enough to check whether

bk
· (ak
−∇ div dk)ω ⇀ b · (a−∇ div d)ω weakly in L1(E j ), (6-10)

bk
· ∇(div dk)ω ⇀ b · ∇(div d)ω weakly in L1(E j ), (6-11)

for all j ∈ N.
First, we focus on (6-10). Assume for a moment that we know

lim
k→∞

∫
�

|ak
− a+∇(div(d − dk))|τ dx = 0 (6-12)

for all nonnegative τ ∈ D(�). Then for any ϕ ∈ L∞(E j ),

lim
k→∞

∫
E j

bk
· (ak
−∇ div dk)ωϕ dx

= lim
k→∞

∫
E j

bk
· (a−∇ div d)ωϕ dx + lim

k→∞

∫
E j

bk
· (ak
− a+∇ div(d − dk))ωϕ dx

(6-7)
=

∫
E j

b · (a−∇ div d)ωϕ dx + lim
k→∞

∫
E j

bk
· (ak
− a+∇ div(d − dk))ωϕ dx

and (6-10) follows provided that the second limit in the above formula vanishes. However, we first notice
that (for a subsequence) (6-12) implies that

bk
· (ak
− a+∇ div(d − dk))ωϕ→ 0 almost everywhere in �. (6-13)

Second, using (6-8) and (6-6), we see that for any U ⊂ E j∫
U
|bk
· (ak
− a+∇ div(d − dk))ωϕ| dx ≤ C‖ϕ‖∞‖ak

− a‖L p
ω(�)

(∫
U
|bk
|

p′ω dx
)1/p′

.

Then the equi-integrability (6-1) also guarantees the equi-integrability of the sequence (6-13), and
consequently, the Vitali theorem leads to

lim
k→∞

∫
E j

bk
· (ak
− a+∇ div(d − dk))ωϕ dx = 0,
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which finishes the proof of (6-10) provided we show (6-12). First, it follows from (2-16) and (6-5) that
for a subsequence that we do not relabel ∂xi a

k
j − ∂x j a

k
i → ∂xi a j − ∂x j ai strongly in (W 1,r

0 (�))∗ for all
i, j = 1, . . . , n. Therefore, by the regularity theory for Poisson’s equation, we find that

∂xi d
k
j − ∂x j d

k
i → ∂xi d j − ∂x j di strongly in W 1,r

loc (�) (6-14)

for all i, j=1, . . . , n and all r ∈[1, q), where q>1 comes from (6-5). Moreover, using the definition of dk ,

ak
j − ∂x j div dk

=

n∑
m=1

∂2
x2

m
dk

j − ∂x j ∂xm dk
m =

n∑
m=1

∂xm (∂xm dk
j − ∂x j d

k
m),

and with the help of (6-14), we see that (6-12) directly follows and the proof of (6-10) is complete.
The rest of this section is devoted to the most difficult part of the proof, which is the validity of (6-11).

For simplicity, we denote ek
:= div dk , and due to (6-8) and (6-9),

ek ⇀ e weakly in W 1,q
loc (R

n), (6-15)

∇ek ⇀ ∇e weakly in L p
ω(R

n
;Rn), (6-16)

where e = div d . Since we are interested only in the convergence result in �, we localize ek by a proper
cutting outside �. To be more precise on the ball B (recall that it is a ball such that �( B), we set

ek
B := ekτ

with τ ∈ D(B) being identically one in �. In addition, we can observe that

ek
B ⇀ eB weakly in W 1,q

0 (B), (6-17)

∇ek
B ⇀ ∇eB weakly in L p

ω(B;R
n). (6-18)

Indeed, the relation (6-17) is a trivial consequence of (6-15), and for the validity of (6-18), it is enough to
show that ∫

B
|∇ek

B |
pω dx ≤ C.

Since |∇ek
B | ≤ C |∇ek

| +C |ek
− (ek)B | +C |(ek)B |, where ek

B denotes the mean value of ek over B, it
follows from (6-15) and (6-16) that we just need to estimate the term involving |ek

− (ek)B |. But using
the pointwise estimate |ek

− (ek)B | ≤ C(B)M(∇ek),∫
B
|ek

B − (e
k)B |

pω dx ≤ C
∫

Rn
|M(∇ek)|pω dx ≤ C Ap(ω)

∫
Rn
|∇ek
|

pω dx ≤ C,

where we used the properties of Ap-weights. Finally, since ek
B ∈W 1,1

0 (B), we can apply the Lipschitz
approximation (Theorem 2.7), which implies that for arbitrary fixed λ > λ0 and for any k we find the
Lipschitz approximation of ek

B on the set B and denote it by ek,λ
B . Then thanks to Theorem 2.7, for any λ,
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we can find a subsequence (that is not relabeled) such that

∇ek,λ
B ⇀∗ ∇eλB weakly∗ in L∞(B;Rn), (6-19)

∇ek,λ
B ⇀ ∇eλB weakly in L p

ω(B;R
n), (6-20)

ek,λ
B → eλB strongly in C(B). (6-21)

Please notice that we do not have any a priori knowledge of how the limit eλB can be found; we just know
that it exists.

In the next step, we identify the weak limit of bk
· ∇ek,λ

B . Due to (6-3) and (6-19), we see that
this sequence is equi-integrable and consequently poses a weakly converging (in the topology of L1)
subsequence. Therefore, to identify it, it is enough to show that for all η ∈ D(�)

lim
k→∞

∫
�

bk
· ∇ek,λ

B η dx =
∫
�

b · ∇eλBη dx .

However, using (2-15), (6-19) and (6-21), we can deduce that

lim
k→∞

∫
�

bk
· ∇ek,λ

B η dx = lim
k→∞

∫
�

bk
· (∇ek,λ

B −∇eλB)η dx +
∫
�

b · ∇eλBη dx =
∫
�

b · ∇eλBη dx

and therefore

bk
· ∇ek,λ

B ⇀ b · ∇eλB weakly in L1(�). (6-22)

Finally, let ϕ ∈ L∞(E j ) be arbitrary and C :=C(‖ϕ‖∞). Then we check the validity of (6-11) as follows:

lim
k→∞

∣∣∣∣∫
E j

(bk
· ∇(div dk)− b · ∇(div d))ωϕ dx

∣∣∣∣= lim
k→∞

∣∣∣∣∫
E j

(bk
· ∇ek

B − b · ∇eB)ωϕ dx
∣∣∣∣

≤ lim
k→∞

∣∣∣∣∫
E j

(bk
· ∇ek,λ

B − b · ∇eλB)ωϕ dx
∣∣∣∣+C lim sup

k→∞

∫
E j

|bk
||∇(ek

B − ek,λ
B )|ω dx

+

∣∣∣∣∫
E j

b · ∇(eB − eλB)ωϕ dx
∣∣∣∣

≤ lim
k→∞

∣∣∣∣∫
E j

(bk
· ∇ek,λ

B − b · ∇eλB)ϕω
1+ εω

dx
∣∣∣∣+C lim sup

k→∞

∣∣∣∣∫
E j

εω2(|bk
||∇ek,λ

B | + |b||∇eλB |)
1+ εω

dx
∣∣∣∣

+C lim sup
k→∞

∫
E j

|bk
||∇(ek

B − ek,λ
B )|ω dx +

∣∣∣∣∫
E j

b · ∇(eB − eλB)ωϕ dx
∣∣∣∣

≤ C lim sup
k→∞

∫
E j

εω2
|bk
||∇ek,λ

B |

1+ εω
+C lim sup

k→∞

∫
E j

|bk
||∇(ek

B − ek,λ
B )|ω dx

+

∣∣∣∣∫
E j

b · ∇(eB − eλB)ωϕ dx
∣∣∣∣+C

∫
E j

εω2
|b||∇eλB |

1+ εω
dx =: (I)+ (II)+ (III)+ (IV), (6-23)
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where the last identity follows from (6-22) since ϕω/(1+ εω) is a bounded function whenever ε > 0. In
the next step, we show that all terms on the right-hand side vanish when we let ε→ 0+ and λ→∞. To
do so, we first observe that thanks to Theorem 2.7 and the weak lower semicontinuity

∇ek,λ
B ⇀ ∇eλB weakly in L p

ω(�;R
n), (6-24)

ek,λ
B ⇀ eλB weakly in W 1,q(�), (6-25)∫

�

|∇eλB |
q
+ |∇eλB |

pω dx ≤ C lim inf
k→∞

∫
B
|∇ek

B |
q
+ |∇ek

B |
pω dx ≤ C . (6-26)

Therefore, applying the Hölder inequality, we have the estimate

∫
E j

|b||∇eλB |ω dx ≤ C.

Consequently, using the Lebesgue dominated convergence theorem (and also the fact that ω is finite
almost everywhere), we deduce

lim
ε→0+

(IV)= C lim
ε→0+

∫
E j

|b||∇eλB |
εω2

1+ εω
dx = 0. (6-27)

For the second term involving ε the key property is the uniform equi-integrability of bk stated in (6-1).
Indeed, applying the Hölder inequality and (6-26) we have

lim
ε→0+

(I)= C lim sup
ε→0+

lim sup
k→∞

∫
E j

|bk
||∇ek,λ

B |
εω2
|ϕ|

1+ εω
dx

≤ C lim sup
ε→0+

lim sup
k→∞

(∫
E j

|bk
|

p′ω
εω

1+ εω
dx
)1/p′(∫

E j

|∇ek,λ
B |

pω dx
)1/p

≤ C lim sup
ε→0+

lim sup
k→∞

(∫
E j∩{ω>λ}

|bk
|

p′ω
εω

1+ εω
dx
)1/p′

+C lim sup
ε→0+

lim sup
k→∞

(∫
E j∩{ω≤λ}

|bk
|

p′ω
εω

1+ εω
dx
)1/p′

≤ C lim sup
k→∞

(∫
E j∩{ω>λ}

|bk
|

p′ω dx
)1/p′

.

Since |{ω > λ}| ≤ C/λ, we can use (6-1) and let λ→∞ in the last inequality to deduce

lim sup
λ→∞

lim sup
ε→0+

lim sup
k→∞

∫
E j

|bk
||∇ek,λ

B |
εω2
|ϕ|

1+ εω
dx = 0. (6-28)
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Next, we let λ→∞ in all remaining terms on the right-hand side of (6-23). Using (2-22) and the Hölder
inequality,

lim sup
λ→∞

(II)= C lim sup
λ→∞

lim sup
k→∞

∫
E j

|bk
||∇(ek

B − ek,λ
B )|ω dx

= C lim sup
λ→∞

lim sup
k→∞

∫
E j∩{M(∇ek

B)>λ}

|bk
||∇(ek

B − ek,λ
B )|ω dx

≤ C lim sup
λ→∞

lim sup
k→∞

(∫
E j∩{M(∇ek

B)>λ}

|bk
|

p′ω dx
)1/p′

= 0, (6-29)

where the last inequality follows from the fact that |{M(∇ek
B) > λ}| ≤ C/λ and (6-1). Finally, we are left

to show

lim
λ→∞

(III)= lim
λ→∞

∣∣∣∣∫
E j

b · ∇(eB − eλB)ωϕ dx
∣∣∣∣= 0. (6-30)

However, to get (6-30), it is enough to show that

∇eλB ⇀ ∇eB weakly in L p
ω(�;R

n).

Due to (6-26), we however have that there is some eB ∈W 1,q(�) such that

eλB ⇀ eB weakly in W 1,q(�),

∇eλB ⇀ ∇eB weakly in L p
ω(�;R

n).

Hence, due to the uniqueness of the weak limit, it is enough to check that eB = eB . To do so, we use the
compact embedding W 1,1(�) ↪→↪→ L1(�) to get

‖eB − eB‖1 = lim
λ→∞

∫
�

|eλB − eB | dx = lim
λ→∞

lim
k→∞

∫
�

|ek,λ
B − ek

B | dx

= lim
λ→∞

lim
k→∞

∫
�∩{M(∇ek

B)>λ}

|ek,λ
B − ek

B | dx

≤ lim
λ→∞

lim
k→∞
‖ek,λ

B − ek
B‖q |�∩ {M(∇ek

B) > λ}|
1/q ′
≤ C lim

λ→∞
λ−1/q ′

= 0,

and consequently (6-30) holds. Hence, using (6-27)–(6-30) in (6-23), we deduce (6-11) and the proof is
complete.

7. Proof of Theorem 2.7

This part of the paper is devoted to the proof of Theorem 2.7. All statements except (2-22) are already
contained in [Diening et al. 2013, Theorem 13] (see also [Diening 2013] for a survey on the Lipschitz
truncation). The first inequality of (2-22) follows directly from the second one, so it is enough to prove
the second estimate.

It follows from (2-20) and (2-21) that

‖∇(g− gλ)‖L p
ω
≤ ‖∇(g− gλ)χ{M(∇g)>λ}‖L p

ω

≤ ‖∇gχ{M(∇g)>λ}‖L p
ω
+ c‖λχ{M(∇g)>λ}‖L p

ω
.
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We need to control the second term in the last estimate. Let us consider the open set {M(∇g) > λ}. For
every x ∈ {M(∇g) > λ}, there exists a ball Br(x)(x) with

λ < −

∫
Br (x)
|∇g| dx ≤ 2λ. (7-1)

These balls cover {M(∇g) > λ}. Next, using the Besicovich covering theorem, we can extract from this
cover a countable subset Bi that is locally finite, i.e.,

#{ j ∈ N; Bi ∩ B j 6=∅} ≤ C(n). (7-2)

Using (7-1) and (7-2), we have the estimate

‖λχ{M(∇g)>λ}‖
p
L p
ω
= λpω({M(∇g) > λ})≤

∑
i

λpω(Bi )

≤

∑
i

(
−

∫
Bi

|∇g| dx
)p

ω(Bi )≤
∑

i

−

∫
Bi

|∇g|pω dx
(
−

∫
Bi

ω−(p
′
−1) dx

)1/(p′−1)

ω(Bi )

≤Ap(ω)
∑

i

∫
Bi

|∇g|pω dx ≤ C(n)Ap(ω)

∫
{M(∇g)>λ}

|∇g|pω dx .

This directly leads to the inequality

‖λχ{M(∇g)>λ}‖L p
ω
≤ C(n)Ap(ω)

1/p
‖∇gχ{M(∇g)>λ}‖L p

ω
,

which proves the desired estimate (2-22).

8. Proof of Theorem 2.8

We present only a sketch of the proof here since all steps were already justified in the proof of Theorem 2.3.
Hence, to obtain the a priori estimate (2-23), we observe that∫

�

Ã(x)(∇u−∇u0) · ∇ϕ dx =
∫
�

(
f − Ã(x)∇u0+ Ã(x)∇u− A(x,∇u)

)
· ∇ϕ dx,

which by the use of Theorem 2.5 (note here that u− u0 has zero trace) and (2-1) leads to∫
�

|∇u−∇u0|
pω dx ≤ C

∫
�

(
| f |p + |∇u0|

p
+ | Ã(x)∇u− A(x,∇u)|p

)
ω dx

≤ C(ε)
∫
�

(| f |p + |∇u0|
p
+ 1)ω dx + ε

∫
�

|∇u|pω dx .

Consequently, choosing ε small enough and using the triangle inequality, we find (2-9). The existence is
then identically the same; we just also need to approximate u0 by a sequence of smooth functions such that

uk
0→ u0 strongly in W 1,q̃(�;RN ).
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Finally, for the uniqueness proof, we use a similar procedure and see that if u1 and u2 are two solutions then∫
�

Ã(x)(∇u1−∇u2) · ∇ϕ dx =
∫
�

(
Ã(x)(∇u1−∇u2)+ A(x,∇u1)− A(x,∇u2)

)
· ∇ϕ dx,

and since u1− u2 ∈W 1,q̃
0 (�;RN ), we may now follow step by step the proof of Theorem 2.3.

9. Proofs of corollaries

Proof of Corollary 2.2. The proof of Corollary 2.2 is rather straightforward. Indeed, for a given measure
f ∈M(�;RN ), we can use the classical theory and find v ∈W 1,n′−ε

0 (�;RN ) for all ε > 0 solving∫
�

∇v · ∇ϕ dx = 〈 f, ϕ〉 for all ϕ ∈ C0,1
0 (�;RN ).

Then it follows that u is a solution to (2-7) if and only if it solves∫
�

A(x,∇u) · ∇ϕ dx =
∫
�

∇v · ∇ϕ dx for all ϕ ∈ C0,1
0 (�;RN ). (9-1)

Thus, we can now apply Theorem 2.1 with f := ∇v and all statements in Corollary 2.2 directly follow. �

Proof of Corollary 2.4. We show that Corollary 2.4 can be directly proved by using Theorem 2.3. Indeed,
by setting

ω := (1+M f )q−2
= (M(1+ | f |))q−2,

where we extended f by zero outside �, we can use Lemma 3.2 to deduce that ω ∈ A2 provided that
|q − 2|< 1. Since q ∈ (1, 2), we always have |q − 2|< 1 and therefore ω ∈A2. Consequently, we can
construct a solution u according to Theorem 2.3. Next, using (2-9) and the continuity of the maximal
function, we can deduce∫

�

|∇u|2

(1+M f )2−q dx =
∫
�

|∇u|2ω dx ≤ C(A2(ω),�)

(
1+

∫
�

| f |2ω dx
)

= C(A2(ω),�)

(
1+

∫
�

| f |2

(1+M f )2−q dx
)

≤ C(A2(ω),�)

(
1+

∫
�

(M f )q dx
)
≤ C( f, �, q)

(
1+

∫
�

| f |q dx
)
,

which is nothing else than (2-10). �
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