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BOUNDED SOLUTIONS TO THE ALLEN–CAHN EQUATION
WITH LEVEL SETS OF ANY COMPACT TOPOLOGY

ALBERTO ENCISO AND DANIEL PERALTA-SALAS

We make use of the flexibility of infinite-index solutions to the Allen–Cahn equation to show that, given
any compact hypersurface 6 of Rd with d > 3, there is a bounded entire solution of the Allen–Cahn
equation on Rd whose zero level set has a connected component diffeomorphic (and arbitrarily close) to
a rescaling of 6. More generally, we prove the existence of solutions with a finite number of compact
connected components of prescribed topology in their zero level sets.

1. Introduction

The study of the analogies between the level sets of the solutions to the Allen–Cahn equation

1u+ u− u3
= 0

in Rd and minimal hypersurfaces in Rd was greatly fostered by De Giorgi’s 1978 conjecture that all the
level sets of any entire solution to the Allen–Cahn equation that is monotone in one direction have to be
hyperplanes for d 6 8. This is a natural counterpart of the Bernstein problem for minimal hypersurfaces,
which asserts that any minimal graph in Rd must be a hyperplane provided that d 6 8. Ghoussoub and
Gui [1998] and Ambrosio and Cabré [2000] proved De Giorgi’s conjecture for d = 2, 3, and the work of
Savin [2009] showed that it is also true for 46 d 6 8 under a weak additional technical assumption. Del
Pino, Kowalczyk and Wei [del Pino et al. 2011] employed the Bombieri–De Giorgi–Giusti hypersurface
to show that the statement of De Giorgi’s conjecture does not hold for d > 9.

In dimension 2, it is well known [Dancer 2005] that the monotonicity hypothesis can be relaxed to the
assumption that the solution u is stable, i.e., that its Morse index is 0. Let us recall that the Morse index
of u is the maximal dimension of a vector space V ⊂ C∞0 (R

d) such that∫
Rd
(|∇v|2− v2

+ 3u2v2) dx < 0

for all nonzero v ∈ V . Remarkably, it has been shown recently [Pacard and Wei 2013] that in dimension 8
(actually, in any even dimension d > 8) there are bounded stable solutions to the Allen–Cahn equation
whose level sets are not hyperplanes, but rather they are asymptotic to a minimal cone. For the role of
minimal cones in the Allen–Cahn equation, see also [Cabré and Terra 2009] and references therein. In
dimensions d 6 7, the level sets of stable solutions to the Allen–Cahn equation are conjectured to all be
hyperplanes [Pacard and Wei 2013].

MSC2010: 35B05, 35J15, 35B08.
Keywords: Allen–Cahn equation, level sets.

1433

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2016.9-6
http://dx.doi.org/10.2140/apde.2016.9.1433
http://msp.org


1434 ALBERTO ENCISO AND DANIEL PERALTA-SALAS

The analysis and possible classification of bounded entire solutions to the Allen–Cahn equation is
an important open problem, where the Morse index of the solutions plays a key role. Unlike the stable
case [Dancer 2005], the structure of solutions with finite Morse index can be very complex; in fact, in
dimension 3 a result of del Pino, Kowalczyk and Wei [del Pino et al. 2013] ensures that, under mild
technical assumptions, given any embedded complete minimal surface in R3 with finite total curvature
there is a bounded entire solution to the Allen–Cahn equation with a level set that is close to a large
rescaling of this minimal surface, and that the Morse index of this solution coincides with the genus of
the surface. Also in this direction, the existence of solutions to the Allen–Cahn equation with a level set
close to a nondegenerate minimal hypersurface was proved by Pacard and Ritoré [2003] provided that
the ambient space is a compact Riemannian manifold (instead of Rd). Furthermore, Agudelo, del Pino
and Wei [Agudelo et al. 2015] have recently constructed bounded entire axisymmetric solutions on R3 of
arbitrarily large index that have multiple catenoidal ends.

Generally speaking, it is expected [del Pino et al. 2012; 2013] that the condition that the Morse
index of the solution be finite should play a similar role to the finite total curvature assumption in the
study of minimal hypersurfaces in Euclidean spaces. In particular, it is well known that there are many
infinite-index solutions to the Allen–Cahn equation [Dancer 2001; Cabré and Terra 2009; Kowalczyk
et al. 2015], and this abundance of solutions should translate into a wealth of possible level sets.

Our objective in this paper is to explore the flexibility of bounded entire solutions to the Allen–Cahn
equation of infinite index by showing that there are bounded solutions to the Allen–Cahn equation on Rd

with level sets of any compact topology. Specifically, given a compact hypersurface 6 without boundary
of Rd , we will show that there is a rescaling of 6 that is arbitrarily close to a connected component of
the nodal set of a bounded entire solution of the Allen–Cahn equation. Furthermore, this level set is
structurally stable, in the sense that any function on Rd which is sufficiently close to u in the C1 norm in
a neighborhood of this set will also have a zero level set of the same topology. In view of the existing
literature, we are particularly interested in the case of high-dimension d .

To present a precise statement, let us agree to say that an ε-rescaling is a diffeomorphism of Rd that can
be written as 8=81 ◦82, where 82 is a rescaling and ‖81− id ‖C1(Rd ) < ε (here we could have taken
any other fixed Ck norm, though). By a hypersurface we will refer to a smoothly embedded codimension 1
submanifold of Rd , so self-intersections will not be allowed. Furthermore, in what follows we will use
the notation 〈x〉 := (1+ |x |2)1/2 for the Japanese bracket.

Theorem 1.1. Let 6 be any compact orientable hypersurface without boundary of Rd with d > 3, and
take any ε > 0. Then there is a bounded entire solution u of the Allen–Cahn equation in Rd such that its
zero level set u−1(0) has a connected component given by 8(6), where 8 is an ε-rescaling. This set is
structurally stable. Furthermore, u falls off at infinity as |u(x)|< C〈x〉(1−d)/2 if d > 4 and is in L4(R3)

if d = 3.

It is worth mentioning that the result that we will actually prove (Theorem 4.1) is in fact stronger, in the
sense that given any finite number of hypersurfaces 61, . . . , 6N that are not linked (see Definition 2.1)
we will show that there is a diffeomorphism 8 such that 8(61)∪ · · · ∪8(6N ) is a union of connected
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components of the nodal set of a bounded entire solution to the Allen–Cahn equation. The diffeomor-
phism 8 is not an ε-rescaling, although it does act on each hypersurface 6j as an ε-rescaling composed
with a rigid motion.

The idea of the proof of the theorem is that, when u is small in a suitable sense, solutions to the
Allen–Cahn equation behave as solutions to the Helmholtz equation

1w+w = 0.

Hence, a key step of the proof is to establish an analog of Theorem 1.1 for solutions to the Helmholtz
equations with a sharp fall-off rate at infinity, which is as 〈x〉(1−d)/2 (Theorem 2.2). For this we combine
a construction using the first eigenfunction of the domain bounded by 6 with a Runge-type theorem
with decay conditions at infinity that generalizes the results that we proved in [Enciso and Peralta-Salas
2012; 2015] for Beltrami fields on R3. Using suitable weighted estimates for a convolution operator
associated with the Helmholtz equation (Theorem 3.1), we then promote these solutions of the Helmholtz
equation to solutions of the Allen–Cahn equation and show that the latter still possess a nodal set of the
desired topology. From the method of proof it stems that the statement of Theorem 1.1 remains valid
for much more general nonlinearities. (More precisely, one can replace u3 by a smooth enough function
F(u) that behaves as u1+α as u→ 0 with α > (d + 1)/(d − 1).) Observe that solutions of the Helmholtz
equation were also used in [Gutiérrez 2004] to construct nontrivial solutions in some Lq space to the
closely related Ginzburg–Landau equation on R3 and R4, and that in fact for d = 3 our proof will borrow
estimates from this work.

2. Bounded solutions to the Helmholtz equation

In this section we will prove an analog of Theorem 1.1 for solutions to the Helmholtz equation on Rd .
We shall begin by introducing some notation.

Let us consider the function
G(x) := β|x |1−d/2Yd/2−1(|x |), (2-1)

where Yd/2−1 denotes the Bessel function of the second kind and we have set

β :=
21−d/2π

|Sd−1|0(d/2− 1)
,

with |Sd−1
| the area of the unit (d−1)-sphere and 0 the Gamma function. A simple computation in

spherical coordinates shows that 1G+G = 0 everywhere but at the origin and the asymptotics for Bessel
functions show that

G(x)=−
1

|Sd−1||x |d−2 + O(|x |3−d)

as x→ 0. It then follows that G is a fundamental solution for the Helmholtz equation, so, if v is, say, a
Schwartz function on Rd , the convolution G ∗ v satisfies

1(G ∗ v)+G ∗ v = v. (2-2)
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As we discussed in the introduction, we will prove a result that is considerably more general than
Theorem 1.1, as it applies to an arbitrary number of hypersurfaces. There is, however, a topological
condition that we must impose on these hypersurfaces, which is described in the following:

Definition 2.1. Let 61, . . . , 6N be compact orientable hypersurfaces without boundary of Rd . We will
say that they are not linked if there are N pairwise disjoint contractible sets S1, . . . , SN such that each
hypersurface 6j is contained in S j .

We are now ready to state and prove the main result of this section. Notice that the proof of the theorem
provides a satisfactory description of the structure of the diffeomorphism 9, as noted in Remark 2.3.
The proof makes use of some techniques we introduced in [Enciso and Peralta-Salas 2013] to study the
level sets of harmonic functions and in [Enciso and Peralta-Salas 2015] to construct Beltrami fields with
prescribed vortex tubes. Throughout, diffeomorphisms are assumed to be of class C∞ and connected
with the identity, and BR denotes the ball centered at the origin of radius R. Observe that, of course,
for N = 1 the condition that the hypersurface be not linked is satisfied trivially.

Theorem 2.2. Let 61, . . . , 6N be compact orientable hypersurfaces without boundary of Rd that are
not linked with d > 3. Then there is a function w satisfying the Helmholtz equation

1w+w = 0

in Rd and a diffeomorphism 9 of Rd such that 9(61), . . . , 9(6N ) are structurally stable connected
components of the zero set w−1(0). Furthermore, w falls off at infinity as |∂αw(x)| < Cα〈x〉(1−d)/2 for
any multiindex α.

Proof. An easy application of Whitney’s approximation theorem ensures that, by perturbing the hypersur-
faces a little if necessary, we can assume that 6j is a real analytic hypersurface of Rd . The fact that the
hypersurfaces are not linked allow us now to rescale and translate them so that the (unique) precompact
domains � j that are bounded by each rescaled and translated real-analytic hypersurface, which we will
call 6′j := ∂� j , are pairwise disjoint and their first Dirichlet eigenvalue λ1(� j ) is 1. The first eigenvalue
is always simple, so there is a unique eigenfunction ψj , modulo a multiplicative constant, that satisfies
the eigenvalue equation

1ψj +ψj = 0 in � j , ψj |6′j = 0.

We can choose ψj so that it is positive in � j .
Hopf’s boundary point lemma shows that the gradient of ψj does not vanish on 6j :

min
x∈6j
|∇ψj (x)|> 0. (2-3)

Furthermore, as the hypersurface 6j is analytic, it is standard that ψj is analytic in an open neighborhood
�̃ j of the closure of � j .

Our goal is to construct a solutionw of the Helmholtz equation in Rd that approximates each functionψj

in the set � j . To this end, let us take a smooth function χ : Rd
→ R that is equal to 1 in a narrow
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neighborhood of the closure � and is identically zero outside �̃, with

�̃ :=

N⋃
j=1

�̃ j , � :=

N⋃
j=1

� j .

We can now define a smooth function w1 on Rd by setting

w1 :=

N∑
j=1

χψj .

Here we are assuming that w1 := 0 outside �̃.
Let us now write

w1 = w
′

1+ h

with

w′1(x)=
∫

Rd
G(x − y) f (y) dy, (2-4)

where f is the compactly supported function f :=1w1+w1 and G is the fundamental solution (2-1).
By construction, h satisfies the homogeneous Helmholtz equation

1h+ h = 0.

The support of the function f is obviously contained in the open set �̃ \ �. Therefore, an easy
continuity argument ensures that one can approximate the integral (2-4) uniformly in the compact set �
by a finite Riemann sum of the form

w2(x) :=
M∑

n=1

cnG(x − xn). (2-5)

Specifically, it is standard that for any δ > 0 there is a large integer M , real numbers cn and points
xn ∈ �̃ \� such that the finite sum (2-5) satisfies

‖w′1−w2‖C0(�) < δ. (2-6)

Let us now take a large ball BR containing the closure of the set �̃. We shall next show that there is a
finite number of points {x ′n}

M ′
n=1 in Rd

\ B R and constants c′n such that the finite linear combination

w3(x) :=
M ′∑

n=1

c′nG(x − x ′n) (2-7)

approximates the function w2 uniformly in �:

‖w2−w3‖C0(�) < δ. (2-8)

Here δ is the same arbitrarily small constant as above.
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Consider the space V of all finite linear combinations of the form (2-7), where x ′n can be any point
in Rd

\ B R and the constants c′n take arbitrary values. Restricting these functions to the set �, we can
regard V as a subspace of the Banach space C0(�) of continuous functions on �.

By the Riesz–Markov theorem, the dual of C0(�) is the space M(�) of the finite signed Borel
measures on Rd whose support is contained in the set �. Let us take any measure µ ∈M(�) such that∫

Rd f dµ= 0 for all f ∈ V . We now define a function F ∈ L1
loc(R

d) as

F(x) :=
∫

Rd
G(x − x ′) dµ(x ′),

so that F satisfies the equation
1F + F = µ.

Notice that F is identically zero on Rd
\ B R by the definition of the measure µ and that F satisfies the

elliptic equation
1F + F = 0

in Rd
\�, so F is analytic in this set. Hence, since Rd

\� is connected and contains the set Rd
\ BR , by

analyticity the function F must vanish on the complement of �. It then follows that the measure µ also
annihilates the function G( · − y) with y 6∈� because

0= F(y)=
∫

Rd
G(y− x ′) dµ(x ′).

Therefore ∫
Rd
w2 dµ= 0,

which implies that w2 can be uniformly approximated on � by elements of the subspace V , due to the
Hahn–Banach theorem. Accordingly, there is a finite set of points {x ′n}

M ′
n=1 in Rd

\ B R and reals c′n such
that the function w3 defined by (2-7) satisfies the estimate (2-8).

To complete the proof of the theorem, notice that the function

w4 := w3+ h

satisfies the equation
1w4+w4 = 0 (2-9)

in the ball BR , whose interior contains �. Let us take hyperspherical coordinates r := |x | and ω :=
x/|x | ∈ Sd−1 in BR . Expanding the function w4 (with respect to the angular variables) in a series of
spherical harmonics and using (2-9), we immediately obtain that w4 can be written in the ball as a
Fourier–Bessel series of the form

w4 =

∞∑
l=0

∑
m∈Il

clm jl(r)Ylm(ω),

where jl denotes a d-dimensional hyperspherical Bessel function, Ylm are spherical harmonics on Sd−1

and Il is a finite set that depends on l and whose explicit expression will not be needed here.
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Since the above series converges in L2(BR), for any δ > 0 there is an integer l0 such that the finite sum

w :=

l0∑
l=0

∑
m∈Il

clm jl(r) Ylm(ω)

approximates the function w4 in an L2 sense:

‖w−w4‖L2(BR) < δ. (2-10)

By the properties of Bessel functions, w is smooth in Rd , falls off as

|∂αw(x)|6 Cα〈x〉(1−d)/2

at infinity for any multiindex α and satisfies the equation

1w+w = 0 (2-11)

in the whole space.
Given any R′ < R large enough for the set � to be contained in the ball BR′ , standard elliptic estimates

allow us to pass from the L2 bound (2-10) to a uniform estimate

‖w−w4‖C0(BR′ )
< Cδ.

From this inequality and the bounds (2-6) and (2-8) we infer

‖w−w1‖C0(�) < Cδ. (2-12)

Moreover, since w1 also satisfies the Helmholtz equation in a neighborhood of the compact set�, standard
elliptic estimates again imply that the uniform estimate (2-12) can be promoted to the C1 bound

‖w−w1‖C1(�) < Cδ. (2-13)

Finally, since 61∪· · ·∪6N is a union of components of the nodal set of w1 and, by (2-3), the gradient
of w1 does not vanish on these hypersurfaces, the estimate (2-13) and a direct application of Thom’s
isotopy theorem [Abraham and Robbin 1967, Theorem 20.2] imply that there is a diffeomorphism 9

of Rd such that

9(61 ∪ · · · ∪6N ) (2-14)

is a union of components of the zero set w−1(0). Moreover, the diffeomorphism 9 is C1-close to the
identity. The structural stability of the set (2-14) for the function w also follows from Thom’s isotopy
theorem and the lower bound

min
x∈9(61∪···∪6N )

|∇w(x)|> 0,

as a consequence of the C1 estimate (2-13) and the fact that the function w1 satisfies the gradient
condition (2-3). �
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Remark 2.3. It follows from the proof that there are rescalings 92
j , translations 93

j and diffeomorphisms
91

j with ‖91
j − id ‖C1(Rd ) arbitrarily small such that

9(6j )= (9
1
j ◦9

2
j ◦9

3
j )(6j ).

In particular, if N = 1 the diffeomorphism 9 can be assumed to be an ε-rescaling. A minor modification
of the argument would have allowed us to take ‖91

j − id ‖Ck(Rd ) arbitrarily small, with k any fixed number.

3. A weighted estimate for a convolution operator

In promoting solutions to the Helmholtz equation with sharp decay at infinity to solutions to the Allen–Cahn
equation, the estimates that we establish in this section will play a key role.

Specifically, we will be interested in the convolution of the fundamental solution G, introduced in (2-1),
with functions with certain decay rate at infinity. To quantify this, for any nonnegative integer k and any
positive real ν let us denote by Ck

ν (R
d) the closure of the space of Schwartz functions on Rd with respect

to the metric
‖v‖k,ν := max

|α|6k
sup
x∈Rd
|〈x〉ν∂αv(x)|.

Clearly
‖vw‖k,ν+ν′ 6 C‖v‖k,ν‖w‖k,ν′

whenever v ∈ Ck
ν (R

d) and w ∈ Ck
ν′(R

d), where C is a constant that only depends on k. In particular,

‖vs
‖k,ν 6 C‖v‖sk,ν/s . (3-1)

The following theorem, which asserts that the convolution with G defines a bounded map

Ck
ν (R

d)→ Ck
(d−1)/2(R

d)

for any ν > d , provides the estimates that we need:

Theorem 3.1. Suppose that d > 3. Then, for any v ∈ Ck
ν (R

d) with k > 0 and ν > d , one has

‖G ∗ v‖k,(d−1)/2 6 C‖v‖k,ν,

with a constant that depends on d and ν but not on v or k.

Proof. In view of the well-known asymptotics for Bessel functions when d > 3, there is a positive
constant C such that G is bounded by

|G(x)|6
{

C |x |2−d if |x |< 1,
C |x |(1−d)/2 if |x |> 1.

It then follows that

|G ∗ v(x)|6
∫

Rd
|G(z)||v(x − z)| dz

6 C‖v‖0,ν

(∫
B1

|z|2−d
〈x − z〉−ν dz+

∫
Rd\B1

|z|(1−d)/2
〈x − z〉−ν dz

)
. (3-2)
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For any fixed x , the first integral is convergent for any value of ν, while the second converges provided
that ν > 1

2(d+1). Since ν > d > 1
2(d+1), we infer that G ∗v(x) is well defined as a convergent integral

for any v ∈ C0
ν (R

d) and all x ∈ Rd , and it only remains to analyze its behavior for large |x |.
For concreteness, let us assume that |x |> 2. We shall next show that the integrals

I1 :=

∫
B1

|z|2−d
〈x − z〉−ν dz,

I2 :=

∫
B|x |/2
|z|(1−d)/2

〈x − z〉−ν dz,

I3 :=

∫
B2|x |\B|x |/2

|z|(1−d)/2
〈x − z〉−ν dz,

I4 :=

∫
Rd\B2|x |

|z|(1−d)/2
〈x − z〉−ν dz,

are then bounded as

I j < C |x |(1−d)/2, (3-3)

where C does not depend on v. In view of the inequality (3-2) and the fact that∫
Rd\B1

|z|(1−d)/2
〈x − z〉−ν 6 I2+ I3+ I4,

this shows that the convolution with G is a bounded map C0
ν (R

d) → C0
(d−1)/2(R

d). Since for any
multiindex α we have

∂α(G ∗ v)= G ∗ (∂αv),

this immediately implies that the convolution with G is also a bounded map Ck
ν (R

d)→ Ck
(d−1)/2(R

d),
thereby proving the theorem.

So it only remains to prove the estimate (3-3) for 16 j 6 4. For this we start by using the elementary
inequality

〈x − z〉>

{
1
2 |x | if |z|< 1

2 |x |,
1
2 |z| if |z|> 2|x |,

to obtain, for |x |> 2,

I1 < C |x |−ν
∫

B1

|z|2−d dz = C |x |−ν < C |x |−d < C |x |(1−d)/2,

I2 < C |x |−ν
∫

B|x |/2
|z|(1−d)/2 dz = C |x |(d+1)/2−ν < C |x |(1−d)/2,

I4 < C
∫

Rd\B2|x |

|z|(1−d)/2−ν dz = C |x |(d+1)/2−ν < C |x |(1−d)/2.

To obtain these bounds we have used that ν > d by assumption.
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To estimate I3 we choose a Cartesian basis such that x = |x |e1 and then use the rescaled variable
z̄ := z/|x | to write

I3 =

∫
B2|x |\B|x |/2

|z|(1−d)/2
〈x − z〉−ν dz = |x |(d+1)/2−ν

∫
B2\B1/2

|z̄|(1−d)/2 dz̄
(1/|x |2+ |e1− z̄|2)ν/2

. (3-4)

Denoting by B ′ the ball centered at e1 of radius 1
4 , one can check that∫

B ′

|z̄|(1−d)/2 dz̄
(1/|x |2+ |e1− z̄|2)ν/2

< C
∫ 1/4

0

ρd−1 dρ
(1/|x |2+ ρ2)ν/2

= C |x |ν−d
∫
|x |/4

0

ρ̄d−1 dρ̄
(1+ ρ̄2)ν/2

< C |x |ν−d
∫
∞

0

ρ̄d−1 dρ̄
(1+ ρ̄2)ν/2

< C |x |ν−d ,

where we have defined ρ̄ := |x |ρ, and we have used that the integral in ρ̄ is convergent for any ν > d.
Plugging this into (3-4), one gets

I3 = |x |(d+1)/2−ν
(∫

B ′

|z̄|(1−d)/2 dz̄
(1/|x |2+ |e1− z̄|2)ν/2

+

∫
B2\(B1/2∪B ′)

|z̄|(1−d)/2 dz̄
(1/|x |2+ |e1− z̄|2)ν/2

)
< C |x |(d+1)/2−ν(|x |ν−d

+C) < C |x |(1−d)/2.

To obtain the first inequality we have used that |e1− z̄|2 > 1
16 for all z̄ ∈ B2 \ (B1/2 ∪ B ′), and the second

inequality follows from the assumption ν > d . This is the last estimate that we needed in (3-3) and thus
the theorem follows. �

In view of the structure of the nonlinearity of the Allen–Cahn equation, the following corollary will be
useful:

Corollary 3.2. For any v ∈ Ck
(d−1)/2(R

d) with k > 0 and d > 4, one has the estimate

‖G ∗ (v3)‖k,(d−1)/2 6 C‖v‖3k,(d−1)/2.

Proof. We can apply Theorem 3.1 with ν := 1
2(3d − 3) because ν > d for all dimensions d > 4, thus

implying that
‖G ∗ (v3)‖k,(d−1)/2 6 C‖v3

‖k,(3d−3)/2 6 C‖v‖3k,(d−1)/2,

where we have used the relation (3-1). �

4. Proof of Theorem 1.1

We are now ready to prove the main result of this paper, which reduces to Theorem 1.1 when N = 1.

Theorem 4.1. Let 61, . . . , 6N be compact orientable hypersurfaces without boundary of Rd that are
not linked with d > 3, and let us take any positive integer k. Then there is a diffeomorphism 8 of Rd such
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that 8(61), . . . , 8(6N ) are connected components of the level set u−1(0) of a smooth solution to the
Allen–Cahn equation in Rd , which is bounded as |∂αu(x)|< Cα〈x〉(1−d)/2 for any multiindex with |α|< k
if d > 4, and if d = 3 then u is in L4(R3)∩ L∞(R3). Furthermore, these level sets are structurally stable
and the diffeomorphism 8 can be assumed to have the same structure as in Remark 2.3.

Proof. Let us first assume that d > 4, since this will allow us to apply Corollary 3.2. By Theorem 2.2
there is a solution w to the Helmholtz equation

1w+w = 0

on Rd such that 9(61), . . . , 9(6N ) are connected components of its zero set w−1(0), where 9 is a
diffeomorphism of Rd . Moreover, ‖w‖k,(d−1)/2 < C and the above hypersurfaces are structurally stable,
in the sense that there exist a large ball BR and a positive constant η such that, if w′ is any function with

‖w−w′‖C1(BR) < η, (4-1)

then there is a diffeomorphism 8 of Rd such that

8(61)∪ · · · ∪8(6N ) (4-2)

are structurally stable connected components of the level set w′ −1(0). Furthermore, 8 is close to 9 in
the norm C1(Rd).

Let us take a small positive constant ε that will be fixed later and consider the iterative scheme

u0 := δw, un+1 := δw+G ∗ (u3
n), (4-3)

where we have set

δ :=
ε

2‖w‖k,(d−1)/2
.

Our goal is to show that, if ε is small enough, un converges in Ck
(d−1)/2(R

d) to a function u that satisfies
the Allen–Cahn equation

1u+ u− u3
= 0

and is close to δw in a suitable norm.
A first observation is that, if ‖un‖k,(d−1)/2 < ε and ε is small enough, by the definition of δ we

automatically have

‖un+1‖k,(d−1)/2 6 δ‖w‖k,(d−1)/2+‖G ∗ (u3
n)‖k,(d−1)/2

6 δ‖w‖k,(d−1)/2+C‖un‖
3
k,(d−1)/2 6

1
2ε+Cε3 < ε. (4-4)

Here we have used Corollary 3.2 to estimate G ∗ (u3
n). Notice that the smallness that we have to impose

on ε only depends on the constant that appears in Corollary 3.2. In particular, since the first function u0

of the iteration satisfies

‖u0‖k,(d−1)/2 =
1
2ε,
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the induction property (4-4) then implies that

‖un‖k,(d−1)/2 < ε (4-5)

for all n.
To estimate the difference un+1− un , let us start by noticing that for any functions v, v′ we have

‖v3
− v′ 3‖k,(3d−3)/2 = max

|α|6k
sup
x∈Rd
〈x〉(3d−3)/2∣∣∂α(v2(v− v′)+ vv′(v− v′)+ v′ 2(v− v′))

∣∣
6 C

(
‖v‖2k,(d−1)/2+‖v

′
‖

2
k,(d−1)/2

)
‖v− v′‖k,(d−1)/2.

It then follows from Theorem 3.1, the fact that 1
2(3d − 3) > d when d > 4, and (4-5) that we can write

‖un+1− un‖k,(d−1)/2 = ‖G ∗ (u3
n − u3

n−1)‖k,(d−1)/2

6 C‖u3
n − u3

n−1‖k,(3d−3)/2 6 Cε2
‖un − un−1‖k,(d−1)/2. (4-6)

If ε is small enough that Cε2< 1
2 , it is standard that (4-4) and (4-6) imply that un converges in Ck

(d−1)/2(R
d)

to some function u with

‖u‖k,(d−1)/2 6 ε. (4-7)

Since the map v 7→G ∗ (v3) is continuous in Ck
(d−1)/2(R

d), from (4-3) we infer that u satisfies the integral
equation

u = δw+G ∗ (u3). (4-8)

As w is a solution of the Helmholtz equation and G is a fundamental solution satisfying (2-2), it then
follows that

1u+ u = u3,

so u is a solution of the Allen–Cahn equation, which is smooth by elliptic regularity.
One can now use the bound (4-7), the relation (4-8) and the definition of δ to write∥∥∥w− u

δ

∥∥∥
k,(d−1)/2

=
1
δ
‖δw− u‖k,(d−1)/2 =

1
δ
‖G ∗ (u3)‖k,(d−1)/2 6

C
δ
‖u‖3k,(d−1)/2 6 Cε2. (4-9)

In view of the stability estimate (4-1), if ε is small enough (namely, Cε2 < η), we infer that there is a
diffeomorphism 8, close to the diffeomorphism 9 in the norm C1(Rd), such that the hypersurfaces (4-2)
are structurally stable connected components of the level set u−1(0). The theorem then follows for d > 4.

For d = 3 the proof is similar but employs the L4(R3) estimates for the inverse of the Helmholtz
equation proved in [Gutiérrez 2004]. More precisely, as G is the real part of the fundamental solution of
the Helmholtz equation that satisfies the Sommerfeld outgoing radiation condition (namely, −ei |x |/4π |x |),
the iteration (4-3) converges in L4(R3) by [Gutiérrez 2004]. The rest of the proof is just as in higher
dimensions, replacing the estimate (4-9) in the ball BR by the standard elliptic estimate∥∥∥w− u

δ

∥∥∥
Ck(BR)

6 C
∥∥∥w− u

δ

∥∥∥
L4(R3)

6 Cε2,
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where the last bound is what one obtains directly from the iteration. Moreover by [Gutiérrez 2004,
Proposition 1], it follows that any L4(R3) solution to the Allen–Cahn equation is bounded. �
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