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HÖLDER ESTIMATES AND LARGE TIME BEHAVIOR
FOR A NONLOCAL DOUBLY NONLINEAR EVOLUTION

RYAN HYND AND ERIK LINDGREN

The nonlinear and nonlocal PDE
jvt j

p�2vt C .��p/
sv D 0;

where

.��p/
sv.x; t/D 2 P.V.

Z
Rn

jv.x; t/� v.xCy; t/jp�2.v.x; t/� v.xCy; t//

jyjnCsp
dy;

has the interesting feature that an associated Rayleigh quotient is nonincreasing in time along solutions.
We prove the existence of a weak solution of the corresponding initial value problem which is also unique
as a viscosity solution. Moreover, we provide Hölder estimates for viscosity solutions and relate the
asymptotic behavior of solutions to the eigenvalue problem for the fractional p-Laplacian.

1. Introduction

We study the nonlinear and nonlocal PDE

jvt j
p�2vt C .��p/

sv D 0; (1-1)

where p 2 .1;1/, s 2 .0; 1/ and .��p/s is the fractional p-Laplacian

.��p/
su .x/ WD 2P.V.

Z
Rn

ju.x/�u.xCy/jp�2.u.x/�u.xCy//

jyjnCsp
dy: (1-2)

Here and throughout P.V.denotes principal value. The main reason of our interest in solutions of (1-1) is
the connection with ground states for .��p/s, i.e., extremals of the nonlocal Rayleigh quotient

�s;p D inf
u2W

s;p
0 .�/nf0g

R
Rn

R
Rn
ju.x/�u.y/jp

jx�yjnCsp
dx dyR

� ju.x/j
p dx

: (1-3)

Here and throughout ��Rn is a bounded domain. Clearly, 1=�s;p is the optimal constant in the Poincaré
inequality in the fractional Sobolev space W s;p

0 .�/.
In recent years there has been a surge of interest around this nonlinear and nonlocal eigenvalue problem;

see [Lindgren and Lindqvist 2014; Brasco and Franzina 2014; Brasco and Parini 2015; Brasco et al. 2016;
Del Pezzo and Salort 2015; Franzina and Palatucci 2014; Iannizzotto and Squassina 2014]. In particular,
it is known that ground states (or first eigenfunctions) are unique up to a multiplicative constant and have
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a definite sign (see Theorem 14 in [Lindgren and Lindqvist 2014] together with Corollary 3.14 in [Brasco
and Parini 2015]). The corresponding local problem (formally s D 1), i.e., the eigenvalue problem for the
p-Laplacian, has been extensively studied throughout the years. See, for instance, [Lieb 1983; Lindqvist
1990; 2008].

The first of our main results is a local Hölder estimate for viscosity solutions of (1-1). This is one of
the first continuity estimates for parabolic equations involving the fractional p-Laplacian.

Theorem 1.1. Let p � 2, s 2 .0; 1/ and v 2 L1.Rn � .�2; 0�/ be a viscosity solution of

jvt j
p�2vt C .��p/

sv D 0 in B2 � .�2; 0�:

Then v is Hölder continuous in B1 � .�1; 0� and in particular there exist ˛ and C depending on p and s
such that

kvkC˛.B1�.�1;0�/ � CkvkL1.Rn�.�2;0�/:

We also study the initial value problem8̂<̂
:
jvt j

p�2vt C .��p/
sv D 0 in �� .0;1/;

v D 0 in Rn n�� Œ0;1/;

v D g in �� f0g;

(1-4)

and show that (1-4) has a weak solution in the sense of a doubly nonlinear evolution and a unique viscosity
solution. In addition, we relate the long time behavior of solutions to the eigenvalue problem for the
fractional p-Laplacian. These results are presented in the two theorems below.

Theorem 1.2. Let p 2 .1;1/ and s 2 .0; 1/. Assume g 2W s;p
0 .�/ and define

�s;p WD �
1
p�1

s;p :

Then for any weak solution v of (1-4),

w.x/ WD lim
t!1

e�s;ptv.x; t/ (1-5)

exists in W s;p.Rn/ and is a ground state for .��p/s, provided it is not identically zero. In this case,
v. � ; t /¤ 0 for t � 0 and

�s;p D lim
t!1

R
Rn

R
Rn
jv.x;t/�v.y;t/jp

jx�yjnCsp
dx dyR

� jv.x; t/j
p dx

:

Theorem 1.3. Let p � 2, s 2 .0; 1/, � be a C 1;1 domain and assume that g 2W s;p
0 .�/\C.�/ satisfies

jgj �‰, where ‰ is a ground state for .��p/s. Then there is a unique viscosity solution of (1-4) that is
also a weak solution. In addition, the convergence in (1-5) is uniform in �.

In our previous work [Hynd and Lindgren 2016], we studied the large time behavior of the doubly
nonlinear, local equation

jvt j
p�2vt D�pv: (1-6)
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One of the novelties of the present paper in comparison with the above-mentioned work is that we obtain
uniform convergence to a ground state and a uniform Hölder estimate for the doubly nonlinear, nonlocal
equation (1-1). No such results are known for (1-6). Related to this is also the work for more general sys-
tems in [Hynd 2016]. The method in these papers, as the method in the present paper, differs substantially
from most of the other methods used in the literature to study asymptotic behavior of nonlinear and possibly
degenerate flows, as in [Agueh et al. 2010; Aronson and Peletier 1981; Armstrong and Trokhimtchouk
2010; Kamin and Vázquez 1988; Kim and Lee 2013; Stan and Vázquez 2013]. Our methods are based on
energy and compactness in Sobolev spaces, while most of the earlier work is based on comparison princi-
ples. This allows us, in contrast to most earlier work, to treat initial data without any assumption on the sign.

In the case of a linear equation, i.e., when p D 2, the large time behavior of solutions is especially
well understood. Due to the theory of eigenfunctions in Hilbert spaces, one can then recover our result
(and more) using the eigenfunction expansion. When p ¤ 2, this expansion is not available.

The literature on equations of the type (1-1) is very limited. Equations of type (1-6) appear in
[Kilpeläinen and Lindqvist 1996] and in the theory of doubly nonlinear flows. In the case of linear
nonlocal equations, i.e., when p D 2, the literature on regularity is vast. We mention only a fraction; see
[Silvestre 2010; 2012; Caffarelli and Vasseur 2010; Lara and Dávila 2014]. Neither of these results apply
to our setting. However, our proof of the Hölder regularity is very much inspired by the work of Luis
Silvestre [2010; 2012]. We also seize the opportunity to mention the recent papers [Puhst 2015; Mazón
et al. 2016; Vázquez 2016; Warma 2016] where the corresponding heat flow is studied, i.e., the equation

vt C .��p/
sv D 0:

The stationary equation, i.e.,
.��p/

sv D 0;

has in recent years attracted a lot of attention; see [Ishii and Nakamura 2010; Brasco and Lindgren 2017;
Chasseigne and Jakobsen 2015; Di Castro et al. 2014; 2016; Chambolle et al. 2012; Korvenpää et al.
2016; Iannizzotto et al. 2016; Kuusi et al. 2015a; 2015b; Gal and Warma 2016; Lindgren 2016]. In
[Bjorland et al. 2012], a different nonlocal version of the p-Laplacian is studied.

The plan of the paper is as follows. In Section 2, we introduce the fractional Sobolev spaces W s;p , the
fractional p-Laplacian .��p/s and additional notation used in this paper. In Section 3, we define weak
solutions and derive several of their important properties. The section ends with a key compactness result
and some brief explanations on how to construct weak solutions. This is followed by Section 4, where we
introduce viscosity solutions and prove that the weak solution constructed in Section 3 is also the unique
viscosity solution. In Section 5, we verify Hölder estimates for viscosity solutions. Finally, in Section 6,
we prove Theorem 1.2 and Theorem 1.3, which involves the large time behavior of weak solutions.

2. Notation and prerequisites

The fractional Rayleigh quotient (1-3) naturally relates to the so-called fractional Sobolev spacesW s;p.Rn/.
If 1 < p <1 and s 2 .0; 1/, the norm is given by

kuk
p

W s;p.Rn/
D Œu�

p

W s;p.Rn/
Ckuk

p

Lp.Rn/
;
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where the Gagliardo seminorm is

Œu�
p

W s;p.Rn/
D

Z
Rn

Z
Rn

ju.y/�u.x/jp

jy � xjspCn
dx dy D

Z
Rn

Z
Rn
ju.y/�u.x/jp d�.x; y/:

Here and throughout, we will use the notation

d�.x; y/ WD jx�yj�n�sp dx dy:

The space W s;p
0 .�/ is the closure of C10 .�/ with respect to the norm k �kW s;p.Rn/. Many properties that

are known for the more common Sobolev spaces W 1;p, also hold for W s;p and can be found in [Di Nezza
et al. 2012]. In particular, we have the compact embedding of W s;p

0 .�/ in Lq.�/ for q 2 Œ1; p�. This
result can be found in Theorem 2.7 in [Brasco et al. 2014] (see also Theorem 7.1 on page 33 in [Di Nezza
et al. 2012]).

The operator .��p/s arises as the first variation of the functional

Œu�
p

W s;p.Rn/
:

More specifically, minimizers satisfyZ
Rn

Z
Rn
ju.x/�u.y/jp�2.u.x/�u.y//.�.x/��.y// d�.x; y/D 0

for each � 2W s;p
0 .�/. If the solution is regular enough, one can split this into two equal terms, make

a change of variables and write the equation in the sense of the principal value, as in (1-2). Note that
the notation .��p/s is slightly abusive; this operator is not the s-th power of ��p unless p D 2. See
Section 3 in [Di Nezza et al. 2012].

Ground states of .��p/s are minimizers of the Rayleigh quotient

�s;p D inf
u2W

s;p
0 .�/

R
Rn

R
Rn
ju.x/�u.y/jp d�.x; y/R
� ju.x/j

p dx
;

and they are signed solutions of�
.��p/

suD �s;pjuj
p�2u in �;

uD 0 in Rn n�:

The notation

Jp.t/D jt jp�2t

will also come in handy. With this notation, equation (1-1) can be written as

Jp.vt /C .��p/sv D 0

and the operator .��p/s can be written as

.��p/
su.x/D 2P.V.

Z
Rn

Jp.u.x/�u.xCy//
jyjnCsp

dy:
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Due to the scaling of the equation, we introduce the following notation for parabolic cylinders

Qr.x0; t0/D Br.x0/� .t0� r
sp
p�1 ; t0C r

sp
p�1 /; Q�r .x0; t0/D Br.x0/� .t0� r

sp
p�1 ; t0/;

where Br.x0/ is the ball of radius r centered at x0. When x0 D 0 and t0 D 0, we will simply write Br ,
Qr and Q�r .

3. Weak solutions

In this section, we present our theory of weak solutions of (1-4). The main results are that the Rayleigh
quotient is monotone along the flow (Proposition 3.6) and that “bounded” sequences of weak solutions
are compact (Theorem 3.8). The interested reader could also consult [Hynd and Lindgren 2016], where a
similar theory is built for equation (1-6).

Definition 3.1. Let g 2W s;p
0 .�/. We say that v is a weak solution of (1-4) if

v 2 L1.Œ0;1/IW
s;p
0 .�//; vt 2 L

p.�� Œ0;1//; (3-1)

andZ
�

jvt .x; t/j
p�2vt .x; t/�.x/ dxC

Z
Rn

Z
Rn

Jp.v.x; t/� v.y; t//.�.x/��.y// d�.x; y/D 0 (3-2)

for each � 2W s;p
0 .�/ and for a.e. t > 0, and

v.x; 0/D g.x/: (3-3)

Remark 3.2. We note that if v satisfies (3-1), the Lp norm of v is absolutely continuous in time (one
can for instance adapt the proof of Theorem 3 on page 287 of [Evans 2010]), so that it makes sense to
assign values in Lp.�/ at t D 0, as in (3-3).

In the rest of this section, we derive various identities and estimates for weak solutions.

Lemma 3.3. Assume v is a weak solution of (1-4). Then

Œv. � ; t /�
p

W s;p.Rn/

is absolutely continuous in t and

d

dt

1

p
Œv. � ; t /�

p

W s;p.Rn/
D�

Z
�

jvt .x; t/j
p dx (3-4)

holds for almost every t > 0.

Proof. Define

ˆ.w/ WD

(
1
p
Œw�

p

W s;p.Rn/
; w 2W

s;p
0 .�/;

C1 otherwise

for each w 2 Lp.�/. Then ˆ is convex, proper, and lower-semicontinuous. In addition, (3-2) implies

@ˆ.v. � ; t //D f�jvt . � ; t /j
p�2vt . � ; t /g
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for almost every t > 0. Since t 7! v. � ; t / is absolutely continuous in Lp.�/ (see Remark 3.2) and
since j@ˆ.v/jjvt j 2 L1.�� Œ0; T // for any T > 0, Remark 1.4.6 in [Ambrosio et al. 2008] implies that
t 7!ˆ.v. � ; t // is absolutely continuous and that identity (3-4) holds for a.e. t > 0. �

Lemma 3.4. Assume v is a weak solution of (1-4). Then

d

dt
Œv. � ; t /�

p

W s;p.Rn/
� �p�s;pŒv. � ; t /�

p

W s;p.Rn/
(3-5)

for a.e. t > 0, and
Œv. � ; t /�

p

W s;p.Rn/
� e�.p�s;p/t Œg�W s;p.Rn/ (3-6)

for each t > 0.

Proof. By Lemma 3.3, v. � ; t / is an admissible test function in (3-2), which yields

Œv. � ; t /�
p

W s;p.Rn/
D

Z
Rn

Z
Rn

Jp.v.x; t/� v.y; t//.v.x; t/� v.y; t// d�.x; y/

D�

Z
�

jvt .x; t/j
p�2vt .x; t/ � v.x; t/ dx

�

�Z
�

jvt .x; t/j
p dx

�1� 1
p
�Z

�

jv.x; t/jp dx

�1
p

� �
� 1
p

s;p

�Z
�

jvt .x; t/j
p dx

�1� 1
p

Œv. � ; t /�W s;p.Rn/: (3-7)

Hence,

Œv. � ; t /�
p

W s;p.Rn/
�

1

�s;p

Z
�

jvt .x; t/j
p dx: (3-8)

Identity (3-4) together with (3-8) implies (3-5). From Grönwall’s inequality, we can now deduce inequality
(3-6). �

Corollary 3.5. Let v be a weak solution of (1-4). Then the function

e.�s;pp/t Œv. � ; t /�
p

W s;p.Rn/

is nonincreasing in t and

1

p

d

dt

�
e.�s;pp/t Œv. � ; t /�

p

W s;p.Rn/

�
D e.�s;pp/t

�
�s;pŒv. � ; t /�

p

W s;p.Rn/
�

Z
�

jvt .x; t/j
p dx

�
� 0 (3-9)

for a.e. t � 0.

Proof. The monotonicity is a consequence of (3-5). The identity (3-9) follows from (3-4). �

Proposition 3.6. Assume that v is a weak solution of (1-4) such that v. � ; t /¤ 0 2Lp.�/ for each t � 0.
Then the Rayleigh quotient

Œv. � ; t /�
p

W s;p.Rn/R
� jv.x; t/j

p dx

is nonincreasing in t .
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Proof. By (3-1),
d

dt

Z
�

1

p
jv.x; t/jp dx D

Z
�

jv.x; t/jp�2v.x; t/vt .x; t/ dx (3-10)

for a.e. t > 0. Suppressing the .x; t/-dependence, we compute, using (3-4) in Lemma 3.3 and (3-10), to
find

d

dt

Œv�
p

W s;p.Rn/R
� jvj

p dx
D�p

R
� jvt j

p dxR
� jvj

p dx
�p

Œv�
p

W s;p.Rn/�R
� jvj

p dx
�2 Z

�

jvjp�2vvt dx

D
p�R

� jvj
p dx

�2�Œv�pW s;p.Rn/

Z
�

jvjp�2v.�vt /dx�

Z
�

jvjp dx

Z
�

jvt j
p dx

�
(3-11)

for a.e. t > 0. By Hölder’s inequality,Z
�

jvjp�2v.�vt / dx �

�Z
�

jvjp dx

�1� 1
p
�Z

�

jvt j
p dx

�1
p

;

which together with (3-7) gives

Œv�
p

W s;p.Rn/

Z
�

jvjp�2v.�vt / dx �

Z
�

jvjp dx

Z
�

jvt j
p dx:

Inserted into (3-11), this yields
d

dt

Œv�
p

W s;p.Rn/R
� jvj

p dx
� 0: �

As a corollary, we obtain that any weak solution with a ground state as initial data can be written
explicitly. Since the proof is exactly the same as the proof of the corresponding result in [Hynd and
Lindgren 2016], Corollary 2.5, we have chosen to omit it.

Corollary 3.7. Suppose that v is a weak solution of (1-4) and that g is a ground state of .��p/s . Then

v.x; t/D e��s;ptg.x/:

The following compactness result is the key both to the long time behavior and to the construction of
weak solutions, as we will see. The proof is based on the compact embedding of W s;p

0 .�/ into Lp.�/
and it is fairly similar to the proof of Theorem 2.6 in [Hynd and Lindgren 2016].

Theorem 3.8. Assume fgkgk2N 2 W
s;p
0 .�/ is uniformly bounded in W s;p

0 .�/ and that vk is a weak
solution of (1-4) with vk.x; 0/Dgk.x/. Then there is a subsequence fvkj gj2N�fv

kgk2N and v satisfying
(3-1) such that

vkj ! v in

(
C.Œ0; T �ILp.�// for all T > 0;

Lrloc.Œ0;1/IW
s;p.Rn// for all 1� r <1

(3-12)

and
v
kj
t ! vt in Lploc.Œ0;1/IL

p.�// (3-13)

as j !1. Moreover, v is a weak solution of (1-4), where g is a weak limit of fgkj gk2N in W s;p
0 .�/.
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Proof. As in (3-4),
d

dt

1

p
Œvk. � ; t /�

p

W s;p.Rn/
D�

Z
�

jvkt .x; t/j
p dx (3-14)

for almost every t > 0. After integration, we obtain

p

Z 1
0

Z
�

jvkt .x; t/j
p dx dt C sup

t�0

Œvk. � ; t /�W s;p.Rn/ � 2Œg
k�
p

W s;p.Rn/
: (3-15)

By assumption, the right-hand side above is uniformly bounded. It follows that the sequence fvkgk2N 2

Cloc.Œ0;1/; L
p.�// is equicontinuous, and fvk. � ; t /gk2N 2 W

s;p
0 .�/ is uniformly bounded for each

t � 0. By Theorem 1 in [Simon 1987], we can conclude that there is a subsequence fvkj gj2N � fv
kgk2N

converging in Cloc.Œ0;1/; L
p.�// to some v satisfying (3-1). Passing to a further subsequence, we may

also assume that vkj *v in Lploc.Œ0;1/IW
s;p.Rn//.

Since vkt is bounded in Lp.�� Œ0;1//, we may also assume(
v
kj
t *vt in Lp.�� Œ0;1//;

Jp.v
kj
t / * � in Lq.�� Œ0;1//;

where 1=pC 1=q D 1. We will prove below that

� D Jp.vt /: (3-16)

Let us assume for the moment that (3-16) holds. Note that since the function jzjp is convex,

1

p
Œw�

p

W s;p.Rn/
�
1

p
Œvkj . � ; t /�

p

W s;p.Rn/
�

Z
�

Jp.v
kj
t .x; t//.w.x/� v

kj .x; t// dx

for any w 2W s;p
0 .�/. Integrating over the interval Œt0; t1� and passing to the limit, we obtainZ t1

t0

1

p
Œw�

p

W s;p.Rn/
dt �

Z t1

t0

�
1

p
Œv. � ; t /�

p

W s;p.Rn/
�

Z
�

�.x; t/.w.x/� v.x; t// dx

�
dt:

Here we made use of Fatou’s lemma, the weak convergence of Jp.v
kj
t / and the strong convergence

of vkj.
Therefore,

1

p
Œw�

p

W s;p.Rn/
�
1

p
Œv. � ; t /�

p

W s;p.Rn/
�

Z
�

�.x; t/.w.x/� v.x; t// dx

for a.e. t � 0. In particular, for each � 2W s;p
0 .�/,Z

�

�.x; t/�.x/ dxC

Z
Rn

Z
Rn

Jp.v.x; t/� v.y; t//.�.x/��.y// d�.x; y/D 0 (3-17)

for a.e. t � 0. Thus, once we verify (3-16), v is then a weak solution of (1-4).
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For each interval Œt0; t1�,

lim
j!1

Z t1

t0

Œvkj . � ; t /�
p

W s;p.Rn/
dt

D lim
j!1

Z t1

t0

Z
Rn

Z
Rn

Jp.vkj .x; t/� vkj .y; t//.vkj .x; t/� vkj .y; t// d�.x; y/

D� lim
j!1

Z t1

t0

Z
�

Jp.v
kj
t .x; t//v

kj .x; t/ dx dt

D�

Z t1

t0

Z
�

�.x; t/v.x; t/ dx dt

D

Z t1

t0

Œv. � ; t /�
p

W s;p.Rn/
dt;

where the last equality is a consequence of (3-17). Since weak convergence together with convergence of
the norm implies strong convergence, we have

vkj ! v in Lploc.Œ0;1/IW
s;p.Rn//:

It is now routine to combine the interpolation of Lp spaces with the uniform bound (3-15) to obtain the
stronger convergence vkj ! v in Lrloc.Œ0;1/IW

s;p.Rn// for each 1� r <1. Further, upon extracting
yet another subsequence, we can assume that

Œvkj . � ; t /�
p

W s;p.Rn/
! Œv. � ; t /�

p

W s;p.Rn/
(3-18)

as j !1 for a.e. t � 0.
We will now verify (3-16). As in the proof of Lemma 3.3, (3-17) implies

d

dt

1

p
Œv. � ; t /�

p

W s;p.Rn/
D�

Z
�

�.x; t/vt .x; t/ dx

for a.e. t � 0. Therefore, for each t1 > t0,Z t1

t0

Z
�

�.x; s/vt .x; s/ dx dsC
1

p
Œv. � ; t1/�

p

W s;p.Rn/
D
1

p
Œv. � ; t0/�

p

W s;p.Rn/
: (3-19)

In addition, integrating (3-14) yieldsZ t1

t0

Z
�

1

p
jv
kj
t .x; s/j

p
C
1

q
jJp.v

kj
t .x; s//j

q dx dsC
1

p
Œvkj . � ; t1/�

p

W s;p.Rn/

D
1

p
Œvkj . � ; t0/�

p

W s;p.Rn/
: (3-20)

Let now t0 and t1 be times for which (3-18) holds and pass to the limit to obtainZ t1

t0

Z
�

1

p
jvt .x; s/j

p
C
1

q
j�.x; s/jq dx dsC

1

p
Œv. � ; t1/�

p

W s;p.Rn/
�
1

p
Œv. � ; t0/�

p

W s;p.Rn/
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by weak convergence. Together with (3-19) this impliesZ t1

t0

Z
�

�
1

p
jvt .x; s/j

p
C
1

q
j�.x; s/jq � �.x; s/vt .x; s/

�
dx ds � 0:

Identity (3-16) now follows from the case of equality in Young’s inequality.
Substituting � D Jp.vt / into (3-19) and passing to the limit as j !1 in (3-20) also gives

lim
j!1

Z t1

t0

Z
�

jv
kj
t .x; s/j

p dx ds D

Z t1

t0

Z
�

jvt .x; s/j
p dx ds:

Again, since weak convergence together with convergence of the norm implies strong convergence, we
obtain (3-13). �

Let us now discuss how the ideas above can be used to construct weak solutions. As in [Hynd and
Lindgren 2016], we aim to build weak solutions (1-4) by using the implicit time scheme for � > 0:
v0 WD g,8̂<̂

:Jp
�
vk � vk�1

�

�
C .��p/

svk D 0 for x 2�;

vk D 0 for x 2 Rn n�;

where k D 1; 2; : : : ; N: (3-21)

The direct methods in the calculus of variations can be used to show that this scheme has a unique weak
solution sequence fv1; : : : ; vN g �W s;p

0 .�/ for each � > 0 and N, in the sense thatZ
�

Jp
�
vk.x/� vk�1.x/

�

�
�.x/ dxC

Z
Rn

Z
Rn

Jp.vk.x/� vk.y//.�.x/��.y// d�.x; y/D 0

for any � 2W s;p
0 .�/. Our candidate for a solution v.x; t/ of (1-4) is the limit of vN .x/, when N tends

to infinity with � D t=N.
Choosing � D vk � vk�1 as test function, we obtainZ

�

jvk � vk�1jp

�p�1
dxC

1

p
Œvk�

p

W s;p.Rn/
�
1

p
Œvk�1�

p

W s;p.Rn/
; where k D 1; : : : ; N:

Summing over k D 1; : : : ; j �N yields

jX
kD1

Z
�

jvk � vk�1jp

�p�1
dxC

1

p
Œvj �

p

W s;p.Rn/
�
1

p
Œg�
p

W s;p.Rn/
; (3-22)

which is a discrete analogue of the energy identity (3-4).
Let � D T=N and �k D k� , and define the “linear interpolation” of the solution sequence as

wN .x; t/ WD v
k�1.x/C

�
t � �k�1

�

�
.vk.x/�vk�1.x//; where �k�1� t � �k; kD 1; : : : ; N: (3-23)

From (3-22) we conclude

p

Z T

0

Z
�

j@twN .x; t/j
p dx dt C sup

0�t�T

ŒwN . � ; t /�
p

W s;p.Rn/
� 2Œg�

p

W s;p.Rn/
: (3-24)
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Arguing as in the proof of Theorem 3.8, we can obtain a subsequence wNj and a weak solution w of
(1-1) on �� .0; T / such that

wNj ! w in

(
C.Œ0; T �ILp.�//;

Lp.Œ0; T �IW s;p.Rn//

and (
@twNj ! wt in Lp.�� Œ0; T �/;

Jp.@twNj / * Jp.wt / in Lq.�� Œ0; T �/:

It remains to construct a global-in-time solution. This can be accomplished as follows: Let k 2 N and
let wk be the weak solution of (1-1) above for T D k. Define

zk. � ; t /D

�
wk. � ; t /; t 2 Œ0; k�;

wk. � ; k/; t 2 Œk;1/:

One readily verifies that zk satisfies (3-1). In addition, the proof of Theorem 3.8 can easily be adapted to
give that zk has a subsequence converging as in (3-12) and (3-13) to a global weak solution of (1-4). We
omit the details.

Remark 3.9. At this point, we seize the opportunity to mention that the “step function” approximation

vN . � ; t / WD

�
g; t D 0;

vk; t 2 .�k�1; �k�; k D 1; : : : ; N;
(3-25)

converges in C.Œ0; T �ILp.�// to the same weak solution v as the linear interpolating sequence (3-23).
Indeed, by (3-22),Z

�

jwN .x; t/� vN .x; t/j
p dx � max

1�k�N

Z
�

jvk.x/� vk�1.x/jp dx

�
1

p
�p�1Œg�

p

W s;p.Rn/

D
1

p

�
T

N

�p�1
Œg�
p

W s;p.Rn/
:

This fact will be used in Section 4, where we verify that the viscosity solution we construct is also a weak
solution.

4. Viscosity solutions

Throughout this section we assume that @� is C 1;1, p � 2, g 2W s;p
0 .�/\C.�/ and that there is a

ground state ‰ such that
jgj �‰:

Our main result in this section is:

Proposition 4.1. There is a unique viscosity solution v of the initial value problem (1-4) which is also a
weak solution.
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It is not known whether or not uniqueness holds for weak solutions of (1-4), even in the local
case. However, quite standard methods for viscosity solutions apply to (1-4). The key here is that the
term jvt jp�2vt is strictly monotone with respect to vt . In what follows, we will prove that the discrete
scheme (3-21) converges both to the unique viscosity solution and to a weak solution.

We first define viscosity solutions of the relevant equations.

Definition 4.2. Let � be an open set in Rn and f .x; u/ a continuous function. A function u 2 L1.Rn/
which is upper semicontinuous in � is a subsolution of

.��p/
su� f .x; u/ in �

if the following holds: whenever x0 2� and � 2 C 2.Br.x0// for some r > 0 are such that

�.x0/D u.x0/; �.x/� u.x/ for x 2 Br.x0/��;

then we have

.��p/
s�r .x0/� f .x0; �.x0//;

where

�r D

�
� in Br.x0/;
u in Rn nBr.x0/:

A supersolution is defined similarly and a solution is a function which is both a sub- and a supersolution.

Remark 4.3. For a bounded function f which is C 2 in a neighborhood of x0, we know .��p/
sf .x0/ is

well defined. Indeed, we may split the operator into one integral overB1.x0/ and another over RnnB1.x0/.
The latter is well-defined since f is bounded. For the former, we may write, for " > 0,

2P.V.
Z
B1.x0/

Jp.f .x0/�f .y//jx0�yj�n�sp dy

D 2 lim
"!0

Z
B1nB"

Jp.f .x0/�f .x0Cy//jyj�n�sp dy

D lim
"!0

Z
B1nB"

�
Jp.f .x0/�f .x0Cy//CJp.f .x0/�f .x0�y//

�
jyj�n�sp dy:

Since f is a C 2 function and p � 2, we have the estimate

jf .x/�f .xCy/jp�2.f .x/�f .xCy//Cjf .x/�f .x�y/jp�2.f .x/�f .x�y//� C jyjp:

This is due to the elementary inequalityˇ̌
jaC bjp�2.aC b/� jajp�2a

ˇ̌
� C jbj.jajC jbj/p�2:

Therefore, the integralZ
B1

�
Jp.f .x0/�f .x0Cy//CJp.f .x0/�f .x0�y//

�
jyj�n�sp dy

is absolutely convergent, so that the principal value exists.
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We define viscosity solutions of the evolutionary equation (1-1). We introduce the class of test functions

C
2;1
x;t .D � I /; where D � I � Rn �R;

consisting of functions that are C 2 in the spatial variables and C 1 in t , in the set D � I .

Definition 4.4. Let � 2Rn be an open set, I2R be an open interval. A function v 2L1.Rn�I / which
is upper semicontinuous in �� I is a subsolution of

jvt j
p�2vt C .��p/

sv � C in �� I

if the following holds: whenever .x0; t0/ 2��I and � 2C 2;1x;t
�
Br.x0/� .t0� r; t0C r/

�
for some r > 0

are such that

�.x0; t0/D v.x0; t0/; �.x; t/� v.x; t/ for .x; t/ 2 Br.x0/� .t0� r; t0C r/
then

j�t .x0; t0/j
p�2�t .x0; t0/C .��p/

s�r .x0; t0/� C;

where

�r.x; t/D

�
� in Br.x0/� .t0� r; t0C r/;
v in Rn nBr.x0/� .t0� r; t0C r/:

A supersolution is defined similarly and a solution is a function which is both a sub- and a supersolution.

Remark 4.5. In both of the definitions above, it is obvious that we can replace the condition that �
touches v from above at a point with the condition that v�� has a maximum at a point. In addition, as is
standard when dealing with viscosity solutions, it is enough to ask that � touches v strictly at a point or
equivalently that v�� has a strict maximum at a point.

Now we are ready to treat the implicit scheme (3-21). We first construct viscosity solutions v1; : : : ; vN.

Lemma 4.6. For each N and � , the implicit scheme (3-21) generates viscosity solutions vk 2 C.�/ for
k D 1; : : : ; N. Moreover,

max
1�k�N

sup
Rn
jvkj � sup

Rn
jgj:

Proof. Consider the implicit scheme (3-21) for k D 1:

Jp
�
v1�g

�

�
C .��p/

sv1 D 0; where x 2�:

This means thatZ
�

Jp
�
v1�g

�

�
� dxC

Z
Rn

Z
Rn

Jp.v1.x/� v1.y//.�.x/��.y// d�.x; y/D 0

for any � 2W s;p
0 .�/. The existence of such a weak solution follows from the direct methods of calculus

of variations. Since Jp is strictly increasing, it is standard to prove a comparison principle for weak sub-
and supersolutions; see, for instance, Lemma 9 in [Lindgren and Lindqvist 2014] for a proof. Clearly, the
constant function supRn jgj is a supersolution; hence v1 � supRn jgj. Similarly, v1 � � supRn jgj, and
thus jv1j � supRn jgj. By induction, jvkj � supRn jgj for k D 2; : : : ; N. As the left-hand side of the PDE
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(3-21) is bounded it follows by Theorem 1.1 in [Iannizzotto et al. 2016], that vk is continuous in � for
k D 1; : : : ; N.

That each vk is a viscosity solution can be verified by following the proof of Proposition 11 in [Lindgren
and Lindqvist 2014] line by line. We omit the details. �

The natural candidate for a viscosity solution of (1-4) is limN!1 vN, where vN is defined in (3-25).
Before proving this, we present some technical lemmas.

Lemma 4.7. Let N 2 N. Further assume f 0;  1; : : : ;  N g � C 2.�/ and .x0; k0/ 2 �� f1; : : : ; N g
are such that

vk.x/� k.x/� vk0.x0/� 
k0.x0/ (4-1)

for x in Br.x0/ and k 2 fk0� 1; k0g. Then

Jp
�
 k0.x0/� 

k0�1.x0/

�

�
C .��/sp. 

k0/r.x0/� 0:

Proof. Evaluating the left-hand side of (4-1) at k D k0 gives

Jp
�
vk0.x0/� v

k0�1.x0/

�

�
C .��p/

s. k0/r.x0/� 0;

as vk is a viscosity solution of (3-21). Evaluating the left-hand side of (4-1) at x D x0 and k D k0� 1
gives  k0.x0/� k0�1.x0/� vk0.x0/� vk0�1.x0/. The claim follows from the above inequality and
the monotonicity of Jp. �

Let v and v denote the weak upper and lower limits respectively of vN defined in (3-25), i.e.,

v.x; t/ WD lim sup
N!1

.y;s/!.x;t/

vN .y; s/; v.x; t/ WD lim inf
N!1

.v;s/!.x;t/

vN .y; s/:

By Lemma 4.6, the sequence fvN gN2N is bounded independently of N 2 N. As a result, v and v are
well defined and finite. In addition, v and �v are upper semicontinuous. We recall the following result,
which is Lemma 4.4 in [Hynd and Lindgren 2016]. Its statement there is for smooth �, but the proof
holds also for � as below.

Lemma 4.8. Assume � 2 C 2;1x;t ..�� .0; T //. For N 2 N, define

�N .x; t/ WD

�
�.x; 0/; t D 0;

�.x; �k/; t 2 .�k�1; �k�; k D 1; : : : ; N:

Suppose v� � has a strict local maximum at .x0; t0/ 2�� .0; T /. Then there exist .xj ; tj /! .x0; t0/

and Nj !1, as j !1, such that vNj � �Nj has local maximum at .xj ; tj /. A corresponding result
holds in the case of a strict local minimum.

Before proving the uniqueness of viscosity solutions, we need the following result, which verifies that
whenever we can touch a subsolution from above with a C 2;1x;t function, we can treat the subsolution as a
classical subsolution in space. The proof is almost identical to the one of Theorem 2.2 in [Caffarelli and
Silvestre 2009] or the one of Proposition 1 in [Lindgren 2016].
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Proposition 4.9. Suppose

jvt j
p�2vt C .��p/

sv � C in B1 � I

in the viscosity sense. Further assume that .x0; t0/ 2 B1 � I and � 2 C 2;1x;t
�
Br.x0/� .t0� r; t0C r/

�
are

such that

�.x0; t0/D v.x0; t0/; �.x; t/� v.x; t/ for .x; t/ 2 Br.x0/� .t0� r; t0C r/

for some r > 0. Then .��p/sv is defined pointwise at .x0; t0/ and

j�t .x0; t0/j
p�2�t .x0; t0/C .��p/

sv .x0; t0/� C:

Proof. For 0 < � � r , let

�� D

�
� in B�.x0/� .t0� r; t0C r/;
v in Rn nB�.x0/� .t0� r; t0C r/:

Since v is a viscosity subsolution,

j�t .x0; t0/j
p�2�t .x0; t0/C .��p/

s�� .x0; t0/� C:

Now introduce the notation

ı.��; x; y; t/ WD 1
2
j��.x; t/���.xCy; t/jp�2.��.x; t/���.xCy; t//

C
1
2
j��.x; t/���.x�y; t/jp�2.��.x; t/���.x�y; t//;

ı˙.��; x; y; t/Dmax.˙ı.��; x; y; t/; 0/:

Since �� is C 2 in space near x0, we can substitute �y for y in the integral and obtain the convergent
integral

2

Z
Rn
ı.��; x0; y; t0/jyj

�n�sp dy � C � j�t .x0; t0/j
p�2�t .x0; t0/ WDD: (4-2)

See Remark 4.3 for more details.
We note that

ı.��2 ; x0; y; t0/� ı.�
�1 ; x0; y; t0/� ı.v; x0; y; t0/ for �1 < �2 < r;

so that

ı�.��2 ; x0; y; t0/� ı
�.��1 ; x0; y; t0/� ı

�.v; x0; y; t0/ for �1 < �2 < r: (4-3)

In particular,

ı�.v; x0; y; t0/� jı.�
r ; x0; y; t0/j:

Since
ˇ̌
ı.�r ; x0; y; t0/jyj

�n�sp
ˇ̌

is integrable, so is ı�.v; x0; y; t0/jyj�n�sp. In addition, by (4-2),

2

Z
Rn
ıC.��; x0; y; t0/jyj

�n�sp dy � 2

Z
Rn
ı�.��; x0; y; t0/jyj

�n�sp dyCD:
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Thus, for �1 < �2,

2

Z
Rn
ıC.��1 ; x0; y; t0/jyj

�n�sp dy � 2

Z
Rn
ı�.��1 ; x0; y; t0/jyj

�n�sp dyCD

� 2

Z
Rn
ı�.��2 ; x0; y; t0/jyj

�n�sp dyCD <1; (4-4)

where we have used (4-3).
Since ıC.��; x0; y; t0/% ıC.v; x0; y; t0/, the monotone convergence theorem impliesZ

Rn
ıC.��; x0; y; t0/jyj

�n�sp dy!

Z
Rn
ıC.v; x0; y; t0/jyj

�n�sp dy:

By (4-4),

2

Z
Rn
ıC.v; x0; y; t0/jyj

�n�sp dy � 2

Z
Rn
ı�.��; x0; y; t0/jyj

�n�sp dyCD <1 (4-5)

for any 0<�<r . We conclude that ıC.v; x0; y; t0/jyj�n�sp is integrable. By the dominated convergence
theorem, we can pass to the limit in the right-hand side of (4-5) and obtain

2

Z
Rn
ıC.v; x0; y; t0/jyj

�n�sp dy � 2

Z
Rn
ı�.v; x0; y; t0/jyj

�n�sp dyCD <1:

This is simply another way of writing

2

Z
Rn
ı.v; x0; y; t0/jyj

�n�sp dy �D:

Therefore .��p/sv .x0; t0/ exists in the pointwise sense and .��p/sv .x0; t0/ �D, which concludes
the proof as D D C � j�t .x0; t0/jp�2�t .x0; t0/. �

Proposition 4.10. Assume that u is a viscosity subsolution and that v is a viscosity supersolution of

jvt j
p�2vt C .��p/

sv D 0 in �� .0; T /:

Suppose u; v 2 L1.Rn � Œ0; T �/, u� v in Rn n�� Œ0; T � and

lim sup
.x;t/!.x0;t0/

u.x0; t0/� lim inf
.x;t/!.x0;t0/

v.x0; t0/ for .x0; t0/ 2 @�� .0; T /[�� f0g:

Then u� v.

Proof. We employ the usual trick of adding a term ı=.t � T /; let Qu D uC ı=.t � T /. Then v is a
supersolution, Qu is a subsolution of

jvt j
p�2vt C .��p/

sv D�
ı

.t �T /2
;

Qu < v in Rn n�� Œ0; T � and

lim sup
.x;t/!.x0;t0/

Qu.x0; t0/ < lim inf
.x;t/!.x0;t0/

v.x0; t0/ (4-6)
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for .x0; t0/ 2 @�� .0; T /[�� f0g. Moreover, Qu.x; t/� v.x; t/!�1 as t ! T . It is now sufficient
to prove that Qu� v for any ı > 0 since we can then let ı! 0. We argue by contradiction and assume that

sup
Rn�Œ0;T �

. Qu� v/ > 0:

Fix " > 0 and define

M" WD sup
Rn�Œ0;T ��Rn�Œ0;T �

�
Qu.x; t/� v.y; �/�

jx�yj2Cjt � � j2

"

�
:

Note M" � supRn�Œ0;T �. Qu� v/ > 0 and select x"; y" 2 Rn and t"; �" 2 Œ0; T � for which

M" < Qu.x"; t"/� v.y"; �"/�
jx"�y"j

2Cj�"� t"j
2

"
C ":

By Proposition 3.7 in [Crandall et al. 1992], .x"; t"/ and .y"; �"/ each have subsequences converging to
. Ox; Ot / 2�� .0; T / as "! 0 for which

sup
Rn�Œ0;T �

. Qu� v/D . Qu� v/. Ox; Ot /:

As a result, there is " small enough such that x"; y" 2� and t"; �" 2 .0; T /. For this ", it also follows that
the maximum M" is attained in �� .0; T /��� .0; T /. For convenience, we will again call this point
.x"; t"; y"; �"/.

Observe that the function

jx�y"j
2Cjt � �"j

2

"
C Qu.x"; t"/�

jx"�y"j
2Cjt"� �"j

2

"

touches Qu from above at .x"; t"/ and

jx"�yj
2Cjt"� � j

2

"
� v.y"; �"/�

jx"�y"j
2Cjt"� �"j

2

"

touches �v from above at .y"; �"/. From Proposition 4.9, we can conclude that .��p/s Qu.x"; t"/ and
.��p/

sv.y"; �"/ exist pointwise and satisfy

.��p/
s
Qu .x"; t"/ < .�p/

sv .y"; �"/:

In addition, since the function

Qu.x; t/� v.y; �/�
jx�yj2Cjt � � j2

"

is larger at .x"; y"; t"; �"/ than at .x"Cy; y"Cy; t"; �"/ for any y, we obtain

Qu.x"; t"/� Qu.x"Cy; t"/� v.y"; �"/� v.y"Cy; �"/:

This implies
.��p/

s
Qu .x"; t"/� .��p/

s v.y"; �"/;

which is a contradiction. Therefore, we must have Qu� v. �



1464 RYAN HYND AND ERIK LINDGREN

Now we present a general result for nonlocal parabolic equations, inspired by previous work of Petri
Juutinen [2001, Theorem 1]. This fact will be important in the proof of Hölder regularity of solutions of
(1-1).

Proposition 4.11. Suppose that v is a viscosity subsolution of

jvt j
p�2vt C .��p/

sv � 0

in Br.x0/� .t0� r; t0C r/ and � 2 C 2;1x;t .Br.x0/� .t0� r; t0C r//. If

�.x0; t0/D v.x0; t0/; �.x; t/� v.x; t/ for .x; t/ 2 Br.x0/� .t0� r; t0�; (4-7)

then

j�t .x0; t0/j
p�2�t .x0; t0/C .��p/

s�r .x0; t0/� 0:

Proof. We argue by contradiction. If the assertion is not true then

j�t .x0; t0/j
p�2�t .x0; t0/C .��p/

s�r .x0; t0/� " > 0

for some ". Recall �r is defined in Definition 4.4. By continuity, we have

j�t j
p�2�t C .��p/

s�r � 1
2
" > 0

in B�.x0/� .t0� �; t0/ for � small enough.
Let � W RnC1! R be a smooth function satisfying8̂̂̂̂

<̂̂
ˆ̂̂̂:

0� �� 1;

�.x0; t0/D 0;

�.x; t/ > 0 if .x; t/¤ .x0; t0/;

�.x; t/� 1 if .x; t/ 62 B�.x0/� .t0� �; t0/:

Also define

�ı.x; t/D �.x; t/C ı�.x; t/� ı;

where ı > 0 is considered small. By continuity,

j.�ı/t j
p�2.�ı/t C .��p/

s.�ı/
r
�
1
4
" > 0

in B�.x0/� .t0� �; t0/, provided ı is small enough.
This means that .�ı/r is a supersolution in the pointwise classical sense in B�.x0/� .t0� �; t0/, and

in particular it means that .�ı/r is a viscosity supersolution in this region. Moreover, .�ı/r � �r � v in
the complement of

Rn nB�.x0/� .t0� �; t0/[B�.x0/� ft0� �g:

By Proposition 4.10, .�ı/r � v in Rn � Œt0 � �; t0�. Furthermore, .�ı/r.x0; t0/ � v.x0; t0/ which is a
contradiction since .�ı/r.x0; t0/D �.x0; t0/� ı D v.x0; t0/� ı. �
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Let us now return to our study of the implicit time scheme. We are now in position to construct barriers
that assure that v and v satisfy the correct boundary and initial conditions.

Lemma 4.12. Assume that �‰ � g � ‰, where ‰ is a nonnegative ground state of .��p/s . Then v
and v satisfy the boundary condition in the classical sense; i.e.,

lim
y!x

v.y; t/D lim
y!x

v.y; t/D 0 for any x 2 @� and any t � 0:

Proof. We observe that

�.��p/
s‰�

j‰�gjp�2.‰�g/

�p�1
D��s;p‰

p�1
�
.‰�g/p�1

�p�1
� 0:

Hence ‰ is a supersolution of (3-21). Since ‰ D v1 D 0 in Rn n�, the comparison principle implies

v1 �‰:

We can argue similarly to obtain
jv1j �‰:

Iterating this method for each vk yields jvkj �‰ for any kD 1; : : : ; N. By the definition of vN in (3-25),

jvN j �‰: (4-8)

By inequality (4-8), the assertion would follow as long as ‰ is continuous up to the boundary. To
establish this continuity, we first note that ‰ is globally bounded. This fact is due to Theorem 3.2
in [Franzina and Palatucci 2014], Theorem 3.3 in [Brasco et al. 2014] or Theorem 3.1 together with
Remark 3.2 in [Brasco and Parini 2015]. Theorem 1.1 in [Iannizzotto et al. 2016] can now be used to
establish the desired continuity of ‰. �

Lemma 4.13. Assume g is continuous. Then v and v satisfy the initial condition in the classical sense; i.e.,

lim
t!0

v.x; t/D lim
t!0

v.x; t/D g.x/ for any x 2�:

Proof. Take � to be a bounded, smooth and strictly increasing radial function such that �.0/D 0. Let
d D diam� and

˛p�1 D sup
x2Bd

ˇ̌
.��p/

s�.x/
ˇ̌
:

Clearly ˛ is finite. Now we fix x0 2�. We first prove that given " > 0 there is C D C.x0; "/ such that

u.x/D g.x0/C "CC.˛� C �.x� x0//

lies above v1.
As g is continuous, for each " > 0 there is ı > 0 and C > 0 so that

jg.x/�g.x0/j< " if jx� x0j< ı

and
sup jgj � C�.x� x0/ if jx� x0j � ı:



1466 RYAN HYND AND ERIK LINDGREN

Upon choosing C even larger, we may also assume that u� 0 in Rn n�. In addition

�.��p/
su�

ju�gjp�2.u�g/

�p�1
� Cp�1˛p�1�

�
g.x0/C "CC�.� � x0/�gCC˛�

�p�1
�p�1

� Cp�1˛p�1�Cp�1˛p�1 D 0;

since g.x0/C "CC�. � �x0/�g. � /� 0 by construction. Now it follows from the comparison principle
that

v1.x/� u.x/D g.x0/C "CC.˛� C �.x� x0//:

Arguing in the same fashion, we have

v1.x/� g.x0/� "�C.˛� C �.x� x0//:

Similarly we can obtain the bounds

g.x0/� "�C.k˛� C �.x� x0//� v
k.x/� g.x0/C "CC.k˛� C �.x� x0//

for each k D 1; : : : ; N. Using the definition (3-25) of vN, we also have

vN .x; t/� v
k.x/� g.x0/C "CC.˛k� C �.x� x0//� g.x0/C "CC

�
˛t C˛

T

N
C �.x� x0/

�
for t 2 ..k� 1/�; k�/ as � D T=N. A similar estimate from below holds as well. In total,

g.x0/� "�C
�
˛t C˛

T

N
C �.x� x0/

�
� vN .x; t/� g.x0/C "CC

�
˛t C˛

T

N
C �.x� x0/

�
:

Passing to the liminf and limsup in the above inequalities, we find

g.x0/� "�C.˛t C �.x� x0//� v.x; t/� v.x; t/� g.x0/C "CC.˛t C �.x� x0//:

And after letting x D x0 and t ! 0,

g.x0/� "� lim inf
t!0

v.x0; t /� lim sup
t!0

v.x0; t /� g.x0/C ":

Since both " and x0 2� are arbitrary, the desired result follows. �

Proof of Proposition 4.1. It is enough to show that v is a viscosity subsolution of (1-1). The same
argument (applied to �v) yields that v is a supersolution. Combining Lemma 4.12, Lemma 4.13, and
Proposition 4.10, would then imply v� v. Hence, v WD vD v is continuous and vN converges to v locally
uniformly. The claim would then follow as vN has a subsequence converging to a weak solution of (1-1)
in C.Œ0; T �; Lp.�//; see Remark 3.9.

We now prove that v is a viscosity subsolution of (1-1). Assume that � 2C 2;1x;t .Br.x0/�.t0�r; t0Cr//
and v�� has a strict maximum in Br.x0/� .t0� r; t0C r/ at .x0; t0/ 2�� .0; T /. By Lemma 4.8, there
are points .xj ; tj / converging to .x0; t0/ and Nj 2N tending toC1, as j !1, such that vNj ��Nj has
a maximum in Br.x0/� .t0�r; t0Cr/ at .xj ; tj /. Observe that for each j 2N, we have tj 2 .�kj�1; �kj �
for some kj 2 f0; 1; : : : ; Nj g. Hence, by the definition of vNj and �Nj ,

�� f0; 1; : : : ; Nj g 3 .x; k/ 7! vk.x/��.x; �k/
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has a local maximum in Br.x0/� f0; 1; : : : ; Nj g at .x; k/D .xj ; kj /. By Lemma 4.7,

Jp
�
�.xj ; �kj /��.xj ; �kj�1/

T=Nj

�
C .��p/

s�r.xj ; �kj /� 0:

As �kj�1 D �kj �T=Nj and jtj � �kj j � T=Nj for j 2 N, we can send j !1 above by appealing to
the smoothness of � and arrive at

Jp.�t .x0; t0//C .��p/s�r.x0; t0/� 0:

It follows that v is a viscosity subsolution. �

5. Hölder estimates for viscosity solutions

In this section we prove Theorem 1.1. The proof of this regularity result is based on Lemma 5.1 below.
We start by noting an elementary inequality that will come in handy:

jaC bjp�2.aC b/� 2p�2.jajp�2aCjbjp�2b/; aC b � 0; p � 2: (5-1)

Lemma 5.1. Fix ı > 0. Suppose v is continuous in Q�1 and satisfies (in the viscosity sense)

jvt j
p�2vt C .��p/

sv � 0 in Q�1 ;

v � 1 in Q�1 ;

v.x; t/� 2j2xj� � 1 in Rn nB1 � .�1; 0/;ˇ̌̌̌�
B1�

�
� 1;�

1

2
sp
p�1

��
\fv � 0g

ˇ̌̌̌
> ı:

Then for � small enough, v � 1� � < 1 in Q�
1=2

, where � D �.ı; p; s/ > 0.

Recall that the parabolic cylindersQ�1 andQ�1
2

have been defined on page 1. Before proving this lemma,
we will first need to gain control of a certain function.

Lemma 5.2. Fix ı > 0, let " > 0 and assume the following:

m.t/D e�c1t
Z t

�1

c0e
c1sjG.s/j ds;

G.t/D fx 2 B1 W v.x; t/� 0g;

b.x; t/D 1C "�m.t/�.x/;

0� � � 1; �D 1 in B 1
2
; � 2 C10 .B 3

4
/;ˇ̌̌̌�

B1 �

�
�1;�

1

2
sp
p�1

��
\fv � 0g

ˇ̌̌̌
> ı:

If c0jB1j � 1
2
c1 then

b.x; t/� 1
2
;

and for 0� t � �1=2
sp
p�1 ,

m.t/� c0e
�c1ı:
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Remark 5.3. Note that m solves the equation

m0.t/D c0jG.t/j � c1m.t/

for a.e. t 2 Œ�1; 0�.

Proof. As jG.t/j � jB1j, it follows that m.t/� c0=c1jB1j. And since c0jB1j � 1
2
c1,

b.x; t/� 1C "�
c0

c1
jB1j�.x/� 1C "�

c0

c1
jB1j �

1
2
:

Moreover,

m.t/D e�c1t
Z t

�1

c0e
c1sjG.s/j ds � ec1.�1�t/

Z t

�1

c0jG.s/j ds:

From our hypotheses, Z �1=2 sp
p�1

�1

jG.s/j ds � ı:

Therefore,
m.t/� c0e

�c1ı

for 0� t � �1=2
sp
p�1 . �

Proof of Lemma 5.1. Assume the hypotheses of Lemma 5.2. Choose c0, c1 and " so that

c
p�1
0 < 1=.22p�4CnCspjB1j

p�2/; c0jB1j �
1
2
c1; 22�p.c1/

p�1 > 2 sup
x02B 3

4

.��p/
s

�
�

�.x0/

�
.x0/;

and
2" < e�c1c0ı:

Note that the quantity

2 sup
x02B 3

4

.��p/
s

�
�

�.x0/

�
.x0/

is finite, since the only way it could be infinite is if there is maximizing sequence of points xj where
�.xj /! 0. But then

.��p/
s

�
�

�.xj /

�
.xj /

would be negative for j large enough.
We claim that v � b in Q�1 . Let us describe how the lemma follows once this claim is proved. By the

lower bound on m in Lemma 5.2, we have

b.x; t/� 1C "� e�c1c0ı

for 0� t � �1=2
sp
p�1. Since 2" < e�c1c0ı,

b.x; t/� 1� 1
2
e�c1c0ı:

Therefore,
v � b � 1� �
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in Q�1
2

as long as we choose

� D 1
2
e�c1c0ı:

Let us now prove that v � b in Q�1 . We argue by contradiction. Assume that, starting from t D�1,
the first time v touches b at some point in Q�1 is at the point .x0; t0/. Since �D 0 outside B 3

4
and v � 1

in Q�1 , we know that x0 2 B 3
4

. In addition, since m.�1/ D 0, we know t0 > �1. It is not difficult to
see b touches v from above at .x0; t0/ in the sense of (4-7). In order to simplify the presentation, we first
assume that b is C 1 at .x0; t0/ and explain in the last paragraph of this proof how to relax this assumption.

By Proposition 4.9, .��p/sv.x0; t0/ is well defined and

jbt .x0; t0/j
p�2bt .x0; t0/C .��p/

sv.x0; t0/� 0: (5-2)

Note that bt .x0; t0/D�m0.t0/�.x0/. We will now estimate .��p/s.b�v/ .x0; t0/ from above and from
below and arrive at a contradiction. This part of the proof will be divided into four steps. Along the way,
we will use the notation

LDw .x; t/ WD 2P.V.
Z
y2D

Jp.w.y; t/�w.x; t//
jx�yjnCps

dy

for a measurable function w and an open or closed set D � Rn. Notice that

.��p/
sw D�LRnw:

Step 1: Estimate LB1. Since b. � ; t0/� v. � ; t0/ in B1, (5-1) implies

LB1.b� v/ .x0; t0/D 2P.V.
Z
B1

Jp
�
.b� v/.y; t0/� .b� v/.x0; t0/

�
jx0�yjnCps

dy

� 2p�1P.V.
Z
B1

Jp.b.y; t0/� b.x0; t0//�Jp.v.y; t0/� v.x0; t0//
jx0�yjnCps

dy

D 2p�2
�
LB1b .x0; t0/�LB1v .x0; t0/

�
:

In addition, since v.x0; t0/D b.x0; t0/,

LB1.b� v/ .x0; t0/D 2P.V.
Z
B1

Jp..b� v/.y; t0//
jx0�yjnCps

dy

� 2

Z
G.t0/

jb.y; t0/j
p�2b.y; t0/

jx0�yjnCps
dy

� 2
�
1
2

�nCsp inf
y2B1

jb.y; t0/j
p�1
jG.t0/j

�
�
1
2

�p�2CnCsp
jG.t0/j;

from Lemma 5.2.

Step 2: Estimate LRnnB1 . By our hypotheses,

v.y; t0/� 2j2yj
�
� 1; b D 1C " > 1
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whenever jyj> 1. Hence, b.y; t0/� v.y; t0/� 2.1� j2yj�/ so that

b.y; t0/� v.y; t0/� b.y; t0/� v.y; t0/C 2.j2yj
�
� 1/ (5-3)

and

b.y; t0/� v.y; t0/C 2.j2yj
�
� 1/� 0: (5-4)

By (5-1), (5-3) and (5-4),

LRnnB1.b�v/.x0; t0/� 2

Z
RnnB1

Jp.b.y; t0/�v.y; t0/C2.j2yj��1/�.b.x0; t0/�v.x0; t0///
jx0�yjnCps

dy

� 2p�2
�
�LRnnB1 v.x0; t0/C2

Z
RnnB1

Jp.b.y; t0/C2.j2yj��1/�b.x0; t0//
jx0�yjnCps

dy

�
:

Using (5-4), we obtain the estimate from below

LRnnB1.b� v/ .x0; t0/D 2

Z
RnnB1

Jp.b.y; t0/� v.y; t0//
jx0�yjnCps

dy

� � 2

Z
RnnB1

�
2.j2yj� � 1/

�p�1 dy

jx0�yjnCsp

WD � c�:

We note that lim�!0C c� D 0 by an application of the dominated convergence theorem.

Step 3: Use the equation. The two steps above together imply�
1
2

�p�2CnCsp
jG.t0/j � c� � �.��p/

s.b� v/ .x0; t0/

� 2p�2.��p/
sv .x0; t0/C 2

p�2LB1b.x0; t0/

C 2p�1
Z

RnnB1

Jp.b.y; t0/C 2.j2yj� � 1/� b.x0; t0/
jx0�yjnCps

dy: (5-5)

From inequality (5-2), it follows that

.��p/
sv .x0; t0/� �jbt j

p�2bt .x0; t0/

D jm0.t0/�.x0/j
p�2m0.t0/�.x0/

D
ˇ̌
�.x0/c0jG.t0/j � �.x0/c1m.t0/

ˇ̌p�2�
�.x0/c0jG.t0/j � �.x0/c1m.t0/

�
�
ˇ̌
c0jG.t0/j � �.x0/c1m.t0/

ˇ̌p�2�
c0jG.t0/j � �.x0/c1m.t0/

�
: (5-6)

Using (5-1), with aD c1�.x0/m.t0/� c0jG.t0/j and b D c0jG.t0/j, we then obtain

.c1�.x0/m.t0//
p�1

� 2p�2
ˇ̌
�.x0/c1m.t0/� c0jG.t0/j

ˇ̌p�2�
�.x0/c1m.t0/� c0jG.t0/j

�
C 2p�2.c0jG.t0/j/

p�1:
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After rearranging

2p�2
ˇ̌
c0jG.t0/j � �.x0/c1m.t0/

ˇ̌p�2�
c0jG.t0/j � �.x0/c1m.t0/

�
� 2p�2.c0jG.t0/j/

p�1
� .c1�.x0/m.t0//

p�1: (5-7)

Combining (5-5), (5-6) and (5-7) yields

.c1�.x0/m.t0//
p�1
� 2p�2.c0jG.t0/j/

p�1
C
�
1
2

�p�2CnCsp
jG.t0/j � c�

� 2p�2LB1b.x0; t0/C 2
p�1

Z
RnnB1

Jp.b.y; t0/C 2.j2yj� � 1/� b.x0; t0//
jx0�yjnCps

dy:

Since we assumed at the outset that cp�10 < 1=.22p�4CnCspjG.t0/j
p�2/, we have, by the definition

of b and LB1 ,

22�p.c1�.x0/m.t0//
p�1

� 22�pc�C2P.V.
Z
B1

Jp.m.t0/.�.x0/��.y//
jx0�yjnCps

dyC2

Z
RnnB1

Jp.m.t0/�.x0/C2.j2yj��1//
jx0�yjnCps

dy: (5-8)

Here we also used that �.y/D 0 whenever y 62 B1.

Step 4: Arrive at a contradiction. It follows from the proof of Lemma 5.2 that m is uniformly bounded
with respect to �. Consequently, the second integral on the right-hand side of (5-8) is uniformly bounded
for all small �. We can again apply the dominated convergence theorem to show that the right-hand side
of (5-8) converges to the quantity

�.��p/
sb .x0; t0/D .m.t0//

p�1.��p/
s� .x0/

as �! 0. As m is bounded from below by 1
2

(by Lemma 5.2), there is 
�& 0 as �! 0 such that

22�p.c1�.x0//
p�1
� 
�C .��p/

s� .x0/: (5-9)

In general, x0 will depend on �. Let us now consider two cases depending on the size of .��p/s� .x0/
for � small.

For the first case, we suppose lim sup�!0C.��p/
s� .x0/� 0. Then (5-9) forces lim�!0C �.x0/D 0

as �! 0. It would then follow that .��p/s� .x0/ < �
� for all small � > 0. Together with (5-9), this
would in turn would force �.x0/ < 0 for � small enough, which is a contradiction.

Alternatively if lim sup�!0C.��p/
s� .x0/ > 0, then for some sequence of � ! 0, we have that

.��p/
s� .x0/� 
�. By (5-9),

22�p.c1�.x0//
p�1
� 2.��p/

s� .x0/

along this sequence. Also note that .��p/s� .x0/> 0 implies that x0 2B 3
4

. After dividing by .�.x0//p�1,
we have

22�p.c1/
p�1
� 2.��p/

s

�
�

�.x0/

�
.x0/� 2 sup

x02B 3
4

.��p/
s

�
�

�.x0/

�
.x0/:
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However, by our hypotheses on c1,

22�p.c1/
p�1 > 2 sup

x02B 3
4

.��p/
s

�
�

�.x0/

�
.x0/;

which is a contradiction.

Step 5: Relax the C 1 assumption on b. As mentioned above, m is not necessarily C 1 since jG.t/j is not
necessarily continuous. We have chosen to ignore this fact in the reasoning above in order to make the
proof more accessible. This issue can be handled as follows.

First, set

�k.x; t/ WD

Z 0

�1

�k.t � s/�fv�0g.x; s/ ds

for x 2 Rn and t 2 R, where �k is a standard mollifier. Also define

gk.t/D

Z
B1

�k.x; t/ dx:

Observe gk.t/! jG.t/j a.e. and in L1.R/ as k!1.
Now set

mk.t/ WD e
�c1t

Z t

�1

c0e
c1sgk.s/ ds

for t 2 Œ�1; 0� and

bk.x; t/ WD 1C "�mk.t/�.x/

for .x; t/ 2Q�1 . It is evident that mk!m and bk! b uniformly as k!1.
Recall that b � v � " and bk � v � " on @B1 � Œ�1; 0�[B1 � f�1g. These facts combined with the

above uniform convergence imply that v touches bk from below at some .xk; tk/! .x0; t0/, where v
touches b from below at .x0; t0/. Without loss of generality, we may assume that tk < 0 for all k 2 N

large enough. Moreover, as in Step 1 we find

2P.V.
Z
B1

Jp..bk�v/.y; tk//
jxk�yj

nCps
dy �

�
1
2

�p�2CnCsp inf
y2B1

�
jbk.y; tk/j

1=2

�p�1
gk.tk/

�2

Z
B1

.�k��fv�0g/.y; tk/
jbk.y; tk/j

p�2bk.y; tk/

jxk�yj
nCps

dy: (5-10)

Notice that as k!1,

inf
y2B1

�
jbk.y; tk/j

1=2

�p�1
! inf

y2B1

�
jb.y; t0/j

1=2

�p�1
� 1:

Let us now argue that the second term on the right-hand side of (5-10) goes to zero as k!1.
By Lemma 5.2, b > 0 and so bk > 0 for all k large enough. Hence, v.xk; tk/D b.xk; tk/ > 0. Since

v is continuous, v > 0 in a neighborhood of .xk; tk/ for k large. This means that �k D �fv�0g D 0 in
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B� .xk/� ftkg if � is small enough and k large enough. Hence,Z
B1

.�k ��fv�0g/.y; tk/
jbk.y; tk/j

p�2bk.y; tk/

jxk �yj
nCps

dy

D

Z
B1nB� .xk/

.�k ��fv�0g/.y; tk/
jbk.y; tk/j

p�2bk.y; tk/

jxk �yj
nCps

dy:

As a result, the integrand is uniformly bounded and converges to zero almost everywhere. By Lebesgue’s
dominated convergence theorem, we can conclude

ck WD 2

Z
B1

.�k ��fv�0g/.y; tk/
jbk.y; tk/j

p�2bk.y; tk/

jxk �yj
nCps

dy! 0

as k!1.
Steps 2 and 3 go through with minor modifications, so that we can obtain the following analog of (5-8)

22�p.c1�.xk/mk.tk//
p�1

� 22�p.c�Cck/C2P.V.
Z
B1

Jp
�
mk.tk/.�.xk/��.y//

�
jxk�yj

nCps
dyC2

Z
RnnB1

Jp
�
mk.tk/�.xk/C2.j2yj

��1/
�

jxk�yj
nCps

dy

for all k sufficiently large. We can then send k!1 and recover (5-8). At this point, we can repeat
Step 4 to complete this proof. �

We are now in a position to verify Theorem 1.1 and prove that solutions of equation (1-1) are Hölder
continuous.

Proof of Theorem 1.1. Upon rescaling v by the factor

1

2kvkL1.Rn�Œ�2;0//
;

we may assume that v satisfies

jvt j
p�2vt C .��p/

sv D 0 in Q�2 ; oscRn�Œ�2;0/ v � 1:

We will now show that for any .x0; t0/ 2Q�1 ,

oscQ�
2�j

.x0;t0/ v � 2
�j˛; where j D 0; 1; : : : :

Here ˛ is chosen so that
2� �

2
� 2�˛ and ˛ � �; (5-11)

where � D �.ı.p; s/; p; s/ and � are from Lemma 5.1 with ı.p; s/ WD 1
2

�
1� 1=2

ps
p�1

�
jB1j. This will

imply the desired result with C D 2˛.
To this end, we will find constants aj and bj so that

bj � v � aj in Q�
2�j

.x0; t0/; jaj � bj j � 2
�j˛ (5-12)
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for j 2 Z. We construct these constants by induction on j . For j � 0, (5-12) holds true with bj D
infRn�Œ�2;0/ v and aj D bj C 1.

Now assume (5-12) holds for all j � k. We need to construct akC1 and bkC1. Put mk D 1
2
.akC bk/.

Then

jv�mkj � 2
�k˛�1 in Q�

2�k
.x0; t0/.

Let

w.x; t/D 2˛kC1
�
v.2�kxC x0; 2

�k
 t C t0/�mk
�
; 
 D

sp

p� 1
:

Then

jwt j
p�2wt C .��p/

sw D 0 in Q�1

and

jwj � 1 in Q�1 :

It also follows for jyj> 1, such that 2` � jyj � 2`C1, and t � �2
.`C1/ that

w.y; t/D 2˛kC1
�
v.2�kyC x0; 2

�k
 t C t0/�mk
�
� 2˛kC1.ak�`�1�mk/

� 2˛kC1.ak�`�1� bk�`�1C bk �mk/

� 2˛kC1
�
2�˛.k�`�1/� 1

2
2�k˛

�
� 21C˛.`C1/� 1� 2j2yj˛ � 1

� 2j2yj� � 1:

Here we used that (5-12) holds for j � k.
Suppose now thatˇ̌

f.x; t/ W w.x; t/� 0g\
˚
B1 �

�
�1;�1

2

�	ˇ̌
�
1
2
.1� 1=2

ps
p�1 /jB1j D ı.p; s/:

If not we would apply the same procedure to �w. Then w satisfies all the assumptions of Lemma 5.1
with ı D ı.p; s/, and so

w � 1� � in Q�1
2

:

Scaling back to v yields

v.x; t/� 2�1�˛k.1� �/Cmk � 2
�1�k˛.1� �/C 1

2
akC bk

� bkC 2
�1�˛k.1� �/C 2�1�˛k

� bkC 2
�˛.kC1/

for .x; t/2Q2�k�1.x0; t0/, by (5-11). Hence, if we let bkC1D bk and akC1D bkC2�˛.kC1/, we obtain
(5-12) for the step j D kC 1 and the induction is complete. �
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6. Large time limit

In this section, we prove Theorem 1.2 and Theorem 1.3. The main tools are the monotonicity of the
Rayleigh quotient and the W s;p seminorm (equation (3-11) and Proposition 3.6), the compactness of
weak solutions (Theorem 3.8) and the Hölder estimates (Theorem 1.1). In order to control the sign of the
limiting ground state, we also need the following lemma.

Lemma 6.1. Assume that v is a weak solution of (1-4). For any positive ground state w for .��p/s and
any constant C > 0, there is a ı D ı.w; C / > 0 such that if

(1) Œv. � ; 0/�p
W s;p.Rn/

� �s;p

Z
�

jwjp dx,

(2)
Z
�

jv.x; 0/jp dx � C ,

(3)
Œv. � ; 0/�

p

W s;p.Rn/R
� jv.x; 0/j

p dx
� �s;pC ı,

(4)
Z
�

jvC.x; 0/jp dx �
1

2

Z
�

jwjp dx,

then Z
�

je�s;ptvC.x; t/jp dx �
1

2

Z
�

jwjp dx (6-1)

for t 2 Œ0; 1�.

Proof. We argue towards a contradiction. If the result fails, then there are w and C such that for every
ı > 0, there is a weak solution v that satisfies (1)–(4) while (6-1) fails. Therefore, associated to ıj WD 1=j
.j 2 N/, there is a weak solution vj that satisfies

(1) Œvj . � ; 0/�
p

W s;p.Rn/
� �s;p

Z
�

jwjp dx,

(2)
Z
�

jvj .x; 0/j
p dx � C ,

(3)
Œvj . � ; 0/�

p

W s;p.Rn/R
� jvj .x; 0/j

p dx
� �s;pC

1

j
,

(4)
Z
�

jvCj .x; 0/j
p dx �

1

2

Z
�

jwjp dx,

while Z
�

je�s;ptj vCj .x; tj /j
p dx <

1

2

Z
�

jwjp dx (6-2)

for some tj 2 Œ0; 1�.
Consequently, the sequence of initial conditions .vj . � ; 0//j2N is bounded in W s;p

0 .�/ and has a
subsequence (not relabeled) that converges to a positive ground state g of .��p/s in W s;p.Rn/. By
Theorem 3.8, it also follows that (a subsequence of) the sequence of weak solutions .vj /j2N converges
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to a weak solution Qw in C.Œ0; 2�; Lp.�//\Lp.Œ0; 2�IW s;p.Rn// with Qw. � ; 0/D g. By Corollary 3.7,
Qw. � ; t /D e��s;ptg.

In addition, by (1) and since g is a ground state,Z
�

jgjp dx D
1

�s;p
Œg�
p

W s;p.Rn/
D

1

�s;p
lim
j!1

Œvj .x; 0/�
p

W s;p.Rn/
�

Z
�

jwjp dx:

However, sending j !1 in (6-2) givesZ
�

jgjp dx D

Z
�

jgCjp dx �
1

2

Z
�

jwjp dx:

This is a contradiction as w 6� 0. �

Corollary 6.2. Assume that v is a weak solution of (1-4). For any positive ground state w for .��p/s

and any constant C > 0, there is a Qı D Qı.w; C / > 0 such that if

(1) e�s;ppt Œv. � ; t /�p
W s;p.Rn/

� �s;p

Z
�

jwjp for all t � 0,

(2)
Z
�

jv.x; 0/jp dx � C ,

(3)
Œv. � ; 0/�

p

W s;p.Rn/R
� jv.x; 0/j

p dx
� �s;pC Qı,

(4)
Z
�

jvC.x; 0/jp dx �
1

2

Z
�

jwjp dx,

then Z
�

je�s;ptvC.x; t/jp dx �
1

2

Z
�

jwjp dx

for all t � 0.

Proof. Choose
Qı Dmin

�
�s;p; ı.w; 2C /

�
;

where ı.w; 2C / is from Lemma 6.1. It is clear that v satisfies the assumptions of Lemma 6.1, so that in
particular Z

�

je�s;pvC.x; 1/jp dx �
1

2

Z
�

jwjp dx:

By Proposition 3.6 combined with (2) and (3)Z
�

je�s;ptv.x; t/jp dx �
1

�s;p
Œe�s;ptv. � ; t /�

p

W s;p.Rn/
�

1

�s;p
Œv. � ; 0/�

p

W s;p.Rn/
� C

�
1C

Qı

�s;p

�
� 2C

for any t > 0.
The above inequality, together with (1) and the monotonicity of the Rayleigh quotient, implies that

e�s;pkv.x; t C k/ satisfies properties (1)–(3) in Lemma 6.1 with C replaced by 2C. In particular,
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Lemma 6.1 applied to e�s;pv.x; t C 1/ yieldsZ
�

je2�s;pvC.x; 2/jp dx �
1

2

Z
�

jwjp dx:

Now we can apply Lemma 6.1 repeatedly to e�s;pkv.x; t C k/ for k D 2; 3; : : : in order to obtain the
desired result. �

We are now ready to treat the large time behavior of solutions of equation (1-4).

Proof of Theorem 1.2. Let v be a weak solution of (1-4). By (3-9) in Corollary 3.5,

d

dt
Œe�s;ptv. � ; t /�

p

W s;p.Rn/
� 0 (6-3)

for almost every t � 0. Consequently, the limit

S WD lim
t!1

Œe�s;ptv. � ; t /�
p

W s;p.Rn/

exists. If S D 0, there is nothing else to prove. Let us assume otherwise.
Let �k be an increasing sequence of positive numbers such that �k!1 as k!1, and define, for

k D 1; 2; 3; : : :,

vk.x; t/D e�s;p�kv.x; t C �k/: (6-4)

Then vk is a weak solution of (1-4) with initial data

gk.x/ WD e�s;p�kv.x; �k/:

By (6-3), gk 2 W s;p
0 .�/ is uniformly bounded in W s;p.Rn/. Hence, it is clear that vk satisfies the

hypotheses of Theorem 3.8. Therefore, we can extract a subsequence fvkj gj2N converging to a weak
solution w as detailed in Theorem 3.8. We may also assume that vkj . � ; t / converges to w. � ; t / in
W s;p.Rn/ for almost every time t � 0 since this occurs for a subsequence.

We now observe that by (6-3)

S D e�s;ppt lim
j!1

Œvkj . � ; t /�
p

W s;p.Rn/
D e�s;ptpŒw. � ; t /�

p

W s;p.Rn/
(6-5)

for almost every time t �0. Since Œ0;1/3 t 7! Œw. � ; t /�
p

W s;p.Rn/
is absolutely continuous (by Lemma 3.3),

S D e�s;ptpŒw. � ; t /�
p

W s;p.Rn/

holds for all t � 0. As w is a solution of (1-4), (3-9) in Corollary 3.5 implies

0D
1

p

d

dt

�
e�s;ptpŒw. � ; t /�

p

W s;p.Rn/

�
D e.�s;pp/t

�
�s;pŒw. � ; t /�

p

W s;p.Rn/
�

Z
�

jwt .x; t/j
p dx

�
for almost every t � 0.

A more careful inspection of the proof of (3-8) reveals that if

�s;pŒw. � ; t /�
p

W s;p.Rn/
D

Z
�

jwt .x; t/j
p dx
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then we must have Œw. � ; t /�p
W s;p.Rn/

D �s;p
R
� jw.x; t/j

p dx. Therefore w. � ; t / is a ground state for
almost every t > 0. The absolute continuity of Œw. � ; t /�W s;p.Rn/ and kw. � ; t /kLp.�/ then implies that
w. � ; t / is a ground state for all t � 0. By Corollary 3.7,

w.x; t/D e��s;ptw0;

where w0.x/D w.x; 0/ is a ground state.
For any t0 2 Œ0; T � such that the limit (6-5) holds, we have, by Proposition 3.6,

lim
t!1

Œv. � ; t /�
p

W s;p.Rn/R
� jv.x; t/j

p dx
D lim
j!1

Œv. � ; �kj C t0/�
p

W s;p.Rn/R
� jv.x; �kj C t0/j

p dx
D lim
j!1

Œvkj . � ; t0/�
p

W s;p.Rn/R
� jv

kj .x; t0/jp dx

D
Œw. � ; t0/�

p

W s;p.Rn/R
� jw.x; t0/j

p dx
D
Œw0�

p

W s;p.Rn/R
� jw0j

p dx
D �s;p:

Since weak convergence together with the convergence of the norm implies strong convergence, the
limit w0 D limj!1 e

�s;p�kj v. � ; �kj / holds in W s;p.Rn/. We conclude that fe�s;p�kv. � ; �k/gk2N has a
subsequence converging in W s;p.Rn/ to a ground state w0.

Recall that, due to the simplicity of the ground states, w0 is determined completely by its sign and the
constant

S D Œw0�
p

W s;p.Rn/
:

We may assume w0 � 0; if not we can consider �v instead.
Now we note that for any t � 0,

e�s;ppt Œv. � ; t /�
p

W s;p.Rn/
� lim
j!1

e
�s;pp�kj Œv. � ; �kj /�

p

W s;p.Rn/
D Œw0�

p

W s;p.Rn/
D �s;p

Z
�

jw0j
p: (6-6)

Since vkj .x; 0/D gkj .x/ converges in W s;p.Rn/ to ground state w0, we also have

lim
j!1

Œvkj . � ; 0/�
p

W s;p.Rn/R
� jv

kj .x; 0/jp dx
D �s;p (6-7)

and Z
�

j.vkj .x; 0//Cjp dx �
1

2

Z
�

jw0j
p dx (6-8)

whenever j is large enough. In addition, due to the monotonicity of the W s;p norm,Z
�

jvkj .x; 0/jp dx �
1

�s;p
Œvkj . � ; 0/�

p

W s;p.Rn/
�

1

�s;p
Œg�
p

W s;p.Rn/
; (6-9)

where gD v. � ; 0/. From (6-6)–(6-9), it is clear that for j large enough, vkj satisfies assumptions (1)–(4)
in Corollary 6.2, with w D w0 and C D Œg�p

W s;p.Rn/
=�s;p. As a result,Z

�

je�s;pt .vkj /C.x; t/jp dx �
1

2

Z
�

jw0j
p dx
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for all t � 0, which implies Z
�

je�s;pt .v/C.x; t/jp dx �
1

2

Z
�

jw0j
p dx (6-10)

for t large enough.
Suppose now that we pick another convergent subsequence of fe�s;p�kv. � ; �k/gk2N. Then arguing as

above, the sequence converges in W s;p.Rn/ to a ground state w1 and by (6-5),

Œw1�
p

W s;p.Rn/
D S:

By the simplicity of ground states, w1 D w0 or w1 D�w0. Passing t !1 in (6-10), we obtainZ
�

.wC1 /
p dx �

1

2

Z
�

jw0j
p dx;

forcing w1 to be positive and hence w1 Dw0. As the sequence f�kgk2N was chosen arbitrarily, it follows
that e�s;ptv. � ; t /! w0 as t !1 in W s;p.Rn/. �

We are finally in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Let �k be an increasing sequence of positive numbers such that �k ! 1 as
k !1. In Theorem 1.2, we established that limk!1 e�s;p�kv. � ; �k/ D w in W s;p.Rn/. In view of
Proposition 4.1, it suffices to show that this convergence occurs uniformly on �.

To this end, define vk as in (6-4). We also remark that e��s;pt‰ is a solution of equation (1-1). By
the comparison principle,

jvk.x; t/j �‰.x/ (6-11)

for .x; t/ 2 Rn � Œ�1; 1� for all k 2 N large enough. These bounds with Theorem 1.1 give that vk is
uniformly bounded in C ˛.B � Œ0; 1�/ for any ball B b�. By a routine covering argument, vk is then
uniformly bounded in C ˛.K � Œ0; 1�/ for any compact K b�. We now claim that the sequence vk is
equicontinuous in �� Œ0; 1�.

Fix " > 0. Recall that ‰ is continuous up to the boundary of �. By (6-11), it follows that there
is ı so that jvk.x; t/j � 1

2
" whenever d.x/ WD d.x; @�/ < ı and t 2 Œ0; 1�. Now we will show that if

jx�yjCjt�� j is small enough, then jvk.x; t/�vk.y; �/j � ". We treat three cases differently as follows.

(1) d.x/ < 1
2
ı and d.y/ < 1

2
ı: Then

jvk.x; t/� vk.y; �/j � jvk.x; t/jC jvk.y; �/j � ":

(2) d.x/ < 1
2
ı and d.y/ > 1

2
ı: Then jx�yj< 1

2
ı implies d.y/ < ı so that again

jvk.x; t/� vk.y; �/j � jvk.x; t/jC jvk.y; �/j � ":

(3) d.x/ > 1
2
ı and d.y/ > 1

2
ı: Then by the local Hölder estimates,

jvk.x; t/� vk.y; �/j � Cı.jx�yjC jt � � j/
˛
� "

if we choose jx�yjC jt � � j � ."=Cı/1=˛.
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Hence, if
jx�yjC jt � � j �min

�
1
2
ı; ."=Cı/

1=˛
�

then jvk.x; t/ � vk.y; �/j � ". Therefore, the sequence vk is equicontinuous on � � Œ0; 1�. By the
Arzelà–Ascoli theorem, we can extract a subsequence vkj converging to e��s;ptw, the limit in (1-5),
uniformly in �� Œ0; 1�. �
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