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BOUNDARY C1,α REGULARITY OF POTENTIAL FUNCTIONS
IN OPTIMAL TRANSPORTATION WITH QUADRATIC COST

ELINA ANDRIYANOVA AND SHIBING CHEN

We provide a different proof for the global C1,α regularity of potential functions in the optimal transport
problem, which was originally proved by Caffarelli. Our method applies to a more general class of domains.

1. Introduction

We study the global C1,α regularity of potential functions in optimal transportation with quadratic cost.
Let � and �∗ be the source and target domains associated with densities 1/C < f <C and 1/C < g<C ,
respectively, where C is a positive constant. The optimal transport problem with quadratic cost is about
finding a map T :�→�∗ among all measure-preserving maps minimizing the transportation cost∫

�

|x − T x |2 dx .

Here the term “measure-preserving” means that
∫

T−1(B) f =
∫

B g for any Borel set B ⊂ �∗. Brenier
[1991] proved that one can find a convex function u such that

T (x)= Du(x) for a.e. x ∈�.

Indeed, the convex function u satisfies
∫
(∂u)−1 B f =

∫
B g for any Borel set B⊂�, where ∂u is the standard

subgradient map of the convex function u. We call u a Brenier solution of the optimal transport problem if
it satisfies the property above. When the target domain �∗ is convex, Caffarelli proved that ∂u(�)=�∗

and that u is an Alexandrov solution, namely u satisfies (1/C)|A ∩�| ≤ |∂u(A)| ≤ C |A ∩�| for any
Borel set A ⊂�. Moreover, if we extend u to Rn via

ũ := sup{L | L is linear, L|� ≤ u, L(z)= u(z) for some z ∈�},

then ũ is a globally Lipschitz convex solution of

C−1χ� ≤ det ũi j ≤ Cχ�.

We will still use u to denote this extended function. Caffarelli [1992b] proved interior C1,α regularity
by using his techniques for studying the standard Monge–Ampère-type equation; see [Caffarelli 1990a;
1990b; 1991].
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Then, Caffarelli [1992a] proved the boundary C1,α regularity result under the condition that both �
and �∗ are convex. Below we will briefly discuss the main ideas involved in his proof. First, Caffarelli
established a fundamental property of convex functions, namely the existence of sections centred at a given
point (see the statement of Lemma 2.5). Then, he proved that such sections are decaying geometrically,
namely there exists a constant δ such that

Sδh(y)⊂ 3
4 Sh(x) for any y ∈ 1

2 Sh(x). (1-1)

Here Sh(x) denotes the section of u centred at x with height h. From (1-1) we obtain the quantitative
strict convexity estimate

u(z)≥ u(x)+ Du(x) · (z− x)+C |z− x |β for any x, z ∈�, (1-2)

for some β > 1. From (1-2), it is easy to check that u∗, the standard Legendre transform of u, is C1,α

on�∗. Recall the well-known fact that u∗ is indeed the potential function of the optimal transport problem
from �∗ to �. Therefore, by switching the role of u and u∗ one can show the global C1,α regularity of u.

The convexity of domains is crucial in Caffarelli’s approach. Indeed, the convexity of � ensures that u∗

is an Alexandrov solution, while the convexity of �∗ ensures that the sections of u∗, centred at some point
in �∗, have some doubling property. Here we provide a different proof of the global C1,α result. Instead
of deducing the C1,α regularity of u from the strict convexity of u∗, we prove the C1,α regularity of u
directly. Moreover, our method works for a slightly more general class of domains, namely we allow the
source to be a domain obtained by removing finitely many disjoint convex subsets from a convex domain.

We would like to mention that in recent years the regularity of optimal transport maps has attracted
much interest and there are many important works related to it; to cite a few, see [Figalli and Loeper
2009; Liu 2009; Trudinger and Wang 2009b; 2009a; Figalli and Rifford 2009; Loeper 2011; Loeper and
Villani 2010; Liu et al. 2010; Kim and McCann 2010; Figalli et al. 2010; 2011; 2012; 2013a; 2013b].

The rest of the paper is organized as follows. In Section 2 we introduce some notations and preliminaries,
and state the main results. Section 3 is devoted to the proof of global C1 regularity. In the last section we
complete the proof of the main results.

2. Preliminaries and main result

The main result of this paper is the following theorem:

Theorem 2.1. Let � and �∗ be two bounded domains in Rn , n ≥ 2, and f and g be densities of two
positive probability measures defined in � and �∗, respectively, satisfying C−1

≤ f , g ≤ C for a positive
constant C. Assume that �∗ is convex and � is Lipschitz.

(i) If , for any given x ∈ �, there exists a small ball Brx (x) such that, for any convex set ω ⊂ Brx (x)
centred in �, we have

∫
ω

f ≤ C
∫
ω/2 f for some constant C independent of ω, then the potential

function u is C1(�). (Here f is defined to be 0 outside �.)

(ii) If � is a domain obtained by removing finitely many disjoint convex subsets from a convex set, then
the potential function u is C1,α(�) for some α ∈ (0, 1).
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Remark 2.2. (a) It is easy to see that in Theorem 2.1(i) we allow � to be any polytope (not necessarily
convex). We also note that the C1 regularity always holds in dimension two without any condition on �.
This is a classical result of Alexandrov; see also [Figalli and Loeper 2009].

(b) One may want to prove higher regularity when the densities are smooth; however, in view of the
following simple example we see that this is impossible. Let the dimension be n = 2. Let � := B2− B1,
with uniform probability density, and let �∗ := B√3, with uniform probability density. Then by symmetry
it is easy to compute that the optimal transport map is T (x) =

√
|x |2− 1 x/|x |, which is only C1/2

on ∂B1 ⊂ ∂�.

In the following we will use Sh(x0) to denote a section of u with height h, namely

Sh(x0) := {x | u < p · (x − x0)+ h},

where p is chosen so that x0 is the centre of mass of Sh(x0). We say a point x0 ∈ � is localized (with
respect to u) if, for any sequences hk → 0 and xk → x0 satisfying x0 ∈ Shk (xk), we have that Shk (xk)

shrinks to the point x0 ∈�.
Now we record a fundamental property of convex sets.

Lemma 2.3 (John’s lemma). Let U ⊂ Rn be a bounded, convex domain with its centre of mass at the
origin. There exists an ellipsoid E , also centred at the origin, such that

E ⊂U ⊂ n3/2 E .

The original John’s lemma does not require that the ellipsoid is centered at the origin, and the constant
n3/2 can be replaced by n. We refer the reader to [Liu and Wang 2015] for a simple proof of the existence
and uniqueness of such an ellipsoid.

By John’s lemma we can show the following property of convex functions:

Lemma 2.4. Let u :Rn
→R be a convex function. Let L be a supporting function of u. Then any extreme

point of {u = L} is localized.

Proof. Suppose to the contrary that there exists an extreme point x0 of {u = L} which is not localized.
Then there exist sequences xk → x0 and hk → 0 such that x0 ∈ Shk (xk), and that Shk (xk) contains a
segment of length greater than or equal to some positive constant δ. Since Shk (xk) is convex and centred
at xk , by John’s lemma there exists a unit vector ξk such that Ik , the segment connecting xk− δ/(2n3/2) ξk

and xk + δ/(2n3/2) ξk , is contained in Shk (xk). Denote by Lk the defining function of Shk (xk), namely
Shk (xk) = {u ≤ Lk}. Then it is easy to see that DLk is bounded; hence, by passing to a subsequence,
Lk → L∞ for some linear function L∞. Also by passing to a subsequence we may assume ξk → ξ∞

for some unit vector ξ∞. Then u is linear on I∞, which is the segment connecting x0 − δ/(2n3/2) ξ∞

and x0 + δ/(2n3/2) ξ∞. Hence I∞ ⊂ {u = L}, which contradicts the assumption that x0 is an extreme
point of {u = L}. �

The following property of sections of convex functions was proved by Caffarelli [1992a]. Here we
provide a different proof by using a well-known fact that if a continuous map from a ball to itself fixes the
boundary then it must be surjective. We learned this method from Wang; see [Sheng et al. 2004, Section 4].
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Lemma 2.5. Let u : Rn
→ [0,∞] be a convex function. Assume that:

(1) u(0)= 0, u ≥ 0.

(2) u is finite in a neighbourhood of 0.

(3) The graph of u contains no complete lines.

Then for h > 0 there exists a slope p such that the centre of mass of the section

Sh,p := {x | u ≤ x · p+ h}

is defined and equal to 0.

Proof. Let {
uk(x)= u(x) in Bk,

uk =∞ in Rn
− Bk .

(2-1)

We only need to show the existence of sections Sk
:= {x | uk ≤ x · pk + h} centred at 0 with bounded pk .

Then Sh,p = limk→∞ Sk is the desired section in the lemma.
Take a large ball Br . For any p∈ Br , let z p be the centre of mass of the section Sp :={x |uk(x)≤ x ·p+h}.

Then we obtain a mapping M1 : p→ z p from Br to Rn . If p ∈ ∂Br , it is easy to see that p · z p > 0
provided r is sufficiently large.

If there is no p ∈ Br such that z p = 0, then we can define a mapping M2 : z p→ tpz p, where tp > 0 is
a constant such that tpz p ∈ ∂Br . We then obtain a continuous mapping M = M2 ◦M1 from Br to ∂Br

with the property that
p ·M(p) > 0 on ∂Br . (2-2)

To get a contradiction, we extend the mapping M to B2r as follows. For any point p ∈ ∂B2r , let
p1 = p, p0 =

1
2 p ∈ ∂Br and pt = (1 − t)p0 + p1. We extend the mapping M to B2r by letting

M(pt)= (1− t)M(p0)+ tp1. Then, by (2-2), M(p) 6= 0 on B2r and M is the identity mapping on ∂B2r .
This is a contradiction.

Hence, for each k > 0, there exists a pk ∈ Rn such that Sk
:= {x | uk ≤ x · pk + h} is centred at 0.

Moreover, |pk | ≤ C for some constant independent of k. Indeed, we can argue as follows: By rotating the
coordinates we may assume pk = (a, 0, . . . , 0) with a > 0. Let α+ = sup{x1 | (x1, 0, . . . , 0) ∈ Sk

} and
α− =− inf{x1 | (x1, 0, . . . , 0) ∈ Sk

}. Then α+/α−→∞ as a→∞. Since Sk is centred at 0, a cannot
be too large. �

The following Alexandrov-type estimates were proved by Caffarelli [1996]:

Lemma 2.6. Let u be a convex solution of

det D2u = dµ

in the convex domain S with u = 0 on ∂S. Assume S is normalized, namely B1 ⊂ S ⊂ n3/2 B1. Assume
dµ(S)≤ θ dµ

(1
2 S
)

for some constant θ , where 1
2 S is a dilation of S with respect to the origin.

(a) (1/C)|infS u|n ≤ dµ(S)≤ C |infS u|n , where C is a constant depending only on θ .

(b) |u(x)|n ≤ C dµ(S) d(x, ∂S).
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3. Global C1 regularity

In this section, we prove Theorem 2.1(i).

Lemma 3.1. Suppose u is a globally Lipschitz convex function. Assume that u is C1 at all of the extreme
points of a convex set K = {u = L}, where L is a linear function satisfying u ≥ L and u(y)= L(y) for
some y ∈ Rn . Then u is C1 on K .

Proof. By subtracting L we may assume K = {u = 0}. If K is a bounded convex set, then for any x ∈ K
we have

x =
k∑

i=1

λi xi ,

where xi , i = 1, . . . , k, are extreme points of K , λi ≥ 0 and
∑k

i=1 λi = 1. Since u is C1 at xi , i = 1, . . . , k,
we have 0≤ u(z)= o(z− xi ), i = 1, . . . , k. Now, by convexity we have

0≤ u(z)= u
( k∑

i=1

λi (z− x + xi )

)
≤

k∑
i=1

λi u(z− x + xi )=

k∑
i=1

λi o(z− x)= o(z− x).

Hence, u is C1 at x .
If K is unbounded, it is well-known that K = covext[K ] + rc[K ], where covext[K ] is the convex

hull of the extreme points of K , and rc[K ] := limλ↓0 λK is the recession cone of K . Hence we need
only to show that u is C1 at points represented by x = x0 + q, where x0 is an extreme point of K
and q ∈ rc[K ]. For any M ≥ 0, by using the facts that u is Lipschitz and x1 := x0+Mq ∈ K we have
that u(z− x + x1)≤ C |z− x |. By convexity we have

u(z)= u
(

M−1
M

(z− x + x0)+
1
M
(z− x + x1)

)
≤

M−1
M

o(|z− x |)+ C
M
|z− x |.

By letting M→∞ we have 0≤ u(z)≤ o(|z− x |). Hence u is C1 at x . �

Since u is convex, for any unit vector γ the lateral derivatives

∂+γ u(x)=: lim
t↘0

t−1(u(x + tγ )− u(x)) and ∂−γ u(x)=: lim
t↘0

t−1(u(x)− u(x − tγ ))

exist. To prove that u ∈ C1(�), it suffices to prove that

∂+γ u(x0)= ∂
−

γ u(x0) (3-1)

at any point x0 ∈ ∂� for any unit vector γ . By convexity, it suffices to prove this for ξ = ξk for all
k = 1, 2, . . . , n, where ξk , k = 1, . . . , n, are any n linearly independent unit vectors.

Proof of Theorem 2.1(i). By Lemmas 3.1 and 2.4 we only need to show that u is C1 at localized points.
Assume to the contrary that u is not C1 at x0 ∈ ∂�. Let us assume that x0 = 0, u(0) = 0, u ≥ 0 and
∂+1 u(0) > ∂−1 u(0)= 0. Since ∂� is Lipschitz, we may also assume that −te1 ∈� for t ∈ (0, 1), where e1

is the first coordinate direction.
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h
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u

0-r0 ¶-a¢ e1

Figure 1. Centred section.

Now we consider a section Sh(x ′), where x ′ = (−a′, 0, . . . , 0) for some small constant 0< a′ < 1
2r0,

where r0 := rx0 is the radius in the condition of Theorem 2.1(i). Note that by John’s lemma there exists an
ellipsoid E with centre x ′ such that E ⊂ Sh(x ′)⊂ n3/2 E . Since u is Lipschitz and ∂+1 u(0) > 0, we have
that C−1ε ≤ u(εe1)≤ Cε for any small positive ε, where C is a positive constant. Since ∂−1 u(0)= 0, we
have u(−Ma′e1)= o(a′), where M = 2n3/2. Hence, we can choose small ε and a′ so that the following
properties hold:

(1) o(a′)= u(−Ma′e1)≤ C−1ε� a′,

(2) εe1 is on the boundary of some section Sh(x ′), and

(3) Sh(x ′)⊂ Br0(0).

The existence of such a section Sh(x ′) in (2) follows from the property that a centred section, say Sh(x),
various continuously with respect to the height h; see [Caffarelli and McCann 2010, Lemma A.8], and
(3) follows from the assumption that x0 = 0 is localized.

Let L be the defining linear function of Sh(x ′); by (1) it is easy to see that L is increasing in the e1

direction (see Figure 1); hence,

(L − u)(0)≥ (L − u)(x ′)= h. (3-2)

Since
∫

Sh(x ′)
f ≤ C

∫
1
2 Sh(x ′)

f , we have that

(L − u)(0)≤ C
(
ε

a′

)1
n

h, (3-3)

contradicting (3-2), since a′� ε. Here we have followed the argument of [Caffarelli 1996]. Indeed, let
A be an affine transform normalizing Sh(x ′); then v := (u−L)(A−1x)/h satisfies det D2v= f (A−1x)/hn

in A(Sh(x ′)) and v = 0 on ∂Sh(x ′). Hence, by applying Lemma 2.6 to v and translating back to u we
get (3-3).

Hence, u must be C1 at any localized point x0. Therefore u ∈ C1(Rn). �
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Remark 3.2. The proof of Theorem 2.1(i) shares some similarities with the proof of C1 regularity for
the obstacle problem in [Savin 2005] (see Proposition 2.8 in that paper).

4. Global C1,α regularity

In this section, we prove Theorem 2.1(ii). First we point out that to prove u ∈ C1,α(�), it suffices to
prove that there exist constants C > 0, α ∈ (0, 1) and r > 0 such that, for any point x0 ∈�,

u(x)− `x0(x)≤ C |x − x0|
1+α (4-1)

for every x ∈ Br (x0)∩�. From (4-1) one can prove that u ∈ C1,α(�), using the convexity of u. In the
following we will show that a relaxed version of (4-1) is enough to show u ∈ C1,α(�), and it has the
advantage of avoiding some annoying limiting picture.

By the assumption of Theorem 2.1(ii) we write �=U −
∑k

i=1 Ci , where U is an open convex set, and
Ci , i = 1, . . . , k, are closed disjoint convex subsets of U ; see Figure 2. Given any x ∈�, we introduce
the function

ρx(t) := sup
{

u(z)− u(x)− Du(x) · (z− x)
∣∣∣ |z− x | = t, x + s

z− x
|z− x |

∈� for any s ∈ [0, r0]

}
, (4-2)

where r0 is a fixed small positive constant depending on �, and its smallness will be clear in the proof of
Lemma 4.1. Indeed, we need to take r0 small enough that Br0(x)∩ ∂U can be represented as the graph of
some Lipschitz function for any x ∈ ∂U with the Lipschitz constant independent of x , and that

r0�min
{
dist(∂U, ∂Ci ), dist(∂C j , ∂Cl) | i = 1, . . . , k, 1≤ j 6= l ≤ k

}
.

Lemma 4.1. Suppose that there exist r > 0 and δ ∈ (0, 1) such that for any x ∈� we have

ρx
( 1

2 t
)
≤

1
2(1− δ)ρx(t) (4-3)

whenever t ≤ r . Then u ∈ C1,α(�) for some α ∈ (0, 1).

U

C1

C2

C3

Figure 2. Domain �.
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Proof. For t = r/2k , we have

ρx(t)≤
(1− δ)k

2k ρx(r)≤
t
r
(1− δ)log(r/t)/log 2ρx(r)≤ Ct1+α, (4-4)

where C depends on r , δ and ρx(r), and α =− log(1− δ)/log 2.
Suppose x , y ∈� and |x − y| � r � r0. We need to consider two cases:

(a) x , y are close to ∂U .

(b) x , y are close to ∂Ci for some 1≤ i ≤ k.

We will deal with case (a) first; case (b) follows from a similar argument. Without loss of generality we
may assume that B3r1 ⊂U for some small fixed r1, that r0� r1, and that dist(∂B3r1, ∂U )� r1. Denote
by Cx,r1 the convex hull of x and Br1 . By convexity, Cx,3r1 ⊂U . Then we prove the following claim:

Claim 1. For any z ∈ Br/2(x)∩Cx,2r1 , we have |Du(x)− Du(z)| ≤ C |x − z|α.

Proof of Claim 1. Observe that dist(z, ∂Cx,3r1) ≥ (1/C)|x − z| for some large constant C . Hence,
B(1/C)|x−z|(z)⊂ Br ∩Cx,3r1 . Now, for any z̃ ∈ ∂B(1/C)|x−z|(z), by (4-4) we have that

u(z̃)≤ u(x)+ Du(x) · (z̃− x)+C |z̃− x |1+α. (4-5)

By convexity we also have
u(z̃)≥ u(z)+ Du(z) · (z̃− z) (4-6)

and
u(z)≥ u(x)+ Du(x) · (z− x). (4-7)

By (4-5), (4-6) and (4-7) we have

(Du(z)− Du(x)) · (z̃− z)≤ C |z̃− x |1+α. (4-8)

Note that |z̃− z| ≈ |z̃− x | ≈ |z− x | provided z̃ ∈ ∂B(1/C)|x−z|(z) and C is sufficiently large. Since (4-8)
holds for any z̃ ∈ ∂B(1/C)|x−z|(z), it follows that |Du(x)− Du(z)| ≤ C |x − z|α. �

Now suppose |x − y| � r . If either y ∈ Cx,2r1 or x ∈ Cy,2r1 holds, then by Claim 1 we have
|Du(x)− Du(y)| ≤ C |x − y|α. Otherwise one may find a point z ∈ Cx,r1 ∩Cy,r1 such that |z − x | ≈
|z− y| ≈ |x − y|. Then by applying the estimate in Claim 1 we have

|Du(x)− Du(y)| ≤ |Du(x)− Du(z)| + |Du(y)− Du(z)| ≤ C(|x − z|α + |y− z|α)≤ C |x − y|α.

We can prove case (b) by a similar argument. Indeed, ∂C1 ∩ Br (x) can be represented as the graph
of some Lipschitz function for any fixed x ∈ ∂C1 provided r � r0. Then, by the assumption that the Ci

are disjoint, it is easy to find a small ball B3r1 ⊂� such that Cz,3r1 ⊂� for any z ∈ Br (x)∩�. Then, by
a similar argument to the proof of case (a), we can show that |Du(x)− Du(y)| ≤ C |x − y|α provided
|x − y| � r . �

The following lemma shows that the centred sections are well-localized provided the heights are
sufficiently small.
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Lemma 4.2. There exists a height h0 > 0 such that, for any x ∈�, the section Sh(x) intersects at most
one of ∂U , ∂Ci , i = 1, . . . ,m, provided h ≤ h0.

Proof. Suppose to the contrary there exist sequences xk ∈ � and hk → 0, such that Shk (xk) intersects
at least two of ∂U , ∂Ci , i = 1, . . . ,m. Passing to a subsequence we may assume xk → y ∈ �. Since
u is strictly convex in the interior of �, we have either y ∈ ∂U or y ∈ ∂Ci for some i . Denote by Lk

the defining function of Shk (xk), namely Shk (xk)= {u ≤ Lk}. Then, passing to a subsequence we may
assume Lk→ L for some affine function L , and Shk (xk)→ S ⊂ {u ≤ L}. It follows from the properties
of Shk (xk) that:

(i) S is centred at y.

(ii) S intersects at least two of ∂U , ∂Ci , i = 1, . . . ,m.

(iii) L(y)= limk→∞ Lk(xk)= limk→∞ u(xk)+ hk = u(y).

By (i) and (iii) we have that S ⊂ {u = L}. Then by (ii) we see that S passes through the interior of �,
which contradicts the fact that u is strictly convex in the interior of �. �

Proof of Theorem 2.1(ii). Step 1. The main observation in this step is that if (4-3) is violated for small δ,
then u is close to a linear function on a segment connecting x and some point zδ ∈ �. Hence, if (4-3)
is violated for arbitrary r , δ, then one can find a sequence of points xk such that u is more and more
linear around xk in some direction as k→∞. The “almost linearity” will be clear if we perform blow-up
and an affine transform on u properly restricted to some carefully chosen section around xk , and a line
segment will appear on the graph of the limiting function. The detailed argument goes as follows.

To prove ρx(t)≤ Ct1+α for any x ∈� and any t ≤ r , by Lemma 4.1 we assume to the contrary that
there exist sequences tk ≤ 1/k, δk = 1/k and xk ∈� such that

ρxk

( 1
2 tk
)
≥

1
2(1− 1/k)ρxk (tk). (4-9)

Suppose the supremum in (4-2)
(
when x = xk and t = 1

2 tk
)

is attained at 1
2(xk+ zk) ∈�; by the definition

of ρx we see that zk xk ⊂ �, where zk xk denotes the segment connecting zk and xk . By passing to a
subsequence, we may assume xk→ x∞ ∈ ∂�.

Choosing sections. For each k, let Shk (xk) be a section of u with centre xk , where hk is chosen so that
zk ∈ ∂Shk (xk). Similar to the proof of Theorem 2.1(i), the existence of such a section follows from the
property that a centred section, say Sh(x), varies continuously with respect to the height h; see [Caffarelli
and McCann 2010, Lemma A.8] for a proof. It is easy to see that hk→ 0.

Normalization. Let Lk be the defining function of Shk (xk). We normalize the section Shk (xk) by a linear
transformation Tk , and let Sk = Tk(Shk (xk)). Note that Tk(xk) = 0 and B1 ⊂ Sk ⊂ n3/2 B1. Also we let
uk = (u− Lk)(T−1

k x)/hk . Then uk solves{
det D2uk = fk in Sk,

uk = 0 on ∂Sk,
(4-10)

where fk = h−n
k (det Tk)

−1 f (T−1
k x)/g(Du(T−1

k x)). After a rotation of coordinates, we may assume
Tk(zk) is on the x1-axis.
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Linearity estimate. Let

vk(x) := u(x)− Du(xk) · (x − xk)− u(xk);

from (4-9) we have that vk
( 1

2(xk + zk)
)
≥

1
2(1− 1/k)vk(zk). Let

L̃k(x) := Lk(x)− Du(xk) · (x − xk)− u(xk).

Then we have that Shk (xk) = {vk ≤ L̃k}. Since Shk (xk) is centred at xk , zk ∈ ∂Shk (xk), vk ≥ 0 and
L̃k(xk)= hk , by John’s lemma we have that 0≤ L̃k(zk)≤ 2n3/2hk . Now,

(vk− L̃k)
( 1

2(xk+zk)
)
−

1
2

(
1− 1

k

)
((vk− L̃k)(xk)+(vk− L̃k)(zk))≥−

1
2k
(L̃k(xk)+ L̃k(zk))≥−

3n3/2

2k
hk .

Since vk − L̃k = u− Lk , from the above estimate and the definition of uk we have

uk
( 1

2 Tkzk
)
≥

1
2

(
1− 1

k

)
(uk(0)+ uk(Tkzk))−

3n3/2

2k
. (4-11)

Limiting problem. Now, by convexity we may take limits Sk→ S∞ and uk→ u∞. Let f∞ be the weak
limit of fk . Then u∞ satisfies det D2u∞ = f∞ in the Alexandrov sense. Let z∞ := limk→∞ Tk(zk). By
(4-11) we have

u∞ = L on the segment connecting 0 and z∞, (4-12)

where L is a supporting function of u∞ at 0.

Step 2. In this step, we need to consider two situations:

(a) x∞ ∈ ∂Ci for some 1≤ i ≤ k.

(b) x∞ ∈ ∂U .

In each case, a contradiction is obtained at some carefully chosen extreme point (denoted by y) of
{u∞ = L}. Heuristically, we can choose a section of u∞ (denoted by S) around y such that y is much
closer to ∂S in one direction than in the opposite direction. Hence, on one hand the Alexandrov-type
estimate Lemma 2.6(a) shows that h, the height of the section S, should not be too small. On the other
hand, Lemma 2.6(b) shows that h is very small, which is a contradiction.

We deal with case (a) first.

Proof in case (a). Note that since x∞ ∈ ∂Ci for some 1≤ i ≤ k and hk→ 0 as k→∞, by Lemma 4.2 we
have that the support of fk can be represented by Sk − Ak when k is large, where Ak is an open convex
subset of Sk . Let the convex set A∞ be the limit of the Ak . Then S∞− A∞ is the support of f . Since the
centre of mass of S∞ is 0 and 0 ∈ S∞− A∞, we have that the volume of S∞− A∞ is positive. Hence, it
is easy to see that there exists a constant C such that C−1χS∞−A∞ ≤ f∞ ≤ CχS∞−A∞ .

Since zk xk ⊂�, we have 0z∞ ∩ A∞ =∅.

Subcase 1: {u∞ = L} contains an interior point of S∞− A∞.

Subcase 2: {u∞ = L} ∩ S∞ ⊂ A∞.
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u∞

x0

0

y

L1 = L +Cε

L2 = L + ε(x1− b+ a)

S∞

S̃G

0
S

b
e1

A∞

Figure 3. Two related sections.

For subcase 1, take x0 ∈ (S∞− A∞)∩ {u = L}. Take δ sufficiently small that Bδ(x0)⊂ S∞− A∞.

Choosing an extreme point. Let y ∈ {u = L} be the point such that:

(1) u∞(y)= inf{u=L} u∞.

(2) y is an extreme point of the convex set {u∞ = L} ∩ {u∞ = u(y)}.

It is easy to see that y is an extreme point of {u∞ = L}.

Cutting a suitable section. By rotating the coordinates we may assume that {u∞ = L} ⊂ {x1 ≤ b}
for some constant b > 0, and that {u∞ = L} ∩ {x1 = b} = {y}. Then we consider the section S =
{u∞ < L + ε(x1− b+ a)} (see Figure 3), where we fix a sufficiently small and then take ε� a, so that
S b S∞ and a� d :=max{x1 | (x1, 0, . . . , 0) ∈ S}− b.

Using Alexandrov estimates to obtain a contradiction. On one hand, by the Alexandrov estimate we have

|S|2 > C a
d
εn. (4-13)

On the other hand, we consider another section S̃={u∞< L+Cε}. Since u is Lipschitz, it is easy to see
that S ⊂ S̃ provided C (independent of ε) is sufficiently large. By convexity we have |Bδ(x0)∩ S̃| ≥ C |S̃|



1494 ELINA ANDRIYANOVA AND SHIBING CHEN

for some constant C . We claim
|S|2 ≤ Cεn, (4-14)

where the constant C is independent of d. The claim follows from the following argument. Let v =
u∞ − L − Cε. Let G := S̃ ∩ Bδ(x0). By John’s lemma, there exists an affine transformation A with
det A = 1 such that

Br̄ ⊂ A(G)⊂ n3/2 Br̄

for some r̄ . Now v̄ = v(A−1x) satisfies det D2v̄ = f∞(A−1x) ≥ C−1 in A(G) and |v| ≤ Cε in A(G).
Then we have

C−1
|G| ≤

∫
G/2

f∞ =
∣∣∂v̄(A

( 1
2 G
))∣∣≤ C

εn

r̄n . (4-15)

Equation (4-14) follows from (4-15) and the fact that |S̃| ≈ |G| ≈ r̄n . Since d � a, it is easy to see that
(4-14) contradicts (4-13).

For subcase 2, we need to choose the extreme point more carefully.

Choosing an extreme point. Let K̃ ⊂Rn be a supporting plane of the convex set A∞ at 0. If A∞ is not C1

at 0 we choose K̃ to be the one containing z∞0. Let y′ be the point where u∞ attains its minimum on
D := {u= L}∩ K̃ ∩S∞. It is easy to check that D is a convex set, and the set D∩{x | u(x)= u(y′)} is also
convex. Let y be an extreme point of D∩{x |u(x)=u(y′)}. We claim that y is an extreme point of {u= L}.
Indeed, suppose not; then there exist y1, y2 ∈ {u = L}∩ S∞ ⊂ A∞ such that y = 1

2(y1+ y2). Since K̃ is a
supporting plane of A∞ and y ∈ A∞, we have that y1, y2 ∈ D. However, since u(y)=min{u(x) | x ∈ D},
we have y1, y2 ∈ D ∩ {x | u(x) = u(y′)}, which contradicts the choice of y as an extreme point of
D ∩ {x | u(x)= u(y′)}.

Cutting a suitable section. By subtracting L and translating the coordinates we may assume that y = 0,
that u∞≥ 0, that u∞(te1)= 0 for t ∈ (0, 1), and that u∞(te1)> 0 for t < 0. Let 0<ε�a be small positive
numbers. Let Sh(ae1) be a section of u∞ with centre ae1, where h is chosen so that −εe1 ∈ ∂Sh(ae1).
Since y is an extreme point of {u = L}, we have that Sh(ae1)b S∞ provided h is sufficiently small. Note
that h→ 0 as ε→ 0.

Using Alexandrov estimates to obtain a contradiction. Since A∞ is convex, it is easy to see that∫
Sh(ae1)

f∞ ≤ C
∫

1
2 Sh(ae1)

f∞

for some constant C . Let L1 be the defining function of the section Sh(ae1), which is obviously decreasing
in the e1 direction. Hence (L1− u∞)(0)≥ h. Then by Lemma 2.6 we also have

(L1− u∞)(0)≤ C
(
ε

a

)1/n
h,

which contradicts the previous estimate. �

Proof in case (b). The proof in case (b) follows from a similar argument to the proof of [Caffarelli 1992a,
Lemma 4]; we sketch the argument here. Note that fk is now supported in a convex domain Dk ⊂ Sk .
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Let D∞ := limk→∞ Dk . We have z∞ ∈ D∞. Let L be the supporting function of u∞ at 0 such that
0z∞ ⊂ {u∞ = L}. Similarly to the proof of subcase 1 of case (a), let y ∈ {u∞ = L} be the point such that:

(1) u∞(y)= inf{u∞=L} u∞.

(2) y is an extreme point of the convex set {u∞ = L} ∩ {u∞ = u(y)}.

It is easy to see that y is an extreme point of {u∞ = L}. Observe that y ∈ D∞, since otherwise uk has
positive Monge–Ampère measure outside Dk for large k. Let z= (1−σ)y+σ z∞ for some small positive σ ;
we may also find a section satisfying Sh(z) := {u∞ < L}b S∞ and y+ ε(y− z∞)/|y− z∞| ∈ ∂Sh(z) for
small ε� σ . Since y ∈ D∞, there exists a sequence yk ∈ Dk such that yk→ y as k→∞. Let

z̃k := (1− σ)yk + σT (zk);

it is easy to see that z̃k → z as k → ∞. Recall that z∞ := limk→∞ T (zk) with T (zk) ∈ Dk . Let
S̃k := {uk ≤ Lk} be a section of uk centred at z̃k with height h. Then, passing to a subsequence,
S̃k → Sh(z) in Hausdorff distance. In particular, S̃k b Sk provided k is sufficiently large. Then, by
Lemma 2.6, we have that

Ch ≤ (Lk − uk)(yk)≤
(
ε

σ

)1/n
h

for large k, which is a contradiction because ε� σ . �

Theorem 2.1(ii) follows from the above discussions. �
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