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THE FINAL-STATE PROBLEM FOR THE CUBIC-QUINTIC NLS
WITH NONVANISHING BOUNDARY CONDITIONS

ROWAN KILLIP, JASON MURPHY AND MONICA VISAN

We construct solutions with prescribed scattering state to the cubic-quintic NLS

(3 + MY =y —as|y ¢ +as|y |y

in three spatial dimensions in the class of solutions with | (x)] — ¢ > 0 as |x| — oco. This models
disturbances in an infinite expanse of (quantum) fluid in its quiescent state — the limiting modulus ¢
corresponds to a local minimum in the energy density.

Our arguments build on work of Gustafson, Nakanishi, and Tsai on the (defocusing) Gross—Pitaevskii
equation. The presence of an energy-critical nonlinearity and changes in the geometry of the energy
functional add several new complexities. One new ingredient in our argument is a demonstration that
solutions of such (perturbed) energy-critical equations exhibit continuous dependence on the initial data
with respect to the weak topology on H..

1. Introduction
We study the cubic-quintic nonlinear Schrodinger equation (NLS) with nonvanishing boundary conditions

in three space dimensions:

(iat+A)WZal‘ﬁ—a3|‘ﬁ|2w+a5|‘ﬁ|4w, (t,X)ERXR3,
¥ (0) = vo.

We consider parameters o1, o3, &5 > 0 so that ocg —4a105 > 0, which guarantees that the polynomial

(1-1)

o1 —a3x + asx? has two distinct positive roots rg > r12 > 0. The boundary condition is given by

lim |y(t, x)| =ro. (1-2)

|x]

The choice of the larger root guarantees the energetic stability of the constant solution; it constitutes a
local minimum of the energy functional (1-7).

Equation (1-1) appears in a great variety of physical problems. It is a model in superfluidity [Ginzburg
and Pitaevskii 1958; Ginzburg and Sobyanin 1976], descriptions of bosons [Barashenkov et al. 1989] and of
defectons [Pushkarov and Kojnov 1978], the theory of ferromagnetic and molecular chains [Pushkarov and
Primatarova 1984; 1986], and in nuclear hydrodynamics [Kartavenko 1984]. The popularity of this model
can be explained by its simplicity combined with the fact that it captures an important phenomenology:
the constituents of most fluids experience an attractive interaction at low densities and a repulsion at high
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densities. The recent paper [Killip et al. 2014] focuses on the analogous problem with data decaying at
infinity, which constitutes a model for the dynamics of a finite body of fluid; the model (1-1) describes
the behavior of a localized disturbance in an infinite expanse of fluid that is otherwise quiescent.

By rescaling both space-time and the values of ¥, it suffices to consider the case rg =land as = 1.

This leaves one free parameter
yi=1-r?€(0,1), (1-3)

in terms of which equation (1-1) becomes

(0; + M)y = (v =D(¥I>—1+y)¥, (1-4)
¥ (0) = Yo,

with the boundary condition
lim (¢, x)=1. (1-5)

|x|—00
As discussed in [Gérard 2006] (albeit in the context of the Gross—Pitaevskii equation), finite energy func-
tions obeying (1-2) have a unique limiting phase as |x| — oo, which we can normalize to be zero, yielding
(1-5). Furthermore, the dynamics of (1-1) preserve the value of this phase, so that the boundary condition
is independent of time, as well. This breaks the gauge invariance of (1-1) and prohibits using a phase
factor to remove the linear term in this equation. The presence of the linear term leads to weaker dispersion
at low frequencies, which presents a key challenge in understanding the long-time behavior of solutions.
We are interested in perturbations of the constant solution ¥ = 1, and thus it is natural to introduce the
function ¥ = u; + iu, defined via ¥ = 1 + u. Using (1-4), we arrive at the following equation for u:
(ids + Au—2yuy = N(u),

(0) = wo, (1-6)

where N(u) = Z?=2 N;(u), with
No(u) =3By + 4)u% + yu% +2iyuqus,
N3(u) = (v +8)ui + (v + Hugud +il(y + Huiuz + yu),
Na(u) = 5u‘1l + 6u%u% + ug +i[4u?u2 + 4u1ug],
Ns(u) = |u|4u = u? +2ufu% + ugul +i[u‘1‘u2 +2u%u% + ug].

The Hamiltonian for (1-4) is given by

B =y [ VP X [ qwP-vtareg [ qP-nian )

Introducing the notation
qQu) ==Y —1=2uy + ful?,
we may write
2yur + N@) = [yqw) +q@)*1(1 +u)
and
E(l—i—u):l/ |Vu|2dx+Z/ q(u)zdx—i—l/ q(u)? dx. (1-8)
2 Jp3 4 Jp3 6 Jr3
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In the sequel we will write E(u) for E(1 4+ u); when there is no risk of confusion we will simply write
q(u) = ¢q. Note that g represents density fluctuations relative to the constant background. The quantity
f q(t, x) dx, which represents the total surplus/deficit of matter relative to the constant background, is
conserved in time; in this work we do not rely on this conservation law.

Well-posedness in the energy space. We define the energy space for (1-6) to be

&:={ue HLR? :qu)e L3[R} (1-9)
with associated metric
[de(u,v)]* := |Ju _U”fq} + [lg () —q(v)lligc,

and we let ||u||¢ := de(u, 0) denote the energy-norm.

To justify our choice of energy space, we first note that functions with finite energy-norm have finite
energy. Indeed, using Sobolev embedding and the fact that (L3 + L8) N L2 C L3, it is not hard to see
that if u € £ then ¢(u) € L2, and so | E(u)| < co. In fact,

|Eu)| < [l + )3

On the other hand, in Lemma 3.1 we will show that for y € [% 1), functions with finite energy have
finite energy-norm. When y € (0, %), the energy is not coercive unless we impose an additional smallness
assumption (see Lemma 3.2).

When the energy is not coercive, there is no unique candidate for the name “energy space”. The authors
of [Killip et al. 2012] worked with the following notion of energy space:

Ekopv := {u € HY(R*) N LY (R?) :Reu € LI(R%)}.

Note that Ekopy C £. In the same work, they also proved that (1-6) is globally well-posed for data
ug € Exopv; in particular, solutions are unconditionally unique in C(R; Exopy).

In Section 3, we prove global well-posedness and unconditional uniqueness for (1-6) in the energy
space £ (see Theorem 3.3). As in [Killip et al. 2012; Tao et al. 2007; Zhang 2006], our approach is to
regard the equation as a perturbation of the defocusing energy-critical NLS

(i3 + Ayu = |u|*u, (1-10)

which was proven to be globally well-posed, first in the radial case and then for general data in the
celebrated papers [Bourgain 1999; Colliander et al. 2008]. Proving well-posedness for a Schrodinger
equation in three dimensions that contains a quintic nonlinearity requires control over the H Y_norm of the
solution. As the energy (1-8) is not necessarily coercive for y € (0, %) conservation of the Hamiltonian
does not supply the requisite a priori bound. To resolve this issue we will require that both the energy and
the kinetic energy of the data are small when y € (0, %)

Statement of the main result. The stability of the equilibrium solution ¥ = 1 to (1-4) is equivalent to
the small-data problem for (1-6). In this direction, there are two natural problems to consider, namely,
the initial-value and the final-state problems for (1-6). For the former, the question is whether small and
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localized initial data lead to solutions that are global and decay as |t| — oco. For the latter, the question is
whether one can construct a solution that scatters to a prescribed asymptotic state. In this paper we prove
two results related to the final-state problem. We will address the initial-value problem in a forthcoming
work.

To fit (1-6) into the standard framework of dispersive equations it is convenient to diagonalize the
equation. Setting

U=|V(V)"! and H =|V|(V), with (V):=/2y—A and |V| = (—=A)2,
we arrive at the following equation for v := Vu :=u; +iUus:

(id; — H)v = Ny(u) := U Re[N(u)] +i Im[N(u)],

1-11
v(0) = Vuy. ( )
Note that ujin(¢) := V"le H V| solves the equation
(197 + A)ujin — 2y Reujjn =0 with u}jn(0) = u4; (1-12)

this is the linearization of (1-6) about u = 0.
Our main result in this paper is the following theorem:

Theorem 1.1. Suppose y € [%.,1). Foranyuy € H j+iH]}

cal eal» there exists a global solution u € C(R; £)
to (1-6) such that

([ (7)) =i @)l gy =0, (1-13)
where uyn(t) := Ve " Vy . Moreover, we have modified asymptotics in the energy space, in the
sense that this same solution u obeys

Jim de (u(t), win(£) =y (V)2 tin (1)[7) = 0. (1-14)

In the case y € (O, %), both conclusions still hold if additionally ||u+ || g1 iHL is sufficiently small.

Remark 1.2. The hypotheses on u are not sufficient to guarantee that uy,(¢) € £ at any time ¢;
correspondingly, one cannot hope to say that u is close to uy, in the energy space. Nonetheless, (1-13)
does show that the modification in (1-14) only plays a role at very low frequencies. Indeed, simple
computations show that the modification can be omitted, for example, when u is a Schwartz function.

We do not guarantee uniqueness of the solution u in Theorem 1.1. Later, we will show uniqueness
within a restricted class of solutions u for suitable scattering states u 4 ; see Theorem 1.4 and Corollary 1.7
below.

Discussion of relevant past results. To give proper context to our work, we need to discuss prior work
of Gustafson, Nakanishi, and Tsai [Gustafson et al. 2006; 2007; 2009] on the Gross—Pitaevskii equation

(0 + 2y = (> = Dy,
¥ (0) = vo. (1-15)
lim y¥(t,x)=1.

|x|—=>00



FINAL-STATE PROBLEM FOR CUBIC-QUINTIC NLS WITH NONVANISHING BOUNDARY CONDITIONS 1527

Note that unlike in (1-4), the cubic nonlinearity here is defocusing. Writing ¥ = 1 4 u, this equation
preserves the energy
Eap(u) = l/ |Vu|2dx+l/ q(u)? dx. (1-16)
2 Jr3 4 Jn3
In contrast to (1-8), this energy density is lacking the sign-indefinite ¢ (u)3-term. Correspondingly, the
energy is coercive and the nonlinearity is energy-subcritical.

The final-state problem for the Gross—Pitaevskii equation was addressed by Gustafson et al. [2007;
2009] in two and three dimensions and in [Gustafson et al. 2006] in higher dimensions. They also
considered the initial-value problem in dimensions d > 3 in [Gustafson et al. 2006; 2009].

The jumping-off point for Theorem 1.1 is an analogous result appearing in [Gustafson et al. 2009]
for the Gross—Pitaevskii equation, which in turn builds on earlier work of Nakanishi [2001] on the
(gauge-invariant) NLS. As our strategy is modeled closely on his, it is worth discussing in detail the
following result:

Theorem 1.3 [Nakanishi 2001]. Given uy € H(R?) and % <p< %, there is a solution to
(i0; + A)u = |u|Pu (1-17)
that obeys e ""Au(t) — uy in HH(R3).

Sketch of proof. Nakanishi first defines solutions u” to (1-17) with u” (T)) = e!T2u .. As the problem is
L)zc—subcritical, these solutions are easily seen to be global with uniformly bounded H ; -norm (even in
the focusing case).

By writing (1-17) in Duhamel form and exploiting the dispersive estimate (2-2), it is not difficult to
show that for each ¢ € C2°(R?), the collection of functions

{ts (g, e Pul (1)) : T e R} (1-18)

forms an equicontinuous family on a compactification R U {00} of the real line. In particular, each such
function has limiting values as t — +00. Applying Arzela—Ascoli and the Cantor diagonal argument
(H! is separable), one can find a sequence 7, — 0o and a function u® € L H\ so that

e AT (1) — ¢TI AY (1) weakly in H; for each r € R.

This construction guarantees that ¥ has two further properties. First, the function 7 > e #25%°(¢) is
weakly H.l-continuous on RU {#o0}, that is, when H is endowed with the weak topology. Secondly,
for any ¢ € C°(R?),

(¢, e 2uTn (1)) — (¢, e "Pu (1)) asn — oo, uniformly in ¢ € R.

Using these properties it is elementary to verify that e 7?24 (t) — u as t — oo. This leaves two
obligations: firstly, one must show that #° is actually a solution to (1-17) and secondly, one must upgrade
weak convergence to norm convergence.
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Due to the H.!-subcriticality of the nonlinearity, the Rellich-Kondrashov theorem allows one to show
that #® is a weak solution to (1-17). For this problem, weak solutions with values in H ; are necessarily
strong solutions and so we may conclude that ¥ is a solution to (1-17).

Lastly, to upgrade weak convergence to strong convergence, one exploits conservation of mass and
energy and the Radon—Riesz theorem. For example, one may argue as follows: The quantity

2
F(u) ::/ |Vu|? + ——|u|P+? + |u|? dx (1-19)
R3 p+2

is conserved under the flow (1-17). Exploiting this, dispersion of the linear flow, and weak lower-
semicontinuity of norms, we deduce that

lim le™ Su® ()3, < F@™) < lim F@'(0)) = lim F@'"(Ty) = |ut |3,
[=00 x n—00 n—00 x

Given that e 7*24%(t) — u, we deduce that e ="y (¢) — uy in H. O

In order to adapt this beautiful argument to the Gross—Pitaevskii setting, the authors of [Gustafson
et al. 2009] had to overcome two significant obstacles: (i) One needs to make the (conserved) energy
(1-16) associated to (1-15) play the role of F in the argument above. It is far from obvious that this has
the requisite convexity. (ii) The simple arguments used to prove equicontinuity of the family (1-18) no
longer work. This failure stems from lower-power terms in the nonlinearity combined with the fact that
energy conservation gives poor a priori spatial decay of solutions; while it guarantees g(u) € L)zc, it only
yields u; € Li and no better than u, € Lg. This is not sufficient decay to allow direct access to any of
the integrable-in-time dispersive estimates obeyed by the propagator.

The key to obtaining equicontinuity of the analogue of the family (1-18) in the Gross—Pitaevskii setting
is to exploit certain nonresonant structures in the nonlinearity that allow one to integrate by parts in time.
In implementing this approach, one sees that it is necessary to exhibit such nonresonance in both the
quadratic and cubic terms of the nonlinearity. Such a brute force attack is rather messy. The burden
can be significantly reduced by using test functions whose Fourier support excludes the origin. We will
demonstrate this (primarily expository) improvement over the arguments from [Gustafson et al. 2009]
in the proof of Proposition 6.2 below. One particular virtue of this approach is that it makes clear from
the start that the argument is inherently completely immune to the poor dispersion manifested by the
propagator (2-4) at low frequencies.

In [Gustafson et al. 2009], the authors exploit the quadratic nonresonant structure in a more elegant
way through the use of a normal form transformation

z=ur+QC—-A)"HuPl+ivV-A/2—A)us. (1-20)

In this work they also observe (and then utilize) the further nonresonant structure at the cubic level (akin to
(6-30)). There is some flexibility in the choice of normal form that witnesses the requisite nonresonance;
however, the particular one employed in [Gustafson et al. 2009] has the dramatic additional benefit of
overcoming obstacle (i) described above. The necessary convexity of the energy functional becomes
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clearer when written in their new variables: with u and z related by (1-20),

Eap(u) = 3| V2= Az| 12 + 3| V=27 = &) u?| . (1-21)

The virtue of this identity is best understood in the context of (6-8). Because the right-most term in (1-21)
is nonnegative, combining (1-21) with (6-8) yields

Jim 1[V2=az0)|7; = 4[v2=Az|7;.

where z(¢) and z4 represent a particular solution and its putative scattering state, both in terms of the
normal form variable. This is just what is needed as input for the Radon—Riesz theorem.

Discussion of the main result. In order to prove Theorem 1.1 we will need to capitalize on all of the
ideas introduced in [Gustafson et al. 2009] to prove the analogous result for the Gross—Pitaevskii equation.
In particular, we will exploit a normal form transformation modeled closely on (1-20), namely,

z=M@u):=[ur +yQy— A" "ulP]+iv-A/Qy - A)us. (1-22)

However, several new difficulties arise above and beyond those overcome in [Gustafson et al. 2009].
(i) The first group of new difficulties is associated to the presence of energy-critical terms in the nonlinearity.
(ii) The second group of difficulties stems from the shape of the energy functional.

(1) We begin by discussing the difficulties that arise from the energy-critical terms. As discussed earlier
in the introduction, we already need to give consideration to the energy-critical terms in the proof of
Theorem 3.3, which states that (1-6) admits global solutions for initial data in the energy space £. A
more significant challenge involves establishing a form of well-posedness with respect to the weak H ;
topology (see Theorem 4.1), as we will now explain.

In the argument of Nakanishi described above, it was used that weak limits (in the H! topology
pointwise in time) of strong solutions to (1-17) are themselves strong solutions. In the subcritical case,
one sees relatively easily that such limits are weak solutions (via Rellich—Kondrashov) and can then
exploit earlier work (see [Cazenave 2003, Chapters 3—4]) showing that weak solutions with values in H ;
are strong solutions. In particular, solutions converging weakly to zero (in H!) by concentrating will
actually converge to zero in the space-time norms used to construct such solutions. In a similar way, we
see that increasingly concentrated parts of a solution (which will drop out under taking a weak limit) do
not affect parts of the solution living at unit scale.

These arguments break down in the presence of the quintic nonlinearity, which is energy-critical. In
particular, initial data that converge weakly to zero in H )} by concentrating at a point lead to solutions that
do not go to zero in the space-time norms needed for well-posedness. Correspondingly, highly concentrated
parts of a solution may have large norm and so, naively at least, have a nontrivial effect on the remainder of
the solution. Thus, it is not clear that weak limits of solutions should even be continuous in time! The key
to escaping this nightmare is to show that two parts of a solution have little effect on one another if they
live at widely separated scales. We will achieve this by employing concentration compactness techniques.

Before tackling the full equation (1-6), one should first ensure that one can prove that weak limits of
solutions are themselves solutions in the case of the energy-critical NLS equation (1-10). Questions of
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this type appear to have been studied before only in the case of the energy-critical wave equation [Bahouri
and Gérard 1999]. As there, we proceed by harnessing the full power of the associated concentration
compactness ideas. Specifically, one starts with a nonlinear profile decomposition and then further exploits
some of the decoupling ideas used in its proof. In this paper, we will implement this strategy in the setting
of (1-6); this is ample guidance for anyone seeking to reconstruct the argument for (1-10).

As a precursor to the nonlinear profile decomposition needed to prove that weak limits of solutions
to (1-6) are themselves solutions, we must first develop a linear profile decomposition adapted to (1-6);
see Proposition 4.3. Despite the fact that the linear equation underlying (1-6) differs from that underlying
(1-10), we are able to adapt the profile decomposition for the linear Schrodinger equation to our setting,
rather than proceeding ab initio. To develop the nonlinear profile decomposition, we need to construct
solutions to (1-6) associated to each linear profile. For profiles living at unit scale, existence of these
solutions (and all requisite bounds) follows from Theorem 3.3. Profiles whose characteristic length scale
diverges can be approximated by linear solutions on bounded time intervals and so require no special
attention. However, highly concentrated profiles require independent treatment; this is the content of
Proposition 4.5. There are two subtle points here: (a) Such profiles are merely H L"and so do not have finite
energy. (b) The characteristic time scale associated to such profiles is very short; thus, understanding such
solutions even on a bounded interval essentially requires an understanding of their infinite time behavior.

The nonlinear profile decomposition posits that the nonlinear evolution of the initial data can be
approximated by the sum of the nonlinear evolutions of its constituent profiles. This is verified by
demonstrating decoupling of the profiles inside the nonlinearity (see Lemma 4.7) and exploiting a suitable
stability theory for the equation (see Proposition 3.5). The latter requires certain a priori bounds, which
are shown to hold in Lemma 4.6. Once it is known that the nonlinear profile decomposition faithfully
represents the true solution, it is relatively elementary to complete the proof of well-posedness in the
weak topology, that is, the proof of Theorem 4.1.

This completes our discussion of the new difficulties (relative to [Gustafson et al. 2009]) associated to
the presence of energy-critical nonlinear terms.

(i1) We turn to the second main group of difficulties mentioned above, which stem from the shape of the
energy functional. First, the lack of coercivity when y € (0, %) was discussed already as an obstacle to
proving global well-posedness. In this case, we restore coercivity by imposing a smallness condition on
the initial data.

As also discussed above, convexity of the energy functional plays a key role in upgrading weak
convergence to strong convergence in the argument of Nakanishi, via an argument of Radon—Riesz type.

The analogue of (1-21) for our equation is as follows: For z = M (u) as in (1-22),
E) = 19212, + SV PIE, + [ o) dx. (1-23)

Unlike its analogue (1-21), this does not yield an inequality between the energy and the H ; -norm of z.
Indeed, the leading-order correction is the sign-indefinite term % / (u1)3 dx. Correspondingly, we will
need to be concerned with the structure of our solution u®°(¢) as t — oo to ensure that it does not
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contain surplus energy beyond that needed for its (putative) scattering state. Recall that #°°(¢) is merely
constructed as a weak limit of solutions 17 () defined by their values at t = T},, which gives very little a
priori information on its structure.

The resolution of this dilemma is to prove a form of energy decoupling between the part of the solution
matching the scattering state and any residual part; see Lemma 6.3. Ultimately, this energy decoupling
shows that any residual part of the solution must converge to zero in norm, which in fact obviates any
explicit implementation of the Radon—Riesz-style argument described above.

Existence of wave operators. Recall that in Theorem 1.1, we cannot guarantee uniqueness of the nonlinear
solution with prescribed scattering state. However, we are able to guarantee uniqueness under stronger
hypotheses. Specifically, for scattering states with good linear decay, we can guarantee that there is
only one nonlinear solution scattering to it with comparable decay. The decay of such solutions will be
measured in the norm

1
”u“XT ;= sup 12 ||M(t)||H;,3(R3).

t>T
Theorem 1.4. Fix y € (0, 1). There exists n > 0 so that if u4 € Hrial + i[-.Irial satisfies
Ve Vuyx, <. (1-24)
then there exists a global solution u € C(R; &) to (1-6) such that
: -1 _—itH _
ll—l>n(;o ||u(t) B V ¢ Vu+ ||Hr£al+iHrlal o O (1-25)

Moreover u is unique in the class of solutions with ||u||x, < 4n for some T > 1.

Remark 1.5. The proof of this theorem gives a quantitative rate in (1-25), namely,

-1 —itH -1
lu(t) =V~ e ! Vuy ”Hrial"'il'.lrial NUEER (1-26)
Remark 1.6. Writing ui,(t) = Ve "V, we note that u € Hrlea] + iHrleal and |[uginllx, < 00

guarantee that uy;, is uniformly bounded in the energy space & for ¢ > 1.

Finally, we observe that we can guarantee the smallness condition (1-24) by assuming control over
weighted norms.

Corollary 1.7. Lety € (0,1) and uy € H!

real

+ iHrleal‘ If
1 4 5
1) 2T (Vutll 2 + 11(x) 37 (V) Reuy | 2
is sufficiently small, then there exists a global solution u € C(R; £) to (1-6) such that (1-25) holds.

We prove Theorem 1.4 and Corollary 1.7 in Section 7. The proof, which relies primarily on dispersive
and Strichartz estimates, consists of a contraction mapping argument that simultaneously solves the
requisite PDE for z = M (u) and inverts the normal form transformation. The argument differs little from
that used to prove Theorem 1.1 in [Gustafson et al. 2007].
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Outline of the paper. In Section 2 we set some notation and collect several useful lemmas.

Section 3 concerns the well-posedness of (1-6) in the energy space. We prove Theorem 3.3, giving
global well-posedness and unconditional uniqueness in the energy space for (1-6). We also prove a
stability result, Proposition 3.5.

The proof of the main result, Theorem 1.1, is ultimately carried out in Section 6. The strategy is
modeled on the proof of Theorem 1.3 sketched above. Recalling that proof, we can broadly describe the
three main steps as follows: (a) weak convergence uniformly in time, (b) well-posedness in the weak
topology, and (c) strong convergence. As discussed above, new difficulties in our setting prevent a naive
implementation of Nakanishi’s strategy. Thus, we need to establish some preliminary results before
launching into the proof of Theorem 1.1.

In Section 4, we consider step (b) and prove Theorem 4.1; briefly, this theorem states that if u, (0) — ug
in H Y then u, (t) — u(t) in H Y for all ¢, where u, and u are solutions to (1-6) with initial data uy (0)
and ug, respectively. As described above, ingredients include (i) a linear profile decomposition adapted
to (1-6) and (ii) a way to construct nonlinear solutions associated to the linear profiles. We prove the
linear profile decomposition Proposition 4.3 by adapting the energy-critical linear profile decomposition
for the Schrodinger propagator. For linear profiles living at unit length scales, we use Theorem 3.3 to
construct the corresponding nonlinear profiles. The construction of nonlinear profiles in the case of highly
concentrated linear profiles is more delicate and relies on the main result of [Colliander et al. 2008].
Specifically, we approximate such solutions to (1-6) by solutions to the energy-critical NLS and invoke
the stability result, Proposition 3.5. The details are carried out in Proposition 4.5.

In Section 5, we discuss the normal form transformation, which is needed for steps (a) and (c). As
discussed in the subsection on page 1526, low powers in the nonlinearity and poor spatial decay are problem-
atic for establishing the equicontinuity needed to prove weak convergence. To remedy this, we exploit non-
resonant structure in the equation via the normal form transformation M defined in (1-22). We prove some
continuity and invertibility properties of this transformation in Proposition 5.1. We also prove Lemma 5.3
relating the energy and the inverse of the normal form transformation, which plays a role in step (c).

With the results of Section 4 and Section 5 in place, we are in a position to prove Theorem 1.1 in
Section 6. Following the strategy of Nakanishi and using the normal form transformation and Theorem 4.1,
we first construct the putative scattering solution 1°°. Working with the variables z°° = M (14°°), we then
prove a weak convergence result, Proposition 6.2. Having removed the worst quadratic terms via normal
form transformation, establishing the requisite equicontinuity is a more feasible prospect; as in the work
of [Gustafson et al. 2009], however, we still need to exhibit additional nonresonance at the cubic level.

We next upgrade to strong convergence, still at the level of z°°. This relies largely on an energy
decoupling lemma, Lemma 6.3. Finally, to complete the proof of Theorem 1.1, we show that strong
convergence for z®° implies the desired convergence properties for ©°°. For this, we make use of results
proved in Section 5 concerning the inverse of the normal form transformation (e.g., Lemma 5.3).

Finally, in Section 7 we prove Theorem 1.4 and Corollary 1.7. These results are much simpler than
Theorem 1.1; they follow from a contraction mapping argument and rely primarily on Strichartz/dispersive
estimates.
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2. Notation and useful lemmas

Some notation. We write A < B or A = O(B) to indicate that A < CB for some constant C > 0.
Dependence of implicit constants on various parameters will be indicated with subscripts. For example,
A <y B means that A < CB for some C = C(¢). The dependence of implicit constants on the parameter y
defined in (1-3) will not be explicitly indicated. We write A ~ B if A < B and B < A. We write A < B
if A <c¢B for some small ¢ > 0.

We write a complex-valued function u as u = u; +iu. When X is a monomial, we use the notation
@(X) to denote a finite linear combination of products of the factors of X, where Mikhlin multipliers
(e.g., Littlewood—Paley projections) and/or complex conjugation may be additionally applied in each
factor. We extend @ to polynomials via @(X +Y) = B(X) + Q(Y).

For a time interval I we write L(,ZL; (I x R3) for the Banach space of functions u : I x R® — C
equipped with the norm

1
q
Il rcrsen = ([ IO sy 1)

with the usual adjustments when ¢ or  is infinity. If ¢ = r we write LY L% = L?, - We often abbreviate
||”||L?L§(IX[R<3) = ||”||L§1L§C and [[u|zr @3y = llullzy. We also write C(I; X) to denote the space of
continuous functions on / taking values in X.

We use the following convention for the Fourier transform on R3:

F©=0n [ e pear sota fo=en [ @ as

The fractional differential operator |V|® is defined by |W &) =I&° f (£). We will also make use of
the following Fourier multiplier operators (and powers thereof):

(€) = vy + €)%, (V) =v2y — A,
UE) =vVIEPQy+1EP  U=V(=MQy—A)T"
HE) = VIEPQy + 8P, H=V(=M@2y-»).

Fix y € (0, 1) as in (1-3). We define homogeneous and inhomogeneous Sobolev norms HY" and HY"

as the completion of Schwartz functions under the norms

L gsr =182 fllpy, and || fllggr = 1@y —A) flLs,

respectively. When r = 2 we abbreviate H ;,2 =H S and H ;’2 = H3. Note that this definition of the
H3-norm is equivalent (up to constants depending on y) to the standard one, which uses the operator
(1—A)3.

Basic harmonic analysis. We employ the standard Littlewood—Paley theory. Let ¢ be a radial bump
function supported in {|§| < %} and equal to 1 on the unit ball. For N € 27 we define the Littlewood—Paley
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projections

Poyu(€) = ¢(6)aE).  Pyu@) =[¢(H€) — ¢ H]aE). and Py =1d—Poy.
These operators commute with all other Fourier multiplier operators. They are self-adjoint and bounded
on every L% and H? space for 1 < p <ooand s > 0. We write Pj, = P<; and P = P>1.
The Littlewood—Paley projections obey the following standard estimates.

Lemma 2.1 (Bernstein estimates). For 1 <r < g < oo and s > 0 we have

VIS P<yu|

@) S N IP<vullpr@s).

||P>Nu||L§([R3) < N_SH |V|SP>N14‘ L% (R3)
3_3
[P<Nullpagsy S N7 @ |P<nulLr w3
We will need the following:

Lemma 2.2 (fractional chain rule, [Christ and Weinstein 1991]). Suppose G € C(C) and s € (0, 1]. Let
l<rrp<ooandl <ry <oosatisfy 1/r1+1/rp =1/r. Then

[IVEG@) | < IG @)l [IVFul

We will also need the following result concerning bilinear Fourier multipliers. For a real-valued

rp.
L2

function B (&1, €,) we define the operator B|[ f, g] via
B/.8]¢) := (2m)? [R BO.g=n)f(gE—n)dn. 2-1)

Lemma 2.3 (Coifman—Meyer bilinear estimate, [Coifman and Meyer 1978; Meyer and Coifman 1991]).
If the symbol B(&1, &) satisfies

102 92 B(E1.£2)| Saup (1E1] + [E2) (I HIAD

2

for all multi-indices o, B up to sufficiently high order, then

IBLS. gllley < IFllprllglyr
foralll <r <oocand 1 <ry,ry <oosatisfying 1/r =1/r1 4+ 1/rs.
Linear estimates. We record here the dispersive and Strichartz estimates for the propagators e'!2

and e~ 1tH

As is well known, the linear Schrodinger propagator in three space dimensions can be written as
. ; ilx—y|?
€8 110 = i [ B pay
R3

for ¢ # 0. This yields the dispersive estimates

i (33
le™® Fllry S CD N Ny o (2-2)

fort #0, where 2<r <ooand 1/r +1/r’ = 1. This estimate can be used to prove the standard Strichartz

estimates for e/’2. We state the result we need in three space dimensions.
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Proposition 2.4 (Strichartz estimates for elt A, [Ginibre and Velo 1992; Keel and Tao 1998; Strichartz
19771). For a space-time slab I x R3 and 2 < q,§ <ocowith2/q +3/r =2/G +3/F = % we have

t
e”Aqo—i-/ el(t_s)AF(s)ds
0

Sllelizz +IFI

q/ f/ 3y
LY L% (IxR3) Ly Ly (IxR%)

Using stationary phase, one can prove a similar dispersive estimate for e “**# (see [Gustafson et al. 2006;
2009]). In fact, there is a small gain at low frequencies compared to the estimates for the linear Schrédinger
propagator; while the dispersion relation for this propagator has less curvature in the radial direction than
that for Schrodinger, this is more than compensated for by the increased curvature in the angular directions.

Proposition 2.5 (estimates for e 1H [Gustafson et al. 2006, 2009]). For2 < r < oo we have

1

—i (3.3 1_1
le ™ Fllpp@s S 1mCEN0T £l o (2-3)
fort # 0. In particular, for a space-time slab I xR3 and2 < q,§ <ocowith2/q+3/r =2/G+3/F = %
we have

Sllelizz +I1FI

t
eTitHy 4 f e 1CIH p(5) ds o :
0 LYL(IxR3) L Ly (Ix®%)

For an interval I and s > 0 we define the Strichartz norm by

. — s . 2 .3 3
””"SS(I)_S“p{H'V' " 25q500,5+;_—}.

LYLL(IxR3) 2

The Strichartz space S (1) is then defined to be the closure of test functions under this norm. We let
NS(I) denote the corresponding dual Strichartz space.

In several places it will be more convenient to work with (1-6) rather than the diagonalized (1-11).
The linear propagator associated with (1-6) takes the form

. cos(tH Usin(tH

Y N _ (tH) (tH) || / 04
1 —Utsin(tH) cos(tH) 1

for any function f = f1 +if,. We will make use of the following Strichartz estimates for this propagator:

Lemma 2.6. Fix T > 0. Given2 <q,qg <ocowith2/q+3/r=2/G+3/F = %, we have

< Fl,a, %, 2-5

t
H ylemitHy, +/ Vv le =D  yE(5) ds
0

LILY,
where all space-time norms are over [T, T] x R>.

Proof. As we are excluding the endpoint, it suffices (via a 7 T* argument) to prove the result when
F = 0; moreover, it clearly suffices to consider each entry in the matrix (2-4) separately. In view of
the boundedness of U, three out of four of these matrix elements obey the same Strichartz estimates

as e"1"H ; see Proposition 2.5. As Py;U ! is also bounded, we need only prove Strichartz estimates for



1536 ROWAN KILLIP, JASON MURPHY AND MONICA VISAN

Pi,U~!sin(tH). However, this is easily done via Holder and Bernstein’s inequality:
-1 . L -1 .
1
<1 ||‘/’||L§(R3)' (2-6)
This completes the proof of the lemma. O
—itH

At high frequencies, the operator e closely resembles the Schrodinger propagator (on bounded

time intervals); specifically, we have

VIEPQy +[E[2) = [EP +y +m(§) with |m(§)] < (§)7> (2-7)

Indeed, it is not difficult to verify that m(§) defines a Mikhlin multiplier. This observation will play a key
role in our treatment of highly concentrated profiles in Section 4. For the moment, however, we simply
use it to obtain a crude local smoothing estimate.

Lemma 2.7 (local smoothing). Given T > 0 and R > 0,

Lo =1 —itH
VPV Vo 2 qsrixnizry SR 10lL3- (2-8)

Proof. We treat high and low frequencies separately. In the low-frequency regime, we exploit (2-4) and
argue as in (2-6) to deduce that

1 -1, —itH 3
[V PV e™ Vel querixgaizry < T2 A+ Dlgls-

In the high-frequency regime, we can use the usual local smoothing estimate for the Schrédinger equation
together with

(V12 Py = e = OO 2 g <ryy S TNz
which follows from (2-7). O
In practice, we will use the following corollary.
Corollary 2.8. Let K be a compact subset of I xR for some interval I C R. Then the following estimates

hold:

1 2
itA < itA 3 3
19211z iy S 1€ 1 10 ey 115

IVVTe VLl a0y Sk WV T V110 1 1510

Proof. Fix N > 0. By the Bernstein and Holder inequalities,

itA < itA
||VP5N6’ f”L%x(K) ~K N”e f”L}gC(IX[R?’)'

By the local smoothing estimate for ¢/*2 and Bernstein, we also have

. 1 _1
||VP>N€”Af||L%_x(K) <K ”|V|2P>Nf”LgC Sk N 2||Vf||L§-

Optimizing in the choice of N yields the first estimate.
To obtain the second estimate one argues in exactly the same way, making use of Lemma 2.7. O
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3. Global well-posedness in the energy space

In this section we discuss the well-posedness of (1-6) in the energy space. We begin by justifying the
name “energy space” given to the set £ defined in (1-9). Recall from the Introduction that if u € &,
then |E(u)| < oo. The following two lemmas prove that if the energy of u is finite, then u € £; when
y € (0, %), this requires an additional smallness condition.

Lemma3.1. If y € (3,1) and E(u) < oo, then u € € with ||u||2 < E(u). If y = % and E(u) < oo, then
u € & with
||V”||i§ S E(u) and ||Q||i§ S E@) +[Ew).

Proof. When y > % we use the fact that ¢ > —1 in (1-8) to write

1 2 4 _2\,2
E(u)22/|Vu| dx+4/(1 3y) dx,

which immediately implies the result.
We now turn to the case when y = % In this case, the energy takes the form

E(u):%[|Vu|2dx+é[q2(q+l)dx.

As ¢ > —1, we have g%(¢ +1) > 0. Thus u € H)}([R3) and ||Vu||i2 < E(u).

~

To estimate the L%—norm of g, we note that

2d 2 d .
fo =2 s varsEw

2

On the other hand, if ¢ < —% then |uq| > %; thus, by Chebyshev’s inequality and Sobolev embedding,

2 6 6 6 3
/{q<_1 q-dx <4 “ul”L?c < ”VMHL% < [Ew)]>. -

2
We next consider the full range y € (0, 1). In this case, we can guarantee coercivity of the energy
under an appropriate smallness assumption.
Lemma 3.2. Forany y € (0, 1) there exists §,, > 0 so that the following hold:
() If E(u) < oo and | Vu; ||i2 <8y, thenu € & with ||ul|2 < E(u).

(ii) For any ball B,
|V, Hii(m) <48, = /Bc %|vu|2 + %qu + %q3 dx > 0. (3-1)

(iii) If u : I x R3 — C is a solution to (1-6) with E(u) < %5}, and ||V Re u(l0)||12”2€ <&y for sometg €1,
then

[VReul 8y and ||u||ioo(1;g)§E(u).

2
<
L®L3(IxR3) —
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Proof. We begin by writing
EG) = [ 41uP + ke + Ll + 37) dx
> /%|W|2+ 74’ dx+/ L s97(a+3y)ax.
{a<—3v}
For g < ——)/ we have |u;| > g 3. Thus, by Chebyshev’s inequality and Sobolev embedding, we have
8 6
g <-3y)] < (5) 16 S 701V,

Recalling that ¢ > —1, we find that for ||Vu; ||i2 < y% we have

‘[ q+4)/)dx
g<—3y

E@w) > / LIvuf? 4 Lyg? dx.,

<y <1 2
y I Vur||$ 12 = 3lVuilza.

Thus

which yields conclusion (i) of the lemma. Claim (iii) also follows from this and a continuity argument.
To obtain (ii), we repeat the argument above, using the fact that Sobolev embedding holds in the
exterior of any ball B. O

We next turn to the question of global well- posedness for (1-6) with initial data up € £. From the

lemmas above we see that u(z) € £ and ||Vu(¢)||?, < E(up) for all times of existence, whenever

L2 ~
Hye [ ) or (2)y e ( ) and E(up) and ||V Re u0|| 12 are sufficiently small. This a priori bound
on | Vu(s)|| 12 allows us to treat (1-6) as a perturbation of the defocusing energy-critical NLS, which
was proven to be globally well-posed with finite space-time bounds in [Colliander et al. 2008]. See also

[Killip et al. 2012; Tao et al. 2007] for similar perturbative arguments.

Theorem 3.3 (global well-posedness and unconditional uniqueness). For y € [%, 1) and ug € &, there
exists a unique global solution u € C(R; £) to (1-6).

Fory € ( ) if ug € € satisfies |V Re uo||L2 <8y and E(up) < 5y, then there exists a unique
global solution u € C(R; €) to (1-6). Here 8, is as in Lemma 3.2.

In both cases the solution remains uniformly bounded in £ and for any T > 0,

”u”Sl([—T,T]) <rl

Remark 3.4. When y € (O, %), smallness of the initial data is only exploited to prove global existence;
the proof we present below guarantees uniqueness of any solution in C(/;£) on any time interval / € R.

Proof. As mentioned above, Lemmas 3.1 and 3.2 imply that under the hypotheses of Theorem 3.3 we
have ||Vu(t)||]% < E(uy) for all times ¢ of existence. This allows us to treat (1-6) as a perturbation of
the defocusing energy—crltlcal NLS. Indeed, we may rewrite (1-6) as

(i3 + Au = |u|*u + R(u),
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where R(u) =2y Reu + Z =2 Nj(u). Noting that the “error” R(u) is energy-subcritical, one may argue
as in [Killip et al. 2012, Section 4.2] to construct a global solution u € C(R; &) N LIOH 15 (R x R3) to
(1-6). A key ingredient in this argument is the main result in [Colliander et al. 2008] which guarantees
that the defocusing energy-critical NLS is globally well-posed with finite L0 H 13 (R x R3) norm. We
omit the details of this argument. Instead, we present the proof of uniqueness of solutions in the energy
space, because the choice of energy space in this paper does not allow for a direct implementation of the
methods in [Killip et al. 2012, Section 4.3].

Fix a compact time interval / = [0, 7] with t > 0 small. Let u € C(R; &) N L}OH;’%(IR x R3) be
the solution to (1-6) constructed via the perturbative argument described above. Suppose ti € C(/;E) is
another solution such that 7 (0) = u(0). We wish to show that ¥ = & almost everywhere on / x R3,

To this end, we define w = # —u and let 0 < < 1 be a small parameter to be determined below. As
w(0)=0and we C(I; H 1), we can choose T small enough so that

”w”L‘,X’H}(IxW) =1. (3-2)

30
As Vu € LIOL 3 (I x R?), we may also use Sobolev embedding and choose t possibly even smaller to
guarantee that

lellzio (7xm3) <1 (3-3)

We also note that as u and # are bounded in £, we have that g(u), ¢(i1) are bounded in L)ZC; u, U are
bounded in L8; and uy, i1 are bounded in L3 N LS.

We will first show that w is bounded in Strichartz spaces on I x R3. To see this, we write
({0 + A)w =2yu1 + N) — [2yur + N(u)],
where N(u) is as in (1-6). We make use of ¢ (1) and ¢ (i) to rewrite
(0 + Myw = O[> + [ul®) + O] * + [ul*) + Ol + |ul?)
+yq(i) + 2y + 43 + 2iyiiyiia — [yqgu) + Qy + 4ui + 2iyuius].
As w(0) = 0, we can use Strichartz to estimate
lwllpzps +lwlpapz+lwlpee s S 102 o5+ 172 pors a1 a3
el a2 l1a 2 el
+“‘I(ﬁ)”L}L)Zc‘i‘||Q(”)||L}L§C+||ﬁﬁl||L}L§+||uu1||L}L§v
where all space-time norms are over I x R3, Using Holder, we find
1l 2 pers < Pl oo e Nutllparspze S o Ml oo por 10 lL1 2 S lulloo s,
laoll1z2 < Tlg@lipeerz.  Nuulligz < tlullpsopelunllpoors.

and we can estimate similarly for z. Thus we conclude

”w”L%LS’C+||w”L‘}L§-+”w”L<;°L§ < 00. (3-4)
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We will show that, in fact,
”w”L%L§+”w”L‘,‘L§+”w”L§X’L§ =0, (3-5)

which implies w = 0 almost everywhere, as desired. To this end, we again rewrite the equation for w,
using z to indicate that either w or ¥ may appear. We have

(9 + A)w = O(lwlul* + [w|* + [w||z]> + [w 2> + [w]|z] + |w]).
We now use Strichartz, (3-2) and (3-3) to estimate
||w||L%L)6€+||w||L;1L)3(+||w||L<;OL)2(

4 5 3 2
S lwuliproro psons + 1wl 2 pors +wz=ll 2 pors + w2zl pars 3o+ lwzlpr 2 + w2
4 4 TR
Sl lwlizzpe +Hlwlpee pellwlizzre + 4l 0 o lwliLsrs
e :
+T “Z”L?oLgnw”LfLﬁ‘i‘f ”Z”L‘;C’L?C“w”L‘,‘L;Z+T||w”L‘,’°L§

1
< pt Z
=N ||w||L%L§C+T4||w||L;1L§C+T||w||L<;°L§-

Choosing 7, t sufficiently small and using (3-4), we conclude that (3-5) holds and so ¥ = % almost
everywhere on I x R3. As uniqueness is a local property, this yields uniqueness in the energy space for
solutions to (1-6). O

Next we develop a stability theory for (1-6), which we will need in Section 4.

Proposition 3.5 (stability theory). Fix T > 0 and let it : [T, T] x R3 — C be a solution to the perturbed
equation
(id;+ A—2yRe)i=N(u)+e

for some function e. Suppose that

”ﬁ”L?OH}([—T,T]xW) + ”Vﬁ||L}0L)3¢0/13([—T,T]XR3) <L (3-6)

for some constant L > 0. Let ug € H (R3) and assume that

<eg 3-7)

t
15(0) — uoll 1 + H/ =AY (s) ds <
o 0 LR L2NLY3 (=T, T1xR3)
t X t.x ’

for some & < eo(L, T). Then for eo(L, T) sufficiently small there exists a solution u : [-T, T] x R> — C
to (1-6) with data u(0) = ug and

V(@ — < C(L.T)e, (3-8)

Wl Lo 120010 1)
”u”Sl([—T,T]) <C(L,T). (3-9)
Proof. The existence of the solution u# on a small neighborhood of ¢ = 0 follows from the arguments

described in Theorem 3.3. In that setting, the solution could be extended globally due to energy control.
That argument does not apply here as ug € H ; by itself does not guarantee finiteness of the energy;
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furthermore, we permit here large data even when y < %, in which case the energy need not be coercive.
However, these earlier arguments do show that if a solution should blow up in finite time, then the
S1-norm must diverge. Consequently, we can prove that the solution exists and obeys (3-8) and (3-9) on
the whole interval [—7, 7| by showing that it obeys (3-8) and (3-9) on any subinterval 0> [ € [T, T
on which it does exist. This is what we do.

For brevity, we define the following norm: given a time interval [a, b] C R,

”u”Y([a,b]) = Hvu”L?OL)%HL}.OXH([a,b]XI]@)'
Given 0 < n < 1 to be chosen later, we divide [ into intervals J where
|J|<n and ”vg”L}OLiO/B(JxW) <n. (3-10)

The number K of such intervals depends only on L, T', and 7. Below we will show that for n sufficiently
small,

inf [u(to) —uCo) g1 <n = lu—ulyy) =<4 inf [[u(0) —u(o)ll 41 (3-11)
toeJ x toeJ x

for some absolute constant A on such intervals J. Iterating this completes the proof of (3-8) and yields
constants
go=AKETMy and C(L,T) = K(L, T, n)AKELTD,

We now verify (3-11). Writing u = % + v, we use Strichartz and (3-7) to estimate
[0llye) < inf 106}l 1 + [ VING + ) = N@I gosy + 17 1100 1+
0

where N(-) denotes the nonlinearity, as in (1-6). Moreover,

5
~ ~ ~ 5—k ~ i ke— _
[VINGE + ) = N o) < 1Vl o gaoalioll o D2 1155 (57 + ol )

5
Sk ()~ k—1 k—1)
P
FI0l oo 311 (1l +1olse ).

where all space-time norms are over J x R3. Using Sobolev embedding and (3-10), we therefore obtain

5
. 5—k
lollve < jinf o)l gy + s I5 ) +e
k=1

Choosing 7 sufficiently small, a simple bootstrap argument yields (3-11).
Using the fact that u is a solution to (1-6), a further application of the Strichartz inequality gives (3-9). O

We also record the following corollary.
Corollary 3.6 (small-data space-time bounds). Given T > 0 there exists n(T) > 0 such that
luoll gy < (™) = Nullgir.rp <7 ol

where u denotes the solution to (1-6) with data u(0) = uy.
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Proof. We apply Proposition 3.5 with i = e!’®ug. By the Strichartz inequality,

1o sy IV 020713 sy S 0o

while a little computation yields

t
H[ el(t_S)Ae(s) ds
0

5
5=k k
) SZT 4 ”uO”Hl-
SIC-T.T)  joy x

Proposition 3.5 now gives the claim, provided 7(7) is taken sufficiently small. O

4. Well-posedness in the weak topology

In this section we prove the following well-posedness result in the weak H 1 topology. As described in
the Introduction, this theorem will play a key role in the proof of Theorem 1.1 in Section 6.

Theorem 4.1 (weak topology well-posedness). Let y € (0, 1) and let {u,(0)},>1 be a bounded sequence
in E. Assume that u, (0) — ug weakly in H; R3>. If y e (O, %) we assume additionally that

IVReu,(0)| 2 <8, and E(un(0)) = %5%

where 8 is as in Theorem 3.3. Then there exists a unique solution u € C(R; £) to (1-6) with u(0) = uy,
and for all t € R we have
un(t) = u(t) weakly in H}(R?), 4-1)

where u, € C(R; &) denotes the solution to (1-6) with initial data u, (0), whose existence is guaranteed
by Theorem 3.3.

We begin with the following lemma, which guarantees that the limit u¢ belongs to the energy space
and obeys the necessary smallness conditions when y € (0, %) so that the existence and uniqueness of
the solution u € C(R; &) follow from Theorem 3.3.

Lemma 4.2. Fixy € (0, 1) and suppose {u,}n>1 is a bounded sequence in £ that satisfies up (X —xp) —
uo(x) weakly in H; (R3) for some sequence {xn}n>1 € R> Then ug € £. Moreover, if y > % then

E(uo) <liminf E(up). 4-2)
n—oo
Ifye (O, %) and |V Re uy ”12} <4y, then |V Reug ||i2 <48y and (4-2) holds. Here 8y is as in Theorem 3.3.
Proof. Without loss of generality, we may assume that x, = 0.
To prove that ug € &, it suffices to show that g(ug) € L2. As u, — uo weakly in H}(R3), invoking
Rellich-Kondrashov and passing to a subsequence, we deduce that u, — g in LZ(K) forany 2 < p <6
and any compact set K C R3. Therefore, for any ball B C R,

/ lg(uo(x))|? dx = lim / g (un (x))? dxfliminf/ lq(un (x))|? dx < oo.
B n—oo [p n—>00 Jp3

As the bound does not depend on B, this proves ¢ (u¢) € L2.
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Proceeding similarly and using (weak) lower semicontinuity of the H ;— and Lfc—norrns, we obtain
/ 3IVuol? + $vq(uo)® + £q(uo)? dx < l,iniiééf/ 3 VU + 5vqn)? + $qun)? dx
B B

for any ball B. It is crucial here that the sextic term in the energy appears with a positive coefficient.
When y € [%, 1), the energy density is positive and so the right-hand side above is majorized by

liminf E(u,). When y € (O, %), we use instead (3-1) to reach the same conclusion. As ug € £, the

dominated convergence theorem yields (4-2). O

We next prove a linear profile decomposition adapted to (1-12) for H _bounded sequences. Beginning
with the profile decomposition for the linear Schrodinger equation, we group the profiles according to
the behavior of their associated parameters. We also show that the error term vanishes in the limit under

propagation by V~le "*H 1/ (in addition to propagation by e*4).

Proposition 4.3 (linear profile decomposition). Suppose { fn }n>1 is a bounded sequence in H L(R3) and
let T > 0. Passing to a subsequence, there exists J* € {0,1,2, ...} U {oo} and for each finite 1 < j < J*
there exist a nonzero profile ¢’ € H L(R3), scales {)&] tn>1 C (0, 00), and positions {(t;, , X3 ) in>1 C RXR>
conforming to one of the following two scenarios:

e Ml =1landt] =0,
e A = 0asn— ooand eithert;, =0ort] (A})2 — +oo asn — oo,
so that for any finite 0 < J < J* we have the decomposition

J : X — xj
fal) = Y e [(m—dﬂ( — ”)]+w,{(x>
i=1

n

satisfying the following properties:

(Aj)%(eit'{Afn)(/\jx —I-X,{) — ¢j weakly in H;, 4-3)
1 —tH itAJ _
i tim supl |V TV o syl S0 g qorixan] =00 @4
J
) 2 iz ndn2 | )
sup timsup | f L1971y =l 2|0 @)
()L,J;)%(e”f{Aw,{)(k{;x —}—x,{) — 0 weakly in H)} forall 1 <j </, (4-6)
/\j /\l J_ 12 l‘j —l‘l
lim —;’+—'}+|x”jx"| +|",~ 1l oo forail j£1. (4-7)
noo AL ATl AIAL

Proof. Using the linear profile decomposition for the Schrodinger propagator for bounded sequences in
H ; (see, for example, [Keraani 2001] or [Visan 2014, Theorem 4.1]), we obtain a decomposition

A x— xJ
Falx) = Z o—ith A |:(AJ)—¢J ( Y 1 ):| +r)(x) (4-8)
j=1

n
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satisfying (4-3), (4-5), (4-6), and (4-7) (with w,{ replaced by r;,’ ), as well as

im, hnﬂl)solip le'*4 ||L;gc([—T,T]xR3) =0. (4-9)

We will first show that we may assume the parameters conform to the two scenarios described above;
in particular, we will show that we may absorb any other bubbles of concentration into the error r , while
maintaining condition (4-9). To complete the proof of the proposition, we will show that condition (4-9)
(for the new error term) suffices to prove (4-4). Note that it is essential in what follows that we work on a
compact time interval.

We will use the notation

; J
b0 =2 e (- o )|

We begin with the following lemma.
Lemma 4.4. If |t,{| + /\,’,. — 00 as n — oo, then
: itA 4 j
A le S bnllLto 171 = 0-
Proof. A direct computation gives

(A L) A
le"™ Sl -1 rixr) = 1€ 207 110 (1xm3):
where

Iz[—t,{—T —t,{+T}
a2 (A2

If )L£ — 00, then the lengths of the time intervals appearing on the right-hand side of the equality
above shrink to zero; consequently, by the dominated convergence theorem combined with the Strichartz
inequality, we deduce the claim.

Passing to a subsequence, we may henceforth assume that )L,Ji' — A/ € [0, 00). In this case, we have
|t,{ | = o0, and so the time intervals escape to infinity. Thus the claim follows once again from the
dominated convergence theorem combined with the Strichartz inequality. O

Discarding the bubbles of concentration whose parameters satisfy the hypotheses of Lemma 4.4, we can
now see that we may reduce attention to the two scenarios described in Proposition 4.3. Indeed, passing to
a subsequence, we may assume that )L] — A/ €0, 00) and tn — 1/ e (—o0,00). If M # 0, then we may
assume that /\,], =1 and t,{ = 0 by redefining the correspondlng profile to be (A/)~ it Alp/ (- /).
The error incurred by this modification can be absorbed into r ; indeed, we have

_, —l/ 7 X — xn
# =GO tA[‘i’j( ¥ )]HH
<fonter () -ento ()], ¢
An Hl

—ity] A _ =it/ M| (/=3 pd i)}” ’
e =yt (5 N
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which tends to zero as n — oo by the strong convergence of the linear Schrodinger propagator. If instead
A7/ =0, then passing to a further subsequence we may assume that either t,{ =0or t,{ (/\{;)_2 — +o00
as n — o0. Indeed, if there is a subsequence along which t,{ (/\,’,.)_2 — 1 € (—00, 00), then we redefine
the profile to be e #*2¢/ and t,{ = 0. It is easy to see that the resulting error can be absorbed into rnJ .
It remains to prove that the new error w;] (which consists of r;/ plus the bubbles of concentration whose
parameters satisfy the hypotheses of Lemma 4.4) obeys (4-4). This is a consequence of the following: if
J1_1>rr11* lim sup||e’"Aw) ||L}%([_T’T]XR3) =0,

n—>oo

then

Jlim lim sup” ylemitH yy =0.

J
ST* poseo n HL}PX([—T,T]XW)
To prove this final implication, we argue as follows: In view of the representation (2-4) and the boundedness
of U and Py U1, it suffices to verify that e T/*H ¢ F1A and P U~ sin(tH )e™'*2 are Mikhlin multipliers
with bounds that are uniform for ¢ € [T, T']. In the former case, this follows from (2-7); with regard to
the latter, see (2-6).

This completes the proof of Proposition 4.3. O

In the proof of Theorem 4.1, we will construct solutions to (1-6) associated to each ¢,{ . For profiles
conforming to the first scenario in Proposition 4.3, we can achieve this by an application of Lemma 4.2
and Theorem 3.3. For profiles conforming to the second scenario, this is a more difficult problem, which
we address in the following proposition.

Proposition 4.5 (highly concentrated nonlinear profiles). Let ¢ € H LT(R3) and T > 0. Assume {p}n>1 C
(0, 00) and {(tn, xn)}n>1 C R x R3 satisfy A, — 0 and either t, = 0 or tn)&,jz — to00. Then for n
sufficiently large, there exists a solution uy to (1-6) with initial data

n(0.) = g )= 100 [0 b (S|

satisfying
||un||$1([—T,T]) = C(”d’”[—[}) (4-10)

Moreover, for all & > 0 there exist ¢g, e € C°([—T, T] x R?) such that

o1 (f—t, x—x
lim sup un(t,x)—e_’ytkn2¢g(—2", n) <e, (4-11)
n—00 An An LI%([-T.T]xR3)
limsup|| Vun (£, x) =7 V' A * Y| =5 —— || 10 <e. (4-12)
7=>00 An o An L (-1 xR

Proof. As (1-6) is space-translation invariant, without loss of generality we may assume that x, = 0.
We proceed via a perturbative argument. Specifically, using a solution to the defocusing energy-critical
NLS, we will construct an approximate solution i, to (1-6) with initial data asymptotically matching ¢;,.
This approximate solution will have good space-time bounds inherited from the solution to the defocusing
energy-critical NLS. Using the stability result Proposition 3.5, we will then deduce that for n sufficiently
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large, there exist true solutions u, to (1-6) with u,(0) = ¢, that inherits the space-time bounds of i,
thus proving (4-10). We turn to the details.
If t, = 0, let v be the solution to 