Vol. 9, No. 8, 2016

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 10, 3371–3670
Issue 9, 2997–3369
Issue 8, 2619–2996
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
A long $\mathbb{C}^2$ without holomorphic functions

Luka Boc Thaler and Franc Forstnerič

Vol. 9 (2016), No. 8, 2031–2050
Abstract

We construct for every integer n > 1 a complex manifold of dimension n which is exhausted by an increasing sequence of biholomorphic images of n (i.e., a long n), but does not admit any nonconstant holomorphic or plurisubharmonic functions. Furthermore, we introduce new holomorphic invariants of a complex manifold X, the stable core and the strongly stable core, which are based on the long-term behavior of hulls of compact sets with respect to an exhaustion of X. We show that every compact polynomially convex set B n such that B = B ¯ is the strongly stable core of a long n; in particular, holomorphically nonequivalent sets give rise to nonequivalent long n’s. Furthermore, for every open set U n there exists a long n whose stable core is dense in U. It follows that for any n > 1 there is a continuum of pairwise nonequivalent long n’s with no nonconstant plurisubharmonic functions and no nontrivial holomorphic automorphisms. These results answer several long-standing open problems.

Keywords
holomorphic function, Stein manifold, long $\mathbb C^n$, Fatou–Bieberbach domain, Chern–Moser normal form
Mathematical Subject Classification 2010
Primary: 32E10, 32E30, 32H02
Milestones
Received: 4 March 2016
Revised: 19 July 2016
Accepted: 28 August 2016
Published: 11 December 2016
Authors
Luka Boc Thaler
Faculty of Education
University of Ljubljana
Kardeljeva ploščad 16
SI-1000 Ljubljana
Slovenia
Institute of Mathematics, Physics and Mechanics
Jadranska 19
SI-1000 Ljubljana
Slovenia
Franc Forstnerič
Faculty of Mathematics and Physics
University of Ljubljana
Jadranska 19
SI-1000 Ljubljana
Slovenia
Institute of Mathematics, Physics and Mechanics
Jadranska 19
SI-1000 Ljubljana
Slovenia