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ON AN ISOPERIMETRIC-ISODIAMETRIC INEQUALITY

ANDREA MONDINO AND EMANUELE SPADARO

The Euclidean mixed isoperimetric-isodiametric inequality states that the round ball maximizes the
volume under constraint on the product between boundary area and radius. The goal of the paper is to
investigate such mixed isoperimetric-isodiametric inequalities in Riemannian manifolds. We first prove
that the same inequality, with the sharp Euclidean constants, holds on Cartan–Hadamard spaces as well
as on minimal submanifolds of Rn. The equality cases are also studied and completely characterized;
in particular, the latter gives a new link with free-boundary minimal submanifolds in a Euclidean ball.
We also consider the case of manifolds with nonnegative Ricci curvature and prove a new comparison
result stating that metric balls in the manifold have product of boundary area and radius bounded by the
Euclidean counterpart and equality holds if and only if the ball is actually Euclidean.

We then consider the problem of the existence of optimal shapes (i.e., regions minimizing the product of
boundary area and radius under the constraint of having fixed enclosed volume), called here isoperimetric-
isodiametric regions. While it is not difficult to show existence if the ambient manifold is compact,
the situation changes dramatically if the manifold is not compact: indeed we give examples of spaces
where there exists no isoperimetric-isodiametric region (e.g., minimal surfaces with planar ends and more
generally C0-locally asymptotic Euclidean Cartan–Hadamard manifolds), and we prove that on the other
hand on C0-locally asymptotic Euclidean manifolds with nonnegative Ricci curvature there exists an
isoperimetric-isodiametric region for every positive volume (this class of spaces includes a large family
of metrics playing a key role in general relativity and Ricci flow: the so-called Hawking gravitational
instantons and the Bryant-type Ricci solitons).

Finally we prove the optimal regularity of the boundary of isoperimetric-isodiametric regions: in the
part which does not touch a minimal enclosing ball, the boundary is a smooth hypersurface outside of a
closed subset of Hausdorff codimension 8, and in a neighborhood of the contact region, the boundary is a
C1,1 hypersurface with explicit estimates on the L∞ norm of the mean curvature.
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1. Introduction

One of the oldest questions of mathematics is the isoperimetric problem: what is the largest amount of
volume that can be enclosed by a given amount of area? A related classical question is the isodiametric
problem: what is the largest amount of volume that can be enclosed by a domain having a fixed diameter?

In this paper we address a mix of the previous two questions, namely we investigate the following
mixed isoperimetric-isodiametric problem: what is the largest amount of volume that can be enclosed by
a domain having a fixed product of diameter and boundary area?

Of course, if we ask the three above questions in the Euclidean space, the answer is given by round
balls of suitable radius, but, of course, the situation in nonflat geometries is much more subtle. We start
by recalling classical material on the isoperimetric problem which motivated our investigation on the
mixed isoperimetric-isodiametric one.

The solution of the isoperimetric problem in the Euclidean space Rn can be summarized by the classical
isoperimetric inequality

nω1/n
n Vol(�)(n−1)/n

≤A(∂�) for every �⊂ Rn open subset with smooth boundary, (1-1)

where Vol(�) is the n-dimensional Hausdorff measure of � (i.e., the “volume” of �), A(∂�) is the
(n−1)-dimensional Hausdorff measure of ∂� (i.e., the “area” of ∂�), and ωn := Vol(Bn) is the volume
of the unit ball in Rn. As is well known, the regularity assumption on � can be relaxed a lot (for instance
(1-1) holds for every set � of finite perimeter), but let us not enter into technicalities here since we are
just motivating our problem.

As anticipated above, in the present paper we will not deal with the isoperimetric problem itself but
we will focus on a mixed isoperimetric-isodiametric problem. Let us start by stating the Euclidean mixed
isoperimetric-isodiametric inequality, which will act as model for this paper. Given a bounded open
subset �⊂Rn with smooth boundary, by the divergence theorem in Rn (see Section 2 for the easy proof),
we have

n Vol(�)≤ rad(�)A(∂�), (1-2)

where rad(�) is the radius of the smallest ball of Rn containing � (see (2-1) for the precise definition).
As observed in Remark 2.1, inequality (1-2) is sharp and rigid; indeed, equality occurs if and only if � is
a round ball in Rn.

In sharp contrast with the classical isoperimetric problem, where both problems are still open in
the general case, it is not difficult to show that the inequality (1-2) holds in Cartan–Hadamard spaces
(i.e., simply connected Riemannian manifolds with nonpositive sectional curvature) and on minimal
submanifolds of Rn; see Propositions 3.1, 3.3 and 3.7. Even if the validity of inequality (1-2) in such
spaces is probably known to experts, we included it here in order to motivate the reader and also because
the equality case for minimal submanifolds presents an interesting link with free-boundary minimal
surfaces: equality is attained in (1-2) if and only if the minimal submanifold is a free-boundary minimal
surface in a Euclidean ball (see Proposition 3.3 for the precise statement and Remarks 3.5–3.6 for more
information about free-boundary minimal surfaces).
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If on one hand the negative curvature gives a stronger isoperimetric-isodiametric inequality, on the
other hand we show that nonnegative Ricci curvature forces metric balls to satisfy a weaker isoperimetric-
isodiametric inequality. The precise statement is the following.

Theorem 1.1 (Theorem 4.1). Let (Mn, g) be a complete (possibly noncompact) Riemannian n-manifold
with nonnegative Ricci curvature. Let Br ⊂ M be a metric ball of volume V = Volg(Br ), and denote by
BRn

(V ) the round ball in Rn having volume V. Then

rad(Br )A(∂Br )= rA(∂Br )≤ n Volg(Br )= radRn (BRn
(V ))ARn (∂BRn

(V )). (1-3)

Moreover equality holds if and only if Br is isometric to a round ball in the Euclidean space Rn. In
particular, for every V ∈ (0,Volg(M)),

inf
{
rad(�)P(�) : �⊂ M,Volg(�)=V

}
≤ nV = inf

{
rad(�)P(�) : �⊂ Rn,VolRn (�)=V

}
, (1-4)

with equality for some V ∈ (0,Volg(M)) if and only if every metric ball in M of volume V is isometric to
a round ball in Rn. In particular if equality occurs for some V ∈ (0,Volg(M)) then (M, g) is flat, i.e., it
has identically zero sectional curvature.

Remark 1.2. Since by Bishop–Gromov volume comparison, we know that if Ricg ≥ 0 then for every
metric ball Br (x0)⊂ M ,

Volg(Br (x0))≤ ωnrn
= VolRn (BRn

r ).

It follows that
rad(Br (x0))≥ radRn (BRn

(V )),

where BRn
(V ) is a Euclidean ball of volume V = Volg(Br (x0)). Therefore Theorem 1.1 in particular

implies P(Br (x0))≤PRn (BRn
(V )), but is a strictly stronger statement, which to the best of our knowledge

is original. The aforementioned counterpart of Theorem 1.1 for the isoperimetric problem was proved
instead by Morgan and Johnson [2000, Theorem 3.5] for compact manifolds and extended to noncompact
manifolds in [Mondino and Nardulli 2016, Proposition 3.2].

In Section 5 we investigate the existence of optimal shapes in a general Riemannian manifold (M, g).
More precisely, given a measurable subset E ⊂M we denote by P(E) its perimeter and define its extrinsic
radius as

rad(E) := inf
{
r > 0 : Volg(E \ Br (z0))=0 for some z0 ∈ M

}
,

where Br (z0) denotes the open metric ball with center z0 and radius r > 0. We consider the following
minimization problem: for every fixed V ∈ (0,Volg(M)), find

min{rad(E)P(E) : E ⊂ M,Volg(E)=V}, (1-5)

and call the minimizers of (1-5) isoperimetric-isodiametric sets (or regions). To best of our knowledge
this is first time such a problem is considered in the literature.

As it happens also for the isoperimetric problem, we will find that if the ambient manifold is compact
then for every volume there exists an isoperimetric-isodiametric region (see Theorem 5.2 and Corollary 5.3)
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but if the ambient space is noncompact the situation changes dramatically. Indeed in Examples 5.6–5.7
we show that in complete minimal submanifolds with planar ends (like the helicoid) and in asymptotically
locally Euclidean Cartan–Hadamard manifolds, there exists no isoperimetric-isodiametric region of
positive volume. On the other hand, we show that in C0-locally asymptotically Euclidean manifolds (see
Definition 5.4 for the precise notion) with nonnegative Ricci curvature for every volume there exists an
isoperimetric-isodiametric region:

Theorem 1.3 (Theorem 5.5). Let (M, g) be a complete Riemannian n-manifold with nonnegative Ricci
curvature and fix any reference point x̄ ∈M. Assume that for any diverging sequence of points (xk)k∈N ⊂M,
i.e., d(xk, x̄)→∞, the sequence of pointed manifolds (M, g, xk) converges in the pointed C0 topology to
the Euclidean space (Rn, gRn , 0).

Then for every V ∈ (0,Volg(M)) there exists a minimizer of the problem (1-5); in other words, there
exists an isoperimetric-isodiametric region of volume V.

Let us mention that the counterpart of Theorem 1.3 for the isoperimetric problem was proved in
[Mondino and Nardulli 2016] capitalizing on the work by Nardulli [2014].

Remark 1.4. It is well known that the only manifold with nonnegative Ricci curvature and C0-globally
asymptotic to Rn is Rn itself. Indeed if M is C0-globally asymptotic to Rn then

lim
R→∞

Volg(BR(x̄))
ωn Rn = 1,

which by the rigidity statement associated to the Bishop–Gromov inequality implies that (M, g) is globally
isometric to Rn. On the other hand, the assumption of Theorem 1.3 is much weaker as it asks (M, g) to be
just locally asymptotic to Rn in the C0 topology and many important examples enter in this framework,
as explained in Example 1.5.

Example 1.5. The class of manifolds satisfying the assumptions of Theorem 1.3 contains many geomet-
rically and physically relevant examples.

• Eguchi–Hanson and, more generally, ALE gravitational instantons. These are 4-manifolds, solutions of
the Einstein vacuum equations with null cosmological constant (i.e., they are Ricci flat, Ricg ≡ 0), they are
noncompact with just one end which is topologically a quotient of R4 by a finite subgroup of O(4), and
the Riemannian metric g on this end is asymptotic to the Euclidean metric up to terms of order O(r−4),

gi j = δi j + O(r−4),

with appropriate decay in the derivatives of gi j (in particular, such metrics are C0-locally asymptotic, in the
sense of Definition 5.4, to the Euclidean 4-dimensional space). The first example of such manifolds was
discovered by Eguchi and Hanson [1978]; inspired by the discovery of self-dual instantons in Yang–Mills
theory, they found a self-dual ALE instanton metric. The Eguchi–Hanson example was then generalized
by Gibbons and Hawking [1978]; see also the work by Hitchin [1979]. These metrics constitute the
building blocks of the Euclidean quantum gravity theory of Hawking (see [Hawking 1977; 1979]). The
ALE gravitational instantons were classified by Kronheimer [1989a; 1989b].
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• Bryant-type solitons. The Bryant solitons, discovered by R. Bryant [2005], are special but fundamental
solutions to the Ricci flow (see, for instance, the work of Brendle [2013; 2014] for higher dimensions).
Such metrics are complete, have nonnegative Ricci curvature (they actually satisfy the stronger condition
of having nonnegative curvature operator) and are locally C0-asymptotically Euclidean. Other soliton
examples fitting our assumptions are given by Catino and Mazzieri [2016].

Section 6 is then devoted to establishing the optimal regularity for isoperimetric-isodiametric regions
under suitable assumptions on regularity of the enclosing ball. We first observe that outside of the contact
region with the minimal enclosing ball B, such sets are locally minimizers of the perimeter under volume
constraint. Therefore by classical results (see, for example, [Morgan 2003, Corollary 3.8]) in the interior
of B the boundary of the region is a smooth hypersurface outside a singular set of Hausdorff codimension
at least 8.

The rest of the paper is devoted to proving the optimal regularity at the contact region. We first
show in Section 6A that isoperimetric-isodiametric regions are almost-minimizers for the perimeter
(see Lemma 6.3) and therefore, by a result of Tamanini [1982] their boundaries are C1,1/2 regular (see
Proposition 6.1). In Section 6B, by means of geometric comparisons and sharp first-variation arguments,
we show that the mean curvature of the boundary of an isoperimetric-isodiametric region is in L∞ with
explicit estimates. Finally in Section 6C we establish the optimal C1,1 regularity. We mention that, strictly
speaking, Section 6B is not needed to prove the optimal regularity; in any case we included such a section
since it provides an explicit sharp L∞ estimate on the mean curvature and is of independent interest. Now
let us state the main regularity result.

Theorem 1.6 (Theorem 6.11). Let E ⊂ M be an isoperimetric-isodiametric set and x0 ∈ M be such that
Volg(E \ Brad(E)(x0))= 0. Assume B := Brad(E)(x0) has smooth boundary. Then, there exists δ > 0 such
that ∂E \ Brad(E)−δ(x0) is C1,1 regular.

An essential ingredient in the proof of Theorem 1.6 is Proposition 6.12, which roughly tells that the
boundary of E leaves the obstacle at most quadratically. Then the conclusion will follow by combining
Schauder estimates outside of the contact region (see Lemma 6.13) with the general fact that functions
which leave the first-order approximation quadratically are C1,1 — see Lemma 6.14. Although the
techniques exploited for this part of the paper are inspired by the ones introduced in the study of the
classical obstacle problem (see, for example, [Caffarelli 1998]), here we treat the geometric case of the
area functional in a Riemannian manifold with volume constraints and we take several short-cuts thanks
to some specifically geometric arguments, such as the theory of almost minimizers. In particular, such a
geometric situation doesn’t seem to be trivially covered by the regularity results for nonlinear variational
inequalities, as developed, for example, by Gerhardt [1973] — see Remark 6.16.

Remark 1.7. Note that the C1,1 regularity is optimal, because in general one cannot expect to have
continuity of the second fundamental form of ∂E across the free boundary of ∂E , i.e., the points on the
relative (with respect to ∂B) boundary of ∂E ∩ ∂B. The same is indeed true for the simplest case of the
classical obstacle problem.
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2. Notation, preliminaries and the Euclidean case

Let (Z , d) be a metric space. Given an open subset �⊂ Z , we define its extrinsic radius as

rad(�) := inf{r > 0 :�⊂ Br (z0) for some z0 ∈ Z}, (2-1)

where Br (z0) denotes the open metric ball of center z0 and radius r > 0.
The model inequality for the first part of the paper is the Euclidean mixed isoperimetric-isodiametric

inequality obtained by the following integration by parts. Let � ⊂ Rn be a bounded open subset with
smooth boundary and let x0 ∈ Rn be a point such that

max
x∈�
|x − x0| = rad(�). (2-2)

Denoting by X the vector field X (x) := x − x0, by the divergence theorem in Rn we then get

n Vol(�)=
∫
�

div X dHn
=−

∫
∂�

X · ν dHn−1
≤ rad(�)A(∂�), (2-3)

where Vol(�) denotes the Euclidean n-dimensional volume of �, ν is the inward-pointing unit normal
vector and A(∂�) is the Euclidean (n−1)-dimensional area of ∂�, which here is assumed to be smooth.
Notice that, analogously, if �⊂ Rn is a finite-perimeter set, one gets the inequality

Vol(�)≤
rad(�)

n
P(�), (2-4)

where, of course, P(�) denotes the perimeter of � (see Section 5A for the definitions of P(�) and
rad(�) for finite-perimeter sets).

Remark 2.1. The inequalities (2-3) and (2-4) are sharp and rigid: indeed equality occurs if and only if
� is a round ball.

3. Euclidean isoperimetric-isodiametric inequality in Cartan–Hadamard manifolds
and minimal submanifolds

In order to motivate and gently introduce the reader to the topic, in this section we will prove that the
Euclidean isoperimetric-isodiametric inequality holds with the same constant in Cartan–Hadamard spaces
and in minimal submanifolds. Possibly apart from the rigidity statements, here we do not claim originality
since such inequalities are probably well known to experts (see [Burago and Zalgaller 1988; Hoffman and
Spruck 1974; Michael and Simon 1973]). However we included this section for the following reasons:

• While for the isoperimetric-isodiametric inequality the proofs are a consequence of a nondifficult
integration by parts argument, the corresponding statements for the classical isoperimetric inequality
are still open problems (see Remarks 3.2 and 3.4). This suggests that possibly in other situations
isoperimetric-isodiametric inequalities may behave better than the classical isoperimetric ones.

• The rigidity statements, in the case of minimal submanifolds, show interesting connections between
the isoperimetric-isodiametric inequality and free-boundary minimal surfaces, a topic which recently
has received a lot of attention (for more details, see Remarks 3.5 and 3.6).
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3A. The case of Cartan–Hadamard manifolds. Recall that a Cartan–Hadamard n-manifold is a com-
plete simply connected Riemannian n-dimensional manifold with nonpositive sectional curvature. By
a classical theorem of Cartan and Hadamard (see, for instance, [do Carmo 1992]) such manifolds are
diffeomorphic to Rn via the exponential map. The next result is a sharp and rigid mixed isoperimetric-
isodiametric inequality in such spaces. For this section, without losing much, the nonexpert reader
may assume the region � ⊂ M has smooth boundary; in this case the perimeter is just the standard
(n−1)-volume of the boundary (the perimeter will instead play a role in the next sections about existence
and regularity of optimal sets).

Proposition 3.1. Let (Mn, g) be a Cartan–Hadamard manifold. Then for every smooth open subset (or
more generally for every finite-perimeter set) �⊂ Mn,

n Vol(�)≤ rad(�)A(∂�), (3-1)

where Vol(�) denotes the n-dimensional Riemannian volume of � and A(∂�) the (n−1)-dimensional
area of the smooth boundary ∂� (in the case where � is a finite-perimeter set, just replace A(∂�) with
P(�), the perimeter of �, on the right-hand side, and rad(�) is as in Section 5A).1 Moreover, if for
some � the equality is achieved, then � is isometric to a Euclidean ball.

Proof. Let �⊂ Mn be a subset with finite perimeter; without loss of generality we can assume that � is
bounded (otherwise rad(�)=+∞ and the inequality is trivial). Let x0 ∈ Mn be such that

max
x∈�

d(x, x0)= rad(�),

where d is the Riemannian distance on (Mn, g); for convenience we will also define dx0( · ) := d(x0, · ).
Let u := 1

2d
2
x0

; by the aforementioned Cartan–Hadamard theorem (see, for instance, [do Carmo 1992]),
we know that u : Mn

→R+ is smooth and by the Hessian comparison theorem, one has (D2u)i j ≥ gi j ; in
particular, by tracing, we get 1u ≥ n. Therefore, by the divergence theorem, we get

n Vol(�)≤
∫
�

1u dµg =−

∫
∂∗�

g(∇u, ν) dHn−1
=−

∫
∂∗�

d(x, x0)g(∇dx0, ν) dHn−1

≤ rad(�)Hn−1(∂∗�)= rad(�)P(�), (3-2)

where µg is the measure associated to the Riemannian volume form, ∂∗� is the reduced boundary of �
(of course, in the case where � is a smooth open subset, one has ∂∗�= ∂�), ν is the inward-pointing
unit normal vector (recall that it is Hn−1-a.e. well-defined on ∂∗�), and we used that dx0 is 1-Lipschitz.
Of course (3-2) implies (3-1). Notice that if equality holds in the second line, then � is a metric ball of
center x0 and radius rad(�). Moreover if equality occurs in the first inequality of the first line then we must
have (D2d2

x0
)i j ≡ 2gi j on �, and by standard comparison (see, for instance, [Ritoré 2005, Section 4.1]) it

follows that � is flat. But since the exponential map in M is a global diffeomorphism, it follows that � is
isometric to a Euclidean ball. �

1For the readers’ convenience we recall here the definition of rad(�) for a finite-perimeter set �⊂ M such that rad(�) :=
inf{r > 0 : Vol(� \ Br )= 0, Br ⊂ M metric ball}.
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Remark 3.2 (Euclidean isoperimetric inequality on Cartan–Hadamard spaces). The statement correspond-
ing to Proposition 3.1 for the isoperimetric problem is the following celebrated conjecture: Let (Mn, g)
be a Cartan–Hadamard space, i.e., a complete simply connected Riemannian n-manifold with nonpositive
sectional curvature. Then every smooth open subset � ⊂ Mn satisfies the Euclidean isoperimetric
inequality.

This conjecture is generally attributed to Aubin [1976, Conjecture 1] but has its roots in earlier work
by Weil [1926], as we are going to explain. The problem has been solved affirmatively in the following
cases: in dimension 2 by Weil [1926] (Beckenbach and Radó [1933] gave an independent proof in 1933,
capitalizing on a result of Carleman [1921] for minimal surfaces), in dimension 3 by Kleiner [1992] (see
also the survey paper by Ritoré [2005] for a variant of Kleiner’s arguments), and in dimension 4 by Croke
[1984]. An interesting feature of this problem is that the above proofs have nothing to do with each other
and that they work only for one specific dimension; probably also for this reason such a problem is still
open in the general case.

3B. The case of minimal submanifolds. Given a smoothly immersed submanifold Mn ↪→ Rn+k, by the
first variation formula for the area functional we know that for every �⊂ Mn open bounded subset with
smooth boundary and every smooth vector field X along �,∫

�

divM X dHn
=−

∫
�

H · X dHn
−

∫
∂�

X · ν dHn−1, (3-3)

where H is the mean curvature vector of M and ν is the inward-pointing conormal to � (i.e., ν is the unit
vector tangent to M, normal to ∂� and pointing inside �).

We are interested in the case where Mn ↪→ Rn+k is a minimal submanifold, i.e., H ≡ 0, and �⊂ Mn

is a bounded open subset with smooth boundary ∂�. Let x0 ∈ Rn+k be such that

max
x∈�
|x − x0|Rn+k = radRn+k (�),

and observe that, defining X (x) := x − x0, one has divM X ≡ n. By applying (3-3), we then get

nHn(�)=

∫
�

divM X dHn
=−

∫
∂�

X · ν dHn−1
≤ radRn+k (�)Hn−1(∂�). (3-4)

Notice that equality is achieved if and only if � is the intersection of M with a round ball in Rn+k

centered at x0 and ν(x) is parallel to x− x0, or in other words if and only if � is a free-boundary minimal
n-submanifold in a ball of Rn+k. So we have just proved the following result.

Proposition 3.3. Let Mn ↪→ Rn+k be a minimal submanifold and �⊂ Mn a bounded open subset with
smooth boundary ∂�. Then

nHn(�)≤ radRn+k (�)Hn−1(∂�)

with equality if and only if � is a free-boundary minimal n-submanifold in a ball of Rn+k.

Remark 3.4 (Euclidean isoperimetric inequality on minimal submanifolds). The statement corresponding
to Proposition 3.3 for the isoperimetric problem is the following celebrated conjecture: Let Mn

⊂ Rm
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be a minimal n-dimensional submanifold and let �⊂ Mn be a smooth open subset. Then � satisfies the
Euclidean isoperimetric inequality (1-1), and equality holds if and only if � is a ball in an affine n-plane
of Rm.

To our knowledge the only two solved cases are (i) when ∂� lies on an (m−1)-dimensional Euclidean
sphere centered at a point of � (the argument is by monotonicity; see, for instance, [Choe 2005, Section
8.1]) and (ii) when � is area-minimizing with respect to its boundary ∂� by Almgren [1986]. Let us
mention that a complete solution of the above conjecture is still not available even for minimal surfaces
in Rm, i.e., for n = 2; however, in the latter situation, the statement is known to be true in many cases (let
us just mention that in the case where� is a topological disk, the problem was solved by Carleman [1921],
and the case m = 3 and ∂� has two connected components was settled much later by Li, Schoen and Yau
[Li et al. 1984]; for more results in this direction and for a comprehensive overview, see the beautiful survey
paper [Choe 2005]). Let us finally observe that, when n=2 and m=3, the above conjecture is a special case
of the Aubin conjecture recalled in Remark 3.2, since of course the induced metric on a immersed minimal
surface in R3 has nonpositive Gauss curvature; this case was settled in the pioneering work by Weil [1926].

Remark 3.5 (free-boundary minimal submanifolds and critical metrics). After a classical work of Nitsche
[1985], recent years have seen an increasing interest in free-boundary submanifolds, also thanks to works
of Fraser and Schoen [2011; 2012] on the topic. By definition, a free-boundary submanifold Mn of the
unit ball Bn+k is a proper submanifold which is critical for the area functional with respect to variations
of Mn that are allowed to move also the boundary ∂Mn, but under the constraint ∂Mn

⊂ ∂Bn+k. As a
consequence of the first variational formula, such a definition forces on one hand the mean curvature
to vanish on Mn

∩ Bn+k and on the other hand the submanifold to the meet the ambient boundary
∂Bn+k orthogonally. These are characterized by the condition that the coordinate functions are Steklov
eigenfunctions with eigenvalue 1 [Fraser and Schoen 2011, Lemma 2.2]; that is,

1xi = 0 on M and ∇ν xi =−xi on ∂M.

It turns out that surfaces of this type arise naturally as extremal metrics for the Steklov eigenvalues (see
[Fraser and Schoen 2012] for more details); Steklov eigenvalues are eigenvalues of the Dirichlet-to-
Neumann map, which sends a given smooth function on the boundary to the normal derivative of its
harmonic extension to the interior.

Remark 3.6 (examples of free-boundary minimal submanifolds). Let us recall here some well known
examples of free-boundary minimal submanifolds in the unit ball Bn+k

⊂ Rn+k ; for a deeper discussion
on the examples below, see [Fraser and Schoen 2012].

• Equatorial disk. Equatorial n-disks Dn
⊂ Bn+k are the simplest examples of free-boundary minimal

submanifolds. By a result of Nitsche [1985], any simply connected free-boundary minimal surface in B3

must be a flat equatorial disk. However, if we admit minimal surfaces of a different topological type,
there are other examples, such as the critical catenoid described below.

• Critical Catenoid. Consider the catenoid parametrized on R× S1 by the function

ϕ(t, θ)= (cosh t cos θ, cosh t sin θ, t).
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For a unique choice of T0 > 0, the restriction of ϕ to [−T0, T0]× S1 defines a minimal embedding into a
ball meeting the boundary of the ball orthogonally. By rescaling the radius of the ball to 1 we get the
critical catenoid in B3. Explicitly, T0 is the unique positive solution of t = coth t .

• Critical Möbius band. We think of the Möbius band M2 as R× S1 with the identification (t, θ) ∼
(−t, θ +π). There is a minimal embedding of M2 into R4 given by

ϕ(t, θ)= (2 sinh t cos θ, 2 sinh t sin θ, cosh 2t cos 2θ, cosh 2t sin 2θ).

For a unique choice of T0 > 0, the restriction of ϕ to [−T0, T0]× S1 defines a minimal embedding into a
ball meeting the boundary of the ball orthogonally. By rescaling the radius of the ball to 1 we get the
critical Möbius band in B4. Explicitly T0 is the unique positive solution of coth t = 2 tanh 2t .

• A consequence of the results of [Fraser and Schoen 2012] is that for every k ≥ 1 there exists an
embedded free-boundary minimal surface in B3 of genus 0 with k boundary components.

Since of course radRn+k (�) ≤ radM(�), where radM( · ) is the extrinsic radius in the metric space
(M, dg), we have a fortiori that

nHn(�)≤ radM(�)Hn−1(∂�). (3-5)

But in this case the rigidity statement is much stronger, indeed in the case of equality, the center of the
ball x0 must be a point of M. Moreover, for every x ∈ ∂� the segment x, x0 must be contained in M ;
therefore M contains a portion of a minimal cone C centered at x0. But since by assumption M is a
smooth submanifold and since the only cone smooth at its origin is an affine subspace, it must be that M
contains a portion of an affine subspace. By the classical weak unique continuation property for solutions
to the minimal submanifold system, we conclude that M is an affine subspace of Rn+k. Therefore we
have just proven the next result.

Proposition 3.7. Let Mn ↪→ Rn+k be a connected smooth minimal submanifold and �⊂ Mn a bounded
open subset with smooth boundary ∂�. Then

nHn(�)≤ radM(�)Hn−1(∂�) (3-6)

with equality if and only if M is an affine subspace and � is the intersection of M with a round ball in
Rn+k centered at a point of M.

Remark 3.8. If we allow M to have conical singularities, then (3-6) still holds with equality if and only
if M is a minimal cone and � is the intersection of M with a round ball in Rn+k centered at a point of M .

Concerning this, recall that in the case where n = 2 and k = 1 every minimal cone smooth away from
the vertex is totally geodesic; indeed one of the principal curvatures is always null for cones and so the
mean curvature vanishes if and only if all of the second fundamental form is null. Therefore equality in
(3-6) is attained if and only if M2 is an affine plane and � is a flat 2-disk. The analogous result for n = 3
and k = 1 is due to Almgren [1966] (see also the work of Calabi [1967]).

For the general case of higher dimensions and codimensions, a minimal submanifold 6k in Sn is natu-
rally the boundary of a minimal submanifold of the ball, the cone C(6) over6. Using this correspondence
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it is possible to construct many nontrivial minimal cones: Hsiang [1983a; 1983b] gave infinitely many
codimension-1 examples for n ≥ 4, the higher-codimensional problem was investigated in the celebrated
paper of Simons [1968] and the related work of Bombieri, De Giorgi and Giusti [Bombieri et al. 1969].

4. The isoperimetric-isodiametric inequality in manifolds with nonnegative Ricci curvature

In this section we show a comparison result for manifolds with nonnegative Ricci curvature which
will be used in Section 5 to get existence of isoperimetric-isodiametric regions in manifolds which are
asymptotically locally Euclidean and have nonnegative Ricci (the so-called ALE spaces).

Theorem 4.1. Let (Mn, g) be a complete (possibly noncompact) Riemannian n-manifold with nonnegative
Ricci curvature. Let Br ⊂ M be a metric ball of volume V = Vol(Br ), and denote by BRn

(V ) the round
ball in Rn having volume V. Then

rad(Br )P(Br )= rP(Br )≤ nV = radRn (BRn
(V ))PRn (BRn

(V )). (4-1)

Moreover equality holds if and only if Br is isometric to a round ball in the Euclidean space Rn. In
particular, for every V ∈ (0,Vol(M)),

inf
{
rad(�)P(�) :�⊂ M,Vol(�)=V

}
≤ nV = inf

{
rad(�)P(�) :�⊂ Rn,VolRn (�)=V

}
, (4-2)

with equality for some V ∈ (0,Vol(M)) if and only if every metric ball in M of volume V is isometric to a
round ball in Rn. In particular, if equality occurs for some V ∈ (0,Vol(M)) then (M, g) is flat, i.e., it has
identically zero sectional curvature.

Proof. Let us fix an arbitrary x0 ∈ M and let Br = Br (x0) be the metric ball in M centered at x0 of
radius r > 0. It is well known that the distance function dx0( · ) := d(x0, · ) is smooth outside the cut
locus Cx0 of x0 and that µg(Cx0)= 0. From the coarea formula it follows that for L1-a.e. r ≥ 0 one has
Hn−1(Cx0 ∩ ∂Br (x0))= 0 and, since the cut locus is closed by definition, we get that for L1-a.e. r ≥ 0 the
distance function dx0( · ) is smooth on an open subset of full Hn−1 measure on ∂Br (x0).

Let us first assume that r > 0 is one of these regular radii; the general case will be settled in the end
by an approximation argument. It is immediate to see that on ∂Br (x0) \ Cx0 we have |∇dx0 | = 1 and
thus ∂Br (x0) \ Cx0 is a smooth hypersurface. In particular, since Hn−1(∂Br (x0)∩ Cx0)= 0, we have that
Br (x0) is a finite-perimeter set whose reduced boundary is contained in ∂Br (x0) \ Cx0 . Letting ν be the
inward-pointing unit normal to ∂Br (x0) on the regular part ∂Br (x0)\Cx0 , from the Gauss lemma we have

ν =−∇dx0 on ∂Br (x0) \ Cx0 . (4-3)

Therefore, setting u := 1
2d

2
x0

, we get

rP(Br (x0))=−

∫
∂Br (x0)\Cx0

dx0(x)g(∇dx0(x), ν(x)) dHn−1(x)=−
∫
∂Br (x0)\Cx0

g(∇u, ν) dHn−1

=− lim
ε↓0

∫
∂Br (x0)\Cx0

g(∇uε, ν) dHn−1,

where uε ∈ C2(M) is an approximation by convolution of u such that ‖∇uε −∇u‖L∞(∂Br (x0),Hn−1)→ 0,
1uε → 1u in C0

loc(M \ Cx0) and 1uε ≤ n, where in the last estimate we used the global Laplacian
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comparison stating that 1u is a Radon measure with 1u ≤ nµg. More precisely, one has that 1uxM \Cx0

is given by µg multiplied by a smooth function bounded above by n, and the singular part (1u)s of
1u is a nonpositive measure concentrated on Cx0 . Now ∇uε is a C1 vector field and we can apply the
Gauss–Green formula for finite perimeter sets [Ambrosio et al. 2000, Theorem 3.36] to get

rP(Br (x0))= lim
ε↓0

∫
Br (x0)

1uε dµg = lim
ε↓0

∫
Br (x0)\Cx0

1uε dµg ≤

∫
Br (x0)\Cx0

lim sup
ε↓0

1uε dµg

=

∫
Br (x0)\Cx0

1u dµg ≤ n Vol(Br ), (4-4)

where in the first inequality we used Fatou’s lemma combined with the upper bound 1uε ≤ n and the
last inequality is ensured by the local Laplacian comparison theorem. Notice that if equality occurs then
1u = nµg on Br (x0) \ Cx0 and, by analyzing the equality in Riccati equations, it is well known that this
implies Br (x0) is isometric to the round ball in Rn.

If r > 0 is a singular radius, in the sense that Hn−1(∂Br (x0)∩Cx0) > 0, then by the above discussion we
can find a sequence of regular radii rn→r and, by the lower semicontinuity of the perimeter under L1

loc con-
vergence [Ambrosio et al. 2000, Proposition 3.38] combined with (4-4), which is valid for Brn (x0), we get

rP(Br (x0))≤ lim inf
n→∞

rnP(Brn (x0))≤ lim inf
n→∞

∫
Brn (x0)\Cx0

1u dµg ≤ lim sup
n→∞

∫
M\Cx0

χBrn (x0)1u dµg

≤

∫
M\Cx0

lim sup
n→∞

χBrn (x0)1u dµg =

∫
Br (x0)\Cx0

1u dµg ≤ n Vol(Br ), (4-5)

where in the first inequality of the second line we used Fatou’s lemma (we are allowed since χBrn (x0)1u≤n
on M \ Cx0), and the last inequality follows again by local Laplacian comparison. Notice that, as before,
equality in (4-5) forces 1u = nµg on Br (x0) \ Cx0 and then Br (x0) is isometric to a Euclidean ball.

The second part of the statement clearly follows from the first part combined with the Euclidean
isoperimetric-isodiametric inequality (2-3). �

5. Existence of isoperimetric-isodiametric regions

In Section 3 we saw explicit isoperimetric-inequalities in some special situations: Cartan–Hadamard
spaces and minimal submanifolds. In the present section we investigate the existence of optimal shapes:
as it happens also for the isoperimetric problem, we will find that if the ambient manifold is compact, an
optimal set always exists but if the ambient space is noncompact the situation changes dramatically. The
subsequent sections will be devoted to establishing the sharp regularity for the optimal sets.

5A. Notation. Let (Mn, g) be a complete Riemannian manifold and denote by dg the geodesic distance,
by µg the measure associated to the Riemannian volume form and by X(M) the smooth vector fields.
Given a measurable subset E ⊂ M, the perimeter of E is denoted by P(E) and is given by the formula

P(E) := sup
{∫

E
div X dµg : X ∈ X(M), spt(X)b M, ‖X‖L∞(M,g) ≤ 1

}
,
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and, for any open subset �⊂ M, we write P(E, �) when the fields X are restricted to having compact
support in �. It is out of the scope of this paper to discuss the theory of finite-perimeter sets; standard
references are [Ambrosio et al. 2000; Evans and Gariepy 1992; Maggi 2012].

Since from now on we will work with sets of finite perimeter, which are well defined up to subsets of
measure zero, we will adopt the following definition of extrinsic radius of a measurable subset E ⊂ M :

rad(E) := inf{r > 0 : µg(E \ Br (z0))=0 for some z0 ∈ M},

where Br (z0) denotes the open metric ball with center z0 and radius r > 0. A metric ball Br (z0) satisfying
µg(E \ Br (z0))= 0, is called an enclosing ball for E .

We consider the following minimization problem: for every fixed V ∈ (0, µg(M)), find

min{rad(E)P(E) : E ⊂ M, µg(E)=V}, (5-1)

and call the minimizers of (5-1) isoperimetric-isodiametric sets (or regions).

5B. Existence of isoperimetric-isodiametric regions in compact manifolds. Let us start with the fol-
lowing lemma, stating the lower semicontinuity of the extrinsic radius under L1

loc convergence.

Lemma 5.1 (lower semicontinuity of extrinsic radius under L1
loc convergence). Let (M, g) be a (not

necessarily compact) Riemannian manifold and let (Ek)k∈N∪{∞} be a sequence of measurable subsets
such that χEk → χE∞ in L1

loc(M, µg). Then

rad(E∞)≤ lim inf
k∈N

rad(Ek).

Proof. Without loss of generality we can assume lim infk∈N rad(Ek)<∞ so, up to selecting a subsequence,
we can assume χEk → χE∞ a.e. and limk↑+∞ rad(Ek)= `<∞. Let Bk := Brad(Ek)(xk) be enclosing balls
for Ek . Then two cases can occur. Either xk is unbounded, i.e., supk dg(xk, x̄) =∞ for any x̄ ∈ M, in
which case it follows that E∞ =∅ and the conclusion of the lemma is proved, or there exists x∞ ∈ M
such that, up to passing to a subsequence, xk→ x∞. In this case it is readily verified that

µg
(
Ek \ Brad(Ek)+|xk−x∞|(x∞)

)
= 0,

from which it follows, by taking the limit as k→+∞, that µg(E∞ \ B`(x∞))= 0, which by definition
implies rad(E∞)≤ `. �

The next theorem is a general existence result for minimizers of the problem (5-1), as a special case
it will be applied in Corollary 5.3 to compact manifolds and in Theorem 5.5 for asymptotically locally
Euclidean manifolds (ALE for short) having nonnegative Ricci curvature. Let us observe that the existence
of a minimizer in a noncompact manifold for the classical isoperimetric problem is much harder due to
the possibility of “small tentacles” going to infinity in a minimizing sequence; this difficulty is simply not
there in the isoperimetric-isodiametric problem we are considering, since it would imply the radius goes
to infinity. We believe that this simplification, together with sharp inequalities obtained in the previous
section, is another motivation to look at the isoperimetric-isoperimetric inequality since it appears more
manageable in many situations than the classical isoperimetric one.
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Theorem 5.2 (sufficient conditions for existence of isoperimetric-isodiametric regions). Let (Mn, g) be a
possibly noncompact Riemannian n-manifold satisfying the following two conditions:

(1) lim infr→0+ supx∈M µg(Br (x))= 0.

(2) There exists ε0 > 0 and a function

8Isop : [0, ε0)→ R+, with limt↓08Isop(t)= 0,

such that for every finite-perimeter set E ⊂ M with P(E) < ε0 the weak isoperimetric inequality
µg(E)≤8Isop(P(E)) holds.

Let V ∈ (0, µg(M)) be fixed and let (Ek)k∈N ⊂ M be a sequence of finite-perimeter sets satisfying

µg(Ek)= V ∀k ∈ N and sup
k∈N

(
rad(Ek)P(Ek)

)
<∞. (5-2)

Then there exist R > 0 and a sequence (xk)k∈N of points in M such that µg(Ek \ BR(xk))= 0, i.e., BR(xk)

are enclosing balls for Ek .
In particular, if there exists a minimizing sequence (Ek)k∈N for the problem (5-1) relative to some fixed

V ∈ (0, µg(M)) such that µg(Ek ∩ K ) > 0 for infinitely many k and a fixed compact subset K ⊂ M, then
there exists an isoperimetric-isodiametric region of volume V.

Proof. We start the proof with the following two claims.

Claim 1: infk rad(Ek) > 0. Otherwise, up to subsequences in k, there exist rk ↓ 0 and xk ∈ M such that
µg(Ek \Brk (xk))= 0. But then the assumption (1) implies µg(Ek)≤µg(Brk (xk))= 0, contradicting (5-2).

Claim 2: infk P(Ek) > 0. Otherwise, by the assumption (2) we get µg(Ek) ≤ 8Isop(P(Ek)) → 0,
contradicting again (5-2).

Combining the two claims with (5-2), we have that there exists C > 1 such that

1
C
≤ P(Ek)≤ C and 1

C
≤ rad(Ek)≤ C, (5-3)

so that the first part of the proposition is proved.
If now there exists a compact subset K ⊂ M such that µg(Ek ∩ K ) > 0 for infinitely many k then by

(5-3), up to enlarging K and selecting a subsequence in k, we can assume µg(Ek \ K ) = 0. But then
the characteristic functions (χEk )k∈N are precompact in L1(K , µg) since the total variations of χEk are
equibounded by (5-3) (see [Ambrosio et al. 2000, Theorem 3.23]). The thesis then follows by the lower
semicontinuity of the perimeter under L1

loc convergence (see [loc. cit., Proposition 3.38]) combined with
Lemma 5.1. �

Clearly if the manifold is compact all the assumptions of Theorem 5.2 are satisfied and we can state
the following corollary.

Corollary 5.3 (existence of isoperimetric-isodiametric regions in compact manifolds). Let (Mn, g) be a
compact Riemannian manifold. Then for every V ∈ (0, µg(M)) there exists a minimizer of the problem
(5-1); in other words, there exists an isoperimetric-isodiametric region of volume V.
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5C. Existence of isoperimetric-isodiametric regions in noncompact ALE spaces with nonnegative
Ricci curvature. Let us start by recalling the notion of pointed C0 convergence of metrics.

Definition 5.4. Let (Mn, g) be a smooth complete Riemannian manifold and fix x̄ ∈ M . A sequence of
pointed smooth complete Riemannian n-manifolds (Mk, gk, xk) is said to converge in the pointed C0

topology to the manifold (M, g, x̄), and we write (Mk, gk, xk)→ (M, g, x̄), if for every R > 0 we can
find a domain�R with BR(x̄)⊆�R ⊆M, a natural number NR ∈N, and C1 embeddings Fk,R :�R→Mk

for large k ≥ NR such that BR(xk)⊆ Fk,R(�R) and F∗k,R(gk)→ g on �R in the C0 topology.

Theorem 5.5. Let (M, g) be a complete Riemannian n-manifold with nonnegative Ricci curvature and
fix any reference point x̄ ∈ M. Assume that for any diverging sequence of points (xk)k∈N ⊂ M, i.e.,
d(xk, x̄)→∞, the sequence of pointed manifolds (M, g, xk) converges in the pointed C0 topology to the
Euclidean space (Rn, gRn , 0).

Then for every V ∈ [0, µg(M)) there exists a minimizer of the problem (5-1); in other words, there
exists an isoperimetric-isodiametric region of volume V.

Proof. Since volume and perimeter involve only the metric tensor g and not its derivatives, the hypothesis
on the manifold (M, g) of being C0-locally asymptotic to Rn implies directly that assumptions (1) and (2)
of Theorem 5.2 are satisfied. Therefore the thesis will be a consequence of Theorem 5.2 once we show
the following: given Ek ⊂ M a minimizing sequence of the problem (5-1) for some fixed volume V ∈
[0, µg(M)), there exists a compact subset K ⊂M such that µg(Ek∩K )> 0 for infinitely many k. We will
show that if this last statement is violated then (M, g) is flat and minimizers are metric balls of volume V.

By the first part of Theorem 5.2 we know that there exist R > 0 and a sequence (xk)k∈N of points in M
such that µg(Ek \ BR(xk))= 0, i.e., BR(xk) are enclosing balls for Ek .

Fixing any reference point x̄ ∈M, if lim infk d(xk, x̄) then clearly we can find a compact subset K ⊂M
such thatµg(Ek∩K )>0 for infinitely many k and the conclusion follows from the last part of Theorem 5.2.
So assume d(x̄, xk)→∞. Since M is C0-locally asymptotic to Rn, combining Definition 5.4 with the
Euclidean isoperimetric-isodiametric inequality (2-3), we get

lim inf
k→∞

rad(Ek)P(Ek)≥ nV. (5-4)

But since (M, g) has nonnegative Ricci curvature, the comparison estimate (4-2) yields

lim
k→∞

rad(Ek)P(Ek)= inf
{
rad(�)P(�) :�⊂ M,Vol(�)=V

}
≤ nV. (5-5)

The combination of (5-4) with (5-5) clearly implies

inf
{
rad(�)P(�) :�⊂ M,Vol(�)=V

}
= nV.

The rigidity statement of Theorem 4.1 then gives that any metric ball in (M, g) of volume V is isometric
to a round ball in Rn, and therefore in particular is a minimizer of the problem (5-1). �

5D. Examples of noncompact spaces where existence of isoperimetric-isodiametric regions fails.

Example 5.6 (minimal surfaces with planar ends). If M ⊂ R3 is a helicoid, or more generally a minimal
surface with planar ends, then it is in particular C0-locally asymptotic to R2 in the sense of Definition 5.4.
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Then, if we consider a sequence of metric balls Brk (xk)⊂ M of fixed volume V > 0 such that xk→∞,
we get limk→∞ rad(Brk (xk))Vol(Brk (xk))= 2V. In particular, for every V > 0 we have

inf
{
rad(�)P(�) :�⊂ M,Vol(�)=V

}
≤ 2V .

But then Proposition 3.7 implies the infimum is never achieved, or more precisely it is achieved if and
only if M is an affine subspace.

The same argument holds for any minimal n-dimensional submanifold in Rm with ends which are
C0-locally asymptotic to Rn.

Example 5.7 (ALE spaces of negative sectional curvature). Let (Mn, g) be a simply connected non-
compact Riemannian manifold with negative sectional curvature and assume that (M, g) is C0-locally
asymptotic to Rn in the sense of Definition 5.4. Then, if we consider a sequence of metric balls Brk (xk)⊂M
of fixed volume V > 0 such that xk→∞, we get limk→∞ rad(Brk (xk))Vol(Brk (xk))= nV. In particular,
for every V > 0 we have

inf
{
rad(�)P(�) :�⊂ M,Vol(�)=V

}
≤ nV .

But then Proposition 3.1 implies the infimum is never achieved, or more precisely it is achieved by a
region � if and only if � is isometric to a Euclidean region, which is forbidden since M has negative
sectional curvature.

6. Optimal regularity of isoperimetric-isodiametric regions

In this last section we establish the optimal regularity for the isoperimetric-isodiametric regions, i.e., the
minimizers of problem (5-1), under the assumption that the enclosing ball is regular.

6A. C1, 1
2 regularity.

6A1. First properties. Let E be a minimizer of the isoperimetric–isodiametric problem in (M, g) with
volume µg(E)= V > 0. Let x0 ∈ M satisfy µg(E \ Brad(E)(x0))= 0 and, for the sake of simplicity, we
fix the notation B := Brad(E)(x0) for an enclosing ball. In the sequel, we always assume that B has regular
boundary and we assume to be in the nontrivial case µg(B \ E) > 0.

By the very definition of isoperimetric-isodiametric sets, we have

P(E)≤ P(F) ∀ FM E b B such that µg(F)= V. (6-1)

In particular, E is a minimizer of the perimeter with constrained volume in B, and therefore we can apply
the classical regularity results (see, for example, [Morgan 2003, Corollary 3.8]) in order to deduce that
there exists a relatively closed set Sing(E)⊂ B such that dimH(Sing(E))≤ n− 8 and ∂E ∩ B \Sing(E)
is a smooth (n−1)-dimensional hypersurface.

Moreover, by the first variations of the area functional under volume constraint, one deduces that the
mean curvature is constant on the regular part of the boundary: i.e., there exits H0 ∈ R such that

EHE(x)= H0νE ∀ x ∈ ∂E ∩ B \Sing(E), (6-2)
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where

EHE(x) :=
n−1∑
i=1

∇τi τi ,

for {τ1, . . . , τn−1} a local orthonormal frame of ∂E around x ∈ ∂E ∩ B \Sing(E), νE the interior normal
to E and ∇ the Riemannian connection on (M, g).

In this section we prove the following.

Proposition 6.1. Let E ⊂ M be an isoperimetric-isodiametric set and x0 ∈ M be such that

µg(E \ Brad(E)(x0))= 0.

Assume that B := Brad(E)(x0) has smooth boundary. Then, there exists δ > 0 such that ∂E \ Brad(E)−δ(x0)

is C1, 1
2 regular.

Remark 6.2. In particular, given the partial regularity in B as explained in Section 6A1, we conclude
that E is a closed set whose boundary is C1, 1

2 regular except on at most a closed singular set Sing(E) of
dimension less than or equal to n− 8.

6A2. Almost-minimizing property. The main ingredient of the proof of Proposition 6.1 is the following
almost-minimizing property.

Lemma 6.3. Let E be an isoperimetric-isodiametric set in M and let B denote an enclosing ball as above.
There exist constants C, r0 > 0 such that, for every x ∈ B and for every 0< r < r0,

P(E)≤ P(F)+Crn
∀ FM E b Br (x). (6-3)

Remark 6.4. Note that Br (x) is not necessarily contained in B.

Proof. We start by fixing parameters η, c1 > 0 and two points y1, y2 ∈ B such that dg(y1, y2) > 4η,
B4η(y1)⊂ B, B4η(y2)⊂ B and

P(E, Bη(yi )) > c1, i = 1, 2. (6-4)

Note that the possibility of such a choice is easily deduced from the regularity of the previous subsection,
or more simply from the density estimates for sets of finite perimeter in points of the reduced boundary.
For simplicity of notation, set Di := Bη(yi ). By a result by Giusti [1981, Lemma 2.1], there exist
v0,C1 > 0 such that, for every v ∈ R with |v|< v0 and for every i = 1, 2, there exists Fi which satisfies

Fi M E ⊂ Di ,

µg(Fi )= µg(E)+ v,
P(Fi )≤ P(E)+C1v.

(6-5)

Note that in [Giusti 1981, Lemma 2.1] the property (6-5) is proven in the Euclidean space with the
flat metric, but the proof remains unchanged in a Riemannian manifold (up to a suitable choice of the
constants v0,C1).
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Next, let r0 > 0 be a constant to be fixed momentarily such that r0 < η and

sup
x∈B

µg(Br (x))≤ C2rn < v0 ∀r ∈ [0, r0] (6-6)

for some C2 > 0 depending just on B and r0. Since dg(y1, y2) > 4η, for every x ∈ B, we know Br0(x)
cannot intersect both D1 and D2: therefore, without loss of generality, we can assume Br0(x)∩ D1 =∅.
If r < r0 and F ⊂ M is any set such that F M E b Br (x), we consider F ′ := F ∩ B. Note that F ′ ⊂ B
and moreover

|µg(F ′)−µg(E)| ≤ µg(Br (x))≤ C2rn < v0.

According to (6-5) we can then find F ′′⊂ B such that µg(F ′′)=µg(E), F ′′M F ′ b D1 and

P(F ′′)≤ P(F ′)+C1|µg(F ′)−µg(E)|. (6-7)

Using the fact that E minimizes the perimeter among compactly supported perturbation in B, we deduce
that

P(E)≤ P(F ′′)
(6-7)
≤ P(F ′)+C1|µg(F ′)−µg(E)| ≤ P(F)+P(B)−P(F ∪ B)+C2rn. (6-8)

Next note that, if ∂B is C1,1 regular, then one can choose r0 > 0 such that the following holds: there
exists a constant C3 > 0 such that, for every x ∈ B and for every r ∈ (0, r0),

P(B)≤ P(G)+C3rn
∀G M B b Br (x). (6-9)

In order to show this claim, it enough to take r0 small enough (in particular smaller than half the injectivity
radius) in such a way that, for every p ∈ ∂B, there exists a coordinate chart ξ : B2r0(p)→ Rn such that
ξ(∂B)⊂ {xn = 0} and ξ is a C1,1 diffeomorphism with dξ(p) ∈SO(n), ξ(p)= 0 and g(0)= Id, where
g is the metric tensor in the coordinates induced by ξ . Indeed, in this case we have P(B, Br (p)) ≤
(1+Cr)ωn−1rn−1 for every r < r0 and, for every G such that G M B b Br (p),

P(G, Br (p))≥ (1−Cr)P
(
proj(ξ(G)), ξ(Br (p))

)
≥ (1−Cr)ωn−1rn−1,

where proj denotes the orthogonal Euclidean projection on {xn = 0} and we have used the regularity of ξ .
Applying (6-9) to G = F ∪ B and using (6-8), we conclude the proof. �

6A3. Proof of Proposition 6.1. Now we are in the position to apply a result by Tamanini [1982, Theorem 1]
(the result is proved in Rn with a flat metric, but the proof is unchanged in a Riemannian manifold) in
order to give a proof of the above proposition.

To this aim, we start by considering any point p ∈ ∂B ∩ ∂E ; we denote by Expp : Tp M → M the
exponential map and we let r0 > 0 be less than the injectivity radius. Since by Lemma 6.3 the set E is an
almost minimizer of the perimeter, the rescaled sets

E p,r :=
Exp−1

p (E ∩ Br0(p))

r
⊂ Tp M ' Rn (6-10)

converge, up to passing to a suitable subsequence, to a minimizing cone C∞ in the Euclidean space (see
[Maggi 2012, Theorem 28.6]). Moreover, since E is enclosed by B and ∂B is C1,1, it is immediate to check
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that if r0 > 0 is chosen small enough in (6-10), then C∞ ⊂ {x : g(νB(p), x)≥ 0}; we deduce that every
tangent cone to E at p needs to be contained in a half-space, and therefore by the Bernstein theorem is flat
(see [Giusti 1984, Theorem 17.4]). This implies that every such point p is a point of the reduced boundary
of the set (see [Ambrosio et al. 2000, Definition 3.54]) and therefore we can apply the aforementioned
result by Tamanini to conclude that ∂E is a C1,1/2 regular hypersurface in Br (p) for every p ∈ ∂B ∩ ∂E
and for every r < 1

2r0. By a simple covering argument, the conclusion of the corollary follows.

6B. L∞ estimates on the mean curvature of the minimizer. In this section we prove that the boundary
of E has generalized mean curvature, in the sense of varifolds, which is bounded in L∞. To this aim, we
compute the first variations of the perimeter of E along suitable diffeomorphisms.

6B1. First variations. We start by fixing two points y1, y2 ∈ ∂E ∩ B \Sing(E) and a real number η > 0
such that B4η(y1)⊂ B, B4η(y2)⊂ B and

B4η(y1)∩ B4η(y2)= B4η(y1)∩Sing(E)= B4η(y2)∩Sing(E)=∅.

Note that such a choice is possible under the hypothesis that µg(B\E)> 0 because of the partial regularity
in Section 6A1. Let X ∈ X(M) be a vector field with support contained in a metric ball Bη(y) for some
y ∈ M . Clearly, Bη(y) cannot intersect both B2η(y1) and B2η(y2), because dg(y1, y2) ≥ 8η; therefore,
without loss of generality let us assume Bη(y)∩ B2η(y1) = ∅. It is not difficult to construct a smooth
vector field Y supported in Bη(y1) such that the generated flow {8Y

t } satisfies the following property for
small |t |:

µg(8
Y
t ◦8

X
t (E))= µg(E). (6-11)

Note that the generated flows {8X
t }t∈R and {8Y

t }t∈R are well defined and for |t | sufficiently small are
diffeomorphisms of M . Moreover, 8Y

t ◦8
X
t (E)⊂ Brad(E)+|t |‖X‖∞ . We can then deduce that

rad(E)P(E)≤ rad
(
8Y

t ◦8
X
t (E)

)
P
(
8Y

t ◦8
X
t (E)

)
≤
(
rad(E)+|t |‖X‖∞

)
P
(
8Y

t ◦8
X
t (E)

)
=: f (t). (6-12)

Taking the derivative of the last functional as t ↓ 0+ and as t ↑ 0−, by the well-known computation of the
first variations of the area we get that

0≤ lim
t↓0+

f (t)− f (0)
t

= ‖X‖∞P(E)+ rad(E)
∫
∂E

div∂E X dHn−1
−

∫
∂E

g( EHE , Y ) dHn−1, (6-13)

0≥ lim
t↑0−

f (t)− f (0)
t

=−‖X‖∞P(E)+ rad(E)
∫
∂E

div∂E X dHn−1
−

∫
∂E

g( EHE , Y ) dHn−1, (6-14)

where div∂E X :=
∑n−1

i=1 g(∇τi X, τi ) for a (measurable) local orthonormal frame {τ1, . . . , τn−1} of ∂E .
(Note that in writing (6-13) and (6-14) we have used that ∂E is a C1,1/2 regular submanifold up to singular
set of dimension at most n−8 and that Y is supported in Bη(y) where ∂E is smooth in order to make the
integration by parts.) In the case V ∈ (0, µg(M)), we have rad(E) > 0 and thus P(E) <∞. Moreover,
from (6-11) we deduce that

0= d
dt |t=0

µg(8
Y
t ◦8

X
t (E))=−

∫
∂E

g(X, νE) dHn−1
−

∫
∂E

g(Y, νE) dHn−1. (6-15)
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Therefore, from (6-2) and (6-13)–(6-15) we conclude∣∣∣∣∫
∂E

div∂E X dHn−1
∣∣∣∣≤ 1

rad(E)

(
P(E)‖X‖∞+

∣∣∣∣∫
∂E

g
(
EHE , Y

)
dHn−1

∣∣∣∣)
≤

1
rad(E)

(
P(E)‖X‖∞+ |H0|

∣∣∣∣∫
∂E

g(Y, νE) dHn−1
∣∣∣∣)

=
1

rad(E)

(
P(E)‖X‖∞+ |H0|

∣∣∣∣∫
∂E

g(X, νE) dHn−1
∣∣∣∣)≤ C‖X‖∞ (6-16)

for some C =C(rad(E),P(E), |H0|) > 0, for every vector field X with support contained in a metric ball
Bη(y) for some y ∈ M. By a simple partition of unity argument, (6-16) holds for every X ∈ X(M). In
particular, by the use of Riesz representation theorem we have proved the following lemma. To this aim,
we denote by M(M, TM) the vectorial Radon measures Eµ on M with values in the tangent bundle TM .

Lemma 6.5 (the mean curvature is represented by a vectorial Radon measure). Let E ⊂ M be an
isoperimetric-isodiametric region for some V ∈ (0, µg(M)) and denote by B an enclosing ball. If ∂B is
smooth, then there exists a vectorial Radon measure EHE ∈M(M, TM) concentrated on ∂E such that
for every C1 vector field X on M with compact support, letting 8X

t : M → M be the corresponding
one-parameter family of diffeomorphisms for t ∈ R,

δE(X) := d
dt |t=0

P(8X
t (E))=−

∫
M

g(X, EHE). (6-17)

Moreover, the total variation of EHE is finite; i.e.,

| EHE |(M)≤ C = C
(
P(E), rad(E), |H0|

)
∈ [0,∞).

Remark 6.6. Note that
EHExB := EHEHn−1x(∂E ∩ B), (6-18)

where EHE is the mean curvature vector on the smooth part of ∂E as defined in (6-2).

We close this subsection by noting that if

g(X (x), νB(x))≥ 0 ∀ x ∈ ∂B ∩ Bη(y), (6-19)

where νB is the interior normal to ∂B (note that ∂B ∩ Bη(y) can also be empty), then 8Y
t ◦8

X
t (E)⊂ B

for t ≥ 0. In particular, the minimizing property of E gives

P(8Y
t ◦8

X
t (E))≥ P(E) ∀ t ≥ 0, (6-20)

which combined with (6-2) and (6-15) implies

0≤ d
dt |t=0+

P(8Y
t ◦8

X
t (E))=

∫
∂E

div∂E X dHn−1
−

∫
∂E

g( EHE , Y )

=

∫
∂E

div∂E X dHn−1
+ H0

∫
∂E

g(νE , X), (6-21)
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which in view of (6-17) gives

g(νB, EHE)x(∂E ∩ ∂B)≤ H0Hn−1x(∂E ∩ ∂B), (6-22)

where the inequality is intended in the sense of measures, i.e.,
∫

A g(νB, EHE) ≤ H0Hn−1(A) for every
measurable set A ⊂ ∂E ∩ ∂B.

6B2. Orthogonality of EHE . We have seen in the previous section that EHE is well defined as a measure
on all ∂E . Translated into the language of varifolds, we have shown that the integral varifold associated to
∂E has finite first variation. A classical result due to Brakke [1978, Section 5.8] (see also [Menne 2013]
for an alternative proof and for fine structural properties of varifolds with locally finite first variation)
implies that for Hn−1-a.e. x ∈ ∂E it holds that EHE(x) ∈ (Tx∂E)⊥. This is not quite enough for our
purposes; indeed in the next lemma we will show that EHE is normal to ∂E as measure, which is a strictly
stronger statement. Note that the proof is based on the fact that E is a minimizer for the problem (5-1),
and will not make use of the aforementioned structural result by Brakke.

Lemma 6.7 (the mean curvature measure is orthogonal to ∂E). Let E , B, M, V, EHE be as in Lemma 6.5.
Then EHE(x) ∈ (Tx∂E)⊥ for | EHE |-a.e. x ∈ ∂E ; i.e., the mean curvature is orthogonal to ∂E as a measure.

Remark 6.8. In other words, there exists an R-valued finite Radon measure HE on M concentrated on
∂E such that EHE = HEνE ; moreover, by (6-2), HEx(B ∩ ∂E)= H0Hn−1x(∂E ∩ B).

Proof. In view of (6-2) we only need to prove the claim for EHEx∂B. Assume by contradiction that there
exists a compact subset K ⊂ ∂B ∩ ∂E such that

| EHT
E |(K ) > 0, (6-23)

where EHT
E := PT ∂E( EHE) is the projection of EHE onto the tangent space of ∂E (or, equivalently, onto

T ∂B, because ∂E and ∂B are C1 and Tx∂E = Tx∂B for every x ∈ ∂B ∩ ∂E).
The geometric idea of the proof is very neat: if the mean curvature along K ⊂ ∂E ∩∂B has a nontrivial

tangential part, then deforming infinitesimally E along this tangential direction will not increase the
extrinsic radius (since the deformation of E will stay in the ball B), will not increase the volume (because
the deformation is tangential to ∂E) but will strictly decrease the perimeter; so, after adjusting the volume in
a smooth portion of ∂E , this procedure builds an infinitesimal deformation of E which preserves the volume,
does not increase the extrinsic radius but strictly decreases the perimeter, contradicting that E is a minimizer
of the problem (5-1). The rest of the proof is a technical implementation of this neat geometric idea.

For every ε > 0 we construct a suitable C1 regular tangential vector field. To this aim, we consider the
polar decomposition of the measure EHT

E = v|
EHT

E |, where v is a Borel vector field such that v(x) ∈ T ∂B
and g(v(x), v(x))= 1 for | EHT

E |-a.e. x ∈M . By the Lusin theorem we can find a continuous vector field w
such that | EHT

E |({v 6=w})≤ ε and spt(w)⊂ Kε := {x ∈ ∂E ∩∂B : dg(x, K ) < ε}. Moreover, by a standard
regularization procedure via mollification and projection on T ∂B, we find a vector field Xε such that
Xε(x) ∈ T ∂B for every x ∈ ∂B ∩ K2ε, ‖Xε −w‖∞ ≤ ε and spt(Xε)⊂ K2ε. Note that∫

M
g(Xε, EHE)=

∫
M

g(Xε−w, EHE)+

∫
{w=v}

g(v, EHE)+

∫
{w 6=v}

g(w, EHE)→| EHT
E |(K ) as ε→0. (6-24)
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Since Xε is a smooth vector field compactly supported in M and tangent to ∂B, the generated flow 8
Xε
t

is well defined and maps B into B for every t ∈ R and by (6-24)

d
dt |t=0

P(8Xε
t (E))=−

∫
∂E

g(Xε, EHE)≤−
1
2 |
EHT

E |(K ) < 0 (6-25)

for ε > 0 small enough. Moreover, since Xε is supported in K2ε and K ⊂ ∂B and Xε is tangent to
∂B = ∂E in K , we have

d
dt |t=0

µg(8
Xε
t (E))=−

∫
∂E

g(νE , Xε) dHn−1
→ 0 as ε→ 0. (6-26)

Up to choosing a smaller compact set, we can suppose that K is contained in a small ball Br0(x) with
x ∈ ∂E∩∂B such that (∂E \∂B)∩(M \ B4r0(x)) 6=∅. Now fix y ∈ ∂E \

(
∂B∪ B4r0(x)∪Sing(E)

)
and let

r ∈ (0, r0) be such that B2r (y)∩
(
∂B ∪ B4r0(x)∪Sing(E)

)
=∅. For ε > 0 small enough it is not difficult

to construct a smooth vector field Yε supported in Br (y) such that the generated flow 8
Yε
t satisfies the

following properties ((6-28) is intended for small t):

d
dt |t=0

µg(8
Yε
t ◦8

Xε
t (E))= 0, (6-27)∣∣P(8Yε

t (E), B2r (y))−P(E, B2r (y))
∣∣≤ Cµg(8

Yε
t (E)1E). (6-28)

Notice that the combination of (6-26), (6-27) and (6-28) gives∣∣∣ d
dt |t=0

P(8Yε
t (E))

∣∣∣≤ C
∣∣∣ d
dt |t=0

µg(8
Yε
t (E))

∣∣∣= C
∣∣∣ d
dt |t=0

µg(8
Xε
t (E))

∣∣∣→ 0 as ε→ 0. (6-29)

Moreover, since for small t > 0 we have 8Yε
t (E)1E ⊂ B2r (y), which is disjoint from ∂B, and since by

construction 8Xε
t maps B into B, it is clear that

8
Yε
t ◦8

Xε
t (E)⊂ B for t > 0 sufficiently small.

Therefore, since by assumption E is a minimizer for the problem (5-1), we get

d
dt |t=0

P(8Yε
t ◦8

Xε
t (E))≥ 0. (6-30)

But on the other hand, combining (6-25) and (6-29) we get

d
dt |t=0

P(8Yε
t ◦8

Xε
t (E))=

d
dt |t=0

P(8Yε
t (E))+

d
dt |t=0

P(8Xε
t (E))

≤−
1
4 |
EHT

E |(K ) < 0 for ε > 0 small enough.

Clearly the last inequality contradicts (6-30). We conclude that it is not possible to find a compact
subset K ⊂ ∂B ∩ ∂E satisfying (6-23); therefore the measure | EHT

E | vanishes identically and the proof
is complete. �
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6B3. L∞ estimate. The next step is to show that the signed measure HE is actually absolutely continuous
with respect to Hn−1x∂E with L∞ bounds on the density. The upper bound follows from (6-22). For the
lower bound we use the following lemma, which is an adaptation of [White 2010, Theorem 2] to our
setting (notice that the statement of White’s theorem is more general as includes higher codimensions
and arbitrary varifolds, but let us state below just the result we will use in the sequel).

Lemma 6.9. Let N n
⊂ Mn be an n-dimensional submanifold with C2 boundary ∂N and denote by νN

the inward-pointing unit normal to ∂N. Fix a compact subset K ⊂ ∂N and assume that, denoting by EHN

the mean curvature of ∂N, we have

g( EHN , νN )≥ η on K .

Then, for every ε > 0 there exists a C1 vector field Xε on M with the following properties:

Xε(x)= νN ∀x ∈ K, (6-31)

|Xε|(x)≤ 1 ∀x ∈ M, (6-32)

spt(Xε)⊂ Kε := {x ∈ M : d(x, K )≤ ε}, (6-33)

g(Xε, νN )(x)≥ 0 ∀x ∈ ∂N, (6-34)

d
dt |t=0

P(8Xε
t (E))≤−η

∫
∂E
|Xε| dHn−1 (6-35)

for every subset E ⊂ N with C1 boundary ∂E , where 8Xε
t denotes the flow generated by the vector

field Xε.

Lemma 6.9 will be used to prove the following lower bound on the mean curvature measure HE of ∂E .

Lemma 6.10 (lower bound on HE ). Let E , B, M, V, EHE , HE be as in Lemma 6.7. Assume η :=
inf∂B HB >−∞, where HB := g( EHB, νB) and EHB is the mean curvature vector of ∂B. Then

HEx(∂E ∩ ∂B)≥ ηHn−1x(∂E ∩ ∂B). (6-36)

Proof. Fix any K ⊂ ∂E ∩ ∂B. For every ε ∈ (0, 1) let Xε be the C1 vector field obtained by applying
Lemma 6.9 with N = B; then by (6-35) and (6-33) we get

−η

∫
∂E
|Xε| dHn−1

≥
d
dt |t=0

P(8Xε
t (E))=−

∫
Kε

g(Xε, νE) d HE

=−

∫
K

g(Xε, νB) d HE −

∫
Kε\K

g(Xε, νE) d HE →−HE(K ) as ε→ 0, (6-37)

where in the second identity we used that νB = νE on K ⊂ ∂E ∩ ∂B. Using (6-31) and (6-32), we have

−η

∫
∂E
|Xε|dHn−1

=−η

∫
K
|Xε|dHn−1

−η

∫
∂E∩(Kε\K )

|Xε|dHn−1
→−ηHn−1(K ) as ε→ 0. (6-38)

In particular, in the limit as ε→ 0 we deduce from (6-37) that

ηHn−1(K )≤ HE(K ). (6-39)

Since this holds for every K ⊂ ∂E ∩ ∂B, it is easily recognized that (6-36) follows. �
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6C. Optimal regularity. In this section we prove that the boundary of an isoperimetric-isodiametric
set E is C1,1 regular away from the singular set.

Theorem 6.11. Let E ⊂ M be an isoperimetric-isodiametric set and x0 ∈ M be such that

µg(E \ Brad(E)(x0))= 0.

Assume B := Brad(E)(x0) has smooth boundary. Then, there exists δ > 0 such that ∂E \ Brad(E)−δ(x0) is
C1,1 regular.

Note that the C1,1 regularity is optimal, because in general one cannot expect to have continuity of
the second fundamental form of ∂E across the free boundary of ∂E , i.e., the points on the relative (with
respect to ∂B) boundary of ∂E ∩ ∂B.

6C1. Coordinate charts. We start by fixing suitable coordinate charts. Since E is bounded, there exists
r0 > 0 such that for every x0 ∈ ∂E there is a normal coordinate chart (�, ϕ) with x0 ∈� and

ϕ :�⊂ M→ Bn−1
r0
× (−r0, r0)⊂ Rn−1

×R

such that ϕ(x0)= 0, g(0)= Id and ∇g(0)= 0, where g denotes the metric tensor in these coordinates.
Moreover, by the C1,1/2 regularity of ∂E established in Section 6A, up to rotating these coordinate charts
and eventually changing r0, we can also assume that for every point x0 ∈ ∂B ∩ ∂E the following also
holds:

• ∂E and ∂B are, respectively, C1,1/2 and C∞ regular submanifolds, given in this chart as graphs of
functions u, ψ : Bn−1

r0
→
(
−

1
2r0,

1
2r0
)

with u ∈ C1,1/2 and ψ ∈ C∞.

• The functions u and ψ satisfy ψ(x)≤ u(x) for every x ∈ Bn−1
r0

,

u(0)= ψ(0)= |∇u(0)| = |∇ψ(0)| = 0,

and ‖u‖C1 ≤ δ0 and ‖ψ‖C1 ≤ δ0 for a fixed δ0 > 0, which will be later assumed to be suitably small.

On every such a chart, the C1,1/2 regular submanifold ∂E ∩� is given as the set {(x, u(x)) : x ∈ Bn−1
r0
}.

We can consider the natural coordinate chart on it given by (x, u(x)) 7→ x ∈ Bn−1
r with induced metric

tensor given by hi j := g(Ei , E j ), where Ei := ei + ∂i u en for i = 1, . . . , n− 1. In particular,

hi j = gi j + ∂i u gnj + ∂ j u gni + ∂i u ∂ j u gnn, (6-40)

where ∂i u = ∂i u(x) and gi j = gi j (x, u(x)). We will use the notation h̃ for the function

h̃ : Bn−1
r0
×R×Rn

→ Rn×n,

h̃i j (x, z, p)= gi j (x, z)+ pi g jn(x, z)+ p j gni (x, z)+ pi p j gnn(x, z),

with the obvious relation hi j = h̃i j (x, u(x),∇u(x)). Note that h̃ is smooth as a function in (x, z, p).
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6C2. First variation formula in local coordinates. We consider next functions ξ ∈ C∞c (B
n−1
r0

) and
χ ∈ C∞c (−r0, r0), and we assume χ |(−r0/2,r0/2) ≡ 1 in such a way to ensure that χ ◦ u(x)= 1 for every
x ∈ Bn−1

r0
(by the assumptions made on u). Consider the associated vector field X (x, y) := ξ(x)χ(y)en

and note that X ∈ C∞c (�,Rn) and X |∂E = ξ(x)en . Setting F(t, p) := p+ t X (p), there exists ε0 > 0
such that Ft := F(t, · ) is a diffeomorphism of � into itself for every |t | ≤ ε0.

Consider now the variations of the area along this one-parameter family of diffeomorphisms under the
assumption ξ ≥ 0 on 3(u) := {x ∈ Bn−1

r0
: u(x)= ψ(x)}. Arguing as in (6-21), we get

0≤
∫
∂E

div∂E X dHn−1
− H0

∫
∂E

g(X, νE) dHn−1

=

∫
6

hi j g(∇Ei X, E j ) dHn−1
− H0

∫
g(X, νE) dHn−1, (6-41)

where in the second line we have used a simple computation for the tangential divergence of X . Noting
that

∇Ei X =∇ei+∂i u en X =∇ei X + ∂i u ∇en X

= ∂iξ en + ξ∇ei en + ∂i u ξ∇en en = ∂iξ en + ξ0
k
inek + ∂i u ξ0k

nnek,

we get
hi jg(∇Ei X,E j )= hi j(∂iξ g jn+ξ0

k
ing jk+∂i u ξ0k

nng jk
)
+hi j(∂ j u ∂iξ gnn+ξ∂ j u0k

ingkn+∂ j u ∂i u ξ0k
nngkn

)
= ∂iξ

(
hi j g jn+hi j∂ j u gnn

)
ξ
(
hi j∂i u0k

nng jk+hi j∂ j u ∂i u0k
nngkn)

+ξ
(
hi j0k

ing jk+hi j∂ j u0k
ingkn

)
. (6-42)

In particular, by a simple integration by parts, (6-41) reads as∫
Bn−1

r

ξLu
√

det(hi j ) dx ≤ 0 ∀ ξ ∈ C1
c (B

n−1
r ), ξ |3(u) ≥ 0, (6-43)

where 3(u) := {x ∈ Bn−1
r : u(x)= ψ(x)} and

Lu(x) := div
(

A(x, u(x),∇u(x))∇u(x)+ b(x, u(x),∇u(x))
)
− f (x) (6-44)

with

• A = (ai j )i, j=1,...,n−1 : Bn−1
r × (−r, r)×Rn−1

→ R(n−1)×(n−1) is a smooth function given by

ai j (x, z, p) := gnn(x, z)h̃i j (x, z, p);

• b : Bn−1
r × (−r, r)×Rn−1

→ Rn−1 is a smooth regular function given by

bi (x, z, p) := h̃i j (x, z, p)g jn(x, z);

• f : Bn−1
r → R is a C0,α regular function given by

f (x) := hi j∂i u 0k
nng jk + hi j∂ j u ∂i u 0k

nngkn + hi j0k
ing jk + hi j∂ j u 0k

ingkn − H0g(en, νE),

where hi j
= h̃i j (x, u(x),∇u(x)), gi j = gi j (x, u(x)), 0k

i j = 0
k
i j (x, u(x)) and νE = νE(x, u(x)).
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Explicitly expanding the divergence term in Lu we deduce that

Lu(x)= ci j∂i j u+ d, (6-45)

where
ci j
= ai j

+ gnn∂lu ∂p j hil
+ gln∂p j h

il, (6-46)

with ∂p j hil
= ∂p j h̃il(x, u(x),∇u(x)), gi j = gi j (x, u(x)) and d ∈ C0,α(Bn−1

r ) is given by

d = gnn∂i hi j∂ j u+ gnn∂zhi j∂i u ∂ j u+ ∂i gnnhi j∂ j u+ ∂ngnnhi j∂i u ∂ j u

+g jn∂i hi j
+ g jn∂zhi j∂i u+ ∂i g jnhi j

+ ∂ng jnhi j∂i u− f (6-47)

where the entries of h and of its derivatives are computed in (x, u(x),∇u(x)), while those of g and the
derivatives of the metric are computed in (x, u(x)).

Note that (6-43) is equivalent to the pair of differential relations{
Lu ≤ 0 in Bn−1

r ,

Lu = 0 in Bn−1
r \3(u),

(6-48)

where the first inequality is meant in the sense of distribution, while the second equation is pointwise
(also recalling that u is smooth outside the contact set 3(u)).

6C3. Quadratic growth. Note that by the explicit expressions of the previous subsection it turns out that
ci j, d ∈ C0,α(Bn−1

r0
) with uniform estimates (by the assumptions in Section 6C1):

‖ci j
‖C0,α(Bn−1

r0 )+‖d‖C0,α(Bn−1
r0 ) ≤ C. (6-49)

Since c(0)= Id and ci j are Hölder continuous, up to choosing a smaller δ0 > 0 (and consistently a smaller
r0 > 0), we can also ensure that ci j is uniformly elliptic with bounds

1
2 Id≤ c ≤ 2 Id.

The next lemma shows that u leaves the obstacle ψ at most as a quadratic function of the distance to
the free-boundary point.

Proposition 6.12. Let E ⊂ M be an isoperimetric-isodiametric set. Then, there exists a constant C > 0
such that, for every x0 ∈ ∂E ∩ ∂B, setting coordinates as in Section 6C1, we have

u(x)−ψ(x)≤ C |x |2 ∀ x ∈ Bn−1
r0/2 . (6-50)

Proof. Let us consider the homogeneous part of the operator L , i.e., Lw := ci j∂i jw. Since L(u−ψ)=
Lu−Lψ − d , for every r ≤ r0 we can write (u−ψ)|Bn−1

r
= w1+w2 with{

Lw1 = 0 in Bn−1
r ,

w1 = u−ψ on ∂Bn−1
r ,

(6-51)

and {
Lw2 = Lu−Lψ − d in Bn−1

r ,

w2 = 0 on ∂Bn−1
r .

(6-52)
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We start by estimating w2 from below. Considering that Lw2+Lψ + d = Lu ≤ 0, we can apply the
L∞ estimate for elliptic equations [Gilbarg and Trudinger 1983, Theorem 8.16]. In order to understand
the dependence of the constant on the domain, we can rescale the variables in this way: v : Bn−1

1 → R

given by v(y) := r−2w2(r y). Then, the equation satisfied by v is

Lv(y)+Lψ(r y)+ d(r y)= Lu(r y)≤ 0.

We can then conclude using [loc. cit., (8.39)] that

sup
Bn−1

1

(−v)≤ C‖Lψ(r y)+ d(r y)‖Lq/2(Bn−1
1 ) ≤ C,

where now C is a dimensional constant (only depending on q > n−1, which for us is any fixed exponent —
note that the hypothesis (8.8) in [loc. cit., Theorem 8.16] is satisfied because we are considering the
operator L which has no lower-order terms). In particular, scaling back to w2 we deduce that

w2(x)≥−Cr2
∀ x ∈ Bn−1

r . (6-53)

This clearly implies w1(0) = u(0)−ψ(0)−w2(0) ≤ Cr2. We can then use the Harnack inequality
for w1 (see [loc. cit., Theorem 8.20]) and conclude

w1(x)≤ C inf
Bn−1

r/2

w1 ≤ Cw1(0)≤ Cr2
∀ x ∈ Bn−1

r/2 . (6-54)

Finally note that in Bn−1
r \3(u) we have the equality Lw2 = −Lψ − d. Therefore, the function

z := w2+C |x |2 satisfies Lz ≥ 0 for a suitably chosen constant C = C(‖Lψ‖L∞, ‖d‖L∞). By the strong
maximum principle [loc. cit., Theorem 8.19] we deduce that

max
Bn−1

r \3(u)
z ≤ max

∂(Bn−1
r \3(u))

z ≤ Cr2,

where we used that z|∂Bn−1
r
=Cr2 and that for every x ∈3(u)∩Bn−1

r we have z(x)=−w1(x)+C |x |2≤Cr2

by the positivity of w1. In conclusion, we have

u(x)−ψ(x)≤ |w1(x)| + |w2(x)| ≤ Cr2

for every x ∈ Bn−1
r/2 . Since r ≤ r0 is arbitrary, by eventually changing the constant C , we conclude the

proof of the proposition. �

6C4. Curvature bounds away from the contact set. Next we analyze the points p ∈ ∂E \ ∂B which are
close to ∂B. To this aim we fix a constant s0 > 0 such that the following holds: if dist(p, ∂E ∩ ∂B)=
dist(p, x0) < s0, then p belongs to the coordinate chart � around x0 as fixed in Section 6C1 and moreover,
in these coordinates, p = (x, z) ∈ Bn−1

r0
× (−r0, r0) (necessarily with x 6∈3(u)) satisfies

Bn−1
4δ (x)⊂ Bn−1

r0
with δ := 1

2 dist(x,3(u)).

Note that the existence of such a constant s0 > 0 is ensured by a simple compactness argument. Recall
also that by the quadratic growth proved in the previous section we know

‖u‖L∞(Bn−1
2δ (x)) ≤ Cδ2.
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The following lemma gives a curvature bound for ∂E in points p as above.

Lemma 6.13. Let p ∈ ∂E \∂B satisfy dist(p, ∂E ∩∂B) < s0. Fixing x0 ∈ ∂E ∩∂B and the corresponding
coordinate chart as in Section 6C1 with the notation fixed above, we then conclude

‖D2u‖L∞(Bn−1
δ (x)) ≤ C, (6-55)

where C > 0 is a dimensional constant.

Proof. Since on Bn−1
4δ ⊂ Bn−1

r0
\3(u) the equation Lu = 0 is satisfied, the proof is a consequence of

the basic interior Schauder estimates for second-order elliptic equations (see [Gilbarg and Trudinger
1983, Theorem 6.2]). More precisely we write the equation as Lu =−d , where d ∈ C0,α is defined as in
(6-47) and satisfies (6-49), and we apply [loc. cit., Theorem 6.2]) to such an equation. Indeed, by simply
recalling the definition of the norms in [loc. cit., Theorem 6.2] we have, setting dy := dist(y, ∂Bn−1

2δ (x)),

δ2
‖D2u‖L∞(Bn−1

δ (x))≤C
(
‖u‖L∞(Bn−1

2δ (x))+ sup
y∈Bn−1

2δ (x)
d2

y|d(y)|
)
+C sup

y,z∈Bn−1
2δ (x)

min{dy,dz}
2+α |d(y)−d(z)|

|y−z|α

≤C
(
‖u‖L∞(Bn−1

2δ (x))+δ
2
‖d‖L∞(Bn−1

2δ (x))

)
+Cδ2+α

[d]C0,α(Bn−1
2δ (x))≤Cδ2. �

6C5. C1,1-regularity. In this section we finally prove Theorem 6.11. The proof is based on the following
property: by Proposition 6.12 and Lemma 6.13, there exists δ > 0 such that for every x0 ∈ ∂B ∩ ∂E there
exists r0 > 0 satisfying, fixing coordinates as in Section 6C1,

|u(y)− u(x)−∇u(x) · (y− x)| ≤ 1
2C |x − y|2 ∀ x, y ∈ Br0(x0). (6-56)

Indeed, if x ∈ ∂E ∩ ∂B, then centering the coordinates at x , we have 0= u(0)= |∇u(0)|, and (6-56) is
a direct consequence of (6-50). On the other hand, if x /∈ ∂E ∩ ∂B, then setting the coordinates as in
Lemma 6.13, we deduce (6-56) from (6-55).

The conclusion of Theorem 6.11 is then a direct consequence of the following lemma combined with a
standard partition of unity argument.

Lemma 6.14. Let � ⊂ Rn be an open subset and let u : �→ R be a C1 function. Assume there exist
C > 0 and a countable covering {Bi }i∈N of � made by open balls Bi ⊂� such that for every x, y ∈ Bi ,∣∣u(y)− u(x)−∇u(x) · (y− x)

∣∣≤ 1
2C |x − y|2. (6-57)

Then the distribution ∂2
i j u ∈ D

′(�) is represented by an L∞(�) function, and

‖∂2
i j u‖L∞(�) ≤ C .

Proof. By a standard partition of unity argument it is enough to prove that for every ball Bi the restriction
of the distribution ∂2

i j uxBi is represented by an L∞(Bi ) function, and ‖∂2
i j u‖L∞(Bi ) ≤ C . In order to

simplify the notation, let us fix i ∈N and set B := Bi . For every fixed ϕ ∈ C∞c (B) let Qϕ
: Rn
×Rn

→ R

be defined by

Qϕ(v1, v2) :=

∫
B

u
∂2ϕ

∂v1∂v2
. (6-58)
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We first claim
|Qϕ(v, v)| ≤ C |v|2‖ϕ‖L1(B) ∀ϕ ∈ C∞c (B), ∀ v ∈ Rn, (6-59)

where C is given by (6-57). To prove (6-59), we write (6-57) exchanging x and y and sum up to get∣∣(∇u(x)−∇u(y)) · (x − y)
∣∣≤ C |x − y|2.

Choosing y = x + tv in the last estimate, we get

|(∇u(x + tv)−∇u(x)) · v|
t

≤ C ∀ v ∈ Sn−1, ∀ t ∈ (0, 1− |x |). (6-60)

Now using that u is C1 and ϕ ∈ C∞c (B), we can integrate by parts to get∣∣∣∣∫
B

u
∂2ϕ

∂v∂v

∣∣∣∣= ∣∣∣∣∫
B

∂u
∂v

∂ϕ

∂v

∣∣∣∣= ∣∣∣∣∫
B
(∇u(x) · v) lim

t↓0

ϕ(x + tv)−ϕ(x)
t

dx
∣∣∣∣

=

∣∣∣∣limt↓0

∫
B

(
∇u(x − tv)−∇u(x)

t
· v

)
ϕ(x) dx

∣∣∣∣≤ C‖ϕ‖L1(B) ∀v ∈ Sn−1, (6-61)

where in the second line we used the change of variable x 7→ x + tv, and the last inequality follows from
(6-60). The inequality (6-61) proves our claim (6-59).

We now show (6-59) implies that the distribution ∂2
i j u is represented by an L∞(B) function and

‖∂2
i j u‖L∞(B) ≤ C . To this aim, observe that for every ϕ ∈ C∞c (B), by the Schwartz lemma, the map

Qϕ
: Rn
×Rn

→ R defined in (6-58) is a symmetric bilinear form. Using (6-59), by polarization of Qϕ

we get
|Qϕ(∂i , ∂ j )| =

1
4

∣∣Qϕ(∂i + ∂ j , ∂i + ∂ j )− Qϕ(∂i − ∂ j , ∂i − ∂ j )
∣∣≤ C‖ϕ‖L1(B) (6-62)

for every i, j = 1, . . . , n. But now

Qϕ(∂i , ∂ j )= 〈∂
2
i j u, ϕ〉D′,D,

where 〈 · , · 〉D′,D denotes the pairing between distributions and C∞c test functions. Therefore (6-62)
combined with the Riesz representation theorem concludes the proof. �

The arguments above prove also the following slightly more general regularity result for isoperimetric
regions inside a C2 domain. In order to state it, for a subset A ⊂ M and for some δ > 0, let us denote by
Bδ(A)= {x ∈ M : infy∈A d(x, y)≤ δ} the δ-tubular neighborhood of A.

Theorem 6.15 (C1,1 regularity of isoperimetric regions inside a C2 domain). Let (M, g) be a Riemannian
manifold, let � ⊂ M be an open subset with C2 boundary ∂� and fix v ∈ (0, µg(�)). Let E ⊂ � be a
finite-perimeter set with µg(E)= v and minimizing the perimeter among regions contained in �, i.e.,

P(E)= inf{P(F) : F ⊂�, µg(F)=v}.

Then, there exists δ > 0 such that ∂E ∩ Bδ(∂�) is C1,1 regular.

Remark 6.16. Theorem 6.15 already appeared in [White 1991, Proposition, p. 418], though the arguments
in the proof are very concise (line 7, p. 419 in [White 1991]) and basically consist of referring to the
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work of Gerhardt [1973]. Nevertheless, it seems that one of the hypotheses of [Gerhardt 1973] is not met
for the operator H in [White 1991]. Indeed, H is the Euler–Lagrange operator of the functional

8(u)=
∫

L(x, u(x),∇u(x)) dx,

and a simple computation shows

H(u)=
∂L
∂z
(x, u(x),∇u(x))− div

(
∂L
∂p
(x, u(x),∇u(x))

)
,

where we named the variables as L = L(x, z, p). Now the operator H is of the form considered in
[Gerhardt 1973] (here there is a conflict of notation between the two papers, therefore we put a bar for
the notation in [loc. cit.]),

Au+ H =− div
(
ā(x, u(x),∇u(x))

)
+ H .

In our case the vector field ā is given by ∂L/∂p and the forcing term H is given by (∂L/∂z)(x,u(x),∇u(x)).
In [loc. cit.] the forcing term H is assumed to be W 1,∞ (see equation (5) in [loc. cit.]), which in the
present situation would be verified only knowing already that u ∈ W 2,∞, which is, however, what one
wants to deduce.

We do not exclude that going through the proofs of [loc. cit.] one could overcome such a difficulty;
however, we think the approach of the present paper could be of independent interest, especially because
it is self-contained and based on an elementary use of Schauder estimates.

6D. Further comments. We have proven the above regularity of the isoperimetric-isodiametric sets
E ⊂ M under the assumptions that the enclosing ball B = Brad(E)(x0) has smooth boundary. Actually,
the following is true and is a direct consequence of the argument used above.

(A) If ∂B ∈ C1,α for some α ∈ (0, 1], then in a neighborhood of ∂B the isoperimetric-isodiametric sets
have the boundary ∂E , which is C1,α regular.

Indeed, under the assumption in (A), the arguments in Lemma 6.3 show that ∂E is C1,κ regular in
a neighborhood of ∂B for k = min

{
α, 1

2

}
. Moreover, a careful inspection of the proof of the optimal

regularity in Theorem 6.11 shows that the conclusion of (A) holds true with the right Hölder exponent
(in the case α = 1 the proof is a straightforward generalization; for α ∈

( 1
2 , 1

)
more details need to be

checked). Nevertheless, we do not do it here.
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