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We consider the semilinear heat equation in large dimension d > 11
du=Au+uPu, p=2q+1,qeN,

on a smooth bounded domain € R with Dirichlet boundary condition. In the supercritical range
p=>pld)>1+ ﬁ, we prove the existence of a countable family (u)¢en Of solutions blowing up at
time 7" > 0 with type II blow up:

lue(®) oo ~ C(T —1)7¢¢

with blow-up speed ¢, > ﬁ. The blow up is caused by the concentration of a profile Q which is a
radially symmetric stationary solution:

cp(p—1)

u(ra 1) ~ Q(XA_XO), A Cun) (T —1) "7,
A() 7T @

at some point xo € 2. The result generalizes previous works on the existence of type II blow-up solutions,

which only existed in the radial setting. The present proof uses robust nonlinear analysis tools instead,

based on energy methods and modulation techniques. This is the first nonradial construction of a solution

blowing up by concentration of a stationary state in the supercritical regime, and it provides a general

strategy to prove similar results for dispersive equations or parabolic systems and to extend it to multiple

blow ups.
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1. Introduction

1A. The semilinear heat equation. We study solutions of the semilinear heat equation (NLH)

Oru = Au+ |u|P71,

1-1
u(0) =ug, u=0 on 02, (-1

where u is real-valued, p is such that the nonlinearity is analytic, that is p = 2g 4+ 1, ¢ € N, and Q C R¢
is a smooth bounded open domain. For smooth enough initial data ug satisfying some compatibility
conditions at the border 92, the Cauchy problem is well posed and there exists a unique maximal solution
ue C((O, T), LOO(Q)). If T < 400, the solution is said to blow up and necessarily

lim 1 oo = .
LLTHM()HL Q) = +0oo

This paper addresses the general issue of the asymptotic behavior as ¢ — 7. In the case Q2 = R, there is
a natural scale invariance, namely if u is a solution then so is

1y (A2, ) 1= A=Tu (A%, Ax). (1-2)

The Sobolev space that has an invariant norm for this scale change is

(1-3)

[STRSW

H% R?) := {u : / &[> 10> dE < —I—oo} Cose=4 o2
R4 p—1
where 1 stands for the Fourier transform of u. Two particular solutions arise, the constant-in-space
blow-up solution
1
u(t,x) = :I:LL, k(p) = (L_l)p_l, (1-4)
(T —t)rT p

and the unique (up to translation and scale change) radially decaying stationary solution Q (see [Li 1992]
and references therein) solving the stationary elliptic equation

AQ + QP =0. (1-5)

1B. Blow-up for (NLH). Being one of the model nonlinear evolution equations, blow-up dynamics
has attracted a great amount of work (see [Quittner and Souplet 2007] for a review). In particular, one
is interested in the description of the solution near the set of blow-up points, that is, the points x for
which there exists (¢,, x,) — (T, x) such that |u(¢,, x,)| — +00. A comparison argument with the
constant-in-space blow-up solution (1-4) implies the lower bound

limsup u(t) || Lo (T — )71 > k(p)

t—T

and leads to the following distinction between type I and type II blow up [Matano and Merle 2004]:

u blows up with type I if limsup |Ju(2)||poo (T — I)ﬁ < 400,
t—>T

u blows up with type IT if lim sup ||u(?) ||z (T — t)ﬁ = 400.

t—T
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The ODE blow up (1-4) does not see the dissipative term in (1-1) whereas type II blow up involves an
interplay between dissipation and nonlinearity, and therefore its existence and properties may change
according to d and p. In the series of works [Giga 1986; Giga and Kohn 1985; 1987; 1989; Giga et al.
2004; Merle and Zaag 1998; 2000], the authors show that in the energy subcritical range 1 < p < %,
all blow-up solutions are of type I and match the constant-in-space solution (1-4):

. 1
lim sup (1) | oo (T — 1) 7T = k(p).
t—>T

In the energy critical case p = %, d = 4, Schweyer [2012] constructed a radial type II blow-up
solution, following the analysis of critical problems [Merle and Raphaél 2005a; 2005b; 2006; Raphaél
and Schweyer 2013; 2014; Raphaél and Rodnianski 2012; Merle et al. 2013]; see also [Filippas et al.

2000]. In that case, the scale invariance (1-2) implies that there exists a one-dimensional continuum of

(=G,

The properties of the ground state (1-5) then allow the existence of a solution u that stays close to this

ground states

manifold,
1

X
= b 1’
u A([)AQ(A(I))—Fe el <«

such that A(z) — O for some time 7" > 0, which makes the solution blow up. This blow-up scenario is not

always possible as it heavily relies on the asymptotic behavior of the ground state, and is impossible in
dimension d > 7 [Collot et al. 2016].
In the radial energy-supercritical case p > %, the Joseph—Lundgren exponent [1973]

2
oL = ~+00 if d <10, (1-6)
It = ifd=1l
dictates the existence of type II blow-up solutions. For % < p < pJL, type 1l blow-up solutions do not

exist [Matano and Merle 2004; Mizoguchi 2011b]. For p > pr, type Il blow-up solutions are completely
classified. In [Herrero and Veldzquez 1994] the authors predicted the existence of a countable family of
solutions uy such that

lu(t) Lo ~ Clun(O)(T —t)a@m 71, LeN, {> La,

(o is defined in (1-10)), which are the same speeds as in the present paper. The rigorous proof was first made
in an unpublished paper [Herrero and Veldzquez] and then in [Mizoguchi 2004]. In the series of works
[Matano 2007; Matano and Merle 2009; Mizoguchi 2007; 2011a] any type II blow-up solution was proved
to have one of the above blow-up rates. These works have the powerful advantage that they deal with large
solutions, but strongly rely on comparison principles that are only available for radial parabolic problems.
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1C. Outlook on blow up for other problems. Many model nonlinear equations share similar features
with (NLH). The construction of solutions concentrating a stationary state for the energy-supercritical
Schrodinger and wave equations has been done in [Collot 2014; Merle et al. 2015], and recently for
the harmonic heat flow in [Biernat and Seki 2016]. These concentration scenarios happen on a central
manifold near the continuum of ground states

1 X
(=22,

whose topological and dynamical properties have been a popular subject of studies [Schlag 2009; Krieger

et al. 2015]. The possibility of various blow-up speeds is linked to the regularity of the solutions, and this
is why parabolic problems are more rigid, thanks to the regularizing effect, than dispersive problems, for
which a wider range of concentration scenarios exists [Krieger et al. 2008].

A major goal is the study of blow up for general data, where nonradial stationary states can appear
as blow-up profiles [Duyckaerts et al. 2012]. The solution may also not be a small perturbation of it.
One thus needs robust tools for the perturbative study of special nonlinear profiles as well as a better
understanding of the set of stationary solutions. The present work is a step toward this general aim.

1D. Statement of the result. We revisit the result of [Herrero and Velazquez 1994; Mizoguchi 2004;
2005] with the techniques employed in [Raphaél and Rodnianski 2012] to address the nonradial setting.
From [Li 1992], for p > pyr. (defined in (1-6)) the radially decaying ground state (J, solution of (1-5),
admits the asymptotic

ai

0(1) = —2—+ =L 0(x[) as x| — +o0, a1 #£0, (1-7)
Ix|7=1 Xl
with
o= [ 2 (a2 2 (19
yi=Xd-2-vD), A:=(d-22—4pcZt (A>0 p>pyr), (1-9)
and we define 5
a::y—ﬁ. (1-10)
For n € N we define the following numbers (A, > 0if p > pjr):
_—d=2)+ VA,

Api=(d—2)*>—4pcoo + 4n(d +n—2).

n - )
2
The above numbers are directly linked with the existence and the number of instability directions of
type II blow-up solutions concentrating Q. Our result is the existence and precise description of some
localized type II blow-up solutions in any domain with smooth boundary.

Theorem 1.1 (existence of nonradial type II blow up for the energy-supercritical heat equation). Let
d>11, p=2q+1>pjr, €N, where pjr, is given by (1-6). Let Q, y, o, Yn and s¢ be given by (1-7),
(1-9), (1-10), (1-18) and (1-3) and ¢ > 0. Let Q2 C R? be a smooth open bounded domain. For xg € 2
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let y(x0) be a smooth cut-off function around xo with support in Q. Pick £ € N satisfying 2¢ > a. Then,
there exists a large enough regularity exponent

S+ =854+{) €2N, sy >1,
such that under the nondegeneracy condition
(%d — )/n) ¢ 2N for alln € N such that d — 2y, < 4s4, (1-11)

there exists a solution u € C ([0, T), LOO(Q)) of (1-1) with ug € H+(2) (which can be chosen smooth
and compactly supported) blowing up in finite time 0 < T < 400 by concentration of the ground state at
a point x, € Q with |xy — xo| < &. It is given by

A) 7

U(E.X) = g (¥)— Q(x;(;)cé’)w, (1-12)

where:
() xg is the only blow-up point of u.

(i) Blow-up speed.:

2¢

ull ooy = c(uo)(T —1t) =D (1+0(1)) ast—T, c(ug) >0, (1-13)
A(t) = ¢ (uo)(1 + o(D)T —1)e  ast — T, ¢'(ug) > 0. (1-14)
(iii) Asymptotic stability above scaling in renormalized variables:
lim |2 7T o (. x0 + MO0 g5 0yt (@—txo) =0 Forall se <s <4 (1-15)
(iv) Boundedness below scaling:
lims;lp lu@)gs@) < +oo forall 0<s <s. (1-16)
—

(v) Asymptotic of the critical norm:

lu()| zrse @) = ¢(d, p)VE/|10g(T —=1)|(1 +o(1)) ast— T, c(d, p) > 0. (1-17)
Comments on Theorem 1.1:

(1) On the assumptions. First, the assumption p > pyr, is not just technical as radial type 1I blow up is
impossible for % < p < pjr [Matano and Merle 2004; Mizoguchi 2011b]. Nonradial type II blow
up solutions in this latter range, if they exist, must have a very different dynamical description. Next, if
p is not an odd integer, then the nonlinearity x — |x|?~lx is singular at the origin, yielding regularity
issues. In that case the techniques used in the present paper could only be applied for a certain range of
integers £. Eventually, the condition (1-11) is purely technical, as it avoids the presence of logarithmic
corrections in some inequalities that we use. It could be removed since the analysis relies on gains that
are polynomial and not logarithmic, but would weigh down the already long proof. Note that a large
number of couples (p, £) satisfy this condition. Indeed, only finitely many integers n are concerned by
(1-20), and the value of y, is very rarely a rational number by (1-18).
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(2) Blow-up by concentration at any point and manifold of type Il blow-up solutions. For any x¢ € €2,
Theorem 1.1 provides a solution that concentrates at a point that can be arbitrarily close to x¢. In fact
there exists a solution that concentrates exactly at xo, meaning that this blow up can happen at any point
of Q. To show that, one needs an additional continuity argument, in addition to the information contained
in the proof, to be able to reason as in [Planchon and Rapha&l 2007; Merle 1992], for example. This
continuity property amounts to proving that the set of type II blow-up solutions that we construct is a
Lipschitz manifold with exact codimension in a suitable functional space. This was proved in the radial
setting in [Collot 2014] and the analysis could be adapted here using the nonradial analysis provided in
the present paper. However a precise and rigorous proof of this fact would be too lengthy to be inserted
in this paper. Let us stress that the solutions built here possess an explicit number of linear nonradial
instabilities. An interesting question is then whether or not these new instabilities can be used, with the
help of resonances through the nonlinear term, to produce new type II blow-up mechanisms around Q in
the nonradial setting.

(3) Multiple blow ups and continuation after blow up. As in our analysis we are able to cut and localize
the approximate blow-up profile, there should be no problems in constructing a solution blowing up with
this mechanism at several points simultaneously, as in [Merle 1992]. Cases where the blow-up bubbles
really interact can lead to very different dynamics; see [Martel and Rapha&l 2015; Jendrej 2016] for recent
results. From the construction, as ¢ — T, we have u admits a strong limit in Hlf)‘é (2\{x0}). One could
investigate the properties of this limit in order to continue the solution u beyond blow-up time, which is
a relevant question for blow-up issues [Matano and Merle 2009], especially for hamiltonian equations
where a subcritical norm is under control.

1E. Notation. In the analysis, C will stand for a constant which may vary from one line to another,
whose value just depends on d and p. The notation a < b means that a < Cb for such a constant C, and
a = O(b) means |a| < b.

Supercritical numerology. For d > 11 the condition p > pjr, where pyy, is defined by (1-6), is equivalent
to24++vd—1<s. < %d . We define the sequences of numbers describing the asymptotic of particular
zeros of H (defined in (1-30)) for n € N:

_—d-2)+VE,
n-— 3 s

Ay = (d —2)? —4cpoo + 4n(d +n—2), (1-18)

2

-, (1-19)
p—1

Opn = V¥n

where A, > 0 for p > pjyr. We will use the following facts in the sequel:

2 2
Yo =Y, VI—E-FI, Vn<ﬁ

see Lemma A.1 (where y is defined in (1-9)). In particular ¢p=¢, ¢;=1 and o, <0 for n > 2. A

forn > 2 and y, ~ —n; (1-20)

computation yields the bound

1
2<Ot<§d—1
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(see [Merle et al. 2015]). We let
/

g :=min(e,A)—e, g = %min(g,l,&)—s), (1-21)

where 0 < ¢ <« 1 is a very small constant just here to avoid keeping track of some logarithmic terms later
on. For n € N we define!

mp = E[3(3d —vn)] (1-22)
and denote by &, the positive real number 0 < §,, < 1 such that
d =2yp +4my + 46,. (1-23)
For 1 < L a very large integer, we define the Sobolev exponent
sp,=mo+ L+ 1. (1-24)
In this paper we assume the technical condition (1-11) for s4+ = sz, which means
0<8, <1 (1-25)

for all integers n such that d — 2y, < 4sy, (there is only a finite number of such integers by (1-20)). We
let ng be the last integer to satisfy the condition

d—2yn, <4sp, and d —2ypy4+1 > 4sL (1-26)
and we define
86 ;= max &, € (0,1). (1-27)
0<n<ng

For all integers n < ng we define the integers
Ly, =sp—my,—1 (1-28)

and in particular Lo = L. Given an integer £ > %a (that will be fixed in the analysis later on), for
0 < n < ng we define the real numbers

in=40— (1-29)

2

Notations for the analysis. For R > 0, the euclidean sphere and ball are denoted by
d d
SY(R) = %x eR? Y 7= RZ} and BY(R):= %x eR? Y a7 < RZ} .
i=1 i=1
We use the Kronecker delta notation:

0 ifi#j,
5 :{ #J

1 ifi=]

1 E£[x] stands for the entire part: x — 1 < E[x] < x.
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fori, j € N. We let
Fu):=Au+ f(u), f@):=ul’"tu

so that (1-1) can be written as
d;u = F(u).

When using the binomial expansion for the nonlinearity, we use the constants

p
f(u+v)=ZClpulvp_l, Clp = (i))

=0

The linearized operator close to Q (defined in (1-5)) is
Hu:=—Au—pQP tu (1-30)

so that F(Q + &) ~ —H e. We introduce the potential

Vi=—pQ?! (1-31)
so that H = —A + V. Given a strictly positive real number A > 0 and function u : R? — R, we define
the rescaled function

2
uy(x) =A7—Tu(Ax). (1-32)

This semigroup has the infinitesimal generator

u—+x.Vu.

0
Au:= — I
ui= o=t P

The action of the scaling on (1-1) is given by the formula
F(uz) = 22(F(u));.
Forz e R? and u : RY — R, the translation of vector z of u is denoted by
u(x) :=ulx —z). (1-33)

This group has the infinitesimal generator

[%(rzu)] o =—Vu.

The original space variable will be denoted by x € Q2 and the renormalized one by y, related through
x =z + Ay. The number of spherical harmonics of degree 7 is

kO):=1,  k():=d. k(@)= 2":_1’—2(n+p—3

) for n > 2.
n—1

The Laplace—Beltrami operator on the sphere S71(1) is self-adjoint with compact resolvent and its
spectrum is {n(d +n—2) :n € N}. For n € N the eigenvalue n(d +2—n) has geometric multiplicity k(n),
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and we denote by (Y("’k))neN, 1<k<k(n) an associated orthonormal Hilbert basis of L2(S9):

+o00

4
L2S 1) =@ span(Y ™91 <k <k(n)).
n=0
Asd_l(l)y(n,k) =n(d+n-— 2)y(n,k), / y (k) y (' k") _ 8(n.ke).(n Ky (1-34)
Sd—l(l)
with the special choices
YOD@) =Co. Y1H(x) =—Cix. (1-35)

where Cy and C; are two renormalization constants. The action of H on each spherical harmonic is
described by the family of operators on radial functions

d—1 d -2
oy, 4=ty s ) _ por-! (1-36)
r r
for n € N, as for any radial function f they produce the identity
H(x £y @0 () = Oy @D (), (137)
X X
For two strictly positive real numbers b§0’1) > 0 and 1 > 0 we define the scales
M1, By=[p®V|"z B =Bl (1-38)

The blow-up profile of this paper is an excitation of several directions of stability and instability around
the soliton Q. Each one of these directions of perturbation, denoted by Tl.(n’k), will be associated to a
triple (n, k, i), meaning that it is the i-th perturbation located on the spherical harmonics of degree (1, k).
For each (n, k) with n < ng, there will be L, + 1 such perturbations fori =0, ..., L, except for the
casesn =0,k =1,andn =1,k =1,...,d, where there will be L, perturbations fori =1,..., L,
(n =1, 2). Hence the set of triples (n, k,7) used in the analysis is

I:={nk.i)eN>: 0<n=<ng, 1<k <k(n), 0<i <L,}\({(0,1,0)}U{(1,1,0),...,(1,d.0)})

(1-39)
with cardinal
no
#I:= Y k(n)(Lp+1)—d —1. (1-40)
n=0

For j € N and an n-tuple of integers ;t = (i )1<i<;, the usual length is denoted by

J
il =" .

i=1
If j =d and h is a smooth function on R? then we use the following notation for the differentiation:

glul

oHh:=—————h.
3?11 3%
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For J an #Z-tuple of integers, we introduce two other weighted lengths

=Y (—’” ;V” +i)Jl.("’k), (1-41)
n,k,i
L
=i+ 3 it Y "R, (1-42)
i=1 1<i<L; (n,k,i)eT
1<k<d 2<n

To localize some objects we will use a radial cut-off function y € C®°(R%):
O=<x=1L x(x[)=1 for x| <1, x(Ix[) =0 for [x| =2, (1-43)

and for B > 0, we let yp denote the cut-off around B4 (0, B):

xB(x):= X(%)-

1F. Strategy of the proof. We now describe the main ideas behind the proof of Theorem 1.1. Without
loss of generality, via scale change and translation in space one can assume that xo = 0 and B4(7) c Q.

(i) Linear analysis and tail computations. The linearized operator near Q is H = —A — pQP~! and its
generalized kernel is

. i k
{f :3j e Nsuchthat H/ f=0} = Span(Ti(n ))(n,i)eNZ, 1<k<k(n)
where

ak X
Tf(” )(x) — Ti(n)(|x|)Y(n,k)(m)’

Tl-(") being radial, is located on the spherical harmonics of degree (n, k), with

k k k k
70 =0, TP =050, HTS® =0, HTWP =-TP. (1-44)

For any L € N, defining s7,, no(L) and L, (L) by (1-24), (1-26) and (1-28), H*~ is coercive for functions
that are not in the suitably truncated generalized kernel:

. k
/ eH*le 2 |[V¥ee|2, + a2, if € € Span(T ™), o 1<k <kny. 0i<L, - (1-45)

where ||8||ﬁ)C means any norm of € on a compact set involving derivatives up to order 2sy,. A scale change
for these profiles produces the identity

d
7 (1) = AT @) ~ i =) T ) as [x] — oo (1-46)

(ii) The renormalized flow. For u a solution, A : (0,T) — R and z : (0,T) — R?, we define the

renormalized time
ds 1
E = ﬁ, S(O) = 350. (1—47)
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Then v = (7—;u),), solves the renormalized equation
As

Z
BSU—TAv—f.Vv—F(v)zo. (1-48)

(iii) The dynamical system for the coordinates on the center manifold. Let Z be defined by (1-39). For an
approximate solution of (1-1) under the form

u= (Q + > bl.("’k)Tl.(”’k)) (1-49)

- 21
(n,k,i)eT X

described by some parameters bl.("’k) € R, one has the identity from (1-44) and (1-45):

A
_Zt.vu—TtAu+ ( Z bl(z,k)Tl(n,k))

(n.ki)eT 2.}
= d;u ~ F(u)
b(ls') b(O,l) b'(n,k) —Qi—a )b(l’O)b.("’k)
=Vt e Au+( > ER— T,-(”’k)) Y. (1:50)
(n,k,i)ez Z,5
where bgl") = (bgl’l), e ,bil’d)) and with the convention bgl’]j_)l = 0. The error term V¥ is negligible

under a size assumption on the parameters. Identifying the terms in the above identity yields the finite-

dimensional dynamical system?
b 50’1) bgla' )
A A (1-51)

mly_ 1 . o1, 0k , L, ok :

At:

Zy =

(iv) The approximate blow-up profile. Equation (1-51) admits for any £ € N with 2 > « an explicit special
solution (1, Z, 51.(’1’k) Ysuch thatZ =0and A ~ (T — t)g for some 7' > 0. Moreover, when linearizing
(1-51) around this solution, one finds an explicit number m of directions of linear instability and #Z —m
directions of stability. In addition, for the renormalized time s associated to A, one has

_Y—¥Yn _;

lim s(t) = +o0, b\ () 572" (1-52)
t—>T

Our approximate blow-up profile is then given by
(n,k k
(e+ ¥ #Pwre®)
(n.ki)eT 20:30
(v) The blow-up ansatz. Following (iv), we study solutions of the form
u= X(Q + ) bl.(”’k)Tl.("’k)) +w (1-53)
(n.ki)eT 2.}

2 Again, with the convention bg;’ﬁ_)l =0.
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and decompose the remainder w according to

Wint := X3W, Wext -= (1 - 3w, &:= (T—Zwint)k’ (1-54)

where wey is the remainder outside the blow-up zone, wiy; the remainder inside the blow-up zone, and &
is the renormalization of the remainder inside the blow-up zone corresponding to the scale and central
point of the ground state Q, 1/5. Now w is orthogonal to the suitably truncated center manifold

k)L
€€ Span(Tl.(n ))Ognfno, 1<k=<k(n),0<i<L,’ (1-55)

which fixes in a unique way the value of the parameters bl.("’k), A and z. We then define the renormalized
time s associated to A via (1-47). We take b, A and z to be perturbations of b, A and Z for the renormalized
time:
(n,k) N _ j(n,k) "(n,k _ 7 — 3
b7 (s) =b; 7 (s) + b, (s), Als) = Als) + A (s), z(s) = Z(s) + 2/ (). (1-56)

We define four norms for the remainder in (1-53) and (1-54):
&g 1= ||VU€||iz(Rd)’ Exsy 1= /Rd |H el?,  |wexdlgo@ and  [|[Wexl sz @)
where o is a slightly supercritical regularity exponent
O0<o—sc K1 (1-57)

One has that x5, 2 [|V25L¢| 12 from (1-45).

Interpretation: We decompose a solution near the set of localized and concentrated ground states y(Q;,1/1)
according to (1-53). A part, )((Z(n’ k.i)eT bl.(”’k) Tl.(n’k))z’1 /20 is located on the truncated center manifold;
it decays slowly, see (1-52), while interacting with the ground state, see (1-51), and is responsible for the
blow up by concentration, and one has an explicit behavior of the coordinates, (1-51). The other part, w,
is orthogonal to the truncated center manifold (1-55); it is expected to decay faster as H is more coercive,
see (1-45), on this set, and not to perturb the blow-up dynamics. The change of variables (1-47) and

(1-48) transforms the blow-up problem into a long-time asymptotic problem by (1-52).

Bootstrap method in a trapped regime: We study solutions that are close to the approximate blow-up

profile for the renormalized time, i.e., that satisfy

1
2
o +lWextlgo@) S 1. E2sp + Wextllmor @) < 22@sL—sc) gL+(1—80)+v (1-58)
6; ") <7 F L Azl < 1 (1-59)
The size of the excitation is
1

12@sL—sc) gL+(1-80)

SO X(Z(n, k.i)er bl.("’k)Ti(n’k))Z’1 /A and v > 0 in (1-58) quantifies the fact that the remainder w is smaller

than the excitation.
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(v) The bootstrap regime. From (1-1) and (1-50), the evolution of the solution under the decomposition
(1-53) and (1-54) has the form

0 Wext = AWext + Axszw + 2V x3.Vw + (1 — y3)w?, (1-60)
0 Wing = — HZ% 1nt+Xw+NL
( )V(Q+ D A ")))
(n.k,i)eT x
pOv (1.k) o (1,K)
+X(( 12 +T)A(Q+ > opmOr )) 1
(n,k,i)ez Zx
. 0.1) . (k) | 1.(n.k)
2i —ay)b b +b;
+X( 3 (—bi(,’;’k)—( n)by 121 i+1 )Ti(n,k)) ’ (1-61)
(n.k,i)eT z.%

where H; , = —A—pQ 5 I/l 5, and NL stands for the purely nonlinear term.

Modulation: The evolution of the parameters is computed using the orthogonality directions related to
the decomposition, i.e., by taking the scalar product between (1-61) and (Tl.(n’k)) 2,1/ for 0 < n < ny,
1 <k <k(n)and 0 <i < L,, yielding in renormalized time an estimate of the form>

+b(1 )' Z }b(n k)+(2l Oln)b(n k)b(o 1)+bl(1{‘)|~ /52sL+S_L_3' (1-62)
(n,k,i)eT

As 0.0,
by
A+

)\

These estimates hold because the error produced by the approximate dynamics is very small (s~£~3) on
compact sets, and on the other hand the remainder ¢ is also very small on compact sets and located far
away from the origin by (1-58) and the coercivity (1-45).

Lyapunov monotonicity for the remainder: From the evolution equations (1-60) and (1-61), in the boot-

strap regime (1-58) one performs energy estimates of the form

d 1 1 1

E(m&r + ||wext||HG(Sz)) < 251K + 1050 VEIIVeY L2, (1-63)
d 1 - 1 1 st
dt ngSL Fllwexll g2se @) | = 22@2sL—sc)+2gL+2—80+v+k + A2s.—sc V E25. z,%w”Lz’

(1-64)

where k > 0 represents a gain. The key properties yielding these estimates are the following. The control
of a slightly supercritical norm (1-57) and another high regularity norm allows us to control precisely
the energy transfer between low and high frequencies and to control the nonlinear term. The dissipation
in (1-60) and (1-61) (for the second equation it is a consequence of the coercivity (1-45)) erases the
border terms and smaller-order local interactions. Finally, the approximate blow-up profile is in fact a
refinement of (1-49), where the error in the approximate dynamics is well localized in the self-similar

3With the convention bg’ Ij_)l =0.
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zone |x —z| ~ ~/T —t, by the addition of suitable corrections via inverting elliptic equations and by
precise cuts.

(vi) Existence via a topological argument. In the bootstrap regime close to the approximate blow-up
profile described by (1-58) and (1-59), one has precise bounds for the error term . Reintegrating the
energy estimates (1-63) and (1-64) then leads to the bounds

1
A2Q@sL—sc) gL+(1—=80)+v’

Eo + ”wext“%-la(g) L1, &gyt [Wextllmse o K

which are an improvement of (1-58). Therefore, a solution ceases to be in the bootstrap regime if
and only if the bound (1-59) describing the proximity of the parameters with respect to the special
blow-up parameters (b, A, %) is violated. From (iv), the parameters admit (A,Z,b)asa hyperbolic orbit
with m directions of instability and #Z — m of instability. From the modulation equations (1-62), the
remainder w perturbs these dynamics only at lower order. Therefore, an application of the Brouwer fixed
point theorem yields the persistence of an orbit similar to (A, Z, b) for the full nonlinear equation, i.e.,
with a perturbation along the parameters that stays small for all time. This gives the existence of a true
solution of (1-1) that stays close to the approximate blow-up profile for all renormalized times, implying
blow up by concentration of Q with a precise asymptotic.

The paper is organized as follows. In Section 2 we recall the known properties of the ground state
in Lemma 2.1 and describe the kernel of the linearized operator H in Lemma 2.3. This provides a
formula to invert elliptic equations of the form Hu = f, stated in Definition 2.6, and allows us to
describe the generalized kernel of H in Lemma 2.10. The blow-up profile is built on functions depending
polynomially on some parameters and with explicit asymptotic at infinity, and we introduce the concept
of homogeneous functions in Definition 2.14 and Lemma 2.15 to track this information easily. With these
tools, in Section 3 we construct a first approximate blow-up profile for which the error is localized at
infinity in Proposition 3.1 and we cut it in the self-similar zone in Proposition 3.3. The evolution of
the parameters describing the approximate blow-up profile is an explicit dynamical system with special
solutions given in Lemma 3.4 for which the linear stability is investigated in Lemma 3.5. In Section 4
we define a bootstrap regime for solutions of the full equation close to the approximate blow-up profile.
We give a suitable decomposition for such solutions, using orthogonality conditions that are provided
by Definition 4.1 and Lemma 4.2, in Lemma 4.3. They must satisfy in addition some size assumption,
and all the conditions describing the bootstrap regime are given in Definition 4.4. The main result of
the paper is Proposition 4.6, stating the existence of a solution staying for all times in the bootstrap
regime, whose proof is relegated to the next section. With this result we end the proof of Theorem 1.1 in
Section 4B. To do this, the modulation equations are computed in Lemma 4.7, yielding that solutions
staying in the bootstrap regime must concentrate in Lemma 4.8 with an explicit asymptotic for Sobolev
norm in Lemma 4.9. In Section 5 we prove the main proposition, Proposition 4.6. For solutions in the
bootstrap regime, an improved modulation equation is established in Lemma 5.1, and Lyapunov-type
monotonicity formulas are established in Propositions 5.3 and 5.5 for the low regularity Sobolev norms
of the remainder, and in Propositions 5.6 and 5.8 for the high regularity norms. With this analysis one
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can characterize the conditions under which a solution leaves the bootstrap regime in Lemma 5.9, and
with a topological argument provided in Lemma 5.10, one ends the proof of Proposition 4.6.

The appendix is organized as follows. In Appendix A we give the proof of Lemma 2.3, describing the
kernel of H. In Appendix B we recall some Hardy and Rellich-type estimates, among which the most
useful is given in Lemma B.3. In Appendix C we investigate the coercivity of H in Lemmas C.2 and C.3.
In Appendix D we prove some bounds for solutions in the bootstrap regime. In Appendix E we give the
proof of the decomposition Lemma 4.3.

2. Preliminaries on Q and H

We first summarize the content and ideas of this section. The instabilities near Q) underlying the blow up
that we study result from the excitement of modes in the generalized kernel of H. We first describe this
set. Since H is radial, we use a decomposition into spherical harmonics, restricted to spherical harmonics
of degree n, see (1-37), it becomes the operator H™ on radial functions defined by (1-36). Using ODE
techniques, the kernel is described in Lemma 2.3 and the inversion of H @) js given by Definition 2.6 and
Lemma 2.13. By inverting successively the elements in the kernel of H ™), one obtains the generators of
the generalized kernel | J ; Ker((H (n))7) of this operator in Lemma 2.10.

To track the asymptotic behavior and the dependence in some parameters of various profiles during
the construction of the approximate blow-up profile in the next section, we introduce the framework of
“homogeneous” functions in Definition 2.14 and Lemma 2.15.

2A. Properties of the ground state and the potential. Any positive smooth radially symmetric solution to
—Ap—¢? =0
is a dilate of a given normalized ground state profile Q:

~AQ- 07 =0,
0(0) = 1.

See [Li 1992] and references therein. The following lemma describes the asymptotic behavior of Q. We

¢=0x A>0,

refer to [Ding and Ni 1985] for earlier work.

Lemma 2.1 (asymptotics of the ground state [Li 1992, Lemma 4.3; Karageorgis and Strauss 2007,
Lemma 5.4]). Let p > py1 (defined in (1-6)). We recall that g > 0, coo and y are defined in (1-9) and
(1-21). One has the asymptotics

c a 1
:;'2"+r_)1/+0(ry—+g) as r — 400, a; # 0, (2-1)
rp-l
p—1
1
V:-pC:; +O(r2+°‘) as r — +oo, (2-2)
d—x[(QA) lp=1= Sra) @ Foo, (2-3)
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and these identities propagate to the derivatives. There exists §(p) > 0 such that the following pointwise
bounds hold for all y € Re:

0<Q(y) < —=2 (2-4)
|y|7=T
d—22  8(p)
— + V 0. 2-5
PIE: |y|2§ (y) < (2-5)

Remark 2.2. The standard Hardy inequality

d_22 2
[y
Rd 4 rd ||

and (2-4) then imply the positivity of H on H(R%):

2
/ uHudyz/ S 4 (2-6)
Rd rd |y]?

It is worth mentioning that the aforementioned expansion (2-1) is false for p < py;.. This asymptotic

at infinity of Q is decisive for type II blow up via perturbation of it, as from [Matano and Merle 2004;

Mizoguchi 2011b] it cannot occur for % <p<pJL-

2B. Kernel of H.

Lemma 2.3 (kernel of H (”)). We recall that the numbers (yn)nen and g are defined in (1-18). Let n € N.

There exist TO("), '™ : (0, +00) — R two smooth functions such that if f : (0, +00) — R is smooth and

satisfies H® f=0,then f € Span(TO(n), ™). They enjoy the asymptotics

l
(n) _ (n) n+2j n+2+21 (n)
Ty (r) rZOZCj r 4+ O(r ) VIeN, ¢, #0,
Jj=0
T()(n) ~ Cpr V4 O(r_y"_g), Cn #0, (2-7)
r——+o00
/
n n n) .z —n roa
r o rd—2n and T i Gl iy #0.

Moreover, TO(”) is strictly positive, and for 1 < k < k(n) the functions y — To(n)(|y|)Yn,k(|y|/y) are
smooth on R4, The first two regular and strictly positive zeros are explicit:

1 1
TO(O) = C_OAQ and TO(I) = —C—layQ, (2-8)

where Cy and Cy are the renormalized constants defined by (1-35).
Proof. The proof of this lemma is done in Appendix A. O

Remark 2.4. The renormalized constants in (2-8) are here to produce the identities TO(O) Y©0 = AQ
and T()(I)Y(l’k) = 0x, O by (1-35). For each n € N, only one zero, T("), is regular at the origin. We
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insist on the fact that —y, > 0 is a positive number? for n large by (1-20), making these profiles grow as
r — +o00.

2C. Inversion of H™. We start by a useful factorization formula for H ™. Let n € N and W ® denote
the potential
W™ = 9, (log(Ty")). (2-9)

where To(n) is defined in (2-7) and define the first-order operators on radial functions
1
A s g+ W™y AWy ﬁar(rd_lu) W™y, (2-10)
-
Lemma 2.5 (factorization of H ™). The factorization
H® — gm)* 4() (2-11)

holds. Moreover one has the adjunction formula for smooth functions with enough decay
400 +o00
/ (AMuyvrd='dr =/ u(A™*p)rd=1 gy,
0 0

Proof. As TO(") >0 by (2-7), W @) is well defined. This factorization is a standard property of Schrodinger
operators with a nonvanishing zero. We start by computing

d—1 d—1
AW* 40y — 5, — —dru + (—r w15, w™ 4 (W("))z)u.

As W = a,To(”) / T("), the potential that appears is nothing but

(n)  d=17@®) () (@) n(d+n—2) )
=Ly g wm p qpoyz 0l T HWTYW + (B2 4+ V)T,
r r T(n) T(n)
0 0
d+n-2
;

as H (")TO(") = 0, which proves the factorization formula (2-11). The adjunction formula comes from a
direct computation using integration by parts. O

From the asymptotic behavior (2-7) of To(n) at the origin and at infinity, we deduce the asymptotic
behavior of W ™):
T+0(0) as r — 0,

wm — .
T+ 0(srrery) asr— +oo,

(2-12)

which propagates to the derivatives. Using the factorization (2-11), to define the inverse of H ™ we
proceed in two steps: first we invert A™*, then A,

4This notation seems unnatural but matches the standard notation in the literature.
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Definition 2.6 (inverse of H ™). Let f : (0, +00) — R be smooth with f(r) = O(r") as r — 0. We
define® the inverses (A™*)~1 f and (H™)~1 f by

— 1 " _
(A0 = fo STPs Vs, (2-13)
0

To(n) fr+oo(A(")*)_1f/To(n) ds if (A(”)*)_lf/TO(”) is integrable on (0, +00),
—To(n)for (A(n)*)_lf/To(n) ds if (A(”)*)_lf/TO(") is not integrable on (0, +00).
(2-14)

(H) /() =

Direct computations give indeed H™ o (H™)~1 = 4®* o5 (4*)=1 =1d, and A o (HM)~! =
(A™*)=1 As we do not have uniqueness for the equation Hu = f, one may wonder if this definition is the
“right” one. The answer is yes because this inverse has the good asymptotic behavior; namely, if f &~ r? as
r — 400, one would expect u ~ r?%2 as r — 400, which will be proven in Lemma 2.9. To keep track of
the asymptotic behaviors at the origin and at infinity, we now introduce the notion of admissible functions.

Definition 2.7 (simple admissible functions). Let n be an integer, ¢ be a real number and f : (0, +00) —> R
be smooth. We say that f is a simple admissible function of degree (1, g) if it enjoys the asymptotic

behaviors ;

f=Y "t 4o t2) vieN (2-15)
j=0

at the origin for a sequence of numbers (c;);eny € RY, and at infinity
f=0@% asr— +oo, (2-16)

and if the two asymptotics propagate to the derivatives of f.

Remark 2.8. Let f : (0, +00) be smooth. We define the sequence of n-adapted derivatives of f by
induction:

A(")f[n,j] for j even,
A(")*f[n’j] for j odd.

From the definition (2-10) of A® and A™* and the asymptotic behavior (2-12) of the potential w @,
one notices that the condition (2-16) on the asymptotic at infinity for a simple admissible function of

Sy =f and for jeN,  fln,j+11:= (2-17)

degree (1, ¢q) and its derivatives is equivalent to the following condition for all j € N:

fin,1=0@977) asr— +oo, (2-18)
where the adapted derivatives ( f[,, ;])jen are defined by (2-17). We will use this fact many times in the
rest of this subsection, as it is more adapted to our problem.

The operators H ) and (H™)~! leave this class of functions invariant, and the asymptotic at infinity
is increased by —2 and 2 under some conditions (that will always hold in the sequel) on the coefficient ¢
to avoid logarithmic corrections.

SWe know u is well defined because from the decay of f at the origin one deduces (A(")*)_1 f=0@G"tasy - 0and
sou’/ T is integrable at the origin from the asymptotic behavior (2-7).
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Lemma 2.9 (actions of H™ and (H™)~! on simple admissible functions). Letn € N and f be a simple
admissible function of degree (n, q) in the sense of Definition 2.7, with q > yp, —d and —y, —2 —q & 2N.
Then for all integer i € N:

(i) (H®)! f is simple admissible of degree (n,q — 2i).

(i) (H™)~ f is simple admissible of degree (n,q + 2i).
Proof. Step 1: action of H™. For all integers i and j one has ((H("))if)[n,j] = fln,j+2i] by 2-17)
and (2-11). Using the equivalent formulation (2-18), the asymptotic at infinity (2-16) for H' f is then a
straightforward consequence of the asymptotic at infinity (2-16) for f. Close to the origin, one notices
that H® = 419, —n(d +n—2). If f satisfies (2-15) at the origin,
then so does (A™)i f by a direction computation. As V' is smooth at the origin, (H ™)’ f also satisfies

(2-15). Hence (H ™) f is a simple admissible function of degree ¢ — 2i.

Step 2: action of (H ™)~1. We will prove the property for (H )~ £, and the general result will follow
by induction on i. Let u denote the inverse by H™, that is, u = (H ™)~ f.

Asymptotic at infinity. We will prove the equivalent formulation (2-18) of the asymptotic at infinity (2-16).
From (2-17), (2-13), (2-14) and (2-11), u[,, ;] = fin,j—2] for j > 2 so the asymptotic behavior (2-18) at
infinity for the n-adapted derivatives of u are true for j > 2. Therefore it remains to prove them for j =0, 1.

Case j = 1. From the definition of the inverse (2—14) and of the adapted derivatives (2-17), one has
/ f To(n)sd Lds.

u[n,l] d IT(n)

From the asymptotic behaviors (2-16) and (2-7) for f and To(n) at infinity and the condition ¢ > y, —d,
the integral diverges and we get

U, 1(r) = o9ty as r — +oo, (2-19)
which is the desired asymptotic (2-18) for u[, 13-

Case j = 0. Suppose (A(”)*)_lf/TO(") = u[njl]/T(") is integrable on (0, +-00). In that case

_ 7 Uln,1]
=7 / i s

If ¢ > —y, —2, then by the integrability of the integrand and (2-7), we get the desured asymptotic u[, o] =
u=0(@r"")=0(r9"?). If g < —y, —2 then from (2-19) we have Uy, 1]/T n) = O(r4t1%¥n) and then
fr+ Uy, 1]/T( ) ds = O(rd+2+v), from which we get the desired asymptotic u = O(r9+2). Now
suppose u[y,1]/ T ™) is not integrable. Then we must have ¢ > —y,, + 2 by (2-19), and u is given by

_ Uln,1]
u=-T, /0 T(")d

and the integral has asymptotic O(r912%77). We hence get u = O(r97?) at infinity using (2-7).

Conclusion. In both cases, we have proven that the asymptotic at infinity (2-18) holds for u.
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Asymptotic at the origin. We have

o [ U] ()
u=-T, / (’ ds + aTy™,
0 TO")

where a = 0 if u[n,l]/TO(n) is not integrable, and a = f0+°° u[njl]/TO(”) ds if it is. By (2-7), TO(") satisfies
(2-15). Thus it remains to prove (2-15) for —TO(") for U1/ To(n) ds. We proceed in two steps. First,
from (2-15) for f we obtain that for all integers j, p,

!
.
/ fTO(n)sd—l ds — Zgjrn+1+2j + R,
0 ,

Jj=0

1
0
where 3’,‘ ﬁl = O(rmax(n+21+3-k.0)) 55 1 5 ( for some coefficients & 7 depending on the ¢; and the
asymptotic at the origin of 7;j'. It then follows that

r !
U S ~
_To(n) [n,1] ds = § :éjrn+2+21 + Rl» where 8le — O(I,max(n+21+4—k,0))’
() . r r—0
o T, =0
for some coefficients ¢;. This implies that u satisfies (2-15) at the origin. O

We can now invert the elements in the kernel of H and construct the generalized kernel of this
operator.

Lemma 2.10 (generators of the generalized kernel of H™). Letn € N, y,, g’, (H™)™ and TO(") be
defined by (1-18), (1-21), Definition 2.6 and Lemma 2.3. We denote by (Tl.(n))ieN the sequence of profiles
given by

T = —HM)IT™, ieN. (2-20)

Let (@l(n))ieN be the associated sequence of profiles defined by

2
O = AT (” oo Vn)Ti(”), i N, @21)
p [e—
Then for each i € N,
Tl.(n) is simple admissible of degree (n, —yn + 2i), (2-22)
@l(n) is simple admissible of degree (n, —yn +2i — g'), (2-23)

where simple admissibility is defined in Definition 2.7.

Proof. Step 1: admissibility of Tl.(n). From the asymptotic behaviors (2-7) at infinity and at the origin,
TO(") is simple admissible of degree (1, —y5) in the sense of Definition 2.7. Additionally, —y, > y, — d
since =2y, +d > =2y +d =2+ /A > 0 by (1-9) and since (y,)nen is decreasing by (1-18). One
has also —y, —2 — (—yn) = —2 ¢ 2N. Therefore one can apply Lemma 2.9: for alli € N, Tl.(") given by
(2-20) is an admissible profile of degree (n, —y, + 2i).
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Step 2: admissibility of @l("). We start by computing the following commutator relations using (1-36),
(2-9) and (2-10):

AMA = A4 L 40 _ (W(n) + yayW(n))’

HMWA=AH™ 4 2H® — 2V 4 y.VV).
We now proceed by induction. From the previous equation, and the asymptotic behaviors (2-7), (2-2) and
(2-12) of the functions To(n), V and W™, we get that @(()”) is simple admissible of degree (n, —y, — g’).
Now let i > 1 and suppose that the property in (2-23) is true for i — 1. Using the previous formula and
(2-21) we obtain

(2-24)

H®e! = —0™ -V +y.v)T™.

The asymptotic at infinity (2-2) of V yields the decay 2V + y.VV = (y727%). As Tl.(n) is simple
admissible of degree (n,2i — y,) and from the induction hypothesis, we have that H (”)®§") is simple
admissible of degree (n,2i —2 —y, —g’) because g’ < a by (1-21). One has 2i —2—y, — g’ > yn —d
because

2 =22y, —g'+d>2y—g' +d=2+VA—-g' >0

as 0<g’<1, i>1, and (¥n)nen is decreasing by (1-18) and (1-9). Similarly
Yn—2—Qi—2—y,—g)=-2i+g ¢2N.

Therefore we can apply Lemma 2.9 and obtain that (H®)~1H (”)(9(") is of degree (n,2i —y, —g’).
From Lemma 2.3 one has (H™)~1H (”)6(”) G)(n) + aT(n) + bF(”) for two integration constants
a,b € R. At the origin '™ is singular by (2-7); hence b = 0. As T(n) is of degree (n,—y,) with
—Yn +2i — g > —y, (because i > 1), we get that ®( ") is of degree (n,2i —y, — g’). O

2D. Inversion of H on nonradial functions. The definition of the inverse of H ), Definition 2.6,
naturally extends to give an inverse of H by separately inverting the components onto each spherical
harmonic. There will be no problem when summing, as for the purpose of the present paper one can
restrict to the following class of functions that are located on a finite number of spherical harmonics.

Definition 2.11 (admissible functions). Let f : R? — R be a smooth function, with decomposition
fO) =2 nk F@B(y)Y @K (y/|y]), and g be a real number. We say that f is admissible of degree ¢
if there is only a finite number of couples (1, k) such that f-%) =£ 0, and that for every such couple,
f n.5) is a simple admissible function of degree (7, ¢) in the sense of Definition 2.7.

For f = Zn,k 7@ (1y)Y @K (y/|y]) an admissible function, we define its inverse by H by
(=D )= TUE Rl o(2) (2:25)

(the sum being finite), where (H ™)~ is defined by Definition 2.6. For n, k and i three integers with
1 <k < k(n), we define the profile Tl-("’k) ‘R? > Ras

T (yy = 70|y - k)(|y|) (2-26)
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where the radial function Tl.(") is defined by (2-20). From Lemma 2.10, Tl.("’k) is an admissible function
of degree (—yp, +2i) in the sense of Definition 2.11. The class of admissible functions has some structural
properties: it is stable under summation, multiplication and differentiation, and its elements are smooth
with an explicit decay at infinity. This is the subject of the next lemma.

Lemma 2.12 (properties of admissible functions). Let f and g be two admissible functions of degrees q
and q' in the sense of Definition 2.11, and . € N<. Then:

(1) f is smooth.
(ii) fg is admissible of degree q + q'.
(iii) oM f is admissible of degree q — | .

(iv) There exists a constant C(f, u) such that for all y with |y| > 1,

04 £ ()] < C(f, )|y |71,

Proof. From Definition 2.1, / =3,  f O (IyDY ®O (y/y]) and g =37, x g™ O (lyDY * O (y/1y))
and both sums involve finitely many nonzero terms. Therefore, without loss of generality, we will assume
that f and g are each located on only one spherical harmonic: f = f %y (0k) and g = g Ky (".K)
for f (k) and g k) simple admissible of degrees (n, ¢) and (n’, ¢’) in the sense of Definition 2.7. The

general result will follow by a finite summation.

(i) Now y > £k (|y|) is smooth outside the origin since f is smooth, and y > ¥ k) (3 /|y|) is also
smooth outside the origin; hence f is smooth outside the origin. The Laplacian on spherical harmonics is

(81 £ = 87 (£OR (o (1)) = (a®y F 0y .

where —A™ = —§,, — @Br +n(d +n—2). From the expansion of f k) in (2-15), (~AM)i £ (k)
is bounded at the origin for each i € N. Therefore (—A)’ f is bounded at the origin for each i and f is
smooth at the origin by elliptic regularity.

(ii) We treat the case where n + n’ is even, and the case n + n’ odd can be treated with exactly the same
arguments. As the product of the two spherical harmonics y (k) y (k") decomposes onto spherical
harmonics of degree less than n + n’ with the same parity as n + n’, the product fg can be written as

fg= Z o kf(nk) n’ k’)Y(nk)
n n,k’,n

0<n §n~+n’
7 even, 1<k<k(n)
with Ay jent ki e SOME fixed coefficients. Now fix 7i and k in the sum; one has n +n’ =1 + 2i for some
i € N. Using the Leibniz rule, as Bj 7@k = 0@r977) and 8Jg(” *) = 07y at infinity, we get that
8{ (f k) g K)y — O(r4+4' =7 as y — +o0, which proves that f k) g("" k") satisfies the asymptotic
at infinity (2-16) of a simple admissible function of degree (71,q + ¢’). Close to the origin, the two
expansions (2-15) for f k) and g% starting at r" and 7’ respectively, imply the same expansion
(2-15) starting at y" "’ for the product f K g k) A4+ n’ =71 +2i, we know f#:K) gk satisfies
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the expansion at the origin (2-15) of a simple admissible function of degree (7,q + ¢’). Therefore
(k) o (k) i simple admissible of degree (71, ¢ +¢’) and thus fg is simple admissible of degree g + ¢’

(i) We treat the case where n is even, and the case n odd can be treated with exactly the same reasoning.
Let 1 <i <d; we just have to prove that dy, f is admissible of degree g — 1 and the result for higher-order
derivatives will follow by induction. We recall that Y %) s the restriction of a homogeneous harmonic
polynomial of degree n to the sphere. We will still denote by y () (y) this polynomial extended to
the whole space R? and they are related by ¥ %) (y) = |y|?Y %) (y/|y|). This homogeneity implies
y. V(Y k) (y) = ny k) (y) and leads to the identity

o | PR (2]
[yl

= (8rf(”’k)(|y|)—HM)ﬁY(””‘)(l) + f(|y|)ain(”’k)(l). 2-27)
Iyl /Iyl |yl |y |y

One has now to prove that the two terms on the right-hand side are admissible of degree ¢ — 1. We only

show it for the last term, the proof being the same for the first one. As 9y, Y (k) (y /1y]) is a homogeneous
polynomial of degree n — 1 restricted to the sphere, it can be written as a finite sum of spherical harmonics
of odd degrees (because n is even) less than n — 1 and this gives

S y S (Y
mayiy(”’k) e Z ai,n,k,n/,k/_Y(n K=

] t<n/mnt ¥l [yl
n’ odd, 1<k<k(n’)
for some coefficients a; ,, x n/k’- Now fix n’, k" in the sum. At infinity a; ,, k' %’ f(1¥])/|y]| satisfies the
asymptotic behavior (2-16) of a simple admissible function of degree (n’, g — 1). Close to the origin, one
has from (2-15), the fact that n’ +2j = n — 1 for some j € N, that for any i € N,
f0) 5 - i - 42
ai,n,k,n’,k’ — Z Elrn—l-i-Zl + O(rn—1+21+2) — Z élrn +2j+421 + O(rl’l +2]+21+2)’
’ 1=0 1=0

which is the asymptotic behavior (2-15) of a simple admissible function of degree (n’, g — 1) close to
the origin. Therefore, a; , x.n.k f(r)/r is a simple admissible function of degree (n’,q — 1). Thus
(f/1y])0y, Y @K (3 /|y]) is an admissible function of degree (¢ — 1). The same reasoning works for the
first term on the right-hand side of (2-27), and therefore dy, [ f @B |y Y @K (3 /1y])] is admissible of
degree g — 1.

(iv) We just showed in the last step that 3" f is admissible of degree g — || for all ;1 € N¢; we then only

have to prove (iv) for the case i = (0, ...,0). This can be showed via the brute force bound for |y| > 1
Y
= | @O ypy @ (m) < [Y @O oo fPO Iy D] < €Lyl
by (2-16) since f is a simple admissible function of degree (n, q). O

The next lemma extends Lemma 2.9 to admissible functions. We do not give a proof, as it is a direct
consequence of the latter.
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Lemma 2.13 (action of H on admissible functions). Let f be an admissible function in the sense of
Definition 2.11 written as f(y) = Zn,k F@R(y)Y @R (y /| y)), of degree q, with g > yp — d. Assume
that for all n € N such that there exists k, 1 <k <k(n) with f @) 0, we have q satisfies —q—yn—2 &2N.
Then for all integers i € N, recalling that H™! f is defined by (2-25):

() H' f is admissible of degree q —2i.
(i) H7 f is admissible of degree q + 2i.

2E. Homogeneous functions. The approximate blow-up profile we will build in the following subsection
will look like O + b 7% for some coefficients 5% (T**) being defined in (2-26)). The
nonlinearity in the semilinear heat equation (1-1) will then produce terms that will be products of the
profiles Tl( %) and coefficients b( %) Such nonlinear terms are admissible functions multiplied by
monomials of the coefficients b(" k) The set of triples (n, k, i) for which we will make a perturbation

along T(n k) is Z, defined in (1-39). Hence the vector b representing the perturbation will be

b= " N piyer = G1"0bfDb{D LD ek ek ol 2.28)

We will then represent a monomial in the coefficients bl.(n’k) by a tuple of #7 integers
K 0,1 0,1 1,1 1,1 K K
J =N aseiyer = 00 gD gD gD ggrekeed JL(’;?) (0))y

through the formula
_](0 ) (n() k(ng))

(b(o 1)) (b(no k(no))) Lng ] (2-29)

We associate three different lengths to J for the analysis. The first one, |J|:=}_ J; (k)
number of parameters b(n k) that are multiplied in the above formula, counted with multiplicity, i.e., the

standard degree of 5”. In the analysis, the coefficients b( will have the size |b(" k)l < |b(0 1) | 3 y,, +,

The second length,
[Tl2:=>" (% + i)Jl.("’k),

n,k,i

, represents the

is tailor-made to produce the following identity if these latter bounds hold:

7] 5 By,

i.e., |J |2 encodes the “size” of the real number b”. For the construction of the approximate blow-up
profile, we will invert several times some elliptic equations, and the i -th inversion will be related to the
third length

L
PR S A R S ¥ A A S R WA
i=1 1<i<L; (n.k,i)eT
1<k=d 2<n

To track information about the nonlinear terms generated by the semilinear heat equation (1-1) we
eventually introduce the class of homogeneous functions.
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Definition 2.14 (homogeneous functions). Let b denote a #Z-tuple under the form (2-28), m € N and
g € R. We recall that | J |, and |J |3 are defined by (1-41) (1-42) and b7 is given by (2-29). We say that a
function S : RT x R — R is homogeneous of degree (m, ¢) if it can be written as a finite sum

Sb.y)=Y_b'S;(y).

Jeg

#J < +o00, where for each tuple J € 7, one has that |/ |3 = m and that the function Sy is admissible of
degree 2|J |2 + ¢ in the sense of Definition 2.11.

As a direct consequence of Lemma 2.12, and so we do not write here the proof, we obtain the following
properties for homogeneous functions.

Lemma 2.15 (calculus on homogeneous functions). Let S and S’ be two homogeneous functions of
degrees (m,q) and (m',q’) in the sense of Definition 2.14, and . € N?. Then:

(1) o*S is homogeneous of degree (m,q — |iu|).
(ii) S8’ is homogeneous of degree (m +m’,q + q’).

(iii) If, writing S = Zjejb donk S(n By @0 one has 2|J|2+q >yYn—d and =2|J |2—q—yn—2&2N
forall n, J such that there exists k 1 <k <k(n) with S 75 0, then foralli e N, H™'(S) (given
by (2-25)) is homogeneous of degree (m, q + 2i).

3. The approximate blow-up profile

3A. Construction. We first summarize the content and ideas of this section. We construct an approximate
blow-up profile relying on a finite number of parameters close to the set of functions (zz(Q2)) 10, zerd -
It is built on the generalized kernel of H, Span((T(” )),, ieN, 1<k<k(n)) defined by (2-26), and can
therefore be seen as a part of a center manifold. The profile is built on the whole space R? for the moment
and will be localized later.

In Proposition 3.1 we construct a first approximate blow-up profile. The procedure generates an error
term v, and by inverting elliptic equations, i.e., adding the term H ~1 to our approximate blow-up
profile, one can always convert this error term into a new error term that is localized far away from the
origin. We apply this procedure several times to produce an error term that is very small close to the
origin. Then, in Proposition 3.3 we localize the approximate blow-up profile to eliminate the error terms
that are far away from the origin. We will cut in the zone |y| ~ By = BSJ”’, where n < 1 is a very small
parameter. In this zone, the perturbation in the approximate blow-up profile has the same size as AQ,
being the reference function for scale change. It will correspond to the self-similar zone |x| ~ ~/T —t
for the true blow-up function, where T will be the blow-up time.

The blow-up profile is described by a finite number of parameters whose evolution is given by the
explicit dynamical system (3-58). In Lemma 3.4 we show the existence of special solutions describing
a type II blow up with explicit blow-up speed. The linear stability of these solutions is investigated in
Lemma 3.5.
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There is a natural renormalized flow linked to the invariances of the semilinear heat equations (1-1).
For u a solution of (1-1), A : [0, T'(ug)) — R and z : [0, T'(uo)) — R4 two C! functions, if one defines
for 59 € R the renormalized time

t 1 ,
S(Z) I:S0+/() Wdt (3-1)

and the renormalized function
(s, -) = (T—zu(t. ),
then from a direct computation, v is a solution of the renormalized equation

A z
asv—TsAv—Ts.Vv—F(v) =0. (3-2)

Our first approximate blow-up profile is adapted to this new flow and is a special perturbation of Q.
Proposition 3.1 (first approximate blow-up profile). Let L € N, L > 1, and let b = (b( )(n k,i)eT

denote a #I-tuple of real numbers with b(O D'~ 0. There exists a #I-dimensional manifold of C*°
Sfunctions (Qb)beRiXR#I—l such that

. n. i)y 0
F(Qp) = bV A0y +5{0.V0s + Y (=i —an)b*Vb" M + b k))a 9 __y, (33

i+1 b(n’k)
(n,k,i)eT i
where b( ") denotes the d- tuple of real numbers (b(1 1) .,bgl’d)), where we used the convention

bg’ f_)l = 0, and where Vrp, is an error term. Let By be deﬁned by (1-38). If the parameters satisfy the size

conahtlons6 b(O D« 1and |b(n k)| < |b(0 1)| R forall (n,k,i) € I, then Y, enjoys the following
bounds:

(i) Global” bounds. For 0 < j <sj.,

|H wbl|L2(|y|<2B ) < C(L)(b(o 1))2(J —mo)+2(1—80)+g’ C(L)ﬂ (3-4)

v/ wbl|L2(|y|<2B = C(L)(b(o 1))2(L—m0)+2(1 So)+g’ C(L)ﬂ (3-5)

where C(L) is a constant depending on L only.
(i1) Local bounds.

Vj=0,VB > 1, / Vi g2 dy < C(j. L)BCUD (p@D)2L+6, (3-6)
|ly|<B

where C(L, j) is a constant depending on L and j only.

®This means that under the bounds |b(" k)| <K |b(0 1)| 2"+ for some K > 0, there exists b*(K) such that the estimates
that follow hold if b(0 D < b*(K) with constants depending on K. In what follows, K will be fixed independently of the other
important constants.

7The zone y < Bj is called global because in the next proposition we will cut the profile Q p in the zone |y| ~
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The profile Qy is of the form

L+2
Opi=0+ap. api= > b"OTHO LN, (3-7)
(n,k,i)eT i=2

where Tl.(n’k) is as in (2-26), and the profiles S; are homogeneous functions in the sense of Definition 2.14
with
deg(Si) = (i,—y —¢') (3-8)

and with the property that for all 2 < j < L + 2, we have aSj/abl.("’k) =0ifj <iforn=0,1andif
j<i+1forn=>2.

Remark 3.2. The previous proposition is to be understood in the following way. We have a special
function depending on some parameters b close to Q, that is to say, at scale 1 and with concentration
point 0 for the moment. Equation (3-3) means that the force term (i.e., when applying F') generated by
(NLH) makes it concentrate at speed bgo’l) and translate at speed bil") , while the time evolution of the
parameters is an explicit dynamical system given by the third term. These approximations involve an
error for which we have some explicit bounds (3-4) and (3-6).

The size of this approximate profile is directly related to the size of the perturbation along Tl(o’l), the
first term in the generalized kernel of H responsible for scale variation. Indeed we ask for |bl-("’k)| <
|b§0’1) | = *i, and the size of the error is measured via b%o’l); see (3-4), (3-5) and (3-6). Therefore b§0’1)
will be the universal order of magnitude in our problem.

Because of the shape of this approximate blow-up profile (3-7), when including the time evolution of
the parameters in (3-3) we get

05(Qp) — F(Qp) + 5"V A0, + b .V 0y = Mod(s) + v, (3-9)
where®
(n.,k) 0.1 (k) _ ()| (k) & dS;
s . 0,1 s s s )
Mod(s) = Z [bifv + (2i —ap)by bl-n _biil ]|:Tl” + Z W] (3-10)
(n.k,i)eT j=i+148,=2 99

Forall 2 < j <L +2,as S; is homogeneous of degree (j, —y — g’) in the sense of Definition 2.14 from
(3-8), and from the fact that BSj/Bbl.("’k) =0if j <iforn=0,1andif j <i+ 1 forn > 2, one has
that for all j, n, k, i, we have 8Sj/8bl.(0’1) is either O or is homogeneous of degree (a,b) witha > 1,
meaning that it never contains nontrivial constant functions independent of the parameters ». Hence,
if the bounds ["*)| < [pV|*=

2"+ hold, since |b§0’1)| < 1 and —y, > —y from (1-18), one has in
particular that on compact sets forany 2 < j < L +2 and (n,k,i) € Z,

95; (0.1)
= 0(lby™ ). (3-11)
ap{mH) :

Proof of Proposition 3.1. Step 1: computation of 1. We first find an appropriate reformulation for the
error vy, given by (3-3) when Qp has the form (3-7).

8Here 8n>2 = 1if n > 2, and is zero otherwise.
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Rewriting of F(Qyp) in (3-3). We start by computing

—F(Qp) = H(ap)—(f(Qp)— f(Q)—ap 1(Q))

L+2
k k
= Y b"PHTTOLI HSH—(f(0)—F(Q)—ap f'(0))
(n,k,i)eT i=2
L+2
0,1 1, k k
=-b\*PA0-b{" vo— Y bMPTOLY HSH(£(Q5)-£(Q) e £1(Q)),
(n,k,i)ez i=2
(3-12)
where we used the definition of the profiles Tl.("’k) from (2-26), and the convention bl(j:’i)l = 0. For
i =2,...,L, weregroup the terms that involve the multiplication of i parameters bj(."’k) in the nonlinear
term —(f(Qp) — f(Q) —ap f/(Q)). Since p is an odd integer,
p
(f(2p)=/(@)=ap f'(Q) = D CL 0P Fay
k=2

[
M~

L+2
_ k (n.k) k (n.k) J;
ctor [ X e I oo ar o st
|J|1=k (n,k,i)ez i=2
(3-13)

where J = (JI(O’I), - Jlfno’k(n())), Ja....,Jp+2) represents a (#Z+ L+ 1)-tuple of integers. Anticipating
no
that the profile S; will be a homogeneous profile of degree (i, y — g’), we define for such tuples J,

k=2

L L+2
=Y+ > e N sy (3-14)

i=1 1<i<Li,1<k<d (n,k,i)eZ,2<n i=2

We reorder the sum in the previous equation, (3-13), partitioning the (#Z + L + 1)-tuples J according
to their length |J |3 instead of their length J;:

L+2

(f(Qp) = (@) —apf'(Q) = D P +R.
j=2
P; captures the terms with polynomials of the parameters bl.(n’k) of length |J|3 = j:

V4 L+2
— (n.k) (n.k) .
Pi=) CkQ” k( oo JT @@ T SiJ’). (3-15)
k=2

J1=k,|J13=j (n,k,i)eT i=2

The remainder contains only terms involving polynomials of the parameters bl.("’k) of length | - |3 greater
than or equal to L + 3:
L+2

R=(f(Q») - f( @)~ f'(Q)— ) Pi. (3-16)

=2
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From (3-12) we end up with the final decomposition

L+2
> ) k k
—F(Qp) =-b"VA0 0" vo - S pnPT )+ZH(SZ)— Z Pi—R.  (3-17)
(n,k,i)eT
Rewriting of the other terms in (3-3). From the form of Oy in (3-7), one has
L+2
bOVAQ, =bOPA0+ S OV IATI 1N p DA, (3-18)
(n,k,i)eT i=2
d ' ‘ r L+42 )
bV, =6 vo+ 3 YT b TR 4 3 b a,, S,-), (3-19)
=1 \n,k,i)eT i=2
0.1, (k) | (k) 90
Z (—@i —am)by 5" + bl )8b("’k)
(n,k,i)eT i
O. k) | @0 (k) =08
= Y (=Qi—anb Vb + b (T, +y (n’k)). (3-20)
(n.ki)eT j=2 0b

Expression of the error term . Using (2-21), we define

k
6795 = 6y 0 (L),

From (3-17)—(3-20), ¥ given by (3-3) is a sum of terms that are polynomials in b, and, denoting a
monomial by b7, we rearrange them according to the value |J |3

L+2
Up =Y [® + H(S)] +b"VASL o+ Zb“ Doy St4a
i=2 j=1

N
+ Y (@i —anb®Vp P L p) D R 321)

(n,k)
(n,k,i)ezT 3b
where the profiles ®; are given by the formulas

d

0,1 0,1 0,1 1,k 1,k

= "V)2eP) + 3 p"Vp{P el
k=1

d d
4 Z(b?,])b%O,l)axj Tl(O,l) n Z b§1’1)b§1’k)8xj T1(1,k))
j=1 k=1

d
Y (bgo,l)b(()n,k)G(()n,k) £y BRI To(n,k)) P (322)
(n,k,0)eZ, n>2 j=1
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and fori =3,...,L+1,

d
. (0,1)4 (0,1) ~,(0,1) (0,1) ;. (1,k) o (1,k)
i i=by b2 0,2 + Z by b2 0,

k=1,(1,k,i—1)ez
d

d
' ), (1k k
+ Z (b?’j)bi(g,ll)axj Tl(i)’ll) + Z bgl’j)bi(i’l )8xj Tl(l, ))
j=1 k=1,(1,k,i—1)eT

d
bX (el 4 Y b b, 1)
(n,k,i—2)EL, n>2 j=1

d
+bOVAS L+ Y by, Si

m=1
. k ) 08—
+ Y (-@j—anb PO 4 p D) — = — P, (3-23)
(n.k,j)eT db;

d
Opioi=bVAS 1+ Y b, S

0SL+1

m=1

. 0,1 k k
+ Y (~@j —anb®Vb" >+b;11>)ab(n’k)
J

(n.k,j)eL

—Prya. (324

Step 2: definition of the profiles (S;)2<;<r.+2 and simplification of ;. We define by induction a
sequence of couples of profiles (S;)2<;<r+2 by
{ Sy :=—H"!(®2)

3-25
Si:=—H"Y(d;) for3<i<L+2, with® defined by (3-22), (3-23), (3-24), (3-25)

where H ! is defined by (2-25). In the next step we prove that there is no problem in this construction.
Since the S; are defined in this way, by (3-21) we get the final expression for the error

) 8SL-|-2

d
_1(0,1) 1./) : 0,1) (n,k) | 4 (n,k)
Yp=by ASL+2+E b; J aijL+2—|- E (—(21—an)b1 bin +bi11 ab,(”’k)
i

Jj=1 (n.k,i)ez

—R. (3-26)

Step 3: properties of the profiles S;. We prove by inductiononi =2, ..., L+2 that S; is homogeneous of
degree (i, —y —g’) in the sense of Definition 2.14, and that for all 2 < j < L +2, we have as,-/ab}””‘) =0
if j <iforn=0,1landif j <i+1forn>2.

Initialization. We now prove that S, is homogeneous of degree (2, —y — g’), and that 955/ Bbl.("’k) =0
if2<iforn=0,1andif 1 <i for n > 2. We claim that ®, is homogeneous of degree (2, —y — g’ —2)
and that 8(1)2/8bl.("’k) =0if2<iforn=0,1andif 1 <i for n > 2. To prove this, we prove that these
two properties are true for every term on the right-hand side of (3-22).

From Lemma 2.10, ®§0,1) is simple admissible of degree (0, —y +2—g’) in the sense of Definition 2.11.
We also know (bgo’l))2 can be written under the form J 1(0’1) =2and Ji(n’k) = 0 otherwise and one has
|J|2 =2and |J |3 = 2. Therefore, (b§°’1))2®§°’1) is homogeneous of degree (|J |3, —y +2—g'—2|J|2) =
(2,—y — g’ —2). The same reasoning applies for bgo’l)bgl’k)(@gl’k) forl <k <d.
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For 1 < j <d, we know T( D is admissible of degree (0, )/ +2) by Lemma 2.12, so 0 T( D i ad-
missible of degree (—y + 1) by Lemma 2.10. We also know b (1.7 b(O D can be written in the form b’ w1th
J(O D= J(l’])—landJ("’ ) = 0 otherwise; therefore|J|3—2and|J|2=1+y L+ 1=2+%1by
(1-18). Thus b(l’J)b(O 1)8 T(0 Dis homogeneous of degree (|J |3, —yl +1=2|J]2) =(2,—y — 2 a).
As g’ <, itis then homogeneous of degree (2, —y — g’ —2). The same reasoning applies for 1 < j, k <d
to the term bil’j)bgl’k)axj Tl(l’k).

We now examine for (n, k, 0) € T the profile

d
POV 4 3 Iy )
j=1

Ok p O )

is simple admissible of degree (1, —y, —g’) by Lemma 2.10, and can be written in the
forme for J(0 D— 1, J(n k) — 1 and J(n K — 0 otherwise. Onethenhas |J|3=2and |J|, =1+15 y”

Therefore, b(o l)b(n k)®(" k) s homogeneous of degree (|J|3,—yn — g —2|J|2) = 2,—y — ¢’ — 2).
Similarly the terms in the sum in the above identity are homogeneous of degree (2,—y — g’ —2).

We now look at the nonlinear term P,. Since, for 2 <i < L + 2, the profile S; involves polynomials
of b in the form b7 with |J |3 = i, from its definition (3-15) P, does not depend on the profiles S; for
2 <i < L + 2 and can be written as

_cor? (bio’l)Tl(o’l) n i PRI T 3 b(()n,k)TO(n’k))z
k=1 (n,k,0)ez

for a constant C. We have to prove that all the mixed terms that are produced by this formula are
homogeneous of degree (2,y — g’ —2). We write it only for one term, and apply the same rea-
soning to the others. For all ((n,k,0), (n’,k’,0)) € 72, by Lemmas 2.10 and 2.15 and (2-1), the
profile b(()”’k)b((,n/’k/) QP2 To("’k)TO("/’k/) is homogeneous of degree (2, —y —2 — &) and then of degree
(2,—y —2—g’). As we said, similar considerations yield that all the other terms are homogeneous of
degree (2, y — g’ —2). This implies that P, is homogeneous of degree (2, —y — g’ —2).

We have examined all terms in (3-22) and consequently proved that ®, is homogeneous of degree
(2,—y —2—¢’). By a direct check of all the terms on the right-hand side of (3-22), with P, given by the
above identity, one has that 8<I>2/8bl.(n’k) =0if2<iforn=0,1andif 1 <i for n > 2. We now check
that we can apply Lemma 2.15(iii) to invert ¥, and to propagate the homogeneity. For all #Z-tuples J
with |J |3 = 2, one has indeed for all integers n that 2|J |, —y, —2—g" > y, —d as the sequence (Yp)nen
is decreasing and d — 2y — 2 > 0. For the second condition required by the lemma, we notice that g’
is not a “fixed” constant in our problem, as its definition (1-21) involves a parameter . The purpose of
the parameter ¢ is the following: by choosing it appropriately, we can suppose that for every 0 <n <ng

and #Z-tuple J with |J |3 = 2 we have
=2|J2+y+g —yn 2N

This allows us to apply Lemma 2.15(iii): S, is homogeneous of degree (2, —y — g’). We also get that
BSz/Bbl-("’k) =0if2 <iforn=0,1andif | <i for n > 2 as this is true for ®,. This proves the
initialization of our induction.
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Heredity. Suppose 3 <i < L + 1, and that S,/ is homogeneous of degree (i’, —y — g’) for 2 <i’ <i, and
that 8Sl.//8bj(-n’k) =0ifi’ < jforn=0,1andifi’"—1 < j for n > 2. We claim that ®; is homogeneous
of degree (i, —y — g’ —2) and that 8d>i/8bj(.n’k) =0ifi <jforn=0,1andifi —1<j forn >2. We
prove it by looking at all the terms on the right-hand side of (3-23). With the same reasoning we used
for the initialization, we prove that
d
FOVEODOOD 4 3T IR
k=1,(1,k,i—1)eT
d d
£ (o0Pa T+ S e, 1)
J=1 k=1,(1,k,i—1)€z

d
D S (e S S eI

(n,k,i—2)eT,n>2 j=1

is homogeneous of degree (i, y — g’ —2). From the induction hypothesis, bgo’l)ASi_l is homogeneous of
degree (i, —y — g’ —2). From Lemma 2.12, for 1 < j < d, we know dy; S;—1 is homogeneous of degree
(i—1,—y—g’—1),sothat bfl’f)axj Si—1 is homogeneous of degree (i, —y — g’ —2—«); since « is positive,
it is then homogeneous of degree (i, —y — g’ —2). Still from the induction hypothesis, for all (n, k,i’) € Z,
0S;—1

y 0,1); (n,k) (n,k)
(=@ —an)b ™ D0 b7 o
l/

i’+1

is homogeneous of degree (i, —y — g’ —2). The last term to be considered is P;. Since, for2 < j < L +2,
the profile S; involves polynomials of b of the form b’ with |J|3 = i, from its definition (3-15) P; does
not depend on the profiles S; fori < j < L + 2 and can be written as

p i—1
- )y g o)y g0 Jj
r=yaort( Y o [T et ar i T s ),
k=2

|J|=k,|J|3=i (n.k,i)eT J=2

Let k be an integer 2 < k < p; let J be a #Z + L-tuple with |J|3 = i. Then from the induction hypothesis,

i—1
- l—[ NN AL k ﬂn-k>1—[ Jj
QP k (bl(n ))Jl (Tk(n ))J, Sjj

(n,k,i)ez j=2

is homogeneous of degree (i, —y—-2—(k—Da-—g’ Zj_:lz Jj). As k > 2 and a > g/, it is homogeneous
of degree (i,y —2—g¢’).

We just proved that ®; is homogeneous of degree (i, —y —2 — g’). By a direct check of all the terms
on the right-hand side of (3-23), with P; given by the above formula, one has that d®; / abj(."’k) =0if
i <jforn=0,1andifi —1 < j for n > 2. We now check that we can apply Lemma 2.15(iii) to get the
desired properties for S; = —H ~!®;. For all #Z-tuples J with |J |3 =i and integers 7, the first condition
|J|2—y—2—g" > yn,—d is fulfilled since —2y, —d > —2y —d > 2. For the second condition, again
as in the initialization, as g’ is not a “fixed” constant in our problem (its definition (1-21) involves a
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parameter &), we can choose it such that for every 0 <n < ng and #Z-tuple J with |J |3 =1,
2|2 +y+g —yn €2N.

We thus can apply Lemma 2.15(iii): S; is homogeneous of degree (i, —y — g’). One also obtains that
aS,-/abj(."’k) =0ifi <jforn=0,1andifi —1 < j for n > 2, as this is true for ®;. This proves the
heredity in our induction.

The last step, that it is the heredity from L + 1 to L + 2, can be proved exactly the same way and we
do not write it here.

Step 4: bounds for the error term. In Step 2 we computed the expression (3-26) of the error term .
In Step 3 we proved that the profiles S; were well defined and homogeneous of degree (i, —y — g’). We
can now prove the bounds on ¥ claimed in the proposition. In the sequel we always assume the bounds

y—

679 < OV FH and 16| « 1.

Homogeneity of Y. We claim that ¥, is a finite sum of homogeneous functions of degree (i, —y — g’ —2)
for i > L + 3. For this we consider all terms on the right-hand side of (3-26). As Sz 4+ is homogeneous
of degree (L +2,—y — g’) from Step 3, the function biO’I)ASL+2 is homogeneous of degree (L + 3,
—y—g’'—2) by Lemma 2.15. Similarly for 1 < j <d, we know bﬁl’”ax}. S1+2 is homogeneous of degree
(L+3,—y—g'—2—a) (and then homogeneous of degree (L +3, —y—g’—2) as « > 0), and for (n,k,i) €Z,

0SL+2
op" )

H > ak 7k

(—(2i —an)bODpTR) 4 Ry
is homogeneous of degree (L + 3, —y — g’ —2). From its definition (3-16), and since S; is homogeneous
of degree (i,—y — g’) for 2 <i < L + 2, we have R is a finite sum of homogeneous profiles of degree
(i,—y —a—2) with i > L + 3. All this implies that 1 is a finite sum of homogeneous functions of
degree (i,—y — g’ —2) fori > L + 3.
Proof of an intermediate estimate. We claim that there exists an integer A > L + 3 such that for u a
d-tuple of integers, j € N and B > 1 we have

/ |3“Wb|2_ dy < C(L) i |b§0,1)|2iBmax (4i+4(mo—%)+4(80—1)—2g’,0)_ (3-27)
yi<B 1+1y[¥ i=L+3

We now prove this bound. We proved earlier that v, is a finite sum of homogeneous functions of
degree (i,—y — g’ —2) for i > L + 3. Consequently, it suffices to prove this bound for a homogeneous
function b’ f(y) of degree (|J|3.—y — g —2) with [J|3 > L + 3. As f is admissible of degree
(2|J|2 —y — g’ —2), one then computes

J 2 B
|b a’J“f|_ < C(f)|b(0’1)|2u|2 (1 +r)4|J|2—2y—2g’—4—2j—2|;L|rd—l dr
2] 1
lyl<B 1+ |y 0

< C(f)|b§0’l)|2u|2 Bmax (4|J\2+4(m0+%)4_4(50_1)_2&,/,0)

(we avoid the logarithmic case in the integral by changing a bit the value of g’ defined in (1-21), by
changing a bit the value of ¢). This concludes the proof of (3-27).
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Proof of the local bounds for the error. Let j be an integer, and u € N? with |u| = j. From (3-27),
5| « 1 and B > 1, we obtain, by (3-27),

/ 18"y |2 dy < C(L)|b§0,l)|2L+6Bmax (4A+4(m0—%)+4(80—1)—2g’,0)’
lyl=

which gives the desired bound (3-6).

Proof of the global bounds for the error. Let j <2sy., and i € N9 with |u| = j. Using (3-27), we notice
that for L +3 <i < A one has

max(4i +4(m0— l'u|2+J ) +4(80 — 1)—2g/,0) =4i —|—4(m0— |M|2+j ) +4(8—1)—2g".

This implies

A .
|0 yp|? 0,1) 2 pi+4(mo—5EL) +4(5o—1)-2¢’
[ Ty =l > VP By (mo= B3 w46
|y|<B1 y i=L+3

< C(L) [V 2(F=m0)+2(1-80)+5'~C(L)n

which is the desired bound (3-5). Let j be an integer, j < s;. Now, as H = —A + V, where V' is a
smooth potential satisfying |04V | < C(w)(1 + |y|)~2"#l, by (2-2) one obtains

/ a7
y\<Bl 1+|y|21

< C(L) Z Z |b§0 1)|21 ;Ilax(4i+4(m0—j)+4(80_1)_2g/’0)
J/+lu|=2ji=L+3
< C(L)[p(OVRU—mo)+2(1=b0)+¢'~C(L)n

/ 5 g2 dy < C(L)
=B J +|u| =2j

using (3-27) (because again 4i +4(mo—j) +4(8o—1)—2g’ >0asi > L+ 3 and j < 7). This proves
the last estimate (3-4). O

We now localize the perturbation built in Proposition 3.1 in the zone |y| < Bj and estimate error
generated by the cut. We also include the time-dependence of the parameters following Remark 3.2. We
recall that sz, is defined by (1-24).

Proposition 3.3 (localization of the perturbation). The function y is a cut-off defined by (1-43). We keep
the notations from Proposition 3.1. 1 = (s, s1) is an interval, and

K
b:I ->R% s (bl-(n )(S))(n,k,i)er

is a C function with the a priori bounds®

b < pOVIEHL 0 <™ <1 %Y < bV (3-28)

9This means that under the bounds |b(n k)| <K |b(0 1)| 2"+ for some K > 0, there exists b*(K) such that the estimates
that follow hold if b(O D < b*(K) with constants depending on K. In what follows, K will be fixed independently of the other
important constants.
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We define the profile Qb as
Op:=Q+ay=0+ B 0:=]5 0. (3-29)
Then one has the identity (Mod(s) being defined by (3-10))
050 — F(0p) + 51"V A D + b1 .V 0y = iy + x5, Mod(s) (3-30)
with, for 0 < n < 1 small enough, an error term \ry, satisfying the following bounds:
(1) Global bounds. For any integer j with 1 < j <s; — 1 we have
/ CNHTPp P dy < C(L)|py" D PUTm 208G (3-31)
R
For any real number s, < j <2sy —2,
/ VTR dy = C(L)|p{O DR 20-R0=C, (3-32)
R
and for j = sy, one has the improved bound
/ HSE [ dy < C(L)|py D PR A0 20075, (3-33)
R
(2) Local bounds. One has that (\y, being defined by (3-3))

VIyl < Bi. ¥p(y) =¥, (3-34)

and forany1 < B < Bjand j €N,
/| - V9|2 dy < C(L, j)BEED bV 2L, (3-35)
Y=

Proof. First, we compute the expression of the new error term by rewriting the left-hand side of (3-30)
using (3-9) and the fact that F(Q) = 0:

Vb = x5, Vb + 05 (18, — [F(Q + xB, @) — F(Q) — x5, (F(Q +p) — F(0Q))]
+bOV(AQ — x5, A0) + bV (A(xp, @) — 15, Aatp)
+b51).(VQ = x8,V0) + 5"V (V (x5, @) — x5, Vatp). (3-36)

Local bounds. In the previous identity, one clearly sees that all the terms, except x g, ¥, have their
support in By <|y|. Thus, for B < By, the bound (3-35) is a direct consequence of the local bound (3-6)

for vrp.

Global bounds. Let m + 1 < j <s7. We will prove the bounds (3-31) and (3-33) by proving that this
estimate holds for all terms on the right-hand side of (3-36). The reasoning to prove the estimates will be
similar from one term to another. For this reason, we shall go quickly whenever an argument has already
been used earlier.
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The x,¥p term. As H = —A + V for V a smooth potential with 3%V < (1 + |y[)~271*! by (2-2), and
as (Blr‘()(Bl))(r) = Bl_kalr‘)((r/Bl), we have the identity

J
}1J(X31¢b)::XB1}1]¢5'+ 2{: fﬁ8”¢%,
MeNd
0<lul=2j-1

where for each u € N¥, with 0 < || < j — 1, we have Ju has its support in By < |x| < 2By and satisfies
| fl < C(L)By® 7D Using (3-4) and (3-5) we obtain

|1 Gua P a
R4
J
5C(L)|b§071)|2(j—mo)+2(1—50)+g/—C(L)77_|_ Z Bl—(4j—Z\Ml)bf(%—mo+2(1—50)+g’—C(L)'7)

MENd
0<|u|<2j-1

< C(L)|b§°’1)|2(f‘m0)+2(1‘30)+g"C(“". (3-37)
Similarly, one obtains, for any integer j’ with 0 < j’ < 2s; —2,
/ V7 (e ) < C(L) |V P (5 o) #2000 ' =Clon (3-38)
R4

Using interpolation, this estimate remains true for any real number j’ with 0 < j' < 2s; —2.

The 05(x B, )ap term. We first split using (3-7):

L+2
as(xBl)ab=as(xBl)( > b,'(n’k)Ti(n’k)+ZSi)- (3-39)
(n,k,i)eT i=2

We compute
0.1)y—1, 0,1 || y
05 (xm) = 01 B =@ m) 5 )-
’ Bl B1
We first treat the S; terms. As we already explained in the study of the x g, ¥ term, one has

HY(0s(x)S) = Y. fud"Si
WEN?, |ul<2j
with £, a smooth function, with support in By < |x| <2B; and satisfying | f;,| < C(L)bgO’I)Bl_(ZJ_'“'l)
(because |b§?s’1)| < |b§0’1)|2 by (3-28)). As S; is homogeneous of degree (i, —y — g’) in the sense of

Y—¥n +i

Definition 2.14, from (3-8) and |bi(n,k)| < |b§0’1)| -

we get

/ |HY (35 (x8,)S)|? dy < C(L)[pOV PU=m0)+2(1=b0)+¢'~C(L)n (3-40)
IRd
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)

using Lemma 2.15. Now we treat the Ti("’k terms in the identity (3-39). Let (i,n, k) € Z. Then again

one has the decomposition

B OO b T s

l
weNe, |u|<2j

with f;, a smooth function, with support in By < |y| < 2B, and satisfying | f,| < C(L)bgo’l)Bl_(zj_l’”).
As Ti(n’k) is an admissible profile of degree (—y, + 2i) in the sense of Definition 2.11 by (2-26) and
Lemma 2.10, d* Tl" K is admissible of degree (—yn + 2i — |pt|) by Lemma 2.12 and we compute

p=2vnt4i=2luli . d—1 g,

C(L)|b§0’1) |)’—)/n +2i42 /231

(n,k) whk 2
[0 g ay < et

B

< C(L)|p{OD U =mo)+2(1=80)+7(2)j ~2i=28u=2mn)

As (i,n,k) € Z, we know i < L, soif j = s one has 2j —2i — 268, —2m, > 2 — 28,. Therefore we
have proved the bound (we recall that 86 = maXo<n<ng 6n € (0, 1))

0,1 j— —80)— . .
[ 187 Gu0m T dy < CL)pPPUTmT2(780"CWn if g +1 < j < sz,
1Y i =
R4

C(L)|b§0’1) |2L+2+2(1—80)+7](1—5(’)) if j =sp.
(3-41)
From the decomposition (3-39), the bounds (3-40) and (3-41), we deduce the bound
[ 187 @uem s ay
R4
C(L)|b§0’1)|2(j_m0)+2(1_80)_C(L)n if 0 < ] <L,
= (0,1) 2L+2+2(1-80) (17,0, 1) |2 (1-8}) O, g/—C(L)n\ ¢ ; _ (3-42)
C(L)|by | (16;771 o)+ b7 ) if j=sL.
Using verbatim the same arguments, one gets that for any integer 0 < j’ < 2s; —2,
[ 197 Gatm s P ay = bV ) +20-s0-clbon, (3-43)
R

which remains true for any real number j’ with 0 < j’ < 2s; — 2 by interpolation.

The F(Q + yB,ap) — F(Q) — xB,(F(Q +ap) — F(Q)) term. It can be written as

F(Q + xB,ap) — F(Q)— xB,(F(Q +ap)— F(Q))
= A(xB,op) — 1B, Aap + (O + xB,@p)? — 0P — x3,((Q +ap)? — QF). (3-44)

We now prove the bound for the two terms that have appeared. From the identity
A(xB,op) — xBy Ay = A(xB )y +2V xB, .V,

as x is radial and as (8’,‘ (xB)(r) = B kdk y(r/By), one sees that this term can be treated exactly the

;
same way we treated the previous term: d5(x B, )op. This is why we claim the following estimates that
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can be proved using exactly the same arguments:

|, 117 a0) = 13, 8 dy

C(L)[p{* D20 —mo)+2(1=80)~C(L)n if mo+1<j <sg,

, , 3-45
C(L)lbg(),l)|2L+2+2(1—80)(|b§0a1)|2n(1—80) 4+ |b§071)|g —C(L)n) lf] =sy. ( )

We now turn to the other term in (3-44), which can be rewritten as

V4
(0 + x8,0p)” — 0P — x5, ((Q +0p)? — QP) = > CLO” * yp, (x5, = Derj.
k=2

All the terms are localized in the zone By < |y| < 2B;p. From the definition (3-7) of «p, (3-8), (2-1) and
Lemma 2.15, for each 2 <k < p one has that Q7 —k a’g is a finite sum of homogeneous profiles of degree
(i,—y —a—2) fori >k, yielding

j 2
| V7@ + 28,0 = 07 = 1, (@ +)” = Q7)) dy

< C(L)|b§0’l)|2(j—m0)+2(1_80)+06—c(lf)71. (3-46)
From the decomposition (3-44) and the estimates (3-45) and (3-46) one gets

/R HI(F(Q + tm@5) = F(Q) = 3, (F(Q +a5) — F(Q))*dy

|b§0,1)|2(j—mo)+2(1—80)—C(L)n ifmo+1<j<sg,

=C(L) |b§0,1)|2L+2+2(1—80)(|b§091)|2n(1—86) + |b§0,1)|a—C(L)n)

(3-47)

if j =s1.
The same methods used for the two previous terms yield the analogue estimate for

VI [F(Q + xB,ap) — F(Q) — x8, (F(Q +ap) — F(Q))]

for any integer 0 < j’ <2s7 —2, and by interpolation, we obtain, for any real number j’ with 0 < j' <
281, — 2,

97 (F @+ xm,0) = F(Q) =, (F(Q )~ Q) dy
5C(L)|b§°’1)|2(%—m0)+2(1—30)—c(”’7, (3-48)

The b\"(AQ — y,AQ) term. As 3*(AQ) < C(u)(1 + |yl for all u € N¥ by (2-7) and
HAQ =0, one computes

j 2B, )
/Rd |HI b (AQ — x5, AQ))|" dy < C(j)|b§°’1)|2/B —2y—4j d—1 g,
1

< C(j)|b£0’1) |2(j—mo)+2(1—30)+217(j—m0—30) (3-49)
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with s, —mg—38p = L +1—38y > 1—6¢ for j = sz. For any integer j' with E[s.] < j' < 2s; —2,
similar reasoning yields the estimate

i’ 1 (0,1 . 0,1 i S N_C(i!
Ad V7' 6OV (AQ — x5, AO)) dy < C(j)|p'O V2T —m0) +2(1=80)=C G,
By interpolation, one has for any real number j" with E[s.] < j' <2sp —2,

/ V7' BV (AQ — x5, AN dy < C (O P(5 —mo)+2(=50)~C( o, (3-50)
R4

The bgo’l)(A()(Blozb) — xB, Aay) term. First we write this term as

0,1 0,1
bV (A(xs,ap) — 18, Aoy = bV (v.V s, )atp.
Now, we notice that

(0.1) .Yl Iy
by (y.VxB,) =by B_l(arX)(B_l
is very similar to

)y—1,0.1) Y] y
B (m) = 010D @) (-
1 1

in the sense that it enjoys the same estimates, as |b§?s’1) | < (bgo’l))2 by (3-28). Thus, we can get exactly
the same estimates for the term bgo’l)(A( XB,%p) — xB, Aap) that we obtained previously for the term

ds(x B, )op with the exact same methodology, yielding

/Rd |[HT (01 (A (s, o) — 3, Aey)) | dy

C(L)|b§031)|2(j—m0)+2(1—30)—C(L)77 if0<j<sp,

/ / 3-51
C(L)|b§0’1)|2L+2+2(1_80)(|b§0’1)|2n(1_80) + |b§071)|g —C(L)n) ifj =57, ( )

and for any integer j’' with 0 < j’ < 2s7 — 2,

/ IV OV (A ) — 13 Aap)) 2 dy < C(L)[pOD T —mo)+20-80-CLin (3.5
Rd

The bgl").(VQ — xB, V Q) term. First we rewrite

d
bV — x5, V) = by (1= x5y, ©. (3-53)

i=1

Now let i be an integer, 1 <i < d. From the asymptotic (2-1) of the ground state

1040 < C()(1 + [y|)~ 7o Iul
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and the fact that Hdy; Q = 0, we deduce

. . 2B, .
/R HI 01 = 83y, 0)) [ dy = COHIB* VP2 /B pmI =l gy
1
< C(j)|b§0’1)|2(j_m°)_2(1_80)+2"(j_m1_8')

withs;, —m;—61 =L +mog—my+1—68; >1—6; for j =s7. So we finally get, putting together the
two previous equations,

400
; . 2 . Coy—4 d—
/d\H’(b?’).(VQ—xBIVQ))I dyscu>|b§°’”|2/ Y gy
R B

< C(j)lbgo’l)|2(j_m0)_2(1_80)+277(1—51)' (3-54)

Now, for any integer j’ with E[s.] < j’ <2s; —2, as E[s¢] > s¢ — 1, similar reasoning yields the estimate
v . 2 . i e N_ (!
/Rd\w OV = x5, V)| dy = C(j )bV PLs mmo) #2080 =€

By interpolation, one has for any real number j’ with E[s.] < j' < 2sp —2,

/ V7' 65").(VQ — x5, VO)[* dy < C(j) iV L5 —m)+20-80)=Cn, (3-55)
R4

The 19§0’1).(V()(Bl op) — xB, Vap) term. We first rewrite
d
1 1,i
bV (Y (xm o) — x5, Vap) = D 6500y, (x5,
i=1

Let i be an integer, 1 <i <d. Forall u € N9, we know 0" (xB,) < C(M)Bl_ml. From (3-7) and (3-8),
oy is a sum of homogeneous profiles of degree (i, —y). Using Lemma 2.15, one computes

i (1, 2 0,1)2(j— - -
[V @800, ) dy < CLylp{0 VR0 20 te-Cwn
With the two previous equations, one has proved that
; 2 - - -
/R NHT BV (emias) = xm, Vap)) [P dy < C(L) iV PUTmo 2050 temCn - (3.56)

Using exactly the same arguments, one can prove that for any integer 0 < j’' < 257 — 2, the analogue
estimate for V/ /(bgo’l) .(V(xB,2p) — xB, Varp)) holds. By interpolation, it gives that for any real number
0 < j’ <2sp —2 we have

L1970V ) i, Ve dy = €l DR ) 200 kaClln, - 57)
R4

End of the proof. For the estimate concerning the operator H (resp. the operator V), we have estimated
all terms on the right-hand side of (3-36) in (3-37), (3-42), (3-47), (3-49), (3-51), (3-54) and (3-56) (resp.
the right-hand side of (3-36) in (3-38), (3-43), (3-48), (3-50), (3-52), (3-55) and (3-57)). Adding all these
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estimates, as 0 < b§0’1) « 1 is a very small parameter, one sees that there exists 79 := 1o(L) such that
for 0 < 1 < Ry, the bounds (3-31) and (3-33) hold (resp. the bound (3-32) holds). O

3B. Study of the approximate dynamics for the parameters. In Proposition 3.3 we stated the existence
of a profile Q p such that the force term F (Q~ ») generated by (NLH) has an almost explicit formulation
in terms of the parameters b = (bl.(n’k))(n,k’i)ez up to an error term . Suppose that for some time,
the solution that started at Q b(0) stays close to this family of approximate solutions, up to scaling and
translation invariances, meaning that it can be written approximately as t, (t)(Q b(t),1/A(t))- Then Q b(s)
is almost a solution of the renormalized flow (3-2) associated to the functions of time A(¢) and z(¢),
meaning that

~ A~ Zg _~ ~
95(0p) ~ 5 A Qp = 5.V 0y — F(0) ~ 0.

Using the identity (3-30), this means

A ~ . =
—(b§0’1)+TS)AQb—(bgl’)‘*’ZA_S)'VQb_}—XBl Mod(s) & 0.

From the very definition (3-10) of the modulation term Mod(s), projecting the previous relation onto the
different modes that appeared!® yields

As

( 71)
T = _blo ,
zZ a1,) _

by = =i —an)b{* Vb £ b1 V(. ki) €T

1

with the convention bl(j:i)l = 0. The understanding of a solution starting at Q~ b(0) then relies on the

understanding of the solutions of the finite-dimensional dynamical system (3-58) driving the evolution
of the parameters bl.(n’k). First we derive some explicit solutions such that A(¢) touches 0 in finite time,
signifying concentration in finite time.

Lemma 3.4 (special solutions for the dynamical system of the parameters). We recall that the renormalized
time s is defined by (3-1). Let £ < L be an integer such that 2. < £. We define the functions

151.(0’1)(s)=c—§ for 1 <i <U{,
s
OV =0  fort<i<lL, (3-59)
p(nk) _ ; -
b; =0 for (n,k,i) €T withn > 1,
with (¢;)1<i<¢ being L constants defined by induction as

_ £ J o a(l—i)
U —q« an G+ = 20—«

c1 ¢i forl1<i<A{—1. (3-60)

10This will be done rigorously in the next section.
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Then b = (l;l-(n’k))(n,k,i)ez is a solution of the last equation in (3-58). Moreover, the solutions A(s)
and z(s) of the first two equations in (3-58) starting at A(0) = 1 and z(0) = 0, taken in original time

variable t, are z(t) = 0 and
¢ ¢
. o o (20 —a) )\
Alt) = ((2€—a)s0) ( ” S0 z) . (3-61)

Proof. It is a direct computation that can safely be left to the reader. O

As 59 > 0 and 2¢ > «, (3-61) can be interpreted as: there exists T > 0 with A(¢) ~ (T — ;)5 ast —>T.
Now, given %a < £ < L, we want to know the exact number of instabilities of the particular solution b.
In addition, in Propositions 3.1 and 3.3, we needed the a priori bounds

Y—¥n +i

bR < p(0D) 5

to show sufficient estimates for the errors ¥ and ¥,. Around the solution b defined by (3-59), bgo’l) is

of order s, and so the a priori bounds we need become!!

bl(n’k) s s yn2—1’ —i ‘

Therefore, by “stability” of b we mean stability with respect to this size and introduce the following
renormalization for a solution of (3-58) close to b:
_ U(nrk)
pR) = k) i (3-62)
s

V—Zyn +i *
It defines a #Z-tuple of real numbers U = (Ul.("’k) )(n.k,i)ez» and we order the parameters as in (2-28) by

U=, o ot oD gk g ko), (3-63)

Ln()
In the next lemma we state the linear stability result for the renormalized perturbation (Ul-(" ’k))(n, k,i)eT

Lemma 3.5 (linear stability of special solutions). Suppose b is a solution of the last equation in (3-58).
Define U = (Ui(n’k))(n,k,i)ez by (3-62) and order it as in (3-63).

(i) Linearized dynamics. The time evolution of U is given by

00 = Lau + o(@), (3-64)
where A is the block diagonal matrix
Ag (0)
a=| M
(0) Ang

1 One notices that this bound holds for 151.("”()‘
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The matrix Ay is defined by

£—1
—2-a)ataz—,; 1 \
. Ll
—(2i —a)ci oy el (0)
—(2¢ —a)cy 0 1
Ag = 0 —ast— 1 . (3-65)
—{
0 —oy—— 1
(0)
: - 1
o L=H
0 Ry
The matrix Ay is a block diagonal matrix constituted of d matrices 12171
G
2€ —a
All (0) =9zl 1 ( )
A = . A= Y jry ) (3-66)
© A4 c
(0) 1
(—eslop
K o 2%—0[ :

For2 <n < ng the matrix Ay is a block diagonal matrix constituted of k(n) times the matrix Av;,

(o5

24— a
~, .. . .. . (0)
n o (0 -y
A’ _ . X/ _ LRy v 1 -6
(0) A, 0 -
. 1
( ) e_ V—Zyn _Ln
o 20—« )

(ii) Diagonalization, stability and instability. A is diagonalizable because A, and Ay for1 <n <ng are.
Ay is diagonalizable into the matrix

di | 2 i La -1 {—L
iag| —1, , .
£ 20—« 2 —« 2W—a 20—« 20—«

We denote the eigenvector of A associated to the eigenvalue —1 by vy and the eigenvectors associated to
the unstable modes 20./({ — &), ..., La/({ —a) of A by va,...,vg. They are a linear combination of the
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L first components only. That is to say, there exists a #7 x #I matrix coding a change of variables:

P, 0
N _
Py (O Id#z—e)’ (3-68)
with PK, an invertible £ x £ matrix and Idyz_y the (#Z — ) x (#Z — £) identity matrix such that
VAR ()
Aq
PAP; ! = . : (3-69)
(0) Ano
( -1 , q1 \
Tioa 0) o
. e : (O)
o
— qe¢
A = R (3-70)
20—«
0
0) |
{—L
¥

with (qi)1<i<t € R being some fixed coefficients. zzlv’l has max(E[i1], 0) nonnegative eigenvalues and
L1 —max(E[i1], 0) strictly negative eigenvalues (i, being defined by (1-29)). For 2 <n < ngy, we know
/'121 has max(E[in] + 1,0) nonnegative eigenvalues and L, + 1 — max(E[in] + 1,0) strictly negative

eigenvalues.

Proof. (i) As b and b are solutions of (3-58), we compute (with the convention El(ji{?l =0and U IE’;J]:)l =0)
1 — . . - : - —vn 4

Uk = - [(% +i— (20— an)b§0’l)s) U™ — 20 —ap)b™ P F iy 0D

0,1 k k
~(2k —an) U PU"P U )}.

As 550’1) ={/(2¢ — a), we obtain
{— V_zyn —i
20—«
We then get (3-65) by noticing that pOV = 0 for i > { + 1 and because by definition y = yo. We get

1

(3-66) and (3-67) by noticing that 5" = 0 for i > 1.

P i- i —an)b™) =a

(i) A, for1 <n <ngis diagonalizable because it is upper triangular. Their eigenvalues are then the
values on the diagonal, and the last statement in (ii), about the stability and instability directions comes
from the very definition (1-29) of the real number i, for 1 < n < ng. It remains to prove that Ay is
diagonalizable. We will do it by calculating its characteristic polynomial.
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Computation of the characteristic polynomial for the top left corner matrix. We let A/E be the £ x £ matrix

—(2—a)cl+a2i;_la 1 \

: S (0)

Al = —(2i ‘—oz)ci azee;_’a 1 )
: (0) ol
\-@L-a)e; 0

We recall that as o > 2, we have £ > 2 so A% has at least 2 rows and 2 columns. We let
Pe(X) = det(Az — X 1d).

We compute this determinant by expanding with respect to the last row and iterating by doing that again
for the subdeterminant appearing in the process. Eventually we obtain an expression of the form

Pe= (=" @L-a)e; + (—X)[(—l)“l(zﬂ—z—a)ce—l * (Ma_a —X )

[(—1)‘(216—4—a)ce_2+( 2 —X)[---]H. (3-71)
2l —«

We define the polynomials (4;)1<j<¢ and (B;)1<j<¢ and (Ci)1<j<¢—1 as

Ai = (D4 220 —)epp

} o
B; :z(z—l)%_a—X, (3-72)
. 20 —
Cii= (DT (XU =20 —a)ep + ).
i
This way, the determinant P, given by (3-71) can be rewritten as
73(=A1+Bl(A2+Bz[A3+B3['-']]). (3-73)

We notice by a direct computation from (3-72) that
A1+ B142 = (.
Moreover, this identity propagates by induction and we claim that for 1 <j <{—2,
Ci+ B1B2Aj > = Bi12Ci1. (3-74)
Indeed, from (3-60) one has

20—«
i+1

Co—i = —0UCL—j—1,



172 CHARLES COLLOT

and from (3-72)

. 20—
BitsCiy1—Ci = (i + e = X | (=) [ X2 =20 —2—@)eq iy + ——cp
20—« i+1

. 20 —
_(—1)“1_’ (X(2£—2i —a)cp_i + ; ac1g_,-+1)

= (_I)Z—i (((i + 1)% — X) (X(ZZ —2i—2—a)cp_j_1— a(:g_i_l)

|+ 1 |+ 1
- X2l -2i —a)x s Co_i1 +0? Lt CZ—i—l)
o

20—« 24 —
. 41
=(_1)f—’ce_i_lx(a2’£+ (20—2i —2—a)+a—X(20—2i —2—a)
—a
20 —-2i—a (i +1)
5o o0
— () e XQl—2i —2—a)[ 2 —x
20—«
= Aj4+2B1B;.
From the above identity we can rewrite Py given by (3-73) as
Py = A1+ B142 + B1B2A3 + B1 Ba B3 (A4 + Ba(--+))
= C1+ B1B2A43 + B1B2B3(As + Ba(-++))
= B3(C2 + B1B2(A4 + Ba(--+))) = B3B4(C3 + B1B2(As + Bs(-+-)))

= B3+ By(Cy—1 + B1B2).
(3-75)
The last polynomial that appeared is, by (3-72),

Cort+BiBr=XC2—a)er + % x (=% _x) = (x+ 1) x =
(-1 o2 = BT 2U—a - 2U—a

and so we end up from (3-75) with the final identity for Py:

¢ io
Pez(x+1)i:]_[2(2£_a—x).

This means that A, is diagonalizable with eigenvalues (1, —2a/(2¢ —a), ..., £/(2{ — a)): there exists
an invertible £ x £ matrix P, such that P; Ay ﬁ[l = diag(—1,2/2¢ —a),...,L/(2¢ —a)). We denote

by P, the matrix
Py
P):= )
¢ ( IdL_g)
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Then, from (3-65), there exists £ real numbers (g;)1<i<n € R such that

—-2- a)cl+o¢2€e;_1a 1

Pyt = | T e !

: (0) ol
—(2L— ) 0
This implies that Ay can be diagonalized and that its eigenvalues are of simple multiplicity given by
(—1, 20/ 20 —a),...,al/20 —a),—a/2L —),...,—al — £/(2¢ — a)), and that the eigenvectors
associated to the eigenvalues —1, and 20/ (2¢ — ), ..., @l /(2{ — «) are linear combinations of the £ first

components only. This concludes the proof of the lemma. O

4. Main proposition and proof of Theorem 1.1

We recall that the approximate blow-up profile rZ(Q b1/ ;) was designed for a blow up on the whole
space R4, In this section, we state in the main proposition of this paper, Proposition 4.6, the existence of
solutions staying in a trapped regime (defined in Definition 4.4) close to the cut approximate blow-up
profile )(‘[Z(Q b1/ 1)- We then end the proof of Theorem 1.1 by proving that such a solution will blow up
as described in the theorem.

4A. The trapped regime and the main proposition.

4A1. Projection of the solution on the manifold of approximate blow-up profiles. The following reasoning
is made for a blow up on the whole space RZ. As in this case our blow-up solution should stay
close to the manifold of approximate blow-up profiles (tZ(Q b.A))b,z,2» WE want to decompose it as a
sum TZ(Q b.a 1+ €,) for some parameters b, z, A such that ¢ has “minimal” size. The tangent space of
(2(0p,2))b,2, at the point Q is Span(T;"F)), & 1)e7U{(0,1,0),(1,1,0),....(1,d,0)}- One could then think
of an orthogonal projection at the linear level, i.e., (Tl-(”’k), g) = 0. The profiles Tl-(”’k) are, however, not
decaying quickly enough at infinity so that this duality bracket would make sense in the functional space
where ¢ lies. For these grounds we will approximate such orthogonality conditions by smooth profiles
that are compactly supported.

Definition 4.1 (generators of orthogonality conditions). For a very large scale M > 1, for n <ng and
1 <k <k(n) we define

L, Ly
k j k j
@4 =3 cionm (HY G Ty =3 i (HOY G Ty 0 @)
i=0 i=0

(L and T being defined by (1-28) and (2-26)), where

. . & k
Yih i (—H) aa TE0). 1)

con,m =1 and c¢jppm=— 4-2)



174 CHARLES COLLOT

Lemma 4.2 (generation of orthogonality conditions). Forn <ng, 1 <k <k(n), 0<i <L,, j €N,
n’ € Nand 1 <k’ <k(n’), the following holds for ¢ > 0:

“+o0
. ,k /,k/
(—H) o5 1 )>=5(n,k,i),(nzk/,j)/0 am | TP 2ré 1
~ e M o e - (4-3)

Proof. The scalar product is zero if (n,k) # (n’,k’) because by construction CDI(G’k) (resp. Tl.(n/’k/))
lives on the spherical harmonic ¥ %) (resp. ¥ k")) We now suppose (1, k) = (n’, k') and compute
using (4-1):

Ly
. ,k ,k .
(—E) o 1) =3 ¢y (16" s, (—H ) ).
=0
If j > i forall [, then (H®)/+ T = 0 and (—H)/ ®%%) 7)) = 0. If j =i then only the first
term in the sum is not zero since (—H ™) T(") T(" k) and
L,
D ctam{To" aa. (~HO)HIT) = (167 qag o) ~ e 40
=0

from the asymptotic behavior (2-7) of TO("). If j <i then

Ly
Z cl,n,M(T()(n)XM, (_H(n))l-i-J Tzn>
=0 _j—

= cijmm (T 1. Tg™) + Z st T yna (—H™)YHIT™M) = ¢

from the definition (4-2) of the constant ¢;_; , . O

4A2. Geometrical decomposition First we describe here how we decompose a solution of (1-1) on the unit
ball B9 (1) onto the set (‘L’Z(Q b)) bilzl<t.0<A<gl of concentrated ground states, using the orthogonality
conditions provided by Lemma 4.2. This pr0V1des a decomposition for any domain containing B4 (1). Let
0 <k < 1 to be fixed later on. We study the set of functions close to (‘L’Z(Qb l))b lzl<d.0<a<ghs such
that the projection onto the first element in the generalized kernel dominates:!

u:3(A,%) € (0 ,8M)><Bd( ) such that

and || (z—zu); —Qll oo (s 3ary) < ((T-3u);— 0, HOSY V). (4-4)

K
u—g oo <
=0z LllLeose 1)) g

Lemma 4.3 (decomposition). There exist k, K > 0 such that for any solution u € C*([0, T), xB4 (1)) of
(1-1) satisfying (4-4) for all t € [0, T), there exists a unique choice of the parameters A : [0, T) — ((), ﬁ)

12Note that (t—zu)j is defined on f(Bd (1) — 2), which contains B4 (TM) as |Z| < 8 and 0 < |A| < M ; thus the second
estimate makes sense.
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0,1
2:00,T) — B4 (3) and b : [0, T) - RT such that bV > 0 and

~ k
u=(0p+v):2 onB). > B+ 10l oo (1 s 01)— o) = KK
(n,k,i)ez

withv = (t—zu)) — Q p satisfying the orthogonality conditions
(0, HOWRY =0 for0<n<ng, 1<k <k(n), 0<i<L,.
Moreover, A, b and z are C' functions.
Proof. It is a direct consequence of Lemma E.2 from the appendix. O

Decomposition and adapted norms for the remainder inside a bounded domain. Let u be a solution
of (NLH) in C1([0, T'), ©2) with Dirichlet boundary condition such that the restriction! of u to 8% (1)
satisfies the conditions of Lemma 4.3. Then from this lemma, for all # € [0, T') we can decompose u
according to

ui=yez(Qp 1) +w. (4-5)
cutting the approximate blow-up profile in the zone 1 < |x| <2, and w is a remainder term satisfying

wppe =0 as B4 (7) C  and ujpe = 0. To study w inside and outside the blow-up zone, we decompose
it according to

Wing 1= Y3W, Wext:=(1—x3)w, &:= (T—z(t)wint))l(t), (4-6)
where win; and wex; are the remainder cut in the zone 3 < |x| < 6, ¢ is the renormalized remainder at
the blow-up area, and is adapted to the renormalized flow. We notice that the support of weys does not
intersect the support of the approximate blow-up profile y7;(Q, 1 ), that the supports of Wiy and Wex¢

overlap, and that (wex)|g = 0. From Lemma 4.3 and its definition, & is compactly supported and satisfies
the orthogonality conditions (4-11). We measure ¢ through the following norms:

(i) High-order Sobolev norm adapted to the linearized flow. We define
Exs, 1= / |HSL g% (4-7)
R4

This norm controls the L? norms of all smaller-order derivatives with appropriate weight from
Lemma C.3 since ¢ satisfies the orthogonality conditions (4-11), and the standard H 2L Sobolev
norm

|0ke?
B 2C 3 [ i+ Cleln,
lul<2sp

(ii) Low-order slightly supercritical Sobolev norm. Let o be a slightly supercritical regularity:
0<o—sc < 1. (4-8)

13We recall that 2 contains B¢ ).
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We then define the following second norm for the remainder:
£ = llell o (4-9)

Existence of a solution staying in a trapped regime close to the approximate blow-up solution. From now
on we focus on solutions that are close to an approximate blow-up profile in the sense of the following
definition.

Definition 4.4 (solutions in the trapped regime). We say that a solution u of (1-1) in C1([0, T), Q) is
trapped on [0, T') if it satisfies all of the following. First, it satisfies the condition (4-4) and then can be
decomposed via Lemma 4.3 according to (4-5) and (4-6):

U= XTZ(Qb,%) +W, Win 1= Y3W, Wex:=(1—x3)w, e&:= (T—z(t)wint))l(t) (4-10)
with ¢ satisfying the orthogonality conditions

(e, HOWK) =0 for0<n<ng, 1 <k <k(n), 0<i <Ly 4-11)

To the scale A given by this decomposition, we associate the renormalized time s defined by (3-1) with
so > 0. The #Z-tuple of parameters b is represented as a perturbation of the solution b of the dynamical
system (3-58) given by (3-59):
(n.,k)
- U. )
b (s) = bR (5) + L ), (4-12)

SV*ZVn +i
Welet U := (Ui(n’k))(n,k’i)ez. To use the eigenvectors of the linearized dynamics, Lemma 3.5, we define
Vi=(PU); forl<ic<d, (4-13)

where Py is defined by (3-68). All these parameters must satisfy the following estimates, where 0 <7 < 1,
0< 8§n’k) < 1 for (n,k,i)eT with (n,k,i) ¢{1,...,£} x{0} x{1}; Ky and K, will be fixed later on.

Initial conditions. At time ¢t = 0 (or equivalently s = s9):

(i) Control of the unstable modes on the radial component:

[V:(0)| <so" for2<i<{. (4-14)
(i) Control of the unstable modes on the other spherical harmonics:
U™ 0)) <™ for (n,k,i)eT with 1 <nand0<i <iy. (4-15)
1 1
(ii1) Control of the stable modes:
1 1 8(0’1)
noy<—:, U0 <i— fort+i<i<L, (4-16)
50 50
. LK)
U0 0)] < “— for (n.k,i) €T with 1 <nandiy <i < Ln, (4-17)
S0
(n.k)

PR 0) < S for (n,k,i)eT with 1 <nandi=i (4-18)
i =10 ' - -
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(iv) Smallness of the remainder:
1

2L (2sp—se)
S0

lwl?,2s, < (4-19)

(v) Compatibility conditions at the border:1#

o 1= w(0) € HL(RQ),

1 := 3, w(0) = Aw(0) + w(0)? € HJ (RQ),

Wy := 7w (0) = A%w(0) + A(w(0)?) + pw(0)”~ (Aw(0) + w(0)?) € Hy(R),  (4-20)

Wy, -1 1= O3 w(0) € HL(RQ).
(vi) Initial scale and initial blow-up point:
.t
A0)=5,>"% and z(0)=0. (4-21)
Pointwise in time estimates. The following bounds hold on (0, T):

(i) Parameters on the first spherical harmonics:

Vi) <s™" for1<i<t, |UOD(s)<e®Vs™ fort+1<i<L. (4-22)
(ii) Parameters on the other spherical harmonics: for (n,k,i) € Z withn > 1,
(WP ) <1 if0<i<in, (4-23)
k e k k
U0 (5)) < S ifig<i<L, and U (5)] < ™0 if i = (4-24)
s
(iii) Control of the remainder:
K2 Kl
5SL (S) E S2L+2(1_80)+2(1_86)n3 ga(s) S S2(U—S0)ﬁ )
X . (4-25)
2
”wext”HZSL = 222sL—s¢) g2L+2(1=80)+2(1=83)n Iwexcllzro = K-
(iv) Estimates on the scale and the blow-up point:
A<2s7w and 7] < . (4-26)

Remark 4.5. For a trapped solution one has the above estimates on the parameters from (3-59), (4-12),
(4-13), (4-22), (4-23) and (4-24),

(n.k) C on_ ¢t 1 ~1-7 .
|b; |5_S%+r = ey O 2D

14We make an abuse of notations here. The identities given for the time derivatives of w are only true close to the border
of 2, but which is enough as the required conditions are trace-type conditions; see [Evans 2010].
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for C independent of the other constants. The bounds (4-25) on the remainders for the solution described

by Proposition 4.6, because of the coercivity estimate Lemma C.3 implies that
C(Ky, Kz, M)

AZSL—S(,SL-i—l—é’o-i-n(l—é’(’)) '

lwllgo@) = CK1. wllg2s. () < (4-28)

A trapped solution must first satisfy the condition (4-4) in order to apply the decomposition in Lemma E.1,
and then the variables of this decomposition must satisfy suitable bounds. However, these additional
bounds in turn provide a much stronger estimate than (4-4). Indeed, one has, from (4-10), (3-29), (3-7),
(4-27), (D-2),

) ~ 2
inf AP~ lu=Q; 1llzeosa (1))

(L2)e(0,557)x57 (}) %%

2
<A Tu=0Q; 1llpeea )

= ||Qb+8_Q||Loo(%(8d(0,1)—{z})) = “XBlab+8I|Loo(%(Bd(0’1)_{z}))

C
= x| oo @y HllelLoo@mey = —+— 5 <.
4§72

s

C
[(z—2)ur—0QllLoo e 3mry) = 106 | Loo (3 3ary) Tl Loo (82 (301)) = PR (4-29)

Using (4-10), (4-11), (3-29), (3-7), (4-27), (4-3) and (2-7) one gets
(t2)uz — Q. HOWV) = (0. HOY)
_ bgo,l)(To(o,l)’ )(MT(fO’l)) +O(72) ~ g _ Cs_chd—zy +0(s72)
for some ¢ > 0, which, combined with the above estimate gives

0,1
I(t—2)up — Qll pooqsa 3y < (=2 up — 0, HOYP)

for M large enough as d — 2y > 0. Therefore, a solution cannot exit the trapped regime because the
condition (4-4) fails: the estimates on the parameters and the remainder have to be violated first. We thus
forget about this condition in the following.

The key result of this paper is the existence of solutions that are trapped on their whole lifespan.

Proposition 4.6 (existence of fully trapped solutions). There exists a choice of universal constants for the

analysis'>

L=L{,d,p)>1, O0<n=nd,p,L)y<K1l, M=MUd,p,L)>1,
o=o(L.d,.p), Ki=Ki(d,p.L)>»1, Ky=Ky(d,p,L)>1,

0<e®V =V d)y<1 forl+1<i<L, 0<e=e(L,d)<1, (4-30)

0<e™® =L d)y <1 for (n,k,i)eT withl<n, in+1<i<Ly,

0<i=i L,d,pn) <1l and so=so(l,d,p,L,M, Ky, Kz, e i) >1

15The interdependence of the constants is written here so that the reader knows, for example, that sq is chosen after all the
other constants.
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such that the following fact holds close to )(Q B(s0).1/A(s0)" where b is given by (3-59) and A(sq) satisfies
(4-21). Given a perturbation along the stable directions, represented by w(sgy), decomposed in (4-5),
satisfying (4-19) and (4-11), and Vi(s0). (U (s0).... UL D (50)). (U (50)) ez, no1, ini
satisfying (4-16), (4-17) and ((iii)), there exists a correction along the unstable directions represented
by (Va(s0), ..., Vi(50)) and (U™ (50))wk.irez.1<n, i<i, Satisfying (4-14) and (4-15) such that the

solution u(t) of (1-1) with initial datum u(0) = ¥ Qp(s),1/A(s0) T W(S0) With

(n,k)

- U; ™" (s0)

b(so) = (bi(n’k) + IMH (4-31)
So ° (n.k,i)eT

is trapped until its maximal time of existence in the sense of Definition 4.4.

Proof. The proof is relegated to Section 5. O

4B. End of the proof of Theorem 1.1 using Proposition 4.6. In this subsection we end the proof of the
main theorem, Theorem 1.1, by proving that the solutions given by Proposition 4.6 lead to a finite-time
blow up with the properties described in Theorem 1.1. The proof of Theorem 1.1 is a direct consequence
of Proposition 4.6 and Lemmas 4.8, 4.9 and 4.10. Until the end of this subsection, # will denote a
solution that is trapped in the sense of Definition 4.4 on its maximal interval of existence. First, we
describe the time evolution equation for ¢. It then allows us to compute how the time evolution law for
the parameters A and z related to the decomposition (4-5) depends on the other parameters. The bounds
on the parameters and the remainder for a trapped solution then imply that A goes to zero with explicit
asymptotic in finite time, that z converges, and that the solution undergoes blow up by concentration with
a control on the asymptotic behavior for Sobolev norms.

4B1. Time evolution for the error. Let u be a trapped solution. From the decomposition (4-5) we compute
that the time evolution of the remainder is

| . ) P ~ k. k
we = =75 xe=(Mod(1) . + V1) + Aw +kX_:1 Ce (X205 1) w

+A(Tz Q1 +2Vy. Ve 0y + szQi(Xp_l —1) (4-32)

with the new modulation term being defined as

Zs

—_— A ~
Mod(¢) := x, Mod() — (—S + bi‘“))AQb - (A

- + b§1")).vQ”b. (4-33)

From (4-32) and (4-6), as the support of wey is outside B¢ (2) and as rz(é b,2) 1s cut in the zone
1 <|x| <2, the time evolution of wWex; is
0t Wext = AWexe + Ayzw 42V x3.Vw + (1 — y3)w?.

The excitation of the solitary wave 7,(&p,1,4) has support in the zone |x — z| < 2A By and from (4-26),
|z| + AB1 < 1, so it does not see the cut by y of the approximate blow-up profile. From this, (4-32) and
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(4-6), the time evolution of wyy, is therefore given by

1 —_— - - o~ o~
0¢ Wine + HZ,%wim =T (Mod(t)% + Wb,%) + L(Wint) + NL(win)) + L+NL+ R,  (4-34)

where H; 1/, NL(Wint), L(wint) are the linearized operator, the nonlinear term and the small linear term
resulting from the interaction between wiy and a noncut approximate blow-up profile 7 (Q, 1 ):

H, 1 ==A=p(w(Q)™ Hy,1:=~A=p(:(0, )" (4-35)
NL(Wint) := F(Tz(éb,%) + Wint) — F(Tz(éb,%)) + Hb’%(wint)v (4-36)

D 1
L(win) := H, ywin— Hy ;1 wim = 5572 (15, CARIE (4-37)

The last terms in (4-34) are the corrective terms induced by the cut of the approximate blow-up profile

and the cut of the error term:1©
L:=—Ap3w—2Vy3.Vw+ pr; Q27 (P~ = y3)w, (4-38)
A
NL := ZC"rZQ” o = Y pauk, (4-39)
k=2
R:= A){‘L’ZQ%+2VXVTZQ%+XTZQI:(XP_1_1)’ (4-40)
x

and one notices that their support is in the zone 1 < |x| < 6. Using the definition of the renormalized flow
(3-2) and the decomposition (4-5) we compute, using (4-32),
A - - ~ o~ —
ass—TsAs—ZA—s.Ve—i—He =—x(Ay+2)(Mod(s)+¥p)+NL(g)+ L(e) +A*[t_, (L+R+NL)];. (4-41)
with the purely nonlinear term and the small linear term in adapted renormalized variables being defined
as
NL(¢) := F(Qp +¢)— F(Qp) + Hp(e), L(¢):= He— Hpe, (4-42)

where Hp := —A — pQ b P~1 s the linearized operator near Q b One notices that the extra terms induced
by the cut, A2[r_, (L + R + NL)];, have support in the zone M <yl = /71 (by(4-26)).

4B2. Modulation equanons We now quantify how the evolution of one parameter b(" k) , A or z depends
on all the parameters (b( )(n k,i)ez and the remainder ¢.

Lemma 4.7 (modulation). Let all the constants of the analysis described in Proposition 4.6 be fixed
except sg. Then for so large enough, for any solution u that is trapped on [sg,s’) in the sense of
Definition 4.4 the following holds for so < s <s':

A z )
NS Ts+b§1’ )'+ S 1 @i—an)b Vb +p )|
(n,k,i)eZL,i#Ly,

)
_C(@L,M) C(L M)

e sy, (4-43)

16 Again, the excitation of the solitary wave (@p,1/2) is not present here as its support is in the zone |x| < 1; see (4-26).
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C(M,L
> B i—anpPh" ] < %JFC (M,L)y/&s,. (4-44)
(n,k,i)€T,i=L, S

Proof. We let

Zs

—+b§1")'+ S % 4 @i —anb®PVI 0 b (4-45)

As (0,1)
—+by 3 i+1
(n,k,i)eT

D(s) = 5

+

with the convention bl(j:i)l =0. Taking the scalar product of (4-41) with (— H )’ CDX;’k), using (4-3), gives!’

(Mod(s). (—H)' @§") = (~He. (~H) 0 ™) = (Jp. (= H) }7*)

As Zg
S Ae+ 28
+ < ) e+ 1
Now we look closely at each one of the terms of this identity.
The modulation term. From the expression (3-29) of Q b, the bound (3-11) on 95 / Bbl-(n’k), and the bounds
(4-27) on the parameters, one has

Ve +NL(e) + L(e), (—H)' @5";”">. (4-46)

~ 8S
Op=0+ypap=0+0G"" and w—nfk) =0(s~") on B40,2M).
i
From (3-10), (4-33) and (4-45), the modulation term can then be rewritten as
k k (n,k pa, N
_ (n,k) ; (0,1) (n,k) (n,k) k) J
MOd(S) = XB, Z [bl:ls, + (21 —Oln)bl bin _biil ]|:Tl " + Z W}
(n,k,i)eT J=i+1+8,=0 i
A ~ z . ~
- (TS + b§°’”)AQb - (TS +b" )).VQb

(n,k,i)eT ;5 D)
—~ (;S +b§°’1))AQ - (Z—s + bgl")).vg + 0( SS) )

A
where the O(|D(s)|/s) is valid in the zone |y| < 2M . From the orthogonality relations (4-3), we then get

<1\T&1(s),(—H)id>§\’}”‘)>+0(—'Ds(s)')

~C(xmAQ.AQ) (A 4+b6"D) for (n,k,i) = (0,1,0),
= —C'(xmV0.VO) (Z2+b{"P) for (n,i)=(1,0), I<k<d, (4-47)
G Ty 1) (07 + 21 —on)b V00— ) otherwise,

where C and C’ are two positive renormalization constants.

17We do not see the extra terms L, R and NL because their support is in the zone ﬁ <|y| (from (4-26)) which is very far

)

away from the support of @%’k , in the zone |y| <2M (so being chosen large enough so that this statement holds).
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The main linear term. The coercivity estimate (C-16) and the Holder inequality imply

[ el dy < C(M) /Eay.
|y|l<2M

Hence, from the orthogonality (4-11) for &, we obtain, for 0 <n <ng, 1 <k <k(n),

|(H8 HiQJ(n’k))‘ )0 for i < Ly, (4-48)
) M }(e, (_H)i+1q)§(},k))‘ = 0(\/&y,) fori=Ly.
The error term. Using the local bound (3-35) for ¥, and (4-27),
= i < (n,k C(L,M)
|<Wb,qu>§G ))| = I (4-49)

The extra terms. From (4-27), the coercivity estimate (C-16), the bound (4-25) on &5, and (4-45), one
obtains

< C(LS’ M)\/E-I- |D(s)|

SL+1—80+n(1—86) '

As Zs i - (n,k)
'<TA8+7.V8, H'®y;

Now, as QP 1 — Qg_l = O(s™!) on the set |y| <2M from (3-7) and (4-27), using the estimate (D-2)
on ||&||zeo, from the definition (4-42) of NL(e) and L(e) and the coercivity (C-16), one gets, for s¢ large
enough,

[(NL(e) + L(e), H' 09| < C(L, M)&as, + C(L, M)—ESZSL =C(L.M) ?SL :

Putting together the last two estimates yields

EC(L,Als),/SZSL + C(L,M)|D(S)| (4_50)

As Zs i g (k)
'<—A8+—.V8+NL(8)+L(8),H @, L 1—So+n(1—5))

A A

Final bound on |D(s)|. Summing the previous estimates we performed on each term of (4-46) in
(4-47)—(4-50) yields

C(L, M)

D= C(L M) Ve, + =75

We now come back to (4-46), combine again (4-47) with the above bound on |D|, (4-48), (4-49) and
(4-50), yielding the desired bounds (4-43) and (4-44) of the lemma. O

4B3. Finite-time blow up. We now reintegrate in time the time evolution of A and z we found in
Lemma 4.7 to obtain their behavior and show the blow up.

Lemma 4.8 (concentration and asymptotic of the blow-up point). Let u be a solution that is trapped on
its maximal interval of existence. Then it blows up in finite time T > 0 with s(t) — +ocoast — T and we
have the following:

(1) Concentration speed. We have A T CuO)(T — t)g, with C(u(0)) > 0.
t—
(2) Behavior of the blow-up point. There exists zo such that lim;_,7 z(t) = z¢ and for all times s > s,

2(s)] = O(sy ™). (4-51)
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Proof. From the Cauchy theory in L°°, (3-1) and (4-26), if T € (0, +00] denotes the maximal time
of existence of u, one necessarily has limg_,7 s(f) = 4+00. From the estimate (4-27) on bgo’l), the
modulation (4-43) and (4-25), one has

As

(6] —1—7
2=y o).
n . + O(s )

We reintegrate using (4-21) (we recall that ¢y = £/(2¢ — ) from (3-59)):

—1
A= w, (4-52)

§20—a
which is valid as long as the solution u is trapped. In addition, if the solution is trapped on its maximal
interval of existence, then the function represented by O(-) admits a limit as s — 4o00. In turn, from

% = %2 we obtain

ozs(fZL_“ t 5 , -2
s=so(1-5 [a+ougar)
Hence there exists 7 > 0 with
s ~ CuO)T - )~ (4-53)

Injecting this identity in (4-52) then gives A ~ C(u(0))(T — ;)ﬁ ast — T. Now we turn to the asymptotic
behavior of the point of concentration z. From (4-43), using bgl’i) = O(s_aTH) from (4-23) for 1 <i <d,
one gets

21 = O™ =*5) = (s 718 (7)), (4-54)

As o > 0, this implies the convergence and the estimate of z claimed in the lemma. a

4B4. Behavior of Sobolev norms near blow-up time. From Lemma 4.8, the L.°° bound on the error (D-2)
and the bounds on the parameters (4-27), any solution that is trapped on its maximal interval of existence
indeed blows up at the time 7' given by Lemma 4.8 because lim; .7 ||u#|| Lo = 4+00. The behavior of the
Sobolev norms is the following.

Lemma 4.9 (asymptotic behavior for subcritical norms). Let u be a solution that is trapped for all times
s > so and T be its finite maximal lifespan.'® Then

(1) Behavior of subcritical norms.

limsup [[u|| gm @) < +oo  for 0 <m <.
t—>T

(i1) Behavior of the critical norm.
[l e () = C(d. p)VeTog(T —[(1 +o(1)).

187 is finite by Lemma 4.8.
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(iii) Boundedness of the perturbation in slightly supercritical norms.

limsup [[u — x7z(Q 1)|[am(@) < +oo  forsc <m <o. (4-55)

t—>T

Proof. The trapped solution u can be written as

u=yt:(0p 1) +w=y1z(Q1) + (G 1) + .

We first look at the second term 7,(p,1/,), being the excitation of the ground state. It has compact
support in the zone |x| <2B1A. From (1-38) and (4-52), one gets 2B1A < 1 as so > 1, so that 7 (@p,1 /1)
has compact support inside B¢ (1). This implies that

=, Dl @ < Cle=@, )l oy,

the latter norm being easier to compute. Indeed by renormalizing one has

”TZ(&b,%)”[-']a(Rd) = mlldbllga(w).

L+2
~ k k
= X W01 Y )

(n,k,i)ez i=2

from (3-29) and (3-7), the bounds (4-27) on the parameters bl.(n ’k), together with the asymptotic at infinity
of the profiles Tl-("’k) and S; described in Lemma 2.10 and Proposition 3.3 imply that ||&p | 7, < C/s.
Hence

~ C
=G, Pl < oz — 0

1— L(o—sc)
KY 20—«

ast —>T aso—s, < 1.

Now, following the second paragraph of Remark 4.5, we get that ||w| o < CK; is uniformly bounded
until the blow-up time. Combined with what was just said about the boundedness of 7, (@p,1/1), we get
that (iii) holds for all 0 <m < 0. This, together with the asymptotic of the ground state (2-1) then gives
(1) and (ii). o

4B5. The blow-up set. We recall that x € Q is a blow-up point of u if there exists (¢, x,) — (T, x) such
that |u(t,, xn)| — +o0. For trapped solutions one has the following result.

Lemma 4.10 (description of the blow-up set). Let u be a solution that is trapped for all times s > so and
T be its finite maximal lifespan.'® Then zq given by Lemma 4.8 is a blow-up point of u, and it is the only
one.

Proof. From the L°° bound (4-29) and the fact that lim,_, 7 s(¢) = +00 from Lemma 4.8, u(s, z(s)) ~
2

A(s) P~TQ(0) as s - +o00. From Lemma 4.8, this implies that u(¢,z(¢)) — 400 as t — T and that

zg = lim;_7 z(¢) is indeed a blow-up point.

197 is finite by Lemma 4.8.
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Now take another point x € Q, x # zg. From (4-55), the asymptotic of Q (Lemma 2.1), and Lemma 4.8,
there exists R > 0 such that

sup ([u(@)ll go s (x.ry)y < +00-
0<t<T

This local boundedness, by Sobolev embedding and Holder, implies that

@] <t 2d - 2d J p—1
su u / o0, = = .
oorer e B4 R)) 1= 05220 d+2-2s. “p+1

The above inequality, after applying Lemma 4.11 several times and using Sobolev embedding, implies
that there exists r > 0 such that

sup [[u@)ll oo (e (x.ry) < +00.
0<t<T

Therefore, x is not a blow-up point of u. O
In the proof of the previous lemma, we used the following result.

Lemma 4.11 (parabolic bootstrap). Let R > 0 and x € Q2 such that B(x, R) C Q. Let qo > ’I;—_T_id . There

exists k(qo) > 0 such that for any q > qo, if u € C([O, T), WI’OO(Q)) is a solution of (1-1) satisfying

sup [[u()llw1.a(pd x,R)) < +00 (4-56)
0<t<T
then
sup [u (@)l 1.q0+0 (g (x,&)) < +00- (4-57)
o<t<T 2

Proof. The proof relies on a classical use of estimates for the heat kernel. Without loss of generality we
assume go < d. If u solves (1-1) and satisfies (4-56) then the localisation v = y g /,u solves

v = Av—2V.X§.Vu—AX§u+X§|u|p_1u

and using the Duhamel formula can then be written as

t
v(t) = K; % v(0) —i—/ K;_g* [—2V.X§.Vu —Aygu+ X§|u|p_1u] ds,
0

2
where the heat kernel is K;(x) = (471[)_% ¢~ . One then has the formula

t

Vv(t):VK,*v(0)+/ VKI_S*[—ZV.X%Vu—Axgu] ds
0

t
+/ Kt_s*[V)(§|u|p_1u+X§Vu|u|p_l]ds. (4-58)
0
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We estimate the last term using the Holder, Sobolev and Young inequalities:2°

t t
H/ Kt_s*[)(§Vu|u|p_1]ds 5/ HK,_S*[XgVu|M|P_1]”Lq(1+K) ds
0 0

La(+k)

t
< | K- 1| Vulul P! i d
~ /0 || t S||L(1+q(15_k)_(w_%)) 1 ” u|u| ”L(w"!‘%) 1 S

t
S| IKe=sll 1[I Vullza [lul?~ ] o1 ds
/0 2 (o= Git) | |1
t

< LVl var as < [ —
~J m” ullLe || u”qu NI o (Z—S)W’

where

_(d—=qo)(p—1) _(d—q0)(p—1) kd
w=—"—-"——" and 0O(k,q)=
dqo 240 2q(1 +«)
(note 6 > 0 as go < d). For k > 0 and 5—I_id <gq <d, if k is fixed, 0 is strictly decreasing with respect
to g, and if ¢ is fixed, @ is strictly increasing with respect to k. As 6(0, go) < 1 since g¢ > Z—_T_}d, this
implies that there exists x(gg) > 0 such that for all g0 < g <d, and 0 < k < «k(qop), we have 0(k,q) < 1.

The above inequality then implies that in that range,

< +00.

t
f Ki_s*[xrVulu|P~1ds
0 2 La(1+)

We claim that this term was the “worst” to be estimated in (4-58) and that using the very same techniques,
one can estimate similarly all the other terms on the right-hand side in the same range 0 < x < k(qo)
leading to

sup ”vv(t)”L(1+K)q < 400,
0<t<T

which implies that supy, <7 [|v(?) || 1.a+04 < +00 by Sobolev embedding and the Holder inequality.
This concludes the proof, as v = u on B(x, %) O

5. Proof of Proposition 4.6

This section is devoted to the proof of this latter proposition, which will then end the proof of the main
theorem. For all trapped solutions u in the sense of Definition 4.4, we let s* = s*(u(0)) be the exit time
from the trapped regime:

s* = sup{s > 5o such that (4-22), (4-23), (4-24), (4-25) and (4-26) hold on s, s)}. (5-1)

If s < 400, after s*, one of the bounds (4-22), (4-23), (4-24), (4-25) or (4-26) must then be violated. The
result of the first part of this section is a refinement of this exit condition. In Lemma 5.1 and Propositions 5.3,
5.5, 5.6 and 5.8 we quantify accurately the time evolution of the parameters and the remainder in the
trapped regime. Combined with the modulation equations of Lemma 4.7, this allows us to show that in

2045 >qo > g—:d, p> %, and d > 11 all the computations below are rigorous.
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the trapped regime, all the components of the solution along the stable directions of perturbation are under
control; see Lemma 5.9. Moreover, from (4-52), (4-26) is always fulfilled as long as the other bounds hold.
Asa consequence, the exit time of the trapped regime is in fact characterized by the following condition:
just after s*, one of the bounds in (4-22) and (4-23) regarding the unstable parameters is violated.

We prove Proposition 4.6 by contradiction. Suppose that glven a stable perturbation of y Q B(s0).1/A(s0)
as described in Proposition 4.6, the solution starting from )(Q b(so),1/A(so) T W(s0) leaves the trapped
regime in finite time for all initial corrections (V2 (so), ..., Ve(so)) and (Ul( k)(SO))(n,k,z)eI,lgn, i<in
along the unstable directions. This means from the previous paragraph that the trajectory of

k
(Va(s), ..., Ve(), U)o ieiyera<n, i<iy)

{21 Bﬁg L) x Bfo(l) in finite time. But at the leading order, the dynamics of this trajectory

leaves the se
are linear repulsive. In Lemma 5.10 we show how the fact that all the trajectories leave this ball is a
contradiction to Brouwer’s fixed point theorem.

5A. Improved modulation for the last parameters b(” ©) In Lemma 4. 7, the modulation estimates
(4-43) for the first parameters are better than the ones for the last parameters b(n oK) , (4-44). When looking
at the proof of Lemma 4.7, we see that this is a consequence of the fact that the pI‘OJeCtIOIl of the linearized
dynamics onto the profile generating the orthogonality conditions, (He, H' CID(n k)) cancels only for
i < L,. However, as we explained in the introduction of Lemma 4.2, H* <I>(” k) has to be thought as an
approximation of T( k) , and in that case the previous term would cancel also for i = L. It is therefore
natural to look for a better modulation estimate for b( %) In the next lemma we find a better bound by,
roughly speaking, integrating by parts in time the prOJectlon of € onto T(n k) in the self-similar zone.

Lemma 5.1 (improved modulation equation for bg:k)). Suppose all the constants in Proposition 4.6 are
fixed except so. Then for sg large enough, for any solution that is trapped on [sgy,s’), for 0 < n < ny,
1 <k < k(n), the following holds for s € [sg,s’):

k
)b(o l)b(n k) i[(HLn(g—ZL-I—Z Sl) XBOT(” )):H

k
ds <XBOT0(n’ )’T()n’k>

b 4 2Ly —

C(L. M) /Sy, L ca.Mm

7 - (52
s8n L5 +8,—80+1

Remark 5.2. From (5-19), we see that the denominator is not zero. From (5-19) and (5-20), one has the
following bound for the new quantity that appeared when comparing this new modulation estimate to the
former one (4-44):

(HL”(S ZL+2 Si). XBOT(n,k))

(n.k) .k < C(L,M)s~E=5+8070n 4 (L, M, Kp)s~EH0=8ntn(1=8),
(XB[) Ton s T(;l’ )

(5-3)

2lHere K is the number of directions of instabilities on the spherical harmonics of degree greater than 0, that is, K =
d(E[i1] = 8iyen) + X a<n<ng KM)(E[in] + 1= 8;, en), and BE, (r) is the ball of radius r of R? for the usual | - |oo norm.
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This is a better bound compared to the required bound (4-24) on b](f;’k) in the trapped regime, that is,

|b§ln,k)| < Cs—y_zy” —Lp _ CS_L_S" +50'
n

Proof of Lemma 5.1. First, from the fact that H To("’k) = 0, the asymptotic (2-7) of To("’k) and (4-27), we
obtain

K K C(L)
supp[H ™" (x8, Ty )] C {Bo <y <2Bo} and |H™" (g, T" ) = e (5-4)
§2 Thn
Step 1: computation of a first identity. We will now prove the identity
d K K 0.1), (n.k k k
I ((HL”8 B OT(n ))) (b(n )+(2L O‘n)bi s )bg;: ))(To(n, )7XBOT0(n’ ))
d L+2
L, .k
+g( Z(SJ,H (xBo Ty )))) (5-5)
i=2

+ O B 4 0 ).

gLH1+%5—80—8,—2my
From the evolution equation (4-41) and the fact that H is self-adjoint we obtain

d

k .k
—((H e x50 Ty")) = e, HE" sz Ty)

—
+ ( —Mod(s) — 1y + S*Ae + Zk—s.vg — He +NL(e) + L(e), H- (1, T(f””‘))>. (5-6)

The terms created by the cut of the solitary wave A2t_,[(L + R+ NI) 2] do not appear because they
have their support in the zone 55 < |y|, which is far away from the zone |y| < 2By as By << in the
trapped regime by (4-52). We now look at all the terms in the above equation.

The d5(xB,) term. From the modulation equation (4-43) and the bound (4-25), one has |b(0 1)| <(Cs 2.
Hence, using the asymptotic (2-7) of To(n’k) and the fact that H Tén k) — 0 and (4-27), we get that
HEn (9 XBo TO(" ’k)) has support in By < |y| < 2By and satisfies the bound

C(L)

L, (n,k)
|H (asXBoTO )| < Sy7"+Ln+1'

Using the coercivity estimate (C-16), we obtain
’k n n
(e, HE7 35 080Ty )| < C(L) /gy s> 0. (5-7)

The error term. For |y| < 2By, one has lﬂb = Y, by (3-34). As ¥ is a finite sum of homogeneous profiles
of degree (i, —y —2— g’) for some i € N (which was proved in Step 4 of the proof of Proposition 3.1),
the bounds on the parameters (4-27) imply that |y (y)| < C (L)s_y+§+g for By <|y| <2By. Combined
with (5-4), this yields

_ C(L
|(Fp, HE (8, )| < € (1) BTV 2En—r=8"22 < (@) (5-8)
LA+ —80—8,—2m,
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The remainder’s contribution. Using (5-4), the bounds |%| < Cs~ ! and |5 =<C s (which are
consequences of the modulation estimate (4-43) and (4-25)) and the coercivity estimate Lemma C.3,
one gets

< C(L) /&, s Hon, (5-9)

A
‘<TSA8 + Zk—s.Vs —He, HL» ()(BOTO("’k))>

The small linear term can be written as L(g) = (pQP~! — péf _1); hence from the form of Qb, see
(3-29), one has [(pQP~ 1 —p Q5_1)| < C(L)s_l_%. Its contribution is then of smaller order using (5-4):

(L), HE (o T | < C(L) /Eag, 52005, (5-10)

The nonlinear term can be written as NL(g) = Zl?:z C If gk Qi K From the coercivity estimate
Lemma C.3, we get

2
2s _M_L
/ g, W S C(L, M)Eas, s™E7 2700,
Bo<ly|<2Bo V]

Using the bootstrap bounds (4-25) and (4-27), one computes

_ 1—-8()
/ 25— —L Sp+2m,— (152 + 120 Sn+2m
EZSLS L 2 HSKZS” n ( T > )EBOn n

for s large enough (because y > 2). For 2 < k < p, we know |k 2 Qll; _k| < C is bounded by (D-2), so
using the two previous equations and (5-4), one gets

[(NL(e), HE (3, T))| < /gy 2+ (5-11)

for so large enough. Combining (5-9), (5-10) and (5-11), we have the following upper bound for the

remainder’s contribution:

A
<TSA8 + i—s.ve — He+NL(e) + L(e), HE (x5, To("’k))>‘ < C(L, M) /&5, 52 H0n (5.12)

The modulation term. For (n’,k’,i) € I, one has

7k n 7k —_ n 9k 7k —_
(TR H I (g, Ty = (HE TRy g, TRy = 0

if (n’,k’',i) # (n,k,Ly). Indeed, if (n’,k") # (n,k) then the two functions are located on different
spherical harmonics and their scalar product is 0. If i # L, theni < L, and HI» Tl-("’k) = 0. This
implies the identity from (4-33) since B; > Bo:
T k
(Mod(s), HE (x5, Tg"™))

k , k k k
= (b0 + @Ln—am)b Vb NI, g, T )

,8

L+2

(') | ©.1), @ k[ 95 L, (k)

+E E (bifv +(2i —ap)by b, )<8b(”/’k/)’H (xBo Ty )>
j=2 (' ,k’,i)€T i

As

~ z . ~
—(7+b§1’°))<AQb,HL"(XBOTé”’k’)>—<(f+b§1’)).VQb,HL"(XBOTé””‘))>. (5-13)
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For2 <j <L+2and (n',k',i) € Z, as S; is homogeneous of degree (i, —y — g’), using (4-27) and
(5-4), we have

k[0S k C(L,M)
2i — , b(O,l)b.(ﬂ k') J ,HL” T(n’ ) < ’ )
(2 —an)by b, 3bi(n/,k’) (8o To™ ) )1 = GL—80—8,+2m,+1+%

(5-14)

Using the modulation bound (4-43), the asymptotics (2-1) and (2-7) of Q and AQ, (4-27) and (5-4), we find

A ~
‘(—S + b?"”) (A Dy, HE (15, Ty — <(Z—

- - +b§1")).VQb,HL"(XBOT()("’]‘))>‘

C(L, M)
T g2L+33%—2m, 5y

(5-15)
is very small as L > 1. Moreover for 2 < j < L + 2, one has

k)| 9S; J d J k
> b >< e B (e T3 ’)>=d—(<sj,HLn(xB0Té” D)=, HE (35 28, Ty ).
(' k' i)eT db;™ s

From similar arguments we used to derive (5-14), one has the similar bound for the last term, yielding
/,k/ aS i " k
Z bl(’fv )< (n/jk/) ’ HL ( (n ))>
X ' ab;"
(n/,k/,l)EI 1

d
_ d—((SijLn (XBoTo(n’k)))) + O(S—L+80+8n+2mn—1—*) (5-16)
K

Coming back to the decomposition (5-13), and applying (5-14) and (5-16) gives
(Mod(s), HE" (13, Tg" ™)) = (b%) +@La—an)b{" Vb O VT ™, 15, T8

L+2

+d_( Z (Sj,HLn (XBOTO(n’k))))+O(S_L+80+8n+2mn_1_g2). (5-17)
s\ 15

In the decomposition (5-6), we examined each term in (5-7), (5-8), (5-12) and (5-17), yielding the
identity (5-5) we claimed in this first step.
Step 2: end of the proof. From (5-5) one obtains

d (((HL"(e—ZL“ i), xBo T ")>))

T k k
ds (BT T3

e N
k k L+14+5-—80—8n—2mp
_b(n )+(2Ln ozn)b(o Db(n )+ (n,k) s(n k) —
(xBo Ty " Ty )
L+2 ) d 1
HL"( Z S,) Bo Ty > ( ) (5-18)
k k
< ds (XB()TO(n )’TO(n ))

The size of the denominator is, from the asymptotic (2-7) of To(n’k) and (4-27),

(8o Ty "0 Tg") ~ es?mnt2in (5-19)
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for some constant ¢ > 0. As the denominator just depends on b%o’l), using the bound |b§?§1)| <Cs?
and the asymptotics (2-7) of TO(" ’k), we obtain

ds \ (xp, T30, 18") )|

Also, using again the coercivity estimate Lemma C.3, (5-4) and the fact that for 2 < j < L + 2, we know

C(L.M)
$2mu+28,+1°

S; is homogeneous of degree (j, —y — g’), we obtain

L+2 X
e )

i=2

< C(L, M)( /5ZSLs2mn+8n + S_L_%+80+8n+2mn). (5_20)

Hence, plugging the three previous identities in (5-18) gives the identity (5-3) claimed in the lemma. [

5B. Lyapunov monotonicity for low regularity norms of the remainder. The key estimate concerning
the remainder w is the bound on the high regularity adapted Sobolev norm at the blow-up area: £y, .
However, the nonlinearity can transfer energy from low to high frequencies, and consequently to control
&>5; we need to control the low frequencies. This is the purpose of Propositions 5.3 and 5.5, where we
find an upper bound for the time evolution of || win|| Ho(ra)y and |Wext || 7o ()-

Proposition 5.3 (Lyapunov monotonicity for the low Sobolev norm of the remainder in the blow-up zone).
Suppose all the constants involved in Proposition 4.6 are fixed except so and 1. Then for sg large enough
and 1 small enough, for any solution u that is trapped on [sq, s’) the following holds for 0 <t < t(s'):

d Ey Vs k—1
E{ AZ(O‘ sc)} (o— v¢)£+1 S4L |: + Z( o— ?p) :|’ (5'21)

A{Z(O’ Sc)+2S 27—

where the norm Eq is defined in (4-9).

Remark 5.4. Equation (5-21) should be interpreted as follows. The term

Vs

A2(0—s0)+2 ¢ GG +1

is from (4-25) and (4-52) of order ; ‘;i (as 7 ds =172). The 1 / siL then represents a gain: it gives that

the right-hand side of (5-21) is of order (1/ s1+4L)d—“;, which when reintegrated in time is convergent

and arbitrarily small for s¢ large enough. The third term shows that one needs to have /&, <s~ 2 to

control the nonlinear terms, which holds because of the bootstrap bound (4-25).

Proof of Proposition 5.3. To show this result, we compute the left-hand side of (5-21) and we bound it
above it using all the bounds that hold in the trapped regime. The time evolution wjy given by (4-34) yields

d Es d
E{m} dl{/w Wine| }

1 —_— - ~ o~ o~
= / VO Win. V? (—Hz’iwim—ﬁ)(fz (MOd(f)i+Wbi)+NL(wint)+L(wint)+L+NL+R)- (5-22)
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We now give an upper bound for each term in (5-22). As all the terms involve functions that are compactly
supported in €2 since wjy is, all integrations by parts are legitimate and all computations and integrations

are performed in R? (e.g., L? denotes L2(RY)).
Step 1: inside the blow-up zone (all terms except the three last ones in (5-22)).

The linear term. By (4-35) using dissipation, we first compute

/Vowint-vg(_HZ,)ltwint) = / VUwint-va(Awint'i‘p(""Z(Q%))p_lwint)

< / V"wim.V“(p(rz(Q%))p_lwim),

which becomes after an integration by parts and using the Cauchy—Schwarz inequality

/Vawint-v(7 (P(TZ(Q%))p_lwint) = ||va+2wim||L2 ” VU_Z(P(TZ(Q%))p_Iwim) HL2‘

Using interpolation, the coercivity estimate (C-16) and the bounds of the trapped regime (4-25) on &, one

has for the first term (performing a change of variables to go back to renormalized variables)

1
Jora=s |

C
< —_
- /\0+2—s

v0+2

IV 2 windl 2 = ellz2

2 2
Ve || e
L2 H2SL

C(L.M 1-
e

C(L.M, K, K>)

<

A0+2— scs(orzebca)l—i— (L+1 —8o+n(1-8})— (02[5%)6

_ C(L,M, Ky, K>)
/\04—2 se oGP 14 o (Itge)

257 —0

As QP71 = O((1 + |y|)~2) from (2-2), using the Hardy inequality (B-7) we get for the second term

after a change of variables

[V72(p(2(0 )P 0) | 12 = o V92070 s
o _ C
< o IVl = 7= Vo

Combining the four above identities we obtain

C(L,M, Ky, K>)\VEs

VULU‘ t.V”(—H 1 Wi t) <
/ " E T p20—so+2 GRQ I SO (E )

(5-23)
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The modulation term. To treat the error induced by the cut separately, we decompose as follows, going
back to renormalized variables using Cauchy—Schwarz:

‘/Vaw.va(;—zXTz(Moa(t)i))'
/ Vow. Ve (%(1 + (- 1))rz(Moll(t)i))‘

1 —
EkZ(cr—sc)+2 €0|:

For the first term in the above equation, using (4-33) and the modulation estimates (4-43) and (4-44), we get

L+2

(n.k) . 0,1), (0,k) 5 (n,k) (n.k) 9S;

= ) BT+ @i—anb b = b ‘VU(XBI (Ti 2 ab(n,k)))
(n,k,i)eT j=2 i

A ~ z . ~
T AoV Ay + | T by )‘MV"“(QI,)an
ol

A
Under the trapped regime bound (4-25), one has /&2, + s7L=3 < g=L=1+80—n(1=80) Moreover, from
the asymptotics of Q, AQ, Tl.("’k) and §; ((2-1), (2-7), Lemma 2.10 and (3-8)), and the bounds on the
parameters (4-27), one has

=

‘V"Moa(s)lle + ‘ Ve (A—lz(x — l)fz(m(t))ll)) ” ] (5-24)
L2

Vo Mod(s)|| .2

L2

+

< C(L,M)(y/&25, + s—L—3)[||V°<AQ“b)||Lz + VI Op) 2
L+2

k
+ Y Vs T e+ Y

(n,k,i)eT j=2

3S;
.0
ob™

IVO(AOp)ll2 <C. VI (Op)ll2 <C,

L+2
Vo (;(B1 95 )
8bi(n,k)

k
Y Ve T+
(n.k,i)eT j=2
<C(L)< C(L)SL+SUP05n5n0 8n—80—5— (O_ZSC) +C(L)n+C(L)sL+Sup05"S"0 8,,—80—%—7(0_2"") +C(L)r]—%‘

L2

All these bounds then imply that for the modulation term that is located at the blow-up zone in (5-24),
we have
a_ (0=sc)
~ C(L.M)JE gLAsupo<n<ng Sn—8o—5 -7 +C(L)n
s Ve VMol < B ,
A2(0—=sc)+2 A2(0—sp)+2 ¢L+1-80+(1-8()n
C(L,M)/&s

< .
- /\2(0'—35)-}-2 s1+(%_5‘1p05n§n0 8,,)4-%—6‘(1,)77

We now turn to the second term in (5-24). The blow-up point z is arbitrarily close to 0 by (4-51)
and from the expression of the modulation term (4-33), all the terms except rz([% + bgo’l)]AQ +
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[bgl,') + Z)TS]'VQ)l/A have support in the zone {|x —z| < 2B1A} C B(0, %) because B1A < 1. This
means that from the modulation estimates (4-43)

1 . 1 A
HVU(A—Z()(—I)IZ(Mod(z)i)) = HVU(A—Z()(—D‘EZ([A +b° 1)}AQ+[Z)(1 Dyl ]VQ) ))

Cllg+o™|+3+5)]_c
— 22 — \2gL+1°

L2

We insert the two previous equations into the expression (5-24), yielding
‘ / vawim.V”(ixrz(Moa(t)l)) < O Mo .
A2 x 12(0—s0)+2 1+ (§=supozp=ng 8n)+ 73 =C(L)n
The error term. As |z| < 1 by (4-51) and B1A < 1 by (4-27) and (4-52), from the expression of
the error term (3-36), all the terms except 1 (bgo’l)AQ + bgl") .V0)1/, have support in the zone
{lx —z| <2B1A} C B(O l). Therefore, making the following decomposition and coming back to

)
renormalized variables, using the estimates (3-32) and (4-43), one computes

1 -
/ Vo Win. V? (A—ZXTZ(%Q)

IVoellz ( IV P2 -
= 12(0—s0)+2 + ” VG((X - l)fz(‘/fb%)) ”Lz

(5-25)

- Aa—s¢-+2
C(L)Vé&s Vel 12 (0,1) (1)

T 200-s)+2 g1+ 5 +FE—C(L)n | A0—Sc+2 [VOO=D (w77 AQ b1V Q) 1) 12
C(L)Vés L C [VoellL2 (lb(0,1)|Aa+a—sc+|b(1,')|kl+o—sc)

T )\ 2(0—sc)+2 SH—%-FU_ZSC —C(L)n 22(0=sc)+2 V71 1
C(L)VE&s

= 1200—s) 21+ 5+ C—C(L)n (5-26)

The nonlinear term. First, coming back to renormalized variables, as NL(g) = Zk - C P Qp —k gk , and
performing an integration by parts we write

VU+2—(k—1)(a—sc)8H “Vo 2+ (k— 1)(a—sc)(QP —k k)HLz

p
‘/V(’winbvo(NL(wint)) S C Z ” Az(a_sc)'i'z
k=2
(5-27)
We fix k, 2 <k < p, and focus on the k-th term in the sum. The first term is estimated using interpolation,

the coercivity estimate (C-16) and the bound (4-25):

—2=tk—D(o=sc) 2—(k—=1)(c—s¢)
25y —0 ”VZSL{;‘” 5 257, —0
L

|vot2=k=Dl=se)g) 5 < IV, ,

1_2—(k—1)(0—Sc) 2—(k—1)(o—=sc)

S C(L,M) /go- 2s7,—0 \/SZSL 257, —0
C(L,M.K,,K>)

- S(OZ ic;x)K_H k— 1)(0 sc)+ +0(\0 scl+Inl

(5-28)
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For the second term in (5-27), as Op = O((1 + |y])~2) by (3-29) and (4-27), we first use the Hardy
inequality (B-7):

2(p=k)

SCHvO’—Z-F(k—I)(O’—S(y)'F p—1 (Sk)”L2 (5_29)

” Vc—2+(k—1)(o—sc)(Q'Iz;—kgk) HL2

We write

0—2+(k—1)(0—sc)+% =o(n,k)+ 8. k),

where o (n, k) := E[G 24+ (k—1)(o—sc) + 2(” k)] e Nand 0 <§(n, k) < 1. Developing the entire
part of the derivative yields

” yO—2+ k=1 (0—sc)+ 2L ()] 2 < Z (5-30)

(wi)1<i <k €NK9

i lwil=o(n.k)

L2

k
Vb’(cr,k)( BEZ 8)
i=1

Fix (1i)1<i<k € Nk satisfying Z{;l |ui| = o(n, k) in the above sum. We define the following family
of Lebesgue exponents (that are well defined since o < i):

2
é::%_#, pil{:: %_0—|/Li|d—5((7,k) for 1 <i <k.
One has p; > 2 and a direct computation shows that
1 11
p_j i#j E 2

We now recall the commutator estimate

IV3 uv) e < CIVoulpei [v]|lLr2 + CIVI 0] 0 |lu]

Lp] | LP/2
for
1 1 1 1 1

- T

pr p2 Py Py 4
provided 1 <gq, p1, p} <+ocand 1 < p,, p} < +o0. This estimate, combined with the Holder inequality
allows us to compute by iteration:

k
i@ ( IEZ e)

e

L2

8(o,k
< Cl|a"1 @R ¢ -1+ ClMeLm

L \=i=27P;

k
vi (@) ( IEZ 8)

=2
k
, 1_[ M ¢
2
i=3 L
k
vb’(a,k)( BEZ 8)

=3

k
1_[ otig
i=2

—1
LG-)

k1)t
i=3 Pj

k
8(o.k i 8(o.k
< Clla*+0@Re| o [T I8 sllprs + Cl13* el o 34200,
=2

+ C 9" el o1 1972¢]| Lo —1

Tz
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k
8o,k i 8(o,k :
< Clla"+0@Rg| L [T N0 sllprs +C 13427 o [T 186l Lm
i=2 i#2

k
vS(o,k)( EZ 8)
i=3

+ Cll0" e|| Lo [|0"2¢] Lr2 (L)
L\2 pP1 P2

k k
S48 ,k .
<CY 94+ o TT 18"l

i=1 =1, j#i
From Sobolev embedding, one has on the other hand that
|91 H5@Oe|| 4 8% e Lo < Vel L2 = C VEs.
Therefore (the strategy was designed to obtain this),

k
H Y8 ( EZ 8)

i=1

k
S gg .
L2

Plugging this estimate in (5-29) using (5-30) gives

H Vo—2+(k—1)(0—56)(ég_k8k) HL2 <C \/Zk'

Injecting this bound and the bound (5-28) in the decomposition (5-27) yields

C(L.M.Ky,K2)/Ey k-1
'/Vﬂwint.VU(NL(wim))‘f P2 s G OB 2 e ) - (3D

The small linear term. One has L(s) = —p(QP~! — 0P ). The potential here admits the asymptotic
0P~ — QP=1 <|y|~2~* at infinity, which is better than the asymptotic of the potential appearing in the
linear term Q?~! ~ |y|~2 we used previously to estimate it. Hence using exactly the same techniques
one can prove the same estimate

/ \Ad Wint-

End of Step 1. We come back to the first identity we derived, (5-22), and insert the bounds we found for
each term in (5-23), (5-25), (5-26), (5-31) and (5-32) to obtain

C(L,M. Ky, Kr)\/E
T A200-s0)+2 ¢GRS o (=)

(5-32)

1 — ~
’/ Ve wint-va (_Hzgiwint_ﬁxfz (MOd(Z)% +Wb)1\)+NL(wint)+L(wint)) ‘

B Ve [C(L,M, K1,K>) C(L,M,K>)
A200—s0)+2 g G+ | ST HO(ET) T g+ (g _SUPO§n<n08n)_C(L)77
C(L) C(L,M,K1,K») & k-1
sTGERE A -CW S ro(TEe) ( = ) ] 639



NONRADIAL TYPE II BLOW UP FOR THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION 197

Step 2: the last three terms outside the blow-up zone in (5-22). By a change of variables, we see that
the extra error term (4-40) is bounded:

IV R p2(gey < C.
Then, the extra linear term in (5-22) is estimated directly via interpolation using the bound (4-28):

|V (=AxB©,3w—2V B3 -Yw+ ptz Q’j_l(xf;(_ofl) — XB(0,3)W) HLZ(Rd)

1 1

T 257 —0 257 —0
< wllgo+1 = ||w||H o wll o,
< C(K\ K 1 257, —0
= C(K1. K2) A251—0 gL+1=80+1(1-8))
2
1 25 —0 C(K1, K

SC(Kth)( /) T= i : (72—)s F

AZSL—GSL+1—80+VI(1—80) 12S1+i+0(+)

because 1/A25.79 sLH1=80+n(1-80) 5 1 in the trapped regime. For the last nonlinear in (5-22), one has,
using (D-4) and (4-28),

”(p—l)(%+0—sc—0)/(2u—0)

INLl|go < Cllwllge|w]?7) H25L

< C(Ky)lw

d+cfv_

1
stL—sCSL-i-l—SO-H)(l—S())

1
24145 +0(T=H1)

2
35 =o
SC(KLKz)( ) - <C(K1,K>)
A

The three previous estimates imply that for the terms created by the cut in (5-22), we have the estimate
s¢)

(we recall that A975¢ /s = + O(sy ") from (4-52))

\/50 C(L,M’ Kl, KZ)
A20—s)+25 ST+ T HO(HETE)

(5-34)

'/ VO win. VO (L + E+1\Ti)‘

Step 3: conclusion. We now come back to the first identity we derived, (5-22), and insert the bounds
(5-33) and (5-34), yielding

E A2(0—s¢)

< \/E |:C(L7MaK17K2) C(L’M’K2)
22(0— SC)+2S((;£.S((‘X)€+1 SﬁJrO(w) S_%-"(%_SUPOSnsnO 82)—C(L)n
C(L) C(L,M,K1,Kz) & k=1
s (U—Ac)lx_l_o[ C(L)T’] Sﬁ_i_o(nq%zfsc) ( o— s( ) :|

As the constants never depend on sg or on 7, as L >> 1 is an arbitrary large integer, 0 < 0 — s, < 1,

5 —SUPg<p<n o 8n > 0, we see that for 5o sufficiently large and 7 sufficiently small, the terms on the

right-hand side of the previous equation can be as small as we want, and (5-21) is obtained. O
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Proposition 5.5 (Lyapunov monotonicity for the low Sobolev norm of the remainder outside the blow-up
area). Suppose all the constants involved in Proposition 4.6 are fixed except sg and n. Then for sg
large enough and n small enough, for any solution u that is trapped on [sg, s") the following holds for
t €]0,2(s")):

C(K1, K>3)
2 1< o. 5-35
It [HUJeXt”H ] = s O(n—Hz_sc))LZ |wexell ( )

Proof. From the evolution equation of wey, given in Section 4B1, we deduce

d
ar “wextH)zL[rr(Q) < Cllwexll o () H Awext + Ayzw +2Vy3.Vuw + (1 - x3)w? ”HU(Q)- (5-36)
For the linear terms, using interpolation and the bounds (4-25) and (4-28) one finds

||Awext + A){3w + 2VX3.Vw||HO'(Q)

< Cllwextll go+2(q) + Clwllgo+1(q)

2 2 1
< Cllwenilgoy " llw ext||;;§;"m,+0||w||mi§) "l 5 e
<C KK 1 ZSL—O' 1 257, —0
= C(K1. K2) 285L—Sc gL+1=80+1(1-80) + A25L—sc gL+1-80+n(1—58()
<C(Ki, K ! 2SLZ_J<CK K !
- ( L 2) AZSL—SCSL+1—50+T](1—56) - ( 1 2) 2s1+%+0(W+GL_M)

because 1/ A2sL=se gL+1=80+n(1=80) 5, 1 in the trapped regime from (4-52). For the nonlinear term,
using (D-4), interpolation and then the bootstrap bound (4-28),

1A= x3)w?llzo < Cllw?| o @) < C”w”HU(Q)”w“p

4 5 to—sc (Q)
(p—1 )% 23L o C(Kl’ KZ)
SC(Kl)”w”HZYL(Q) C(Kl)”w”HZvL(Q) = 1+L+0("+U_SC)/\2‘
2L L
Injecting the two above estimates in (5-36) yields the desired identity (5-35). O

5C. Lyapunov monotonicity for high regularity norms of the remainder. We derive Lyapunov-type
monotonicity formulas for the high regularity norms of the remainder inside and outside the blow-up
zone, x5, and || Wex|| gr2s, , in Propositions 5.6 and 5.8. In our general strategy, we have to find a way to
say that w is of smaller order compared to the excitation y7;(&p,1/) and does not affect the blow-up
dynamics induced by the latter. This is why we study the quantity &g, : it controls the usual Sobolev
norm H 2L and any local norm of lower-order derivative, which is useful for estimates, and is it adapted
to the linear dynamics as it undergoes dissipation. Finally, for this norm one sees that the error ‘ﬁb is of
smaller order compared to the main dynamics of )(rz(Q bt ) (this is the n(1 —§;) gain in (3-33)).

Proposition 5.6 (Lyapunov monotonicity for the high regularity adapted Sobolev norm of the remainder
inside the blow-up area). Suppose all the constants of Proposition 4.6 are fixed, except so and 1. Then
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there exists a constant § > 0 such that for any constant N > 1, for so large enough and n small enough,
for any solution u that is trapped on [sg, s), the following holds for 0 <t < t(s’):

d( &y 1 1
E{ 22(2s—L—s0) +0w,m) 22Cs1—s0) gL+ 1=80+n(1-8)) 523L+SL+1—80+77(1—8(3)
1 [ cL.M C(L.M) /€5, L CL.M)

<
= 22@se—se)+2g | 2L+2—280+2(1-8) ' (L+1-80+n(1—8}) N26

SZSL

1
e i(£1+O(L))k—l C(L,M,K;,K>) C(L,M.K1,K3)\/Es,
o ol U sEHO(ETe) (L1804 (1-80)+ 57 +0(T=F+)

where O p(f) denotes a function depending on time such that |Op p(f)(t)| < C(L,M) f for a
constant C(L, M) > 0, and where E; and &5, are defined in (4-9) and (4-7).

j| , (5-37)

Remark 5.7. Equation (5-37) has to be understood the following way. The O(-) in the time derivative
is a corrective term coming from the refinement of the last modulation equations; see (4-44) and (5-2).
It is of smaller order for our purpose so one can “forget” it. On the right-hand side of (5-37), the first
two terms come from the error 1, made in the approximate dynamics. The third one results from the
competition of the dissipative linear dynamics and the lower-order linear terms that are of smaller order
(the motion of the potential in the operator H; j,, involved in &5, , and the difference between the
potentials 7, ( Q b1/2)° ~land 7,(0Q; /)P ~1). The penultimate represents the effect of the main nonlinear
term, and shows that one needs &, smaller than s~ to control the energy transfer from low to high
frequencies. The last one results from the cut of w at the border of the blow-up zone.

Proof of Proposition 5.6. From (4-41) one has the identity

d SZSL _ d S 2
Z(AZ(ZSL_SC)) - E(/ |HZ’%w11’1t|

1 P
= —2/ H;,L% wintH;’L;_lwint + / H;LL wintH;Ll (ﬁXTZ (_MOd(t)i))

) )
1

sL o, SL
+2 HZ,)l\wmt|:HZ,)ll|:)L2

3 d

Xlz (_wbi) + NL(wint) + L(wint) + _(HSLl)wint
X dt Z.x

+2 / H'™' winH, %(Z +NL + R). (5-38)
Iy 2

The proof is organized as follows. For the terms appearing in this identity: for some (those on the second
line), we find direct upper bounds (Step 1), then we integrate by parts in time some modulation terms
that are problematic to treat the second term on the right-hand side (Step 2), and eventually we prove
that the terms created by the cut of the solitary wave (the last line) are harmless and use a dissipation
property at the linear level (produced by the first term on the right-hand side) to improve the result (Step 3).
Throughout the proof, the estimates are performed on R?, as wiy has compact support inside €2, and we
omit it in the notations.
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Step 1: brute force upper bounds. We claim that the nonlinear term, the error term, the small linear term
and the term involving the time derivative of the linearized operator in (5-38) can be directly bounded
above, yielding

1 . d
SL . _ . SL .
” Hz,% |:NL(U)mt) P Xtz (Y 1) + L(wmt)} +— (st%)wmt

L2

: E (Ve TN O MKy Ky)
fm[muz( )
k=2

N T

1
C(L) |H5Lg|? \2
SL+1_80+7I(1_80)/ + C(L, M)( 1 + |y|28_ (5-39)

for some constant § > 0. We now analyse these four terms separately.

The error term. We decompose between the main terms and the terms created by the cut. The cut induced
by ¥ := x(Ay +z) only sees the terms bgo’l)AQ + bgl").V O because all the other terms in the expression
(3-36) of ¥, have support inside B4 (2B;) and because |z| < 1 by (4-51) and By < % by (4-52). For the
main term we use the estimate (3-33), and for the second the bound on the parameters (4-27) and the
asymptotics (2-7) and (2-1) of AQ and 00,

1 G 1 1 i
Sr SI sL. B
‘ HZ,% (ﬁ){fz‘ﬁb,;) L2 = CHHZ:i(A_ZTZ%’i) L2 +CHHZJ (ﬁ(l X)Tzwb,i) .
| HSE |2 1 1) L) 5
< i +12(ZSL_SC)+4/\HsL[(l_X)(bl AQ +5) v 0|
C(L) C)\2(@=-1) C
= 2 —set2 gL+2—8orn(1=5) s e
C(L
= @ (5-40)

= )2sL—sc+2gL+2=80+n(1-87)

since o > 1; hence
AZ(a—l) 1

+
s

<1,

since 1/A252=se+2gL+2-80+n1(1=8y) 5, | in the trapped regime from (4-52).

The nonlinear term. We begin by coming back to renormalized variables:

5p—k

_IHE N2 _ 2”: IH*=(0y " ")l

- A@sL—so+2 — h A @2sL—sc)+2
=2

(5-41)

”HZS’L% (NL(wint))||L2

because NL(g) = Z/f:z C]f Qf “kek We fix k with 2 < k < p and study the corresponding term
in the above sum. One has H = —A — pQ?~!, and Q is a smooth profile satisfying the estimate
2
O = O((1+y|)” »—T1), which propagates to its derivatives from (2-1). Similarly, from (4-27) and (3-29),
~ 2
one has Qp = O((1 + |y|)” »—1) and it propagates to the derivatives. The Leibniz rule for derivation
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then yields
Apr—k |8”(ek)|2
IJHE QP 2, < ey Y e
neNd L N I
0=<|u|=2st
k 5
=Cw) 1l e (54
(Mi)1<i<k€de 1 + |y| =l tasL— Zi:l lisil
Y lwil<2s,
We fix u; € i

Nk with > |mil1 <2sp and focus on the corresponding term in the above equation. Without
loss of generality we order by increasing length: || <
Case 1: |ur|+ 2(1’ k)

< | |. We now distinguish between two cases
+2s1 — 21—1 |ii| < 2sp. As one has

(r—
ih + 278 oy Zluz|1>o
P i=1
because the |u; ] are increasing and ) |u;|1 < 2sr, using (D-1)
g2 Slul—luli =220 25) —o—F Iuj 1+l + 2220
/ 4(p=k) =CM)&s e & B
1+ |y| p—1 +4SL 2Zz—l |Ml|1

SL

As the coefficients are in increasing order and L is arbitrarily very large, for 1 < j < k we have
|wil + % < 2sy7,. We then recall the L*° estimate (D-3)

2sp—luili—

10" ¢ellLoe < VE  *ET°

Il +7—U
The two previous estimates imply that

2-win=$ o1 )\/_ T 0().

k : —
Miiloe? G [T el
4(p— )+4SL 22 |:U' |1 4(p7k)+4sL_2Z/'< |M'|1 & Loo
L+ |y[ 7= = L4yl 7=1 = =

2(k—1)sy —(k— 1) ) 2[) 1 (k— 1)7_k0+23L+2p 1
<g 287 —0 +O(L2)5 287 —0 +0(L2)
= ¢o 2

SL
gk_1+_2+(§:1411(¢(;_sc>+0(ﬁ) 1+2—(k—1)(0—Sc)
— to

£ 25y —0 +0(ﬁ)
2s7,

1
e PO INST LM Ky k)
EgZSL —o—sc
S

2

—. (5-43)
G+ E+O(IEr=setLly
Case 2: |ur|+ 2(p k) + 251, — 21—1 |pi| > 2sg,. This means 2(1’ k)

1—1 |/,Ll| > 0. Hence, there
are two subcases: the subcase |pu;| =0for 1 <i <k —1 and the subcase |r—1| = 1 (because the u;
are ordered by increasing size |u;|). If ;| = 0 for 1 <i <k — 1, then, using the weighted L°° estimate
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(D-2), the coercivity estimate (C-16) and the bound (4-25), we obtain

k . —
/ [T 104 ef? _ / i
1_|_|y|4(,f7 1)+4sL 22, 1 il 1+|y|4(,f’ 1)+4sL —2| k]
€ 2(k—2
< ” e
L+ Iyl

1
_ 5;+0(L) k=1 (L, M, Ky, K2)Es,
s (0—s¢)

) g+ Eo(rEempEt)’

If |g—1| = 1, then, using the weighted L°° estimate (D-2) for Ve, the coercivity estimate (C-16) and
the bound (4-25), we obtain

k . _
/ [Ti= [0"ie)? :/ |gHe—1g|2|e|2(k=2)
Ly ot =2 X bl L [y| ot Tese =2l _p
a/“l'k—lg 2(k—2
< o lel 7€y,
L+ |y| 7= —10L
1+0(4)

- (80 - )"‘1 C(L, M, Ky, K2)&s,
s—(0—=sc) SH_%_,_O(W)
In both subcases, we have
k . 1+0(4) gk
[ [Tizy [0"e]? - (Ea (L))" P C(L M Ky K2)Ey, (5-44)
|4 |y P s 2 Xl \ s7O075) GLHEro(rtesetL=ly

Now we come back to (5-41), which we reformulated in (5-42) where we estimated the terms appearing in
the sum in (5-43) and (5-44), obtaining the following bound for the nonlinear term’s contribution in (5-38):

” H;Ll (NL(winy)) ”L2

S (\/S—H-O( ))k L' C(L, M, K1, K) (5-45)

= pemy: — —-
A @2sL—s )+2 c S1+%+0(n+<r s£+L )

The small linear term and the term involving the time derivative of the linearized operator. We claim that
there exists a constant § := §(d, L, p) > 0 such that

s 2 %
C(L,M) (/ |H5Lg] ) . (5.46)

d
S . SL .
HHzai(L(wlm)Hdz(Hz,i)w“" =i\ T 2

L2
We now prove this estimate. The small linear term is in renormalized variables by (4-36) and (4-37):

2

J 1t o = e [ (@77 =6 e
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For v € N, one has the following asymptotic behavior for the potential that appeared, from the bounds
on the parameters (4-27) and the expression of Q » (3-29):

1 C(n) 1 Cw
s1+ |y|a—C(L)n+|u| 514+ |y|8+lul

-1_ Ap-1
907~ = 0| =
for 1 small enough, because o > 2, and for some constant § that can be chosen small enough so that

0<s«kl1l, withd< sup §, and § < %d - %J/n0+1 —SL. (5-47)

0<n<ngo

(This technical condition is useful to apply a coercivity estimate for the next equation; all the terms
appearing are indeed strictly positive by (1-25).) We recall that H = —A — pQP~!, where Q is a smooth
potential satisfying

C(w)
|8MQ|§TW-
L |y[7=r T
Using the Leibniz rule, this implies
[erer - gg ey’
C(L M1 g|gM2 C(L H5Lg|?
JCw g uellpe ) e
52 1+|y|4sL+28—2m1|—2|M2\ 52 1+|y|28

lwil<2sp,i=1,2

where we used for the last line the weighted coercivity estimate (C-16), which we could apply because
6 satisfies the technical condition (5-47). We now turn to the term involving the time derivative of the
linearized operator in (5-38). Going back to renormalized variables, it can be written as

d SL 2_ pZ(p_l)Z < i—1 p—ZZS AS p—2 Sp—i g
/‘EHZ,iwim — AZ(ZSL—SC)+4;/(H (Q TVQ-FTQ AQ H L o .

For u € N4, one has the following asymptotic behavior for the two potentials that appeared (from the
asymptotic (2-1) and (2-7) of Q and AQ):

C(n)

_ _ C(w)
Q)|Sm for 1 <i <d, and 104(QP2AQ)] <

(P2, _—
|0 (Q Vi =1+ |y[2te

Therefore, as H = —A — pQP~!, where Q is a smooth potential satisfying

C(w)

040 < ——F——,
1+|y|%+|ﬂu|l
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using the Leibniz rule and the two above identities,

2 2
d C(L)( As Z %) |941 | |012¢|
SL o0y SL . A A
'/ Hz,%wmtdt (Hz,% Wint| =< A’Z(ZSL_SC)J'—“ Zd / 1+|y|4SL+2—2|M1|—2|M2|
i €N
[ 4] 152&,1—1 2
C(L) |H5Le|?
= 22@2sL—sc)+4 2 Z / 1+|y|28 (5-49)

|Mi|1<2SL,l—12

for § < «, 1 being deﬁned by (5- 47), where we used the weighted coercivity estimate (C-16) and the
fact that |)i—s| ~ s 1and ‘ ‘ ~s"
proved, (5-48) and (5-49), to obtain the estimate (5-46) we claimed.

End of the proof of Step 1. We now gather the brute force upper bounds we have found for the terms we
had to treat in (5-40), (5-45) and (5-46), yielding the bound (5-39) we claimed in this first step.

Step 2: integration by parts in time to treat the modulation term. We now focus on the modulation term in
(5-38) which requires a careful treatment. Indeed, the brute force upper bounds on the modulation (4-43)
are not sufficient and we need to make an integration by parts in time to treat the problematic term bl(j,l?
We do this in two steps. First we define a radiation term. Next we use it to prove a modified energy estimate.

Definition of the radiation. We recall that ap = Z(n,k,i)EI bl-(n’k) Tl-(n’k) + ZL+2 S;, where T(n k)4
defined by (2-26) and S; is homogeneous of degree (i, —y — g’) in the sense of Definition 2.14; see (3- 8).
We want to split o, in two parts to distinguish the problematic terms involving the parameters bg;’k). For

i =2,...,L+2, as S; is homogeneous of degree (i, —y — g’), it is a finite sum
(n.k)
S bl withn! = [T ") (5-50)
Jeg() (n,k,i)eT

where 7 (i) is a finite subset of N*Z and for all J € J(i), |J|3 =i and f is admissible of degree
(2|J ]2 —y — &’) in the sense of Definition 2.11. We then define the following partition of 7 (i):

JiG) = {J € 7G). I =0 forall 0<n <no, 1 <k <k(n)}.
Jo(i):={J € 7(0). || =2 and A(n.k, Lp) € T, I > 1},
J3(i) := T O\[T1() U F20)],

Yo bl fr Sii= ) b,

JeT (i) JeTgs(i)

(5-51)

and the following radiation term:

L+2 L+2
= HL (XBI[ S a4 Z s D + 3 H(x5,8) - xp H:Si.  (5-52)
0< =2
1<kn<<krz;)z) l
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From (5-51), for all J € J3(i) there exists n with 0 < n < ng such that J]E":’k) >1land |J|>3. As
dp’ > 0, this implies

VJ e J3(i), |J|la>L+2—40. (5-53)
Using this fact, (2-7), the fact that H*L T(" k) = 0since s;, > L, forall 0 <n <ny, (5-51) and (4-27),
the radiation satisfies

C(L,M) C(L,M)

I&llz2 = (LA1-80+n(1=8))" I1HEl2 = (L+2-80+n(2—8))" (3-54)
C(L,M) C(L,M)

< < -
IVEllL2 = gL+3=80+n(3-8;)" IAgllL> = gL+1=80+n(1=8) " (5-55)

We eventually introduce the remainders

L+2
._ (n.,k) . (1), (0.1) _ )y (1.0 dS;
Ry = HSL()(B1 E (bi:; +(21—o¢n)bin b; bl'_z_l (Tln + E b(" k)))
(n,k,i)eT,i#Ly

A - , ~
- (TS + bio’l))H“AQb - (i—s + byt )).HSLVQb

(k) 1 (0,1) [ (n k) 5~ 98]
n, ) n, J
+ HSL (XBI Z (2Lp —an)by " by (TL,, T Z p k) ))

(nskaLn)GI .]=2 a L
L+2 s s
(n.k) ; (0.1) s dS; s 0S)
+ ) QLa—an)b b} ( > H (18, W) — g H" 20
(nak:Lﬂ)EI ]=2 Ln Ln
(nk) i, 0.0y (N 03
e ) 0,1 J
Ry = Z (b mK) 4 2L, a”)bL'; bl )( Z XBlHSL ab(n,k))’
(n5k7Ln)€I ]=2 Ln
k 0
Ry:= 30 bt
(n.k.i)€Z,i#Ln b
so that they produce, by (5-52) and (4-33), the identity
HS: (Mod(s)) = 05€ + Ry + R2 + Rs. (5-56)
The remainder R; enjoys the following bounds by (4-43), (2-22), (3-8), (5-51), (5-53) and (4-27):
C(L,M) C(L,M)&,
IRz = T s a—spm 2 (5-57)
From the definition (5-51) of S; and the construction (3-25) of S}, one has
L+2
YoHS == > bOVOAT — L, —a T = 3 b ) VAT

(n,k,Ln)€T (n,k,Ln,)€T

+p(p—1)QP—2( Z b(';k)T(nk))( Z bi(n’,k’)Ti(n’,k’))'

(n,k,Ly)eT (n' k' i)ez
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As HSL T(" k) — 0 since sg, > L, for all 0 <n <ny, using the commutator identity (2-24), the asymptotic
(2-22) of T(” ©) (4-27) and (2-2) (as & > 2), one has

L+2 4 2
35, C(L)
1 4428 gL+ j - ’
a2 >ot) =5
j=2 0bp,

where § is defined by (5-47), from which we deduce, using (4-44),
C(L,M) . C(L, M) /&,
S .

GL+a

|+ yD*HP HRy | < (5-58)

Finally for the last remainder, from (5-52), (4-43), (4-27), (4-25), (2-22) and (5-51), for s¢ large enough

one has the estimate
C(L,M)
GL+2—80+n(1-5))

IR3]lz> = (5-59)

Modified energy estimate. We now prove the modified energy estimate (compared to (5-38))

d . 1
i [zt a7
1 |: C(L M) i C(L,M)\/EZSL +C(L M)\/E( |HSL8|2)

/\Z(ZSL—SL)-FZS (2L+2-280+2(1—8)) ' gL+1-80+n(1—5—0)) 1+|y[28

0(4)\k—1

Ve tolL C(L.M.K{.K>

+&25, § ( . ( ) _Z/H;LlwintHZSL1+lwint
X

% s%+0(7l+i—sc)

k=2 §

A
+2 / HZSL% wimHZsL% (L+R+NL). (5-60)

From the time evolution (5-56), (4-32) of § and w and because the support of 7 (£;,,) is disjoint from
the one of L, R, and NL, one gets the following expression for the left-hand side of (5-60):

d s,
[

2 2
+1 +1
:_2/H;,L)1LwintHZS,L)1L wint_m/HZS,L){wimTZ(Rz,i)_)LZ_SL/TZ(S}\)HZS’L)]L Wint

w2 [ |t ey )][ (L) =557 G DN )+ L)

d S 1 As AS zs
+E(HZ,%)wim_/\2+—2sl_Tz ((R1+R3+TAE+2SLTS_TVS)}L):|

2 S
i / v (€T (R, 1)+2 / 'y winH Y (LANLAR). (5-61)

We now analyse all the terms in this identity, except the first one and the last one, which we will study
in the next step. Using the estimate (5-58) on the remainder R, going back in renormalized variables
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and using the coercivity (C-16), one gets for the second term in (5-61)

H e
C [ s IR,

<C(L,M),/5ZSL (( |5t e|? )%+ 1 )

= 22@sL—sc)+2g 1+|y|28 sL+3

2 s
s | M (Ra )] <

Going back to renormalized variables, integrating by parts and using the estimate (5-54) on H ¢ gives
for the third term in (5-61)

C(L,M) Vs,

A2(2sL—sc)+2 SL+2—80+71 2-6)°

+1
[ e i <

‘AZSL

To bound the fourth and the fifth terms in (5-61) from above, we go back to renormalized variables and
use the bound (5-39) on the error, the nonlinear term, the small linear term and the term involving the
time derivative of the linearized operator we derived in Step 1, together with the bounds (5-54) and (5-55)
on &, A€, V& and the fact that

A

= <Cs™ ' and 'i—s sz_l_aT_l

in the trapped regime, and the bound (5-57) and (5-59) on the remainders Ry and R3, yielding

‘ / [H Wine+ Al tz(51 )H H’" (NL(wmt) zz(¢b1+(x 1)Mod(?) 1 )—I—L(wmt))

1 As z 2
+E(stfi)w—/,\2+—2urz((R1+R3+7AE+2SLTSE—7S.V§)I)] MSLH/IZ(;; )ez(R; 1)
A

1 |: C(L.M) C(L,M) /&, Lo M)\/T( |HSL8|2)

<
T A2@sL—sc) 25| (2L+2-280+2(1-8;) L4180+ (1-6—-0") 1+|x|28

p 1+0(+) k-1
+52sLZ(\/g ) C(L’M’KI’KZ):|‘

R

k=2

We finish the proof of the bound (5-60) by inserting into the identity (5-61) the three previous bounds
we proved on the second, third, fourth and fifth terms.

Step 3: use of dissipation. We find an upper bound for the last terms in (5-60) and improve the energy
estimate using the coercivity of the quantity — [ H sttlgHsLg,

The dissipation estimate. We recall that H = —A — pQP~1, the potential —p QP~! being the Hardy
potential

po1_ (=22 45(p)

pQ
4]y|?
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for some constant §(p) > 0 by (2-5). Hence, using the standard Hardy inequality one gets for the linear term
/ H’ %wintHz,%HZSL% Wint

— S S
- )Lz(zs L sL)—i-Z/H teHH™e

1 _
:—AZ(ZS—L—SC)-FZ (—/'VHSL8|2+/pQP 1|HSL8|2)

1 d-22-18(p)  8(p) . N
= A2@2s—L—sc)+2 (|: (d_2)22 +2(d_2)2:|/|VH 5|2+/PQP 1|H 8|2)

_72_1 SL o2
Az(zs—L—sc)—kz 4 |y|2 2(d _2)2
+ (d —2)*>—$(p) / IH“‘LSIZ)
y[2
5(p) |Hel? §(p) 2
_8/\2(2s—L—sc)+2 |y|2 - 2(d _2)2}2(2s—L—s0)+2 f |VHSL8| : (5-62)

Bounds for the terms created by the cut. We study the last terms in (5-60). From its definition (4-40), and
as A+ |z| <« 1 by (4-52) and (4-51), the remainder R is bounded by a constant independent of the others:

|H5 Rllz2 < C. (5-63)

For the nonlinear term, for any very small « > 0, by (D-4), (4-39) and (4-28),

1H NL|,-<C Z [wF | s,

k=2
p
k-1
<Cllwlgas. Y lwllahzic
k=2
V4 d/2+Kk—0o d/2+Kk—0o
(k—1)(1—452+E (k—1) (452t~
<Clwllgzs. Y lwllgo T wll s, T
k=2
1 1+(p-)4eHce
<
_C(KI’KZ)(AZSL—SC SL+1—50+'7(1—56))
1 1+(p 1)2/(1) ly) oo_sc-i-lc
=C(K1, K
C(K1, 2)(A2s1‘ se gL+ 180+ 1(1-5, ))
1 1+2vL o
<(C(Ki, K
_C( 1, 2) )LZSL_SCSL+1_80+77(1_86))

_ C(K1.K>) (5-64)
2281 —sc+2 gL+2=80+n(1=8))+ 5% +0(T=4+1)
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because 1/ AZSL=Se gL+1=8o+n(1-8;) 5, | by (4-52), if k has been chosen small enough. For the extra
linear term in (5-60), performing an integration by parts, using Young’s inequality for any & > 0, (4-25)
and (4-28) give

‘/H;LIU)intH;LIZ‘ = ‘/H;LlwimH;Ll [—Ax3w—2V 3. Vu+pr 05 ()7 —p3)w]
Iy Iy Y i) A

C
<CIH" windlp2 |wl s, +CellVH wiml|iz+; [ windl1 725,
!A ’)\,
C(K1,K>.¢)
12(2s2.—sc) SL+1—80+7](1—5(’))

C C(Ky, Ko,
© /|VHSL8|2+ (K1 K3.€) (5-65)

<
— \2@2s—L—sc)+2 22@sp—se)+2gL+2—80+n(1-6))+ 5255

= CSHVH;L% wint“iz"'

because in the trapped regime A2s ~ s by (4-52).
Conclusion. We insert into the modified energy estimate (5-60) the bounds (5-62), (5-63), (5-64) and
(5-65), yielding

d — 1 2
E Z,%wim—i_AZ_SLTZ(g%)

SL |2 %
1 [ C(L, M) C(L,M)/E, +C(L’M)@( |H e|)

<
= A2@se—so)+2g | (2L+2-280+2(1-5)) ' gL+1-80+n(1-5-0") 1+|y|28

D k—1 2
VE C(L,M, K, K 1 HSL é
523L§ :( o ) ( ’ 1 2)_S ép)/| 8| § (p) /lVHSL€|2
S

_o—sc S%+0(n+oL—3c) [v]? _2(d—2)2

C(Kviz’M’ L) V 52SL i| (5—66)

GLA1=80+n(1=8))+ % +0(T=£+1)

k=2

+C8S/ |VHSLg|? 4

For any N > 1, using Young’s inequality and splitting the weighted integrals in the zone |y| < N2 and
|y| > N? gives for & small enough and sq large enough,

HSLg|? 2 sé(p)—sCe H5L
C(L.M) ’_EzsL( | | ) B (1!?)8 /I

1+]y|? |y
SL |2 SL o|2
S C(LvM)SQ,SL +C(L,M)N28/ |H 8| - Sg(p) |H 8| S C(LsM)gzsL
N2 =2 L+ [y?5 16 BE N?28

Finally, from the bound (5-54) on the size of £, one has
d s 1 2
E{ / (Hzfiwﬂm G (gi)) %
d Easy d 2 1 5
=E{m +to szSL HZ’L%WTz(E%)‘f‘H_SL(Tz(%))

d( &y d 1 1
—E{,\z(zs—L—sc) 0 Cwm 32251 —s5¢) gL+ 1-80+1(1-5;) V€2SL+SL+1—80+17(1—8(’)) ’
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where Op, p(-) denotes the usual O(-) for a constant in the upper bound that depends only on L and M.
Plugging the two previous identities into the modified energy estimate (5-66) yields the bound (5-37)
we claimed in this proposition. O

Proposition 5.8 (Lyapunov monotonicity for the high regularity Sobolev norm of the remainder outside
the blow-up zone). Suppose all the constants of Proposition 4.6 are fixed except so. Then for sg large
enough, for any solution u that is trapped on [sg, s) the following holds for 0 <t < t(s’):

! C(K1,K>)
2 SL 2 ’ /
Ieslyee, < 10w @ s+ [ o
n /t C(K], Kz)”BiL wext(t/)”L2 dt’
0 A25L—Sc+2gL+2+1=80+n(1-80)+ 2 +0 (5= )
C(K1, K

+ ( : 22{( —1)(o—s¢) o—sc+ ° (5_67)

22251 —sc) g2L+2-280+2n(1-8))+ < B 05 ) + 0 (=1-+1)

Proof. From the time evolution of wex, given in Section 4B1, we get

I e = A wer + (1= x3)0% (W?) + Ay3d*w + 2V y3. Vo w. (5-68)

We make an energy estimate for ;" wex, and propagate this bound via elliptic regularity by iterations,
which is standard in the study of parabolic problems. All computations, unless mentioned, are performed
on €2, and we omit this in the notation for simplicity.

Step 1: estimate on the force terms. We first prove some estimates on the force terms on the right-hand
side of (5-68). From the decomposition (4-10) and the evolution (4-32) of w, in the exterior zone Q\Bd (2),
8]t‘w can be written as

1+j(p—1)

k
Fw=> " Y"cw [] w (5-69)
j=0

i=1

for some constants C(u), where the inner sum is over u = (4i)1<i<i+j(p—1) € N2k(P=1) with
Zl-lilj(p_l) |wili = 2(k — j). Fix k < sp, an integer j with 0 < j < k, and a sequence of d-tuples
(i) 1<i<14k(p—1) € NFP™D satisfying Z,'l;rlj(p_l)
Wi are ordered by decreasing length: |p1| > |u2| > ---.

|ii| = 2(k — j). One can assume that the d-tuples

The case k = s;. We want to estimate the above term in the zone 2\ B¢ (2).

Subcase 1: |;1]| = 0. Using Holder, Sobolev embedding (since in that case w; < 2sy, — % for2<i <
1+ j(p— 1)), interpolation and (4-28), for « > 0 small enough,

1+/(p-1) 1+j(p-1)
I1 a“fw“ sl9wlz [T 19%w]ee
i=1 L2 i=2

1+/(p—-1)

<lwlguy [T Twlgarzrerm
i=2
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g l—o+5 2PV i 1+d /2400

1 257 —0
= C(K1. K2) (A2SL—SL-SL+1—8O+7’(1—86)
1 1= U= 1)2 D(o—sc—kK)
Sy, —0
= C(Kl, KZ)(AZSL_SCSL+1_80+77(1_8(/)))
C(K1, K>) (5-70)
— p2sL—sc gL+1=80+n(1-8))"
as 1/A25L =5 gL+1-80+n(1-8¢) 5, | py (4-52).
Subcase 2: |i1| < 0. Then u; <o forall 1 <i < j(p—1) and 0* w € LPi with p; given by
11 o—|ul
pi 2 d
by Sobolev embedding. We define i( as the mteger 2 <ipg <1+ j(p—1)such that Zio_ 11 27 <12 L and
Zi"_l pl > 2. We know iq exists because E < 1 and leflj(p D 1 > 3. We define Plo > 2
by = 5o = 1 Zio_ll 1} and § > o as the regularity glvmg the Sobolev embeddlng H¥ WHiol s [ Pio:
0

io d
5= ul+ o~ (5 ~o).
i=1

This implies that 1—[§021 o w e L? with the estimate (from Holder inequality)

iop—1 io—1 _S§—0o
257 —0
H =l owl o, [T 10 wlzn < lwlgs [T lwlae < CEOIEE,.
i=1 i=1 i=1

where we used interpolation and (4-25). Therefore, for k > 0 small enough, using Sobolev embedding,
the above estimate, interpolation and (4-25),

1+j(p—1)

io 1+j(p—1)
[ #w ]_[ame | O Iy
i=1 i=1 L2 i=ig+1
5—o  1+j(p—1) _d/2+k+lugl—o d/2+k+lu;l—o
257 — 257 — 257 —
<CKpllwl 5" T1 Iwlge 757wl ="
i=ip+1
251 —o—j(p—D)(o—sc)+U(p—D—ig+Dx
1 257 —0
<
= C(Ki, Kz)(AZSL—sC gL+1=80+n(1-8()
1
< C(K1,K>) (5-71)

A25L—5c SL+1—50+77(1—56)

as 1/A25L=Se gL+1=b0+n(1-80) 5 | by (4-52).
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End of substep 1. Inserting (5-70) and (5-71) into the identity we obtain

C(K;, K
107" wll L2(@\5¢ 2)) < (K1, K2) .
AZSL—S(; SL+1_80+77(1_80)

(5-72)

Estimate for the nonlinear term in (5-68). With the very same arguments used in the first substep, one
obtains the bound

C(K1,K>)
Nt w? < ) 5-73
197wl @\se ) = A252—Sc+2 gL+2=8o+n(1=8))+ $+0(2=5+1) 673
The case k < sy . Again, for 0 < k < sy, the same method yields
C(K1,K>)
k 1 < -
107 wll g2z —1-0 @\ 5 (2)) = o se LBt n (165t 2a 1O(1) (5-74)
C(K1,K>)
vk sy —1— < , 5-75
IVOrwlor-t-o@ston = o S st antn 10() 572)
C(Ky, K>7)
WP yais, —1— < . 5-76
197 WPl 210 (@\pa 2)) = A251—s50 gLH1=SoF+n(1=80)+ BT 10 (=5En) (5-76)
Step 2: energy estimate for 035 wey. We claim that for 0 < ¢ < ¢/,
P gy t
‘ C(K1, K>)
SL 2 S 2 1, K2 ,
135 werdlZ < 105 we O], + fo ey O
! C(K1, Ky)||3F t
+/ (K1, K2)|| t Wext( )HL2 — dt’ (5-77)
0 )25L—sc+2 gL+24+1-80+n(1-8))+ 7 +0(TF7=<)

and we now prove this estimate. From (5-68) one has the identity
07 (/107" wext 17 2)
= —2/ |Vt Wext| + 4/ 3T wexe V x3.VOTE w + 2/ 07 Wext 7 (1 = x3)w? + Aysw) (5-78)

and we are now going to study the right-hand side of this equation.

Use of dissipation. We study all the terms except the nonlinear one in (5-78). After an integration by
parts, using Cauchy—Schwarz, Young’s and Poincare’s inequalities,

l/8fLwextV)(3.V8fLw+/3“§Lwext8§L(AX3w)‘

= ‘—[AX38“:Lw8fLwext—V)(3.V8§Lwext8}uw—|—/BiLwextaiL(A)(gw)

< C[IA = x2)3" wll 2 193" wexell 2 + (1= x2)87" wll L2 V0" Wexdll 2]
< CEN = x2)d" w2 + e VI wlF,
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for any ¢ > 0. Adding the dissipation term in (5-78), taking ¢ small enough and using the bound (5-72)
on the force term ;- w gives

—/ |VaiLwext|2+4/VX3-V8§Lwa§Lwext+/aiLwextaiL(AXB(OJ)w)

C(K1, K?)
32(2s1—sc) g2L+2-280+21(1-5;)

< Cll(1 = x2)d" wlZ> < Cl3 wlz> <

C(K1, K>3)
< ’
T A2@sL—sc)+2 S2L+3—280+2n(1—80)+—2;‘_a

(5-79)

because in the trapped regime, A2s ~ 52w,

Estimate for the nonlinear term. We now turn to the nonlinear term in (5-78), and use the estimate (5-73)
for 33X w? we found in the first step, yielding

- C(K1, K2)||8§L Wext|| 1.2
©A2sL—Sc+2 SL+2+1—30+77(1—86)+%+0(W) )

‘/ 97" Wextdy" (1= x3)w?

(5-80)

End of Step 2. We collect the estimates (5-79) and (5-80) found in the previous substeps, which gives the
desired bound (5-77) we claimed in this step.

Step 3: iteration of elliptic regularity. We claim that fori =0, ..., sz,

; ! C(K1.K>)
1 2 < S 2 1, 2
”alweXtHHz(SL—’) = 19" wext (0172 +/0 \2(2sp—sc)+2 2L+3-280+2n(1-80)+ 555

n /t C(K1, K2)||3‘;L wext(t/)”L2 dt’
0 )251—Sc+2 gL+2+1=80+n(1=8))+ 5 +0(1E5=5<)
C(K1. K>2)
32(2s150) S2L+2—280+2n(1—8())+“(”27212(_";)5‘” +0(e=sctn)”

dt’

+

(5-81)

We are going to show this estimate by induction. This is true for i = sy from the result (5-77) of the
last step, and because of the compatibility conditions (4-20) at the border. Now suppose it is true for i,
with 1 <i < s;. Then as ai_lwext solves (5-68), from elliptic regularity one gets (again because of
the compatibility conditions (4-20) at the border), from the induction hypothesis and the bounds (5-76),
(5-76) and (5-76) on the force terms

||3é_1wext||22(%—i)+z < (1= xB0.4) 3 (WP) + Axp.ad 'w
+ ZVXB(OA).VB’t_lw||§12(SL_l~) + ||altwext||i12(sL—i)
! C(K1, K»)
=< “8§Lwext(0)“iz +/ _ A W
0 A2Q@sp—sc)+2 g2L+3-280+2n(1-80)+ %5
n /t C(Kq, KZ)”aiL wext(t/)HL2 dt’
0 )25—sc+2 gL+2+1=80+n(1-8))+ 5 +0(1E5=5¢)
C(K1, K3)
A’Z(ZSL_SC) S2L+2_280+27](1_56)+‘1(1’2—(212(700;&)+O(U—A‘LL‘+YI) '

dt’

+
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This shows that the inequality (5-81) is true for i — 1. Hence, by iterations, the inequality (5-81) is true
for i = 0, which gives the estimate (5-67) we had to prove. O

5D. End of the proof of Proposition 4.6. Proposition 4.6 states that, once the constants involved in
the analysis, which are listed at its beginning, are well chosen, given an initial data of (1-1) that is a
perturbation of the approximate blow-up profile along the stable directions of perturbation, there is a way
to perturb it along the unstable directions of perturbation to produce a solution that stays trapped for all
time in the sense of Definition 4.4. The strategy of the proof is the following. We argue by contradiction
and suppose that for all perturbations along the unstable directions, the corresponding solution will
eventually escape from the trapped regime. First, we characterize the exit of the trapped regime through a
condition on the size of the unstable parameters, and then we show that arguing by contradiction would
amount to go against Brouwer’s fixed point theorem.

We fix A(sg) satisfying (4-21), w(sg) decomposed in (4-5) satisfying (4-19) and (4-11), V1(s0),
WP s0). ... ULV (s0)) and (U (50)) ki) with 12m, in<i satistying (4-16), (4-17) and ((iii)).
For any (V2(so), ..., V¢(so)) and (Ul.(n’k) (50)) (n,k,i)eT,1<n, i <i, satisfying (4-14) and (4-15), let u denote
the solution of (1-1) with initial datum u(0) = Xéb(so),l /A(s0) + W (so) with b(so) given by (4-31). We
define the renormalized exit time s* = s*((V2(s0). . . .. V¢(s0)). (Ui(n’k)(so))(n,k,,-)ez,lgn, i<iy):

*

st = sup{s > 50, u is trapped in the sense of Definition 4.4 on [so, s)}. (5-82)

By a continuity argument, one always has s* > sq.

Lemma 5.9 (characterization of the exit of the trapped regime). For L and M large enough and o close
enough to s., there exists a choice of the other constants in (4-30), except so and 1, such that for any sg
large enough and 1 small enough, if s* < +00, at least one of the following two scenarios hold:

(1) Exit via instabilities on the first spherical harmonics.
Vi(s*) = (s*)7 forsome 1 <i <{.
(i1) Exit via instabilities on the other spherical harmonics.
U(n’k)(s*) =1 forsome (n,k,i)e€T, withl<nandi <i
i - ERAR) ’ — n-

Proof. A solution u is trapped if the parameters and the error involved in its decomposition (4-10) satisfy
the bounds (4-22), (4-23), (4-24), (4-25) and (4-52). At time s*, the bound (4-52) is strict by (4-51) and
(4-52), and we are going to prove that (4-25) is strict in Step 1 and that (4-24) is strict in Step 2. Thus,
(4-22) or (4-23) must be violated at the time s* and the lemma is proved.

Step 1: improved bounds for the remainder w. We will now prove the estimates

K1 KZ

— . &, (s < )
2(S*)% SL( ) 2(S*)2L+2—280+2n(1—86)

50(5*) =

K, (5-83)

2L42(1=80)+2n(1—8()

Ky
”wext(s*)”lzqcr =< _2 and ||wext(5*)”§_125L =<
212(2sL—sc)s
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Bound on &;. Let K1 and K5 be any strictly positive real numbers. Then from Proposition 5.3, for sg
and n large enough, we have

d Ey VEs k-1
E{ )LZ(U_SC)} = (0—sc)l LL 1+ Z T_o—sc sc .

A2(0=sc)+2 g"50—q Tl

On [sg, s*], one has

Q/gg _alo=sc¢)
—o=se = Kys™ 42
s 2

by (4-25); hence for s¢ large enough,
d { & % Vs 1

dt | \2(0—sc) 22(0— Sc)+2S(02gS(a)£+l SZ%L'

e s s
One has A = (£2)2%= (1 + O(s, ")) by (4-52) and we assume that |O(s,")| < 4. We reintegrate the
above equation using (4-25) and (4-19):
1 3 20—S¢ 22(0 ?L) 22(0 sc)+3L
o= = ((3) e g V).
s*) 20—0

8L
OlSO

Therefore, once L is fixed we choose o close enough to s, so that
L 24(0 —s¢)
8L 20—«

and then for sg large enough one has

20(c—s¢) 22(0_5(,')+3 L
20—

SO T < 1.
as
For any choice of the constants K; > 10, we then have
1 3 20—S¢
o (S*) = 20(c—sc) ((E) + ) 2@(0 sc) " (5-84)
(s*) 2= 2(s*) 20=0

Bound on &35, . Let K1 and K3 be any strictly positive real numbers. By Proposition 5.6, for any N > 1
the following holds for s¢ and 7 large enough:

d 52SL 0 1 15 1
dt | 12Gs—L=s0) + Ow.m) 22(2s1—s0) gL+1-80+n(1-5}) 25, + GL+1-80+n(1-8))

1 C(L, M) C(L.M) /S5, L CL.M)
= Az(zsL so)+2g | 2L+2-280+2(1—8)) ' (L+1-8o+n(1— 80) N28 L

P \/gl+0(f) k—1 C(L,M, Kl’ KZ) C(L,M, Kl, KZ)\/ EZSL
+52sL Z .

= s— 736 gFo(rtg=se) GLA1=80+n(1=8))+ 5 +0(T=£+1)
In the trapped regime, from (4-25) one has
«/5 _a(o=s¢)
s < K5~ 4
K 2
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Consequently, for N and s¢ large enough the previous identity becomes

d Easy o 1 = 1
a1 | p2@s—L—so T O\ Soas S Triserna—sy \ V25 T T isse a5y
_ 1 C(L,M) C(L.M) /&, I,
= A2@se—se) 25 | 2L+2-280+2(1-5) + sL+1=80+n(1-5-0") T N?28 2se |-

Since from (4-52) we have
4
20— ~
A= (SS_O) (14+0(sy ™),

when reintegrating in time the previous equation using the trapped regime bounds (4-25) and (4-19), one
gets

a5, (%) < A(s™*)2(sL.75¢) |:0(L,M)( ! (VK1 + 1))

A’(s*)Z(ZSL—SC) (S*)2L+2—280+2n(1—8(’))

1 1
+&25.(50) + OL.m (SL+1—80+71(1—8(’)) ( €251, (s0) + (LA1=S0+n(1-8) ))
0 0

*

§ 1 K>
+ | e (VR CLn + —Nzg)}

0

1
<
- (S*)ZL +2—280+21(1-6()

1
<
- K> (S*)2L+2—280+2n(1—56)

[C(L, M)(1+ VKz) + C(L)%}

(5-85)

if N and K; have been chosen large enough.

Bound on ||Wex || o . We recall the estimate (5-35):

d C(K1. Ka)
dt sHEEH0(Eg=e)

[”wext”iw] = 2”wext”HU-

For any choice of the constants of the analysis in Proposition 4.6 such that all the previous propositions
and lemmas hold, for s¢ large enough,

1
_ 2 <
dt [”wext”HU] = Sﬁ/\z ”wextHH”-

We reintegrate this equation in the bootstrap regime, by applying the bounds (4-25) and (4-19) on

| wexcl| 7o (using the relation % = ,%2)
C(L) C K,
[Wext (™) |go < vV K2 —5— + —53 <— (5-86)
so- S(%ei—a(ZSL —se) T 2

for K, chosen large enough.
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Bound on ||Wext|| gr2s;, . We recall the estimate (5-67):

f C(K1. K>)
2 SL 2 1, A2
<
”wext”HZSL —||at wCXt(O)HIZ /(; A’2(25‘11 Sc) 2s2L 3 280 277(1 8(’)) 2[01_0‘

+/l C(K1, K2)[|9" wex (') 12
0 A2sL—sc+2SL+2—80+77(1—86)+%+0(W)
C(K1, K>2)
22@s1—se) $2L+2-280+2m(1-80)+ X RO o (=)

dt’

dt’

+

One has wext = (1 — y3)w, so B}VL Wext = (1 — )(3)8}% w. Recall that we proved the bound (5-72) in the
trapped regime for 9;-w(¢) outside the blow-up zone in the proof of Proposition 5.8. The same proof
gives for so large enough, taking in account the bound (4-19) on w at initial time,

HaiL wext(o) ||L2 < 1.

Inserting this estimate and (5-72) into the previous identity gives, for so large enough,

” ”2 <1 ! dt’ 1
w + +
extiig2sy 0 A2Q@sL—sc)+2 2L+3-280+2n(1-80) ~ 3 2(2sp—sc) g2L+2-280+2n(1-5;)

_ 2 N /’ cdr’
= 22(2s1—sc) g2L+2-260+27(1-57) o S_i“mél_“’)“] §2L+3-280+2n(1-8))

2{—uo
- 2 N C(L)
= 22@sz—sc) g2L+2-280+2n(1-5)) s—m%ff—;m 2L+2-250+21(1-8))
- 2 N C(L)
T )2@sp—sc) g2L+2-280+2n(1=85) ) 2(2sp—sc) g2L+2-280+2n(1-5p)
K>

z 2)2@s1—sc) g2L+2-280+21(1-8})” (5-87)

where we used the equivalence A ~ s~2=a from (4-52), and where the last line holds for K, large
enough.

End of step 1. We have proven (5-84), (5-85), (5-86) and (5-87), yielding the estimate we claimed, (5-83).

Step 2: improved bounds for the stable parameters. We claim that once L, M, n, K1 and K5 have been
chosen so that the result of Step 1 holds, there exist 7 > 0 and strictly positive constants (81(0’1)) l+1<i<L>

’k -
(8,@ ))(n,k,i)eI, 1<n, i,<i such that

©.1)

Vi(s™)| < 2(3*)_77’ |Ul-(°’1)(S*)| < 28(ls*)ﬁ for{+1<i<L, (5-88)
and for (n,k,i)eZ,n>1,
U0 ()| < 5 if iy < TR ()| < e if iy =i (5-89)
’ = 2(s*)7 S i -2 "
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bR ),

@ k)

We now prove all these improved bounds: first we prove the one for , then the one for the

i # Ly, and finally the one for V7. For technical reasons, we introduce for (n k,i) € Z the function g;
a solution of the ODE
(n.k) £Qi—an)

g .
d;(; 5= Qi—anb™, glso) =5 . (5-90)
i

As bgo’l) = S(zf_a) + O(s~1~7), for 7 small enough and s¢ large enough one has

gl.(n’k)(s) _ e 1+ O(Saﬁ)) with |0(s;’7)| <1 (5-91)

Improved bound for b(n k) First we notice that since L is chosen after £, one can assume that for all
0 <n <nyp, we have i, < L. We rewrite the improved modulation equatlon (5-2) for b(" k) , using the
estimate (5-3) for the extra term in the time derivative and the function g > ) (satlsfylng (5-90) and
(5-91)), yielding
‘ j [ (i) 4 OL’M’KZ(S—L—n(1—86)+80—8n+u22L[’__0f"”):|‘
Ky H

< C(L, M, Kp)s~\~Ln(1=50) 508+ L5
as n(1-6p) < % g for 1 small enough (g’ being fixed). The notation Of, ps Kz( ) is the usual 0( ) notation
with a constant dependlng on L, M and K». One has 2L, —a, =2L —% —28 +2myg + —=—. Hence for
L large enough, the quantity —L —n(1 —§&,) + o — 6, + mL”—a”)
Therefore, reintegrating in time the previous identity ylelds, us1ng (4-16) and (4-17),

is strlctly positive for all 0 <n <ny.

2Lp— =~
LCLn—an) | §,48,—ij

| k)( )| C(L’M» K2) 1 SO §SL+80_8n+ﬁ|b(n’k)(S )|
Ln - ( *)L+T](1—86)+80—8n SL+80_8n+ﬁ (S*)%_L_&)_i_gn_ﬁ 2 0 Ln 0
k
C(L, M, K>) 3¢y 1
- (s*)L+n(1—86)+80—8n 2() (s*)L+80—8n+ﬁ'
Therefore, if 7) < n(1 — &), for any 0 < 8(" k) - 1, for so large enough, we have
n<n y g g
) (n k)
n, * Ln
Ibr, " (T = 2(s*)LH60=8u+il " (5-92)

Improved bound for bl.(" , Iy <i < Lp. Using the same methodology we used to study the parameter b( k),

we take the modulation equation (4-43), we integrate it in time, applying the bounds (4-22), (4-23), (4 24)
and (4-25), yielding

The condition i, <i ensures that 5 L’ = 2i—an)—

3 (+]1C)S25 5 (2i —ay) - —f—1

2

+C(L,M,Ky)s™ —L—14+80—n(1-8))+ 575 (2i —0n)

Y—Vn
2

in time the previous equation, the first term on the right-hand side giving then a divergent integral. Then
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k)

applying the bound (5-91) on g(" and the initial bound (4-17) on b(" k) , one obtains

J
|b(n’k)(s*)| - 1 81(” ) N C(L)S(n k)

i = (s%) YV 447 20 i

$* .
g T )
(s%) 2rmat T2
(n,k)
Fo)
< S o2
2(s*) 2
(n,k)

if 59 1s large enough and ¢;7’;” is small enough, because L — 80 > y_y” +1i.

Improved bound for bl.("’k) ifin =i and 1 < n. In that case - (2i —ay) = ¥5 4-i. Hence one has

? 2€
(n,k)
1_8& " _3

2 —_ Y—Vn +i — 2 *

Integrating the modulation equation and making the same manipulations we made for i,, < i then yields
(n,k) (n,k)
06 = e (P W+ S ) < S 9w
(s*)T'H 20 ! L—60— n_j 2(S*) 24

So

if g(n k)

i is small enough and s is large enough.

Improved bound for V1. We recall that from (4-13), V; denotes the stable direction of perturbation for the
dynamical system (3-58) contained in Span((Ul.(O’l))lfl-fg). From the quasidiagonalization (3-69) of the
linearized matrix Ay, under the bootstrap bounds (4-22), (4-23), (4-24) and (4-25), its time evolution is
given by

Vi Vi)i<i<el®

(0,1

_hn 1 —L—t | fet1

=—5 7 O(Slm TS T )

which when reintegrated in time gives, if 88111) is small enough, s¢ is large enough, and using (4-16),
(0,1)
V C(L,M.Ky) C(L)e 1
ViGs*) <2 I(SO) (LMK Gl < (5-95)
(s%)21 (s*)7 257

End of Step 2. We choose the constants of smallness in the following order so that all the improved
bounds we proved, (5-92), (5-93), (5-94), (5-95), hold together. For any choice of Ki, Ky, L, M, n

in their ranges, there exists 7 > 0 such that 7j < n(1 —§;) and 5" +i + 7 < 2@ — (2i —ay) for all
(n,k,i) € T with i, <i. First choose the constant ségrll) small enough so that the improved bound (5-95)

for V1 holds for sg large enough. Next choose 81(5 _;2) such that the improved bound (5-93) for 6(211 )

holds for sg large enough. By iteration we then choose sg +13), .. (0 Y to make all the bounds (5-93)
hold until the one for U, (0 1) . Then the final one, (5-92), for U 0.1 holds for s¢ large enough without any
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(
1

spherical harmonics of higher degree (1 <n < ng). We have proved (5-88). O

conditions on £ for ¢ + 1 <i < L —1. The same reasoning applies for the stable parameters on the

We fix all the constants of the analysis so that Lemma 5.9 holds, and we will just possibly increase the
initial renormalized time 5o, which does not change its validity. The number of instability directions is

m=L—1+d(Elil]=8yen)+ Y k@)(Efin] +1—8i,en).
2<n<ng

To prove Proposition 4.6, we have to prove that there exists an additional perturbation along the unstable
directions of perturbations such that the solution stays forever trapped. We prove it via a topological
argument, by looking at all the solutions associated to the possible perturbations along the unstable
directions of perturbation. For this purpose, we introduce the set

B:={(Va(s0), - .., Ve(s0), (UM (50)1) n kiyer. 1<n.i<iy ) € R™ 1 |Vi(s0)| <sp”" for 2<i <,
U0 (s0)i] <& for (n.k.i) €T. 1 <n.i <in},

which represents all the possible values of the unstable parameters so that the solution to (1-1) with initial
data given by (4-5) and (4-31) starts in the trapped regime. We then define the following application
f :D(f) C B— 0B that gives the last value taken by the unstable parameters before the solution leaves
the trapped regime (when it does):

k
1 (Va(so). ..., Ve(so), (Ui(" ))(n,k,i)eI, \<n,i<iy)

(S*)ﬁ * (S*)ﬁ * n, *
= (5207 R U 6 N nkirez, i< ) (596

So
The domain D( f) of the application f is the set of the m-tuples of real numbers

K
(Va(s0). - - Ve(s0), (U,-(n ))(n,k,i)eI, \<n, i<iy)

in B such that the solution starting initially with a decomposition given by (4-5) and (4-31) leaves the

trapped regime in finite time s*. The following lemma describes the topological properties of f.

Lemma 5.10 (topological properties of the exit application). There exists a choice of smallness constants
(el(n’k))(n,k,,-)g’ 1<n,i<i,+1 such that the following properties hold for so large enough:
(1) D(f) is nonempty and open, and the inclusion 0B C D(f) holds.

(i) f is continuous and is the identity on the boundary 0B.

Proof. Step 1: the outgoing flux property. We prove in this step that one can choose the smallness constants
& & .
(8,@ ))(n,k,i)GI, 1<n, i<ip+1 such that for any (V2(so)..... Ve(s0), (U,-(n ))(n,k,i)eI, \<n, i<i,) in B
such that the solution starting initially with the decomposition given by (4-5) and (4-31) is in the trapped

regime on [so, 5] and satisfies at time s

()7 ()7 ,
(—,7 Va(s), ..., o) Ve(s), (Ui(n k)(s))(n,k,i)eI, \<n,i<iy | € 0B,
So
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the exit time from the trapped regime is s. To prove this we compute the time derivative of the unstable
parameters when they are on 013, and show that it points toward the exterior. Indeed from the modulation
equation (4-43) and (3-69) (where we injected the bounds of the trapped regime (4-22), (4-23), (4-24)
and (4-29)),

. (0,1) (0,1)
I/is: o E-{—O |(V1(S)a---’VZ(S))|2 UE+1 +0( L+f)_ io Vl+0 s_l 2n+86+1
T 2U—a s S S 2—a s 147
mdo _ Lk U(n % A gk
n n i+1 n— n i+ —1-7
—U 0 =a——U""+0 n).
i»s 2l—a)s P0G = YGt—ays i T ( s 8 )
Therefore, as i < iy, by iterations (i.e., by choosing first s( n.k) , then s(n k) , and so on until choosing

sgfi_l)) we can choose all the smallness constants and sg large enough so that

i« (1)) ey
T —a 157 +O( —1- 2"—1— EH ) >0 (resp. <0) if j =0 (resp. j = 1),
in—i ok el
cxn—(—l)fs(n’ )10 fitr1 +s7 L) >0 (resp. <0) if j =0 (resp. j = 1).
24 —a)s !
Consequently, any solution that is trapped until s such that at time s,
()" (s)" K
(—V2< o (o VO U O nkier. 12n, i, | € 08
So

leaves the trapped regime after s.

Step 2: end of the proof of the lemma. Step 1 directly implies that D( ) contains dB, and that f is the
identity on dB. If a solution u leaves at time s*, it also implies that it never hit the boundary before s*.
Consequently, as the trapped regime is characterized by nonstrict inequalities, and because everything in
the dynamics of (1-1) is continuous with respect to variation on these unstable parameters, we get that
D(f) is open, and that the exit time s* and f are continuous on D( f). |

We can now end the proof of Proposition 4.6.

Proof of Proposition 4.6. We argue by contradiction. If for any choice of initial perturbation along
the unstable directions of perturbation, the solution leaves the trapped regime, then it means that the
domain of the exit application f defined by (5-96) is D( f) = B. But then from Lemma 5.10, f would
be a continuous application from B towards its boundary, being the identity on the boundary, which is
impossible thanks to Brouwer’s theorem, and the contradiction is obtained. |

Appendix A: Properties of the zeros of H

This section is devoted to the proof of Lemma 2.3.

Proof of Lemma 2.3. The proof relies solely on ODE techniques (in the same spirit as [Gui et al. 1992;
Li 1992]) and is as follows. First, we describe the asymptotics of the equation H () f =0 at the origin
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and at infinity in Lemma A.1. Then we construct the special zeroes To(") and T'® in these asymptotic
regimes using a perturbative argument and obtain their asymptotic behavior in Lemma A.2. Finally we
show that they are not equal via global invariance properties of the ODE in the phase space ( f, 9, f) in
Lemma A.3, yielding that they form indeed a basis of the set of solutions.

Let f : (0, +00) be smooth such that H™ f = 0. First we make the change of variables f(r) = w(t)
with ¢ = In(r) € (—o0, +00). Then w solves

w” + (d —=2)w' —[e*V(e") +n(d +n—2)Jw =0, (A-1)

where V is defined by (1-31) and satisfies e’ V(ef) = O(e?) — 0 as t — —oo, and e?' V(e!) =
—pcgo_1 + O(e7 ') as t — +o00, by (2-2). Hence (A-1) is similar to the following ODEs as t — Zo0:

w” +(d —2)w' + (peZ ' —n(d +n—2)w =0, (A-2)
w’ +(d—-2)w' —n(d +n—-2)w =0. (A-3)
The first step in the proof of Lemma 2.3 is to describe their solutions.

Lemma A.1. Span(e~ !, e~7n!) (resp. Span(e™, e"=4+Dt)) is the set of solutions of (A-2) (resp.
(A-3)), where yy is defined in (1-18) and

d—24JA
Vi = fn (A-4)
where Ay, > 0 is defined in (1-18). These numbers satisfy
2 2 ,  (d=2)
o=y, y1=——++1 and Yn=>2, ypn<——", Vo> , (A-5)
p—1 p—1 2

where y is defined in (1-9).

Proof. From the standard theory of second-order differential equations with constant coefficients, the set
of solutions of (A-2) (resp. (A-3)) is Span(e~¥?, e~ ¥a') (resp. Span(e™, e="=4+2)) where y, and
y,, are defined by (1-18) and (A-4). For any n € N, one computes from its definition in (1-18) that the
number A, used in the definitions (1-18) and (A-4) of y, and y;, is strictly positive: A, > 0. Indeed,
Ay > Ag by (1-18), and Ag > 0 if and only if p > pjr, where pyy is defined in (1-6), and the present
paper is concerned with the case p > pyr.

From the formula (1-18), one computes that yo = y and y; = % + 1, where y is defined in (1-9).
For all n € N, from the definition (A-4) of y;, and since A, > 0, one gets that y,, > % Eventually we
compute from (1-18) that

4 \? 4 \?
A1=(d—4——), A2=(d—4——) +4d +4,
p—1 p—1

which implies in particular that

4 16
AZ—AI—4\/A1—4:4d+4—4(d—4——1)—4: 16+ —— >0,
p— p—
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giving /Ay > 4/ A1 + 2. This, by (1-18), implies

d—2—Dy d—-2—A1 -2 2 2
< —Vl—l——+1 1= T

2= 2 2 1 —1
This implies v, < for all n > 2 because the sequence (v, )nen is decreasing by its definition (1-18). [J
Lemma A.2. There exist wgn), wg’), u)gn) and w(n) solving (A-1) such that
Yz) = ZC e +201 O(e(n+2q+2)t) wg') o 516(—n—d+2)t, (A-6)
i=0
w = GHe M 4 0 and w  ~ GVt = 0T, (A-7)
t—>—+o00 t—>—+o00

with constants ¢1,C1, C2, 3 7 0. Moreover the asymptotics hold for the derivatives.

Proof. Step 1: existence of wi ") Forn = 0, we take the explicit solution wgo) = AQ(e"), which satisfies

(A-6) by (2-1). Now let n > 1. Using the Duhamel formula for solutions of (A-1), the fundamental set
of solutions for the constant coefficient ODE (A-3) begin provided by Lemma A.1, a solution of (A-1)
satisfying the condition on the left in (A-6) with cg = 1 can be written as

(n) ot n(t—t') _ ,(—n—d+2)(t—1) (n) 2t

t T E— t 4 dr’. A-8
=4 2/ (e i (e V(e (A-8)
We now use a standard contraction argument. For 7y € R we endow the space

X = {u € C((=00, 10l R): 3 u()]e™" < +00
t<tp
with the norm

lullx := sup [u(t)le” "D, (A-9)

t<to

For u € X we define the function ®u : (—o0, 9] — R by

l t 4 4 /7 /7 4
(CI)M)(Z) = m / (e"(t_t ) €(_n_d+2)(t_t ))[ent + U(t,)]€2t V(et )d[/. (A—IO)
—00

® maps X into itself. Indeed as the potential V' is bounded from (2-2), a brute force bound on the above
equation yields that
(@) ()] < C[IV oo (e’ + [Jullxe e+,

and therefore | ®u|x < C||V ||z (e’ + |lu|lxe>™). The same brute force bound for the difference of
two images under ® of two elements gives

|(@u) (1) — (Dv)(1)| < CIIV | oo [[u—v]|x e+ D",

Hence | ®u— ®v||x < C||V||rce?"|lu—v]||x and ® is a contraction for fy < 0 small enough. Therefore,
@ admits a fixed point in X, denoted by u ;. From the Duhamel formula (A-8) and the definition (A-10)

of ®, we know w(") e"" +u (1) is then a solution of (A-1) on (—o0, fp], which, from the definition
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(A-9) of X, satisfies
wgn) =M 4 O(e(n+1)t) as { — —oo. (A-11)

We extend it to a solution of (A-1) on R ((A-1) being linear with smooth coefficients), still naming it w(()n).

Step 2: asymptotics of wln). At present, we will refine the asymptotics (A-11). We reason by induction.
We claim that if for kK € N and (¢;)o<i<k € R*+1 one has

k
U)Yl) — Zcie(n+2i)t + O(e(n+2k+2)t) as t — —0o (A—12)
i=0
then there exists cx 41 € R such that
k+1

wgn) — Z c;e 20t | O(e(n+2k+4)t) as f — —oo. (A-13)
i=0

We now prove this fact. Fix k > 1 and assume that wi") satisfies (A-12). As V is a smooth radial profile,
one has that 83‘1“ V(0) = 0 for any ¢ € N, implying that there exists (d;);en € RN such that

k

V(e =Y die? + 0 ) a5 1 oo, (A-19)
i=0

We insert this and (A-12) into (A-8) and integrate to find

; ko
() _ b —t")_,@—n—d)(t—t' +2i42)1 +2k+4)t’
wln —e”t+2n+d_2 /_oo(e"(t 1) _e2—n=d)t t))[i;)jgocj'di_je(" ! )t+0(e(” )t )} dt’

k e(n+2i+2)t 1 1

i
nt _
—¢ +i=0 2n+d—2 (2i+2 2n—|—d—i—2i)j

¢ di—j + 0(6(2+2k+4)t).
0

This asymptotic has to be coherent with the assumption (A-12); hence for all 0 <i <k — 1 one has

1 1 ' ocidi—;
— - )Y S~
204+2 2n4+d+2i j=02n—|—d—2

The above identity is then the formula (A-13) one has to prove.

Thus, one has proven that the asymptotic on the left of (A-6) holds for w§n). It remains to show that it

also holds for the derivatives. Differentiating (A-8) gives

1

)/ nt
1) = -
(") (1) =ne +2n+d—2

t
/ [ne"(t_t/) +(n+d-— Z)e(z_”_d)(t_’/)]wi")em/V.
—OoQ

We use the same reasoning we did for wgn): we insert the asymptotic (A-12) at any order for w§") we

just showed and (A-14) into the above formula, integrate in time and match the coefficients we find with
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(A-12), yielding that
k
(wﬁ”))’(z) _ Z(” + 2i)c,-e("+2i)’ + O(e("+2k+2)’)
i=0
for any k € N. Therefore, one has proven that the asymptotic on the left of (A-6) holds for wgn) and
(win))’. As wgn) solves (A-1), its second derivative is given by

i) = —(d =2 W) + [ V(") +n(d +n—2w".
and therefore by (A-14) the expansion also holds for (w§"))’ !
(n) o )y
1 » (wl )
By iterating this procedure we obtain the expansion on the left of (A-6) for all derivatives of wgn).

Step 3: existence and asymptotics of wén). Let tp € R. We use the Duhamel formula for (A-1), the

. Differentiating the above equation, using

again (A-14) and the expansions for w and (wgn))/ ', one obtains the expansion for (wgn))’ ",

solutions of the underlying constant coefficient ODE (A-3) being provided by Lemma A.1. For ¢ < ¢,
the solution of (A-1) starting from wé")(to) = ¢(@—d-no (wé"))’(to) =2 —d —n)e®=4=Mm1 can be
written as

o
®) _ (2—d— 1 ' 2-n—d)(t—1' N2t (n)
w = e n)t_—2n+d—2/t (en=1) _ o@mn= =1y ()2 I (1) dt. (A-15)

We claim that for 79 < 0 small enough, we have

o(2—d—n)
2

for all # < 9. To show that, let 7 be the set of times ¢ < 7y such that this inequality holds. 7 is closed via

a continuity argument, and is nonempty as it contains #zg. For 1 € 7 we compute by brute force on the

gl) . e(2—d—n)l| <

lw (A-16)

above identity:
|w§n) _ e(2—d—n)t| <C ” V”Looe(Z—n—d)teth

én) — e(@—d—n)t

Hence, for 79 < 0 small enough, |w | <e@ =t /3 implying that T is open. Therefore,

T = (—o0, tp] by a connectedness argument and wé") satisfies (A-16) for all ¢ < ty. We insert (A-16)
into (A-15) to refine the asymptotics (the constant in the O(-) depends on ||V ||p):

t
wén) _ p—d-n) +/ 0(€n(t—t’)_e(2—d—n)(t—t’))0(6(4—n—d)(t—t’))dt/
t

t t
— e(Z—d—n)t +ent / 0 O(e(4—2n—d)t/) dt/+e(2—n—d)t / 0 O(eZt/) dt/

t t

=e(2—d—n)t+0(6(4—n—d)t)+e(2—n—d)t(/t0 O(eZ")dt’_/t 0 dt/)

—00 —00

1
:e(Z—d—n)t(l+/0 0 dt/)+0(e(4—n—d)t)

(e.¢]

— 51€(Z_d_n)t + 0(6’(4_”_d)t)

with ¢ # 0 if 9 < 0 is chosen small enough. We just showed the asymptotic on the right of (A-6).



226 CHARLES COLLOT

(n) (n

Step 4: existence and asymptotics of wy ~ and w, ) Using exactly the same techniques we used at —

to construct wg 0 (m)

constant coefficients ODE (A-3), we can construct two solutions of (A-1), w,

wi ~ e w{ ~Ge ast - o0 (A-17)

and w, ~ as perturbatlons of the solutions described by Lemma A.1 of the asymptotic

n) (n)

and w, -, satisfying

with &, &3 # 0, as perturbations of the solutions e~¥7* and e~"! of the asymptotic ODE (A-2) at 4oc.
We leave safely the proof of this fact to the reader. We now show why the second term in the asymptotic
of w(n) is O(e(_V" —8&)1) where g is defined in (1-21). Using Duhamel’s formula for (A-1), with the set of

fundamental solutions of the asymptotic equation (A-2) described in Lemma A.1, w( ™) can be written as

wgn):ale_yﬂt+ble_yi/1t W/ ( —yn(t— t)_e—)/n(t t’))€2t (V(e )+pcp 1 —2t )w(n)([/)dt/
—Vn .

for a; and by two coefficients. We use the bounds V(e'') + pcZs 'e™2 = 0(e=*') from (2-2) and
(A-17) to find

t
1+ : / (e~ =) _ g=7i(t=1)) O (o rn—e)t’).
—Vn Vn 0

After few computations, we obtain two new coefficients @; and a, such that

wgn)(t) —are "t £ he Vnt —

As —y, < —y, by (1-18), the asymptotic (A-17) implies d; = ¢» # 0. From the definition (1-21) of g,
this parameter is tailor-made to produce —yy — g > —)/6 (by (1-9) and (1-18)). By (1-18), one then has
—VYn—8+Vn = —Yo— g+ vy >0. As g satisfies also g < «, the above identity then yields

(”)([)_026 Ynt +O(e( Yn— g)l)

Using exactly the same methods we use to propagate the asymptotic of w( n)

to its derivatives in Step 2,
the above identity propagates to the derivatives of w("). O

(n)

Lemma A.3. The solutions w; "~ and w gzven by Lemma A.2 are not collinear. Moreover, w1 ™ pas

constant sign.

Proof. We formulate (ODE,,) as a planar dynamical system:

d (wh) 0 1 w!
dt (wz) - (n(d +n—2)+e? V(e —(d—2)) (wz)’

with w! = w and w? = w’. By their asymptotics from Lemma A.1,

(n)
( w(l ) v ) =ce™ (1) + 0" ") as 1 - —oo,
(wi”) (1) "

(n)
( ( )(z) ) ~ 53e—%’zt ( 1/) as t — —o0,
(wy") (1) ~Vn
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and we may take c1, ¢3 > 0 without loss of generality. Thus, close to —oco, we know (wi")(z‘), (w§n))’(t))

is in the top right corner of the plane. It cannot cross the ray {0} x (0, +00) because there the vector field
2

(—(d22)w2) points toward the right. Neither can it go below the ray (x, — %452 ) >o-

compute the scalar product between the vector field and a vector that is orthogonal to this ray and that

To see that, we

points toward north at any time ¢ € R:

0 1 1 d=2\  (d-2)?
((n(d +n=2)+e* V() —(d—z)) (—%))( i )‘ eV +n-2>0

because e2!V(e!) > %, where the potential —V is below the Hardy potential (see (2-5)). Hence
(wgn)(t), (w§n))/(t)) stays in the top right zone whose border is

d—2
2 x)xZO'

{0} x (0, 400) U (x, —

(n)
1

In particular, w;"” > 0 for all times, which proves the positivity of wln). Since the trajectory (wi")(t),

(w‘(tn))/ (1)) is asymptotically collinear to the vector (_;, ), which does not belong to this zone (from

n
Lemma A.1) nor its opposite, one obtains that wgn) and w‘(‘") are not collinear. O

We now end the proof of Lemma 2.3. The fundamental set of solutions of (A-1) is provided by

Lemma A.2. As wgn) is not collinear to win), there exists a1 # 0 and a, such that win) =a, wgn) +as w‘(ln).

(n)

From the asymptotics (A-7) and the positivity of wln shown in Lemma A.3, one then has

w§n) — be—ynt + O(e(_yn_g)t) as t — +OO, b > 0.

gn) in the original space variable r: T (r) = wgn)(ln(r)), which

We call T the profile associated to w
solves H (”)TO(") = 0. The above identity means 7] = ayr~"" + O(rC"=8) as r — +00, and (A-6)
implies 73 (r) = Y.7_, br" 2L + O(r"T2%24) as r — 0, for some coefficients (b;);en € RY, for any
q € N. These asymptotics propagate to the derivatives. This is the identity (2-7) we had to prove.

Let us denote by w another solution of (A-1) that is not collinear to wgn) and wi"). Now (A-6)
and (A-7) imply that w ~ ce@ =D a5 ¢ > —o0 and w = de ! + O(eCV"~8)") as t — 400 with
¢.d # 0. These asymptotics propagate to higher derivatives. The solution of H™T' ™ = 0 given by
'™ (r) = w(ln(r)) then satisfies the desired asymptotics (2-7). Eventually, the Laplacian on spherical

harmonics of degree n is (for f radial)
d—1 nd+n-2
A(f Yn,k) = ((8” + r dr — ( 72 ))f)Yn,k,

meaning, by the asymptotics (2-7), that for any j € N, we know A/ (T3 (|1x )Yy g (x/]x])) is a continuous

function near the origin. Therefore, T{J'Y), x is smooth close to the origin by elliptic regularity. It is
also smooth outside as a product of smooth functions, and thus smooth everywhere, ending the proof of
Lemma 2.3. O
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Appendix B: Hardy- and Rellich-type inequalities

We recall in this section the Hardy and Rellich estimates, to make this paper self-contained. They are
used throughout the paper, and especially to derive a fundamental coercivity property of the adapted high
Sobolev norm in Appendix C. We now state a useful and very general Hardy inequality with possibly
fractional weights and derivatives. A proof can be found in [Merle et al. 2015, Lemma B.2].

Lemma B.1 (Hardy-type inequalities). Let § > 0, g > 0 satisfy }q — (% — l){ >§andu:[1,+00) > R
be smooth and satisfy

400 |8yu|2 d—1 400 u2 d—1
/1 —yzq y dy +/1 —y2‘1+2y dy < 4o0.

() If g > % — 1+, then

C(d,3) / “—zyd‘ldy—C’(d,S)uz(l)s / Myd‘ldy. (B-1)
y>1 y2q+2 y>1 y2q

(i) If g <4 —1-38, then

cw 8)/ e vdy / B a1 g, (B-2)
Proof. Let R > 1. The fundamental theorem of calculus gives

u?(R) 2 R udyu R y2

The integrability of u2/y29+3=4 over [1, +00) implies that u2(R, )/qu-"2 —d

radii R, — +o00. Passing to the limit through this sequence we get

2g+2— d) _ —uz(l)—2 +°°u8—yud
q 2q+2 —d dy o 1 y2q+2—d Y-

We apply the Cauchy—Schwarz and Young inequalities to find
+o0 uayu ol <o +o00 u2 J % +o00 |ayu|2 J %
y2a+2—d Y= . y2a+3d Y Y Y
400 2 400 2
u 1 [0yul
= 8/1 y2q+3—d dy + g/l y2q+3—d dy
for any ¢ > 0. If g > % — 1+ 4, then the two above identities give

+o00 2 2 +o00 2 +o00 2
u u=(1 £ U 1 dyu
/ o= 4V = ()+—/ —_dder—/ ly—|_ddY-
1 y2at? 28 28 )1 y2a+3 28e ), y2a+3

— 0 along a sequence of
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Taking & = §, one gets

+o00 u2 J <u2(1) 1 400 |ayu|2 J
. y2a+2d ) Y Y

N . . . d .
which is precisely the identity (B-1) we had to prove. If ¢ < 5 —1— 4 then one obtains

+o00 2 2 +o00 2 +o00 2
u u=(1 € U 1 oyu
/ 2ara V=73 N / 273 a YV / |2y+3|—d dy.
1 y=4 2(5 1 q) 26 1 y=4 28¢ 1 y=4

Taking ¢ = §, one gets
400 2 1 too |5 2
/ 2M2ddy5_2/ |2yu|ddy’
1yt §2 )1yt

which is precisely the second identity (B-2) we had to prove.

Lemma B.2 (Rellich-type inequalities). For any u € H2(R%),

d —4)d\? 2 d? Vul|?
(g) / u—4dx§/ autax, ! ”l dng | Au|? dx.
4 Rd |X| R 4 Jra |x| Rd

If g=>0andu: R — R is a smooth function satisfying

/‘ | Aul? 4 [Vu|? . u? dx < +
X o0,
ra \ 1+ |x[24 1+ |x]294+2 14 |x|2q+4

then

|0%ul? / / u? / | Aul?
cd, —————-dx—C'(d, ————dx < ———dx.
.9) Z [Rd 1 + |x|?9+4=2u * (d.49) rd 14 |x|29+4 * ra 1+ |x|24 *
I<|ul=2

229

(B-3)

(B-4)

Proof. The inequality (B-3) is standard and we omit its proof. To prove (B-4) we reason with smooth and

compactly supported functions, and then conclude by a density argument.

Step 1: control of the first derivatives. Using integration by parts we compute

ulAu |Vul|? 1/ ) 1
i == | Aty | A ) dx.
/Rd 1+ |x|2a+2 X /Rd 1+ |x|24+2 x+2 Rd“ 1 x2at2 X

We then use the Cauchy—Schwarz and Young inequalities to obtain

cf Vul* c// 2( A ! ! d
—— adX — u — X
rd 1+ |x|29+2 Rd 14 |x|?a+2 (14 [x]?29+2)(1 + |x|)?

/ |Aul?
=< dx.
re (1+]x[29+2)(1 4 [x])~2

Noticing that (1 + |x|?972)(1 + |x|)™! ~ (1 4 |x|??) and that

C
<
T 14 |x|?at4

1 1
A —
‘ (1 + IXIZ"”) (14 [x[24F2)(1 4 |x])?
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leads to the estimate

| Aul?

d. _ _* _aur
Cl )/ 1+| |2q+2d C(dq)/d1+| |2q+4dx</u@dl+|x|2‘1

Step 2: control of the second order derivatives. Again using integrations by parts one finds

| Au|? / |V2ul|? - 1
2 N g uVau Y ——— ) — Auvu V([ ——
/Rd T+ x27 ~ Jpa 1+ x| +l; VO T e )~ 2

)

(B-5)

in which by using the Cauchy—Schwarz and Young inequalities, for any € > 0, we can control the last two

terms by

1
/Rdzaxluvaxlu V( |x|2q)—AuvuV(m)'

|[Vul?

/ |V2u|? C
<Ce¢| ——dx+— _—
ra 1+ |x|24 e Jpa 1+ |x|241+2

Therefore for & small enough the two above identities yield

/ |V2ul? dx <C / | Aul? 4 |Vu|? n u? J
——dx x ).
R4 1+ |X|2q - R4 1+ |X|2q 1+ |X|2q+2 1+ |X|2q+4

Combining this identity and (B-5), one obtains the desired identity (B-4).

Lemma B.3 (weighted and fractional Hardy inequality). Let
O<v<l, keN and 0 < p satisfying u+v+k < %d,

and let f be a smooth function satisfying the decay estimates

)

T fore eNG i =i i =01 k1.

0 F (o) = 5

Then for e € H* 5+ wwe have ¢ f € HY ¢ with
IVY R ef )2 < CC(f), v ks, d) [ VETEF V]| 5.

If f is smooth and radial then (B-6) is equivalent to

Cc(f)

R i=0,1,....k+1.
r

010 =

(B-6)

(B-7)

(B-8)

Proof. Step 1: the case k = 0. A proof of the case k = 0 can be found in [Merle et al. 2015], for example.

Step 2: the case k > 1. Let f, ¢, i, v and k satisfy the conditions of the lemma, with k > 1. Using the

Leibniz rule for the entire part of the derivation,

IV ENZ, <C > VU (@< fII3..

(k,§)eN2d
k|1 +k|1=k

(B-9)
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We can now apply the result obtained for k = 0 to the norms || VY (8 £d¥« f ||i2 in (B-9). We have indeed
that 3¢ € H*F*k2+V and that 9 f satisfies the appropriate decay condition by (B-6). It implies that for
all (k, %) € N24 with |k|; + |&|1 =k,

IV (3% ed%k f|2, < C||VVTHtRe|2,

which implies the result: |V (¢f)[|2, < C(C(f).v.d. k. a) | V' THFEg|2,.

Step 3: equivalence between the decay properties. We want to show that (B-6) and (B-8) are equivalent
for radial smooth functions. Suppose that f is smooth, radial, and satisfies (B-6). Then one has

; 0
50 = 2 (e,

where e; stands for the unit vector (1, ..., 0) of R4. From this formula, we see that the condition (B-6) on
(af/ 8&1 )(|y|e1) implies the radial condition (B-8). We now suppose that f is a smooth radial function
satisfying the radial condition (B-8). Then there exists a smooth radial function ¢ such that

f) =9¢0G>).

With a proof by induction that can be left to the reader, one has that the decay property (B-8) for f
implies the following decay property for ¢:

c(f)

-, 1=0,1,....k+1.
1+y%+z

18,6 ()] <

Now the standard derivatives of f are easier to compute with ¢p. We claim that for all k € N4 there exists
a finite number of polynomials P;(x) := C;x;' ---xild , for 1 <i <I(k), such that

1(6) ,
2 fx) = PP ().

i=1

with 2¢g (i) — Zj-izl ij = |k|1 for all i. The proof by induction of this fact can also be left to the reader.
The decay property for ¢ then implies

C _ C
+yet2a@O-Xioi; 14 yatlkh

[x]

P (1x)] <
1
which in turn implies the property (B-6). O

Appendix C: Coercivity of the adapted norms

Here we prove coercivity estimates for the operator H under suitable orthogonality conditions, following
the techniques of [Raphaél and Rodnianski 2012]. We recall that the profiles used as orthogonality
directions, @%’k), are defined by (4-1). To perform an analysis on each spherical harmonic and to be
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able to track the constants, we will not study directly A and A*, but the asymptotically equivalent
operators

1
yd—l

A s o+ WDy, AD* oy y (y4 =) + WMy, (C-1)

where

W = (C-2)
y

By the definition (1-18) of y;,, they factorize the operator

p—1
. —3yy—d_13y— PCo +n(d +n-2)

> > = A 4™, (C-3)
y y y

The strategy is the following. First we derive subcoercivity estimates for A* L) ang H™, A
summation yields subcoercivity for —A — pcgo_l/ |x|2, and hence for H as they are asymptotically
equivalent. Roughly, this subcoercivity implies that minimizing sequences of the functional /(u) =
[ uHSu are “almost compact” on the unit ball of HN (Span(CDX;’k)))J-. In particular if the infimum of /
on this set was 0, it would be attained, which is impossible from the orthogonality conditions, yielding

. s . .
the coercivity [uH*u 2 |lu||% = via homogeneity.

2
12,

Lemma C.1. Let n be an integer, g > 0 and u : [1, +00) — R be smooth satisfying

TR [T g (C-4)
A e R '

(i) There exist two constants ¢, ¢’ > 0 independent of n and q such that

too 2 1 L +o0 |A'(n)*u|2 Je1
0/1 y2’1+2y dy —c'u=(1) 5/1 yTy dy. (C-5)

(ii) Let 6 > 0 and suppose }q — (% —1- yn) ‘ > §. Then there exist two constants c(8), ¢’ (8) > 0 depending
only on & such that

too 2 3 400 X(n)uz 3
0(5)[1 W)’d ldy—cl(5)u2(1)§/1 lyT'yd Ydy. (C-6)

Proof. Coercivity for AM* We first compute

+o00 A"'(n)* 2 +o0 19 g _1— 2
[T i gy [ Bt
1 1

d—1
V24 V24 y dy.

We make the change of variable u = vy¥»+1=4 By (C-4), v2/y22—2vntd+1 gpq |0y v|?/ y2d—2Vn +d-1
are integrable on [1, +00). As g + % —Yn = % —y >1by (1-9) and (1-18), we can apply (B-2) to the
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above identity and obtain (C-5) via

oo |1‘h1'(n)*”|2 d-1 4, _ oo |8yv|2 -1,
. y24 Y Y= . y2q—2yn+2d—2y Y

+ 2
>C Oov—yd_ldy—C/vz(l)
= . y24—2yn+2d—2

_o [T gy cneq
= : WY y—Cu=(1).

Coercivity for A®™  This time the integral we have to estimate is

/+oo |g(n)u|2yd_1 dy _ /+oo |ayu +y_1)/nu|
1 y24 1 y2p

yd—l dy

We make the change of variable u = vy ™", By (C-4), v2/y2P+2vn—d+1 apd |8yv|2/y21’+2V”+3_d are
integrable on [1, +00). As !q — (% —1- yn)‘ > §, one can apply (B-1) or (B-2) to the above identity:
there exists ¢ = ¢(8) and ¢’ = ¢/(8) such that

+o00 |121“(n)u|2 d—ld B +o00 |ayv|2 de1
. v2a Y Y=, yzatem

2
>c +oov— =1 gy — 'v3(1)
- 1 y2q+2)/n+2y Yy
=c +0°—u2 =14 —cu?(1)
=), Y Y ’

which is precisely the identity (C-6). O

Lemma C.2 (coercivity of H under suitable orthogonality conditions). Let § > 0 and q > 0 such that*?
‘q—(%—2—yn) ‘ >4 foralln eN. Let ng € NU{—1} be the lowest number such that q—(%—Z—yno.H) <0.
Then there exists a constant ¢(8) > 0 such that for all u € HI%)C (R?) satisfying the integrability condition

/ | Au|? N |Vu|? +/ u? -y
00
re 1+]x|24 14 |x|?9+2 1+ |x|29+4

and the orthogonality conditions®> (@%’k) being defined in (4-1))

(u, @29 =0 for0<n<ng, 1 <k <k(n), (C-7)
one has the inequality

@) / A [Vul® v </ |Hul” (C-8)
C D EE——— -
re 1+ [x|24 ° |x|2(14[x[29)  |x|*(14|x]29) ) = Jpa 14 |x]%4

22We recall that y,, — —oo; hence for § small enough many ¢ satisfy this condition.
23With the convention that there are no orthogonality conditions required if ng = —1.
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Proof. In what follows, C(8) and C’(§) denote strictly positive constants that may vary but only depend

on §, d and p.
Step 1: We claim the following subcoercivity estimate for H := —A — pcé’o_1 /1x|?:
| Hu|? u? , 5 5
dx > C(8) ——— dx—=C'(§)(|lujga—1 () |I7 2+ (VU)sa—1 (1) I72), (C-9)
/Rd\zsd(l) |x[24 R\BY (1) |¥[24F* (st e stoliz)

where f|sa—1(1) denotes the restriction of f to the sphere. We now prove this inequality. We start with
the decomposition

u@ = ‘”")<le)Y("")(|x|)

n,1<k<k(n)

We recall the link between u and its decomposition (I-I () being defined by (C-3)):

[:i 2 400 H(n) (n,k) 2
/I\Q | M| dx — Z / | | d—l dy, (C—IO)

a\gd (1) |x|*4 e N

/ 2 Z +oo |y, k)|2 d—1
————dx = f ) . (C-11)
2q+4 yra+s
Re\Bd (1) |x]%4 n, 1<k <k(n) !

As H® = Am* 1) 3pq ’q — (% —2— )/n)‘ > § for all n € N, we apply (C-5) and (C-6) to obtain for
eachn € N,

+o0 H(n) (n,k) 2
/ | | d—1 dy
1

y24

+o0 |,,(n,k)|2 ~
>C(8)/ Ju 2q+l Y4 dy — '@ (™2 (1) + A™ @™2(1)). (C-12)

We now sum this identity over n and k. The second term on the right-hand side is

2
Z (u(n,k))Z(l) — [Sd—l( Z M(n’k)(l)Y(n’k)(X)) dx = Ld_l MZ(X) dx

n,1<k<k(n) n,1<k<k(n)

because (Y(n’k))n,lskgn is an orthonormal basis of L2(S¢~1). From (C-1), and as y, ~ —n as n — +00
by (1-18), the last term on the right-hand side of (C-12) is

SO AMPRM < Y A+ PP+ 0,uP)?
n,1<k<n n,1<k<k(n)
2 =12
= C(||”|sd—1(1)||H1 + | Vusa—1y '”||Lz)
< C(lusa—1ll7 2 + 1 Vuysa—1yll72)-
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We insert the two above equations into (C-12) and obtain

+o00 H(n) (n, k)|2

Z / d—l dy
n,1<k<n
oo |u(n’k)|2 d—1 ’ 2 2
> C() Z —agra V. Ay =C &) (Il ga=1 1172 + IV ga=1(1)172).-
n,1<k<n 1 Y

In turn, we insert this identity into (C-10) using (C-11) to obtain the desired estimate (C-9).

Step 2: subcoercivity for H. We will prove the estimate
H 2
/ Hul
Rra 1+4|x|24

| Au|? / |Vu|? [ u?
>C($ —d ——d ——d
= ()(/Rd e P oo kPP X L Qe

u2

—C/(S)(||u|sd—1(1)||i2+||(vu)|sd—1(1)||iz+/Rd W—i_”unzl([gd—l(l)))- (C-13)

Away from the origin, the Cauchy—Schwarz and Young inequalities, the bound V + pcgo_1 |x|72 =
O(|x|727%) from (2-2) and (C-9) give (for C > 0)

/ | Hul? dx:/ [Hu+(V + pebs Pl
Ra\gd (1) |x|%4 RA\B4 (1) |x |24
>C/ |Huf? dx—C// —|u|2 dx
T Jra\gaqr) |x[%4 Rd\pd (1) |x|2qT4+2¢
M2
> C(6)

Ra\pgd (1) 1 + |x|24+4
2
— G Nuysa-snyPa + (Vi) a1y 22 + / W)
L L Ra\gd(1y | + |x[24T4+20

Close to the origin, using Rellich’s inequality (B-3),

1
/ |Hu|2dsz/ |Au|?dx — = lu|? dx
B4(1) B4 (1) C Jpa)

lu|? 1
>C / —dx — ||u|| 1(gd—1(1))-
sy X H1(B4-1(1))

Combining the two previous estimates we obtain the intermediate identity

/ U ez c) L 125+ (V) 12
re 143477 =7 Jpa [el# (14 |x[27) sz el

u2 d 2
+ pa Lt |xPa+a+2a XHlullzr 1 ga-11y) |-
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Now, as H = —A + V with V = O((1 + |x|)™2), using Young’s inequality, the above identity and (B-4),
for ¢ > 0 small enough (depending on &) one has

/ |Hul|?
——dx
R4 1+|X|2p
Hul? Hul?
:(1—8)/ ldx|Hu|2dx+8/ la’x
a 14 |x|2P re 1+ |x|2P
2
> 1_8c5/ v
1=9CO J b+ v &
2
2 2 u
= C®)(Isorn B + 100 B+ [ 5T 4+ il i)
Aul? Vul?
2 R4 1+|X|2q R4 1+|x|211
2

u
z (1=6)C0) /R S e 4
2

u
—C'(8) (||u|sd—1(1) 172 + (Vi) sa—101y 17 2 +/ me dx + ||u||H1(Bd—1(1)))

|9Fu |
+C(Q)_1<;<2/d de—eC (Q)[d de
u? C(q)s [0Hu|?
>C(S _—
st ( ) Rd |x|4(1+|X|2q) 1<|X|:<2/d 1+|x|2q+4—2,u

2
/ 2 2 u
—C'(3) (||u|sd—1(1)||L2 + (Vi) sa—1pyllz2 + /Rd T3 xpatataa dx + ”u”Hl(Bd—](l)))’
which is the identity (C-13) we claimed.

Step 3: coercivity for H. We now argue by contradiction. Suppose that (C-8) does not hold. Up to a
renormalization, this means that there exists a sequence of functions (1), en such that, for all n,

2 2 2 2
n
[ | H up| 0 / | Auy| n [Vuy| n |tn| 1 (C-14)
s = 1. -
re 14 |x|24 T e TR IXP4 X214 x[29) x4 (1 + [x[?9)

Up to a subsequence, we can suppose that u, — Uy € Hl%c (R%), the local convergence in L? being
strong for (U, )nen and (Vuy)nen, and weak for (Vzun)neN. Then (C-14) implies

2 2
2 |un| 2 ool
||un||H1(Bd—l(1)) + Ad 1 + |x|2q+4+a - ||u00”H1(Bd—1(1)) + /;‘{d 1 + |x|2q+4+a .

Now u,, converges strongly to s in H* (8% (0, 1)) for any 0 < s < 2. The trace theorem for Sobolev
spaces ensures that

) sa—1 1y l17 2 + 1 (Vn)sa—1y 172 = (o) jsa—11)[172 + 1(Vitoo) | sa—1(1y 17 -
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We insert the three previous identities into the subcoercivity estimate (C-13) yielding

|uoo|2
1(to0)sa-1(1y 172 + (Vo) sa—1(1)ll72 + /Rd T |xpavata + ||uoo||12q|(3d(1)) # 0,
which means that o, 7 0. On the other hand, the lower semicontinuity of norms for the weak topology
and (C-14) imply
Huoo == 0.

Hence u is a nontrivial function in the kernel of H, and is smooth from elliptic regularity. It satisfies
the integrability condition (still from lower semicontinuity)

|A7/‘oo|2 |Vuoo|2 / |uoo|2
d d ———dx < .
/Rdl—l—|x|2‘1 x+1—|—|x|2‘1+2 X+ x <400

We now decompose U« into spherical harmonics, Uoo =, 1<k < k(n) ugé’k) Y (4 k)» and will show that for
(k) J1<k=<

each n, k one must have ug,"~ = 0, which will give a contradiction. For each n, k, the nullity Hueo =0
implies H®ul® where H® is defined in (1-36). By Lemma 2.3 this means oo = aT ™ + T
(n,k).

for a and b two real numbers. The previous equation implies the following integrability for u o

By (2-7), as re y_d %2 does not satisfy this integrability at the origin whereas TO(") is regular, one
must have » = 0. Then, if n > ng + 1,

|T(n)|2
0 d—1 __ ,,—2yn—2q—5+d
1+ y2q+4y y ’

From the assumption on n¢ and (1-18), one has
2w —2q—5+d =—=1-2(q+ 24 Yngt1— %) +2(Vnp+1—¥a) > —1,

implying that |T0(") 12/(1 + y24+4)y9=1 is not integrable on [0, +00); hence a = 0. If n < ng then the
orthogonality condition (C-7) goes to the limit as CIDg,;’k) is compactly supported and implies
(u®, o9y = o,
which, in spherical harmonics, can be rewritten as
0= @R, %Py = (1, & (k).
However, from (4-3) this in turn implies @ = 0. We have proven that for all n, k ugé’k) =0; hence Uy =0,

which is the desired contradiction, as we proved earlier that 1, is nontrivial. The coercivity (C-8) must
then be true. o

If one adds analogous orthogonality conditions for the derivatives of u and uses a bit more the structure
of the Laplacian, one gets that the weighted norm || H? /(1 4 |x|?)u|| ;> controls all derivatives of lower
order with corresponding weights.
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Lemma C.3 (coercivity of the iterates of H). Let i be an integer with 2i > o such that for alln € N
satisfying my + 8, <i one has 8§, # 0. Let no be the lowest integer such that mpy4+1 + 8py+1 > i. Let
u e H2 0 HO(RY) satisfy (where ®0X) is defined in (4-1))

(u, H Ky =0 for0<n<ng, 0<j<i—my—1, 1<k <k(n). (C-15)
Then there exists a constant § > 0 such that for all 0 < §’ <6,
|92 ? / |H'u|?
C(8,i . dx < — dx, C-16
( )m%/ U 22 = o T o 1

which in particular implies that

]l =i EC(5,i)(/ |Hiu|2dx) . (C-17)
R4
Proof. Step 1: equivalence of weighted norms. We claim that for all integers j,
Hiu=(8Yut+ ), fjud'u (C-18)
[n|<2j-2

for some smooth functions f;, having the decay [0 f; .| < C(1 4 |x|?>/~I#I+IK')=1 This identity is
true for j = 1 because Hu = —Au + Vu with the potential V' being smooth and having the required
decay by (2-2). If the aforementioned identity holds true for j > 1 then

H/H = (—A+ V)((—A)ju + > f},ﬂaﬂu)
[u]|<2j-2

=N T+ VEA U+ YD (A V().
[nl<2j-2

and hence it is true for j 4+ 1 since V' is smooth and satisfies the decay (2-2). By induction it is true for
all j € N and (C-18) is proven. Then (C-18) implies that

|H'u |2 / | 9|
<C . dx. C-19
/Rd 1+ |x|25 | % al+ |x|4l—2lu|+23’ X ( )
w i

Step 2: weighted integrability in H2 N H°. We claim that for all functions u € H2 N H° (R%) and §' > 0,

Iy |2
Z / |9u| dx < +o00. (C-20)

al4 |x|4z—2|,u|+28’
ul=2i

Indeed, let u be a ||-tuple with || < 2i. We split into two cases. First if || <o, as 0 < % and 2i > o,
the Hardy inequality B.3 yields

|9/ ? |94 |2 R
—_— < f
[Rd 1 |x[4i=2lpl28 d = pa 1+ [x[2@—Iu) dx = Cllully, <+oo
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and we are done. If 0 < j1 < 2i then by interpolation v € H!*/(R?) and then

U< [ o
ot T e [F2ll 2y x < [ |0*u|*dx < +o0.

Thus (C-20) holds, which together with (C-19), implies, for all §’ > 0,

! HuP? VE TP ol
Z g 14 |x |44 28 X+ | + [x[4HT—4]+2+25 X < +00. (C-2D)
Jj=0
Step 3: intermediate coercivity. Let § = min(50, ooy Bng+1s %) if §04+1#0and § = min(&), ey Ongs %)

if 8,0+1 = 0. The conditions on the §, of the lemma imply § > 0. We claim that for all integers 1 </ <i,

Hl—l 2 VHI—I 2 Hl 2
Vel T )
R

C@) Rd 1+|x|4i—4(l—1)+28’ +C0) rd 1+ |x|4i—4l+2+28’ = Jra 1+ |x|4i—4l+28/'

We now prove this estimate. We want to apply Lemma C.2 to the function H'~1u with weight ¢ =
8" 4+ 2(i —1). To use it, we have to check the orthogonality and integrability conditions that are required,
and the conditions on the weight.

Integrability condition. It is true because of (C-21).

Condition on the weight. For the case n > ng + 1, by (1-23) one computes
|5,+2(i—1)—(%—)/n—2)} =8'=28n+1—2(Mng+1—1)—2(1=1)=2(Mpn+8n—mMng+1—8no+1)|. (C-23)

One has 2(I —1) >0as > 1 and 2(my + 6, —Mpy4+1—0ny+1) = 0 because (m, + 6,)n is an increasing
sequence from (1-22) and (1-18). For the subcase 6,,4+1 = 0, as mu,+1 > i and mp,41 is an integer,
2(mpg+1—1) > 2. Therefore —2(mpy4+1—1i) —2(1 —1) —2(mp + 8p —Mpy4+1—6ny+1) = —a fora > 2,
and inserting it into the above identity as 0 < §’ < 1 gives

|8 +2G =)= (§—ym=2)| =18 —a| =8 =6.

For the subcase §,y+1 # 0, we have 8’ — 28,041 <8 —2849+1 < —0Ono+1 < —8. Moreover, mp,+1 > i
and —2(mp41—1i) —2(1 = 1) =2(mp + 8n — Mng+1 — dnp+1) < 0, implying

8" = 28pg+1—2(mpgr1 —1) =2(1 = 1) = 2(mp + 8p —Mpg+1 = 8ng+1) < 8" —28p4+1 < =6,
and therefore by (C-23) this yields in that case
16" +2( = 1) — (% —yn —2)| = 6.
In both subcases one has |8’ +2(i —1) — (4 —yu— 2)| = 8. For the case n < n,
18/ +2G —1) = (4 —yn—2)| = |8/ =280 +2G =1 + 1 —mp)|.

In the above identity, 2(i —[ + 1 —my,) is an even integer, and §' — 28, is a number satisfying §' — 28, <
§—28, <—§& and we recall that § < 1, and 8’ —26,, > —28,, > —1. Therefore |8’ =26, +2(i — +1—my)| >,
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yielding
16/ +2G —1)— (4 —yu—2)| > 6.

Therefore, for each n € N, we have |§' +2(i —1) — (4 —y» —2)| = 8.
Orthogonality conditions. Let ny = ng(I) € NU {—1} be the lowest number such that

By construction one has ng < ng. If nj = —1 then we are done because no orthogonality condition is
required. If ny # —1, let n be an integer, 0 < n < ng. By the definition of ng,

20 =1+ 1)+ 8 —2(mp +8,) > 0,

which implies 0 </ —1<i—m, —1 as §' — 28, <8 — 268, < —8, < 0. The orthogonality condition
(C-15) then gives, for any 1 <k < k(n),

(u, H'71o0R)y — o,
We have then proved that for all 0 <n < ng, 1<k <k(n),
(H' 1, @0Ky — 0,

which are the required orthogonality conditions.

Conclusion. One can apply Lemma C.2 to H =1y with weight ¢ = 2i — 21 + §', giving the desired
coercivity estimate (C-22).

Step 4: iterations of coercivity estimates. We show the following bound by induction on / =0, ...,
|Hlu|2 / |9#u|?
>c(6,i E . dx. C-24
/Rd 1+ |x|23’ ( )o<| L 1+ |x|4l—2u+28’ ( )

This property is naturally true for / = 0. We now suppose it is true for / — 1 with0 </ —1 <i — 1. From
the formula (C-18) relating Al to H!, we see that (using the Cauchy—Schwarz and Young inequalities)

H? A |9 ul?
wa |+ |x[4G-D+28 = (@) gt 14 |x[AG-D+28 D Ra 1+ [x[H—2Iul+28

0<|u|<21—2
Al 2 Hiul?
> () Ll ——y L
rd 14 |x|4@=D+2 rd 1+ |x|?

where we used the induction hypothesis (C-24) for [ — 1 for the second line. We now use (C-24) and
(B-4) to recover a control over all derivatives:
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Aly|? g Al=1y,2 . Al=1,2
>C(@i) E ok
Rd 1+ |x[4E=D+28" = ¢ (L S T D2 - ga |+ [x|4G-D+4
<|ul<

Al—lap, 2 Hl—l 2
> C(i) Z/ | . ”l_ —C'(8,1) ol

4G—-(1-1 2 287
o, Jra T x A= 0=D) =20 e 1+ x|

|1 AL=2gHy |2
>C(i) Z Z [d 1 + |x[4G—U=D)+4-2|u|-2|w|
0<|ul=21=|w|=2

_C,(i) |Al_2u|2 _C’((g i) |Hl_1u|2

Rd 1+ |x[40=D+8 © 0 ma 14 X2
> |Al—28uu|2 |Hl 1u|2
(i) Z Ra 1+ [x[2PHAG—0—2) =21 ) ra 1+ [x2

0=l <4

a,uu|2 Hl 1u|2
> C(7) Z /d 1+ |x[2p+4= 2M+25/_C @, )/d 1+|x|25’
0<|u|=<2l

Inserting this last equation into the previous one we obtain

Hl 2 Al_2 a2 Hl—l 2
/ A u] >C6.0) Y / AT s gy [ M
R

¢ 14 |x|4G-D+28 = o<y Jra TF |x|2PHa=2u rd 14 |x[28’

This, together with (C-22), gives that (C-24) is true for /. Hence by induction it is true for i, which is
precisely the estimate (C-16) we had to show and ends the proof of the lemma. O

Appendix D: Specific bounds for the analysis

This section is dedicated to the statement and the proof of several estimates used in the analysis.

Lemma D.1 (specific bounds for the error in the trapped regime). Let ¢ be a function satisfying (4-25)
and (4-11). We recall that E; and &5, are defined by (4-9) and (4-7). Then the following bounds hold:

(i) Interpolated Hardy-type inequality. For 1 € N? and q > 0 satisfying o < || +q < 2s1

|8M8|2 2SL2—(|U«|+(1) |/.£|+q—rr
Sy, —0 Sy —0
[ T @ =cons T e ®-1
(ii) Weighted L bound for low order derivative. For 0 <a <2 and u € N% with |u| < 1,
e 1+0(-%) 1
<C(Ki, Ky, M)\/& L —. (D-2
H T [y | oo = CK1 K2 MDVES (G-t G rarmarro(ze) O
(iii) L bound for high order derivative. For u € N? with || < sz,
BLSHIZIR 0 M o)
[0%e]7eo < C(M)E; =T L, ot 2, (D-3)
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Proof. (1) We first recall that from the coercivity estimate (C-16) one has
IVoel}> =&, IVPFel}s < CM)|[H ¢||7, = C(M)Ezs, .

If the weight satisfies g < %, then the inequality (D-1) claimed in the lemma is a consequence of the
standard Hardy inequality, followed by an interpolation:

2SL2—(|M|1+Q) 2qull-i-q—cr
2 S, —0O 2 S, —0
S CIVHI e, <CIVell, =57 IV2el ™

L

oHe
1+ |x|4

2sy —(uly+q) |l +g9—0o

fC(M)go- 257, —0 5 2s7,—0 ]

287,

If the potential satisfies ¢ = 257, — ||, then the inequality (D-1) claimed in the lemma is a consequence
of the coercivity estimate (C-16):
2

=< C(M)€ZSL .
L2

e
1+ |x[4

For a weight that is in-between, i.e., % < gq < 2s;, — |u|1, the inequality (D-1) is then obtained by
interpolating the two previous ones, as

c=b b—a
lef? ( lef? )—( lef? )—
1—|—|x|2b 1—1—|x|2“ 1_|_|x|2c :

(ii) As the dimension is d > 11 and L > 1 is big, one has d*¢/(1 + |x|?%) € L*° with the following
L2

bound (using the bound (i) we just derived):
7 Iz Iz
2] e[ )] (),
Loo 1+|X|a 1+|X|a L2
< C)(IVEHHatlihg) o Vo +atithtzg )
2sp —(a+luly+d/2—2)  a+luly+d/2—z—0  2sp—(a+lul +d/24+2)  atlul +d/2+z—0

14|x|@
< C(M, Z)(gg 257, —0 £ 257 —0 +50 257 —0 £ 257 —0 )

28y, 25y

for z > 0 small enough. We then let z; be so close to 0 (of order L~1) that its impact when using the
bootstrap bounds (4-25) is of order sTIZ (since the constant C(M, z1) explodes as z; approaches 0, we
cannot take z; = 0, but z; very close to %

(4-25) then yields the desired result (D-2).

is enough for our purpose). Inserting the bootstrap bounds

(iii) It can be proved exactly the same way we did for (ii). O

Lemma D.2 (a nonlinear estimate). Letd € N, a > 0 and b > % Let Q@ C R? be a smooth bounded
domain. There exists a constant C > 0 such that for any u, v € H™*@0)((y) 24

hevllac) < C (lullga@ vllae ) + el mo @) vl Haw)- (D-4)

24 - B (O - d
The product uv indeed belongs to H%(2) as H max(a )(R) is an algebra since b > 5.
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. . d d 1
Proof. Without loss of generality one assumes 5 <b < 5 + 7,
b:=% 48, with0o<8<1. (D-5)

Indeed, if (D-4) holds for all b € (% % + %] then for any b’ > % + %, applying (D-4) to the pair of
parameters (a, < + 1) and using the fact that £ | grarz+1/aey < If Lz () for any f € Hb(Q) gives

that (D-4) holds for the pair of parameters (a, b’).
Step 1: a scalar inequality. We claim that for all (vi,vp) € [0,1]® with vy + v, > 1 and for all
(A1, A2, A3, A1) € [0, +00) satisfying A1 < Ay and A3 < A4,
AVATVIARALT < AqAa 4 Aads. (D-6)
We now prove this estimate. Since 1 —v; —v; <0and 0 <1—v, <1, one has
V(x,z) €[l,+00) x [0, +00), xlvimva v < Jl=va oy o

Let (A1,A2,13,44) € [0, +00) satisfying 0 < A; < Ay and 0 < A3 < A4. We apply the above estimate
tox = % >1and z = i;ﬁ;‘, and multiply both sides by A,A3, yielding the desired estimate (D-6)
after simplifications. If A; = 0 or A3 = 0, (D-6) always holds. Consequently, (D-6) holds for all

(A1, A2,A3,A4) €]0, +00) satisfying 0 < A1 <A and 0 < A3 < A4.

Step 2: proof in the case @ = R? and a > b. We claim that for u, v € H*(R%),

vl gagay < C (1ull gragay 10| o gay + 1l o gay 10| gra gay) - (D-7)

We now show the above estimate. Let u, v € H*2 (Rd ). First, one obtains an L? bound using Holder and
Sobolev embedding (as b> %)

luvllL2gay < lullL2@e) V] Loo@a) < Cllull gagay 10| o ga)- (D-8)

Secondly, one decomposes a = A + §,, where A := E[a] € N is the entire part of @ and 0 < §, < 1.
Using the Leibniz rule one has the identity

1990 2oy € 3 IV @ 110%20) 2 . (D-9)
(w1,u2)eN?
i1 |+Ipal=4

We fix (ju1, 2) € N2? with |p1| + |2 = A in the sum and aim at estimating the corresponding term.
We recall the commutator estimate

V3% @1 ud"2v) |2 < IIVEHFSay || oy 0420 Loy + | VI#21T8a ]| s (|07 0| oo (D-10)

for %+é = pi,+p% = %, provided 2 < p1, p» < +ooand 2 < g1, g» < +00. We now chose appropriate
1 2.
exponents p; and p; in several cases.

Case 1. |p2| = 0. Then |p1| + 84 = a and using Sobolev embedding (as b > %),

19114802 gy 18720l oo gty < C 1l gga ey 190 g7 gy (D-11)
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Case 2. 1 < |uz2| <a— % and |u1| + 84 < b. Then b < |uz| + % < a by (D-5) and using Sobolev
embedding, one computes

VB30 2ay 19420 ]| oo ray < Cllull o ey 10 | ra ey (D-12)

Case 3. 1<|u2|<a—d andb<|u1|+8 Thenb<|u2|+d <aby (D-5) and b < |u1|+6a <a We
let x := mm(‘g2 ,a—|pt2] —£) > 0. Using Sobolev embedding, interpolation and (D-6) (since b > 4 + x
and 1] + |p2| + 82 = a), one computes

1
VIS o ay 10720 oo ay < C N1l s 480 ey [V piicatbarasx gy

a—|uyl—éa Iy l+8a—>b a—lupl—d/2—x lupl+d/2+x—b
<Clull ity 1l gty Wl 1l asy
< C(lull gaga)llvll s ey + el go @y 10| ragay)- (D-13)

Case 4. a—% <|m2| <a.Letx:= %min(a— |itl2, 6p) > 0. We define p1, g1 and s by

1.1 a-x—lpf 1 _1_ 1 . _d
g1 2 d o 2 qa a1
One has 1|+ 8, +5 = % + x < b, and, using Sobolev embedding,
IVt +8ay || o (10420 Loy < C llull ey 1a-+5 10 [ ra— < Cllull go l|v]| e (D-14)

1 1 _1

and o~ + - =3, p1# +oo.
Case 5. |u2| = a. Then |p1| 4 8, = 0 and using Sobolev embedding (as b > %),

IVP 5 u | oo gy 1920l L2ty = Cllull o @y 19 ]| . (D-15)
Conclusion. In all possible cases, by (D-11)—(D-15) there always exist p1, 41, p2,q2 € [2, +00) with
Pl,pz#-i-OO,%-l-qu:%and
IV 5| oy gy 19720 Lt ey + IV | Loz [| V20|
= C||“||Hb(Rd)||U||Ha(Rd) + C”“”H“(Rd)”v”Hb(Rd)’

where the estimate for the second term on the left-hand side of the above equation comes from symmetric
reasoning. We now come back to (D-9), and apply (D-10) and the above identity to obtain

IV*@u)li2@ay < Clullge ey IV gagay + Clull gaga)y 1V go @a)-

The above estimate and (D-8) imply the desired estimate (D-7) by interpolation.

Step 3: proof in the case Q2 = R? and a < b. The proof is similar and simpler and we do not write it
here. Therefore, (D-7) holds for all ¢ > 0 and b > i

Step 4: proof in the case of a smooth bounded domain 2. There exists C > 0 such that for any
f € H™x@.b)(Q)) there exists an extension f e H™x(@D)(R4) with compact support, satisfying f f
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on €2 and :
E”f”HC([Rd) <Ifllae@) =CIlflge@ey, ¢=a,b;

see [Adams and Fournier 2003]. Let u, v € H™*(@.0)(Q2) and denote by i and 7 their respective extensions.
Using (D-7) and the above estimate then yields

[uvllga@) < 1U0] gaga)
= C(||ﬂ||Ha(Rd)||5||Hb(Rd) + ||ﬁ||Hb(Rd)||5||Ha(Rd))
< CC*(lullaa@ vl ao@) + lullms@)llviiza@)

and (D-4) is obtained. O

Appendix E: Geometrical decomposition

This section is devoted to the proof of Lemma 4.3.
Lemma E.1. Let X denote the functional space
0,1
X = {ue L®B0,4M)): (u— 0, HO\") > |u— Qll poosa 0,30y} - (E-1)

There exists i, K > 0 such that for all u € X N{|[u — Q|| .o (5d (0,a0m))) < K} there exists a unique choice
of parameters b € R* with b§0’1) >0, A >0and z € R such that the function v := (t_ju) — Qb satisfies

(v, HHOUF) =0 for0<n<ng, 1<k <k(n), 0<i <L, (E-2)
and such that
A—1+zl+ Y P <k (E-3)
(n,k,i)eT

Moreover, b, A and z are Fréchet differentiable® and satisfy
k
A=1l+lzl+ D0 15"01 < Kllu = Qllsoseo.3m)- (E-4)
(n,k,i)eT
Proof. We first define the application £ as
£: L®(BY(0.3M)) x (0, +00) x R T# — RIHHHT,

- - . E-5
(u, A, 2,b) —~ (((TEM)L—Q—(XI;, H’CDI(‘Z’k))), where 1 <k <k(n), 0<n<ng, 0<i < L,. (E-5)
x

Then & is C°°. From the definition (3-7) of «, and the orthogonality conditions (4-3), the differential of &
with respect to the second variable at the point (0, 1,0,...,0) is the diagonal matrix
(TO(O)’ M To(o)> Idz +1
DWPEQ,1,0,...,0)=— , (E-6)
(T8 e T") 1,

25For the ambient Banach space L°°(Bd (0,3M)).
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where Idy, is the L, x L, identity matrix. D®@E(Q,1,0,...,0) is invertible for M large by (4-3).
Consequently, from the implicit functions theorem, there exist «, K > 0, such that for all
ue X N {llu—0Ollpoosaosmy <k}

there exists a choice of the parameters A= )Nt(u), Z =1Z(u) and b= E(u) such that

T 5 = 7 (n.k
E A2 b) =0, [A-1+2+ Y 150 < Kllu— Ol aany (E-7)
(n,k,i)eT

and it is the unique solution of & (u, X2, I;) = 0 in the range
A—1+1E+ > B9 < k.
(n,k,i)eT
Moreover, they are Fréchet differentiable, again from the implicit function theorem. Now, defining
A =1/A, b =b and z = —Z, this means by (E-5) that the function w := (t—;u)) — Q — o, satisfies
(w, H'oW*y =0, for0<n<ng, 1<k <k(n), 0<i <Ly

Finally, still from the implicit function theorem, from the identity for the differential (E-6), the definition
(E-1) of X and (4-3),
bV = —[DPg(0.1.0.....0]7 (1. 1.0.....0) + o(||u — Oll oo (s 311
u—Q. H' oY
= (oQ) © o0 ') >0
(TO » XM T() )

where the o(-) is as k — 0, and the strict positivity is then for x small enough. Consequently, in that

case Q~b =0+ X (pO-Dy=1+m /29 is well defined, and one has (b§0’1))_% > 2M for k small enough.
1 ~
Thus, for v := (1—;u)) — Op,

(v, H®WR) = (5, H ®WH) =0 for0<n <ng, 1 <k <k(n), 0<i <Ly

because the support of v — 7 is outside B4 (0,2M ). One has found a choice of the parameters A, b and z
such that bio’l) > 0 and (E-2) and (E-3) hold. This choice is unique in the range (E-3) and the parameters
are Fréchet differentiable since under (E-3), they are equal to the parameters given by the above inversion
of &. |

Lemma E.2. There exist k*, K > 0 such that the following holds for all 0 < k < k™. Let O be the open set of
L%°(B2(0, 1)) of functions u satisfying (4-4). For eachu € O there exists a unique choice of the parameters
A€ (O, ﬁ), zeBd ((), %) and b € RT such thatbgo’l) >0andv=(1—;u),—0p € L“(%(Bd (0, 1)—{2}))
satisfies>®

(v, HHOWF) =0 for0<n<ng, 1<k <k(n), 0<i <L, (E-8)

26The following assertions make sense as v is defined on %(Bd (0, 1) —{z}), which indeed contains B4 (0,2M) since
0<A< W and |z] < %, and as CIDI(\Z’k) is compactly supported in B4 (0,2M) by (4-1).
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and

(n,k) =
Z |bl' | + ”v”LOO(%(Bd(O,I)—{z})) < Kk. (E-9)
(n,k,i)eT

Moreover, the functions A, z and b defined this way are Fréchet differentiable on O.
Proof. Let K and k¢ be the numbers associated to Lemma E.1.
Step 1: existence. Let
(A, 2) € (0, gi7) x BY(0, 1) (E-10)

be such that

K
u— = oo < s
[ QZ,% Iz (B4(1)) i%

0,1
|—zu); = Qll oo annyy < ((—zw); — Q. HEY "),
which exists by (4-4). We define w := (t_zu)3. It is defined on the set (1/ i)(B(l) — Z), which contains
BL(IM)as0< A < ﬁ and |z| < %. From this fact and the above estimates, w satisfies
0,1
[w—QllLeBamy <k, |w—0llpeomiamy < (w—0, H‘D](w ). (E-11)

Thus for x small enough, one can apply Lemma E.1: there exists a choice of the parameters z’, b’ and A/
such that v/ = (t—yw) — Q p satisfies (E-8) and bl(o’l) > 0. This choice is unique in the range

W1+ + > P <k (E-12)
(n.k,i)eT

Moreover, the estimate

k
W =1+ 121+ > B < Kllw = Qll o s 0,30y < KK
(n,k,i)eT

holds. Now we define
b=b/, z=:+xz, A=A\ (E-13)

and v = v’. One has then bgo’l) > 0, and from (E-10) and the above estimate,

> M<Kk, lzl<t 0<i<
(n,k,i)eT

for k small enough. From the definitions of w, v’ and v one has the identity
u=(u+ Qb)z L, with v satisfying (E-8).
From (3-7), (3-29) and the above estimate,
2 ~
1ol oo (13 (1)—zy) = A7l =72(Qp 1)l oo e 1))

2 2 ~
<AP T |u _TE(Q%)”LOO(B‘J(I)) + AP ||T2(Q%) —2(Qp DllLeo@ery = CKk
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for some constant C > 1 independent of the others. Therefore, one takes K =CK , and the choice of
parameters A, z and b that we just found provides the decomposition claimed by the lemma and the
existence is proven.

Step 2: differentiability. We claim that the parameters A, b and z found in Step 1 are unique; this will be
proven in the next step. Therefore, from their construction using the auxiliary variables A and Z in Step 1,
and since the parameters A/, z’ and b’ provided by Lemma E.1 are Fréchet differentiable, A, b and z are
Fréchet differentiable.

Step 3: uniqueness. Let b, A, 2 be another choice of parameters with 550’1) >0,0<A< ﬁ and |z| < %
such that (E-8) and (E-9) hold for 0 = (t_zu) i Op. The function (_zu) 5> Where A and  were defined
in (E-10) in the first step, then satisfies the bound

[(z—zu)5 — OllLoB3M)) <Ko

for k small enough by (E-11), and admits two decompositions

(t—zu); = (Qp + V)1, = (05 + )z

X

ol

such that v and v’ satisfy (E-8). By (E-12), the first parameters satisfy
W =1+121+ > 15" < Ko

(n,k,i)eT
We claim that the second parameters satisfy
A 2% R
7—1‘+ Y 1B < Ko, (E-14)
A (n,k,i)er

which will be proven hereafter. Then, as such parameters are unique under the above bound by Lemma E.1,
one obtains .
A1 z-2 ,

AN

implying that A=A, 2=zand b =b, where A, z and b are the choice of the parameters given by the
first step defined by (E-13). The uniqueness is obtained.

Proof of (E-14). From the assumptions on l;, A and Z, the definition of Q~ p (3-29) and (E-9), for « small
enough we have

CKk
lu—0; 1llpeeaqy = 7=
z, 5 ILee(B4(1) /\%
From (E-10) one also has
K
lu—0s 1llpecsaqy) = 2
zZ, 5 ILoo (B4 (1) /\%
From the two above estimates, one deduces that
K CKk

(E-15)

s 1— 0= oo =< .
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Assume that A < A. Then, since Q is radially symmetric and attains its maximum at the origin, and
2 e B4(0,1) because |2| < %, the above inequality at x = Z implies

1 1
0 ———)=0:1(2)—-0;1(Z
Q()(ipz_l k) 0:1()=0:1 )
<0:1()-0:10)
=10: 1)~ 0: 1 ()]
~ 1 1
ECKK(~ 2 +T)’
AT AT
which gives
1 1 ~ 1 1
P ) SCKK(~ 2 +T)'
Ap=T  Ap-T Ap=T  Ap-T

The symmetric reasoning works in the case A > X and one obtains that in both cases

~ 1 1
SCKK(~ —+—— )
P =

Basic computations show that for ¥ small enough the above identity implies

1 1

A~ 2 ~
Ap—T AT

1—K <CKrk or A=1(1+0()),

obtaining the first bound in (E-14) for « small enough. We insert the above estimate into (E-15), yielding

CKx
oo (Il + ||Q2,% - QQ,%”LOO(Bd(l))” <=
A P—1

_Q2

||Q2,% =05 tllpeoay = 19z,

1 1 1
%3 X '3

which implies in renormalized variables (as |2| < % and A < 8LM)’

||Q - 7232 QllLoo(Bd(O,ZM)) < CEK

As Q is smooth, radially symmetric and radially decreasing this implies

z—2Z

<CKk or 2=Z2+M10()

and the second bound in (E-14) is obtained. O
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