Vol. 10, No. 1, 2017

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 10, 3371–3670
Issue 9, 2997–3369
Issue 8, 2619–2996
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
On an isoperimetric-isodiametric inequality

Andrea Mondino and Emanuele Spadaro

Vol. 10 (2017), No. 1, 95–126
Abstract

The Euclidean mixed isoperimetric-isodiametric inequality states that the round ball maximizes the volume under constraint on the product between boundary area and radius. The goal of the paper is to investigate such mixed isoperimetric-isodiametric inequalities in Riemannian manifolds. We first prove that the same inequality, with the sharp Euclidean constants, holds on Cartan–Hadamard spaces as well as on minimal submanifolds of n . The equality cases are also studied and completely characterized; in particular, the latter gives a new link with free-boundary minimal submanifolds in a Euclidean ball. We also consider the case of manifolds with nonnegative Ricci curvature and prove a new comparison result stating that metric balls in the manifold have product of boundary area and radius bounded by the Euclidean counterpart and equality holds if and only if the ball is actually Euclidean.

We then consider the problem of the existence of optimal shapes (i.e., regions minimizing the product of boundary area and radius under the constraint of having fixed enclosed volume), called here isoperimetric-isodiametric regions. While it is not difficult to show existence if the ambient manifold is compact, the situation changes dramatically if the manifold is not compact: indeed we give examples of spaces where there exists no isoperimetric-isodiametric region (e.g., minimal surfaces with planar ends and more generally C0-locally asymptotic Euclidean Cartan–Hadamard manifolds), and we prove that on the other hand on C0-locally asymptotic Euclidean manifolds with nonnegative Ricci curvature there exists an isoperimetric-isodiametric region for every positive volume (this class of spaces includes a large family of metrics playing a key role in general relativity and Ricci flow: the so-called Hawking gravitational instantons and the Bryant-type Ricci solitons).

Finally we prove the optimal regularity of the boundary of isoperimetric-isodiametric regions: in the part which does not touch a minimal enclosing ball, the boundary is a smooth hypersurface outside of a closed subset of Hausdorff codimension 8, and in a neighborhood of the contact region, the boundary is a C1,1 hypersurface with explicit estimates on the L norm of the mean curvature.

Keywords
isoperimetric inequality, isodiametric inequality, Ricci curvature, regularity nonlinear elliptic PDE
Mathematical Subject Classification 2010
Primary: 49J40, 49Q10, 49Q20, 35J93
Milestones
Received: 25 March 2016
Revised: 25 September 2016
Accepted: 1 November 2016
Published: 30 January 2017
Authors
Andrea Mondino
Department of Mathematics
Warwick University
Coventry
United Kingdom
Emanuele Spadaro
Max-Planck-Institut
Institut für Mathematik
Leipzig
Germany