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JEFFREY S. CASE

Under a spectral assumption on the Laplacian of a Poincaré–Einstein manifold, we establish an energy
inequality relating the energy of a fractional GJMS operator of order 2
 2 .0; 2/ or 2
 2 .2; 4/ and the
energy of the weighted conformal Laplacian or weighted Paneitz operator, respectively. This spectral
assumption is necessary and sufficient for such an inequality to hold. We prove the energy inequalities by
introducing conformally covariant boundary operators associated to the weighted conformal Laplacian
and weighted Paneitz operator which generalize the Robin operator. As an application, we establish a new
sharp weighted Sobolev trace inequality on the upper hemisphere.

1. Introduction

Fractional GJMS operators are conformally covariant pseudodifferential operators defined on the boundary
of a Poincaré–Einstein manifold via scattering theory which have principal symbol equal to that of the
fractional powers of the Laplacian [Graham and Zworski 2003]. Fractional GJMS operators can also be
understood as generalized Dirichlet-to-Neumann operators associated to weighted GJMS operators of a
suitable order defined in the interior [Branson and Gover 2001; Caffarelli and Silvestre 2007; Case and
Chang 2016; Chang and González 2011; Yang 2013]. In particular, one can identify the energy associated
to a fractional GJMS operator with the energy associated to a suitable weighted GJMS operator when
restricted to canonical extensions; see [Caffarelli and Silvestre 2007; Yang 2013] for the flat case and
[Case and Chang 2016; Chang and González 2011] for the curved case.

In this article, we are interested in obtaining, as a generalization of known results in the flat case
[Yang 2013], a general relationship between the energy associated to a fractional GJMS operator and
the energy associated to a suitable weighted GJMS operator for arbitrary extensions. One reason for
this interest is the role of such relationships in establishing sharp Sobolev trace inequalities (see [Ache
and Chang 2015; Escobar 1988]) and in studying the fractional Yamabe problem (see [Escobar 1992;
González and Qing 2013]). Indeed, this article is partly motivated by a subtle issue which arises in the
works of Escobar [1992; 1994] and González and Qing [2013] on the fractional Yamabe problem of
order 
 2 .0; 1/. In both works, one tries to find a metric on a compact manifold with boundary which
is scalar flat in the interior and for which the boundary has constant mean curvature (in a sense made
precise in Section 3) by minimizing an energy functional in the interior subject to a volume-normalization
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on the boundary. However, there is no guarantee that the energy functional is bounded below within this
class, an issue overlooked in [Escobar 1992; González and Qing 2013] and corrected in the special case

 D 1

2
in [Escobar 1994]. Proposition 5.1 corrects this issue by giving a spectral condition under which

the energy functional is bounded below.
The main results of this article are the following two theorems. These results establish, under spectral

assumptions on a Poincaré–Einstein manifold, energy inequalities on suitable compactifications of the
Poincaré–Einstein manifold which relate the energy of the weighted conformal Laplacian and the weighted
Paneitz operator to the energy of the fractional GJMS operators P2
 in the cases 
 2 .0; 1/ and 
 2 .1; 2/,
respectively. That equality holds for the special extensions U was established in [Case and Chang 2016].

Theorem 1.1. Fix 
 2 .0; 1/ and set mD 1� 2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
satisfying �1.��gC/ >

1
4
n2 � 
2. Let r be a geodesic defining function for M and let � be a defining

function such that, asymptotically near M,

�D r Cˆr1C2
 C o.r1C2
 /

for some ˆ 2 C1.M/. Fix f 2 C1.M/ and denote by D

f

the set of functions U 2 C1.X/\C 0.X/
such that, asymptotically near M,

U D f C �2
 C o.�2
 /

for some  2 C1.M/. Set g D �2gC and hD gjTM . ThenZ
X

�
jrU j2C

mCn�1

2
Jm� U

2

�
�m dvolg ��

2


d


�I
M

fP2
f dvolh�
n�2


2
d


I
M

f̂ 2 dvolh

�
(1-1)

for all U 2 D

f

, where Jm� is the weighted scalar curvature of .X; g; �;m; 1/. Moreover, equality holds if
and only if Lm2;�U D 0.

Note that the left-hand side of (1-1) is the Dirichlet energy of the weighted conformal Laplacian Lm2;�
of .X; g; �;m; 1/. See Section 2 for a detailed explanation of the terminology and notation used in
Theorem 1.1. The spectral condition in Theorem 1.1 holds for Poincaré–Einstein manifolds for which the
conformal infinity .M n; Œh�/ has nonnegative Yamabe constant [Lee 1995].

A key point is that the spectral assumption �1.��gC/ >
1
4
n2� 
2 is necessary; see Proposition 5.1.

This corrects the aforementioned mistake in [González and Qing 2013]. Observe also that the left-hand
side of (1-1) involves the interior L2-norm of U. This contrasts with the sharp Sobolev trace inequalities of
Jin and Xiong [2013] which instead involve a boundary L2-norm of f DU jM : Given a Poincaré–Einstein
manifold .XnC1;M n; gC/, a constant 
 2 .0; 1/, and a defining function � as in Theorem 1.1, there is a
constant A such thatZ

X

jrU j2�1�2
 dvolg CA
I
M

f 2 dvol� S.n; 
/
�I
M

jf j
2n
n�2


�n�2

n

(1-2)

for any U 2 D
 WD
S
f D


f
, where gD�2gC, f DU jM, and S.n; 
/ is the corresponding constant in

the upper half space [González and Qing 2013; Jin and Xiong 2013]. Under the spectral assumption
�1.��gC/ >

1
4
n2�
2, one can use the adapted defining function [Case and Chang 2016, Subsection 6.1]
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in Theorem 1.1 to eliminate the interior L2-norm of U ; indeed, combining this with (1-2) yields the sharp
fractional Sobolev inequalityI

M

fP2
f CA

I
M

f 2 � �
d


2

S.n; 
/

�I
M

jf j
2n
n�2


�n�2

n

for all f 2 C1.M/ (see [Hebey and Vaugon 1996; Jin and Xiong 2013]).

Theorem 1.2. Fix 
 2 .1; 2/ and set mD 3� 2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
satisfying �1.��gC/>

1
4
n2�.2�
/2. Let r be a geodesic defining function forM and let � be a defining

function such that, asymptotically near M,

�D r C �2r
3
Cˆr1C2
 C o.r1C2
 /

for some �2; ˆ 2C1.M/. Fix f 2C1.M/ and denote by D

f

the set of functions U2C1.X/\C 0.X/
such that, asymptotically near M,

U D f Cf2�
2
C �2
 C o.�2
 /

for some f2;  2 C1.M/. Set g D �2gC and hD gjTM . Then for any U 2 D

f

it holds thatZ
X

�
.��U/

2
� .4P � .n� 2
 C 2/Jm� g/.rU;rU/C

n� 2


2
Qm� U

2

�
�
8
.
 � 1/

d


�I
M

fP2
f �
n� 2


2
d


I
M

f̂ 2
�
; (1-3)

where P is the Schouten tensor of g, Jm� and Qm� are the weighted scalar curvature and the weighted
Q-curvature, respectively, of .X; g; �;m; 1/, and integrals on X and M are evaluated with respect to
�m dvolg and dvolh, respectively. Moreover, equality holds if and only if Lm4;�U D 0.

Note that the left-hand side of (1-3) is the Dirichlet energy of the weighted Paneitz operator Lm4;�
of .X; g; �;m; 1/. See Section 2 for a detailed explanation of the terminology and notation used in
Theorem 1.1. The spectral condition in Theorem 1.2 holds for Poincaré–Einstein manifolds for which the
conformal infinity .M n; Œh�/ has nonnegative Yamabe constant [Lee 1995].

The proofs of Theorem 1.1 and Theorem 1.2 rely on three observations. First, we introduce conformally
boundary-covariant operators associated to the weighted conformal Laplacian and the weighted Paneitz
operator in the same sense as the trace and Robin operators act as boundary operators associated to
the conformal Laplacian (cf. [Branson 1997; Branson and Gover 2001; Escobar 1990; 1992]). Second,
we show that our conformally covariant operators recover certain scattering operators when acting on
functions which lie in the kernel of the corresponding weighted GJMS operator on a Poincaré–Einstein
manifold; this yields another approach to defining the fractional GJMS operators via extensions (cf.
[Ache and Chang 2015; Case and Chang 2016; Chang and González 2011; Graham and Zworski 2003;
Guillarmou and Guillopé 2007]). Third, using conformal covariance, we characterize when the left-hand
sides of (1-1) and (1-3) are uniformly bounded below in terms of spectral data for the metric gC. When
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these spectral conditions are met, the left-hand sides of (1-1) and (1-3) can be minimized, and the
identification of the minimizers follows from our extension theorem.

The second step in the above outline is a refinement of previous work in [Case and Chang 2016].
In that work, it was shown that the fractional GJMS operators are generalized Dirichlet-to-Neumann
operators for the weighted GJMS operators. For example, under the assumptions of Theorem 1.1, it was
shown that if Lm2;�U D 0 and U jM D f, then

P2
f D�
d


2

lim
�!0

�
�m�U � 
.n� 2
/ˆU

�
I

see [Case and Chang 2016, Theorem 4.1]. In particular, equality holds in (1-1). The novelty introduced
in this article is to realize the right-hand side of the above display as the evaluation of a conformally
covariant boundary operator. This also allows us to establish the energy inequality of Theorem 1.1. A
similar comparison of our results to those in [Case and Chang 2016] holds in the case 
 2 .1; 2/.

As an application of our results, we establish a sharp Sobolev trace inequality on the standard upper
hemisphere

SnC1
C
WD
˚
xD.x0; : : : ; xnC1/ 2 RnC2

ˇ̌
xnC1>0; jxjD1

	
with the metric induced by the Euclidean metric. To that end, let 
 2 .1; 2/ and set

D
 WD
[

f 2C1.Sn/

D

f

for D

f

determined by the defining function xnC1 for Sn D @SnC1
C

as in Theorem 1.2.

Theorem 1.3. Fix 
 2 .1; 2/, choose 2
 < n 2N, and let .SnC1
C

; d�2/ be the standard upper hemisphere.
Then

c.2/n;


�I
Sn
jf j

2n
n�2
 dvol

�n�2

n

�

Z
S
nC1
C

�
.��U/

2
C
.nC 3� 2
/2� 5

2
jrU j2C

�
�
1
2
.nC 8� 2
/

�
�
�
1
2
.n� 2
/

� U 2
�
x
3�2

nC1 dvol (1-4)

for all U 2 D
, where f D U jSn and

c.2/n;
 D 8�

 �.2� 
/

�.
/

�
�
1
2
.nC 2
/

�
�
�
1
2
.n� 2
/

� ���12n�
�.n/

�2

n

:

Moreover, equality holds if and only if�
�� �

1
4
..nC 3� 2
/2� 1/

��
�� �

1
4
..nC 3� 2
/2� 9/

�
U D 0 (1-5)

and f .x/D c.1C a � x/�
n�2

2 for some c 2 R and a 2 RnC1 with jaj< 1.
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The corresponding result when 
 2 .0; 1/ is that

c.1/n;


�I
Sn
jf j

2n
n�2
 dvol

�n�2

n

�

Z
S
nC1
C

�
jrU j2C

�
�
1
2
.nC 4� 2
/

�
�
�
1
2
.n� 2
/

� U 2
�
x
1�2

nC1 dvol

for all U 2 D
 with trace f D U jSn , where

c.1/n;
 D 2�

 �.1� 
/

�.
/

�
�
1
2
.nC 2
/

�
�
�
1
2
.n� 2
/

� ��.12n/
�.n/

�2

n

:

This follows easily from [González and Qing 2013, Corollary 5.3] and conformal covariance.
The key observation in the proof of Theorem 1.3 is that the right-hand side of (1-4) is the energy of

the weighted Paneitz operator on .SnC1
C

; d�2; xnC1; m; 1/. The relation to the L
2n
n�2
 -norm of the trace

then follows from Theorem 1.2 and the sharp fractional Sobolev inequality [Beckner 1993; Cotsiolis and
Tavoularis 2004; Frank and Lieb 2012; Lieb 1983]. In fact, Theorem 1.3 can be extended to a much more
general class of functions U and a large class of conformally flat metrics on the upper hemisphere; see
Theorem 6.1.

This article is organized as follows:
In Section 2 we recall some facts about both the fractional GJMS operators as defined via scattering

theory [Graham and Zworski 2003] and smooth metric measure spaces as used to study fractional GJMS
operators via extensions [Case and Chang 2016].

In Section 3 we introduce conformally covariant boundary operators which, when coupled with the
weighted conformal Laplacian and weighted Paneitz operator, are formally self-adjoint.

In Section 4 we give formulae for our conformally covariant operators in terms of the asymptotics of
compactifications of Poincaré–Einstein manifolds and thereby obtain new interpretations of the fractional
GJMS operators via extensions.

In Section 5 we give characterizations for when the left-hand sides of (1-1) and (1-3) are uniformly
bounded below and also state and prove more refined versions of Theorem 1.1 and Theorem 1.2.

In Section 6 we prove the more general version of Theorem 1.3.
In the Appendix we prove a family of Sobolev trace theorems which are relevant to this article and

slightly different from the usual ones.

2. Background

Scattering theory. A Poincaré–Einstein manifold is a triple .XnC1;M n; gC/ consisting of a complete
Einstein manifold .XnC1; gC/ with Ric.gC/ D �ngC and n � 3 such that X is diffeomorphic to the
interior of a compact manifold X with boundary M D @X. We further require the existence of a defining
function for M ; i.e., a smooth nonnegative function � W X ! R such that ��1.0/ D M, the metric
g WD �2gC extends to a C n�1;˛ metric on X, and jd�j2g D 1 on M. If � is a defining function for M,
then so too is e�� for any � 2C1.X/, and hence only the conformal class ŒgjTM � on M is well-defined.
An element h 2 ŒgjTM � is a representative of the conformal boundary, and to each such representative
there is a defining function r , unique in a neighborhood of M and called the geodesic defining function,
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such that gC D r�2.dr2Chr/ near M for hr a one-parameter family of Riemannian metrics on M with

hr D hC h.2/r
2
C � � �Ch.n�1/r

n�1
C krnC o.rn/ if n is odd;

hr D hC h.2/r
2
C � � �Ch.n�2/r

n�2
C h.n/r

n log r C krnC o.rn/ if n is even;

where the terms h.`/ for `� n even are locally determined by h while the term k is nonlocal. For example,

h.2/ D�
1

n� 2

�
Rich�

1

2.n� 1/
Rhh

�
is the negative of the Schouten tensor of h. For further details, including a discussion of optimal regularity,
see [Chruściel et al. 2005] and the references therein.

Given a Poincaré–Einstein manifold .XnC1;M n; gC/, a representative h of the conformal boundary,
and a parameter 
 2

�
0; 1
2
n
�
nN such that 1

4
n2� 
2 does not lie in the L2-spectrum of ��gC , we define

the fractional GJMS operator P2
 as follows: Let s D 1
2
nC 
 . For any f 2 C1.M/, there exists a

unique solution v, denoted P
�
1
2
nC 


�
f, of the generalized eigenvalue problem

��gCv� s.n� s/v D 0 (2-1a)

such that, asymptotically near M,
v D F rn�sCGrs (2-1b)

for F;G 2 C1.X/ and F jM D f . Then

P2
f WD d
GjM for d
 D 22

�.
/

�.�
/
: (2-2)

Among the key properties of the fractional GJMS operator P2
 W C1.M/ ! C1.M/ are that it is
formally self-adjoint, that its principal symbol is that of .��/
, and that it is conformally covariant;
indeed, if OhD e2�h is another representative of the conformal boundary, then

yP2
 .f /D e
�
nC2

2

�P2
 .e
n�2

2
�f /

for all f 2 C1.M/. In fact, this definition extends to the cases 
 2N by analytic continuation, and in
these cases the operators P2
 recover the GJMS operators. For further details, see [Graham and Zworski
2003].

A useful fact about the solution v of (2-1) is that, up to order r
n
2 , the Taylor series expansion of F

(resp. G) is even in r and depends only on h and F jM (resp. GjM ). For example,

F D f C
1

4.1� 
/

�
��f C 1

2
.n� 2
/Jf

�
r2C o.r2/; (2-3)

where J is the trace (with respect to h) of the Schouten tensor P and we adopt the convention that barred
operators are defined with respect to the boundary .M n; h/.

The fractional GJMS operators P2
 can be interpreted as generalized Dirichlet-to-Neumann operators
associated to weighted GJMS operators. To state this precisely and in the widest generality in which we
are interested requires a discussion of smooth metric measure spaces.
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Smooth metric measure spaces. A smooth metric measure space is a five-tuple .XnC1; g; �;m; 1/ formed
from a smooth manifold XnC1 with (possibly empty) boundary M n D @X, a Riemannian metric g on X,
a nonnegative function � 2C1.X/ with ��1.0/DM, and a dimensional constant m2 .1�n;1/. Given
such a smooth metric measure space, we always denote by X the interior of X. Heuristically, the interior
of a smooth metric measure space represents the base of a warped product

.XnC1 �Sm; g˚ �2d�2/ (2-4)

for .Sm; d�2/ the m-sphere with a metric of constant sectional curvature one; this is the meaning of
the 1 as the fifth element of the five-tuple defining a smooth metric measure space. The choice of the
standard m-sphere allows us to partially compactify (2-4), though not necessarily smoothly, by adding
the boundary M of X. The model case is the upper half space .RC �Rn; dy2˚ dx2; y;m; 1/ for y the
coordinate on RC WD .0;1/; in this case the warped product (2-4) is the flat metric on RnCmC1 n f0g,
and the partial compactification obtained from Œ0;1/�Rn is the whole of RnCmC1.

The heuristic of passing through the warped product (2-4) is useful in that most geometric invariants
defined on a smooth metric measure space — and all which are considered in this article — can be formally
obtained by considering their Riemannian counterparts on (2-4) while restricting to the base X. More
precisely, when m 2 N, the warped product (2-4) makes sense and one can define invariants on X in
terms of Riemannian invariants on (2-4) by means of the canonical projection � WXnC1 �Sm!XnC1.
Invariants obtained in this way are polynomial in m, and can be extended to general m 2 .1�n;1/ by
treating m as a formal variable. This is illustrated by means of specific examples below.

The weighted Laplacian �� W C1.X/! C1.X/ is defined by

��U WD�U Cm�
�1
hr�;rU i:

This operator is formally self-adjoint with respect to the measure �m dvolg ; the notation �� is used for
consistency with the literature on smooth metric measure spaces, where one usually writes �m D e��

and allows m to become infinite. In terms of (2-4), one readily checks that ����U D�.��U/ for �
the Laplacian of (2-4). The weighted Schouten scalar Jm� and the weighted Schouten tensor Pm� are the
tensors

Jm� WD
1

2.mCn/

�
R� 2m��1���m.m� 1/��2.jr�j2� 1/

�
;

Pm� WD
1

mCn� 1

�
Ric�m��1r2��Jm�

�
:

Denoting byP the Schouten tensor of (2-4) and by J its trace, one readily checks that J D��Jm� and that
Pm� .Z;Z/DP.

QZ; QZ/ for allZ 2TX, where QZ is the horizontal lift ofZ toX�Sm. The weighted confor-
mal Laplacian Lm2;� W C

1.X/! C1.X/ and the weighted Paneitz operator Lm4;� W C
1.X/! C1.X/

are defined by

Lm2;�U WD ���U C
1
2
.mCn� 1/Jm� U;

Lm4;�U WD .���/
2U C ı�

�
.4Pm� � .mCn� 1/J

m
� g/.rU/

�
C
1
2
.mCn� 3/Qm� U;
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where ı�X D trg rX Cm��1hX;r�i is the negative of the formal adjoint of the gradient with respect
to �m dvol,

Qm� WD ���J
m
� � 2jP

m
� j
2
�
2

m
.Y m� /

2
C
mCn� 1

2
.Jm� /

2

is the weighted Q-curvature, and Y m� D J
m
� � trg Pm� . Observe that the weighted conformal Laplacian

and the weighted Paneitz operator are both formally self-adjoint with respect to �m dvol. These definitions
recover the conformal Laplacian and the Paneitz operator, respectively, of (2-4) when restricted to the base.

An important property of the weighted conformal Laplacian and the weighted Paneitz operator is
that they are both conformally covariant. Two smooth metric measure spaces .XnC1; g; �;m; 1/ and
.XnC1; Og; O�;m; 1/ are pointwise conformally equivalent if there is a function � 2 C1.X/ such that
Og D e2�g and O� D e��. This is equivalent to requiring that the respective warped products (2-4) are
pointwise conformally equivalent with conformal factor independent of Sm. Under this assumption, it
holds that

bLm2;�.U /D e�
mCnC3

2
�Lm2;�.e

mCn�1
2

�U/; (2-5)

bLm4;�.U /D e�
mCnC5

2
�Lm2;�.e

mCn�3
2

�U/ (2-6)

for all U 2 C1.X/.
As defined above, the weighted conformal Laplacian and the weighted Paneitz operator are defined

only in the interior of a smooth metric measure space. The purpose of this article is to introduce and study
boundary operators associated to the weighted conformal Laplacian and the Paneitz operator, respectively,
which share their conformal covariance and formal self-adjointness properties. To do this in such a way
as to meaningfully study Poincaré–Einstein manifolds and the fractional GJMS operators requires us to
allow weaker-than-C1 regularity for both the metric g and the function � at the boundary of our smooth
metric measure spaces. This requires some definitions.

Definition 2.1. Let .XnC1; g/ be a Riemannian manifold with nonempty boundary M D @X. Let

 2

�
0; n
2

�
nN and set k D b
c and mD 1C 2k� 2
 . The smooth metric measure space .X; g; r;m; 1/

is geodesic if jrr j2 D 1 in a neighborhood of M and if

g D dr2C

kX
jD0

h.2j /r
2j
C o.r2
 / (2-7)

for sections h.0/; : : : ; h.2k/ of S2T �M.

The asymptotic expansion (2-7) is to be understood in the following way: Each point p 2M admits
an open neighborhood U �X and a constant " > 0 such that the map

Œ0; "/�V ! U; .t; q/ 7! 
q.t/; (2-8)

is a diffeomorphism with image U, where V WD U \M and 
q is the integral curve in the direction rr
originating at q. By shrinking U if necessary, we may assume that jrr j2D 1 in U, and hence r.
q.t//D t ;
note that if M is compact, then we may take U to be a neighborhood of M. The composition of the
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canonical projection Œ0; "/�V ! V with the inverse of the diffeomorphism (2-8) gives a map � WU ! V .
We then consider covariant tensor fields on V as covariant tensor fields in U by pulling them back by � .
Finally, since jrr j2D1 in a neighborhood ofM, it is straightforward to check that there is a one-parameter
family hr of sections of S2T �M such that g D dr2C hr near M. The assumption (2-7) imposes the
additional requirement that hr is even in r to order o.r2
 /. In particular, if 
 > 1

2
, then M is totally

geodesic with respect to g; if also 
 > 3
2

, then the scalar curvature R of g satisfies @rRD 0 along M.
Note that if r is a geodesic defining function for a Poincaré–Einstein manifold .XnC1;M n; gC/ and if

m; 
 are as in Definition 2.1, then .X; r2gC; r;m; 1/ is a geodesic smooth metric measure space.

Definition 2.2. Let XnC1 be a smooth manifold with boundary M D @X and let 
 2
�
0; n
2

�
nN. Set

k D b
c and mD 1C2k�2
 . A smooth metric measure space .XnC1; g; �;m; 1/ is 
 -admissible if it is
pointwise conformally equivalent to a geodesic smooth metric measure space .X; g0; r;m; 1/ such that

�

r
D

kX
jD0

�.2j /r
2j
Cˆr2
 C o.r2
 / (2-9)

for �.0/; : : : ; �.2k/; ˆ 2 C1.M/ and �.0/ D 1.

Note that if .X; g; �;m; 1/ is a 
 -admissible smooth metric measure space and there are two geodesic
smooth metric measure spaces .X; gi ; ri ; m; 1/, i 2 f1; 2g, as in Definition 2.2, then r2 D r1 near M (see
[Graham and Lee 1991, Lemma 5.2] or [Lee 1995, Lemma 5.1]); in particular, all asymptotic statements
about 
 -admissible smooth metric measure spaces (e.g., (2-9)) are independent of the choice of geodesic
smooth metric measure space in Definition 2.2. Combining the expansions (2-7) and (2-9), we see that if
.X; g; �;m; 1/ is a 
-admissible smooth metric measure space with 
 > 1

2
, then M is totally geodesic

(with respect to g); if also 
 > 3
2

, then @�RD 0 along M.
Given a Poincaré–Einstein manifold .XnC1;M n; gC/ and 
 2

�
0; n
2

�
nN, a defining function � is


-admissible if .X; �2gC; �;m; 1/, mD 1�2b
c�2
 , is a 
-admissible smooth metric measure space.
In particular, the extension theorems established in [Case and Chang 2016, Theorems 4.1 and 4.4] are all
stated in terms of 
-admissible smooth metric measure spaces. An important example of 
-admissible
smooth metric measure spaces which arise as compactifications of Poincaré–Einstein manifolds and for
which the function ˆ in (2-9) is not necessarily zero are obtained from the adapted defining function
[Case and Chang 2016, Section 6.1].

In light of both our weakened regularity hypotheses and the asymptotics of solutions to the Poisson
equation (2-1), it is natural to introduce the following function spaces.

Definition 2.3. Fix 
 2 .0; 1/, set m D 1 � 2
 , and let .XnC1; g; �;m; 1/ be a 
-admissible smooth
metric measure space. Given f 2 C1.M/, denote by C


f
the set of all U 2 C1.X/\C 0.X/ such that,

asymptotically near M,
U D f C �2
 C o.�2
 / (2-10)

for some  2 C1.M/. Set
C
 WD

[
f 2C1.M/

C

f
: (2-11)
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The Sobolev spaces W 1;2
0 .X; �m dvol/ and W 1;2.X; �m dvol/ are the completions of C
0 and C
, respec-

tively, with respect to the norm

kU k2
W 1;2 WD

Z
X

.jrU j2CU 2/�m dvol:

For notational convenience, in the case 
 2 .0; 1/ we sometimes denote by D
 the space C
 and by
H
 the space W 1;2.X; �m dvol/.

When 
 2 .0; 1/, the Sobolev trace theorem (e.g., [Triebel 1978]) states that there is a surjective
bounded linear operator Tr W W 1;2.X; �m dvol/!H 
 .M/ such that TrU D f for every U 2 C


f
, where

H 
 .M/ denotes the completion of C1.M/ with respect to the norm obtained by pulling back

kf k2H
 .Rn/ WD

Z
Rn
f 2dxC

Z
Rn

Z
Rn

jf .x/�f .y/j2

jx�yjnC2

dx dy

to M via coordinate charts.

Definition 2.4. Fix 
 2 .1; 2/, setmD 3�2
 , and let .XnC1; g; �;m; 1/ be a 
 -admissible smooth metric
measure space. Given f; 2 C1.M/, denote by C


f; 
the set of all U 2 C1.X/\C 0.X/ such that,

asymptotically near M,

U D f C �2
�2Cf2�
2
C 2�

2

C o.�2
 / (2-12)

for some f2;  2 2 C1.M/. Set

C
 WD
[

f; 2C1.M/

C

f; 
; (2-13)

D
 WD
[

f 2C1.M/

C

f;0
: (2-14)

The Sobolev spaces W 2;2
0 .X; �m dvol/, W 2;2.X; �m dvol/, and H
 are the completions of C
0;0, C
,

and D
, respectively, with respect to the norm

kU k2
W 2;2 WD

Z
X

�ˇ̌
r
2U Cm��1.@�U/

2d�˝ d�
ˇ̌2
CjrU j2CU 2

�
�m dvol: (2-15)

The particular modification of the Hessian used in (2-15) ensures that the integral is finite for all U2 C
.
Given U 2 C


f; 
, the weighted Bochner formula (see the Appendix) allows one to rewrite this Hessian

term in terms of the L2-norm of ��U, lower-order interior terms depending on curvature, and boundary
terms involving only f and  .

When 
 2 .1; 2/, the Sobolev trace theorem (see the Appendix) states that there is a surjective bounded
linear operator Tr W W 2;2.X; �m dvol/ ! H 
 .M/˚H 2�
 .M/ such that Tr.U / D .f;  / for every
U2 C


f; 
, where H 
 .M/ denotes the completion of C1.M/ with respect to the norm obtained by pulling

back

kf k2H
 .Rn/ WD

Z
Rn
.f 2Cjrf j2/ dxC

nX
jD1

Z
Rn

Z
Rn

j@jf .x/� @jf .y/j
2

jx�yjnC2
�2
dx dy

to M via coordinate charts.
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We conclude with two useful observations. The first is the following relationship between a defining
function for a Poincaré–Einstein manifold and certain weighted geometric invariants of the induced
compactification.

Lemma 2.5 [Case and Chang 2016, Lemma 3.2]. Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
and � be a defining function. Fixm>1�n. The smooth metric measure space .XnC1; g WD �2gC; �;m; 1/
has

J C ��1��D 1
2
.nC 1/��2.jr�j2� 1/; (2-16)

Jm� D J �
m

nC 1
.J C ��1��/; (2-17)

Pm� D P: (2-18)

Here P and J are the Schouten tensor of g and its trace, respectively.
The second is the following characterization of pointwise conformally equivalent 
 -admissible smooth

metric measure spaces in terms of the conformal factors.

Lemma 2.6. Fix 
 2 .0; 2/ n f1g and let .XnC1; g; �;m; 1/ be a 
-admissible smooth metric measure
space with m D 1C 2b
c � 2
 . Let � 2 C1.X/ \ C 0.X/ and set Og D e2�g and O� D e��. Then
.XnC1; Og; O�;m; 1/ is a 
 -admissible smooth metric measure space if and only if � 2 D
.

Proof. Let .X; g0; r;m; 1/ and .X; Og0; Or;m; 1/ be geodesic smooth metric measure spaces associated to
.X; g; �;m; 1/ and .X; Og; Or;m; 1/, respectively, as in Definition 2.2. Suppose first that .X; Og; O�;m; 1/ is

 -admissible. We readily check that

e� D
O�

Or
�
Or

r
�
r

�
2 D
;

whence � 2 D
. Conversely, if � 2 D
, we readily check that Or=r 2 D
, whence .XnC1; Og; O�;m; 1/ is

 -admissible. �

For the remainder of this article, unless otherwise specified, the measure with respect to which an
integral is evaluated is specified by context: if a smooth metric measure space .XnC1; g; �;m; 1/ with
boundary M D @X is given, all integrals over X are evaluated with respect to �m dvolg and all integrals
over M are evaluated with respect to the Riemannian volume element of gjTM .

3. The conformally covariant boundary operators

In order to study boundary value problems associated to the weighted conformal Laplacian and the
weighted Paneitz operator — for instance, to study the fractional GJMS operators as in [Case and Chang
2016] — it is useful to find conformally covariant boundary operators associated to these respective
operators. In the case of the weighted conformal Laplacian Lm2;� with mD 1� 2
 , this means finding
conformally covariant operators B2
0 and B2
2
 such that .Lm2;�U; V /D .L

m
2;�V;U / for all U; V 2 kerB2
0

or for all U; V 2 kerB2
2
 . That is, the boundary value problems .Lm2;� IB
2

0 / and .Lm2;� IB

2

2
 / are formally

self-adjoint. In the case of the weighted Paneitz operator Lm4;� with m D 3� 2
 , this means defining
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conformally covariant operators B2
0 , B2
2
�2, B2
2 , B2
2
 such that .Lm4;�U; V /D .L
m
4;�V;U / for all U; V

in the kernel of one of the pairs

B1 D .B
2

0 ; B

2

2 /; B2 D .B

2

0 ; B

2

2
�2/; or B3 D .B

2

2
�2; B

2

2
 /:

That is, the boundary value problems .Lm4;� IBj / for j 2 f1; 2; 3g are all formally self-adjoint. These
boundary value problems are all elliptic, as is apparent from the definitions of the operators given below,
and our definitions are such that the formal self-adjointness follows from simple integration-by-parts
identities; see Theorem 3.2 for the case of the weighted conformal Laplacian and Theorem 3.4 and
Theorem 3.7 for the case of the weighted Paneitz operator.

The existence of such operators when mD 0 is already known: B D �C n�1
2n
H is a boundary operator

for the conformal Laplacian (see [Branson 1997; Escobar 1990]), while Branson and Gover [2001] have
constructed via the tractor calculus conformally covariant boundary operators associated to the noncritical
GJMS operators and Grant [2003] derived the third-order boundary operator associated to the Paneitz
operator (see also [Chang and Qing 1997; Juhl 2009] for the case of critical dimension). As is apparent
from Definition 3.1, B11 D B , while the operators B3

k
for k 2 f0; 1; 2; 3g give explicit formulae for the

boundary operators associated to the Paneitz operator in the case of manifolds with totally geodesic
boundary; see [Case 2015] for the general case.

The case 
 2 .0; 1/. The conformally covariant boundary operators associated to the weighted conformal
Laplacian are defined as follows.

Definition 3.1. Fix 
 2 .0; 1/ and set m D 1� 2
 . Let .XnC1; g; �;m; 1/ be a 
-admissible smooth
metric measure space with boundary M D @X and let .X; g0; r;m; 1/ be the geodesic smooth metric
measure space as in Definition 2.2. Set �D��

r
rgr . As operators mapping C
 to C1.M/,

B
2

0 U WD U jM ; B

2

2
U WD lim

�!0
�m
�
�U C

n� 2


2n
Uı�

�
:

where ı� WD trg rg�.

Note that � is the outward-pointing unit normal (with respect to g) vector field along the level sets
of r in a neighborhood of M. In particular, if 
 D 1

2
, then ı�jM DH is the mean curvature of M with

respect to g. For this reason, we call
H2
 WD lim

�!0
�mı�

the 
 -mean curvature of M. Since .XnC1; g0; r;m; 1/ is uniquely determined near M by .X; g; �;m; 1/,
the asymptotic assumptions of Definition 3.1 guarantee that the 
 -mean curvature and the operators B2
0
and B2
2
 are well-defined; indeed,

H2
 D�2n
ˆ;

B
2

0 U D f;

B
2

2
U D�2


�
 C 1

2
.n� 2
/ f̂

�
;

where � and U satisfy (2-9) and (2-10), respectively, near M.
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That the operators B2
0 and B2
2
 are the conformally covariant boundary operators associated to the
weighted conformal Laplacian is a consequence of the following result.

Theorem 3.2. Fix 
 2 .0; 1/ and set mD 1� 2
 . Let .XnC1; g; �;m; 1/ and .XnC1; Og; O�;m; 1/ be two
pointwise conformally equivalent 
 -admissible smooth metric measure spaces with OgD e2�g and O�D e��.
Then for any U 2 C
 it holds that

yB
2

0 .U /D e�

n�2

2
� jMB

2

0 .e

n�2

2
�U/; (3-1)

yB
2

2
 .U /D e

�
nC2

2

� jMB
2

2
 .e

n�2

2
�U/: (3-2)

Moreover, given U; V 2 C
, it holds thatZ
X

VLm2;�U C

I
M

B
2

0 .V /B

2

2
 .U /DQ2
 .U; V / (3-3)

for Q2
 the symmetric bilinear form

Q2
 .U; V /D
Z
X

�
hrU;rV iC

n� 2


2
Jm� UV

�
C
n� 2


2n

I
M

H2
B
2

0 .U /B

2

0 .V /:

In particular, Q2
 is conformally covariant.

Proof. Equation (3-1) follows immediately from the definition of B2
0 .
By Lemma 2.6, we have that � 2 C
, and in particular �m�� is well-defined. On the other hand, if �

and O� are as in Definition 3.1, then O�D e���. Hence

O�m O�.e�
n�2

2
�U/D e�

nC2

2

��m
�
�U � 1

2
.n� 2
/U��

�
;

O�m Oı O�D e�2
��m.ı�Cn��/:

Combining these two equations yields (3-2).
Finally, integration by parts yields (3-3). Combining (3-1) and (3-2) with (3-3) yields the conformal

covariance of Q2
 . �

The case 
 2 .1; 2/. The conformally covariant boundary operators associated to the weighted Paneitz
operator are defined as follows.

Definition 3.3. Fix 
 2 .1; 2/ and set m D 3� 2
 . Let .XnC1; g; �;m; 1/ be a 
-admissible smooth
metric measure space with boundary M D @X and let � be as in Definition 3.1. As operators mapping
C
 to C1.M/,

B
2

0 U WD U;

B
2

2
�2U WD �

m�U;

B
2

2 U WD �

2� 



 � 1
�U C .r2U.�; �/Cm��1@�U/C

n� 2


2
T
2

2 U;

B
2

2
U WD ��

m���U �
1


 � 1
��m�U CS

2

2 �m�U C

n� 2


2
.�m�Jm� /U;
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where

T
2

2 WD

2�



�1
J�

�
P.�;�/�

3�2


nC1
.JC��1��CP.�;�//

�
; (3-4)

S
2

2 WD

�
n�2


2
C
nC2
�4

2.
�1/

�
JC

n�2
�4

2
P.�;�/�

.3�2
/.n�2
C4/

2.nC1/
.JC��1��CP.�;�// (3-5)

and we understand the right-hand sides to all be evaluated in the limit �! 0.

Due to the length of the computations, we break the proof that the operators given in Definition 3.3 are
conformally covariant boundary operators associated to the weighted Paneitz operator on 
-admissible
smooth metric measure spaces into two parts. First, we show that they are conformally covariant of the
correct weight.

Theorem 3.4. Fix 
 2 .1; 2/ and set mD 3� 2
 . Let .XnC1; g; �;m; 1/ and .XnC1; Og; O�;m; 1/ be two
pointwise conformally equivalent 
 -admissible smooth metric measure spaces with OgD e2�g and O�D e��.
Then for any U 2 C
 it holds that

yB
2

0 U D e�

n�2

2
� jMB

2

0 .e

n�2

2
�U/; (3-6)

yB
2

2
�2U D e

�
nC2
�4

2
� jMB

2

2
�2.e

n�2

2
�U/; (3-7)

yB
2

2 U D e�

n�2
C4
2

� jMB
2

2 .e

n�2

2
�U/; (3-8)

yB
2

2
U D e

�
nC2

2

� jMB
2

2
 .e

n�2

2
�U/: (3-9)

The proof of Theorem 3.4 is a somewhat lengthy computation. While such computations are routine in
conformal geometry (see [Branson 1985; Chang and Qing 1997]), they have not been carried out in this
form in the literature for smooth metric measure spaces, and so we sketch the details here.

Fix 
 2 .1; 2/. An operator T W C
!C1.M/ defined on a 
 -admissible smooth metric measure space
.XnC1; g; �;m; 1/ with boundary M D @X is natural if it can be expressed as a polynomial involving
the Levi-Civita connection and the Riemann curvature tensor of g, powers of �, the outward-pointing
normal � along M D @X, and contractions thereof. A natural operator T is said to be homogeneous of
degree k 2 R if for any positive constant c 2 R, the operators T and yT defined on .XnC1; g; �;m; 1/ and
.XnC1; Og; O�;m; 1/, respectively, for Og D c2g and O�D c�, are related by

yT .U /D ckT .U /

for all U in the domain Dom.T / of T . Given a homogeneous operator T of degree k, a function � 2 D
,
and a fixed weight w 2 R, we define

.T .U //0 WD
@

@t

ˇ̌̌̌
tD0

�
e�.wCk/t� jMTe2t�g.e

wt�U/
�
; (3-10)

where Te2�g denotes the operator T as defined with respect to the smooth metric measure space
.XnC1; e2�g; e��;m; 1/. One readily shows (see [Branson 1985, Corollary 1.14]) that, given a natural
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operator T which is homogeneous of degree k and a fixed weight w, it holds that

Te2�g.U /D e
.wCk/� jMT .e�w�U/

for all � 2 D
 and all U 2 Dom.T / if and only if .T .U //0 D 0 for all � 2 D
 and all U 2 Dom.T /.
To prove Theorem 3.4, it thus suffices to compute the linearizations (3-10) of the operators given

in Definition 3.3 — which are all natural and homogeneous — with the fixed weight w D �1
2
.n� 2
/.

We accomplish this through a pair of lemmas. We first consider operators which are homogeneous of
degree �2.

Lemma 3.5. Fix 
 2 .1; 2/ and set mD 3� 2
 . Let .XnC1; g; �;m; 1/ be a 
 -admissible smooth metric
measure space with boundary M D @X. Let � 2 D
 and let U 2 C
. Fix a weight w 2 R. Then

.�U /0 D .nC 2w� 2/hrU;r�iCwU��;

.r2U.�; �/Cm��1@�U/
0
D .mC 1/hrU;r�iCwU.r2�.�; �/Cm��1@��/;

.JU /0 D�U��;

.UP.�; �//0 D�Ur2�.�; �/;

.��1U��/0 D .�� Cr2�.�; �/C .nC 1/��1@��/U:

Proof. Let Og D e2t�g. It is well-known that

yP D P � tr2� CO.t2/;

yr
2U Dr2U � t dU ˝ d� � t d� ˝ dU C thrU;r�igg;

and similarly for quantities defined in terms of the induced metric onM. The conclusion readily follows. �

We next consider operators which are homogeneous of degree �2
 .

Lemma 3.6. Under the same hypotheses as Lemma 3.5, it holds that

.��m�U /0 D .2mCnC 2w� 4/hr�m�U;r�iC .mCw� 1/.�m�U /��;

.�m���U/
0
D .mCnC 2w� 1/hr�m�U;r�iCwU�m����

C
�
.mCnC 2w� 1/.r2�.�; �/�m��1@��/Cw���

�
�m�U;

.U�m�Jm� /
0
D�U�m����:

Proof. The first identity follows immediately from Lemma 3.5 and the homogeneity of �m�.
The conformal transformation formula for the weighted Laplacian [Case 2012] yields

.�m���U/
0
D �m�

�
.mCnC 2w� 1/hrU;r�iCwU���

�
:

A straightforward computation shows that

�m�.hrU;r�i/D hr�;r�m�U iC .r2�.�; �/�m��1@��/�
m�U;

from which the second identity follows.
Finally, the conformal transformation formula for the weighted scalar curvature (see [Case 2012,

Proposition 4.4]) yields the last identity. �
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Proof of Theorem 3.4. It is clear that (3-6) and (3-7) hold.
It follows immediately from Lemma 3.5 that the operator B2;w defined by

B2;wU WD ��U C
nC 2w� 2

mC 1
.r2U.�; �/Cm��1@�U/

�w

�
J �

nC 2w� 2

mC 1

�
P.�; �/�

m

nC 1
.J CP.�; �/C ��1��/

��
U

satisfies .B2;wU/0 D 0 for any w 2 R. This yields (3-8) upon observing that

B
2

2 D

2� 



 � 1
B
2;�n�2


2

:

It follows immediately from Lemma 3.5 and Lemma 3.6 that the operator B2
;w defined by

B2
;wU WD ��
m���U C

mCnC 2w� 1

2mCnC 2w� 4
��m�U CT2;w�

m�U �w.�m�Jm� /U;

T2;w WD

�
.mCw� 1/.mCnC 2w� 1/

2mCnC 2w� 4
�w

�
J � .mCnC 3w� 1/P.�; �/

�
m.mCnCw� 1/

nC 1
.J CP.�; �/C ��1��/

satisfies .B2
;wU/0 D 0 for any w 2 R. This yields (3-9) upon observing that B2
2
 D B2
;�n�2

2

. �

We next show that the operators given in Definition 3.3 are boundary operators associated to the
weighted Paneitz operator, in the sense that the pairing

C
 � C
 3 .U; V / 7! .Lm4;�U; V /C .B
2

2
U;B

2

0 V /C .B

2

2 U;B

2

2
�2V /

is a symmetric bilinear form. Indeed, this form can be written explicitly, and is the polarization of the
energy associated to the weighted Paneitz operator on a 
 -admissible smooth metric measure space with
boundary.

Theorem 3.7. Fix 
 2 .1; 2/ and set m D 3 � 2
 . Let .XnC1; g; �;m; 1/ be a 
-admissible compact
smooth metric measure space with boundary M D @X. Given U; V 2 C
, it holds thatZ

X

VLm4;�U C

I
M

�
B
2

0 .V /B

2

2
 .U /CB

2

2
�2.V /B

2

2 .U /

�
DQ2
 .U; V / (3-11)

for Q2
 the symmetric bilinear form

Q2
 .U;V /

D

Z
X

�
.��U/.��V /�.4P�.n�2
C2/J

m
� g/.rU;rV /C

n�2


2
Qm� UV

�
C

I
M

�
1


�1

�
hrB

2

0 .U /;rB

2

2
�2.V /iChrB

2

0 .V /;rB

2

2
�2.U /i

�
C
n�2


2
T
2

2

�
B
2

0 .U /B

2

2
�2.V /CB

2

0 .V /B

2

2
�2.U /

�
C
n�2


2
.�m�Jm� /B

2

0 .U /B

2

0 .V /

�
:

In particular, Q2
 is conformally invariant.
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Proof. Equation (3-11) follows from a straightforward computation using integration by parts, the
consequences

J D J CP.�; �/;

P.�;rU/D P.�; �/�U
(3-12)

of the Gauss–Codazzi equations, and (2-17).
It follows immediately from Theorem 3.4 and (3-11) that Q2
 is conformally invariant. �

4. Some asymptotic expansions

For Poincaré–Einstein manifolds, the fractional GJMS operator P1 can be interpreted as the Dirichlet-to-
Neumann operator for functions in the kernel of the conformal Laplacian [Chang and González 2011].
There is another conformally covariant operator defined on the boundary with the same principal symbol
as P1, namely f 7! B11U for U the unique extension of f in the kernel of the conformal Laplacian
[Branson 1997]. In fact, these two operators are the same [Guillarmou and Guillopé 2007].

The boundary operators introduced in Section 3 all give conformally covariant operators as follows: Fix

 2 .0; 2/ n f1g and set k D b
cC 1 and mD 2k� 1� 2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein
manifold with n > 2
 , let � be a 
 -admissible defining function, and consider .X; �2gC; �;m; 1/. Given
a function f 2C1.M/, let U be the unique extension of f in C


f;0
such that Lm

2k;�
U D 0. Then the map

B2
 .f / WD B
2

2
U is conformally covariant in the sense that

yB2
 .f /D e�
nC2

2

� jMB2
 .e
n�2

2
� jM f /

for all � 2D
, where yB is defined in terms of .XnC1; Og; O�;m; 1/ for OgD e2�g and O�D e��. The fractional
GJMS operators can also be regarded as generalized Dirichlet-to-Neumann operators associated to the
kernel of the weighted conformal Laplacian and the weighted Paneitz operator in the cases 
 2 .0; 1/ and

 2 .1; 2/, respectively [Case and Chang 2016]. We show that, as in the case 
 D 1

2
, the operators B2


and P2
 are the same.

The case 
 2 .0; 1/. A direct computation using the definition of B2
2
 and [Case and Chang 2016,
Theorem 4.1] readily shows that the fractional GJMS operator P2
 and the operator B2
 defined above
are the same when 
 2 .0; 1/.

Proposition 4.1. Fix 
 2 .0; 1/ and setmD 1�2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
such that 1

4
n2� 
2 62 �pp.��gC/. Let � be a 
 -admissible defining function. Given f 2 C1.M/, let U

be the solution to the boundary value problem�
Lm2;�U D 0 in .XnC1; �2gC; �;m; 1/;

U D f on M:
(4-1)

Then

P2
f D�
d


2

B
2

2
U: (4-2)
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Proof. By conformal covariance, we may assume that �D r is the geodesic defining function associated
to gjTM . From [Case and Chang 2016, Theorem 4.1], we see that U D r�

n�2

2 P

�
1
2
nC


�
f . In particular,

U 2 C

f

and

P2
f D�
d


2

lim
�!0

�m�U

for �D�@r the outward-pointing normal along M. It is straightforward to check that rmı�! 0 as r! 0,
and hence (4-2) holds. �

The case 
 2 .1; 2/. An argument similar to the one given in the proof of Proposition 4.1 shows that
B
2

2
U is proportional to P2
f if U2 C


f;0
satisfies Lm4;�U D 0. However, much more can be said. Indeed,

this statement remains true if U2 C

f; 

for any  2C1.M/! To make this more precise, we shall evaluate
the operators B2
s for s 2 f0; 2
�2; 2; 2
g when acting on elements of the kernel of the weighted Paneitz
operator in terms of scattering operators.

We begin by investigating the asymptotic behavior of the summands which appear in the definitions of
the operatorsB2
s . For our intended applications, it suffices to compute with respect to the compactification
of a Poincaré–Einstein manifold by a geodesic defining function. We first observe the following simple
asymptotic behavior of the interior scalar curvature.

Lemma 4.2. Fix 
 2 .1; 2/ and setmD 3�2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold and
let r be a geodesic defining function. Then, in terms of .X; r2gC; r;m; 1/, it holds that, asymptotically
near M,

J D J CO.r2/: (4-3)

Proof. A straightforward computation shows that

r�1�r D�J CO.r2/:

The conclusion now follows from (2-16). �

We next compute certain derivatives of elements of C
.

Lemma 4.3. Fix 
 2 .1; 2/ and set mD 3� 2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
and let r be a geodesic defining function. Let U 2 C
 have the expansion (2-12) asymptotically near M.
Then, in terms of .X; r2gC; r;m; 1/, it holds that

lim
r!0

Œrm�U �D 2.1� 
/ ; (4-4)

lim
r!0

Œr2U.�; �/Cmr�1@rU �D 4.2� 
/f2; (4-5)

lim
r!0

Œ�rm���U �D 2.
 � 1/Œ4
 2C� � 2.
 � 1/J �: (4-6)

Proof. Equation (4-4) is an immediate consequence of (2-12).
We next compute that

r�m@r.r
m@rU/D 4.2� 
/f2C 4
 2r

2
�2
C o.r2
�2/;

from which (4-5) immediately follows.
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Finally,

��U D�f C 4.2� 
/f2C
�
4
 2C� � 2.
 � 1/J 

�
r2
�2C o.r2
�2/:

Differentiating yields (4-6). �

Combining Lemmas 4.2 and 4.3 yields the following evaluations of the operators B2
s in terms of the
asymptotic expansion (2-12).

Proposition 4.4. Fix 
 2 .1; 2/ and setmD 3�2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
and let r be a geodesic defining function. Let U 2 C
 be such that (2-12) holds near M. In terms of
.X; r2gC; r;m; 1/, it holds that

B
2

0 U D f; (4-7)

B
2

2
�2U D 2.1� 
/ ; (4-8)

B
2

2 U D

2� 



 � 1

�
��f C 1

2
.n� 2
/Jf

�
C 4.2� 
/f2; (4-9)

B
2

2
U D 8
.
 � 1/ 2� 2


�
�� C 1

2
.nC 2
 � 4/J 

�
: (4-10)

Proof. Equation (4-7) is obvious, while (4-8) is (4-4). Combining (3-12) and (4-3) yields that P.�; �/D 0.
Hence, by (3-12) and Lemma 4.2,

T
2

2 D

2� 



 � 1
J : (4-11)

It then follows from (4-5) that (4-9) holds. Finally, Lemma 4.2 implies that

S
2

2 D

�
n� 2


2
C
nC 2
 � 4

2.
 � 1/

�
J :

Combining this and Lemma 4.3 yields (4-10). �

Applying Proposition 4.4 to solutions of the Poisson equation (2-1) yields the following interpretation
of the operators B2
s .

Corollary 4.5. Fix 
 2 .1; 2/ and set m D 3� 2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein man-
ifold such that 1

4
n2�
2; 1

4
n2�.2�
/2 62 �pp.��gC/. Let � be a 
-admissible defining function with

expansion (2-9) near M. Fix f; 2 C1.M/ and set u1 D P
�
1
2
nC 


�
f and u2 D P

�
1
2
nC 2� 


�
 . Set

U D ��
n�2

2 .u1Cu2/. In terms of .X; �2gC; �;m; 1/, it holds that

Lm4;�U D 0;

B
2

0 U D f;

B
2

2
�2U D 2.1� 
/ ;

B
2

2 U D

4.2� 
/

d2�

P4�2
 ;

B
2

2
U D

8
.
 � 1/

d

P2
f:
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Proof. By conformal covariance, we may assume that �D r is the geodesic defining function associated
to gjTM . That Lm4;�U D 0 follows from conformal covariance and the factorization

.Lm4;�/gC D
�
��gC �

1
4
n2C .2� 
/2

�
ı
�
��gC �

1
4
n2C 
2

�
(4-12)

of the weighted Paneitz operator of .XnC1; gC; 1;m; 1/; see [Case and Chang 2016, Theorem 3.1].
Using the asymptotic expansion (2-3), we observe that

u1 Š r
n�2

2

�
f C

1

4.1� 
/

�
��f C

n� 2


2
Jf

�
r2C d�1
 P2
f r

2


�
;

u2 Š r
n�4C2


2

�
 C d�12�
P4�2
 . /r

4�2

C

1

4.
 � 1/

�
�� C

nC 2
 � 4

2
J 

�
r2
�
;

where we write AŠB if A�BD o.r
nC2

2 /. Set Uj D r�

n�2

2 uj for j 2 f1; 2g. Applying Proposition 4.4

to U1 and U2 and using the linearity of the operators B2
s for s 2 f0; 2
 � 2; 2; 2
g yields the result. �

By appealing to the uniqueness of solutions to Lm4;�U D 0 with suitable boundary conditions, we
obtain two extension theorems relating the fractional GJMS operator P2
 to the operator B2
2
 . The first
result is a reformulation of [Case and Chang 2016, Theorem 4.4].

Proposition 4.6. Fix 
 2 .1; 2/ and set m D 3 � 2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein
manifold such that 1

4
n2�
2; 1

4
n2�.2�
/2 62 �pp.��gC/. Let � be a 
-admissible defining function.

Given f 2 C1.M/, let U be the unique solution to the boundary value problem8̂̂<̂
:̂
Lm4;�U D 0 in .XnC1; �2gC; �;m; 1/,

B
2

0 U D f on M,

B
2

2
�2U D 0 on M:

(4-13)

Then

P2
f D
d


8
.
 � 1/
B
2

2
U: (4-14)

Proof. Let u D P
�
1
2
nC 


�
f and set QU D ��

n�2

2 u. It follows from Proposition 4.4 and conformal

covariance that QU satisfies (4-13). Hence, by uniqueness of solutions of (4-13), it holds that U D QU.
Equation (4-14) now follows from Corollary 4.5. �

The second result is an analogous extension theorem formulated in terms of the iterated Dirichlet data
of a fourth-order boundary value problem.

Proposition 4.7. Fix 
 2 .1; 2/ and set m D 3 � 2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein
manifold such that 1

4
n2�
2; 1

4
n2�.2�
/2 62 �pp.��gC/. Let � be a 
-admissible defining function.

Given f 2 C1.M/, let U be the unique solution to the boundary value problem8̂̂<̂
:̂
Lm4;�U D 0 in .XnC1; �2gC; �;m; 1/,

B
2

0 U D f on M,

B
2

2 U D 0 on M:

(4-15)
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Then

P2
f D
d


8
.
 � 1/
B
2

2
U: (4-16)

Proof. Let u D P
�
1
2
nC 


�
f and set QU D ��

n�2

2 u. It follows from Proposition 4.4 and conformal

covariance that QU satisfies (4-15). Hence, by uniqueness of solutions of (4-15), it holds that U D QU.
Equation (4-16) now follows from Corollary 4.5. �

Surprisingly, the fractional GJMS operator P2
 can be recovered from the boundary operator B2
2

without finding a unique extension.

Proposition 4.8. Fix 
 2 .1; 2/ and setmD 3�2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
such that 1

4
n2�
2; 1

4
n2�.2�
/2 62 �pp.��gC/. Let � be a 
 -admissible defining function. Suppose that

U 2 C
 satisfies (
Lm4;�U D 0 in .XnC1; �2gC; �;m; 1/,

B
2

0 U D f on M.

Then

P2
f D
d


8
.
 � 1/
B
2

2
U: (4-17)

Proof. Set

 D
1

2.1� 
/
B
2

2
�2U:

Let u1 D P
�
1
2
nC 


�
f and u2 D P

�
1
2
nC 2 � 


�
 and set QU D ��

n�2

2 .u1 C u2/. It follows from

Corollary 4.5 that QU satisfies 8̂̂<̂
:̂
Lm4;�

QU D 0 in X,

B
2

0
QU D f on M,

B
2

2
�2

QU D 2.1� 
/ on M:

(4-18)

By uniqueness of solutions of (4-18), we have U D QU. Equation (4-17) now follows from Corollary 4.5. �

5. The energy inequality

We are now ready to prove the energy inequalities stated in the Introduction. As throughout this article,
we consider the cases 
 2 .0; 1/ and 
 2 .1; 2/ separately. Nevertheless, the basic ideas are the same. We
start by considering the energy functional E2
 W C 
 ! R given by E2
 .U /DQ2
 .U; U /, where Q2
 is
as in Theorem 3.2 and Theorem 3.7. Concretely, if 
 2 .0; 1/, then

E2
 .U /D
Z
X

�
jrU j2C

n� 2


2
Jm� U

2

�
C
n� 2


2n

I
M

H2
 .B
2

0 U/2; (5-1)
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while if 
 2 .1; 2/, then

E2
 .U /D
Z
X

�
.��U/

2
� .4P � .n� 2
 C 2/Jm� g/.rU;rU/C

n� 2


2
Qm� U

2

�
C

I
M

�
2


 � 1
hrB

2

0 .U /;rB

2

2
�2.U /i

C .n� 2
/T
2

2 B

2

0 .U /B

2

2
�2.U /C

n� 2


2
.�m�Jm� /.B

2

0 U/2

�
: (5-2)

Using the fact that C

f; 
D U C C
0;0 for some, and hence any, fixed U 2 C


f; 
, we obtain a necessary

and sufficient condition for E2
 to be uniformly bounded below in C

f; 

in terms of the bottom of the
L2-spectrum of Lm

2k;�
for kDb
cC1. When E2
 is uniformly bounded below, we construct a minimizer

which necessarily solves (4-1) or (4-13). This construction together with Proposition 4.1 or Proposition 4.6,
respectively, yields the result.

The case 
 2 .0; 1/. Following the outline above, we start by characterizing when E2
 is uniformly
bounded below on C


f
in terms of the bottom of the spectrum of ��gC on a Poincaré–Einstein manifold

.XnC1;M n; gC/. This result generalizes an observation of Escobar [1994] in the case 
 D 1
2

, and corrects
an error in the remark following the statement of [González and Qing 2013, Theorem 1.4].

Proposition 5.1. Fix 
 2 .0; 1/ and set m D 1 � 2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein
manifold such that 1

4
n2 � 
2 62 �pp.��gC/. Let � be a 
-admissible defining function and consider

.X; �2gC; �;m; 1/. Fix f 2 C1.M/. Then

inf
U2C


f

E2
 .U / > �1 (5-3)

if and only if
�1.��gC/ >

1
4
n2� 
2: (5-4)

Proof. Fix U 2 C

f

, so that C

f
D U C C
0. By definition,

�1.L
m
2;�/D inf

˚
E2
 .V /

ˇ̌
V 2 C
0 ;

R
X V

2 D 1
	
:

Since .Lm2;�/C D��gC �
1
4
n2C 
2, we have that �1.Lm2;�/ > 0 if and only if (5-4) holds.

Next, given any V 2 C
0 and t 2 R, we compute that

E2
 .U C tV /D t2E2
 .V /C 2tQ2
 .U; V /C E2
 .U /: (5-5)

If (5-4) does not hold, then there is a V 2 C
0 such that E2
 .V /< 0. In particular, inserting this V into (5-5)
and letting t !1 shows that (5-3) does not hold. If (5-4) holds, then Theorem 3.2 and (5-5) imply that

E2
 .U CV /� �1.Lm2;�/
Z
X

V 2C 2

�Z
X

.Lm2;�U/
2

�1
2
�Z
X

V 2
�1
2

C E2
 .U /

for any V 2 C
0. An application of the Cauchy–Schwarz inequality yields a lower bound for E2
 .U CV /
which depends only on U. In particular, (5-3) holds. �
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We next implement the minimization scheme described at the beginning of this section to prove
Theorem 1.1. For convenience, we restate the result here.

Theorem 5.2. Fix 
 2 .0; 1/ and set mD 1� 2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
which satisfies (5-4). Let � be a 
-admissible defining function with expansion (2-9) and consider
.X; �2gC; �;m; 1/. For any f 2 C1.M/, it holds thatZ
X

�
jrU j2C

mCn� 1

2
Jm� U

2

�
�m dvol� �

2


d


�I
M

fP2
f dvol�
n� 2


2
d


I
M

f̂ 2 dvol
�

(5-6)

for all U 2W 1;2.X; �m dvol/ with TrU D f . Moreover, equality holds if and only if Lm2;�U D 0.

Proof. From (5-1) and Proposition 5.1 we observe that the left-hand side of (5-6) is uniformly bounded
below in C


f
. Let U 2W 1;2.X; �m dvol/ be a minimizer. Necessarily U solves (4-1). Theorem 3.2 and

Proposition 4.1 then imply that

E2
 .U /D�
2


d


I
M

fP2
f;

from which (5-6) immediately follows. �

The case 
 2 .1; 2/. We again start by finding a necessary and sufficient condition for the energy E2
 to
be uniformly bounded below on C


f; 
.

Proposition 5.3. Fix 
 2 .1; 2/ and setmD 3�2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
such that 1

4
n2�
2; 1

4
n2�.2�
/2 62 �pp.��gC/. Let � be a 
 -admissible defining function and consider

.X; �2gC; �;m; 1/. Fix f; 2 C1.M/. Then

inf
U2C


f; 

E
 .U / > �1 (5-7)

if and only if

�1.L
m
4;�/ > 0: (5-8)

Moreover, if �1.��gC/ >
1
4
n2� .2� 
/2, then (5-8) holds.

Proof. Arguing as in the proof of Proposition 5.1, but using Theorem 3.7 instead of Theorem 3.2, yields
the equivalence of (5-7) and (5-8).

Suppose now that �1.��gC/>
1
4
n2�.2�
/2. It follows immediately from (4-12) that (5-8) holds. �

We next implement the minimization scheme to derive the following improvement of Theorem 1.2.

Theorem 5.4. Fix 
 2 .1; 2/ and set mD 3� 2
 . Let .XnC1;M n; gC/ be a Poincaré–Einstein manifold
which satisfies (5-8). Let � be a 
-admissible defining function with expansion (2-9) and consider
.X; �2gC; �;m; 1/. For any f; 2 C1.M/, it holds that
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X

�
.��U/

2
� .4P � .n� 2
 C 2/Jm� g/.rU;rU/C

n� 2


2
Qm� U

2

�
�
8
.
 � 1/

d


�I
M

fP2
f �
n� 2


2
d


I
M

f̂ 2
�
C

d


2
.
 � 1/

I
M

 P4�2
 

C 4

I
M

�
hrf;r iC

.n� 2
/.2� 
/

2
.J C 4.
 � 1/�2/f  

�
(5-9)

for all U 2W 2;2.X; �m dvol/ with TrU D .f;  /. Moreover, equality holds if and only if Lm4;�U D 0.

Proof. From (4-8), (5-2) and Proposition 5.3, we observe that the left-hand side of (5-9) is uniformly
bounded below in C


f; 
. Let U 2W 2;2.X; �m dvol/ be a minimizer. Necessarily U solves (4-18). Note

that the factorization (4-12) and the assumption (5-8) together imply that 1
4
n2�
2; 1

4
n2�.2�
/2 62

�pp.��gC/. Therefore, by Theorem 3.7 and Corollary 4.5,

E2
 .U /D
8
.
 � 1/

d


I
M

fP2
f C 8.1� 
/.2� 
/ d
�1
2�


I
M

 P4�2
 :

The conclusion follows from (2-2). �

6. A sharp Sobolev inequality

As an application of Theorem 5.4, we prove the following sharp Sobolev trace inequality for 
 -admissible
compactifications of hyperbolic space with 
 2 .1; 2/. This statement is more general than Theorem 1.3
in that it involves the full trace on C
 and it allows for arbitrary 
 -admissible compactifications.

Theorem 6.1. Fix 
 2 .1; 2/ and setmD3�2
 . Choose n2N such that n>2
 and let � be a 
 -admissible
defining function on hyperbolic space .HnC1; Sn; gC/. Then, in terms of .H; �2gC; �;m; 1/,

E2
 .U /� c.2/n;


�I
Sn
jf j

2n
n�2


�n�2

n

C
1
4
c
.2/
n;2�


�I
Sn
j j

2n
n�4C2


�n�4C2

n

for all U 2 C
, where f is the trace of U, ˆ is as in (2-9), and

c.2/n;
 D 8�

 �.2� 
/

�.
/

�
�
1
2
.nC 2
/

�
�
�
1
2
.n� 2
/

� ���12n�
�.n/

�2

n

:

Moreover, equality holds if and only if Lm4;�U D0 and both f
4

n�2
 .�2gC/jTSn and 
4

n�4C2
 .�2gC/jTSn

are Einstein with positive scalar curvature.

Proof. Since �1.��gC/D
1
4
n2, Theorem 5.4 implies that

E2
 .U /�
8
.
 � 1/

d


I
Sn
fP2
f C

d


2
.
 � 1/

I
Sn
 P4�2
 (6-1)

for all U2 C
, where f and  are as in (2-12). The conformal covariance of the fractional GJMS operators
and the sharp fractional Sobolev inequality [Beckner 1993; Cotsiolis and Tavoularis 2004; Frank and
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Lieb 2012; Lieb 1983] together imply thatI
Sn
fP2
f � 2

2
�

�
�
1
2
.nC 2
/

��
1
2
.n� 2
/

� ���12n�
�.n/

�2

n
�I

Sn
jf j

2n
n�2


�n�2

n

(6-2)

with equality if and only if f
4n
n�2
 .�2gC/jTSn is Einstein with positive scalar curvature. Combining (6-1),

(6-2) and the corresponding result for P4�2
 yields the desired result. �

Proof of Theorem 1.3. It is straightforward to check that .SnC1
C

; d�2; xnC1; m; 1/ satisfies

Lm4;� D
�
��� C

1
4
..mCn/2� 1/

��
��� C

1
4
..mCn/2� 9/

�
:

Since gCD x�2nC1d�
2 satisfies RicgC D�ngC, we see find that xnC1 is a 
 -admissible defining function

for hyperbolic space. Applying Theorem 6.1 then yields the desired conclusion. �

Appendix: Proof of the Sobolev trace theorem

The proof of Theorem 5.4 requires the Sobolev space W 2;2.XnC1; �m dvol/ and its trace onto H 
 .M/˚

H 2�
 .M/. Since our definitions of W 2;2.XnC1; �m dvol/ and the trace via the space C
 are nonstan-
dard — the usual approach is via completions of C1.X/ [Triebel 1978] — we prove the existence of the
trace map.

Theorem A.1. Fix 
 2 .1; 2/ and setmD 3�2
 . Let .XnC1; g; �;m; 1/ be a 
 -admissible smooth metric
measure space with nonempty boundary M D @X. There is a unique bounded linear operator

Tr WW 2;2.X; �m dvol/!H 
 .M/˚H 2�
 .M/

such that Tr.U /D .f;  / for all U 2 C

f; 

. Moreover, there is a continuous mapping

E WH 
 .M/˚H 2�
 .M/!W 2;2.X; �m dvol/

such that Tr ıE is the identity map on H 
 .M/˚H 2�
 .M/.

The proof of Theorem A.1 involves two steps. First, we prove the corresponding result in upper half
space .RnC1

C
; dy2 ˚ dx2; y;m; 1/ for RnC1

C
D .0;1/ � Rn and y the standard coordinate on .0;1/.

Second, we use coordinate charts to pull the Euclidean result back to 
 -admissible smooth metric measure
spaces. Indeed, the second step is routine, and the proof will be omitted. The first step is carried
out via the extension theorems for the fractional Laplacian [Caffarelli and Silvestre 2007; Yang 2013].
To that end, define C


f; 
and C
 as in Section 2 using Schwartz functions to obtain the completion

W 2;2.RnC1
C

; ym dvol/, and recall that the H 
 - and H 2�
 -norms defined in Section 2 are equivalent to
the ones defined via Fourier transform.

Theorem A.2. Fix 
 2 .1; 2/ and set mD 3� 2
 . There is a unique bounded linear operator

Tr WW 2;2.RnC1
C

; ym dvol/!H 
 .Rn/˚H 2�
 .Rn/ (A-1)
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such that Tr.U /D .f;  / for any U 2 C

f; 

. Moreover, there is a bounded linear operator

E WH 
 .Rn/˚H 2�
 .Rn/!W 2;2.RnC1
C

; ym dvol/ (A-2)

such that Tr ıE is the identity map on H 
 .Rn/˚H 2�
 .Rn/.

Proof. Combining Theorem 5.4 and the proof of [Yang 2013, Theorem 3.1], we find that for any U2 C

f; 

,
it holds thatZ

R
nC1
C

.��U/
2
�
8
.
 � 1/

d

k.��/



2 f k22C 4

I
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hrf;r iC
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k.��/

2�

2  k22 (A-3)

with equality if and only if U is the unique solution to8̂<̂
:
�2�U D 0 in .0;1/�Rn;

U.0; x/D f .x/ for all x 2 Rn;

limy!0 ym@yU.y; x/D 2.
 � 1/ for all x 2 Rn

(A-4)

with �� D�Cmy�1@y . Using integration by parts, it is straightforward to check thatZ
R
nC1
C

ˇ̌
r
2U Cmy�1.@yU/

2 dy˝ dy
ˇ̌2
D

Z
R
nC1
C

.��U/
2
� 4.
 � 1/

I
Rn
hrf;r i

for all U 2 C

f; 

. Combining this with (A-3) yieldsZ
R
nC1
C

ˇ̌
r
2U Cmy�1.@yU/

2 dy˝ dy
ˇ̌2
�
8
.
 � 1/2

d

k.��/



2 f k22C
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2�

2  k22 (A-5)

with the same characterization of the equality case. It follows from (A-5) that Tr W C
 !H 
 ˚H 2�
 is
a bounded linear operator, and hence can be extended uniquely to a bounded linear operator as in (A-1).
Moreover, the map E.f; /DU obtained by solving (A-4) is linear and, by (A-5), bounded, whence can
be extended to a bounded linear operator as in (A-2). �
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