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TIME-WEIGHTED ESTIMATES IN LORENTZ SPACES AND
SELF-SIMILARITY FOR WAVE EQUATIONS WITH SINGULAR POTENTIALS

MARCELO F. DE ALMEIDA AND LUCAS C. F. FERREIRA

We show time-weighted estimates in Lorentz spaces for the linear wave equation with singular potential.
As a consequence, assuming radial symmetry on initial data and potentials, we obtain well-posedness of
global solutions in critical weak-L? spaces for semilinear wave equations. In particular, we can consider
the Hardy potential V(x) = ¢|x|~2 for small |c|. Self-similar solutions are obtained for potentials and
initial data with the right homogeneity. Our approach relies on performing estimates in the predual of
weak-L?, i.e., the Lorentz space L&D,

1. Introduction

We are concerned with the linear wave equation with potential

Ou+Vu= f(x,1), (x,1) e R" xR, (1-1)
1(0) = (u(0, x), 0;u(0,x)) = (0,0), xeR",
and the semilinear wave equation
Ou+Vu=pu?u, (x,1)eR"xR, (1-2)
u(0) = (ug, u1), x € R",

where 0=032—Ay, n>50dd, € {+1,—1} (focusing or defocusing case) and p > (n*>+n—4)/(n(n—3)).
The problems (1-1) and (1-2) are addressed in the radial setting.

The semilinear wave equation (1-2) with V' = 0 has three notions of critical nonlinearity, namely the
Strauss critical power p = pg, conformal critical power p = pconf and energy critical power p = pe.
The former py, is the positive root of

m—D)p>—m+1)p—2=0.

Strauss [1981] conjectured about the existence for p > py, or nonexistence for 1 < p < py. of global
solutions for (1-2) with small compact support initial data. The conjecture of Strauss has a nice history
(see, e.g., [Wang and Yu 2012]) and was completed by [Yordanov and Zhang 2006; Zhou 2007] (see also
[Lai and Zhou 2014]). The conformal power pcons is linked to the conformal symmetry map

X t
[2_|x|2’ t2—|X|2

—1
U, 1) > toont (. 1) = (12 — |x[2) 7" u(

) for |x| < [¢].
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More precisely, Uconr solves (1-2) with V' = 0 if u does and p = pcont = (n + 3)/(n — 1) for n > 2. The
power pe = (n+2)/(n—2) (pe = oo if n = 2) is connected to the scaling invariance of the conserved
energy. In fact, for p = p. and V = 0, the conserved energy

E(u,atu):l/ |qu|2dx+l/ |3tu|2dx+L/ u|P*! dx
2 Rn 2 R p+1 R7
is invariant by the scaling map

u(x,t) = uy(x,t):= y%u(yx, yt), y>0, (1-3)
namely
E(uy. dsuy) = y 7T 2 E(u, ) = E(u, d;u).

We refer the reader to the classical papers [Grillakis 1990; 1992; Shatah and Struwe 1993; Struwe 1999]
for results about solutions with finite energy.

A solution is called self-similar when it is invariant by (1-3), that is, u(x,?) = u,(x,t). For a
homogeneous function V of degree —2, equation (1-2) presents the same scaling as in the case V' = 0.
Taking ¢ = 0, the map (1-3) induces the scaling for the initial data:

(1o (). 1 (x)) = (¥ 7 Tup(yx). y 7T uy (yx)). (1-4)

In other words, self-similar solutions of (1-2) are associated to initial data u¢ and ©#; homogeneous of

degrees —ﬁ and —;—J_r%, respectively, that is, homogeneous functions of the form

—_2_ _p+1
ug(x) =ecy|x["7=1 and u(x)=ecy|x| »=T, (1-5)

where ¢q,c; € Rand € > 0.

For V = 0, there are a number of results about self-similar solutions in different frameworks. The
first work is due to Kavian and Weissler [1990], where the authors proved the nonexistence of radially
symmetric self-similar solutions with finite energy E(u, d;u) for n > 3 and p. < p < co. Working in the
infinite energy space of all Bochner-measurable functions u : (0, co) — L” (R") such that

sup P llu(-, 1) Lr@my < 00, (1-6)

t>0

Pecher [2000a] showed the existence of self-similar solutions for ¢ > 0 in (1-5) sufficiently small by
considering n = 3 and p; < p < pcont, Where pq is the larger positive root of

n*—n)p*—m*>+3n-2)p+2=0.

The parameters 8 > 0 and r > 2 are taken in such a way that the norm (1-6) is scaling invariant. The
approach in [Pecher 2000a] is based on L9 — L” dispersive estimates for the wave group

o(t) = (—A)"Z sin(t(—A)2). (1-7)

In fact, the case of nonradial homogeneous data also was considered in [Pecher 2000a]. Moreover,
replacing L” by suitable homogeneous Sobolev spaces H! with k > 0, the upper condition p < peont
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was removed by him. Still for n = 3, Pecher [2000b] obtained self-similar solutions (not necessarily radial)
in the range psy < p < peont and showed that the lower bound pyg; is sharp in the sense that in general no
nontrivial self-similar solution exists even in the radial case when p < pg.. Unlike [Pecher 2000a], the
paper [Pecher 2000b] developed pointwise estimates related to the weights |x| £ ¢ and a norm due to
F. John and did not employ L?, Sobolev or Besov spaces. Hidano [2002] complemented these results by
showing scattering and existence of self-similar solutions for (1-2) when n = 2,3 and ps < p < Pcont-
The result of [Pecher 2000a] was proved to be true for n = 2, 3,4, 5 by Ribaud and Youssfi [2002],
recovering in particular n = 2,3. Moreover, for n > 6 they considered p € (p1, Peont] U [2,00) or
P € (P1, Peont) U (p2,00), where p, is the larger positive root of

2+ D)p?— > +3n+4)p+@m*+5n+2)=0.

Note that py < p1 < Peont < p2 for all dimensions in which these parameters are defined.
The weighted Strichartz estimate in L ’°°)([RRL+”)

== |x|z‘au”u,m)(m+n) <C||*- |x|z|bf”L(,‘,,oo)(R1++n) (1-8)

was obtained by Kato and Ozawa [2003] for f radially symmetric in x-variables, 2 <r <2(n+1)/(n—1)
and suitable powers a, b. By using (1-8) and assuming # > 3 odd, they proved existence and uniqueness
of radially symmetric self-similar solutions for (1-2) with initial data (1-5) provided that psy < p < Pcont
and ¢ > 0 is small enough. In [Kato and Ozawa 2004], they extended their results to the case n > 2 even.
By employing spherical harmonics and Sobolev spaces over the unit sphere, the condition of radial
symmetry on ©# and f was removed in [Kato et al. 2007] for 2 <n < 5. In the case p €N, p > pconf and
V =0, Planchon [2000] showed global well-posedness and existence of self-similar solutions for (1-2) in
L°((0, 00); B;’:oo) for small data (uq,u;) € B;’:oo X B;"’o_ol with s, =

results do not contradict the nonexistence result in [Kavian and Weissler 1990] because the obtained

n 2 1
5~ o1 Notice that the above

self-similar solutions have infinite energy.

Wave equations with singular potential arise in the study of stability of stationary solutions for a number
of systems of PDEs, for example, wave-Schrodinger and Maxwell-Schrodinger ones (see, e.g., [D’ancona
and Pierfelice 2005]). Unlike the case p > pg and V = 0, where no blow-up occurs for (1-2), Strauss
and Tsutaya [1997] proved blow-up of solutions when n =3, p>1and V € C1(R3) N L®(R3) decays
like ¢/|x|?~#) as |x| — oo for 0 < & < 2. Also, they showed global existence for £ <0, p > pg and

small enough. Still considering small, smooth and rapidly decaying potentials, Yajima [1995] obtained

(1 +1xD> Y [0V ()]

la|=2

Lo

L? — L1 dispersive estimates for the linear wave equation (1-1). The borderline case £ = 0 corresponds
to ¥V homogeneous of degree 0 = —2. In this case, the perturbation Vu has the same scaling of Au and
cannot be dealt with as a simple perturbation of lower order because it does not belong to the Kato class

IC:{VGLIIOC:HVH,C: sup/ |x—y|2_”|V(y)|dy<oo,nZ3}, (1-9)
x€Rn JRM
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where || - || is called the global Kato norm. Taking n =3, #(0) = (0,u;) and /' =0 in (1-1), Georgiev
and Visciglia [2003] proved the dispersive estimate

_n—1
(Dl zoeqeny = C" a1 (1-10)

for potentials V' that are Holder continuous in R3\ {0} satisfying

C

+ | x|2+e
D’ancona and Pierfelice [2005] improved the class of potentials to nonresonant V' € X and obtained,
in particular, the estimate (1-10) for V € L3980 L3ts ¢ L(3.1) C K with small § > 0. Planchon
et al. [2003a] proved (1-10) in the radial case for the critical potential V(x) = ¢/|x|? with ¢ > 0. In the
same work, they also proved a modified version of (1-10) for negative potentials —((n —2)/2)? < ¢ < 0.

0<V(x)< W= for all x € R>.
X

Moreover, they showed that the classical L>® — L! estimate
_hn—1 n—1
[u(-,)llLoo@ny = Ct™ 2 [(=A) # upllpr@wn

does not hold when ¢ < 0 and V(x) = ¢/|x|? In particular, this estimate is false for general V € L(3:00)
Burq et al. [2003] considered Strichartz estimates for (1-1) and showed

I(=A)ullprra < Clluoll gy + lurll gry—1) (1-11)

for o, p, q, y satisfying suitable conditions. See also [Planchon et al. 2003b] for the radial case and [Burq

et al. 2004] for a more general class of potentials satisfying V € C!(R™\{0}) and sup,.¢pn |X|*| V()| < 00,

n
2

/ +(n—2)2>n—2 2 N {1 2 }
c — maxy —, ——— ¢,
4 2 p—1 2p (m+1D(p—1)

the authors of [Burq et al. 2003] also showed global well-posedness of (1-2) provided that (u¢,u;) €
H*» x H~! is small enough. This result has been extended to the range
A L
n—1m+1)
in [Miao et al. 2013] for » > 3 and small radial initial data.
In this paper we obtain estimates for solutions of (1-1) in weak-L" (L(’ ’°°)) spaces for the case of

among some other conditions. Using (1-11), forn>2, p > peont, Sp =5 — ﬁ and

< P < Pconf

small radial singular potentials V € L(5:00), Examples of those are Hardy potentials V = ¢|x|™2 with |c|
small enough (see Remark 3.2(II)). More precisely, for certain conditions on r, s, we prove the estimate

u co(R- T (roo)y = O (R: L (5.09))» (1'12)
[[]] .00 (r; L0000 T=KColV o | /1l Loo (R L5000

where Cy and K are positive constants and V, f and u are radially symmetric in the x-variable. In our
results, the potential V' can have indefinite sign. Notice that taking V' = 0 in (1-12), one also obtains, in
particular, an estimate for the linear wave equation Cu = f. The estimate (1-12) can be regarded as an

endpoint-inhomogeneous Strichartz-type estimate in weak-L? spaces, specifically, from Lil ng’oo) to
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LM L§C’”2’°°) in the case (/1,m;) = (00, 00), which is important because it corresponds to the natural
persistence space in existence results. Even when V' = 0, notice that (1-12) cannot be obtained as a
consequence of the inhomogeneous Strichartz estimates by Keel and Tao [1998] and Taggart [2010].

In order to obtain (1-12), we need to show a time-weighted estimate for the wave group (1-7) in the
predual of L ’°°), i.e., the Lorentz space L /’1), which is of its own interest (see Lemma 4.1). As will
be seen below, this estimate will lead us to global well-posedness results for (1-2) in critical spaces. We
denote the solution of the Cauchy problem for the linear homogeneous wave equation by

Lii0)(1) = o()uy + @(H)ug, where w (1) = d;o(1), (1-13)
and consider the space of initial data

Traa = {(0, 1) € Slag X Shag * Lizoy(1) € LP(R; LIS (RM))}, (1-14)

rad

where rg = —”(pz_l)

defined as

and the subindex “rad” means space of radial distributions. The norm || - ||z, is

1o, u) ||z = sup | L0y (D .00 - (1-15)
teR rad

Applying the estimate (1-12), we obtain global well-posedness for (1-2) in the scaling-invariant space
E = LOO(R;L(rO’OO)([R{”)) provided that n > 5 odd, p > (n?> +n—4)/(n(n —3)) and ||(uo, u1)||z.,

rad
is small enough (see Theorem 3.3(I)). The continuous inclusion (B;”OOXB;" o_ol)rad C Zraq holds true
and so, in the radial case, our result extends the initial data class in [Planchon 2000]. In fact, we have
n(p—1)

By LU"77:%) (see Remark 3.4(D) and

?lelg||Lﬁ(o)(f)||L(n(p;l>!00) <C ?2§||Lﬁ(0)(1)||1;§1foo = C|(uo, ul)”BZ]ooXB;',’;l’ (1-16)

where the second inequality in (1-16) can be found in [Planchon 2000, estimate (29), p. 815]. Also, we
have K & L(3:%) and then our class of potentials is larger than the Kato one in the radial setting (see
Remark 3.4(II)). Note that
n?+n—4

n(n—3)

and our range of admissible powers p differs from those of [Kato and Ozawa 2003; 2004; Planchon

Dstr < Dconf < Pe <

2000; Ribaud and Youssfi 2002]. Finally, as a byproduct, we obtain the existence of radially symmetric
self-similar solutions when u, 11 and V' are homogeneous of degrees —%, —f)—fll
(see Theorem 3.3(II)).

This paper is organized as follows. In Section 2, we recall the definition of Lorentz spaces and some

and —2, respectively

of their properties. Our results are stated in Section 3 and proved in Section 4.

2. Lorentz spaces
We start by recalling the decreasing rearrangement of a measurable function f : R"” — R,

S*(@) =inf{s > 0:dp(s) <t} fort >0,
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where dr(s) = ‘{x eR" | f(x)] > s}‘ is the distribution function of f. The Lorentz space L% =
LP2)(R™M) is the vector space of all measurable functions f : R” — R such that

[fooo(l%[f*(t)])z%]% <oo for0<p<oo, 1=<z<o0,

. 2-1
171G supt%[f*(z)]<oo for 0 < p < oo, z = 0. e-1)

>0
The space L) is trivial for 1 < z < co. Also, L(?>P) is the Lebesgue space L? with ||f||2‘p »n= - llze

and L(P:%) is the so-called weak-L?. The quantity | f||z‘p 2 defines a complete quasinorm on L(?-?)
that in general is not a norm. Considering the double rearrangement

t
rro=1 [ rod.

one can define the norm || f|(,z) on L2 by replacing f* by f** in (2-1). For 1 < p < 0o, we have
the inequality

P
N N T N

and then |- ||, z) and |- ||’("p,z) are topologically equivalent. The pair (L2 |- l(p,z)) is a Banach space.
From now on, we consider L% endowed with || - l(p,z) and || - ”ka,z) when l < p<ocoand0< p =<1,
respectively. The continuous inclusions

A C Lp-z1) cL?c L(P:72) C (P>0) (2-2)

hold true for 1 <zy < p <z, <ooand | < p <oo. Lorentz spaces have the same scaling as L?-spaces,
namely

I8¢ (Nlp.2y = ¢ 2SN (p.2)>

where §), stands for the operator §.( f)(x) = f(cx).
Let 0 <6 < 1and 1 <z < oo. Consider the interpolation functor (-,-)g , constructed via the
Ky .-method and defined on the categories of quasinormed and normed spaces. For 0 < p; < p; < o0,

% = 117;10 + % and 1 < zy, z; < 00, we have (see [Bergh and Lofstrom 1976, Theorems 5.3.1 and 5.3.2])

(L(Plszl), L(Pz,Zz))H’Z — (p:2), (2-3)

Moreover, (-, -)g,, is exact of exponent 6.
The pointwise product operator works well in Lorentz spaces; i.e., Holder inequality is verified in this
setting (see [Hunt 1966; O’Neil 1963]). Let 1 < py, p2, p3 <ocoand 1 < zy, 25, z3 < 0o be such that
1

1 1 1 1 1
—_ = —_— —_ —_ > =
3 | + 5 and 7 + Z z3" Then

||fg”(p3,23) E C”f”(pl,zl) ||g||(p2,22)9 (2'4)
where the constant C > 0 is independent of f and g.

Finally, we recall that the dual space of L2 is L("Z) for 1 < p, z < 0o (see [Grafakos 2004, p. 52]).
Taking z = 1, we have (L?:1)" = L") for | < p < 0.
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3. Main results
Throughout the paper, the subindex “rad”” means space of radial functions or distributions. For instance,
Lr(:éz) = {u e LT : y is radially symmetric}. (3-1)

We define the open triangles Ap, p, p, and A p, p, p. Whose vertices P; are

JOREE U R S N R

2 " n+1'2 n+l 2 n—1'2 n-—1
1 1 1 1 n—1 -2
P= (34 pat) B=(175) ad Ps=qp

(see Figure 1). The vertices P, and Pj are defined as (0, 0) and (1, 1), respectively, when n = 1, 2.
Our first result consists in linear estimates in weak-L? for the linear wave equation with singular
potential.

Theorem 3.1. Let n > 5 be odd and A p, p, ps be the open triangle defined by the points P, P4 and Ps
in (3-2). If

2(n—1) . 1 1 1 1_2
/ / e -
L<rls < = wzth(l 1 S)eAp2p4p5 and <=1 ==, (3-3)
then there are K, Cy > 0 such that the solution u of (1-1) satisfies
K
sup [Ju(-, l)”(r,oo) = sup || f (-, Z)”(s,oo) (3-4)
teR 1—COK”V”(%OO) teR

rad
(3-4) is taken in the essential sense.

forall f e L®(R; L(S’oo)(R”)),provided that V € Lraz’oo) and C0K||V||(% 00) < 1. The supremum in

Some comments on Theorem 3.1 are in order.

Remark 3.2. (I) Let us point out that the range in Theorem 3.1 is not empty. In order to see this, set
w=1-2andh=1—1 Now notice that (1—1,1—1) e Ap, p, p, is equivalent to

1
(1—;,1—;):(w,w—h)eAp2p4p5. (3-5)

In turn, for (3-5) we need only that 0 < /1 < % holds true when /i = % and n > 5.
r(aa’oo) (R™) is covered by Theorem 3.1 with
(2 Oo))_l. The constant Cy in (3-4) is that of the Holder inequality

20

(IT) The critical Hardy potential V(x) = co|x|™2 € L
|col < (CoK |[|x]2

o2 1
1Vtlls.00) = CollV I 5 0o Il ey with <=2+ 2.

(IIT) Taking V = 0, Theorem 3.1 also provides an estimate for the linear wave equation Cu = f.

Let {w(?)}ser be the wave group w(t) = (—A)_% sin(t(—A)%) and define (/) by

t
Hﬂw0=AwMﬁme- (3-6)
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Formally, the IVP (1-2) is equivalent to the integral equation

where

N (@)= p&(ulP~ ) and T (u) = —¢(Vu).

Solutions of (3-7) are called mild solutions for the Cauchy problem (1-2).

We will look for solutions of (3-7) in the Banach space £ = L*°(R; ng’oo)) whose norm is

lull g = sup lu(-. )l (r,00)- (3-8)
teR

The supremum in (3-8) is taken in the essential sense. This space is invariant by the scaling (1-3) and
allows the existence of self-similar solutions (i.e., u = u,).

1 1 2 -2
A= (2 ) a4, = (102,
2n—1) 2(n—1) n n

Let ]A, A,[ be the open segment line. Notice that |4, A;[ € Ap, p, ps\Ap, p,p, foralln > 4.

Consider

Q=

Ps
A
4>
.

Py

N =

Figure 1. ]A1 s A2[ € AP2P4P5\AP1 Py Ps3-

Observe that p > (n> +n —4)/(n(n — 3)) is equivalent to

2 2p
(1= s~ o) <Ml e

Our well-posedness and self-similarity results for (1-2) are stated below.




TIME-WEIGHTED ESTIMATES IN LORENTZ SPACES 431

Theorem 3.3. Letn > 5 be odd, p > (n> +n—4)/(n(n—3)) and ro =n(p—1)/2. Suppose (g, u1) € Iraa
and v e L3

rad
(I) (Global well-posedness) There are ¢, Cy > 0 such that if ||(uo,u1)||z,, < &, then the IVP (1-2) has a
unique mild solution u € L*°(R,; ng,oo)) satisfying
2¢e
sup ””( [)”(nboo) 1—
teR n

provided that n = C1|| V|| (1.00) < 1. Moreover, the solution u depends continuously on data (ug, u1)
and potential V.

(Il) (Self-similarity) Under the hypotheses of item (1), the solution u is self-similar provided that

ug, U1, V are homogeneous of degrees —%, —I;‘H and =2, respectively.

In what follows, we make some comments on Theorem 3.3.
Remark 3.4. (I) Taking V = 0, Theorem 3.3 provides a well-posedness result for semilinear wave

equations in odd dimensions n > 5. Moreover, we have the continuous inclusions (see [Bergh and
Lofstrom 1976, p. 154])

Hs —> Bil 0 &> L(FZaOO) (3_10)
where - —f—l = and ra > ry. In particular, for s, = % — pzl we obtam S s BSPOO o (M5 o0)
In fact the 1nclu510ns in (3-10) are strict and then the space L( 2,00) is larger than B Sp o ie., the

one considered by Planchon [2000]. So, Theorem 3.3 extends the existence result of [Planchon 2000] in
the case of radial solutions and » > 5 odd.

(II) Let K be the Kato class of potentials defined in (1-9). In view of the continuous strict inclusions
L3N+ LGV s (50 550, (3-11)

our class for V is larger than /C in the radial setting. For LG s KC, we can use Holder inequality (2-4)
to obtain

1Vl egy = LIV g,

1
IVl scH—
X = 2D (a0

L=Cllx=y " a,

where
%3 ,00)
is a positive constant. Next recall that / € L(?-%) if and only if there is a constant C > 0 such that
1_
2 [ 1wy =c (-12)

for every Borel set E. The supremum of the left-hand side of (3-12) over all Borel sets gives an equivalent
norm in L%, It follows from (3-12) that K <> L(5:) 1n fact, it is sufficient to check (3-12) for
every open ball E = B,(x) ={y € R" : |y — x| < r}. For that, we estimate

rn—2 2
[ vl [Ty = Vs ol
() Br(x) [X = )l

where |B, (x)| = (72 /(2 +1))r" is the volume of B, (x).
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4. Proofs

Collecting estimates in [Brenner 1975; Peral 1980; Strichartz 1970], we have that the wave group
{w(t)}ser is bounded from L1 to L2 at 1 = 1, ie.,

lo(Whll, = Mi|All,, (4-1)

provided that ( Il ) € Ap, p, Py, Where X stands for the closure of X. It follows from scaling properties
of w(t) and L?-spaces that

—a(L—1)41
lo@hl, < Myle ™G 7=+ (4-2)
Interpolating the estimate (4-2) (see, e.g., [Bergh and Lofstrom 1976]), we get
—n(Lt-L)+1
lo(hla, 2 = Mol ™5 g, . (4-3)

where 1 < z < co. Assuming radial symmetry for /, the authors of [Ebert et al. 2016] extended the range
of (4-2) to the closed triangle Ap, p, p5 except for the semiopen segment line | Py, P4] (see Figure 1).
Thus, again by interpolation, for (l T ) belonging to the open triangle Ap, p, p; and 1 <z < oo, we
obtain the estimate
—n(r—p)+
lw@hll @y, = Msle| 0 27 |All g,z (4-4)

for all h € L1 (Rm).

Yamazaki [2000] dealt with Navier—Stokes equations and Stokes and heat semigroups in weak-L?
spaces. The next estimate could be seen as a version of the Yamazaki estimate [2000, Corollary 2.3] for the
wave group {w(?)}ser. Notice that it consists in a time-weighted estimate in preduals of weak-L? spaces.

Lemma 4.1. Let f be radially symmetric, n > 3 odd, and let A p, p, ps be the open triangle defined by
the points Pz, Py, P5 in(3-2). If 1 <dy,dr <2(n—1)/(n—73) (co if n = 3) with (d a5 ) € Ap, P, Ps
then |t|" (=)= a)(t)f e LY(R; L@2:D(R")) and there is C > 0 such that

7_L_2
/R 1188200 £l sy df < ClL vy (4-5)

forall f e LD R,

rad

Proof. Let py and p; be such that py <dy < p2, 7 —1 - é <L and

11 .
(p] dz)EAp2p4p5 for j =1,2.

Using the estimate (4-4) with (/1,/5,z) = (p1,d>, 1) and (I1,15,z) = (pa,d;, 1), we obtain

1+L_L
@) fll@1) = Crltl ™2 P || fll(py,1) fork =1,2. (4-6)

~

Next consider the sublinear operator & as a map from L
defined by

(P1:1) A 1 (P2 6 4 function E(f)(¢) in R

rad rad

BN = 4 o) )
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In view of (4-6), we can estimate
- no_n 4 n_n_q
E()) = Cilr]9r k| [l (pr,ry = Creltl e N fllpye,1y fork =1,2. (4-7)

Hence, the operator E is bounded from Lfﬁlk’l)([R{”) to L%:%)(R), where i =1- (dil — ;’—k) Indeed,
it follows from (4-7) that

—2,,1

]

_L
||E(f)(t)||L(Sk~°°)(R) < Cx H|Z| K ”L<s1<~0°)(R)||f||(pk,l) = Lk”f”(Pk,l)’ (4-8)
where Ly = Ci|[[t|71/5 | 5. ey k=1, 2
Take now 6 € (0, l)suchthatd pe 1 9 fzzland0<s1<1<s2.By

interpolation, it follows that

di,1 ,1 )1
L( 1) _ (ngil ) L(PZ ))0,1 and LI(R)= (L(sl’oo)(R),L(Sz’oo)(R))e’l

rad rad

and then

IEOllLig < mi™PmS 11 f a1
<LIOLYN fll a1y

where my, = || E(f)||Lf:;k'”—>L<sk~°°) < L. This gives us the estimate (4-5). O

Proof of Theorem 3.1. Let us rewrite {( /) in (3-6) as

o0
s = [ /R W(x— .t —5) f(7,5) dy ds,
—00 n
where the kernel W is given by

sin((z = s)[ED/1E, 0 <s <2,

0, otherwise.

Wt =
Given a suitable function ¢ € C*°(R"), we set

G = [ EEDp0) dx

Here all functions are considered to be radially symmetric. Using Tonelli’s theorem and the Holder
inequality (2-4), we obtain

[(E(S). #)] S/_ (/G Dl o —1)¢l)dr

EC[_ 1L/ C D lls,00) |0t = D)@l 57,1y d 7. (4-9)

In (4-9) we have proceeded somewhat formally but we are going to see that its right-hand side is indeed
finite, which justifies the above computations. Take (dy, d») = (#’, s”) and note that
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Using duality in L (-9, the inequality (4-9) and Lemma 4.1 with (d;, d) = (s', '), it follows that
IENHC Doy = sup [(E(S). )]

lllr 1y=1
00

=Csup | f(-,)l(s.00)  sUp / ot —7)¢ll(s.1ydr

1ER @l 1y=17—00
=Ksup | f(+.D)lls,000  sup  {lDllen)

1R lollgr.1H=1
= Ksup | /(. )l(s.00) (4-10)

teR

for a.e. t € R. Next let f =f+Vuandu = {(f) be the mild solution of (1-1). Since % = ﬁ + %, the

Holder inequality (2-4) gives

IVull(s.00) = Coll VI 00) 14 € )l ¢r.00)- (4-11)

Thus, in view of (4-10), we get
supl|(+. 1)l (r.00) < K sup [ /(- 1)l s.00)
teR teR
= Ksup | £ (-, Dll(s,00) + KColl VIl (2,00 suplle (-, )l (r,00)
teR 2 teR

which implies the desired estimate because KCo||V || (2.00) < 1. O

Proof of Theorem 3.3. Part (I). (Well-posedness) Take r = ry = ”(p—z._l) and s = ’70, and note that

U | —
SN

1 1
—;—(P—l)a—

In view of (3-9), we have (1 — %, 1— %) € Ap, p, ps and then we can employ Theorem 3.1 with V' =0 in
order to obtain

[ECIE = KL oo 00/, (4-12)
Since % + % = %, it follows from (4-12) and the Holder inequality (2-4) that
ITW)=TIe=ITu-v)e= sup ISV =v) (. )l (rg.00)
te
< Ksup [V =)+, )l (70 o)
teR p
< KCollV Il (5 a0) 3P 14+, 6) = v+, )l 00
teR
=nllu—vlg, (4-13)

where n = C4 ||V||(%’Oo), Cy = KCy, and Cj is the constant in the Holder inequality ||Vh||(r70’oo) <
Coll V||(,§1,Oo) 121l (,00)- Next recall the inequality

[lul? = — [v]P~ o] < Clu— v (P~ + [v]P71)
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p 1 p—1 . .. . . .
and let o =70 T Using the Holder inequality (2-4), we can estimate

[l P~ = o7~

(%0,00) = Clu = vl(u|?~" + 0[P~

(%.00)
= Cllu=vllgro.00 [ (7" + 0177 | 1o

1=°°)
< Cllu—=vlltry.00) (lullf; ooy + I0IEL))- (4-14)
Estimates (4-12) and (4-14) yield
IN@) =N E = [¢(ul? u— P o) (-.0)| &
< K| (P~ u— P ) (-, 1) }\LW(R;L<?/,,.00))
< Gllu—v|e(ully " v I h. (4-15)

Let W(u) = Lj;(g)(t) + N (u) + T (u) be defined in the closed ball Bs = {u € E : |[u| g <2¢/(1 —n)},
where £ > 0 and n = C1 ||V ||(n/2,00) < 1. We are going to show that W is a contraction in B, for & small
enough. For u, v € B, we have

W) —¥@)lE = IN@) =NWIg+Tu-Tvle
< Collu—vl el g + vl %) +nllu—vlle

2¢ V7! 2¢ V7!
<h-ile(e() +a() +)
o/ l1—n

2Pgp—1
= (CzW—Fn)llu—vHE. (4-16)

Choose ¢ > 0 in such a way that

o, e 1 4-1
. 17
(2<1—n)1’—1+”)< 17

Moreover, taking v = 0 in (4-16), we arrive at

2P~ 1gp—1 2¢ - 2¢
T VAt N Py g

for all u € B,. Hence, the map ¥ : B, — B, is a contraction in E. It follows that its fixed point in Bg is

W@l E = [ Lgo)lle + W) —WO)||g <&+ (Cz

the unique solution for (3-7) such that

Jullz < =
u —

E=1=

The continuous dependence follows naturally from the above estimates and fixed point argument. We
include its proof for the sake of completeness. Let u, v € B be the unique mild solutions associated
to data (ug,uy, V) and (vo, vy, U), respectively. Then, defining L;)(?) = w()uy + o(f)uo and
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L3(0)(®) = @(t)v1 + @(?)vo, we have

lu—vlle < [ Li@) — Lyl e + V@) =NO)lg + I Tw) - T @
= Li) ~ L)l E + IIN@) =N@) | £+ [S((V =U)v + V(u—v))| £
2Pep—1
(1—mr!
2Pgp—1
= [[(uo —vo, u1 —v1)llz,e + (CZW + 77) lu—vlE+

which yields the desired continuity because of (4-17).

= L) = Lyl + C2 lu—vllg + KCollV =Ull(z oo) IVl £ +nllu—vlE
(5.,00)

2KC()8

TnHV—U”(g

,00)”

Part (II). (Self-similarity) First note that the homogeneous pair (u¢, t1) is in Z;,q. Due to the fixed point

argument, the solution u in item (I) is the limit in £ = L% (R; Lr(;g ’Oo)) of the sequence
u =L and u®tD =Li0,@) + N@®) +T@®) fork e N. (4-18)

Using the homogeneity properties of u#¢, #; and V, one can show that u®) is invariant by (1-3), that is,
2
u® = @®), 1=y 1O yx o),
Now, since (E, || - || g) is invariant by (1-3), a change of variable gives
1@®)y = @y llE = 1P =w)y g = 1u® —ullg >0, ask - oo. (4-19)

Since (u(k))y = u®), it follows that u¥) also converges to ()y. Then, u = (u), for each y > 0, as
required. O
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