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OPTIMAL WELL-POSEDNESS FOR
THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES SYSTEM
WITH GENERAL VISCOSITY

COSMIN BURTEA

In this paper we obtain new well-posedness results concerning a linear inhomogeneous Stokes-like
system. These results are used to establish local well-posedness in the critical spaces for initial density pg

and velocity ¢ such that pg — p € B;’/IP(W), ug € B;’/IP_I(W), p € (£.4) for the inhomogeneous

incompressible Navier—Stokes system with variable viscosity. To the best of our knowledge, regarding the
3-dimensional case, this is the first result in a truly critical framework for which one does not assume any
smallness condition on the density.

1. Introduction

In this paper we deal with the well-posedness of the inhomogeneous, incompressible Navier—Stokes
system
d¢p +div(pu) =0,
d¢(pu) + div(pu ® u) —div(u(p) D(u)) + VP =0,
divu =0,

Ulr=0 = Up.

1-1)

In the above, p > 0 stands for the density of the fluid, u € R” is the fluid’s velocity field, while P is the
pressure. The viscosity coefficient p is assumed to be a smooth, strictly positive function of the density,
while

D(u) =Vu+ Du

is the deformation tensor. This system is used to study fluids obtained as a mixture of two (or more) incom-
pressible fluids that have different densities: fluids containing a melted substance, polluted air/water etc.

There is a very rich literature devoted to the study of the well-posedness of (1-1). Briefly, the question of
existence of weak solutions with finite energy was first considered by KaZihov [1974] (see also [Antontsev
et al. 1990]) in the case of constant viscosity. The case with a general viscosity law was treated in [Lions
1996]. Weak solutions for more regular data were considered in [Desjardins 1997]. Recently, weak
solutions were investigated by Huang, Paicu and Zhang in [Huang et al. 2013c].
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The unique solvability of (1-1) was first addressed in the seminal work of Ladyzhenskaya and Solonnikov
[1975]. More precisely, considering uq € W2=2/p.p (2), with p > 2, a divergence-free vector field that
vanishes on 92 and py € C'(2) bounded away from zero, they construct a global strong solution in
the 2-dimensional case and a local solution in the 3-dimensional case. Moreover, if u is small in
W2=2/P-P (Q) then global well-posedness holds true.

The question of weak-strong uniqueness was addressed in [Choe and Kim 2003] for the case of
sufficiently smooth data with vanishing viscosity.

Over the last thirteen years, efforts were made to obtain well-posedness results in the so-called critical
spaces, i.e., the spaces which have the same invariance with respect to time and space dilation as the
system itself, namely

{(,Oo(X), uo(x)) = (po(/x), lug(Ix)),
(p(t, x),u(t,x)) —> (p(lzt, Ix), lu(l?t,1x), [> P(I*t, lx)).

For more details and explanations for this classical approach we refer to [Danchin 2003] or [Danchin and
Mucha 2015]. In the Besov space context, which includes in particular the more classical Sobolev spaces,
these are

0o—p€BYP and uy e BYP21 (1-2)

D1,r1 D2,r2

where p is some constant density state and # is the space dimension. Working with densities close (in
some appropriate norm) to a constant has led to a rich literature. In [Danchin 2003] local and global
existence results are obtained for the case of constant viscosity and by taking the initial data

n/2 n/2—1

po—peLmﬂB and uoeB

and under the assumption that || 09 — n2 is sufficiently small. The case with variable viscosity

Pl oon B
and for initial data
n/ p—1

,00—,663;’/11’ and ug eB ,

p €[1,2n), is treated in [Abidi 2007]. However, uniqueness is guaranteed once p € [1,n). These results
were further extended by H. Abidi and M. Paicu [2007] by noticing that py — o can be taken in a larger
Besov space. B. Haspot [2012] established results in the same spirit as those mentioned above (however,
the results are obtained in the nonhomogeneous framework and thus do not fall into the critical framework)
in the case where the velocity field is not Lipschitz. Using the Lagrangian formulation, R. Danchin
and P. B. Mucha [2012], established local and global results for (1-1) with constant viscosity when
Po—pE M(Bn/p 1) ug € BZ,/IP_I and under the smallness condition

where M(B"/ P~ 1) stands for the multiplier space of B”/ P~ 1n particular, functions with small jumps
enter this framework Moreover, as a consequence of thelr approach, the range of Lebesgue exponents
for which uniqueness of solutions holds is extended to p € [1,2n). In [Paicu and Zhang 2012; Huang
et al. 2013a; 2013b; 2013c¢] the authors improve the smallness assumptions used in order to obtain global
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existence. To summarize, all the previous well-posedness results in critical spaces were established
assuming the density is close in some sense to a constant state.

When the latter assumption is removed, one must impose more regularity on the data. For the case
of constant viscosity, R. Danchin [2004] obtained local well-posedness and global well-posedness in
dimension n = 2 for data drawn from the nonhomogeneous Sobolev spaces:

(/00 —,5,140) c Hn/2+a X Hn/2—1+ﬂ

with «, B > 0. The same result for the case of the general viscosity law is established in [Abidi 2007].
For data with non-Lipschitz velocity results were established in [Haspot 2012]. Concerning rougher
densities, considering po € L% (R?) bounded from below and u¢ € H2(R?), Danchin and Mucha [2013]
constructed a unique local solution. Again, supposing the density is close to some constant state, they
proved global well-posedness. These results are generalized in [Paicu et al. 2013]. Taking the density
as above, the authors construct a global unique solution provided that uo € H*(R?) for any s > 0 in
the 2-dimensional case and a local unique solution in the 3-dimensional case considering uy € H'(R?).
Moreover, assuming u is suitably small, the solution constructed is global even in the 3-dimensional case.

In critical spaces of the Navier—Stokes system, i.e., (1-2) there are few well-posedness results. Very
recently, in the 2-dimensional case and allowing variable viscosity, H. Xu, Y. Li and X. Zhai [2016]
constructed a unique local solution to (1-1) provided that the initial data satisfy pg — p € B (RZ) and

2/ P 1(IRz) Moreover, if pg—p € LP N BZ/ 7 (R?) and the viscosity is supposed constant their

Uy € B
solutlon becomes global. In the 3-dimensional 51tuat10n to the best of our knowledge, the results that are
closest to the critical regularity are those presented in [Abidi et al. 2012; 2013] (for a similar result in the
periodic case one can consult [Poulon 2015]). More precisely, in three dimensions, assuming

3/2 1/2

po—peLzﬂB and uOEB

and taking constant viscosity, H. Abidi, G. Gui and P. Zhang [Abidi et al. 2012] show the local well-
posedness of system (1-1). Moreover, if the initial velocity is small then global well-posedness holds true.
In [Abidi et al. 2013] they establish the same kind of result for initial data

3/A 3/p 1

po—pGL)‘ﬂB and ug EB ,

where A € [1,2], p €[3,4] are suchthat%%—% 2z and——%f ;

One of the goals of the present paper is to establish local well-posedness in the critical spaces
53/p—1
po—pe BT @), uoe BTN ®). pe($4)
for system (1-1)
¢ with general smooth variable viscosity law,

¢ without any smallness assumption on the density,

¢ without any extra low frequencies assumption. In particular, we generalize the local existence and
uniqueness result of [Abidi et al. 2012], thus achieving the critical regularity.
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As in [Danchin and Mucha 2012], we will not work directly with system (1-1); instead we will use its
Lagrangian formulation. By proceeding so, we are naturally led to consider the following Stokes problem
with time-independent, nonconstant coefficients:

diu—adiv(bD(u)) +aVP = f,

divu = div R, (1-3)

Ult=0 = Uop-
We establish global well-posedness results for system (1-3). This can be viewed as a first step towards
generalizing the results of Danchin and Mucha [2015, Chapter 4] for the case of general viscosity and
without assuming the density is close to a constant state. Let us mention that the estimates we obtain
for system (1-3) have a wider range of applications: in a forthcoming paper we will investigate the
well-posedness issue of the Navier—Stokes—Korteweg system under optimal regularity assumptions.

To summarize all the above, our main result reads:

Theorem 1.1. Consider p € (%,4). Assume that there exist positive constants (p, px, p*) such that

Po—p € B;,/IP(R3) and 0 < py < pg < p*. Furthermore, consider ug a divergence-free vector field

with coefficients in B;,/lp_l (R3). Then, there exists a time T > 0 and a unique solution (p,u, VP) of
system (1-1) with
- 53 53 53/ p—1 53/ p—1
p=peCr (BT @NNLFP (B ®). uecr (BT ®). @, V*u.VP)eLy(B)[I™ ®)).
One salutary feature of the Lagrangian formulation is that the density becomes independent of time.
More precisely, considering (p, u, V P) a solution of (1-1) and denoting by X the flow associated to the

vector field u,
t
X =+ [ ute X ) d.
We introduce the new Lagrangian variables

p(t,y) = p(t, X(t,¥)), a(t,y)=u(,X(t,y)) and P(t,y)= P, X(t,y)).
Then, using the chain rule and Proposition 3.23 we gather that p(z,-) = po and

podyit —div(1(po) Az Da, (i) + ALVP =0,
div(Azu) =0, (1-4)
L_llt:() = u()’

where Aj; is the inverse of the differential of X, and
Dy(it) = Dit Az + AL va.
Note that we can give a meaning to (1-4) independently of the Eulerian formulation by stating
t
X =+ [atyde
0

Theorem 1.1 will be a consequence of the following result:
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Theorem 1.2. Consider p € (%, 4). Assume there exists positive (p, px, p*) such that pg — p € B;/lp (R?)
and 0 < py < po < p*. Furthermore, consider uy a divergence-free vector field with coefficients in

B’;/lp_l (R3). Then, there exists a time T > 0 and a unique solution (ii, V P) of system (1-4) with

iecr(B)/FT\R®) and (3,a.V%a.VP)e LL(B)/?™ (R)).

Moreover, there exists a positive constant C = C(pg) such that

2
|u||L(;‘O(Bs,/1p_l) + ||(V u, VP)”LIT(BZGP_I) < ||u0||B;{]p—l exp(C(T + 1))
The study of system (1-4) naturally leads to the Stokes-like system (1-3). In Section 2 we establish the

global well-posedness of system (1-3). More precisely, we prove:

Theorem 1.3. Consider n € {2,3} and p € (1,4) if n =2 o0r p € (5, ) if n = 3. Assume there
exist positive constants (ax, by,a*,b*,a,b) such that a —a EB" p([R{”) b—b eBn/p(R”) and

O<ar<a<a*, 0<b,<b<b™

Furthermore, consider the vector fields uy and f with coefficients in B / . 1(IR”) and L} (Bn/ P 1([R”))

respectively. Also, consider the vector field R € (S'(R"))" with!

loc

QR eC([0,00); BYPTN(R™) and (3,R.VdivR) € Ll (B}~ (R"))
such that
divug = div R(0, -).
Then, system (1-3) has a unique global solution (u, VP) with
u e C([0.00). B PN (R") and d,u.V*u,VP € Liy(B) P (R").
Moreover, there exists a constant C = C(a, b) such that
”””L?O(Bﬁ./l"_‘) +[1@eu, V2u, vp)”L}(B}’}/{"')
= (||M0||BZ!/1H +[1(f. 9: R, Vdiv R)||L;(B;/1p71)) exp(C(r+ 1) (1-5)
forallt €0, 00).

The difficulty in establishing such a result comes from the fact that the pressure and velocity are
“strongly” coupled as opposed to the case where p is close to a constant; see Remark 2.11 below. The key
idea is to use the high-low frequency splitting technique first introduced in [Danchin 2007] combined
with the particular structure of the divergence-free part of aV P, i.e.,

PaVP) = P((a—a)VP) = P((a—a)VP)— (a—a)P(VP)
=[P,a—a]VP,

1D is the Leray projector over divergence-free vector fields, Q = Id — P.
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which is, loosely speaking, more regular than VP. Let us mention that a similar principle holds for u,
which is divergence free:> whenever we estimate some term of the form Q(hM (D)u), where b lies in an
appropriate Besov space and M (D) is some pseudodifferential operator, we may write it as

Q(bM (D)u) =[Q.b]M (D)u

and use the fact that the latter expression is more regular than M (D)u; see Proposition 3.21.

The proof of Theorem 1.3 in the 3-dimensional case is more subtle. Loosely speaking, in order to close
the estimates for system (1-3) one should work in a space on which the solution operator corresponding
to the elliptic equation div(@aVP) = div f is continuous. It is for this reason that we first prove a
more restrictive result by demanding extra low-frequency information on the initial data. Then, using a
perturbative version of Danchin and Mucha’s results [2015] we arrive at constructing a solution with the
optimal regularity. Uniqueness is obtained by a duality method.

Once the estimates of Theorem 1.3 are established, we proceed with the proof of Theorem 1.2, which
is the object of Section 3. Finally, we show the equivalence between system (1-4) and system (1-1) thus
achieving the proof of Theorem 1.1. We end this paper with an Appendix where results of Littlewood—Paley
theory used through the text are gathered.

We end this section with some observations regarding the global existence issue. As opposed to the case
when p is supposed to be a small perturbation of a constant state, when considering the linearized system of
the Lagrangian formulation, i.e., system (1-3), we obtain the estimates (1-5), which have a time-dependent
right-hand side term. This in particular prevents us from adapting the arguments from [Danchin and
Mucha 2012] to our situation and obtaining a global solution for system (1-4) and consequently for the
system (1-1). In fact, even if we were able to construct such a solution for system (1-4), it is not clear how
we could go back into the original formulation as passing from the Eulerian formulation to the Lagrangian

one needs some smallness condition on the || - -norm of the velocity.

Iy
2. The Stokes system with nonconstant coefficients
Pressure estimates. Before handling system (1-3) we shall study the elliptic equation
div(aVP) =div f. 2-1)

For the reader’s convenience let us cite the following classical result, a proof of which can be found, for
instance, in [Danchin 2010]:

Proposition 2.1. Consider a € L°°(R") and a constant a, such that
azax>0.

For all vector fields f with coefficients in L*(R™), there exists a tempered distribution P unique up to
constant functions such that VP € L*(R") and equation (2-1) is satisfied. In addition, we have

ax||VP| L2 = Q1 ll>-
2and thus Qu =0.
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Recently, regarding the 2-dimensional case, Xu et al. [2016], studied the elliptic equation (2-1) with the
data (a —a, f) in Besov spaces. Using a different approach, we obtain estimates in both 2-dimensional
and 3-dimensional situations. Let us also mention that our method allows to obtain a wider range of
indices than the one of [Xu et al. 2016, Proposition 3.1(i)]. We choose to focus on the 3-dimensional
case. We aim at establishing the following result:

Proposition 2.2. Consider p € ( ) and3q €[1, 00) such that — % < % Assume there exist positive
constants (a,ay,a*) such that a —a € B /a (IR3) and 0 < a, < < a < a*. Furthermore, consider [ €
B3/p=3/ 2([F%€3) Then there exists a tempered distribution P unique up to constant functions such that

D,2
VP e B 3/ p=3/ 2([R§3) and equation (2-1) is satisfied. Moreover, the following estimate holds true:

1 1 1
IVPl s < (5 +] 3 - 3] 5 {f,) (14 - la=all e )19 1 orp-sr2 (2-2)

Remark 2.3. Working in Besov spaces with third index r = 2 is enough in view of the applications
that we have in mind. However, similar estimates do hold true when the third index is chosen in the
interval [1, 2].

Proof. Because p < 2, Proposition 3.7 ensures that B3/ p=3/2
we get the existence of P € &’ (R?) with VP € L? and

— L2 = Bg,z and owing to Proposition 2.1,

ax||[VP| 2 = |12 |- (2-3)
Moreover, as Q is a continuous operator on L?, we deduce from (2-1) that
Q(aVP)=Qf. (2-4)

Using the Bony decomposition (see Definition 3.14 and the remark that follows) and the fact that
P(VP) =0, we write
P(aVP) =P(TYypla—a)) +[P, To—a]VP.

Using Proposition 3.16 along with Proposition 3.7 and relation (2-3), we get

. - - 1 _
IP(Tgp(a—a)ll g3/p-3/2 S IVPlp2 lla— all gssp—3r2 < o QS 2 lla—all gssa, (2-5)
p.2 p*.2 * q,1
where
1 1 1
— =4 —,
p 2 p*

Next, proceeding as in Proposition 3.20 we get
. 1 _
[P. TacalVP| g3rp—sr2 S IVall go/o-s52VPll 2 S —1Qf Ip2lla=all gsra.  (26)
p.2 p*.2 A x q.1
Putting together relations (2-5) and (2-6) we get

1 -
. < — — X
IP@YP) 3752 < 2-1Qf z2lla=al sy
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Combining this with (2-4) and Proposition 3.7, we find
1 -
[aVP 1 gyrp-srz < (14 7 -lla=all gora J1QS 1 -2

Of course, writing

VP = laVP,
a
using product rules one gets
1 _
1P 5 (5 + [ =3l o) (1 2Nl )10 I ggpms @)
This concludes the proof. O

Applying the same technique as above leads to the 2-dimensional estimate:

_ 1<

.Q

Proposition 2.4. Consider p € (1,2) and q € [1, 00) such that % Assume there exists positive
*

constants (a, ay,a*) such that a —a € Bz/q(IRZ) and 0 < a. 5 a<a’
‘B2/p 1

D2
VP e B 2/ - 1(IRJQZ) and equation (2-1) is satisfied. Moreover, the following estimate holds true:

Furthermore, consider f €

(R?). Then there exists a tempered distribution P unique up to constant functions such that

1
VP21 = (g o= gl o) (1 el 10 gz @)
Let us point out that the restriction p > 5 comes from the fact that we need — 5 < 0 1in relation (2-6).
In two dimensions, instead of = — % we will have 2 > 2, which is negative prov1ded p>1.

The next result covers the range of integrability indices larger than 2:

Proposition 2.5. Consider p € (2,6) and q € [1, 00) such that > % Assume there exist positive

q
constants (a,ay,a*) such that a —a € B3/q (R*) and 0 < a, 5 a < a*. Furthermore, consider f €
3/p 3/2([R3) and a tempered dlstrlbutlon P with VP € B3/p 3/2([R3) such that equation (2-1) is

satzsﬁed Then, the following estimate holds true:
1 1 1 1 -
\Y% ; — < (: H - — = H . )( — - ; ) 2 - . -
1Py 5 (5 + |4 =3l o) (14 2 N =@ JIQ gy 29

Proof. Notice that p’, the conjugate Lebesgue exponent of p, satisfies p’ € (9 2) and l
3/p -3/2

. Thus,
by Proposition 2.2, for any g belonging to the unit ball of S ﬂB there exists a P € §'(R?) with
VP, € SN B3/p ~3/2 quch that

div(aVPg) =divg
and

1 1
VPl g5 5 (5 + |2~ 3]

s (=)

(VP,g) =—(P.divg) = —(P,div(aV Py))
—(div Qf, Pg) = (Qf. VPy),

We write
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and consequently

(VP SRS N g3rp-32 IV Pell g3r—3/2
p. .

1 1 1 1 _
N —— = . 1 — — ' ) ' — .
~ (a + Ha a HB;/I")( T la a”B;./lq ”Qf”Bif./zp vz
Using Proposition 3.8, we get that relation (2-9) holds true. O

As in the previous situation, by applying the same technique we get a similar result in two dimensions:

Proposition 2.6. Consider p € (2,00) and q € [1, 00) such that + + > 5 1 . Assume there exist positive
constants (a, ay,a*) such that a —a € Bz/q (R?) and 0 < a, < < a 5 a*. Furthermore, consider [ €
B;/zp 1([F\Rz) and a tempered distribution P with VP € BZ/ - 1([R%z) such that equation (2-1) is satisfied.
Then, following estimate holds true:

1 1 1
o o< (Pt
IVPl 21 = (7 +] 5 - 3]

1 —
ora) (14 —=lla=all 2o )1Q 1 s2rp1- 21
o) (1 g la=al g )1 o0 2-10)

Some preliminary results. In this section we derive estimates for a Stokes-like problem with time-
independent, nonconstant coefficients. Before proceeding to the actual proof, for the reader’s convenience,
let us cite the following results which were established by Danchin and Mucha [2009; 2015]. These
results correspond to the case where a and b are constants:

Proposition 2.7. Consider ug € BZ/IP Y and (f.0:R,VdivR)e L} (B"/p 1) with QR € CT(B"/p 1)
such that
divug = div R(0,-).

Then, the system _
diu—abAu+aVP = f,
divu = div R,
Ujp=0 = Uo
has a unique solution (u, VP) with
uec([0.7): BYP™Y) and 9,u.V?u.VP e LL(BYP
and the following estimate is valid:

”u”Loo(Bn/p 1 +||(3tu abvzu ClVP)”Ll (Bn/p l)NHM()HBn/p 1+||(f atR CleleR)”Ll (Bn/p 1)

As a consequence of the previous result, one can establish via a perturbation argument:

Proposition 2.8. Consider ug € B)'?~" and (.9, R.V div R) € LL.(BM/P~") with QR € Cr (B)/F™")
such that
divug = div R(0, -).

Then, there exists an 1 = n(a) small enough such that for all c € B /P with

el gop <.
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the system B
diu—abAu+ (a+c)VP = f,
divu =div R,
Ujt=0 = U0

has a unique solution (u, V.P) with
uec(0.T): BYP™") and 9u.V?u.VP e LL(BYP)
and the following estimate is valid.:
||u||LL;O(BI,3/1,,_1)+||(atu,5115v2u,51v13)||L1 (B/ph < ||u0||Bn/p 1 +][(f, 3; R, abV div R)||L1 (B
In all that follows we denote by E), the space of (u#, V P) such that
uec(0.00): B/ and (Vu.VP)e LL(BYP™Y)x LL (BP0 BYPTY).
Additionally, we introduce the space E7 of u € Cr (BZ’/ lp _1) with V2u € L;(BZ’/ lp _1) and VP €
LIT(]!.?I’)',/ZP_’I/2 N BZ’/IP_I) such that

[, VP gr =

2
|u||L%o(B;z{lp—1) + ||V “”LIT(B%”‘I) + ||VP||L1T(Bs{2p—n/zﬂl'33{1p—1) < 00.
The first ingredient in proving Theorem 1.3 is the following:

Proposition 2.9. Considern € {2,3}and p € (1,4)if n=2o0r p € ( ) if n = 3. Assume there exist
positive constants (ay, by, a*,b*,a,b) such that a — a EBn/p([R”) b—b GB" p([R”) and

O<ay<a<a*, 0<b,<b<b"

Furthermore, consider uy, f vector fields with coefficients in Bn/p 1([R”) and L} (Bn/p n/z(IR”) N

B;/lp 1([R{”)) respectively and a vector field R € (S’ (R™))" with

loc

(3 R.VdivR) € LL(B)P"*®") 0 BYPTYRM) and QR e ([0, 00); BY P (R™))

such that
divug = div R(0, -).

Then, there exists a constant C,p, depending on a and b such that any solution (u, VP) € ET of the Stokes
system (1-3) will satisfy

2
”””L?O(Bg./lpfl) + ”V u”L}(BZ,/1p71) + ”VPHL,I(B;./Z”*”/ZQBQ/I”*U
= (”“0”31’7!!/11’—1 + (/.9 R, Vdiv R)”L}(B;{f‘”“nBZ{f‘U) exp(Cap(t +1))  (2-11)
forallt € (0, T].

Before proceeding with the proof, a few remarks are in order:
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Remark 2.10. Proposition 2.9 is different from Theorem 1.3 when n = 3. Indeed, in the 3-dimensional
case the theory is more subtle and thus, as a first step we construct a unique solution for the case of more
regular initial data.

Remark 2.11. The difficulty when dealing with the Stokes system with nonconstant coefficients lies in the
fact that the pressure and the velocity u are coupled. Indeed, in the constant coefficients case, in view of

divu = div R,

one can apply the divergence operator in the first equation of (1-3) in order to obtain the following elliptic
equation verified by the pressure:

aAP =div(f —9; R +2abV div R). (2-12)

From (2-12) we can construct the pressure. Having built the pressure, the velocity satisfies a classical
heat equation. In the nonconstant coefficient case, proceeding as above we find that

div(aVP) = div(f —d;R+a diV(bD(u))). (2-13)

Therefore the strategy used in the previous case is not well-adapted. We will establish a priori estimates
and use a continuity argument like in [Danchin 2014]. In order to be able to close the estimates on u,

we have to bound ||aVPI|L1(Bn/p—l) in terms of
13 p.1

1-8

: v? :
n/p—l)” u”L}(ng/lp_l)

p.1
for some B € (0, 1). Thus, the difficulty is to find estimates for the pressure which do not feature the time
derivative of the velocity.

In view of Proposition 2.7, consider (ur, VPr), the unique solution of the system

d;u—adiv(bD(u)) +aVP = f,
divu = div R, (2-14)
U|t=0 = Uo,
with
up €C([0.00): BMP7Y) and  (d,ur. VPur.VPL) € Ly (B)/F7).

Recall that for any ¢ € [0, c0) we have
T2 —
ezl Lo inrp=1y + 1 Q@rur. @bV ur. aVPL) |y nrp-1y
< C(luoll grro—1 + (£ 9 RGOV &iv Ry grrp-1)). - (2-15)
In what follows, we will use the notation
i=u—u;, VP=VP-VP]. (2-16)

Obviously, we have
divii = 0. (2-17)
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Thus, the system (1-3) is recast into

where

3,ii —adiv(bD(ii)) + aV P = f,
divii =0,

ﬁ|t=0 =0v

F=adiv(bD(ur)) —adiv(bD(ur)) — (a—a)VPy.

Using the last equality along with Proposition 3.17, we infer

1A g1 < |adiv(bD(up))—adiv(b D(ur))| gnso—1 +(@—a)VPL| gnsp—
p.1 p.1 p.1

< @la=al goro) G+15=Bl o) VL | oo+ la=all goro [VPLI oo

Let us estimate the pressure aV P. First, we write

”aVP”BZ,/IP_l = ||Q(aVP)||B;flv—l + ||73(‘1VP)||B;!/11’—1-

Applying the Q operator in the first equation of (2-18) we get

Q(aVP) = Qf + Qadiv(bD(i))).

Thus, we get

Let

||Q(aVF)||B§/ln—1 < ||Qf||3;z/ln—1 + || Q(a diV(bD(ﬁ)))llBZ/lp—l.

Q(adiv(bD(ii))) = Q(D(it) Sm(aVh)) + Q(Sm(ab — ab) Ai)
+ O(D (@) (1d — Sim) (aVh))
+ O((Id — Sy) (ab — ab) Aii),

where m € N will be chosen later. According to Proposition 3.17 we have

(D (i) Sm(aVh))| Bl S |Sm(aVb)| g2 IVl grrp=isa.

Owing to the fact that # is divergence free we can write

Q(Sm(ab —ab)Ait) = [Q, Sy (ab — ab)] A,

such that applying Proposition 3.21 we get

|Q(Sm(ab —ab)Adl) | Bl S |(Sm(aVb), Sm(bVa))| p/p=12 | A guro—sa

<[ (Sm(@Vb), Sm(bVa))| g2Vl grrp-is2.

(2-18)

(2-19)

(2-20)

(2-21)
(2-22)
(2-23)

(2-24)

(2-25)

(2-26)
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The last two terms of (2-21)—(2-23) are estimated as follows:
l2(d = Sym)(aVb)D(it)) + Q((1d — Sy)(ab — ab) Adl) | P (2-27)
p.
< (1(0d = Sm) @Vh) | grro—1 + |(Ad = Sy (@b — ab) | guso) IVl gnso. (2-28)
p.1 p.1 p.1
Thus, putting together relations (2-20)—(2-28) we get
1@V P ot SNQF 1 o1+ | (S (@V8). S (V@) | yry1/21IVitl o2

Vil g (104=Sin) @VB.6V@) | o1+ (1d=Syu) (@b=GB) | ). (2-29)

Next, we turn our attention towards P(aV ﬁ). The 2-dimensional case and the 3-dimensional case have
to be treated differently.

The 3-dimensional case. Noticing that
P(aVP) =P((d— Sm)(a—a)VP)+ [P, Sm(a—a)]VP,
and using again Proposition 3.21 combined with Propositions 2.2 and 2.5 we get
IV Pl garp=s/2 + IP@V P garp-s
SIVPI g3/p-3r2 + IP(Ad = Sm)(a = @)V P)| g3/0-1 + [P, Smla— @IV P garp—1  (2-30)
p.2 p.1 p.1
S 1d=Sm)a—a)| g3/o IV P g3ro-1 + (1 + [1SmVall gsro-1/2) IV P g3rp-32 (2-31)
p.1 p.1 .2 p.2

C _ 1 1 1
S 108 =Sm@=al e (7 + |5 =]

5 ./1”) 14 Pl g3/p-1 (2-32)

+C@(1+|SmVal Bsfzp_l/z)(|| il syp-v2 +lladivbD@)| B;,/Zp_m), (2-33)

where

co=(3+[3-4

1 _
B;./f)(l + o la=algye).
We observe that
la div(bD @)l g3/p-3/2 S (@+ a —C_l”B?)/p)(Z; + b —B||B3/p)||V17l||B3/p—1/z. (2-34)
p.2 p.1 p.1 p.1
Putting together (2-30)—(2-33) along with (2-34) we get
IV Pl gsrp=sr2 + [P@V P)l| ga/p=

: - 1 11
< 10d=Sw)@ =l g (5 + | — 3|

510V Pl gyipms +C@0 + 18 Vall 1)

x (||f||33'/2p73/2 +(@+la —‘_1||33(1p)(5 + 16 —5||B;{1p)||Vﬁ||33(1p71/2)- (2-35)
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Combining (2-29) with (2-35) yields
~ ~ . ~ 5 .
IV Pl g3rp=sr2 +1laV Pl g3p—1 S Tpla. D)|aV Pl gsrp—1 + T (@ D)l g3rp-3/2 p3ro1
+ T (@ DIV g1z + T (@, )| Vil garp,

where

1 B : _ 1, ,1 1
Tp(a.5) = 0d=Sw)a =)l ooz + 5 = 21 53 ).

Ton(a.b) = C(@)(1+ || SmVal] g3/p-172).
p.
T3 (a.b) = | (Sm(aVh), Sm(bVa))| P
[], - -—
+ C@)(I + ISmVal garp-1/2)(@+ lla—al g3/p)(b + 116 =Dl g3/p),
Dp.2 p.1 p.1
Ton(@.b) = |(Id— Sn)(@Vh,bVa)| gs/o—1 + (1d = Sp)(ab —ab)|| 43/
p.1 p.1

Observe that m could be chosen large enough such that 7} (a, b) and T4 (a, b) can be made arbitrarily
small. Thus, there exists a constant C,j depending on ¢ and b such that

”VP||B;,/2”_3/2”B,§./1"_1 =< Cab(||f||Bsfzn—s/zm33{11>—l + ||W‘||B;{f—1/2) + 77||Vﬁ||335/1m (2-36)
where 1 can be made arbitrarily small (of course, with the price of increasing the constant C,p). Let us
take a look at the B;’/f_yz-norm of f; we get

||]F||B3/[}73/2 < HadiV(bD(uL))—c_ldiV(Z;D(uL))” =32+ (@=a)VPL| g3/p-3/2
Dp.2 p.2 p.2

< tlla=al o) G+ 1651 o) IVuL | gyrpya+lla=al o [VPLI gz (2-37)

As uy, € C([0, 00), B;,/lp_l) NL! ([0, 00), B;’/fH) and Q is a continuous operator on homogeneous

Besov spaces from
div(ur, — R) =0,
we deduce
P(ur — R)=uyr — R,
which implies
Qur = QR.
By applying the operator Q in the first equation of system (2-14) we get

avPp = Qf —Qd,uy +abQAuy + abV div R
=Qf —Qd;R+2abVdivR
and thus

1 1 - .
||VPL||BS{2,773/2 < E||Qf||33{21;73/2 + a:||8, QR||33(2P73/2 + 2b||V div R||B;!/2pf3/z.
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In view of (2-36), (2-19), (2-37) and interpolation we gather that there exists a constant C,p such that

VP BP0 B3/
5Cab(||V“L||B;{117—1/2+||VPL||B;(§—3/2+||(VZUL,VPL)||B;{II7—1+||VQ||B§{lp—l/2)+77||Vﬁ||BS{1p (2-38)
<Cupl(Qf,0:QR,Vdiv R) “B3/2p—3/2 +Cqup ”uL”BS/lp—l (2-39)
p. D.
+Cap | (V2ur, VPL) | g3/o—1+Capllitll gsro—1 420 Vil 3o, (2-40)
p.1 p.1 p.1

where, again, at the price of increasing C,j, we can make 7 arbitrarily small.

The 2-dimensional case. In this case, using again Proposition 3.21 combined with Propositions 2.4 and 2.6
we get

||VF||Bj{2p_1 +||7D(avﬁ)||1§;/lp_1
SIVPI g1+ 10d=Sm) @) 210 IV Pl g2sp1 + [P, Smla=DIV Pl /-1
SNAd=Sm)(@=a)| g2/ IV Pl 271+ 41V Smatl g2/0) 1V Pl /o1
< ||(Id—Sm)(a—a)||B§./lp HVP”sz_/f’_l
+C @+ 1V Small g2rp)(1f 1| 211+ Qadivb D@N) | g21p-1)

where, as before

ca=(b+ ]

BZ/”)(I + — ||a alle/p)

As we have already estimated || Q(a div(bD (%))l g2/p—1 in (2-29), we gather
p.2

||VP||BZ/p 1+||aVP||Bz/,, < ,},(a,b)llaVFHBz/,,_l+T,,2,(a,b)||f||32/p_1

—i—T3 m(a b)||Vu||Bz/p 1/2+T4 mla, b)||Vu||BZ/p, (2-41)

2/1))’

p.1

where

Tyn(a.b) = ||(1d—Sp)(a— a>||32~’( +H

T2(a.b) = C(@)(1+]|VSmal z2/»).
p.2
Ty a1(@.b) = [(Sm(aVh),Sm(bVa))| B;/lp+6’<a)<1+||vsma|| 2| (Sh(@VB), Sp (BV)) | g
T a1/ (@.5) = (1d=Sm) @YD) || g2/p-1+| (d=Sym) (@b—ab) | 2/
pP. D.
+C (@14 VSmal 520 (10d=Sp) @VB) | garp—1 41| (1d—=Spr) (@b=b) | 52/-1).

First, we fix an 5 > 0. Let us fix an m € N such that T} (a, b)||aVP||Bz/p 1 can be “absorbed” by the
left-hand side of (2-41) and such that

1(0d = Sp)(@Vb)| g2/p-1 + [|(Ad = Sp) (@b — ab)|| y2/» < 31.
p.1 p.1
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Next, we see that by choosing M large enough we have
T;’M(a, b) <n.
Thus, using interpolation we can write
D D 2 ~ 2~
IVPl g2rp1 4+ 10V Pl grps = Cap (172, VPDN garo 411l oo )+ 201Vl o 242)

End of the proof of Proposition 2.9. Obviously, combining the two estimates (2-38)—(2-40) and (2-42)
we can continue in a unified manner the rest of the proof of Proposition 2.9. First, choose m € N large

enough such that . _
ab + Sm(ab —ab) > la.b..

We apply A j to (2-18) and we write
3¢ij—div((@b+Sm(ab—ab)) Vi)
= fi—Aj(@V P)+A; div((1d—Sm) (ab—ab) Vi) +div[A;, Sy (ab—ab)]| Vi
+Aj(DiSm(bVa))+A; (Di(1d—Sm) (bVa))+A; (Vi Sm(aVh))+A; (Vii(Id—Sy)(aVbh)).

Multiplying the last relation by |i; |71 sgnii j, integrating and using Lemma 8 from Appendix B of
[Danchin 2010], we get

. t t ~ t . o~ t . . —_
it lp+asbe2¥ C fo i o < /0 1 folle+ [0 1A @V )| Lo+ /0 [div[A;. Sm(ab—ab)Vi
t —_
+ / |A) div((1d—Sn)(@b—ab) Vi) |, ,
0
t t
+/0 ||A,-(DaSm(bVa))||Lp+/0 |A; (Dit(1d—Sp) (bVa)) | »

t t
+/ IA; (VﬁSm(aVb))lle-l—/ 1A (Vit(1d—Sp) (@Vh))| ; »-
0 0

Multiplying the last relation by 2/ (n/p=1), performing an £!(Z)-summation and using Proposition 3.19
to deal with |[div[A;, Sy (ab — ab)Vii|| gu/p—1 along with (2-38)~(2-40) and (2-41) to deal with the

.1

pressure, we get g
~ 2 ~
Il e gy Tt CIV L )
t t
S g+ C [ 10V Pl g+ [ 1Sm T, SO o 9] g

2~ .
4‘]—’m(asb)||V u”Lll(B;l./lp_l)

t
= Cab(1+l)(||“0||gz/ln—1+||(ﬁ d¢ R,V div R)”L}(Bﬁ/z”_"/zﬂl?;’/{’_l))+C“b/(; ||ﬁ||31r;/lp—l
2~

where

Tn(a,b) = || (I1d—S,,)(bVa)| g1+ || (1d—S,n) (@ Vb)| g1+ || (1d— S, ) (ab—ab)|| prip1e (2-44)
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Assuming m is large enough and 7 is small enough, we can “absorb” (T}, (a, b) + 17)||V2u||L 0
into the left-hand side of (2-43). Thus, we end up with

)

”u”LOO(Bn/p ) +aubs 2C||V2U”L (Bn/p 1y
= Cap(1+ t)(lluolan/n L+ 1(f,9: R, Vdiv R)| LB 2By )+ Can / ”u”Bn/p 1
such that using Gronwall’s lemma, (2-15) and the classical inequality

1 4+1% < Cyexp(t)
yields

~ 1 2 ~
Vel ooy + axbea CIV TRy sy
< Cap(lluo ”B,’ZG”’I +I(f,3; R, Vdiv R) ||L}(BZ/2,,7H/ZHB§/I,H)) exp(Cupt).  (2-45)
Using the fact that ¥ = uy + u along with (2-15) and (2-45) gives us
1 2
lellzoe ayrpmy + axbea CIV Ly ey
= Cab(”U() ”Bn/lp—l + “(](, atR, V div R)||Lt1(Bn/2p—n/2r]Bn/lp—l)) exp(CabZ). (2-46)
p. D. p.
Next, using (2-38)—(2-40) and (2-42) combined with (2-15), we infer
||VP”L}((B;l’/zp—ﬂ/ZmBg./lp—l)
< Ca ||aVPL ||Lt1(B;z’/2p—n/ZnBIr’1,/lp—l) + Ca ||aVP”L}(Bg,/zp_n/szZ,/lp_l) (2-47)
< Cap(lluo I gnrp—1 + 1S, 9: RV div R)||L;(Bn/2p—n/zngn/ln—1)) exp(Capt). (2-48)
p, p. D,
Combining (2-48) with (2-46) we finally get
2
”u ||L?O(BZ’/II)_1) + ”V u ”L; (BZ,/IP_I) + ”VP ”Ltl ((Bﬁ(zll—n/szZ’/lp—l)
=< (”1/1() ||B;p1./lp—1 + ||(f, B;R, V div R)||L}(B;1./2p—n/2nB;1’/lp—l)) eXp(Cab (Z + 1)) (2—49)

Obviously, by obtaining the last estimate we conclude the proof of Proposition 2.9.
Next, let us deal with the existence part of the Stokes problem with the coefficients having regularity
as in Proposition 2.9. More precisely, we have:

Proposition 2.12. Consider (a,b,uq, f, R) as in the statement of Proposition 2.9. Then, there exists
a unique solution (u, VP) € E\o of the Stokes system (1-3). Furthermore, there exists a constant Cyy,
depending on a and b such that

2
et oo gty H NIV ull pyguio=y HUVP N Ly nip=nrzn grio—t
< (HMOHB%"_I +[1(f. 9: R, V div R)||L;(ng”‘”/zﬂB,',’ﬁ”_l)) exp(Cap(r + 1)) (2-50)

forallt > 0.
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Proof. The uniqueness property is a direct consequence of the estimates of Proposition 2.9. The proof of
existence relies on Proposition 2.9 combined with a continuity argument as used in [Danchin 2014]; see
also [Krylov 2008]. Let us introduce

(ag.bg) = (1—0)(a.b) + 6(a,b)
and consider the Stokes system
dru—ag(div(bgD(u)) — VP) = f,
divu =div R, (Sp)
Ujr=0 = Uo.
First of all, a more detailed analysis of the estimates established in Proposition 2.9 enables us to conclude

that the constant Cgp,,
¢ = cgp. Indeed, repeating the estimation process carried out in Proposition 2.9 with (ag, bg) instead

appearing in (2-49) is uniformly bounded with respect to 8 € [0, 1] by a constant

of (a,b) amounts to replacing (¢ —a) and (b — b) with 6(a — @) and 0(b — b). Taking into account
Proposition 3.12 and the remark that follows we get that there exists

c:= sup Cg,p, < O00.

6€l0,1]

obo

Let us take 7" > 0 and consider £, the set of those € € [0, 1] such that for any (u¢, f, R) as in the
statement of Proposition 2.9 problem (Sg) admits a unique solution (1, V P) € Er which satisfies

2
el o =1y + IVl =ty + WVP Ny grip=nrze o1y
= (luoll o= + (/-0 RV div RY| 3 s pnrzgy i) exple(t + 1)) (2-51)

for all € [0, T']. According to Proposition 2.7, 0 € 7.
Suppose 8 € E. First we denote by (1g, VPy) € ET the unique solution of (Sy). We consider the space

Eray = {(5,VQ) € Er : divih = 0}
and let Sgg’ be the operator which associates to (w, V@) € ET 4y, the unique solution (i, VF) of

311 — ag(div(bg D(i1)) — V P) = gger (g, VPg) + goe (1, V 0),

divu =0, (2-52)
U|t=0 = 0,
where
goor(u,VP) = (ag —ag/)VP + ag div(bg: D(u)) — ag div(bg D (u)). (2-53)

Obviously, Sggr maps Ergiy into ET g;,. We claim that there exists a positive quantity ¢ = &(7") > 0
such that if |6 — 0’| < &(T') then Sgg- has a fixed point (ii*, VP *) in a suitable ball centered at the origin
of the space Er giy. Obviously,

(ii* 4+ ug, VP " + VPy)

will solve (Sg/) in ET.
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First, we note that, as a consequence of Proposition 2.9, we have

|@.VP)lg,
= (”gOO’(“H ’VPO)||L1T(Bﬁ_/2”_”/2nB,',”/f’_l)+”gee/(w’vQ)||L1T(Bﬁ_/2”_”/szl’jf{’_l)) exp(c(T+1)). (2-54)

Observe that
, -

| (@q _ae')vp||L‘T(B;’f2”_"/an;fl"_l) <|0—-0"|a _a”l‘;z’/ln HVP||L‘T(B§f2”_”/szZf1”_l)' (2-55)

Next, we write
agr div(bg: D(u)) —ag div(bg D(u)) = (ag: —ag) div(bg D(u)) + ag div((bg: — bg) D(u)).
The first term of the last identity is estimated as follows:
. / — 7 7

I agr —ag) divibg D)y jnroty <10 =61 la =l gurp (b + 16 = Bl o) | D)y -
Regarding the second term, we have

llag div((ber —bo) D@y nrp=1) =10 = 0'1b— blan/p @+ lla=all gn) I DGO Ly niry

and thus
|lagr div(bg D (1)) — ag div(bg D(u)) | LY

<10—0'l@+lla —c‘z||Bn/p)(15 + b —15||Bn/p)||Du||L1 @iy (256)

The only thing left is to treat the L} (B3/p 3/2) -norm of ag, div(bg: D(u)) — ag div(bg D(u)) in the case

where n = 3. Using the fact that Vu € L4/3(B3/p 1/2) we can write
(g —ag) divibe: D@y (j3/p-3/2)

< 16— 0/l lla—al o | divibo D)y 3o

<10 —6llla—all g3/p (b + 16 =Bl g3/p) 1 Dutll . sr-1v2, (2-57)
1/4 1/4 3/4

= 10— 6'llla =l gyrp B+ b =Bl gy T4l 2 oy 01 a1, 2-59)

=10 = 0'|C(T.a.b) (o g3romy +1V2ull 1y (o) (2-59)

and, proceeding in a similar manner, we can estimate Hag diV((bgr — bg)D(u)) ”L‘ (B3/P—3/2y-
T .2
Combining (2-55), (2-56) along with (2-59) we get '

lgoo: (u, VP) ||L1T(B;,/zp_3/2ﬂ33./1p_l)
! 2
= |6 -0 |C(T’ a, b)(”u”L%O(B;,/lp—l) + ”V u”LIT(B;‘/lp-i-l) + ||VP||L1T(Bs‘/2p—3/2mBs’/lp—1)). (2—60)
Substituting this into (2-54), we get

I, VP gy <16 —8'|C(T,a,b)(|(ug, VPo) | £7 + (B, VO) 7).
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and by linearity
-1 -~ ~1 ~2 ~1 2
|@' -a2 VP ~VP?)|, <|0-0'|C(T.a.b)|@' -2 V0 ~VO)|,, .
where for k =1, 2,
@, VP") = Sge/ (@', VQ")).

Thus one can choose &(7") small enough such that |6 — 6’| < &(T") gives us a fixed point of the solution
operator Sggs in Bg, . (0,2||(ug, VPg)| E7)-

Thus, for all T > 0, we have E7 =[0, 1] and owing to the uniqueness property and to Proposition 2.9, we
can construct a unique solution (1, VP) € E}o to (1-3) such that for all ¢ > 0 the estimate (2-11) is valid. O

The proof of Theorem 1.3 in the case n = 3. As discussed earlier, in dimension n = 3, Proposition 2.9
is weaker than Theorem 1.3, as one requires additional low-frequency information on the data

(f.0:R.VdivR)e Lj(B)]7?).

Thus, we have to bring an extra argument in order to conclude the validity of Theorem 1.3. This is the
object of interest of this section.

Existence. We begin by taking m € N large enough and owing to Proposition 2.8 we can consider
(u', VP), the unique solution with u! € C(R™; B3/p 1) and (0;u', VZu',VP') e L] (BB/P 1) of
the system

loc
d,u —ab div D(u) + (@ + S_m(a—a))VP = f,

divu = div R,

ult:() = MO’

which also satisfies

3=ty +[|(3;u’, abV?u',avp! )||L1(B3/p h

< c(||uo||33/lp_1 +I(f. 8, R, abV div R)||L1T(B;/l,,_1))

I e

for all 7" > 0. Let us consider
Gu',VPY = adiv(bD(u')) —adiv(b D(u')) — (1d — S_n)(a — a))VP'.

We claim G(u'. VP') € L] (BP0 B/P7"). Indeed

loc
adiv(bDu")) —adiv(bD(u")) = (a —a) div(bD(u")) + adiv((b — b)D(u'))
and proceeding as in (2-56) and (2-58) we get
. 1 - . - 1
Ha div(bD(u')) —adiv(bD(u')) "L}(BI‘:;{;fS/ZmBs'/lpfl)
< Cap U ("l ooy + Iy o)

= exp(Cap (1 + 1))(||u0||33(1p71 + (/. 9: R, V div R)||L;(33(1p71)). (2-61)
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Next, we obviously have

1((1d - S_)(a—a)) VP! |\L1(Bs/p71) <C|(a —a)||33/,, |VP! ||L}(B;/1,,71 (2-62)

)

3/p 1/2XB3/p 1_>B3/p 3/2

Using the fact that the product maps B , we get

1((1d - S_m)(a—a)) VP! LIBYP) < C|dd—S_p)(a—a)| Bsflp_l/z||VP1|| LIEYP): (2-63)

Of course

|0d=S-m)@=a)l ga/p-1/2 =C Y 27PN Aja=a) |2 = €22 37 2P A (a=a) .

jz—m j=z—m
< C2™2||a—al| g3/
p.1

so that the first term on the right-hand side of (2-63) is finite. We thus gather from (2-61), (2-62) and (2-63)

that G(u', VP') e L} (B3/p 32 B3/1J 1) and that for all 7 > 0 there exists a constant C,p, such that

loc

IG @', VPI)||L;(B;(217—3/20313)(1p—1) = (luoll gy/p—1 + 11/ 9 RV div R)| Ly g3/p-1)) exp(Cap (£ + 1))

According to Proposition 2.12, there exists a unique solution (#2, VP?) € E},. of the system
0:u —adiv(bD(u)) +aVP =Gu',VP),
divu =0,
u|t=0 = 0,
which satisfies the estimate
2 2,2 2
||M ”L?O(B;./lpil) + ”(V u=,Vp )||L}(BZ(IP*1)
1 1
= ||G(u , VP )“L}(B;'/ZP—NZQB;/IP—I) eXP(Cab (Z + 1))
< (ol gy/p—1 + 101230 R.V &V Ry ys7o-1)) exp(Cap(t + ).
We observe that
(u,VP):= (u' +u? VP! + VP?

is a solution of (1-3) which satisfies
. 2 .
”u”L?o(Bs,/lp_l) + [(VZu, VP)”L}(B;/{’—I)
= (||Mo||31§(lp—1 + (£, 9 R, V div R)||L}(Bg{11’—1)) exp(Cap(t +1)).  (2-64)
Of course, using again the first equation of (1-3) we get
2
||at”||L}(B;flp—1) = Capll(f. V7u, VP)llLtl(Bg’/lp—l)
and thus, we get the estimate
. 2 .
”1/[ ||L;>O(B;./lp_1) + || (atu’ v u, VP) ”L}(B;’/lp_l)
=< (||u0||33'/1p71 + (/.9 R,V div R)llL;(Bsflpfl)) exp(Cap(t +1)).  (2-65)
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Uniqueness. Next, let us prove the uniqueness property. Let us suppose there exists a 7 > 0 and a pair
(u, VP) that solves
diu—adiv(bD(u)) +aVP =0,
divu =0, (2-66)
u|t=0 = Ov
with
ueCr(B)P™") and (9,u. V2u. VP) € LL(B) 7).

Observe that we cannot directly conclude to the uniqueness property by appealing to Proposition 2.12
because the pressure does not belong (a priori) to LIT(B;,/;’ =3/ 2). Recovering this low-frequency
information is done in the following lines. Suppose 3 < p < 4. Applying the operator Q in the first
equation of (2-66) we can write

Q((@+ S—m(a—a))VP) = Q(adiv(bD(u))) — Q((1d — S—m)(a —a)VP),
where m € N will be fixed later. We observe that
|o(@+ S—m(a—a))VP)| L@
< [ Qladiv(bD@))| 11 By + |o((td— S_m)(@a—a)VP)| LY B2
STV @+ lla=al gap) b +11b bl go) IVl a2 o172,
HAd=S-m)(@ =)l gs/p-12IV P Ly 3701y

Consequently, we get
Q@+ S-m(a—a)VP) e Ly (B P72, (2-67)

Let us observe that the condition p € (3,4) ensures that B;/ lp is contained in the multiplier space of

5—3/p+1 _ p3/p'—2 : .
Bp’,2 = Bp,’2 . More precisely, we get:

Proposition 2.13. Consider p € (3,4) and (u,v) € B;’/lp X Bp_/?z/pﬂ. Then uv € B;/?z/pﬂ and

||uvllg;,?2/p+1 < ||u||33{1n ||v||3;,-?2/p+1-

33/11 3—3/p+1

Proof. Indeed, considering (u, v) € o1 X By and using the Bony decomposition we get

i . < .
[ Tyv ”B;;fz“’“ S llullzee ||v||B;,§£p+1 :

Next, considering
1

P *

0| —

1
??
Wwe sec
VI A Tl < 3 2P0 S, s Agul)
£>j—3

= D 2TPEDUTOTE S ) 12 2Y P A e
{=>j—-3
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such that, with the help of Proposition 3.10, we get

7 < . . < . .
IIT,,uIIB;/ng S ”v”H_”z”uHB,fiﬂ* S ||U||Bp—/?2/p+1 ||u||31§(1p. O

Proposition 2.14. Consider p € (3,4). Furthermore, consider a constant ¢ > 0 and ¢ € B;/ lp . Then
there exists a universal constant n > 0 such that if

lell 3o = .

then for any ¥ € B3/p 324 B;,/fz’ there exists a unique solution VP € B3/p 32 B;,/fzﬂ_z of the
elliptic equation
div((¢c 4+ ¢)VP) =div .

Moreover, the following estimate holds true:

”VP” 3/2 H~||QW|| 3/p —0>

where o € {%, 2}.

3/p

Proof. The proof is standard. Under some smallness condition on ¢ € B , the operator

VR— VP = EQ(w —¢VR)

has a fixed point in a suitable chosen ball of the space B 3/ P 32 B3/ 2 /_2. O

Choose m € N such that || S_,,(a —a)|| By is small enough that we can apply Proposition 2.14 with a
.1
and S_, (a — a) instead of ¢ and ¢, and we consider Y a vector field with coefficients in S. As the

3/p 3/2033/;; -2 3/p 3/2033/1' =

Schwartz class is included in B , let us consider VPV, € B , the

solution of the equation
div((@+ S—m(a —a))VPy) = div y,
the existence of which is granted by Proposition 2.14. Then, using Propositions 3.8 and 3.9, we can write?
(VP ¥)sxs
= (AjVP.Ajy) =) —(A;P.A;divy) (2-68)
J J
=Y —(A;jP.Ajdiv(@+ S—m(a—a)VPy)) =Y (A;VP.A;((@+ S_m(a—a)VPy)) (2-69)
J J
= (Aj(a+S-_ma—a)VP.A;VPy)=> (A;Q((@+ S_m(a—a)VP).A;VP,)  (2-70)

J J
<[ Q(@+Sma—anVP)| gyp-s2 Pyl yoyr—sr2 (2-71)
. P,
<[ Q(@+ S-m(a—ay)VP)| =32Vl gy—ara. (2-72)
: P,

3We define Aj = Aj_l +Aj +Aj+1.
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Taking the supremum over all ¥ € S with ||y || ;/p/ 3/2 < 1, by (2-67) and Proposition 3.8, it follows
that VP € L1(BY77*/%) and that

VP PUSTERS |Q((@+ S—m(a—a)VP)| LY (BP0

According to the uniqueness property of Proposition 2.12 we conclude that (u, VP) = (0, 0).

Observe that in the case p € ( 3] owing to the fact that B;/ LIREN B3/ =1 for any q € (3,4

and u € CT(B3/p ) along with (3;u, V2u, VP) € LT(B3/p 1) we get u € CT(B3/q ) along with
(0ru, V?u, VP) € LT(B3/q 1) Thus, by the uniqueness property for the case g € (3 4), we conclude
that (u, VP) is identically null for p € (£, 3].

3. Proof of Theorem 1.2

In the rest of the paper we aim to prove Theorem 1.2. Thus, from now on we will work in a 3-dimensional

framework.
The linear theory. Let us fix some notation. The space F T consists of (1, VQ) with w € Cr (B 3/p= 1)

and (3, W, V20, VQ) € LT(B;/IP 1) with the norm
ST ) 2 U225 VO . -
160 VO g5, = 19l 00 -ty + 1@, 20, VO 701 G-

For any time-dependent vector field v we define
t
X, x)=x+ / v(t,x)dr,
0

and Ay = (DX3)~L. Also, let us denote by adj(DX3) the adjugate matrix (i.e., the transpose of the
cofactor matrix) of DX3 and J; = det(DX3).
Before attacking the well-posedness of (1-4), we first have to solve the linear system

podyit —div(1(po) A5 Dy (i1)) + ATV P =0,
div(adj(DX3)it) = 0, (3-2)

Ujp=0 = Uo,
where v € CT(B3/p 1) with Vv € LT(B3/p) NnL2 (33/1’ 1) is such that
”VEHL%"(BS,/IP_I) + ”VEHLIT(B;,/IP) <2« (3-3)

for a suitably small «. Obviously, this will be achieved using the estimates of the Stokes system established
in the previous section; see Theorem 1.3. Let us write (3-2) in the form

sl — pl—o div(u(po) D(i1)) + %vf) = ;—OFﬁ(a, VP),

divi = div((Id — adj (DX{,))L_J),

12[=0 = Uy,
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with
F3(w, VQ) := div(1(po) A5 Dy (W) — 11(po) D(0)) + (Id — ATV Q.

Consider (u7, VPr) with uy € C(R™, Bz,/lp_l) and (0;ur,V?ur,VPr) e L] (B;’/lp_l), the unique

loc
solution of

dsur, — 5o div(1e(po) D(ur)) + 5=V P =0,
divuy =0, (3-4)

UL|t=0 = U0,
for which we know that
L. VPO 7 = lluoll g3/p—1 exp(Coo (T + 1))

Moreover, T can be chosen small enough such that

IVuLllpz 31y + 1@, Viur, VPO g garp-1y < e (3-5)
Following the idea in [Danchin and Mucha 2012], and owing to Theorem 1.3, we consider the operator

®(,V0) = (i, VP). (3-6)

which associates to (1, V@) eF T the unique solution (i, Vﬁ) eF T of

0ri — - div(1u(po) D(@)) + =V P = L Fy(up +1,VPL+VQ),
divii = diV((Id —adj(DXp))(up + u?)),
We will show in the following that for any R > 0 there exists a sufficiently small 7" > 0 such that there

exists a fixed point for ® in the ball of radius R centered at the origin of F r. More precisely, according
to Theorem 1.3 we get

|05, VO 7, = |+ Falur + . VP +VO)|
T Po

LY(BYP™Y
+ 1, (4 —adj( DX5)) wz + D)l 1 53701,
D.

+ || V div((1d — adj(DX3)) (ur + ) (-7)

) ”L}(B;j{{’“)'
We begin by treating the first term:

HpiFﬁ(uL +3.VPL+VD)|
0

LYB/Ph

I ) ~
5(/—3+“%—;HB;({,)HFU(M+w,VPL+VQ)\\L1T(B;,(1p1). (3-8)



464 COSMIN BURTEA

‘We write

T\ = div((po) A5 Doy +))—div (11(p0) D(u . +))
= div(1(po) (A5—1d) Dy (ur+))+div(e(p0) Dgy—1a(ur+w))
= div(1(p0) (A5—1d) D gy —1a(u+w)) +div(e (o) (As—1d) D (u L +1)) +div (1t (o) Dy —1a(u L +10)).

Thus, using (3-22) of Proposition 3.27 along with product laws in Besov spaces (see Proposition 3.17)
we get the following bound for 77:

17303, 3371 = Cooll A=Al o oy (14145100 e (y3im  (IVHL Iy iy + IV 1 o)
s C,Oo ”Vﬁ”LlT(BS./lP)(l"i_ HVI_}”LIT(B;./IP)) (”VLIL ”LIT(B;/IP)'{_ va ”LIT(B;,/lp))
< Cpoe(a+(B.VO) | Fr)- (3-9)
The second term is estimated as

i _ ] _
10d = ATYVPL+ VD)1 oy S IVOI 1 cvimy (I9PLI gy vy + IV Dy o)

<a(a+ 10, VO Fp) (3-10)

so that combining (3-8), (3-9) and (3-10) we get

< Cpoat(e 4[|, VO) || Fp)- (3-11)

1 - ~
o VP4V ‘ .
H 00 v(uL+w L+ Q) L%"(B;,/lp_l)

In order to treat the second term of (3-7) we use the estimates (3-23) and (3-24) of Proposition 3.27 along
with Holder’s inequality in order to obtain

[0 (1d—adj (DX L+ 1 (3701,
S N+ adi( DXy 571+ (1d—adi DXe)) @rur +0,D)] 1y 571, (3-12)
< ”8t adJ(DXI_)) ”L%"(Bs,/lp_l) ||ML+1I} ||L2T(BS./1H)+ ”Id_ad](DXl_)) ”L%O(B;!/lp) ”8tuL +0,w HLIT(B;,/{’_I)
< IIVﬁlleT(nglp—l)(04+||(u7,VQ)IIFT)+06(04+II(15,VQ)IIFT)
Sa(@+|@. VO rp)- (3-13)
Treating the last term of (3-7) is done with the aid of Corollary 3.24:

div((Id — adj(DX3)) (ur + 1)) = (Dug + Dib) : (Id— J; A5)
= Ji(Dup + Dw) : (Id— 43) + (1 — J3)(divug + divw).
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Thus, using the estimates (3-22) and (3-26) of Proposition 3.27, we may write
|V div((id - adi(DX3)) (L, + D)) | 1y (g2,
p.
< || Js(Dur + D) : (1d — Ap) HLIT(Bi/f’) +||(1 = Jp)(divuy + div ) ”LIT(BI?/D
< (1 + ||Jl_) -1 ||L<%0(BI§(1P)) ”Id_ Al_)”L%o(Bg’/lp) ”DuL + Dw“LlT(B;,/{’)

+ ”(JI_) - D”L%’?(B;/lp)” div ur + div w”LlT(B;/lp)

Sa(l+a) @+ @, VO ry). (3-14)
Combining the estimates (3-11), (3-13) and (3-14) we get
|e@. VO 7, <el@+[@.VOF,)- (3-15)

Thus, for a suitably small « the operator & maps the ball of radius R centered at the origin of F T
into itself. Due to the linearity of ®, one can repeat the above arguments in order to show that ® is a
contraction for small values of . This concludes the existence of a fixed point of ®, say (&z*, V P *) eFr.
Of course,

(@, VP)=G*VP")+ (ur,VPr)
is a solution of (3-2).

Proof of Theorem 1.2. Consider T small enough such that («7,, VP ), the solution of (3-4), satisfies
HvuL”L%_(B;q/lp—l) + ”vuL”L%"(B;/IP) =,
and consider the closed set
Fr(@) ={(#V0) € Fr : 9,=0=0, ||(3, VO)| £, < Re/}
with R sufficiently small such that
HVE”LZT(B;,/I’J_I) + ”Vﬂ”Llr(B;,/f’) <a. (3-16)
Let us consider the operator S which associates to (v, V@) eF 7 (@), the solution of

0,i1 — 2= div(1£(po) D(@)) + %vﬁ: A Fluy o) (ur +1i, VP + VP),
div(adj(DX,, 4+3)(ur + i) =0,
Ujp=o =0
constructed in the previous section. We will show that for suitably small 7" and «, the operator S maps
the closed set F- 7 (o) into itself and that S is a contraction. First of all, recalling that (i, Vlg) is in fact
the fixed point of the operator ® defined in (3-6) and using the estimates established in the last section,

we conclude that
|z, VP)IIFT =[S@,VO)|F; = Ra (3-17)

for some small enough 7.
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Next, we will deal with the stability estimates. For i = 1, 2, let us consider (;, V@ DS F 7 () and
(i, VP;) = S(;,VQ;) € Fr(a). Defining

(60.V8Q) = (11— 12, VO, —V0,).
(81, V8 P) = (ii; —iiy, VP —V P,),

Ww¢e Se€e
98— L div(1(00) D) + LVIP = LT,
div 8ii = div G,
5ﬁ|t=0 = Oa

where

F = Fi(80,ur +ii1) + Fi(ur + 9, 8i) + F> (89, VPL + VP1) + Fa(ur + 95, VS P),
G = —(adi(DX(uy +3)) —1d)87 — (adi(DX(uy +5,)) — adi(DX(uy +5,)) (UL +i82) := G + G,
and
Fy (0, W) = div(1(po) Ag Day (0) — p(po) D(W)).
F(5,V0) = 1d—AL)VO.

According to Theorem 1.3 we get
| (2, V(SP)”FT S CP<>(||F||L1T(B§(1”_1) + ||VdiVG||L1T(B§{IP—1) + ||3tG||L1T(B;(lzv—1))- (3-18)
Proceeding as in relations (3-8) and (3-9) we get
i . < 1 . 7 . 1 . 17 .
||F||L;(33(1P—1) ~ ”V(SUHL;(B;./IP)||vuL+Vu1 ”L;(B;./lp)—'_||VML+VUZ||L%~(B;/IP)||V8u||L%—(Bsq/lp)
+||V55||L1T(B;{1p)||VPL+VP1 ||L1T(B§f1”‘l)
+ ”VuL +Vu, ”L;(B;/lﬂ) ||V8P ”LIT(B;,/IP_I)

Sall(V85,V80) |1 p3rr)+ell i, VSP)| 7 . (3-19)
T T

n3/p
(Bp,l

Of course, we will use the smallness of « to absorb «||(Véiu, V4§ F)H LL(B3/P) into the left-hand side
T "p,1
of (3-18).

Next, we treat |V div G 1 . Using Proposition 3.23, we can write
L g rrop

B,
—div G, = div((adj(DX(u; +5,))—adj(DX(u, +5,))) (UL +ii2))
= div(adj( DX, +5,)) (UL +i12))~div (adi( DX 45,) (4L +12))
= Jup+5, Dup+uz) : Ay +5)—Jup +9) DUrL+iuz) : Aw; +5,)

= (Jup+5, =Sy +5)) DWr+u2) : Ay +50) Ty +i2) Dur+iz) : (A +5,) A +5,))-
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and thus, using Propositions 3.27 and 3.28 we get
IV div Galyy garm-1y
D,
< ||(JML+1~)1 - J(ML+52))||L%O(33/1F) ||(DML, Dﬁ2)||L%(B;/1P)(1 + ||Id_ A(ML-HN)]) ”L%O(Bs/lp))
+ (1 + ||(JML +v, — I)HL(%O(BI‘:’/I‘"))”(DML’ DﬁZ)”L%_(B;/lP) ||A(ML+1~)1) - A(uL-i-tN)z) ||L%O(B;/IP)
< ] .
S| V8ly gm,.

(3-20)
Next, using again Proposition 3.23 we see

—div G = div((adj(DX(, +5,)) — 1d)8i) = DSt : (Ju; +5, Ay +5,) —1d)
= Ju; +9 Déii : (A(uL-i-fu)_Id) + (JuL+51 —1)divéu
and consequently

”leVGl ”L%(BS./lp—l)

< [ Jup+5) Dbl (A, +5)~1d) HLIT(Bg{IP)JF | (Jup +5,— D divéi HLIT(B;/;’)

< (1+||JML+T)1 —1 ||L%~(B;/lp)) ||D8ﬁ : (A(uL'HN)l)_Id)||L1T(B;/lp)+”']u14 +v; —1 ”LIT(B;/]I)) ” leSa”L%(B;G”)

5a||(5ﬁ,V5P)||I7 . (3-21)

T

Combining (3-20) with (3-21) yields

1V div Gl gorp1, < @l V8Tl +a| 8t VSP) | 7 (3-22)

(B,1)

Again, we will use the smallness of « to absorb «||(Véi, V§ F) 1 into the left-hand side of (3-22).
T

B
Finally, we write

3[(adj(DX(uy +5,) — adj(DX(u; 15,))) (ur + ii2) ]
= (3; adj(DX(uL+51)) — 04 adj(DX(uL+52)))(uL + iip)
+ adj(DX(uL-i-lN)l)) - adj(DX(uL-i-f)z))(aluL + aﬂJZ)'

Using Proposition 3.28 gives us
|9 [@di (DX ur +50) ~ad) (DX Gy 4 (ur+ 8] 1, 5301
< || 9: adi(DX(uy +5,)) 91 adi(DX(wy +55)) ”LZT(B;‘QP”) Il Lz 30y
+1|0: adj(DX(u; +5,))—0: adj(DX (4, +)) ”L‘T(B,f,/{’) ”ﬁZHL%o(Bj{{’—I)
+ | adj(DX ) +5,))—adj(DX (4 +5,)) HL;O(Bj{{’) 01 p+0siis “L‘T(B;({"l)
Salll; o)
The conclusion is

”alG“L%‘(B;/IP*I) < a”Sﬁ”L%(B;/lp) (3-23)
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Combining (3-19), (3-22) and (3-23) we get if « is chosen sufficiently small then
(8@ VSP) | 5 < 3185, V80)) || £ (3-24)
Fr

and the operator S is also a contraction over F 7 (o). Thus, according to Banach’s theorem there exists a
fixed point (i*, V.P*) of S. Obviously,

(#,VP) = (up,VPr) + (i*,VP*)

is a solution of o _ o
podsit —div(p(po) Az Day () + AL VP =0,

div(adj(DXy)u) =0, (3-25)
l”_l|t=0 =Uyp.
In view of Proposition 3.26 we also get J; = 1. Thus, the second equation of (3-25) becomes
div(Azu) = 0.

The only thing left to prove is the uniqueness property. Consider (iz!, VP'), (12, VP?) € Fr, two
solutions of (3-25) with the same initial data u € B;/ lp ~! With (urp, VPr) defined above, we let

@, VP = @@, VP = (uy,VPr) fori=1,2
such that the system verified by (ii’, VP i) is

i’ = 55 AV (1(p0) D) + 35V P = 55 Fiyy iy (ur + ' VPL+ V),
div(A,, 47y (uL +i')) =0,

We are now in the position of performing exactly the same computations as above so that we obtain a
time 7" sufficiently small such that

@', vPYy = @* VvP* on[0,T].

It is classical that the above local uniqueness property extends to all of [0, T']. O

Proof of Theorem 1.1. Considering (pg, ug) € Bp’1

3/p o g3/p-1
bl —
a positive 7" > 0 such that we may construct a solution (iz, V P) to the system (1-4) in Fr. Then,

and applying Theorem 1.2, there exists
working with a smaller 7" if needed and considering X3, the “flow” of & defined by (3-17), by using
Proposition 3.26 from the Appendix, one obtains that Xj is a measure preserving C !-diffeomorphism
over R” for all ¢ € [0, T']. Thus we may introduce the Eulerian variable:

p(t, x) = po(X5 ' (t,x)), wu(t,x)=1i(t, X;'(t,x)) and P(t,x) = P(t, X; ' (t,x)).

Then, Proposition 3.23 ensures that (p, #, VP) is a solution of (1-1). As DX} —Id belongs to B;’/lp, using
Proposition 3.22, we may conclude that (p, u#, VP) has the announced regularity.

The uniqueness property comes from the fact that considering two solutions (o, u?, VP?) of (1-1),
i =1, 2, and considering Y, the flow of u®, we find that (ui(l, Y,i(t, ), VPi(t, Y,i(t, y))) are solutions
of the system (1-4) with the same data. Thus, they are equal according to the uniqueness property
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announced in Theorem 1.2. Thus, on some nontrivial interval [0, 7’] C [0, T'] (chosen such that condition
(3-19) holds), the solutions (o, 4, VP?) are equal. This local uniqueness property obviously entails
uniqueness on all of [0, T']. O

Appendix

We present here a few results of Fourier analysis used through the text. The full proofs along with other
complementary results can be found in [Bahouri et al. 2011, Chapter 2].
Let us introduce the dyadic partition of the space:

Proposition A.1. Let C be the annulus {é eR": % <l =< %} There exists a radial function ¢ € D(C)
valued in the interval [0, 1] such that

forall E€RN\{0}, > @778 =1, (A-1)
jez
2<]j—j'l = Supp(p2~/ )N Supp(p(2/")) = 2. (A-2)
Also, the following inequality holds:
1 )
forall § € R"\{0}, 3 =< ng Jg)<1. (A-3)
Jj€E

From now on we fix functions x and ¢ satisfying the assertions of the above proposition and denote by
h and /4 their Fourier inverses.
The homogeneous dyadic blocks A ;j and the homogeneous low-frequency cut-off operators S j are

Bju=p@ D=2 [ h@ pyutx - y)dy.
Rn

Sju= x(2~ Dyu = 27" ) h(2 yyu(x — y) dy
forall j €7. !
Definition A.2. We denote by Sl/l the space of tempered distributions such that
Jim [ $jull Lo =0.
j——o00
Let us now define the homogeneous Besov spaces:

Definition A.3. Let s be a real number and (p, r) € [1, oo]. The homogeneous Besov space B;’ , is the
subset of tempered distributions # € S }’l such that

el g o= [ Q1A z2)jez o gy < o0
The next propositions gather some basic properties of Besov spaces.

Proposition A.4. Let us consider s € R and p,r € [1, oo] such that

s< o s=%andr=1. (A-4)

Then (B;,r, Il ||B,§,r) is a Banach space.
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Proposition 3.5. A tempered distribution u € S }/l belongs to Bls)’ +(R™) if and only if there exists a sequence
(cj)j such that (2jsc]-)j e 0" (Z) with norm 1 and a constant C = C(u) > 0 such that for any j € Z we
have

IAullLr < Ce;.

Proposition 3.6. Consider s1 and s, two real numbers such that s1 < s and 0 € (0, 1). Then, there exists
a constant C > 0 such that for all v € [1, co] we have

6 1-6
||”||B<p9f'r1+(1—9)sz = ||”||B;}r ”u”f?;?r’
¢ (1 1 9 1-9
U|| 2051 +1—0)sy = —+ —— | |u]|%: ull s, -
il g s1-oms = (g + g Sy el?

Proposition 3.7. (1) Let 1 < p; < pp oo and 1 <ry <ry <00. Then, for any real number s, the

; . : . ps—n(1/p1—1
space By, . is continuously embedded in B};Z,’Zg /p1=1/p2)

(2) Let 1 < p < o0. Then, BZ/ lp is continuously embedded in (Co(R™), || - || Leo), the space of continuous
functions vanishing at infinity.

Proposition 3.8. Forall1 < p,r <ocoands € R,
{B;’r x B, =R,
(u,v) >3 i (Aju, Ajv),

where AJ- = Aj_l + Aj + Aj+1, defines a continuous bilinear functional on Bls,,r X B;,fr,. Denote by

Q;,Sr, the set of functions ¢ € SOB;,Sr, such that ||\@|| 3—s < 1. If u € S, then we have
] ) p/.r/

(3-5)

lullgy S sup (. g)sixs.
T geQs,

Proposition 3.9. Consider 1 < p,r < co and s € R. Furthermore, let u € Bg,,, v E B;,sr, and
pelL®n M(B’Is,,,) N M(B;,sr,). Then, we have

(pu.v) =) > (Aju. Aj(pv)) = (u. pv). (3-6)
i

The proof of Proposition 3.9 follows from a density argument. Relation (3-6) clearly holds for functions
from the Schwartz class: then we may write

fw puv = (pu,v) = (4, pu).

The conditions 1 < p,r < oo and s € R ensure that # and v may be approximated by Schwartz functions.
An important feature of Besov spaces with negative index of regularity is the following:

Proposition 3.10. Lets <0 and 1 < p,r < oc0. Let u be a distribution in S}’l. Then, u belongs to BIS,J if
and only if

Q73| SjullLr)jez € €7 (2).
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Moreover, there exists a constant C depending only on the dimension n such that

]
v =C(1+ m)”“”éz,r'

The next proposition tells us how certain multipliers act on Besov spaces.

e .
P Nl gy <[ @7 1SjullLe)jez

Proposition 3.11. Consider A a smooth function on R"\{0} which is homogeneous of degree m. Then,
for any (s, p,r) € Rx[1, 00)? such that

n n
s—m<— or Ss—m=—andr=1,
p

the operator* A(D) maps BIS,J continuously into Bls,_rm
The next proposition describes how smooth functions act on homogeneous Besov spaces.

Proposition 3.12. Let f be a smooth function on R which vanishes at 0. Consider (s, p,r) € Rx[1, oo]?
such that

0<s<ﬁ or s=£andr=1.
P p

Then for any real-valued function u € BIS,J N L, the function f ou is in Bls), » N L% and we have
I/ oullgy <CO ullz)lullg, -
Remark 3.13. The constant C( f”, ||u| L) appearing above can be taken to be

sup ||/ Ol oo (= ull oo .~ M ull 00D
i€el,[s]+1

where M is a constant depending only on the dimension 7.

Commutator and product estimates. Next, we want to see how the product acts in Besov spaces. The
Bony decomposition, introduced in [Bony 1981], offers a mathematical framework to obtain estimates of
the product of two distributions, when the latter is defined.

Definition 3.14. Given two tempered distributions u, v € S}, the homogeneous paraproduct of v by u is
defined as

Tuv:ZSJ-_WAjv. (3-7)
jez
The homogeneous remainder of u and v is defined by
R(u,v):ZAjuA;-v, (3-8)
J€EZ
where
A;- =Aj 1 +Aj+Ajyg.

YAD)Yw = F L (AFw).
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Remark 3.15. Notice that at a formal level, one has the following decomposition of the product of two
(sufficiently well-behaved) distributions:

uv = Tyv + Tyu + R(u,v) = T,v + Thu.
The next result describes how the paraproduct and remainder behave.

Proposition 3.16. (1) Assume (s, p, p1, p2,7) € Rx[1, 0o]* such that

lzi+i, S<ﬂ or s=%andr=1.

V2 4| D2 D

Then, the paraproduct maps LP! x Bls,z’r into Bls,’ , and the following estimate holds:
j .< ) -
1Trgllgy, < Uflleeiliglpy -

(2) Assume (s, p, p1, p2.1.r1,12) € Rx[1,00]® and v > 0 such that
1 1 1 1 1 1

V4 P1 D2 r r )
and

n n
s<——v or S=——v andr=1.
p p

Then, the paraproduct maps Bp Y X B;;“r’z into Bs and the following estimate holds:

DS < n—V Hs+v .
1778l sy, SIS g, gl e
(3) Consider (s1,52,p, P1, P2,V 71,72) € R2 x[1, 00]® such that
0<sl+s2<£ or sl—{—sz:ﬂandr:l.
p p

Sl+32

Then, the remainder maps Bp X sz ry into By and

1,71
N < . .
IR DN g < 170530, el

As a consequence we obtain the following product rules in Besov space:

Proposition 3.17. Consider p € [1, o0] and the real numbers vy > 0 and v, > 0 with

n n n
v1+v2<—+mm{— —}
p p

Then, the following estimate holds:

I7ell B 3 VA F B el ; Bl

Proposition 3.18. Consider 0 a C! function on R" such that (1 + |- |)0 € L. Let us also consider
p.q €1, 00] such that

T-Llyloy
;

|~

1
p
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Then, there exists a constant C such that for any Lipschitz function a with gradient in L?, any function
b € L4 and any positive A,

[[6(A~" D), a]b|

Lr SCA T Va Lo|lbllLa.
In particular, when 6 = ¢ and . = 27 we get

l[Aj.alb|,, < C277(Va| Lol La.

Proposition 3.19. Assume s, v and p € [1, o] are such that

n . [n n n

— and —l—mm{—,—/} <§s<——v.

p pp p

Then, there exists a constant C depending only on s, v, p and n such that for all | € 1,n we have for some
sequence (cj)jez with ||(¢j)jezll¢1z) = 1,

0<v<

[, Ajwll Ly < Ces27*IVall gup—s 1wl e
forall j €Z.

For a proof of the above results we refer the reader to the Appendix of [Danchin 2014, Lemmas A.5
and A.6].

Proposition 3.20. Consider a homogeneous function A : R"\{0} — R of degree 0. Let us consider s € R,
O<v=<landp,r,ry,ry €[1, 0] such that

1_1.1
r o r ry
and
n n
S<——v or SsS=——vand r,=1. 3-9)
p p
Moreover, assume w € Bf,";; and a € L*° with Va € Bo_o]jrl‘ Then, the following estimate holds:
[AD). Talw] g1 < IVall g N0l o (3-10)

As this result is of great importance in the analysis of the pressure term, we present a sketched proof
below (see also [Bahouri et al. 2011, Chapter 2, Lemma 2.99]).

Proof. The fact that @ € L°°, along with relation (3-9), guarantees that A(D)w € Bls,j" and that the
paraproducts T,w and TaA(D)w are well-defined. We observe that there exists a function ¢ supported

in some annulus which equals 1 on the support of ¢ such that one may write (of course it is here that we
use the homogeneity of A4)

[A(D). Talw =) "[(4§)27/ D). Sj_1a]Ajw.

J

But according to Proposition 3.18 we have
2N [(46)@7 D). SjmralAjw| , S 270NV S rallLee 2TV Ajwl o

The last relation obviously implies (3-10). O
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As a consequence of the above proposition and Proposition 3.16 we get the following:

Proposition 3.21. Let us consider a homogeneous function A : R"\{0} — R of degree 0, s € R, 0<v <1
and p,r,ry,ry €[1, 00] such that
1 1 1

r r ry
and

. n n n
—1—m1n{—,—}<s<——v or s=——vand r=ry=1. (3-11)

assume w € B;,";;’ and a € L*° with Va e Bgo‘jr ,- Then, the following estimate holds:

[[A(D). alw]

N
Properties of Lagrangian coordinates. The following results are gathered from [Danchin 2014] and
[Danchin and Mucha 2012]. More precisely, proofs of Propositions 3.22, 3.23, the estimate (3-26) of
Proposition 3.27 and the estimate (3-31) of Proposition 3.28 can be found in [Danchin 2014, pp. 782-786].
Propositions 3.27 and 3.28 can be found in the Appendix of [Danchin and Mucha 2012]. Proposition 3.26
is inspired by [Danchin and Mucha 2012].

Proposition 3.22. Let X be a globally defined bi-Lipschitz diffeomorphism of R* and —% <s=<
a — ao X is a self-map over B; | Whenever

(1) s €(0,1);

(2) s> 1and (DX —1d) € B;/{’.

3
7 Then

The following result interferes in a crucial manner in the proof of the well-posedness result for the
inhomogeneous incompressible Navier—Stokes system.

Proposition 3.23. Let m be a C' scalar function over R3 and u € R3 a C! vector field. Let X be a C!
diffeomorphism and we define J := det(DX). Suppose J > 0. Then, the following relations hold:

(Vm) o X = J~Vdiv(adj(DX)m o X), (3-12)
(divi)o X = J ™ div(adj(DX)u o X). (3-13)

Corollary 3.24. Let m be a C! scalar function over R* and u € R be a C! vector field. Let X be a C!
diffeomorphism and J := det(DX). Suppose J > 0. Then, we have

J~Vdiv(adj(DX)u) = Du : (DX)™!, (3-14)
J~Vdiv(adj(DX)m) = [(DX)~"]T Vm. (3-15)
Proof. In order to ease reading, we define F|, := F(x). Writingu asuo X o X ~1 using the chain rule
and Einstein convention over repeated index, we write
(divu), = 8k(ui o X)|X_1(x)a,~(X_1)|kx
=D(u OXv)|X—1(x) : D(X_1)|x

= D(uoX)|X—1(x) : (DX)[Xl—l(x)a



OPTIMAL WELL-POSEDNESS FOR THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES SYSTEM 475

and thus, we get
(divu)o X = D(uo X): (DX)". (3-16)
Then, using (3-13) and (3-16) we get
J 1 div(adj(DX)u) = J ' div(adj(DX)uo X 1o X) = (divuo X o X
=DuwoX 'oX):(DX) ! = Du:(DX)"".
In a similar manner we prove (3-15). O

For any v a time-dependent vector field we set
t

X,—,(z,x):x—i-/ v(t,x)dt (3-17)

and we define ’
A; = (DXL (3-18)
It is crucial to know (in order to pass back in Eulerian coordinates, for instance) when X7 is a global
diffeomorphism. In order to achieve this, we will use the following theorem due to Hadamard:
Theorem 3.25 (Hadamard). Let X : R" — R” a function of class C. Then, the following are equivalent:
(1) X is a local diffeomorphism and im0 | X (x)| = oo.
(2) X is a global C'-diffeomorphism over R™.
For a proof of this result one can consult, for instance, [Katriel 1994].

Proposition 3.26. Let us consider v € Cy, ([0, T1], B;/lp_l) with 0,0, V20 € L;(B;/lp_l). Then, there
exists a positive a such that if
1Vl orm, < o (3-19)

then, for any t € [0, T'], we have X3(t,-) introduced in (3-17) is a global C'-diffeomorphism over R® and
det(DX3) > 0. Moreover, if
div(adj(DX3)v) =0 (3-20)

then, Xy is measure-preserving, i.e.,

det DXz = 1. (3-21)
Proof. Differentiating X3, we obtain
t
DX5(t,-) = Id+/ Dv(z,-)dt
0

and because of the embedding of B;/ lp into the space of continuous functions, see Proposition 3.7, we

conclude X3 € C1([0, T] x R?). We observe that

t
I1DX5(,-) =1d]| ooy = | [[DO(z,-)[|Lee dT
0

< ClIVolly gy < C.
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Thus choosing « sufficiently small ensures that X3 (z, - ) is a local C!-diffeomorphism over R3. The second
condition of Hadamard’s theorem is verified in the following lines. Using the triangle inequality we get

t t
Xo(t.2)] |x|—/ 5(z. x)|dt > |x|—/ 15z, | Lo d
0 0
t
ZIxI—C/ 15z, )| yorv dt
0 p.1
> I3l = Vil sy

The conclusion is that X3(z, - ) is a global C!-diffeomorphism over R3. Let us define J := det DX # 0.
Using Jacobi’s formula we get

Jit.x) =1+ /t tr(D(z, x) adj(DX3)(1, x)) d.
0

Recall that according to [Danchin and Mucha 2012, Lemma A.4] we may write

t

t
Id—adj(DXf,)=/ (DD—divz')Id)dr—i—Pz(/ Dl_)dt),
0 0

where the coefficients of the matrix P, : M, (R) — M, (R) are at least quadratic polynomial functions of
degree n — 1. Using this identity combined with the embedding L°° < B;/ lp and the smallness condition
(3-19) we get J; > 0. In order to prove the second part of the proposition, let us define

u(t, x) = o(t, X3 (¢, x)).
Using relation (3-20) combined with (3-13) we get
0 = J; ' div(adj(DX3)) = div(i o X; ') o X5,

which implies
divv =div(io X; ') = 0.

Since X3 can be viewed as being the flow of v, using Jacobi’s formula we can conclude the validity of
(3-21). Indeed, we have

X5(t,x) = x—l—/t v(r,x)dt
Ot
:x+/ ﬁ(T,Xl—)_l(T,Xﬁ(‘E,X)))d‘E
0

= x—i—/t v(t, Xp(t,x))d.
0

Then, Jacobi’s formula implies

det(DX3)(t, x) = exp(/t(div v)(t, X5(z, x))) =1. O
0
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Proposition 3.27. Consider v € Cp ([0, T], B;/lp_l) with 3,0, V*1 € LT(B3/IP_1) satisfying the small-
ness condition (3-3). Let Xy be defined by (3-17) and Ji; = det DX§. Then for allt € [0, T,

||Id—A5(z)||BS'/1p p ||VE||L}(B§(1”)’ (3-22)
||Id—ﬂdj(DXﬁ)(l)||Bs’/lp < ||V5”L}(BS,/1”)’ (3-23)
10 adji(DX5) (Ol g3/—1 S IV 31 if p <6, (3-24)

19, adj(DX5) (D) g3/p S IVIWDI g3/ (3-25)

1550 = W garp S IVl Ly gy, (3-26)

In order to establish stability estimates we use the following:

Proposition 3.28. Let vy, U, € Cp([0,T], B 3/p_l) with 3,01, 0;V2, V201, V21, € LT(B3/IP_1), both
satisfying the smallness condition (3-19) and §v = v, — v1. Then we have

145, = Av, [l Lo 370y S VOV L1 (30 (3-27)

I adi(DX5,) — i (DXs) oy S 19801 13 gy (3-28)

”at ad_](Dle) at adJ(Dsz)“Ll (B3/P) ~ ||V5'U||L1 (Bg/l’)’ (3'29)

”at adJ(DXv ) — 0t adJ(Dsz)”LZ (33/1’ hy~ ||V5U||L2 (B3/I’ 1y if p<6, (3-30)
+

190 = T oo 5 19800 1y garmy (331
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