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GLOBAL DYNAMICS BELOW THE STANDING WAVES
FOR THE FOCUSING SEMILINEAR SCHRODINGER EQUATION
WITH A REPULSIVE DIRAC DELTA POTENTIAL

MASAHIRO IKEDA AND TAKAHISA INUI

We consider the focusing mass-supercritical semilinear Schrodinger equation with a repulsive Dirac delta
potential on the real line R:

i0:u+202u+ySou+ulP"'lu=0, (t,x)eRxR,
u(0,x) =up(x) € H'(R),

where y <0, §y denotes the Dirac delta with the mass at the origin, and p > 5. By a result of Fukuizumi,
Ohta, and Ozawa (2008), it is known that the system above is locally well-posed in the energy space H ! (R)
and there exist standing wave solutions ¢'®’ Q,, ,,(x) when » > %yz, where O, is a unique radial
positive solution to —% 20 +wQ—y8 0 =|Q|P~' Q. Our aim in the present paper is to find a necessary
and sufficient condition on the data below the standing wave e/’ 0, ¢ to determine the global behavior
of the solution. The similar result for NLS without potential (y = 0) was obtained by Akahori and Nawa
(2013); the scattering result was also extended by Fang, Xie, and Cazenave (2011). Our proof of the
scattering result is based on the argument of Banica and Visciglia (2016), who proved all solutions scatter
in the defocusing and repulsive case (y < 0) by the Kenig—Merle method (2006). However, the method
of Banica and Visciglia cannot be applicable to our problem because the energy may be negative in the
focusing case. To overcome this difficulty, we use the variational argument based on the work of Ibrahim,
Masmoudi, and Nakanishi (2011). Our proof of the blow-up result is based on the method of Du, Wu, and
Zhang (2016). Moreover, we determine the global dynamics of the radial solution whose mass-energy is
larger than that of the standing wave e’®? Q,, 9. The difference comes from the existence of the potential.
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1. Introduction

1A. Background. We consider the focusing mass-supercritical semilinear Schrodinger equation with a
repulsive Dirac delta potential on the real line R:
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i0:u+ %Biu +ySou+ulPlu=0, (t,x)eRxR,

| (6NLS)
u(0,x) =up(x) € H (R),

where y <0, 6o denotes the Dirac delta with the mass at the origin, and p > 5. The system (§NLS)
appears in a wide variety of physical models with a point defect on the line; see [Goodman et al. 2004]
and the references therein. We define the Schrodinger operator H, as the formulation of a formal
expression —%8)% —ydo:
Hyp:=—30%p. ¢€D(H,y),
D(Hy) = {pe H' (R)NH*R\{0}) : 9x¢(0+) — dxp(0—) = — 2yp(0)}.

H,, is a nonnegative self-adjoint operator on LZ(R) (see [Albeverio et al. 2005] for more details), which
implies that (SNLS) is locally well-posed in the energy space H !(R).

Proposition 1.1 [Fukuizumi et al. 2008, Section 2; Cazenave 2003, Theorem 3.7.1]. For any ug € H(R),
there exist T+ = T+ (||uo| g1) > 0 and a unique solution

ue C((~T-.T4); H'(R) N CH((=T-, T4): H'(R))
of (6NLS). Moreover, the following statements hold.:

e (blow-up criterion) T+ = oo, or T+ < 0o and limy—+1, [|0xu(?)||z2 = 00, where the double-sign
corresponds.

e (conservation laws) The energy E and the mass M are conserved by the flow; i.e.,
E(u(t)) = E(uo), M®u()) = M(uo) foranyte (=T-,Ty),

where for ¢ € H'(R), we define E and M as

_ 1 2 1 2 1
E(p) = Ey(¢) = z110x0ll72 — 3710(0)]" — 11

M(p): = Zlell3,. (1-2)

+1
lell? s (1-1)

We investigate the global behaviors of the solution. By the choice of the initial data, (NLS) has various
solutions, for example, scattering solutions, blow-up solutions, and so on. Let us recall the definitions of
scattering and blow-up. Let u be a solution to (§NLS) on the maximal existence time interval (—7—, T4).

Definition 1.1 (scattering). We say that the solution u to (§NLS) scatters if and only if 74 = oo and
there exist u4+ € H(R) such that

|l (2) —e_i’HVui||H1 —0 ast— Foo,
where {e~/*H7} denotes the evolution group of i d;u — H yu =0.

Definition 1.2 (blow-up). We say that the solution u to (SNLS) blows up in positive time (resp. negative
time) if and only if T < oo (resp. T— < 00).
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Since a pioneer work by Kenig and Merle [2006], the global dynamics without assuming smallness
for focusing nonlinear Schrodinger equations have been studied. For the focusing cubic semilinear
Schrodinger equation in three dimensions, Holmer and Roudenko [2008] proved that ||ugl|z2||Vuoll ;2 <
101211V Q| 12 implies scattering and, on the other hand, ||ugl||z2||Vuolz2 > |Qll121IV Q| 2 implies
finite-time blow-up if the initial data ug € H '(R?) is radially symmetric and satisfies the mass-energy
condition M (ug) E(ug) < M(Q)E(Q), where Q is the ground state. For nonradial solutions, Duyckaerts,
Holmer, and Roudenko [Duyckaerts et al. 2008] proved the scattering part and Holmer and Roudenko
[2010] proved the solutions in the above blow-up region blow up in finite time or grow up in infinite
time. Fang, Xie, and Cazenave [Fang et al. 2011] extended the scattering result and Akahori and Nawa
[2013] extended both the scattering and the blow-up result to mass-supercritical and energy-subcritical
Schrédinger equations in general dimensions.

Recently, Banica and Visciglia [2016] proved all solutions scatter in the defocusing case. On the other
hand, in the focusing case, (§NLS) has blow-up solutions and nonscattering global solutions. Thus, their
method cannot be applicable to our problem.

1B. Main results. To state our main result, we introduce several notations.
Let w be a positive parameter that denotes the frequency. We define action S, and a functional P as

1 +1
So(9) = Swy(9) 1= E(9) + oM(9) = 119x¢[7. — 37190 + 30|l - mllwll,‘jﬁl, (1-3)
_ 1 2 1 2 p—1 p+1
P(p) = Py(9p) := 3110x¢ll72 — 3710 (0)]" — m”‘ﬂ”LHn (1-4)
where P appears in the virial identity (see [Le Coz et al. 2008]).
We often omit the index y. We sometimes insert O into y, such as S, 0 and Pp.
We consider the three minimizing problems
ne :=inf{Se(p) : g€ H'(R)\ {0}, P(¢) =0}, (1-5)
ro = inf{Se(¢) : g€ HLq(R)\ {0}, P(¢)=0}, (1-6)
lo :=inf{Su,0(¢) : g€ H' (R)\ {0}, Po(p) =0}, (1-7)

where Héld(lR) ={p¢€ Hl([R) tp(x)=@(—x)}.
Equation (1-7) is nothing but the minimizing problem for the nonlinear Schrodinger equation without

a potential, and /,, is positive and is attained by

0w o(x) = {@ sechz(%w}"“,

which is a unique positive solution of
—3970 +00 =[01""'0. (1-8)

For n, and r,, we prove the following statements, some of which were proved by Fukuizumi and
Jeanjean [2008].
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Proposition 1.2. Let y be strictly negative. Then the following statements are true:
(1) ney = ly and ny, is not attained.

(2) ngy <rye and
Fo =2y if0<a)§%y2,
Foo <21y ifa)>%y2.

3) If w> %yz, then r, is attained by

_ (et 2(<p— ) _(L))}
Ouw(x)=Qp,y(x):= { > sech 7 |x| 4 tanh N ,

which is a unique positive solution of —%3)26 Q0 +wQ—y80 =|0|P~1Q. On the other hand, r, is
not attained if 0 < w < %yz.

The function e!®? Oy with w > %yz is a global nonscattering solution to (§NLS), which is called the
standing wave. The fact that n,, # r, comes from the existence of the potential, which means that the
following main result in the radial case does not follow from that in the nonradial case.

By using the minimizing problems, we define subsets in H !(R) for @ > 0 as follows:

N = {pe H'(R) : Sp(p) <ngw, P(p)=0},

Ny =1{pe H'(R) : Sp(p) <ne, P(p) <0},
d
N R} ={pe Hyy(R) : Su(p) <rw. P(p)=0},

Ry = {9 HL(R) : S (9) <rw, P(9) <0}

We state one of our main results, which treats the nonradial case. We classify the global behavior of
the solution whose action is less than 7.

Theorem 1.3 (nonradial case). Let w > 0. Let u be a solution to (NLS) on (—T—, T4) with the initial
dataug € H'(R).

(1) If the initial data ug belongs to N, J , then the solution u scatters.
(2) If the initial data ug belongs to N, then one of the following four cases holds:

(a) The solution u blows up in both time directions.

(b) The solution u blows up in a positive time, and u is global toward negative time and

limsup ||0xu(t)]|z2 = oo.
t—>—00

(c) The solution u blows up in a negative time, and u is global toward positive time and
limsup ||0xu(t)]|z2 = oo.
t—>00
(d) The solution u is global in both time directions and

limsup ||0xu(t)]|z2 = oo.
t—=+o0
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Proposition 1.2 and a direct calculation give ny, = I, = ©2?-D S 0(Q1,0). By these relations, we
can rewrite the main theorem in the nonradial case into a version independent of the frequency w.

Corollary 1.4. We define the subsets N+ in H'(R) as

NT:={peH'(R): E(p)M(9)° <Eo(Q1,0)M(Q1,0)°. P(p)>0},
NTi={peH'R): E(0)M(¢)° <Eo(Q1,0)M(Q1,0)°, P(p) <0},

where o := (p+3)/(p—>5). Let u be a solution to (SNLS) on (—T—, Ty) with the initial data ug € H'(R).
Then, we can prove the same conclusion as in Theorem 1.3, where N, (3: is replaced by N'*, respective of
the sign.

The equivalency is proved in the Appendix.

Next, we state the other main result for radial solutions. If we restrict solutions to (SNLS) to radial
solutions, then we can classify the global behavior of the radial solutions whose action is larger than n,
and less than 7.

Theorem 1.5 (radial case). Let w > 0 and u be a solution to ((NLS) with the initial data ug € Hrgd([RQ).
Then, we can prove the same conclusion as in Theorem 1.3, where /\/'aj—L is replaced by Ri, respective of
the sign.

Remark 1.1. Even if solutions to (6NLS) are restricted to radial ones, the possibility that (b)—(d) (grow-
up) occurs cannot be excluded since we consider one spatial dimension. In [Le Coz et al. 2008], it was
proved that if the initial data satisfies xug € L? and P(ug) < 0, then the solution blows up in a finite
time in both time directions.

1C. Difficulties and idea for the proofs. Our proof of the scattering part is based on the argument of
Banica and Visciglia [2016], where they proved all solutions scatter in the defocusing case. We also use a
concentration compactness argument (see Sections 3C-3E) and a rigidity argument (see Section 3E). In
the focusing case, it is not clear that each profile has positive energy when we use profile decomposition.
To prove this with y = 0, the orthogonality property of the functional Py was used in [Fang et al. 2011;
Akahori and Nawa 2013]. However, it is not easy to prove the orthogonality of the functional P, because
of the presence of the Dirac delta potential (y # 0). To overcome this difficulty, we use the Nehari
functional I , (see (2-7) for the definition) instead of P),. Then we can prove that the subsets for the
data defined by I, instead of P are the same as the subsets /\/wi (see Proposition 2.15) using an argument
similar to that of [Ibrahim et al. 2011].

Theorem 1.5 (radial case) does not follow from Theorem 1.3 (nonradial case) since we treat solutions
whose action is larger than or equal to n, in Theorem 1.5. Recently, Killip, Murphy, Visan, and Zheng
[Killip et al. 2016] also considered a similar problem and extended the region to classify solutions under
radial assumption for NLS with the inverse-square potential. They used the radial Sobolev inequality, which
is only effective in higher dimensions, to prove a translation parameter in the linear profile decomposition
is bounded. However, this method cannot be applied to our problem. In the one-dimensional case, it is
not clear whether the translation parameter is bounded or not. To avoid this difficulty, we use the fact that
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the translation parameter —x, appears in the profile decomposition if x, appears (see Theorem 3.5 for
more detail).

Next, we explain the blow-up results. Holmer and Roudenko [2010] proved a blow-up result for the
cubic Schrodinger equation without potentials in three dimensions by applying the Kenig—Merle method
[2006]. Recently, Du, Wu, and Zhang [Du et al. 2016] gave a simpler proof for blow-up, in which they
only used the localized virial identity. We apply their method to the equation with a potential.

1D. Construction of the paper. In Section 2, we consider the minimizing problems from the viewpoint
of variational argument. We prove the existence and nonexistence of a minimizer for r,, and n, and that
the subsets for the data defined by I, instead of P are the same as the subsets in H ! (R) defined by P in
this section. In Section 3, we prove the scattering results by a concentration compactness argument and a
rigidity argument. We explain the necessity of the Nehari functional /,, instead of P. In Section 4, we
prove the blow-up results, based on the argument of Du et al. [2016].

2. Minimizing problems and variational structure
2A. Minimizing problems. Let (o, f) satisfy the conditions

@>0, 20—B>0, 20+B>0, (xf)#(0.0). (2-1)
We set
p=max{2a — B, 20+ B}, p:=min{2a —f, 2a + B}

We define a scaling transformation and a derivative of functional as

03P (x) 1= e (e Phx), (2-2)
£3P8(p) 1= 0,805 a=1o: (2-3)
B s(p) =5 s(p) (2-4)

for any function ¢ and any functional S : H!(R) — R. We define functionals Kg’ﬂ by

K& (p) = K%E (p)

= L2 Su(p)
= 0,50(**o(e P4 )i=o
(p+Da+p +1
= 1Qa—B)loxell7, + 300+ B)lel;> — yaleO)* - T”(p”z;ﬂrl . (2-5)
We especially use the following functionals:
11 p—1 1
P(p) = Py(p) :=K5 (¢) = %”ax‘/’”%Z — 1y1p(0)* — m”‘/’”{jﬂ, (2-6)

+1
Io(®) = Ty () = K;°(9) = 518x01 72 = vIe )1 + 0llel7> = )] - 27
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Remark 2.1. Both the functional P, which appears in the virial identity (3-2), and the Nehari functional 7,
are used to prove the scattering results. It is proved in Proposition 2.15 that P and [, have same sign under
a condition for the action. To prove this, we introduce the parameter («, §) based on [Ibrahim et al. 2011].

We also use Jg # defined by

K&P
I ) = 15 ) = Sule) - =0 X

Lemma 2.1. We have the relations

0 if =<0,
2,8||8x§0||L2 if B>0,

(P — )50l = {
{Zﬂllwlle i B <0,

Ea,ﬁ T 2
? ~mlel}, = B0

BleOI> if p=0,
—Ble(O)> if p >0,

(p—Da+2B) eyt if B=0,

(L*F — e

£ —wle|?rl =

1 .
L L= Dallell if p>0.
In particular,
_ _ : (p—5a 1
RIgP = (= £2P)Sulp) 2 Bl min{3 10x0l 7. 0llelZ2) = 3v 1Bl OF + = —==lel7h-
Moreover, we have
W\ paB wf s raf 1 o, lelZrdy
-%E’—MXC’—gﬁM@=%£’—MX£’—g)zﬂwml+j;:r
> 11812 10(0) 2 (p—5a X a2t (p—3an pH1
> —3Y1B1"le(0)] +—p+1 e IILerl_—p+ ol p+1
Proof. These relations are obtained by simple calculations. We only note that
(p—Da+28=(p—5a+2Qx+p)>(p—5)«. O

By this lemma and p > 5, we find that J(ff’ﬁ (¢) = 0 for any ¢ € H!(R). Next, we see that Kg’ﬁ is
positive near the origin in A (R).

Lemma 2.2. Let {@y \nen C HY(R)\{0} be bounded in L*(R) such that ||0x@n||;2 — 0 as n — oo. Then
Kg’ﬂ (¢n) > 0 for large n € N.

Proof. By y <0, p > 5, and the Gagliardo—Nirenberg inequality, we have

(p+Ua+ﬂ Lp-1)
————Cl0xenll}>
p+1

for sufficiently large n € N, where C is a positive constant. O

|2(p+3) -0

K& (pn) = 12— B)10xpnl 2, — lon |
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We define the following minimizing problems for w > 0 and («, ) satisfying (2-1):

n%P = inf{Sy () : p e H' (R)\ {0}, K&P (p) =0}, (2-9)
r&P = inf{S, () : p € HL R\ {0}, K&P (9)=0}, (2-10)
12F = inf{Su,0(p) : g€ H' (R)\ {0}, K35 () =0}. (2-11)

If (x, B) = (%, —1), these are nothing but n,, ry, and /,,. We prove that these minimizing problems
are independent of (&, ) and Proposition 1.2 holds in the following subsections.

2B. Radial minimizing problem. First, we consider the radial minimizing problem rg’ﬂ . Fory <0,
Se : Hri 4(R) — R satisfies the following mountain pass structure:

(1) Se(0) = 0.

(2) There exist §, p > 0 such that S, (¢) > § for all ¢ with ||¢||g1 = p.

(3) There exists ¥ € Héd([R) such that S, (¥) <0 and ||| g1 > p.

Indeed, (1) is trivial, (2) can be proved by the Gagliardo—Nirenberg inequality, and (3) is obtained by a
scaling argument.
Let
C:={ceC([0.1]: Hyy(R)) : c(0)=0, Sp(c(1)) <0},
b:

= inf max S,(c(?)).
c€C tefo,1]

Lemma 2.3. The identity b = rg’ﬂ holds.

Proof. First, we prove b < rg’ﬁ . To see this, it is sufficient to prove the existence of {c,} C C such that
max;e[o,1] Sw(cn (1)) — rg’ﬂ as n — oo. We take a minimizing sequence {¢, } for rg’ﬂ , namely,

Swlpn) > %P asn—o0  and  K%P(g,)=0 forallneN.
We set ¢, (A) := Lz’ﬂ @, for A € R. Then, we see that S, (¢, (1)) < 0 for large A. Moreover,

max Sy (Cn (1)) = Su(@n(0) = Su(gn) > 75F  asn — oo
eR

since Kg’ﬂ (¢n) = 0 for all n € N. We define %5, (¢) for t € [-L, L] such that

En(t) if —JL<t<L,

)= Ze+L)Me (<L) if—L<i<-1L.

% is continuous in H ' (R) and we have S, (¢, (L)) < 0 and max;e[—1,1] Sw(Cn(t)) = Sw(pn) — rg’B
when L > 0 and M = M (n) are sufficiently large. By changing variables, we obtain a desired sequence
cp € C. Next, we prove b > rg’ﬂ . It is sufficient to prove

([0, 1) N {pe Hi R\ {0} : K&FP (9)=0} #@ forallc eC.
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We take an arbitrary ¢ € C. Now, ¢(0) = 0 and S, (c(1)) < 0. Therefore, Kg’ﬂ (c(t)) > O for some
t € (0,1) by Lemma 2.2 and Kg’ﬂ (c() <((p+ Da+ B)Sy(c(1)) < 0. By continuity, there exists
to € (0, 1) such that KZ‘;B (c(to)) = 0. Thus, we get b = rg’ﬂ. |

. . e e e e . o,
Next, we prove the existence and nonexistence of a minimizer for the minimizing problem r, A

See [Fukuizumi and Jeanjean 2008, Lemmas 15, 19, 20, 21, and 25] for the proofs of the following
Lemmas 2.4, 2.5, 2.6, 2.7, and 2.8, respectively.
The following lemma means that it is sufficient to find a nonnegative minimizer.

Lemma 2.4. If ¢ € H'(R) is a minimizer of rg’ﬂ, then |¢| € HY(R) is also a minimizer.

Definition 2.1 (Palais—Smale sequence). We say that {¢, ey C H 1 (R) is a Palais—Smale sequence for
S at the level ¢ if and only if the sequence {¢, },en satisfies

Sw(gn) —>c and S, (pn) =0 in H'(R)  asn— oo.

B

By the mountain pass theorem, we obtain a Palais—Smale sequence at the level b = rg,”. We may

assume that the sequence is bounded.

Lemma 2.5. Any Palais—Smale sequence of S, considered on Hrzd([R{) is also a Palais—Smale sequence
of S, considered on H'(R). In particular, a critical point of S, considered on H! (R) is also a critical

rad
point of S, considered on H'(R).

Lemma 2.6. Let {@,}nen C H(R) be a bounded Palais—Smale sequence at the level ¢ for S,,. Then there
exists a subsequence still denoted by {@, } for which the following holds: there exist a critical point g
of Sw, an integer k > 0, for j =1, ..., k, a sequence of points {x,{} C R, and nontrivial solutions v/ (x)
of the equation (1-8) satisfying

On — @9 weakly in Hl(R),

k
So(@n) = ¢ = Su(@0) + Y Sw.0(v’),
j=1
k . .
¥n — (900 + Z v/ (x —x,{)) — 0 strongly in H'(R),

J=1
|x,{|—>oo, |x,{—x£l|—>oo for1<j#i<k
as n — o0, where we agree that in the case k = 0, the above holds without v/ and x,j,.

Lemma 2.7. Assume that
rah < 2]%P,

Then the bounded Palais—Smale sequence at the level rg’ﬂ admits a strongly convergent subsequence.

Lemma 2.8. If ¢ € H'(R)\ {0} is a critical point of Sy, that is, ¢ satisfies

1920+ wp—ySop = l9|P e (2-12)
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in the distribution sense, then it satisfies
¢ e CTR\{ODNCR). j=1.2,
309 +wp=lpl" e, x#0,
Ix@(0+) — 0xp(0—) = —2y¢(0),
Ixp(x),p(x) >0 as|x| — oo.
Lemma 2.9. There exists a unique positive classical solution ¢ of (2-12) if and only if @ > %yz. It is
nothing but Qy. If 0 < w < %yz, then the classical solution does not exist.

Proof. We have a unique positive classical solution Qo of (1-8). If v > %yz, then we get a classical
solution ¢ of (2-12) by the translation of Q0. See [Fukuizumi and Jeanjean 2008] for more detail. [J

Lemma 2.10. The inequality rg’ﬂ < 215’5 holds when w > %yz.

Proof. When o > %yz, we know Q,, is well defined. We find that Q,, satisfies Kg’ﬂ(Qw) = 0 and
Se(0p) < 213"3 by direct calculations. |

By Lemmas 2.7 and 2.10, we find that when o > %yz, the function Q, attains rg’ﬂ .

Lemma 2.11. If 0 < @ < 1y then r&# = 21%* holds.

Proof. Suppose that rg’ﬂ < 2[5”3 . By Lemmas 2.7 and 2.8, we have a unique positive classical solution
of (2-12), which contradicts Lemma 2.9. Thus, it suffices to show rg"B < 215”3 for all > 0. Let

on(x) == Qu,0(x —n) + Qu,o(x +n).

Then, S (¢n) — 2, and Kg‘),ﬂ (¢pn) — 0 as n — oo. Thus, there exists a sequence {A,} such that
Kfj‘,’ﬂ(/\nwn) =0and A, — 1 as n — oo. Therefore, we have S, (An¢n) — 2l, as n — oo and
Ko? (Angn) = 0 for all n € N. This means that r&h < %P 0

Remark 2.2. The rearrangement argument implies

188 = inf(Sw,0(0) : 0 € Hg R\ {0}, K&'5 () =0}.

Therefore, the arguments in Section 2B do work for lg’ﬂ .

a,p

%’B = lg’ﬂ and ny" is not attained.

2C. Nonradial minimizing problem. In this subsection, we prove n
Lemma 2.12. We have

108 = jeb —int{ 8 (p) : p e H'(R)\ {0}, K% (¢) <O}.
Proof. First, we prove jaof’ﬂ < l(j‘ﬁ’ﬂ:
jak <int{Jof (9) - e H' R\ {0}, K () =0}

= inf{ Sy 0(p) 1 g € H'(R)\ {0}, K&h () =0}
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Next, we prove lg’ﬁ < ja‘f’ﬂ. We take ¢ € H!(R)\ {0} such that K“ ﬂ((p) <0.If K ((p) =0, then

18P < Su0(9) = 28 (@)

If K¢ w0 (@) <0, then there ex1sts Ax € (0,1) such that K& w.0*x@) = 0. Indeed, this follows from
continuity and the fact that K ()Lgo) > 0 holds for small A € (0, 1) by Lemma 2.2. By A, < 1,

,a,ﬂ < Sw,0(h0) = Joh Q) < T 575 (0).
Therefore, we have I, o.p <J, o.p o (@) for any ¢ € H l(IR&)\{O} such that K ((p) < 0. This implies
laﬂ<]aﬂHence we get I, B—Jwﬂ. |

Let 7y,¢(x) := ¢(x — y) throughout this paper.
Proposition 2.13. The identity n%? = 1%* holds.
Proof. First, we prove ng,’ﬂ > lg’ﬂ . We take an arbitrary ¢ € H(R)\ {0} such that Kg’ﬁ (¢) = 0. Since
K28 (¢) < K’ (9) = 0 due to y < 0, by Lemma 2.12, we then have
1P < I35 @) = I3 (),

which implies
198 <inf(J2P (p)  pe H' (R)\ {0}, K&P (9)=0}

= inf{Su(¢) : o€ H (R)\ {0}, K& (9) =0} = n%P.

. We note that Q¢ attains lg’ﬂ . Then, there exists a sequence {y, }nen With

Yn — 00 as n — oo such that S, (1y,, Qw,0) = Sw,0(Qw,0) = lg’ﬂ

K2 (1, 00,0) = K&h (1, 00.0) = K2h(Qw0) = 0

holds for all n € N. Since Kg’ﬂ (Aty, Qw,0) <O for large A > 1 and Kg’ﬁ (ty, OQw,0) > 0, there exists
An > 1 such that Kf,’ﬂ (AnTy, Ow,0) = 0 by continuity. For this {4, }, we have A, — 1 as n — oo. Indeed,
since

0= Kgl),ﬂ (A’nTJ’n Qa),O)
_12/1 2 1 2 2
= A (5Qa = B)9x1y, Qu.olf2 + 30 + B) 1y, Qw.oll] > — valty, Qw.0(0)[%)

(p+ D+ -
AR S R ey, Qw1

Next, we prove nw’ﬂ <l o.p

as n — oo. For this {y,},

and K ’ﬂ 0 (ty, Qw,0) = 0, we have

0= Z(za —B)|0x 7y, Qw,0||L2 + %0)(20‘ + By, Qw,O“IZJz —vyalty, Qw,0(0)|2

a(p+Da+p +1
_)\? 1\ v o= vt E p
n P ||Tyn Qa),O”Lp-H
_ (p—l—l)oz—l—ﬁ 1
= (= A)Tlm Quoll ) — ey, Qu.o(0)”
_ (p+1)oe+ﬂ 1
=(1-A 0wl —velty, Qw0

p+1
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Therefore, A, — 1, since |1y, Qw,0(0)| = 0 as n — oo. Hence, Sy (As 1y, Qw,0) = Sw,0(Qw,0) = ﬁ

asn — oo and K’ B()Lnryn Qw,0) = 0 for all n € N. This implies nwﬂ <I5". I:I

Proposition 2.14. For any w > 0, the minimizing problem nw’ﬁ

exist ¢ € HY(R) such that Kw"g (¢) =0 and Sy (@) =ngy b

is not attained; namely, there does not

Proof. We assume that ¢ attains nw’ﬂ If ¢(0) =0, then Sy,,0(¢) = Sw(p) = nw’ﬂ =1 %8 and Kw’g (@) =

’ﬂ (¢) = 0 holds; that is, ¢ also attains /5, % By the uniqueness of the ground state for /5, o.p , we know
@ = Q0. However, Q4 0(0) # 0. Therefore, ¢(0) # 0. Now, |@(x)| — 0 as x — oo since ¢ € H ' (R).
Hence, |¢(0)| > |@(y)| for sufficiently large |y|. Thus,

K& (1,0) < K2FP (p) =0

Since Kg’ﬂ (Aty@) > 0 for small A € (0, 1) by Lemma 2.2 and Kg’ﬂ (ty@) <0, there exists A« € (0,1)
such that Kg’ﬂ (A+Ty@) = 0 by continuity. By the definition of nff,’ﬂ ,

nGP < ISP Mityp) < J3P (ty0) < ISP (9) <nP.
This is a contradiction. O

SmceSa,O(Qwo)—laﬁ—naﬂandSw y(wa)—rw ifo>1 )/ and21aﬂ—raﬂlfa)<1y2hold

we find that rgy’ o.p s %8 and ney %B are independent of («, 8) and so we denote rg;’ o.p s %B and ne @ by 1w,

l, and n, respectively and obtain Proposition 1.2.

2D. Variational structure. We define subsets N A% and joﬂ +in H 1(R) such that

NGB = Lo e HY(R) : Su(p) <nw, K& (9) >0},

Na‘f’ﬁ’ = {goeH ([R?):Sm((p)<nw,Kg’ﬂ(¢)<O},
REPT = {pe HLWy(R) : Su(9) <ro, KEP (9) >0},
REP™ = {p e HY4(R) : Su(p) <rw. KLF (9) <0}

1_ 1_

We note that N.F = N2’ LE and Raﬂf =Rz L% From now on, let (M, MZ’B’i) denote either
(N, Ny A ’i) or (rm,RZ;ﬂ ’i). The following proposition implies that P and /I, have same sign if
S <M.

Proposition 2.15. For any («, B) satisfying (2-1), M$ = /\/lff,’ﬁ o+

Proof. 1t is easy to check that /\/lff,’ﬂ * are open subsets in H ! (R) because of Lemma 2.2. Moreover,
we have 0 € M?U”B’Jr and M%’B’Jr U Mffjﬂ’_ is independent of («, ). And MZ’B’JF are connected if
u > 0 by the scaling contraction argument (see the proof of Lemma 2.9 in [Ibrahim et al. 2011]). Then
7\/la’ﬂ’+ Ma B for (a, B) ;é (a B’) such that 20— > 0, 2+ > 0and 2o’ — ' >0, 2o’ + B’ > 0.
Of course, then Mg, %p= Mw
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We take {(ay, Br)} satisfying 20, — B, > 0 and 2w, + B, > O for all n € N and («y,, 8,) converges to
some («, B) such that u = 0. Then KoPr s k%P and so
) ’:l: ns I‘lﬁi
MEPE | | mEpPro
neN

Since each set in the right-hand side is independent of («, 8), so is the left. O
Let @3 := gl0x@l7, + z0l0l3, — 3710(0)%
Lemma 2.16. If P(¢) > 0, then

—1
P Su(e).
p—>5

Sw(p) <|l¢l?, <

which means that S, (¢) is equivalent to ||¢ ”1291
Proof. The left inequality is trivial. We consider the right inequality:
0=<2P(p)

p—1 1
S A Ol Tt

=—2(p=3)0x0ll7. + (P —3)eO)* + (p— DE(p)
<—3(p=50x¢l72+ 5 (P =P + (p — DE(9).
Therefore, we have
1P =3)0x0l72 =3 (P =@ + 5(p —Solel7. < (p—DE(@) + (p — 5w M(p)
<(p—D(E(p) + oM(p)).

Hence, we obtain

—1
P Sw (). U
p—>5

2
leliz =

Lemma 2.17. If ug € M}, then the corresponding solution u stays in M} for all t € (—T—,T4).
Moreover, if ug € M, then the corresponding solution u stays in M, forallt € (=T—, T).

Proof. Letug € M. Since the energy and the mass are conserved, u(1) € M UM, forallz € (—=T—, T4).
We assume that there exists Z4x > 0 such that u(t«+) € M. By continuity, there exists ¢« € (0, #+x) such
that P(u(t+)) =0 and P(u(z)) <O for t € (t«, t+«]. By the definition of m,, if u(#x) # 0, then

me > E(uo) + oM(uo) = E(u(tx)) + oM(u(t)) = me.

This is a contradiction. Thus, u(#«) = 0. By the uniqueness of solution, u = 0 for all time. This contradicts
u(txx) € M. By the same argument, the second statement can be proved. O

Lemmas 2.16 and 2.17 imply that all the solutions in M, are global in both time directions.

Proposition 2.18 (uniform bounds on P). There exists § >0 such that for any ¢ € H'(R) with S, (¢) <me,

we have

P(p) = min{2(mew — Su(9).8ll@l3,} or P(p) < —2(mw— So(@)).
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Proof. We may assume ¢ # 0. Now s(1) := Se (¢*) and n(1) := ||p* ||£jil , where ¢* (x) 1= e%)%p(elx)
for A € R. Then s(0) = S, (@) and s’(0) = P(¢), and we have

P*lx
e 2 1 p—1 1
s =1 oxpl2+1wllelZ—tyet o) P———lll? . n()=e"7 ol )L,
p+1 L L
T (p—1)
- 1 1
s/(x)z%e”‘||ax<p||,%2—%ye*|<o(0)|2——2( T O S T N 7 et
L
e (p—1 +1 +1
s" (W) =00l 72—5ve* [p(0)~ —4( 5 el = T A -1l

By an easy calculation, we have

p—_sn/fzsl_p—_sn, 52 /
2(p+1) 2(p+1)
First, we consider P < 0. We have s’(1) > 0 for sufficiently small A < 0. Therefore, by continuity, there

exists Ao < 0 such that s’(1) <0 for Ao <A <0 and s'(1¢) = 0. Integrating the inequality on [A¢, 0], we
have

s" =25+ 2ylp(0)|*> —

5'(0) —s'(Ao) < 2(s(0) —s(Xo)).
Therefore, we obtain
P(p) < —2(mep — Su ().

Next, we consider P > 0. If

P— 1 p+1
4P(p) > =——— ,
(§0) sl 2( + 1) ||‘p||Lp+1
then, by adding
p— P—5 1 p+1
_P > - [ —— 2’
2P = L2 el - 5 e el

to both sides, we get
{4+3(0=5}P@) = 5(p—lel3

Thus, we get P(¢) > 8||g0||§_[. If

D — 1 p+1

4P(p) < ———— 2 ,

then
-5
0<ds’ < L2 (2-13)
2(p+1)

at A = 0. Moreover,

s <45 25" — P~ n' < =2s
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holds at A = 0. Now let A increase. As long as (2-13) holds and s’ > 0, we have s” < 0 and so s’ decreases
and s increases. Since p > 5, we also have

n”>2n">4n>0
for all A > 0 Hence, (2-13) is preserved until s’ reaches 0, which it does at finite A1 > 0. Integrating
s” < —25" on [0, 11], we obtain
s' (A1) = "(0) < =2(s(X1) — 5(0)).

Therefore, by the definition of m,

P(p) >2(my — So(9)). U

3. Proof of the scattering part

3A. Strichartz estimates and small data scattering. We recall the Strichartz estimates and a small data
scattering result in this subsection. See [Banica and Visciglia 2016, Sections 3.1 and 3.2] for the proofs.
We define the exponents r, a, and b as

g2 2e=Dlp+D . 2D+

p+3 T (p—D2=(p—D—4

r=p+1,
Then we have the following estimates.
Lemma 3.1 (Strichartz estimates). We have
—itH
le™ ™ @llrarr < lellgr,

—itH
le™ @l p=1 100 S l0llar.

t
—i(l—S)Hy < .,
| e Foyds|  SIFly g

L{Lx

t
/ e 1= Hy F(5) ds
0

S ”F”L?/L;'C/’

where b’ denotes the Holder conjugate of b, namely, 1/b" +1/b = 1.
Proposition 3.2. Let the solution u € C(R : H'(R)) to (§NLS) satisfy u € L4(R : L".(R)). Then the

solution u scatters.

L'y

For the proof of Proposition 3.2, see [Banica and Visciglia 2016, Proposition 3.1].
The analogous statement to Proposition 3.2 for the following semilinear Schrodinger equation without
potentials is well known:

i0;u + %aiu +uPlu=0, (t,x)eRxR,

1 (NLS)
u(0,x) =uo(x) € H (R),

where p > 5.
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Proposition 3.3 (small data scattering). Let ¢ € H(R) and u, v denote the solutions to (SNLS), (NLS),
respectively, with the initial data ¢. Then, there exist ¢ > 0 and C > 0 independent of € such that u and v
are global and they satisfy ||[ullLaprw) < Cll@llgr and [vliLarr@ < Clellgr, fllellg <e.

For the proof of Proposition 3.3, see [Banica and Visciglia 2016, Proposition 3.2].
3B. Linear profile decomposition and its radial version. To prove the scattering results, we introduce the

linear profile decomposition theorems. The linear profile decomposition for nonradial data, Proposition 3.4,
is obtained in [Banica and Visciglia 2016].

Proposition 3.4 (linear profile decomposition). Let {¢n }nen be a bounded sequence in H'(R). Then, up
to subsequence, we can write

J
on= eyl L W) VIeN,
j=1

where t,{ eR, x,J,. e R, 1//j € Hl(IR), and the following hold.:
e For any fixed j, we have

either l,{ =0 foranyn eN, or t,{ — foo asn— oo,

either x,{ =0 foranyn €N, or x,{ — o0 asn— oo.
e Orthogonality of the parameters:

|t,{—t,]f|—|—|x,{ —x,’f| —o00 asn—>o00, Vj #k.

e Smallness of the reminder:

Ve>0,3J = J(e) N suchthat limsup |l ¥ W || oo p o0 <.
n—->oo

e Orthogonality in norms: for any J € N,

J J
lenllZ> =D 197172 + IW 172 +0u(D), Nlenllly = Y e v/ Iz + W 17 +on (D),
j=1 =1

where ||v||12q = %||8xv||i2 —y|v(0)|?. Moreover, we have

J )
. j .
lonllfe =Y e P w7, + W] 170 +on(D). g€ (2,00), VIEN,
j=1

and in particular, for any J € N,

J .
Solgn) = Y Sule e y)) + Su (W) +on(),
j=1

J )
Lo(gn) = Y Lo(@ ey + Lo (W,)) + o (1)
j=1
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Proof. See [Banica and Visciglia 2016, Theorem 2.1 and Section 2.2]. ]
Remark 3.1. It is not clear whether
J . .
P(pn) =Y P vz jy/y+ PW,))+0,(1) VJeN
Jj=1
holds or not. That is why we use the Nehari functional /,, to prove the scattering results.

We introduce the reflection operator R such that Re(x) := ¢(—x).
Proposition 3.4 is insufficient to prove the scattering result for radial data. We need the following
linear profile decomposition for radial solutions, which is a key ingredient.

Theorem 3.5 (linear profile decomposition for radial data). Let {¢n}nen be a bounded sequence in
Hrfid([R). Then, up to subsequence, we can write

N —

J ) .
On = Z(e”fnyrx#/ff —l—e”'{H)’f_xr{RW) + %(an +RW,)) VJeN, (3-1)
j=1

where t,{ eR, x,],' eR, v/ e H'(R), and the following hold:
e For any fixed j, we have

either t,{ =0 foranyn e N, or t,{ — +00 asn— oo,

either x,{ =0 foranyneN, or x,{ — +oo asn— oco.
e Orthogonality of the parameters:
|t,{—t,]f| — 00, or |x,§ —x,’1‘| — 00 and |x,/l +x,lf| —o00 asn—o00,Vj#k.
e Smallness of the reminder:

Ve>0, 3J=J()eN suchthat limsup |e /Hr WnJ||L§>oL§o <e.
n—0o0

e Orthogonality in norms: for any J € N,

J

leallZs = Y |5y v/ + o RYD| 2 + |30 +RW| 72+ 0a (D),
j=1

J
leally = Y13 v/ + Ry + 1500 +RW| 5 +oa (D).
j=1

Moreover, for any q € (2, 00), we have

J .
leallfe = D15 B v +1_ Ry D Lo + |3 +RW)| 1, +on(D) VIEN,
Jj=1
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and in particular, for any J € N,

J .
So(gn) = Y Su(3e" ™ (z vd +1_ RY)) + Su (30 +RW)) +0n(D),
Jj=1

J
. . .
To(on) = ) lo(3¢" (07 + 7 RYD)) + Lo(3OF] +RW,))) +oa(1).
j=1
Proof. Since {¢,} is bounded in H!(R), we can apply the linear profile decomposition without the
radial assumption, Proposition 3.4, and obtain the following: for any J € Nand j € {1,2,...,J}, up to
subsequence, there exist {#;) }nen, {Xi tnen, and ¥/ € H1(R) such that we can write

J )
_ ity Hy _ . j J
(pn_Ze rx#w + W, .
j=1
Since ¢, is radial,

20n(x) = on(x) + @n(xX) = Pn(X) + @n(=x) = Pn(x) + Ren(x).

By combining the identities, we get

J ) J )
205 (x) = Ze”’{H”rxgw] +w/ +R(Z€lt’4Hytx’{lﬂj + WnJ)

Jj=1 J=1

J ) .
. J . . j .
= § (e eyl el e Ry + W+ RW,

where we have used Re!% H7 = ¢! HyR and Rty = t_yR Wthh gives (3-1).

We only prove the orthogonality of the parameters. If x;, + x —XeRandt] = tk for j <k, then we
replace v/ + r_wak by ¥/ and 0 by wk and regard the remainder terms as WJ By this replacement,
we have |xn — xk| — oo and |xn + xk| — 00 as n — oo when z,, = tk The orthogonality in norms
follows from the orthogonality of the parameters by a standard argument. O

Lemma 3.6. Let k be a nonnegative integer and, for | € {0,1,2,...,k}, we have ¢; € H'(R) (or
@] € Hr}m (R)) satisfying
k

k

Sw(z¢l)§mw_8, Sw( (pl)zz ((pl)_g
=0 =0 1=0
k

) > o)+

k
k k
Ia)(Z@l)Z_S, Iw(z(pl
= =0
for 8, e satisfying 2e < 8. Then ¢y € M} foralll € {0,1,2,...,k}. Namely, we have 0 < S, (¢;) < mg
and 1,(¢;) >0 foralll € {0,1,2,...,k}.

=0
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Proof. We assume there exists an / € {0, 1,2, ..., k} such that I, (¢;) <0. Then, we have J(;’O((pl) > Mey.
Indeed, there exists A4 € (0, 1) such that I, (A«¢@;) = 0 since I, (¢;) < 0 and I, (A¢p;) > 0 for small

A € (0,1) by Lemma 2.2. Thus, we obtain

M < Sewrxpr) = JoAagr) < J220)).

By the positivity of J, = Jal,’o and the assumptions, we obtain

k
My =< Jw(‘pl) = ZJw((pl)
=0

[ij

(Solon =2 1uton)
I

Il
=

rvjw

k
Sol@n) =33 Tule)
=0

=0
k | k
= Sw(Z(pz) +8—§(1w(z¢l) —8) <My—0+e+e<my.
=0 1=0
This is a contradiction. So, I, (¢;) >0 forall/ € {0,1,2,...,k}. Moreover, for any [ € {0, 1,2, ..
we have
Sw(@1) = Jo(@1) + 310 (@) = 0,
and
k k
So(e) £ Suwler) < Sa)(2§01) +e<my—38+e<my.
=0 =0

Therefore, we get ¢; € M} foralll €{0,1,2,...,k}.

-k,

O

3C. Perturbation lemma and nonlinear profile decomposition. We use a perturbation lemma and lem-

mas for nonlinear profiles. The proofs of these results are the same as in the defocusing case (see [Banica

and Visciglia 2016]).

Lemma 3.7. For any M > 0, there exist ¢ = ¢(M) > 0 and C = C(M) > 0 such that the following
occurs. Letv e C(R: HY(R)) N L¢ (R : L7.(R)) be a solution of the integral equation with source term e:

v(t)=e v 4 /t eI E=Hy (1u(5)[P~ u(s)) ds + e(t)
0

with ||[v|[Lapr, <M and ||e||papr, <& Moreover assume ¢o € HY(R) is such that ||e~*H» pollLary <e.

Then the solution u(t, x) to (SNLS) with initial condition ¢ + ¢,

u(t) = e (¢ 4 go) +i / i, (lu ()17~ u(s)) ds,
0

satisfies u € LY L\ and moreover |u —v|pap; < Ce.
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See [Fang et al. 2011, Proposition 4.7] and [Banica and Visciglia 2016, Proposition 3.3] for the proof.
Following Lemmas 3.8, 3.9, and 3.10 can be proved in the same manner as [Banica and Visciglia 2016,
Propositions 3.4, 3.5, and 3.6], respectively.

Lemma 3.8. Let {x,}nen be a sequence of real numbers such that |x,| — oo as n — oo, ug € H'(R)
and U € C(R: HY(R)) N L4(R : L".(R)) be a solution of (NLS) with the initial data uo. Then we have

t

Un(t) = e~ itHy Ty, U 1 / eIt Hy (|Un (S)|p_1Un(s)) ds + gn(t),
0

where Uy (t, x) = U(t, x —xp) and || gn||La Ly, — 0 asn — oo.

Lemma 3.9. Let ¢ € H'(R). Then there exist solutions Wy € C(Ryx : HY(R)) N L4(R4 : L.(R)) to

(6NLS) such that
[Wx(z,-) —e_itHyngIIHl —-0 ast— +oo.

Moreover, if {ty}nen is such that t, — Foo as n — oo and Wy is global, then

t
Wan(t)=e"Hrg, +i / ey (1Wy ()P W (5)) ds + fien(2),

0
where @, =e'nHr g, Wi n(t, x)=Wi(t —tn.x), | f£nllLery; — 0 asn — oo, and the double-sign
corresponds.
Lemma 3.10. Let {t,}nen, {Xn}nen be sequences of real numbers such that t, — Foo and |x,| — 00
asn— o0, 9 € HY(R) and Vi € C(R+ : HY(R)) N LY(Rx : L”.(R)) be solutions of (NLS) such that

Vi(t,-) —e_”HO(pHHl -0 ast— too.
Then we have
t
Vin(t,x) =e v, +i / T (Ve ()P Ve (5) ds + e (2.0),

0

where gp =e'nfly T @ Van (. X) =Vt —tn, x—Xn), lex,nllLaLr, —0asn— oo, and the double-sign

corresponds.

3D. Construction of a critical element. We define the critical action level S for fixed w as
S& :=sup{S : Seu(p) < S for any ¢ € M implies u € L¢L"}.

By the small data scattering result Proposition 3.3, we obtain SS > 0. We prove S = m,, by contradiction.

We assume S, < mg. By this assumption, we can take a sequence {¢y,}nen C M;)" such that
So(¢n) = Sg asn — 00, and [un||Le L7 @) = oo for all n € N, where uj, is a global solution to (SNLS)
with the initial data ¢,. Then, we obtain the following lemma.

Lemma 3.11 (critical element). We assume S&, < mg,. Then we find a global solution u® € C(R : H'(R))
of (§NLS) which satisfies u°(t) € M} for any t € R and

So) =Sg, |ullLarrm = oo.
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This u€ is called a critical element.
Proof. First, we consider the nonradial case.

Case 1: nonradial data. By ¢, € N/ and Lemma 2.16, we have

lenllz < lgnllF < E(@n) + @M(pn) <ne

for all n € N. Since {¢,} is a bounded sequence in H!(R), we apply the linear profile decomposition,
Proposition 3.4, and then obtain

J .
On = Zeit'{H”rx%wj +WnJ VJeN.
j=1

By the orthogonality of the functionals in Proposition 3.4, we have

J )
Swlgn) =Y Sw(e e yl) + o (W) + 0a(1),
j=1

J .
Lo(gn) = Y To(@ vy + 1o (W) + o (1),
j=1

where 0,(1) — 0 as n — oo.
By these decompositions and S, (¢, ) < 14, we can find 8, € > 0 satisfying 2¢ < § and

J .
Swln) <10—8, Sulgn) = Y Sule™Hre iyl +S,(W,)) —e,
j=0
J

To(n) > —. Lo(gn) < Y Lo e yd) + Ly (W,) +
j=0

for large n. Therefore, by Lemma 3.6, we see that

eitin Hy T v/ e NS and W eN] forlargen,
which means that, by Lemma 2.16,

Sw(e”éHerj ¥/)>0 and Sa,(WnJ) >0 for large n.
So, we have
J g .
S¢ = limsup Sy, (¢n) > limsup Z Sy (et Hy T iY’)
n—00 n—00 n

Jj=1

for any J. We prove S¢ = limsup,_, o, Sw(e”h/ Hy T.J ¥/) for some j. We may assume j = 1 by
reordering. If this is proved, then we find that J = I"and W) — 0in L H] as n — oco. Indeed,
lim sup,,_, o0 S (W,}) = 0 holds and thus lim sup,,_, o, [|W,! | 1 = 0 holds by | W,} || g1 & Se(W,}) since
W,! belongs to N\ for large n € N. On the contrary, we assume SS = lim sup,,_, o, Sw (e~itn Hy T v/)
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fails for all j. Then, for all j, there exists § = §; > 0 such that

hmsupSw(e”"HVt w/)<SC 5.
n—o0

By reordering, we can choose 0 < J; < J, < J3 < J4 < Js5 < J such that

l<j<ni: ti=0 vn, X} =0 Vn,
Ji+1<j<l: =0 Va, lim |x/| = oo,
L+1<j<J3: lim t] = +oo, xj =0 Vn,
n—>oo .
Js+1<j<Jy: lim zf:—oo, X} =0 Vn,
n—00 .
Ja+1<j<Js: lim ¢/ = 400, lim |x;| = oo,
n—oo n—>oo .
Js+1<j<J: lim tf=—oo, lim |x]|= o0
n—>oo n—>o0

Above we are assuming that if @ > b, then there is no j such that a < j < b. Notice that J; € {0, 1} by
the orthogonality of the parameters. We may treat only the case J; = 1 here. The case J; = 0 is easier.
We have 0 < S, (¥!) < SS — 6 by (t,{ , x,{) = (0, 0) and the assumption. Hence, by the definition of S,
we can find N € C(R: HY(R)) N L¢(R : L".(R)) such that

. t .
N(t,x) = e Hryl 4 / eI Hy (IN(5)|P7IN(s)) ds.
0

For every j suchthat J1 +1<j < J,, letU J be the solution of (NLS) with the initial data wj . Since
we have T 1/fj € J\/’J, we know 1/fj satisfies

Sw o) = Su(t W) < S5 <nw =lo

and Po(y¥/) > 0. (since 0 > Po(¥/) = limy 00 P(z, J ¥/) > 0if we assume Po(y/) < 0.) Therefore,
we see that the solution U/ scatters by [Fang et al. 2011 Akahori and Nawa 2013]; that is, U/ (¢, x) €
C(R: H'(R)) N L4(R: L (R)). We set U;/ (1. x) := U’ (1, x — x})).

For every j such that J, + 1 < j < J3, we associate with profile ¥/ the function

W (t,x) e C(R_: HY(R)) N LY(R_ : L"(R))

by Lemma 3.9. We claim that W/ (¢, x) eCR: HY(R)) N LY ([R{ L' (R)). Indeed, by the assumptlon
we see that So, (W) = limy 00 Sw(e”" Hyyly < S¢, since eltn Hy v/ — W7 in H'(R) with t;] — oo
as n — o0o. Therefore, by the definition of S¢, we obtain W7 (¢, x) € C(R: H'(R)) N L4(R : L”.(R)).
We set W] 2t x) =Wt —tn,x)

For every j such that J3 + 1 < j < J4, we associate with profile ¥/ the function

Wl(t,x) e CRy : H'(R) N LR+ : LL(R))

by Lemma 3.9. And the same argument as above gives us that WJ (t,x) e C(R: HY(R)NL4(R: L.(R)).
We set W’ LX) = W (t—t),x).
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For every j such that J4 + 1 < j < J5, we associate with profile wj the function
VI(t,x) e C(R-: H'(R)) N LY(R_: L".(R))
by Lemma 3.10. We will prove V7 (¢, x) e C(R: HY(R)) N L¢(R: L7.(R)). Now,

hmsupSw(e””HVr w1)<SC b
n—->oo

holds by the assumption. Here, since e "/*H» is unitary in L2(R) and conserves the linear energy, and

y <0, we have
Sule " fre yl) = B e, <W)+wM(e""4 v

”eltn Hy_( ]wj||P+l

112
= ”Tx}{WJ”H Lo+l

p+1

I H i1p+1
> 21l0x (IJW)IILer wIITJWIILz ity g oyl |2

—lle Lo+l

p+1
1 2 1 112 T H P+l
= z10x¥7 172 + z0ll¥/ 12 —mlle”" YTV

Since t,, — 00, we have ||e”" Hy ¢ i Wl ||Lerl — 0 as n — oo by [Banica and Visciglia 2016, Section 2,
(2.4)]. Therefore, we obtain

137 122+ 30l¥ /17, < S5 —8.
Since ¥/ is the final state of V./, we have
Sw,0(V1) = 310x97 72 + 3097 72 < S§ =8 < nw = Lo,

By [Fang et al. 2011; Akahori and Nawa 2013], we have VI(t,x) e C(R: HY(R) N L4(R: L".(R)). We
set V’n(t x) = V/(t—tn,x xn)
For every j such that Js + 1 < j < J, we associate with profile ¥/ the function

Vi, x) e CRy : H'(R) N LRy : LL(R))

by Lemma 3.10. And the same argument as above gives us that VJ (t,x) e C(R: HY(R)NLYR: L-.(R)).
We set V] 21, X) = V](t . x—x7).
We deﬁne the nonlinear profile as

.12 J3 J4 JS JG
Z]=N+ > U+ > Wi+ > Wi, + > Vi,+ Y Vv,
j=J1+1 j=J2+1 Jj=J3+1 j=J4+1 Jj=Js5+1

By Lemmas 3.8, 3.9, and 3.10, we have

7] =7y (g, — Wy +iz] 1),
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where ||r;1’ lzarr, — 0asn — oo and

z (1) = / D (N )P N () ds
0

Jr t . ' 4
+ ) /O ey (1UT (5)[P7YUS (5)) ds

j=J1+1

J3 t . ' '
+ ) / e Uy (1w ()P WS (5)) ds
j=a+170

J4 t . .
+ ) / e I (1w ()P WL () ds
j=J3+170

Js t
+ ) / e U=y (v ()P (5)) ds

j=Jat+1"0

J ¢ ' _
+ > / e Oy (1 ()P L (9)) ds.
j=Js+170
We also have

—0 asn— oo.

t
z) — f eIy (17T (5)|P71 2] (5)) ds
° L§LY

Therefore, we get

t
z/ =e_”HV(<pn—WnJ)+i/ eIy (12T ()P 2] (5)) ds +5;].

o
with ||}/ || L1y, — 0asn — oo. In order to apply the perturbation lemma, Lemma 3.7, we need a bound
on sup ; (limsup,,_, o, ||Z;{||L;‘L§)- We have

J> J3
a2 ac? <A +2 3 W +2 3
hnnl)SOIiP(HZn lzgr)? < 2N llpap, +2 IU N papr +2 W=l pap
j=J1+1 j=J2+1
T4 ‘ Js _ J .
+2 ) Wil Ty +2 > VN ey +2 > IVilZe s
j=J3+1 j=J4+1 j=Js5+1

where we have used Corollary A.2 in [Banica and Visciglia 2016]. For simplicity, a,{ denotes 2|| N ”i“ L

. ) 4Lk

if 1 <j<Ju 20U apr =201U7|Jay, if J14+1<j < Jp, and so on. Then, the above inequality
=X t~x

means
J

limsup([| Z;; llLerr)? < Za,f,.
n—>0o0 .
Jj=1
There exists a finite set 7 such that ||/ || 71 < ¢ for any j ¢ J, where &g is the universal constant in
the small data scattering result, Proposition 3.3. By Proposition 3.3 and the orthogonalities in H-norm
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and L2-norm,

hm sup(||ZJ||LaLr)p < hmsupZa/ = hmsupZa] + lim supZa’

n—>oo n—-oo

j= JET J&T
<hmsupZaJ —i—hmsupz ||€”" H”T 1/’J [E%
n—oo 7 n—00 id7
< limsup Z al +lim SUP llon [l
n—o00 jer n—

SlimsupZa,{ +ney S Zaj +ny <M,
n—o0o JEJ jEJ
where M is independent of J.
By Lemma 3.7 and Proposition 3.4, we can choose J large enough in such a way that

. —itH. J
limsup [le """ W, ey <e,
n—>o0

where ¢ =&(M) > 0. Then, we get the fact that u, scatters for large n, and this contradicts [|u, || Lo 1;, = oco.
Therefore, we obtain J = 1 and
®n :e"tle”fxlllwl—i—Wnl, Sg =limsup S, (e”"H”r 11# ), W)l -0 inLH!.
n—0o0
By the same argument as [Banica and Visciglia 2016], we get x,ll = 0. Let u° be the nonlinear profile

associated with 1. Then, S¢& = S (u®) and the global solution u¢ does not scatter by a contradiction
argument and the perturbation lemma (see the proof of Proposition 6.1 in [Fang et al. 2011] for more detail).

Case 2: radial data. We only focus on the difference of the proof between the radial case and the nonradial
case, which is in the profiles. By the linear profile decomposition for the radial data Theorem 3.5, we have

J ; .
%Z llnHV-[x’{w] +elti{Hy-[_xrjl.Rw])+%(WnJ +RWnJ) vJeN.

For every j such that J; + 1 < j < J,, let U/ be the solution to (NLS) with the initial data %wj .
Since we have

3T, 1//J +1z x,RW er},
¥/ satisfies Se,0(3¥7) < lo and Po(397) > 0. Indeed, if we assume S,,0(3¥/) > lo, then by
Theorem 3.5 and y <0,
re >SS > limsup S, (¢y) > lim Sup(S“’(fx,{ %1/,1') + Sw(t_x’{R%lpj))

n—oo n—oo

> lim sup(Sw,0 (Tx;{ %wj) + Sw.0 (T—x,{ R%lﬂj))

n—oo

= S0,0(3¥7) + Sw0(3v7) = 21,.
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This contradicts r,, < 2/,. Moreover, we see that

2Py (3y7) =1lim sup(Po(z, ; Ty) + Po(z_xé-R%wf)) = limsup P(z,; Tyl + l’_ng%xlfj) > 0.

n—>oo n—-oo

Therefore, by [Fang et al. 2011; Akahori and Nawa 2013], we have
U/(t,x) e CR: HY(R)) N L4(R: L".(R)).
We set Unj(t,x):z Uj(t,x—x,{). A
For every j such that J4 + 1 < j < Js5, we associate with profile ¥/ the function
VI(t.x) e C(R_: H'(R) N LY(R_ : L".(R))
by Lemma 3.10. We prove V/ (¢, x) € C(R: H'(R))N L?(R: L%.(R)). Now, by the assumption, we have

lim sup 2Sw(%e”’4 Hy T wj) = lim sup{Sw(e”’]’ H”txé %lﬂj) + Sw (Re”’]’ Hy T %wj)} <S8 —46.

n—>00 n—>0o0

In the same argument as that for V7 in the nonradial case, we obtain
oo 72 + ol 49772 < 455 -9
4193 L2 T 2%2 L2 =2 :
Now, since wj is the final state of V7, we have
. . 2 . 2
Soo(VD) = |0x397 |12 + 30397 12 = 3055 =8) < 370 < lo.

By [Fang et al. 2011; Akahori and Nawa 2013], we have V/(t,x) e C(R: HY(R)) N L4[R: L".(R)).
We set V_],n(t, x):=VIi@t—t),x—x3).
Other statements are the same as in the nonradial case. O

3E. Extinction of the critical element. We assume that [|u“|[|L¢((0,00):L%) = 00, Where such u® is called
a forward critical element, and we prove u® = 0. In the case of [[u“||L¢((—c0,0):L%) = 00, the same
argument as below does work.

Lemma 3.12. Let u be a forward critical element. Then the orbit of u, {u(t, x) : t > 0}, is precompact in
H(R). And then, for any € > 0, there exists R > 0 such that

/|| R|8xu(t,x)|2dx+/|| Rlu(l,x)|2dx+/|| R|u(l,x)|p+1 dx <& foranyt e Ry.
X|> X |> X|>

This lemma is obtained in the same way as the defocusing case (see [Banica and Visciglia 2016]).
Now, we prove u = 0 by the localized virial identity and contradiction. Let u # 0. For ¢ : Ry — R,
we define a function / by

1) := fR o(xDlut. x) dx.
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Then, by a direct calculation and using (§NLS), we have

10 =tm [ 2(o(x Dyttt ) d.
R

1"(1) = RG/R?Jbzc((ﬂ(IXI))Iaxu(hX)I2 dx =y 33 (p(Ix])x=olu(z, 0)[?

p—1 2 p+1 5. 1 4 2
PR [ ()l 017 dr = Re [ ot R dx

—2y Re{dx (¢(|x])[x=0u(z, 0)dxu(z, 0)}.

Taking ¢ = ¢(r) such that, for R > 0,

4
0sp=r’ olsr lo1=2 p¥= .
and
- r2, 0<r <R,
r =
¢ 0, r>=2R,
we obtain

1”(1)=4P(u(t))+Re/R(3§(¢(|x|))—2)|3xu(hX)|2dx—ﬁ—:rllRe/ﬂ@(ai(w(IXI))%)lu(hX)Ip“dx

~iRe [ 94Dl 0P dx = 4P(E)+ Ri+ Ro R, (32)
R
where

Ry :=Re [R (@ (o (1x]) — 2]zt )2 dox.

Rai=—L ke [ @23 = 2lut 017+ ax,

Ryi=—kRe [ od(o(xD)lute. P dx.

By the property of ¢, we have

IRy| = ReA{a§<¢(|x|>>—2}|axu<z,x)|2dx

SC/ |0,u(t, x)|? dx,
|x|>R

|R2| =

) J_r 11 Re/ﬂg{ai(sﬂ(lﬂ)) = 2}fu(r, x)|P 1 dx

R3] = |1 Re /R 0 (o (X))t ) dx

< c/ lu(t, x)|P 1 dx,
|x|>R

SC/ lu(t, x)|? dx.
|[x|>R

Therefore, we obtain

I"(t) = 4Pu(t)) - C (/|

x|>R

|8xu(t,x)|2dx+/

|x|>R

lu(t, x)|* dx +/

|x|>R

|u(t,x)|p+1dx).
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We note that there exists § > 0 independent of ¢ such that P (u(¢)) > & by Proposition 2.18 since u belongs
to M. Therefore, by Lemma 3.12, if we take & € (0, 38), then there exists R > 0 such that 1" (¢) > § for
any ¢ € R4. On the other hand, the mass conservation law gives I(z) < R2||u(t)||i2 < C, where C is
independent of ¢, for any € R. Hence, we obtain a contradiction.

4. Proof of the blow-up part

To prove the blow-up results, we use the method of Du et al. [2016]. On the contrary, we assume that the
solution u to (SNLS) with ug € M, is global in the positive time direction and sup, ¢ . 05 () ||i2 <
Co < oo. Then, we have sup,cp, [[u(t)||Ls < oo for any ¢ > p + 1 by energy conservation and the
Sobolev embedding.

For R > 0, we take ¢ such that

0, 0<r<i1iRr
r: ’ 2 ’
@(r) {1, r> R,
4
<p< < X
0<¢p <1, gp_R.

By the fundamental formula and the Holder inequality, we have

t t
I1(t) = 1(0) —I—/ I'(s)ds < I1(0) +/ |1'(s)|ds
0 0
< 10) + 1]l | Lo u(@) 172 [19xu )| 2
8M(u)Cot
—r

Here, we note that /(0) < [, - g5 [4(0, )| dx = or(1) and [ . g [u(t,x)|> dx < I(t). Therefore,
we obtain the following lemma.

<1(0)+

Lemma 4.1. Let o > 0 be fixed. Then, for any t < noR/(8M(u)Cy), we have

f| (.0 dx < 0r(1) + 1o
X|>

We take another ¢ such that

4
0<p=<r? |¢I<rn l¢'l<2 Iw(“)lfﬁ,
and
r) r2, 0<r <R,
r) =
¢ 0. r>2R.

Then we have the following lemma.

Lemma 4.2. There exist two constants C = C(p, M(u), Co) > 0 and 04 > 0 such that

bq

I//(t) <4P(u@))+C ||u”L2(|x|>R) + CR_2||u||i2(|x|>R)-
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Proof. By (3-2), we have
I”(l‘) = 4P(u(t)) + R; + Ry + Rs.

First, we prove Ry < 0. By the definition of ¢, we see that
Ry = Re/(ai(fﬂ(l)cl)) —2)dxu(t, x)|* dx = Re/((ﬂ"(le) —2)9xu(t, x)|* dx < 0.
R R

Next, we consider R,. By the Holder inequality, we have

Ry =~2 0 Re [ @) - Dute. 017+

p
< c/ lu(t, x)|P ! dx
[x|>R

1-6 0
=<C ||u||Lq(\(;|>R) ”M ||qu(|x|>R)
0

where g > p+ 1 and 0 < 6; < 1, since sup, g, [|u(?)||L« < oo. Finally, we consider R3:

Ry =—4Re /R 03 @(xD) (e, )| dx < CR™2 /| P dx = CR 2y gy O
X|>

Proof of Theorem 1.3(2) (and Theorem 1.5(2)). Since u(t) belongs to M, there exists § > 0 independent
of ¢ such that P(u(t)) < —6 for all ¢ € R4+ by Proposition 2.18. Therefore, we obtain

6 -2 2
2(xsr) T CR MUulz2 x> Ry

1"(t) < =48+ C|lul|
We take ¢ > 0 such that Cngq + Cn% < 4. By Lemma 4.1, for ¢ € [0, noR/(8M (u)Cp)], we have
1"(t) < =38 +og(1).
Let T :=noR/(8M(u)Cy). Integrating the above inequality from O to 7, we get
I(T) < 1(0) + I'(0)T + 5(=38 + or (1)) T2
For sufficiently large R > 0, we have —36 + ogr(1) < —28. Thus, we get
I(T) < 1(0) + 1'(0)o R/ (8M (u)Co) — o R?,
where o := 8173/(8M(u)(]0)2 > 0, and we can prove 1(0) = og(1)R? and 1'(0) = og(1)R. Indeed,
2 2 2 2
1= [ PP [ PP ds
s M(u)R+R2/ Juo(x)| dx

VR<|x|
=ogr(1)R?,
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and
1'(0) < 4 Ox d +/ / 9y d
© /mw"” (Dl uoCllosuoCldx+ [ - 16/ (xDl o) o) d
= Ox d —|—/ 0y d
/|x|<ﬁ|x||uo(x)|| uo(x)| dx VEeion x| [0 ()] |5 20 (x)| dx

< ol VR + R /f 0 ()] |9x200 ()| dx

R<|x|
=oRr(1)R.
Therefore, we see that

I(T) <or(1)R? —ag R

For sufficiently large R > 0, we have og(1) — ¢ < 0. However, this contradicts

I(T):/R(p(|x|)|u(T,x)|2dx>0.

This argument can be applied in the negative time direction. |

Appendix: Rewriting the main theorem into a version independent of the frequency

We prove Corollary 1.4. To see this, it is sufficient to prove the following lemma.
Lemma A.1. Let ¢ € H'(R). The following statements are equivalent:
(1) There exists w > 0 such that S, (@) < lp = ne.

(2) ¢ satisfies E(p)M(¢)? < Eo(Q1,0)M(Q1,0)°.

Proof. If ¢ = 0, the statement holds. Let ¢ € H'(R)\ {0} be fixed. +We define f(w) :=lyp — Su(p).
Then, (1) is true if and only if sup,,- o f (@) > 0. Noting that /,, = — w2(-D $1,0(01,0), we know f has a
maximum at w = wg, where

M) TS
wo 1= ( ) > 0.
e I)SIO(QIO)
Therefore, (1) is equivalent to f(wg) > 0. Now, since
p+3 _2(p=D

M(p) s M(p) =5
W= (FEgam) 000 (FEsam) | MO-E
f(wo) w2E 1)51 010 1,0(01,0) = 1)51 (01 o) (9) )
)

_ (2(p 1)S10(Q10)) 7 CE(@) >0,

r+3

M(p) 73

we have
2(p—=1)

(5255 5100010) 7 = E@ME)
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Noting Q1,0 satisfies

2 p+3 p+3 p+1
Q10072 = 2 )|| 0x Q107> = 2 +1)||Q10||Lp+1,
we have
13 2(p751) i
(25 Y 10(Q10)) = Eo(Q1,00M(Q1,0) 7-5. U
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