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We consider the focusing 3D quantum many-body dynamic which models a dilute Bose gas strongly
confined in two spatial directions. We assume that the microscopic pair interaction is attractive and given
by a3ˇ�1V.aˇ � /, where

R
V 6 0 and a matches the Gross–Pitaevskii scaling condition. We carefully

examine the effects of the fine interplay between the strength of the confining potential and the number of
particles on the 3D N -body dynamic. We overcome the difficulties generated by the attractive interaction
in 3D and establish new focusing energy estimates. We study the corresponding BBGKY hierarchy,
which contains a diverging coefficient as the strength of the confining potential tends to1. We prove
that the limiting structure of the density matrices counterbalances this diverging coefficient. We establish
the convergence of the BBGKY sequence and hence the propagation of chaos for the focusing quantum
many-body system. We derive rigorously the 1D focusing cubic NLS as the mean-field limit of this
3D focusing quantum many-body dynamic and obtain the exact 3D-to-1D coupling constant.
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1. Introduction

Since the experimental achievement of Bose–Einstein condensates (BEC) was reported in [Anderson
et al. 1995; Davis et al. 1995] — a feat for which Cornell, Wieman and Ketterle won the 2001 Nobel
Prize in Physics — the investigation of this new state of matter has become one of the most active areas
of contemporary research. A BEC, first predicted theoretically by Einstein for noninteracting particles
in 1925, is a peculiar gaseous state at which particles of integer spin (bosons) occupy a macroscopic
quantum state.
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focusing Gross–Pitaevskii hierarchy.
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Let t 2 R be the time variable and rN D .r1; r2; : : : ; rN / 2 RnN be the position vector of N particles
in Rn. Then, naively, BEC means that, up to a phase factor solely depending on t , the N -body wave
function  N .t; rN / satisfies

 N .t; rN /�

NY
jD1

'.t; rj /

for some one-particle state '. That is, every particle takes the same quantum state. Equivalently, there is
the Penrose–Onsager formulation of BEC: if we let 
 .k/N be the k-particle marginal densities associated
with  N by



.k/
N .t; rkI r

0
k/D

Z
 N .t; rk; rN�k/ N .t; r

0
k; rN�k/ drN�k; rk; r

0
k 2 Rnk; (1)

then BEC equivalently means



.k/
N .t; rkI r

0
k/�

kY
jD1

'.t; rj / N'.t; r
0
j /: (2)

It is widely believed that the cubic nonlinear Schrödinger equation (NLS)

i@t� D L�C�j�j
2�;

whereL is the Laplacian�4 or the Hermite operator�4C!2jxj2, fully describes the one-particle state '
in (2), also called the condensate wave function since it characterizes the whole condensate. Such a belief
is one of the main motivations for studying the cubic NLS. Here, the nonlinear term �j�j2� represents
a strong on-site interaction taken as a mean-field approximation of the pair interactions between the
particles: a repelling interaction gives a positive �, while an attractive interaction yields a �<0. Gross and
Pitaevskii proposed such a description of the many-body effect. Thus the cubic NLS is also called the Gross–
Pitaevskii equation. Because the cubic NLS is a phenomenological equation of mean-field type, naturally,
its validity has to be established rigorously from the many-body system which it is supposed to characterize.

In a series of works [Lieb et al. 2005; Adami et al. 2007; Elgart et al. 2006; Erdős et al. 2006; 2007;
2009; 2010; T. Chen and Pavlović 2011; 2014; X. Chen 2012a; 2013; Benedikter et al. 2015; X. Chen
and Holmer 2013; Grillakis and Machedon 2013; Sohinger 2015], it has been proven rigorously that, for
a repelling interaction potential with suitable assumptions, relation (2) holds; moreover, the one-particle
state ' solves the defocusing cubic NLS (� > 0).

It is then natural to ask if BEC happens (whether relation (2) holds) when we have attractive interparticle
interactions and if the condensate wave function ' satisfies a focusing cubic NLS (� < 0) if relation (2)
does hold. In contemporary experiments, both positive [Khaykovich et al. 2002; Strecker et al. 2002] and
negative [Cornish et al. 2000; Donley et al. 2001] results exist. To present the mathematical interpretations
of the experiments, we adopt the notation

ri D .xi ; zi / 2 R2C1

and investigate the procedure of laboratory experiments of BEC subject to attractive interactions according
to [Cornish et al. 2000; Donley et al. 2001; Khaykovich et al. 2002; Strecker et al. 2002].
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Step A. Confine a large number of bosons, whose interactions are originally repelling, inside a trap.
Reduce the temperature of the system so that the many-body system reaches its ground state. It is
expected that this ground state is a BEC state/factorized state. This step then corresponds to the following
mathematical problem:

Problem 1. Show that if  N;0 is the ground state of the N-body Hamiltonian HN;0 defined by

HN;0 D

NX
jD1

�
�4rj C!

2
0;xjxj j

2
C!20;zz

2
j

�
C

X
16i<j6N

1

a3ˇ�1
V0

�
ri � rj

aˇ

�
; (3)

where V0 > 0, then the marginal densities f
 .k/N;0g associated with  N;0, defined in (1), satisfy relation (2).

Here, the quadratic potential !2j � j2 stands for the trapping since [Cornish et al. 2000; Donley et al.
2001; Khaykovich et al. 2002; Strecker et al. 2002] and many other experiments of BEC use the harmonic
trap and measure the strength of the trap with !. We use !0;x to denote the trapping strength in the
x-direction and !0;z to denote the trapping strength in the z-direction, as we will explain later that in
order to have a BEC with attractive interaction, either experimentally or mathematically, it is important to
have !0;x ¤ !0;z . Moreover, we define

1

a
V0;a.r/D

1

a3ˇ�1
V0

�
r

aˇ

�
; ˇ > 0;

to be the interaction potential.1 On the one hand, V0;a is an approximation of the identity as a! 0

and hence matches the Gross–Pitaevskii description that the many-body effect should be modeled by an
on-site strong self-interaction. On the other hand, the extra 1=a is to make sure that the Gross–Pitaevskii
scaling condition is satisfied. This step is exactly the same as the preparation of the experiments with
repelling interactions, and satisfactory answers to Problem 1 have been given in [Lieb et al. 2004].

Step B. Use the property of Feshbach resonance, strengthen the trap (increase !0;x or !0;z) to make the
interaction attractive and observe the evolution of the many-body system. This technique continuously
controls the sign and the size of the interaction in a certain range.2 The system is then time-dependent. In
order to observe BEC, the factorized structure obtained in Step A must be preserved in time. Assuming this
to be the case, we then reset the time so that t D 0 represents the point at which this Feshbach-resonance
phase is complete. The subsequent evolution should then be governed by a focusing time-dependent
N -body Schrödinger equation with an attractive-pair interaction V subject to an asymptotically factorized
initial datum. The confining strengths are different from Step A as well and we denote them by !x and !z .
A mathematically precise statement is the following:

1 From here on, we consider the ˇ > 0 case solely. For ˇ D 0 (the Hartree dynamic), see [Fröhlich et al. 2009; Erdős and
Yau 2001; Knowles and Pickl 2010; Rodnianski and Schlein 2009; Michelangeli and Schlein 2012; Grillakis et al. 2010; 2011;
X. Chen 2012b; Ammari and Nier 2011; 2008; L. Chen et al. 2011].

2 See [Cornish et al. 2000, Figure 1; Khaykovich et al. 2002, Figure 2; Strecker et al. 2002, Figure 1] for graphs of the
relationship between ! and V .
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Problem 2. Let  N .t;xN / be the solution to the N -body Schrödinger equation

i@t N D

NX
jD1

�
�4rj C!

2
xjxj j

2
C!2zz

2
j

�
 N C

X
16i<j6N

1

a3ˇ�1
V

�
ri � rj

aˇ

�
 N ; (4)

where V 6 0, with  N;0 from Step A as initial datum. Prove that the marginal densities f
 .k/N .t/g

associated with  N .t;xN / satisfy relation (2).3

In the experiment [Cornish et al. 2000] by Cornell and Wieman’s group (the JILA group), once
the interaction is turned attractive, the condensate suddenly shrinks to below the resolution limit; then
after � 5ms, the many-body system blows up. That is, there is no BEC once the interaction becomes
attractive. Moreover, there is no condensate wave function due to the absence of the condensate. Hence,
the current NLS theory, which is about the condensate wave function when there is a condensate, cannot
explain this 5ms of time or the blow up. This is currently an open problem in the study of quantum
many-body systems. The JILA group later conducted finer experiments and remarked in [Donley et al.
2001, p. 299] that these are simple systems with dramatic behavior, and this behavior provides puzzling
results when mean-field theory is tested against them.

In [Khaykovich et al. 2002; Strecker et al. 2002], the particles are confined in a strongly anisotropic
cigar-shape trap to simulate a 1D system. That is, !x� !z . In this case, the experiment is a success in
the sense that one obtains a persistent BEC after the interaction is switched to attractive. Moreover, a
soliton is observed in [Khaykovich et al. 2002] and a soliton train is observed in [Strecker et al. 2002].
The solitons in these two works have different motion patterns.

In [X. Chen and Holmer 2016b], we have studied the simplified 1D version of (4) as a model case and
derived the 1D focusing cubic NLS from it. In the present paper, we consider the full 3D problem of (4),
as in the experiments [Khaykovich et al. 2002; Strecker et al. 2002]: We take !z D 0 and let !x!1
in (4). We derive rigorously the 1D cubic focusing NLS directly from a real 3D quantum many-body
system. Here, “directly” means that we are not passing through any 3D cubic NLS. On the one hand, one
infers from the experiment [Cornish et al. 2000] that not only it is very difficult to prove the 3D focusing
NLS as the mean-field limit of a 3D focusing quantum many-body dynamic, but such a limit also may
not be true. On the other hand, the route which first derives

i@t' D�4xC!
2
jxj2' � @2z' � j'j

2' (5)

as anN!1 limit, from the 3DN -body dynamic, and then considers the !!1 limit of (5), corresponds
to the iterated limit (lim!!1 limN!1) of the N -body dynamic; i.e., the 1D focusing cubic NLS coming
from such a path approximates the 3D focusing N -body dynamic when ! is large and N is infinity (if
not substantially larger than !). In experiments, it is fully possible to have N and ! comparable to each
other. In fact, N is about 104 and ! is about 103 in [Görlitz et al. 2001; Stock et al. 2005; Hadzibabic
et al. 2006; Desbuquois et al. 2012]. Moreover, as seen in the experiment [Donley et al. 2001], even if
!x is one digit larger than !z , negative result persists if N is three digits larger than !x . Thus, in this

3 Since ! ¤ !0, V ¤ V0, one could not expect that  N;0, the ground state of (3), is close to the ground state of (4).
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paper, we derive rigorously the 1D focusing cubic NLS as the double limit (limN;!!1) of a real focusing
3D quantum N -body dynamic directly, without passing through any 3D cubic NLS. Furthermore, the
interaction between the two parameters N and ! plays a central role. To be specific, we establish the
following theorem.

Theorem 1.1 (main theorem). Assume that the pair interaction V is an even Schwartz class function which
has a nonpositive integral, i.e.,

R
R3
V.r/ dr 6 0, but may not be negative everywhere. Let  N;!.t; rN /

be the N -body Hamiltonian evolution eitHN;! N;!.0/ with the focusing N -body Hamiltonian HN;!
given by

HN;! D

NX
jD1

.�4rj C!
2
jxj j

2/C
X

16i<j6N

.N!/3ˇ�1V..N!/ˇ .ri � rj // (6)

for some ˇ 2
�
0; 3
7

�
. Let f
 .k/N;!g be the family of marginal densities associated with  N;! . Suppose that

the initial datum  N;!.0/ verifies the following conditions:

(a)  N;!.0/ is normalized; that is, k N;!.0/kL2 D 1,

(b)  N;!.0/ is asymptotically factorized in the sense that

lim
N;!!1

Tr
ˇ̌̌̌
1

!


.1/
N;!

�
0;
x1
p
!
; z1I

x01
p
!
; z01

�
� h.x1/h.x

0
1/�0.z1/�0.z

0
1/

ˇ̌̌̌
D 0 (7)

for some one-particle state �0 2H 1.R/ and h is the normalized ground state for the 2D Hermite
operator �4xCjxj2, i.e., h.x/D ��

1
2 e�

1
2
jxj2.

(c) Away from the x-directional ground-state energy,  N;!.0/ has finite energy per particle:

sup
!;N

1

N

˝
 N;!.0/; .HN;! � 2N!/ N;!.0/

˛
6 C:

Then there exist C1 and C2 which depend solely on V such that 8k > 1, t > 0, and " > 0, we have the
convergence in trace norm (propagation of chaos)

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

Tr
ˇ̌̌̌
1

!k


.k/
N;!

�
t;
xk
p
!
; zkI

x0
k
p
!
; z0k

�
�

kY
jD1

h.xj /h.x
0
j /�.t; zj /�.t; z

0
j /

ˇ̌̌̌
D 0; (8)

where v1.ˇ/ and v2.ˇ/ are defined by

v1.ˇ/D
ˇ

1�ˇ
; (9)

v2.ˇ/Dmin
�
1�ˇ

ˇ
;

3
5
�ˇ

ˇ� 1
5

1ˇ> 1
5
C1� 1ˇ< 1

5
;

2ˇ

1� 2ˇ
�;

7
8
�ˇ

ˇ

�
(10)

(see Figure 1) and �.t; z/ solves the 1D focusing cubic NLS with the 3D-to-1D coupling constant
b0
�R
jh.x/j4 dx

�
, that is,

i@t� D�@
2
z� � b0

�Z
jh.x/j4 dx

�
j�j2� in R (11)

with initial condition �.0; z/D �0.z/ and b0 D
ˇ̌R
V.r/ dr

ˇ̌
.
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Figure 1. A graph of the various rational functions of ˇ appearing in (9) and (10). In
Theorems 1.1 and 1.2, the limit .N; !/!1 is taken with v1.ˇ/6 logN ! 6 v2.ˇ/. The
region of validity is above the dashed curve and below the solid curves. It is a nonempty
region for 0 < ˇ 6 3

7
. As shown here, there are values of ˇ for which v1.ˇ/6 16 v2.ˇ/,

which allows N � !, as in [Cornish et al. 2000; Donley et al. 2001; Khaykovich et al.
2002; Strecker et al. 2002; Görlitz et al. 2001; Stock et al. 2005; Hadzibabic et al. 2006;
Desbuquois et al. 2012]. Moreover, our result includes part of the ˇ > 1

3
self-interaction

region. We will explain why we call the ˇ > 1
3

case self-interaction later in Introduction.
We remark that it is not a coincidence that three restrictions intersect at ˇ D 1

3
.

Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2 (main theorem). Assume that the pair interaction V is an even Schwartz class function which
has a nonpositive integral, i.e.,

R
R3
V.r/ dr 6 0, but may not be negative everywhere. Let  N;!.t; rN / be

the N -body Hamiltonian evolution eitHN;! N;!.0/, where the focusing N -body Hamiltonian HN;! is
given by (6) for some ˇ 2

�
0; 3
7

�
. Let f
 .k/N;!g be the family of marginal densities associated with  N;! .

Suppose that the initial datum  N;!.0/ is normalized, asymptotically factorized in the sense of (a) and (b)
of Theorem 1.1 and satisfies the energy condition that

(c0) there is a C > 0 such that˝
 N;!.0/; .HN;! � 2N!/

k N;!.0/
˛
6 C kN k; 8k > 1: (12)

Then there exist C1, C2 which depend solely on V such that 8k > 1, 8t > 0, we have the convergence in
trace norm (propagation of chaos)

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

Tr
ˇ̌̌̌
1

!k


.k/
N;!

�
t;
xk
p
!
; zkI

x0
k
p
!
; z0k

�
�

kY
jD1

h.xj /h.x
0
j /�.t; zj /�.t; z

0
j /

ˇ̌̌̌
D 0;

where v1.ˇ/ and v2.ˇ/ are given by (9) and (10) and �.t; z/ solves the 1D focusing cubic NLS (11).
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We remark that the assumptions in Theorem 1.1 are reasonable assumptions on the initial datum coming
from Step A. In [Lieb et al. 2004, (1.10)], a satisfying answer has been found by Lieb, Seiringer, and
Yngvason for Step A (Problem 1) in the !0;x�!0;z case. For convenience, set !0;zD 1 in the defocusing
N -body Hamiltonian (3) in Step A. Let scat.W / denote the 3D scattering length of the potential W . By
[Erdős et al. 2007, Lemma A.1], for 0 < ˇ 6 1 and a� 1, we have

scat
�
a �

1

a3ˇ
V

�
r

aˇ

��
�

�
a=.8�/

R
R3
V if 0 < ˇ < 1;

a scat.V / if ˇ D 1:

Lieb et al. [2004, (1.10)] define the quantity g D g.!0;x; N; a/ by

g WD 8�a!0;x

�Z
jh.x/j4 dx

�
:

Then if Ng � 1, they proved in Theorem 5.1 of the same work that BEC happens in Step A and the
Gross–Pitaevskii limit holds.4 To be specific, they proved that

lim
N;!0;x!1

Tr
ˇ̌̌̌
1

!0;x


.1/
N;!0;x

�
0;

x1
p
!0;x

; z1I
x01
p
!0;x

; z01

�
� h.x1/h.x

0
1/�0.z1/�0.z

0
1/

ˇ̌̌̌
D 0

provided that �0 is the minimizer to the 1D defocusing NLS energy functional

ENg D

Z
R

�
j@z�.z/j

2
C z2j�.z/j2C 4�Ngj�.z/j4

�
dz (13)

subject to the constraint k�kL2.R/D1. Hence, the assumptions in Theorem 1.1 are reasonable assumptions
on the initial datum drawn from Step A. To be specific, we have chosen aD .N!/�1 in the interaction
so that Ng � 1 and assumptions (a), (b) and (c) are the conclusions of [Lieb et al. 2004, Theorem 5.1].5

The equivalence of Theorems 1.1 and 1.2 for asymptotically factorized initial data is well known. In
the main part of this paper, we prove Theorem 1.2 in full detail. For completeness, we discuss briefly
how to deduce Theorem 1.1 from Theorem 1.2 in Appendix B.

To our knowledge, Theorems 1.1 and 1.2 offer the first rigorous derivation of the 1D focusing cubic
NLS (11) from the 3D focusing quantum N -body dynamic (6). Moreover, our result covers part of the
ˇ > 1

3
self-interaction region in 3D. As pointed out in [Elgart et al. 2006], the study of Step B is of

particular interest when ˇ 2
�
1
3
; 1
�

in 3D. The reason is the following. The initial datum coming from
Step A is the ground state of (3) with !0;x; !0;z ¤ 0 and hence is localized in space. We can assume
all N particles are in a box of length 1. Let the effective radius of the pair interaction V be R0, then
the effective radius of V..N!/ˇ .ri � rj // is about R0=.N!/ˇ. Thus every particle in the box interacts
with .R0=.N!/ˇ /3 �N other particles. Thus, for ˇ > 1

3
and large N, every particle interacts with only

itself. This exactly matches the Gross–Pitaevskii theory that the many-body effect should be modeled

4 This corresponds to Region 2 of [Lieb et al. 2004]. The other four regions are the ideal gas case, the 1D Thomas–Fermi
case, the Lieb–Liniger case, and the Girardeau–Tonks case. As mentioned on page 388 of that work, BEC is not expected in the
Lieb–Liniger and the Girardeau–Tonks cases, and is an open problem in the Thomas–Fermi case; we deal only with Region 2 in
this paper.

5 We remark that the interaction potential N 3ˇ�1!3ˇV..N!/ˇ .ri � rj //, which looks like a “direct” extension of the
interaction potential from the nD-to-nD work, does not satisfy Ng � 1 in the N;!!1 process.
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by a strong on-site self-interaction. Therefore, for the mathematical justification of the Gross–Pitaevskii
theory, it is of particular interest to prove Theorems 1.1 and 1.2 for self-interaction

�
ˇ > 1

3

�
.

A main tool used to prove Theorem 1.2 is the analysis of the BBGKY hierarchy of�
Q

.k/
N;!.t/D

1

!k


.k/
N;!

�
t;
xk
p
!
; zkI

x0
k
p
!
; z0k

��N
kD1

as N;! !1. In the classical setting, deriving equations of mean-field type by studying the limit of
the BBGKY hierarchy was proposed by Kac and demonstrated by Lanford’s work on the Boltzmann
equation. In the quantum setting, the usage of the BBGKY hierarchy was suggested by Spohn [1980] and
was proven successful by Elgart, Erdős, Schlein, and Yau in their fundamental papers [Elgart et al. 2006;
Erdős et al. 2006; 2007; 2009; 2010],6 which rigorously derive the 3D cubic defocusing NLS from a
3D quantum many-body dynamic with repulsive-pair interactions and no trapping. The Elgart–Erdös–
Schlein–Yau program7 consists of two principal parts: in one part, they consider the sequence of the
marginal densities f
 .k/N g associated with the Hamiltonian evolution eitHN N .0/, where

HN D

NX
jD1

�4rj C
1

N

X
16i<j6N

N 3ˇV.N ˇ .ri � rj //;

and prove that an appropriate limit, as N !1, solves the 3D Gross–Pitaevskii hierarchy

i@t

.k/
C

kX
jD1

Œ4rk ; 

.k/�D b0

kX
jD1

TrrkC1 Œı.rj � rkC1/; 

.kC1/� for all k > 1: (14)

In another part, they show that hierarchy (14) has a unique solution which is therefore a completely
factorized state. However, the uniqueness theory for hierarchy (14) is surprisingly delicate due to the
fact that it is a system of infinitely many coupled equations over an unbounded number of variables.
By assuming a space-time bound on the limit of f
 .k/N g, Klainerman and Machedon [2008] gave another
uniqueness theorem regarding (14) through a collapsing estimate originating from the multilinear Strichartz
estimates and a board game argument inspired by the Feynman graph argument in [Erdős et al. 2007].

The method by Klainerman and Machedon [2008] was taken up by Kirkpatrick, Schlein, and Staffilani
[Kirkpatrick et al. 2011], who derived the 2D cubic defocusing NLS from the 2D quantum many-body
dynamic; by T. Chen and Pavlović [2011], who considered the 1D and 2D three-body repelling interaction
problem; by X. Chen [2012a; 2013], who investigated the defocusing problem with trapping in 2D and 3D;
and by X. Chen and J. Homer [2013], who proved the effectiveness of the defocusing 3D to 2D reduction
problem. Such a method has also inspired the study of the general existence theory of hierarchy (14); see [T.
Chen et al. 2010; 2012; T. Chen and Pavlović 2010; Gressman et al. 2014; Sohinger and Staffilani 2015].

One main open problem in the uniqueness theory of Klainerman–Machedon type is the verification of
the uniqueness condition in 3D, though it is fully solved in 1D and 2D using trace theorems in [Kirkpatrick
et al. 2011]. For the 3D defocusing problem without traps, T. Chen and Pavlović [2014] showed that,

6 Around the same time, there was the 1D defocusing work [Adami et al. 2007].
7 See [Benedikter et al. 2015; Grillakis and Machedon 2013; Pickl 2011] for different approaches.
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for ˇ 2
�
0; 1
4

�
, the limit of the BBGKY sequence satisfies the uniqueness condition.8 X. Chen [2013]

extended and simplified their method to study the 3D trapping problem for ˇ 2
�
0; 2
7

�
. The ˇ 2

�
0; 2
7

�
result by X. Chen was then extended to ˇ 2

�
0; 2
3

�
using Xb spaces and Littlewood–Paley theory in

[X. Chen and Holmer 2016c] and further to ˇ < 1 in [X. Chen and Holmer 2016a] via correlation
structures and many-body scattering process. The ˇ D 1 case is still open.

Using a version of the quantum de Finetti theorem from [Lewin et al. 2014], T. Chen, Hainzl, Pavlović,
and Seiringer provided an alternative proof to the uniqueness theorem in [Erdős et al. 2007] and showed
that it is an unconditional uniqueness result in the sense of NLS theory. With this method, Sohinger
[2015] derived the 3D defocusing cubic NLS in the periodic case. See also [X. Chen and Smith 2014;
Hong et al. 2015].

Recently, the first step in the mass critical focusing case has been taken in [X. Chen and Holmer 2016d].

Organization of the paper. We first outline the proof of our main theorem, Theorem 1.2, in Section 2.
The components of the proof are in Sections 3, 4, and 5.

The first main part is the proof of the needed focusing energy estimate, stated and proved as Theorem 3.1
in Section 3. The main difficulty in establishing the energy estimate is understanding the interplay between
two parameters N and !. On the one hand, as suggested by the experiments [Cornish et al. 2000; Donley
et al. 2001; Khaykovich et al. 2002; Strecker et al. 2002], in order to have to a tensor product state (BEC)
in this focusing setting, one has to explore “the 1D feature” of the 3D focusing N -body Hamiltonian (6),
which comes from a large !. At the same time, an N too large would allow the 3D effect to dominate, and
one has to avoid this. This suggests that an inequality of the form N v1.ˇ/ 6 ! is a natural requirement.
On the other hand, according to the uncertainty principle, in 3D, as the x-component of the particles’
position becomes more and more determined to be 0, the x-component of the momentum and thus the
energy must blow up. Hence the energy of the system is dominated by its x-directional part, which is
in fact infinity as ! !1. Since the particles are interacting via 3D potential, to avoid the excessive
x-directional energy being transferred to the z-direction, during the N;!!1 process, ! cannot be too
large either. Such a problem is totally new and does not exist in the 1D model [X. Chen and Holmer
2016b]. It suggests that an inequality of the form ! 6N �2.ˇ/ is a natural requirement.

The second main part of the proof is the analysis of the focusing “1�1” BBGKY hierarchy of�
Q

.k/
N;!.t/D

1

!k


.k/
N;!

�
t;
xk
p
!
; zkI

x0
k
p
!
; z0k

��N
kD1

asN;!!1. With our definition, the sequence of the marginal densities f Q
 .k/N;!g
N
kD1

satisfies the BBGKY
hierarchy

i@t Q

.k/
N;! D !

kX
jD1

Œ��xj Cjxj j
2; Q


.k/
N;! �C

kX
jD1

Œ�@2zj ; Q

.k/
N;! �

C
1

N

X
16i<j6k

ŒVN;!.ri � rj /; Q

.k/
N;! �C

N � k

N

kX
jD1

TrrkC1 ŒVN;!.rj � rkC1/; Q

.kC1/
N;! �;

8 See also [T. Chen and Taliaferro 2014].
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where VN;! is defined in (17). We call it an “1�1” BBGKY hierarchy because it is not clear whether
the term

!Œ��xj Cjxj j
2; Q


.k/
N;! �

tends to a limit as N;! !1. Since Q
 .k/N;! is not a factorized state for t > 0, one cannot expect the
commutator to be zero; though it is zero if Q
 .k/N;! is exactly the limit in (8). This is in strong contrast
with the nD-to-nD work9 [Adami et al. 2007; Elgart et al. 2006; Erdős et al. 2006; 2007; 2009; 2010; T.
Chen and Pavlović 2011; 2014; X. Chen 2012a; 2013; Sohinger 2015] in which the formal limit of the
corresponding BBGKY hierarchy is clear. With the aforementioned focusing energy estimate, we find
that this diverging coefficient is counterbalanced by the limiting structure of the density matrices and
establish the weak* compactness and convergence of this focusing BBGKY hierarchy in Sections 4 and 5.

2. Proof of the main theorem

We start by setting up some notation for the rest of the paper. Recall h.x/D ��
1
2 e�

1
2
jxj2 , which is the

ground state for the 2D Hermite operator �4xCjxj2; i.e., it solves .�2��xCjxj2/hD 0. Then the nor-
malized ground-state eigenfunction h!.x/ of�4xC!2jxj2 is given by h!.x/D!

1
2h.!

1
2x/; i.e., it solves

.�2! �4xC!
2
jxj2/h! D 0:

In particular, h1 D h. Noticing that both of the convergences (7) and (8) involve scaling, we introduce
the rescaled solution

Q N;!.t; rN / WD
1

!
1
2
N
 N;!

�
t;
xN
p
!
; zN

�
(15)

and the rescaled Hamiltonian

zHN;! D

� NX
jD1

�@2zj C!.�4xCjxj
2/

�
C
1

N

X
16i<j6N

VN;!.ri � rj /; (16)

where

VN;!.r/DN
3ˇ!3ˇ�1V

�
.N!/ˇ
p
!

x; .N!/ˇz

�
: (17)

Then

. zHN;! Q N;!/.t;xN ; zN /D
1

!
1
2
N
.HN;! N;!/

�
t;
xN
p
!
; zN

�
;

and hence when  N;!.t/ is the Hamiltonian evolution given by (6) and Q N;! is defined by (15), we have

Q N;!.t; rN /D e
it zHN;! Q .0; rN /:

9 Here, “nD-to-nD” means “deriving the nD NLS equation from the nD many-body evolution”.



FOCUSING QUANTUM MANY-BODY DYNAMICS, II 599

If we let f Q
 .k/N;!g
N
kD1

be the marginal densities associated with Q N;! , then f Q
 .k/N;!g
N
kD1

satisfies the “1�1”
focusing BBGKY hierarchy

i@t Q

.k/
N;! D !

kX
jD1

Œ��xj Cjxj j
2; Q


.k/
N;! �C

kX
jD1

Œ�@2zj ; Q

.k/
N;! �

C
1

N

X
16i<j6k

ŒVN;!.ri � rj /; Q

.k/
N;! �C

N � k

N

kX
jD1

TrrkC1 ŒVN;!.rj � rkC1/; Q

.kC1/
N;! �: (18)

We will always take ! > 1. For the rescaled marginals f Q
 .k/N;!g
N
kD1

, we define

zSj WD
�
1� @2zj C!.��xj Cjxj j

2
� 2/

� 1
2 : (19)

Two immediate properties of zSj are the following. On the one hand,

zS2j
�
h1.xj /�.zj /

�
D h1.xj /.1� @

2
zj
/�.zj /

and thus the diverging parameter ! has no consequence when zSj is applied to a tensor product function
h1.xj /�.zj / for which the xj -component rests in the ground state. On the other hand, zSj > 0 as an
operator because ��xj Cjxj j

2� 2> 0.
Now, noticing that the eigenvalues of �4x C !2jxj2 in 2D are f2.l C 1/!g1

lD0
, let Pl! be the

orthogonal projection onto the eigenspace associated with eigenvalue 2.lC 1/!. That is, I D
P1
lD0 Pl! ,

where I is the identity operator on L2.R3/. As a matter of notation for our multicoordinate problem,
P
j

l!
will refer to the projection in xj -coordinate at energy 2.l C 1/!; i.e.,

I D

kY
jD1

� 1X
lD0

P
j

l!

�
: (20)

In (20), I is the identity operator on L2.R3k/. In particular, when ! D 1, we use simply Pl . That is, P0
denotes the orthogonal projection onto the ground state of ��xCjxj2 and P>1 means the orthogonal
projection onto all higher-energy modes of��xCjxj2 so that I DP0CP>1, where I WL2.R3/!L2.R3/.
Since we will only use P0 and P>1 for the ! D 1 case, we define Pj0 and Pj1 to be respectively P0 and
P>1 acting on the xj -variable, and

P˛ D P1˛1 � � � P
k
˛k

(21)

for a k-tuple ˛ D .˛1; : : : ; ˛k/ with j̨ 2 f0; 1g and adopt the notation j˛j D ˛1C � � �C˛k . Then

I D
X
˛

P˛; (22)

where I W L2.R3k/! L2.R3k/.
We next introduce an appropriate topology on the density matrices, as was previously done in [Elgart

et al. 2006; Erdős and Yau 2001; Erdős et al. 2006; 2007; 2009; 2010; Kirkpatrick et al. 2011; T. Chen
and Pavlović 2011; X. Chen 2012a; 2013; X. Chen and Holmer 2013; 2016b; 2016c; Sohinger 2015].
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Denote the spaces of compact operators and trace class operators on L2.R3k/ as Kk and L1
k

, respectively.
Then .Kk/0 D L1

k
. By the fact that Kk is separable, we pick a dense countable subset

fJ
.k/
i gi>1 � Kk

in the unit ball of Kk (so kJ .k/i kop 6 1, where k � kop is the operator norm). For 
 .k/1 ; 

.k/
2 2 L

1
k

, we then
define a metric dk on L1

k
by

dk.

.k/
1 ; 


.k/
2 /D

1X
iD1

2�i
ˇ̌
TrJ .k/i .


.k/
1 � 


.k/
2 /

ˇ̌
:

A uniformly bounded sequence Q
 .k/N;! 2 L
1
k

converges to Q
 .k/ 2 L1
k

with respect to the weak* topology if
and only if

lim
N;!!1

dk. Q

.k/
N;! ; Q


.k//D 0:

For fixed T > 0, let C.Œ0; T �;L1
k
/ be the space of functions of t 2 Œ0; T � with values in L1

k
which are

continuous with respect to the metric dk . On C.Œ0; T �;L1
k
/, we define the metric

Odk.

.k/. � /; Q
 .k/. � //D sup

t2Œ0;T �

dk.

.k/.t/; Q
 .k/.t//;

and denote by �prod the topology on the space
L
k>1 C.Œ0; T �;L

1
k
/ given by the product of topologies

generated by the metrics Odk on C.Œ0; T �;L1
k
/.

With the above topology on the space of marginal densities, we prove Theorem 1.2. The proof is
divided into five steps.

Step I (focusing energy estimate). We first establish, via an elaborate calculation in Theorem 3.1, that
one can compensate for the negativity of the interaction in the focusing many-body Hamiltonian (6) by
adding a product of N and some constant ˛ depending on V , provided that C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/,
where C1 and C2 depend solely on V . Henceforth, though HN;! is not positive-definite, we derive, from
the energy condition (12), an H 1-type energy bound:

˝
 N;! ; .˛CN

�1HN;! � 2!/
k N;!

˛
> C k





 kY
jD1

Sj N;!





2
L2.R3N /

;

where
Sj WD

�
1��xj C!

2
jxj j

2
� 2! � @2zj

� 1
2:

Since the quantity
˝
 N;! ; .HN;! � 2N!/

k N;!
˛

is conserved by the evolution, via Corollary 3.2, we
deduce the a priori bounds, crucial to the analysis of the “1�1” BBGKY hierarchy (18), on the scaled
marginal densities,

sup
t

Tr
� kY
jD1

zSj

�
Q

.k/
N;!

� kY
jD1

zSj

�
6 C k; sup

t
Tr

kY
jD1

.1�4rj / Q

.k/
N;! 6 C

k;

sup
t

TrP˛ Q

.k/
N;!Pˇ 6 C

k!�
1
2
j˛j� 1

2
jˇ j;
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where P˛ and Pˇ are defined as in (21). We remark that the quantity

Tr.1�4r1/ Q

.1/
N;!

is not the one-particle kinetic energy of the system; the one-particle kinetic energy of the system is
Tr.1�!4x1 � @

2
z1
/ Q

.1/
N;! and grows like !. This is also in contrast to the nD-to-nD work,

Step II (compactness of BBGKY). We fix T > 0 and work in the time interval t 2 Œ0; T �. In Theorem 4.1,
we establish the compactness of the BBGKY sequence

˚
�N;!.t/D f Q


.k/
N;!g

N
kD1

	
�
L
k>1 C.Œ0; T �;L

1
k
/

with respect to the product topology �prod even though hierarchy (18) contains attractive interactions and
an indefinite1�1. Moreover, in Corollary 4.2, we prove that, to be compatible with the energy bound
obtained in Step I, every limit point �.t/D f Q
 .k/g1

kD1
must take the form

Q
 .k/
�
t; .xk; zk/I .x

0
k; z
0
k/
�
D

� kY
jD1

h1.xj /h1.x
0
j /

�
Q
 .k/z .t; zkI z

0
k/;

where Q
 .k/z D Trx Q
 .k/ is the z-component of Q
 .k/.

Step III (limit points of BBGKY satisfy GP). In Theorem 5.1, we prove that if �.t/ D f Q
 .k/g1
kD1

is a C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/ limit point of
˚
�N;!.t/ D f Q


.k/
N;!g

N
kD1

	
with respect to the product

topology �prod, then f Q
 .k/z D Trx Q
 .k/g1kD1 is a solution to the focusing coupled Gross–Pitaevskii (GP)
hierarchy subject to initial data Q
 .k/z .0/D j�0ih�0j

˝k with coupling constant b0 D
ˇ̌R
V.r/ dr

ˇ̌
, which,

written in differential form, is

i@t Q

.k/
z D

kX
jD1

Œ�@2zj ; Q

.k/
z �� b0

kX
jD1

TrzkC1 TrxŒı.rj � rkC1/; Q

.kC1/�: (23)

Together with the limiting structure concluded in Corollary 4.2, we can further deduce f Q
 .k/z DTrx Q
 .k/g1kD1
is a solution to the 1D focusing GP hierarchy subject to initial data Q
 .k/z .0/D j�0ih�0j

˝k with coupling
constant b0

�R
jh1.x/j

4 dx
�
, which, written in differential form, is

i@t Q

.k/
z D

kX
jD1

Œ�@2zj ; Q

.k/
z �� b0

�Z
jh1.x/j

4 dx

� kX
jD1

TrzkC1 Œı.zj � zkC1/; Q

.kC1/
z �: (24)

Step IV (GP has a unique solution). When Q
 .k/z .0/ D j�0ih�0j
˝k, we know one solution to the 1D

focusing GP hierarchy (24), namely j�ih�j˝k if � solves the 1D focusing NLS (11). Since we have
proven the a priori bound,

sup
t

Tr
� kY
jD1

h@zj i

�
Q
 .k/z

� kY
jD1

h@zj i

�
6 C k:

A trace theorem then shows that f Q
 .k/z g verifies the requirement of the following uniqueness theorem and
hence we conclude that Q
 .k/z D j�ih�j

˝k.
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Theorem 2.1 [X. Chen and Holmer 2016b, Theorem 1.3]. 10Let

Bj;kC1

.kC1/
z D TrzkC1 Œı.zj � zkC1/; 


.kC1/
z �:

If f
 .k/z g
1
kD1

solves the 1D focusing GP hierarchy (24) subject to zero initial data and the space-time
bound11 Z T

0





� kY
jD1

h@zj i
"
h@z0

j
i
"

�
Bj;kC1


.kC1/
z .t; � I � /






L2

z;z0

dt 6 C k (25)

for some "; C > 0 and all 16 j 6 k, then 8k; t 2 Œ0; T �, we have 
 .kC1/z D 0.

Thus the compact sequence
˚
�N;!.t/D f Q


.k/
N;!g

N
kD1

	
has only one C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/ limit

point, namely

Q
 .k/ D

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j /:

We then infer from the definition of the topology that as trace class operators

Q

.k/
N;!!

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j / weak*.

Step V (weak* convergence upgraded to strong). Since the limit concluded in Step IV is an orthogonal
projection, the well-known argument in [Erdős et al. 2010] upgrades the weak* convergence to strong. In
fact, testing the sequence against the compact observable

J .k/ D

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j /;

and noticing the fact that . Q
 .k/N;!/
2 6 Q
 .k/N;! since the initial data is normalized, we see that as Hilbert–

Schmidt operators,

Q

.k/
N;!!

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j / strongly.

Since Tr Q
 .k/N;! D Tr Q
 .k/, we deduce the strong convergence

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

Tr
ˇ̌̌̌
Q

.k/
N;!.t;xk; zkIx

0
k; z
0
k/�

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j /

ˇ̌̌̌
D 0

via Grümm’s convergence theorem [Simon 2005, Theorem 2.19].12

10 For other uniqueness theorems or related estimates regarding the GP hierarchies, see [Erdős et al. 2007; Klainerman and
Machedon 2008; Kirkpatrick et al. 2011; Grillakis and Margetis 2008; X. Chen 2011; 2012a; Beckner 2014; Gressman et al.
2014; T. Chen et al. 2015; Hong et al. 2015; Sohinger 2015]

11 Though the space-time bound (25) follows from a simple trace theorem here, verifying such a condition in 3D is highly
nontrivial and is merely partially solved so far. See [T. Chen and Pavlović 2014; X. Chen 2013; X. Chen and Holmer 2016c].

12 One can also use the argument in [X. Chen 2013, Appendix A] to conclude the convergence with general datum.
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3. Focusing energy estimate

We find it more convenient to prove the energy estimate for  N;! and then convert it by scaling to an
estimate for Q N;! ; see (15). Note that, as an operator, we have the positivity

��xj C!
2
jxj j

2
� 2! > 0:

Define

Sj WD
�
1��xj C!

2
jxj j

2
� 2! � @2zj

� 1
2 D

�
1� 2! ��rj C!

2
jxj j

2
� 1
2;

and write

S .k/ D

kY
jD1

Sj :

Theorem 3.1 (energy estimate). For ˇ 2
�
0; 3
7

�
, let13

vE .ˇ/Dmin
�
1�ˇ

ˇ
;

3
5
�ˇ

ˇ� 1
5

1ˇ> 1
5
C1� 1ˇ< 1

5
;

7
8
�ˇ

ˇ

�
: (26)

There are constants14 C1 D C1.kV kL1 ; kV kL1/, C2 D C2.kV kL1 ; kV kL1/, and absolute constant C3,
and for each k 2 N, there is an integer N0.k/, such that for any k 2 N, N >N0.k/ and ! which satisfy

C1N
v1.ˇ/ 6 ! 6 C2N vE.ˇ/; (27)

there holds ˝
.˛CN�1HN;! � 2!/

k ;  
˛
>
1

2k

�
kS .k/ k2

L2
CN�1kS1S

.k�1/ k2
L2

�
; (28)

where

˛ D C3kV k
2
L1
C 1:

Proof. For smoothness of presentation, we postpone the proof to Section 3. �

Recall the rescaled operator (19),

zSj D
�
1� @2zj C!.��xj Cjxj j

2
� 2/

� 1
2 :

We notice that

.Sj /.t;xN ; zN /D !
N=2. zSj Q /.t;

p
!xN ; zN /

if Q N;! is defined via (15). Thus we can convert the conclusion of Theorem 3.1 into statements about
Q N;! , zSj , and Q
 .k/N;! , which we will utilize in the rest of the paper.

13 One notices that vE .ˇ/ is different from v2.ˇ/ in the sense that the term 2ˇ=.1� 2ˇ/� is missing. That restriction comes
from Theorem 5.1.

14 By absolute constant we mean a constant independent of V , N , !, etc. Formulas for C1, C2 in terms of kV kL1 , kV kL1
can, in principle, be extracted from the proof.
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Corollary 3.2. Define

zS .k/ D

kY
jD1

zSj ; L.k/ D

kY
jD1

hrrj i:

Assume C1N v1.ˇ/ 6 ! 6 C2N vE.ˇ/. Let Q N;!.t/D eit
zHN;! Q N;!.0/ and f Q
 .k/N;!.t/g be the associated

marginal densities. Then for all ! > 1, k > 0, N large enough, we have the uniform-in-time bound

Tr zS .k/ Q
 .k/N;!
zS .k/ D k zS .k/ Q N;!.t/k

2
L2.R3N /

6 C k: (29)

Consequently,

TrL.k/ Q
 .k/N;!L
.k/
D kL.k/ Q N;!.t/k

2
L2.R3N /

6 C k; (30)

and

kP˛ Q N;!kL2.R3N / 6 C k!�
1
2
j˛j; jTrP˛ Q


.k/
N;!Pˇ j6 C

k!�
1
2
j˛j� 1

2
jˇ j; (31)

where P˛ and Pˇ are defined as in (21).

Proof. Substituting (15) into estimate (28) and rescaling, we obtain

k zS .k/ Q N;!.t/k
2
L2.R3N /

6 C k
˝
Q N;!.t/; .˛CN

�1 zHN;! � 2!/
k Q N;!.t/

˛
:

The quantity on the right-hand side is conserved; therefore

k zS .k/ Q N;!.t/k
2
L2.R3N /

D C k
˝
Q N;!.0/; .˛CN

�1 zHN;! � 2!/
k Q N;!.0/

˛
:

Applying the binomial theorem twice,

k zS .k/ Q N;!.t/k
2
L2.R3N /

6 C k
kX

jD0

�k
j

�
˛j
˝
Q N;!.0/; .N

�1 zHN;! � 2!/
k�j Q N;!.0/

˛
6 C k

kX
jD0

�k
j

�
˛j .C /k�j

D C k.˛CC/k 6 zC k;

where we used condition (12) in the second-to-last line. So we have proved (29). Putting (29) and
(70) together, estimate (30) then follows.15 The first inequality of (31) follows from (29) and (72). By
Lemma A.5,

TrP˛ Q

.k/
N;!Pˇ D hP˛ Q N;! ;Pˇ Q N;!i;

so the second inequality of (31) follows by Cauchy–Schwarz. �

15 We remark that, though L.k/ 6 3k zS .k/, it is not true that L.k/ 6 C kS .k/ for any C independent of ! because of the
ground-state case.
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Proof of the focusing energy estimate. Note that

N�1HN;! � 2! DN
�1

NX
iD1

.��ri C!
2
jxi j

2
� 2!/CN�2!�1

X
16i<j6N

VN!.ri � rj /;

where we have used the notation16

VN!.r/D .N!/
3ˇV..N!/ˇ r/:

Define

HKij D .˛��ri C!
2
jxi j

2
� 2!/C .˛��rj C!

2
jxj j

2
� 2!/;

where the K stands for “kinetic” and

HI ij D !
�1VN!ij D !

�1VN!.ri � rj /;

where the I is for “interaction”. If we write

Hij DHKij CHI ij ;

then

˛CN�1HN;! � 2! D
1
2
N�2

X
16i¤j6N

Hij DN
�2

X
16i<j6N

Hij : (32)

We will first prove Theorem 3.1 for k D 1 and k D 2. Then, by a two-step induction (result known for k
implies result for kC 2), we establish the general case. Before we proceed, we prove some estimates
regarding the Hermite operator.

Estimates needed to prove Theorem 3.1.

Lemma 3.3. Recall that Pl! is the orthogonal projection onto the eigenspace of �4xC!2jxj2 associ-
ated with eigenvalue 2.l C 1/!. There is a constant independent of l and ! such that

kPl!f kL1x 6 C!
1
2 kf kL2x : (33)

Proof. This estimate has more than one proof. It is a special result in 2D. It does not follow from the
Strichartz estimates. For a modern argument which proves the estimate for general, at most quadratic
potentials, see [Koch and Tataru 2005, Corollary 2.2]. In the special case of the quantum harmonic
oscillator, one can also use a special property of 2D Hermite projection kernels to yield a direct proof
without using Littlewood–Paley theory — see [Thangavelu 1993, Lemma 3.2.2; X. Chen 2011, Remark 8].

�

Lemma 3.4. There is an absolute constant C3 > 0 and a constant C1 D C.kV kL1 ; kV kL1/ such that if

! > C1N
ˇ
1�ˇ

16 We remind the reader that this VN! is different from VN;! defined in (17).
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then

1

!

Z
jVN!.r1� r2/jj .r1; r2/j

2 dr1

6 1
100

˝
 .r1; r2/; .��r1 C!

2
jx1j

2
� 2!/ .r1; r2/

˛
r1
CC3kV k

2
L1
k .r1; r2/k

2
L2r1
: (34)

The above estimate is performed in one coordinate only (taken to be r1), and the other coordinate r2 is
effectively “frozen”. In particular, let

f .r2; : : : ; rN /D

Z
jVN!.r1� r2/jj 1.r1; : : : ; rN /jj 2.r1; : : : ; rN /j dr1:

Then

f .r2; : : : ; rN /. !kS1 1.r1; : : : ; rN /kL2r1kS1 2.r1; : : : ; rN /kL2r1 : (35)

The implicit constant in the . is an absolute constant times kV kL1 CkV kL1 .

Proof. By Cauchy–Schwarz,Z
jVN!12jj 1jj 2j dr1 6

�Z
jVN!12jj 1j

2 dr1

�1
2
�Z
jVN!12jj 2j

2 dr1

�1
2

:

Thus, assuming (34) and using the facts

S21 > 1; S21 > .��r1 C!
2
jx1j

2
� 2!/;

we obtain (35). So we only need to prove (34).
Taking Pl! to be the projection onto the x1-component at the moment, we decompose  into ground

state, middle energies, and high energies as follows:

 D P0! C

e�1X
`D1

Pl! CP>e! ;

where e is an integer, and the optimal choice of e is determined below. It then suffices to bound

Alow WD
1

!

Z
jVN!.r1� r2/jjP0! .r1; r2/j

2 dr1; (36)

Amid WD
1

!

Z
jVN!.r1� r2/j

ˇ̌̌̌e�1X
lD2

Pl! .r1; r2/

ˇ̌̌̌2
dr1; (37)

Ahigh WD
1

!

Z
jVN!.r1� r2/jjP>e! .r1; r2/j

2 dr1: (38)

For each estimate, we will only work in the r1 D .x1; z1/ component, and thus will not even write the
r2-variable. First we consider (36):

Alow 6
1

!
kVN!kL1 kP0! k

2
L1x L

1
z
:
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By the standard 1D Sobolev-type estimate,

Alow .
1

!
kV kL1 kP0!@z kL1x L2z kP0! kL1x L2z :

Then using the estimate (33), we get

Alow . kV kL1 kP0!@z kL2r kP0! kL2r
. kV kL1 k@z kL2 k kL2

. �k@z k2L2 C
1

�
kV k2

L1
k k2

L2
:

Since .��r C!2jxj2� 2!/ is a sum of two positive operators, namely ��xC!2jxj2� 2! and �@2z ,
we conclude the estimate for Alow.

Now consider the middle harmonic energies given by (37). We aim to estimate Amid. For any l > 1,
we have

kPl! kL1z L1x 6 kPl!@z k
1
2

L2zL
1
x

kPl! k
1
2

L2zL
1
x

:

By (33),

kPl! kL1z L1x . !
1
2 kPl!@z k

1
2

L2zL
2
x

kPl! k
1
2

L2zL
2
x

D !
1
4 kPl!@z k

1
2

L2

�
kPl! kL2l

1
2!

1
2

� 1
2 l�

1
4

D !
1
4 kPl!@z k

1
2

L2r



Pl!.��xC!2jxj2� 2!/ 12 

 12L2 l� 14 :
Summing over 16 l 6 e� 1, and using the Hölder inequality with exponents 4, 4, and 2, we get

e�1X
lD1

kPl! kL1z L1x . !
1
4

�e�1X
`D1

kPl!@z k
2
L2

�1
4
�e�1X
lD1



Pl!.��xC!2jxj2�2!/ 12 

2L2�14� eX
lD1

l�
1
2

� 1
2

. !
1
4 e

1
4 k@z k

1
2

L2



.��xC!2jxj2�2!/ 12 

 12L2 :
Applying this to estimate (37),

Amid . !�
1
2 e

1
2 kV kL1 k@z kL2



.��xC!2jxj2� 2!/ 12 

L2 :
Take e to be the largest integer so that !�

1
2 e

1
2 kV kL1 6 �, i.e.,

e D

�
�2

kV k2
L1

!

�
; (39)

and then we have

Amid . �k@z k2L2 C �


.��xC!2jxj2� 2!/ 12 

2L2 :
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For (38),
Ahigh . !�1kVN!kL1 kP>e! k

2
L2

. !�2e�1kVN!kL1


e 12! 1

2P>e! 


2
L2

. !�2e�1.N!/3ˇkV kL1


.��xC!2jxj2� 2!/ 12 

2L2 :

We need
!�2e�1.N!/3ˇkV kL1 6 �:

Substituting the specification of e given by (39), we obtain

!�2.N!/3ˇ 6
e�

kV kL1
6

�3

kV kL1 kV k
2
L1

!;

which is

N 3ˇ!3ˇ�3 6
�3

kV k2
L1
kV kL1

:

That is, ! > C1N
ˇ
1�ˇ as required in the statement of Lemma 3.4. �

In the following lemma, we have excited-state estimates and ground-state estimates, and the ground-state
estimates are weaker (they involve a loss of !

1
2 ).

Lemma 3.5. Taking  D  .r/, we have the “excited-state” estimate

k!
1
2P>1! kL2 C



!jxjP>1! 



L2
CkrrP>1! kL2 . kS kL2 ; (40)

and the “ground-state” estimate

k!
1
2P0! kL2 C



!jxjP0! 

L2 CkrxP0! kL2 . ! 1
2 k kL2 : (41)

We are, however, spared from the !
1
2 loss when working only with the z-derivative:

k@zP0! kL2 . kS kL2 : (42)

Putting the excited-state and ground-state estimates together gives

k!
1
2 kL2 C



!jxj 


L2
Ckrr kL2 . !

1
2 kS kL2 : (43)

Proof. For the excited-state estimates, we note

06
˝
P>1! ; .��xC!

2
jxj2� 4!/P>1! 

˛
:

Adding 3
2
k@zP>1! k

2
L2
C
1
2
krxP>1! k

2
L2
C
1
2



!jxjP>1! 


2
L2
Ck!

1
2P>1! k

2
L2

to both sides, we get

3
2
k@zP>1! k

2
L2
C
1
2
krxP>1! k

2
L2
C
1
2



!jxjP>1! 


2
L2
Ck!

1
2P>1! k

2
L2

6 3
2

˝
P>1! ; .��r C!

2
jxj2� 2!/P>1! 

˛
:

This proves (40).
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For the ground-state estimate (41), it suffices to prove

!jxjP0! 

L2 CkrxP0! kL2 . C! 1
2 k kL2 ;

because
k!

1
2P0! kL2 D !

1
2 kP0! kL2 6 !

1
2 k kL2 :

We notice that 

!jxjf 


L2
Ckrxf kL2 �



.�4xC!2jxj2/ 12f 

L2 :
This estimate has been proved by many authors (see, for example, [Thangavelu 1993]), but is usually
known as a scattering space † estimate for PDE analysts. Then, since the eigenvalue for the ground-state
Gaussian is exactly 2! in 2D, we have

.�4xC!2jxj2/ 12P0! 

L2 Dp2! 1

2 kP0! kL2 6
p
2!

1
2 k kL2 :

So we have proved (41).
For (42), we notice that

k@zP0! kL2 D kP0!.@z /kL2 6 k@z kL2 . kS kL2 : �

Lemma 3.6. We have the estimates

jVN!12j 12S1P 10! 2

L2r1 . ! 1
2N

1
4 kS1 2k

1
2

L2

�
N�

1
4 kS21 2k

1
2

L2

�
; (44)

jVN!12j 12S1P 1>1! 2

L2r1 .N 1

2
ˇC 1

2!
1
2
ˇ
�
N�

1
2 kS21 2kL2r1

�
: (45)

In particular, if ! > C1N
ˇ
1�ˇ thenZ

r1

jVN!12jj 1jjS1 2j dr1

. !N
1
4 kS1 1kL2 kS1 2k

1
2

L2
N�

1
4 kS21 2k

1
2

L2
C .N!/

1
2
ˇC 1

2 kS1 1kL2N
� 1
2 kS21 2kL2 : (46)

Proof. To prove (46), substituting  2 D P 10! 2CP
1
>1! 2, we obtainZ

r1

jVN!12jj 1jjS1 2j dr1 . F1CF2;

where
F1 D

Z
r1

jVN!12jj 1jjP
1
0!S1 2j dr1

6


jVN!12j 12 1

L2r1

jVN!12j 12P 10!S1 2

L2r1
6 !

1
2 kS1 1kL2r1



jVN!12j 12P 10!S1 2

L2r1 ;
F2 D

Z
r1

jVN!12jj 1jjP
1
>1!S1 2j dr1

6 !
1
2 kS1 1kL2r1



jVN!12j 12P 1>1!S1 2

L2r1
by Cauchy–Schwarz and estimate (35). Hence we only need to prove (44) and (45).
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On the one hand, using the fact that P 10!S1 D .1� @
2
z1
/
1
2P 10! ,

jVN!12j 12S1P 10! 2

L2r1 D 

jVN!12j 12 .1� @2z1/ 12P 10! 2

L2r1

6 kVN!12k
1
2

L1r1
k.1� @2z1/

1
2P 10! 2kL1r1

:

By Sobolev in z1 and the estimate (33) in x1,

jVN!12j 12S1P 10! 2

L2r1 . ! 1
2 k.1� @2z1/

1
2 2k

1
2

L2r1
k.1� @2z1/ 2k

1
2

L2r1
:

That is, we get (44):

jVN!12j 12S1P 10! 2

L2r1 . ! 1
2N

1
4 kS1 2k

1
2

L2

�
N�

1
4 kS21 2k

1
2

L2

�
:

On the other hand,

jVN!12j 12S1P 1>1! 2

L2r1 . 

jVN!12j 12

L3 kP 1>1!S1 2kL6r1
. .N!/

1
2
ˇ
kS21 2kL2r1

DN
1
2
ˇC 1

2!
1
2
ˇ
�
N�

1
2 kS21 2kL2r1

�
;

which is (45). �

The k D 1 case. Recalling (32),˝
 ; .˛CN�1HN;! � 2!/ 

˛
D

1
2
N�2

X
16i¤j6N

hHij ; i D
1
2
hH12 ; i;

where the second equality follows by symmetry. Hence we need to prove

hH12 ; i> kS1 k2L2 : (47)

We prove (47) with the following lemma.

Lemma 3.7. Recall ˛D C3kV k2L2C1. If ! > C1N
ˇ
1�ˇ and  j .r1; r2/D j .r2; r1/ for j D 1; 2, thenˇ̌

hH12 1;  2ir1r2
ˇ̌
. kS1 1kL2r1r2 kS1 2kL2r1r2 : (48)

Moreover,

kS1 k
2
L2
6 hH12 ; i6 CkS1 k2L2 : (49)

Proof. By Cauchy–Schwarz and (34),ˇ̌
h 1;HI12 2ir1r2

ˇ̌
D !�1

ˇ̌
hVN!12 1;  2i

ˇ̌
.
�
!�1

Z
jVN!12jj 1j

2

�1
2
�
!�1

Z
jVN!12jj 2j

2

�1
2

. kS1 1kL2 kS1 2kL2 :
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Thus ˇ̌
hH12 1;  2ir1r2

ˇ̌
6
ˇ̌
hHK12 1;  2ir1r2

ˇ̌
C
ˇ̌
hHI12 1;  2ir1r2

ˇ̌
. kS1 1kL2r1r2 kS1 2kL2r1r2 ;

which is (48). It remains to prove the first inequality in (49).
On the one hand, by (34), we have the lower bound for the potential term,

�
1
100

˝
 ; .��r1 C!

2
jx1j

2
� 2!/ 

˛
r1r2
�C3kV k

2
L1
k k2

L2r1r2
6 !�1hVN!12 ; ir1r2 :

Adding
˝
 ; .˛��r1C!

2jx1j
2�2!/ 

˛
r1r2

to both sides and noticing the trivial inequalities ˛�C3kV k2L2D
1> 1

2
and 99

100
> 1
2

, we have

1
2

˝
 ; .1��r1 C!

2
jx1j

2
� 2!/ 

˛
r1r2
6
˝
 ;
�
˛��r1 C!

2
jx1j

2
� 2!C!�1VN!12

�
 
˛
r1r2

: (50)

On the other hand, we trivially have

1
2

˝
 ; .1��r2 C!

2
jx2j

2
� 2!/ 

˛
r1r2
6
˝
 ; .˛��r2 C!

2
jx2j

2
� 2!/ 

˛
r1r2

(51)

because ˛ > 1
2

.
Adding estimates (50) and (51) together, we have

1
2
h ; S21 iC

1
2
h ; S22 i6 hH12 ; i:

By symmetry in r1 and r2, this is precisely (49). �

The k D 2 case. The k D 2 energy estimate is the lower bound

1
4

�
hS21S

2
2 ; iCN

�1
hS41 ; i

�
6
˝
.˛CN�1H � 2!/2 ;  

˛
:

We will prove it under the hypothesis

N
ˇ
1�ˇ 6 ! 6Nmin . 1�ˇ

ˇ
;2/:

We substitute into (32) to obtain˝
.˛CN�1H � 2!/2 ;  

˛
D

1
4
N�4

X
16i1¤j16N
16i2¤j26N

hHi1j1Hi2j2 ;  i D A1CA2CA3;

where

� A1 consists of those terms with fi1; j1g\ fi2; j2g D¿,

� A2 consists of those terms with
ˇ̌
fi1; j1g\ fi2; j2g

ˇ̌
D 1,

� A3 consists of those terms with
ˇ̌
fi1; j1g\ fi2; j2g

ˇ̌
D 2.

By symmetry, we have
A1 D

1
4
hH12H34 ; i;

A2 D
1
2
N�1hH12H23 ; i;

A3 D
1
2
N�2hH12H12 ; i:
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We discard A3 since A3 > 0. By the analysis used in the k D 1 case,

A1 > 1
4
kS1S3 k

2
L2
:

The main piece of work in the k D 2 case is to estimate A2. Substituting H12 D HK12 CHI12 and
H23 DHK23CHI23, we obtain the expansion

A2 D B0CB1CB2;

where
B0 D

1
2
N�1hHK12HK23 ; i;

B1 D
1
2
N�1hHK12HI23 ; iC

1
2
N�1hHI12HK23 ; i;

B2 D
1
2
N�1hHI12HI23 ; i:

Let � D ˛� 1> 0. First note that

B0 D
1
2
N�1

˝
.S21 CS

2
2 C 2�/.S

2
2 CS

2
3 C 2�/ ;  

˛
:

Since S21 , S22 , S23 all commute,

B0 > 1
2
N�1hS42 ; i;

which is a component of the claimed lower bound.
Next, we consider B1. By symmetry

B1 DN
�1 RehHK12HI23 ; i:

Since every term in B1 is estimated, we do not drop the imaginary part. Decompose I D P 20!CP
2
>1! in

the right factor of  as

B1 D B10CB11CB12;

where
B10 D .N!/

�1
˝
Œ.2˛� 1/CS21 �VN!23 ;  

˛
;

B11 D .N!/
�1
˝
.��r2 C!

2
jx2j

2
� 2!/VN!23 ; P

2
0! 

˛
;

B12 D .N!/
�1
˝
.��r2 C!

2
jx2j

2
� 2!/VN!23 ; P

2
>1! 

˛
:

The term B10 is the simplest. In fact, by estimate (35) at the r2-coordinate, we have

jB10j D
ˇ̌
.N!/�1

˝
Œ.2˛� 1/CS21 �VN!23 ;  

˛ˇ̌
.N�1

�
kS2 k

2
L2
CkS1S2 k

2
L2

�
:

For B12, we consider the four terms separately:

B12 D B121CB122CB123CB124;
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where
B121 D .N!/

ˇ�1
˝
.rV /N!23 ; rr2P

2
>1! 

˛
;

B122 D .N!/
�1
˝
VN!23rr2 ; rr2P

2
>1! 

˛
;

B123 D .N!/
�1
˝
VN!23!jx2j ; !jx2jP

2
>1! 

˛
;

B124 D�2.N!/
�1
˝
VN!23!

1
2 ; !

1
2P 2>1! 

˛
:

By (35) applied with r1 replaced by r3, we obtain

jB121j. .N!/ˇ�1!kS3 kL2


rr2P 2>1!S3 

L2 :

By (40),

jB121j. .N!/ˇ�1!kS3 kL2 kS2S3 kL2 ;

which yields the requirement ! 6N
1�ˇ
ˇ . By (35) applied with r1 replaced by r3, we obtain

jB122j. .N!/�1!krr2S3 kL2


rr2P>1!S3 




L2
:

Utilizing (43) for the krr2S3 kL2 term and (40) for the krr2P>1!S3 kL2 term,

jB122j. .N!/�1!
3
2 kS2S3k

2
L2
:

This requires ! 6 N 2. The terms B123 and B124 are estimated in the same way as B122, yielding the
requirement ! 6N 2. This completes the treatment of B12.

For B11, we move the operator .��r2 C !
2jx2j

2 � 2!/ over to the right, and use the fact that
.��r2 C!

2jx2j
2� 2!/P 20! D�@

2
z2
P 20! to obtain

B11 D B111CB112;

where
B111 D .N!/

ˇ�1
˝
.@zV /N!23 ; @z2P

2
0! 

˛
;

B112 D .N!/
�1
˝
VN!23@z2 ; @z2P

2
0! 

˛
:

By (35) applied with r1 replaced by r3, we obtain

jB111j. .N!/ˇ�1!kS3 kL2 k@z2P
2
0!S3 kL2 :

Using (42) for the k@z2P
2
0!S3 kL2 term (which saves us from the !

1
2 loss),

jB111j. .N!/ˇ�1!kS3 kL2 kS2S3 kL2 ;

which again requires that ! 6N
1�ˇ
ˇ . By (35) applied with r1 replaced by r3, we obtain

jB112j. .N!/�1!k@z2S3 kL2 k@z2P
2
0!S3 kL2 :

Using (42),

jB112j. .N!/�1!kS2S3 k2L2 ;
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which has no requirement on !. This completes the treatment of B11, and hence also B1. Now let us
consider B2:

B2 DN
�1!�2hVN!12VN!23 ;  i;

jB2j6N�1!�2
Z
jVN!23j

�Z
r1

jVN!12jj .r1; : : : ; rN /j
2 dr1

�
dr2 � � � drN :

In the parentheses, apply estimate (35) in the r1-coordinate to obtain

jB2j.N�1!�2!
Z
r2;:::;rN

jVN!23jkS1 k
2
L2r1

dr2 � � � drN :

By Fubini, the right-hand side is equal to

N�1!�2!

Z
r1

�Z
r2;:::;rN

jVN!23jjS1 .r1; : : : ; rN /j
2 dr2 � � � drN

�
dr1:

In the parentheses, apply estimate (35) in the r2-coordinate to obtain

jB2j.N�1!�2!2kS1S2 k2L2 :

Hence B2 is bounded without additional restriction on !. Therefore we end the proof for the k D 2 case.

The k case implies the kC 2 case. We assume that (28) holds for k. Applying it with  replaced by
.˛CN�1HN;! � 2!/ ,

1

2k



S .k/.˛CN�1HN;! � 2!/ 

L2 6 ˝.˛CN�1HN;! � 2!/kC2 ;  ˛:
Hence, to prove (28) in the case kC 2, it suffices to prove

1
4

�
kS .kC2/ k2

L2
CN�1kS1S

.kC1/ k2
L2

�
6


S .k/.˛CN�1HN;! � 2!/ 

2L2 : (52)

To prove (52), we substitute (32) into˝
S .k/.˛CN�1HN;! � 2!/ ; S

.k/.˛CN�1HN;! � 2!/ 
˛
;

which gives
N�4

X
16i1<j16N
16i2<j26N

hS .k/Hi1j1 ; S
.k/Hi2j2 i:

We decompose into three terms
E1CE2CE3

according to the location of i1 and i2 relative to k. We place no restriction on j1, j2 (other than i1 < j1,
i2 < j2):

� E1 consists of those terms for which i1 6 k and i2 6 k.

� E2 consists of those terms for which both i1 > k and i2 > k.

� E3 consists of those terms for which either (i1 6 k and i2 > k) or (i1 > k and i2 < k).
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We have E1 > 0, and we discard this term. We extract the key lower bound from E2 exactly as in the
k D 2 case. In fact, inside E2, we know Hi1j1 and Hi2j2 commute with S .k/ because j1 > i1 > k and
j2 > i2 > k; hence we indeed face the k D 2 case again. This leaves us with E3:

E3 D 2N
�4

X
16i1<j16N
16i2<j26N
i16k;i2>k

RehS .k/Hi1j1 ; S
.k/Hi2j2 i:

We decompose E3 as
E3 DD1CD2CD3;

where, in each case we require i1 6 k and i2 > k, but make the additional distinctions as follows:

� D1 consists of those terms where j1 6 k.

� D2 consists of those terms where j1 > k and j1 2 fi2; j2g.

� D3 consists of those terms where j1 > k and j1 … fi2; j2g.

By symmetry,

D1 D k
2N�2

˝
S1 � � �SkH12 ; S1 � � �SkH.kC1/.kC2/ 

˛
;

D2 D kN
�2
˝
S1 � � �SkH1.kC1/ ; S1 � � �SkH.kC1/.kC2/ 

˛
;

D3 DN
�1
˝
S1 � � �SkH1.kC1/ ; S1 � � �SkH.kC2/.kC3/ 

˛
:

We begin with estimates for the term D1. We decompose it as

D1 DD11CD12;

where
D11 DN

�2
˝
H.kC1/.kC2/ŒS1S2;H12�S3 � � �Sk ; S1 � � �Sk 

˛
;

D12 DN
�2
˝
H.kC1/.kC2/H12S1 � � �Sk ; S1 � � �Sk 

˛
:

By Lemmas 3.7 and A.3, D12 is positive because H.kC1/.kC2/ and H12 commutes. Therefore we
discard D12. For D11, we take ŒVN!12; S1S2�� .N!/2ˇ .�V /N!12. This gives

jD11j.N 2ˇ�2!2ˇ�1
˝
H.kC1/.kC2/.�V /N!12S3 � � �Sk ; S1 � � �Sk 

˛
:

By using Lemma 3.7 in the rkC1-coordinate to handle H.kC1/.kC2/, we have

jD11j.N 2ˇ�2!2ˇ�1


j.�V /N!12j 12S3 � � �SkC1 

L2 

j.�V /N!12j 12S1 � � �SkC1 

L2 :

Using (35) in the first factor,

jD11j.N 2ˇ�2!2ˇ�
1
2 kS1S3 � � �SkC1 kL2



j.�V /N!12j 12S1 � � �SkC1 

L2 :
Decomposing  in the second factor into P 10! CP

1
>1! gives

jD11j.N 2ˇ�2!2ˇ�
1
2 kS1S3 � � �SkC1 kL2

�
�

j.�V /N!12j 12S1 � � �SkC1P 10! 

L2 C 

j.�V /N!12j 12S1 � � �SkC1P 1>1! 

L2�:
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Applying Lemma 3.6,

jD11j.N 2ˇ�2!2ˇ�
1
2 kS1S3 � � �SkC1 kL2!

1
2N

1
4 kS1 � � �SkC1 k

1
2

L2

�
N�

1
4 kS21 � � �SkC1 k

1
2

L2

�
CN 2ˇ�2!2ˇ�

1
2 kS1S3 � � �SkC1 kL2N

ˇ
2
C 1
2!

ˇ
2

�
N�

1
2 kS21 � � �SkC1 kL2

�
:

The coefficients simplify to N 2ˇ� 7
4!2ˇ and N

5
2
ˇ� 3

2!
5
2
ˇ� 1

2 . This gives the constraints

! 6N
7=4�2ˇ
2ˇ and ! 6N

3=5�ˇ
ˇ�1=5 :

The second one is the worst one. When combined with the lower bound N
ˇ
1�ˇ 6 !, it restricts us to

ˇ 6 3
7

. Moreover, at ˇ D 2
5

, the relation ! DN is within the allowable range.
We now find estimates for the term D2. We write

D2 DD21CD22;

where
D21 DN

�2
hH.kC1/.kC2/ŒS1;H1.kC1/�S2 � � �Sk ; S1 � � �Sk i;

D22 DN
�2
hH.kC1/.kC2/H1.kC1/S1 � � �Sk ; S1 � � �Sk i:

Let us begin with D21. We use

ŒS1;H1.kC1/�� .N!/
ˇ!�1.rV /N!1.kC1/

and
H.kC1/.kC2/ D 2� CS

2
kC1CS

2
kC2C!

�1VN!.kC1/.kC2/

to get
D21 DD210CD211CD212CD213;

where

D210 D 2�N
�1.N!/ˇ�1

˝
.rV /N!1.kC1/S2 � � �Sk ; S1 � � �Sk 

˛
;

D211 DN
�1.N!/ˇ�1

˝
S2kC1.rV /N!1.kC1/S2 � � �Sk ; S1 � � �Sk 

˛
;

D212 DN
�1.N!/ˇ�1

˝
S2kC2.rV /N!1.kC1/S2 � � �Sk ; S1 � � �Sk 

˛
;

D213 DN
�2.N!/ˇ!�2

˝
VN!.kC1/.kC2/.rV /N!1.kC1/S2 � � �Sk ; S1 � � �Sk 

˛
:

For D211,

D211 DN
�1.N!/ˇ�1

˝
ŒSkC1; .rV /Nw1.kC1/�S2 � � �Sk ; S1 � � �Sk 

˛
CN�1.N!/ˇ�1

˝
.rV /Nw1.kC1/S2 � � �SkSkC1 ; S1 � � �Sk 

˛
:

The first piece is estimated the same way as D11. For the second term, using Lemma 3.6 in the r1-
coordinate,

j � j.N�1.N!/ˇ�1!N
1
4 kS1 � � �SkC1 kL2 kS1 � � �Sk k

1
2

L2

�
N�

1
4 kS1S1 � � �Sk kL2

�
CN�1.N!/ˇ�1.N!/

1
2
ˇC 1

2 kS1 � � �SkC1 kL2
�
N�

1
2 kS1S1 � � �Sk kL2

�
;
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which gives the conditions ! 6N
7=4�ˇ

ˇ and ! 6N
3�3ˇ

3ˇ�1. Since this results in conditions better than those
produced for D11, we neglect them.

For D213, we apply estimate (35) in the rkC2-coordinate and again in the rkC1-coordinate to obtain

jD213j.N�2.N!/ˇ!�2!2kS2 � � �SkC2 kL2 kS1 � � �SkC2 kL2 :

This gives the requirement ! 6N
2�ˇ
ˇ , which is clearly weaker than ! 6N

1�ˇ
ˇ , so we drop it. The terms

D210 and D212 are estimated in the same way. In fact, utilizing estimate (35) in the rkC1-coordinate
yields

jD210j.N�1.N!/ˇ�1!kS2 � � �Sk kL2 kS1 � � �Sk kL2 ;

jD212j.N�1.N!/ˇ�1!kS2 � � �SkC2 kL2 kS1 � � �SkC2 kL2 :

They give the same weaker condition ! 6N
2�ˇ
ˇ .

We now turn to D22. Since H.kC1/.kC2/ and H1.kC1/ do not commute, we cannot directly quote
Lemma 3.7 and conclude it is positive. We estimate it. By the definition of Hij , we only need to look at
the terms

D220 DN
�2!�1

˝
�VN!1.kC1/S1 � � �Sk ; S1 � � �Sk 

˛
;

D221 DN
�2!�1

˝
S2kC1VN!1.kC1/S1 � � �Sk ; S1 � � �Sk 

˛
;

D222 DN
�2!�1

˝
S2kC2VN!1.kC1/S1 � � �Sk ; S1 � � �Sk 

˛
;

D223 DN
�2!�2

˝
VN!.kC1/.kC2/VN!1.kC1/S1 � � �Sk ; S1 � � �Sk 

˛
;

D224 DN
�2!�1

˝
�VN!.kC1/.kC2/S1 � � �Sk ; S1 � � �Sk 

˛
;

D225 DN
�2!�1

˝
VN!.kC1/.kC2/S

2
1S1 � � �Sk ; S1 � � �Sk 

˛
;

D226 DN
�2!�1

˝
VN!.kC1/.kC2/S

2
kC1S1 � � �Sk ; S1 � � �Sk 

˛
because all the other terms inside the expansion of D22 are positive. It is easy to tell the following:
the terms D220 and D224 can be estimated in the same way as D210, the terms D221 and D226 can be
estimated in the same way as D211, the terms D222 and D225 can be estimated in the same way as D212,
and the term D223 can be estimated in the same way as D213. Moreover, all the D22 terms are better
than the corresponding D21 terms since they do not have a .N!/ˇ in front of them. Hence, we get no
new restrictions from D22 and we conclude the estimate for D22.

We now find estimates for the term D3. Commuting terms as usual,

D3 DD31CD32;

where
D31 DN

�1
˝
H.kC2/.kC3/ŒS1;H1.kC1/�S2 � � �Sk ; S1 � � �Sk 

˛
;

D32 DN
�1
˝
H.kC2/.kC3/H1.kC1/S1 � � �Sk ; S1 � � �Sk 

˛
:

Since H.kC2/.kC3/ and H1.kC1/ commute, D32 is positive due to Lemmas 3.7 and A.3. Thus we
discard D32. For D31, we use that

ŒS1;H1.kC1/�� .N!/
ˇ!�1.rV /N!1.kC1/
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together with estimate (35) in the rkC1-coordinate (to handle ŒS1;H1.kC1/�) and Lemma 3.7 in the
rkC2-coordinate (to handle H.kC2/.kC3/):

jD31j.N�1.N!/ˇkS2 � � �SkC2 kL2 kS1 � � �SkC2 kL2 :

This term again yields to the restriction

! 6N
1�ˇ
ˇ :

So far, we have proved that all the terms in E3 can be absorbed into the key lower bound exacted from
E2 for all N large enough as long as C1N v1.ˇ/ 6 ! 6 C2N vE.ˇ/. Hence we have finished the two-step
induction argument and established Theorem 3.1.

4. Compactness of the BBGKY sequence

Theorem 4.1. Assume C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/. Then the sequence˚
�N;!.t/D f Q


.k/
N;!g

N
kD1

	
�

M
k>1

C.Œ0; T �;L1k/;

which satisfies the focusing “1�1” BBGKY hierarchy (18), is compact with respect to the product
topology �prod. For any limit point �.t/D f Q
 .k/gN

kD1
, we have Q
 .k/ is a symmetric nonnegative trace class

operator with trace bounded by 1.

Proof. By the standard diagonalization argument, it suffices to show the compactness of Q
 .k/N;! for fixed k
with respect to the metric Odk . By the Arzelà–Ascoli theorem, this is equivalent to the equicontinuity
of Q
 .k/N;! . By [Erdős et al. 2010, Lemma 6.2], it suffices to prove that for every test function J .k/ from a
dense subset of K.L2.R3k// and for every " > 0, there exists ı.J .k/; "/ such that for all t1; t2 2 Œ0; T �
with jt1� t2j6 ı, we can write

sup
N;!

ˇ̌
TrJ .k/ Q
 .k/N;!.t1/�TrJ .k/ Q
 .k/N;!.t2/

ˇ̌
6 ": (53)

Here, we assume that our compact operators J .k/ have been cut off in frequency as in Lemma A.6.
Assume t1 6 t2. Inserting the decomposition (22) on the left and right sides of 
 .k/N;! , we obtain

Q

.k/
N;! D

X
˛;ˇ

P˛ Q

.k/
N;!Pˇ ;

where the sum is taken over all k-tuples ˛ and ˇ of the type described in (22).
To establish (53) it suffices to prove that, for each ˛ and ˇ, we have

sup
N;!

ˇ̌
TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t2/

ˇ̌
6 ": (54)

To this end, we establish the estimateˇ̌
TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t2/

ˇ̌
. C jt2� t1j

�
1˛D0 and ˇD0Cmax.1; !1�

1
2
jaj� 1

2
jˇ j/1˛¤0 or ˇ¤0

�
: (55)
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At a glance, (55) seems not quite enough in the j˛j D 0 and jˇj D 1 case (or vice versa) because it grows
in !. However, we can also prove the (comparatively simpler) boundˇ̌

TrJ .k/P˛ Q

.k/
N;!Pˇ .t2/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/

ˇ̌
. !�

1
2
j˛j� 1

2
jˇ j; (56)

which provides a better power of ! but no gain as t2! t1. Interpolating between (55) and (56) in the
j˛j D 0 and jˇj D 1 case (or vice versa), we acquireˇ̌

TrJ .k/P˛ Q

.k/
N;!Pˇ .t2/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/

ˇ̌
. jt2� t1j

1
2 ;

which suffices to establish (54).
Below, we prove (55) and (56). We first prove (55). The BBGKY hierarchy (18) yields

@t TrJ .k/P˛ Q

.k/
N;!Pˇ D IC IIC IIIC IV, (57)

where

ID�i!
kX

jD1

TrJ .k/
�
��xj Cjxj j

2; P˛ Q

.k/
N;!Pˇ

�
;

IID�i
kX

jD1

TrJ .k/
�
�@2zj ; P˛ Q


.k/
N;!Pˇ

�
;

IIID
�i

N

X
16i<j6k

TrJ .k/P˛
�
VN;!.ri � rj /; Q


.k/
N;!

�
Pˇ ;

IVD�i
N � k

N

kX
jD1

TrJ .k/P˛
�
VN;!.rj � rkC1/; Q


.kC1/
N;!

�
Pˇ :

We first consider I. When ˛ D ˇ D 0,

ID�i!
kX

jD1

TrJ .k/
�
��xjCjxj j

2; P0 Q

.k/
N;!P0

�
D�i!

kX
jD1

TrJ .k/
�
�2��xjCjxj j

2; P0 Q

.k/
N;!P0

�
D 0;

since constants commute with everything. When ˛ ¤ 0 or ˇ ¤ 0, we apply Lemma A.5 and integrate by
parts to obtain

jIj6 !
kX

jD1

ˇ̌
hJ .k/HjP˛ Q N;! ;Pˇ Q N;!i � hJ .k/P˛ Q N;! ; HjPˇ Q N;!i

ˇ̌

6 !
kX

jD1

�ˇ̌
hJ .k/HjP˛ Q N;! ; Pˇ Q N;!i

ˇ̌
C
ˇ̌
hHjJ

.k/P˛ Q N;! ; Pˇ Q N;!i
ˇ̌�
;
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where Hj D��xj Cjxj j
2. Hence

jIj. !
kX

jD1

�
kJ .k/Hj kopCkHjJ

.k/
kop
�
kP˛ Q N;!kL2.R3N /kPˇ Q N;!kL2.R3N /:

By the energy estimate (31),

jIj D 0; if ˛ D 0 and ˇ D 0;

jIj. Ck;J .k/!1�
1
2
j˛j� 1

2
jˇ j; otherwise:

(58)

Next, consider II. Proceeding as in I, we have

jIIj6
kX

jD1

�ˇ̌
hJ .k/@2zjP˛ Q N;! ; Pˇ Q N;!i

ˇ̌
C
ˇ̌
h@2zj J

.k/P˛ Q N;! ; Pˇ Q N;!i
ˇ̌�
:

That is,

jIIj6
kX

jD1

�
kJ .k/@2zj kopCk@

2
zj
J .k/kop

�
kP˛ Q N;!kL2.R3N /kPˇ Q N;!kL2.R3N / 6 Ck;J .k/ : (59)

Now, consider III:

jIIIj6N�1
X

16i<j6k

ˇ̌
hJ .k/P˛VN;!.ri � rj / Q N;! ; Pˇ Q N;!i

ˇ̌
CN�1

X
16i<j6k

ˇ̌
hJ .k/P˛ Q N;! ; PˇVN;!.ri � rj / Q N;!i

ˇ̌
:

That is,

jIIIj6N�1
X

16i<j6k

ˇ̌
hJ .k/P˛LiLjWijLiLj Q N;! ; Pˇ Q N;!i

ˇ̌
CN�1

X
16i<j6k

ˇ̌
hJ .k/P˛ Q N;! ; PˇLiLjWijLiLj Q N;!i

ˇ̌
if we write Li D .1��ri /

1
2 and

Wij D L
�1
i L�1j VN;!.ri � rj /L

�1
i L�1j :

Hence

jIIIj6N�1
X

16i<j6k

kJ .k/LiLj kopkWij kopkLiLj Q N;!kL2.R3N /kPˇ Q N;!kL2.R3N /

CN�1
X

16i<j6k

kLiLjJ
.k/
kopkWij kopkLiLj Q N;!kL2.R3N /kP˛ Q N;!kL2.R3N /:

Since kWij kop . kVN;!kL1 D kV kL1 (independent of N, !) by Lemma A.1, the energy estimates
(Corollary 3.2) imply that

jIIIj.
Ck;J .k/

N
: (60)



FOCUSING QUANTUM MANY-BODY DYNAMICS, II 621

Apply the same ideas to IV:

jIVj6
kX

jD1

ˇ̌
hJ .k/P˛LjLkC1Wj.kC1/LjLkC1 Q N;! ; Pˇ Q N;!ij

C

kX
jD1

ˇ̌
hJ .k/P˛ Q N;! ; PˇLjLkC1Wj.kC1/LjLkC1 Q N;!i

ˇ̌
:

Then, since J .k/LkC1 D LkC1J .k/,

jIVj6
kX

jD1

�
kJ .k/Lj kopCkLjJ

.k/
kop
�
kWj.kC1/kopkLjLkC1 Q N;!kL2.R3N /kLj Q N;!kL2.R3N /

. Ck;J .k/ : (61)

Integrating (57) from t1 to t2 and applying the bounds obtained in (58)–(61), we obtain (55).
Finally, we prove (56). By Lemma A.5,ˇ̌

TrJ .k/P˛ Q

.k/
N;!Pˇ .t2/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/

ˇ̌
6 2sup

t

ˇ̌
hJ .k/P˛ Q N;!.t/; Pˇ Q N;!.t/i

ˇ̌
. kJ .k/kopkP˛ Q N;!.t/kL2.R3N /kPˇ Q N;!.t/kL2.R3N /I

that is, ˇ̌
TrJ .k/P˛ Q


.k/
N;!Pˇ .t2/�TrJ .k/P˛ Q


.k/
N;!Pˇ .t1/

ˇ̌
. !�

1
2
j˛j� 1

2
jˇ j

once we apply (31). �

With Theorem 4.1, we can start talking about the limit points of
˚
�N;!.t/D f Q


.k/
N;!g

N
kD1

	
. With the

proofs of [X. Chen and Holmer 2013, Theorem 5 and Corollary 2], we arrive at the following corollary
and theorem.

Corollary 4.2. Let �.t/ D f Q
 .k/g1
kD1

be a limit point of
˚
�N;!.t/ D f Q


.k/
N;!g

N
kD1

	
, with respect to the

product topology �prod. Then Q
 .k/ satisfies the a priori bound

TrL.k/ Q
 .k/L.k/ 6 C k (62)

and takes the structure

Q
 .k/
�
t; .xk; zk/I .x

0
k; z
0
k/
�
D

� kY
jD1

h1.xj /h1.x
0
j /

�
Q
 .k/z .t; zkI z

0
k/; (63)

where Q
 .k/z D Trx Q
 .k/.

Theorem 4.3. Assume C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/. Then the sequence˚
�z;N;!.t/D f Q


.k/
z;N;! D Trx Q


.k/
N;!g

N
kD1

	
�

M
k>1

C
�
Œ0; T �;L1k.R

k/
�

is compact with respect to the one-dimensional version of the product topology �prod used in Theorem 4.1.
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5. Limit points satisfy GP hierarchy

Theorem 5.1. Let �.t/ D f Q
 .k/g1
kD1

be a C1N v1.ˇ/ 6 ! 6 C2N v2.ˇ/ limit point of
˚
�N;!.t/ D

f Q

.k/
N;!g

N
kD1

	
with respect to the product topology �prod. Then f Q
 .k/z D Trx Q
 .k/g1kD1 is a solution to

the coupled focusing Gross–Pitaevskii hierarchy (23) subject to initial data Q
 .k/z .0/D j�0ih�0j
˝k with

coupling constant b0 D j
R
V.r/ dr j, which, rewritten in integral form, is

Q
 .k/z D U
.k/.t/ Q
 .k/z .0/C ib0

kX
jD1

Z t

0

U .k/.t � s/TrzkC1 Trx
�
ı.rj � rkC1/; Q


.kC1/.s/
�
ds; (64)

where U .k/.t/D
kQ

jD1

e
it@2zj e

�it@2
z0
j .

Remark. The proof of Theorem 5.1 is a bit special for the focusing case and is dimension- and scaling-
dependent. So it does not follow from the 3D to 2D defocusing case [X. Chen and Holmer 2013,
Theorem 4].

Proof. Passing to subsequences if necessary, we have

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

sup
t

TrJ .k/
�
Q

.k/
N;!.t/� Q


.k/.t/
�
D 0 8J .k/ 2 K.L2.R3k//;

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

sup
t

TrJ .k/z

�
Q

.k/
z;N;!.t/� Q


.k/
z .t/

�
D 0 8J .k/z 2 K.L2.Rk//

(65)

via Theorems 4.1 and 4.3.
To establish (64), it suffices to test the limit point against the test functions J .k/z 2 K.L2.Rk//, as in

the proof of Theorem 4.3. We will prove that the limit point satisfies

TrJ .k/z Q
 .k/z .0/D TrJ .k/z j�0ih�0j
˝k (66)

and

TrJ .k/z Q
 .k/z .t/D TrJ .k/z U .k/.t/ Q
 .k/z .0/C ib0

kX
jD1

Z t

0

TrJ .k/z U .k/.t � s/
�
ı.rj � rkC1/; Q


.kC1/.s/
�
ds:

(67)
To this end, we use the coupled focusing BBGKY hierarchy satisfied by Q
 .k/z;N;! , which, written in the
form needed here, is

TrJ .k/z Q

.k/
z;N;!.t/D AC

i

N

kX
i<j

BC i

�
1�

k

N

� kX
jD1

D;

where
AD TrJ .k/z U .k/.t/ Q


.k/
z;N;!.0/;

B D

Z t

0

TrJ .k/z U .k/.t � s/
�
�VN;!.ri � rj /; Q


.k/
N;!.s/

�
ds;

D D

Z t

0

TrJ .k/z U .k/.t � s/
�
�VN;!.rj � rkC1/; Q


.kC1/
N;! .s/

�
ds:
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By (65), we know

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

TrJ .k/z Q

.k/
z;N;!.t/D TrJ .k/z Q
 .k/z .t/;

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

TrJ .k/z U .k/.t/ Q

.k/
z;N;!.0/D TrJ .k/z U .k/.t/ Q
 .k/z .0/:

With the argument in [Lieb et al. 2005, p. 64], we infer, from assumption (b) of Theorem 1.1,

Q

.1/
N;!.0/! jh1˝�0ihh1˝�0j strongly in trace norm;

that is,

Q

.k/
N;!.0/! jh1˝�0ihh1˝�0j

˝k strongly in trace norm.

Thus we have checked (66), the left-hand side of (67), and the first term on the right-hand side of (67) for
the limit point. We are left to prove that

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

B

N
D 0;

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

�
1�

k

N

�
D D b0

Z t

0

J .k/x U .k/.t � s/
�
ı.rj � rkC1/; Q


.kC1/.s/
�
ds:

We first use an argument similar to the estimates of II and III in the proof of Theorem 4.3 to prove that
jBj and jDj are bounded for every finite time t . In fact, since U .k/ is a unitary operator which commutes
with Fourier multipliers, we have

jBj6
Z t

0

ˇ̌
TrJ .k/z U .k/.t � s/

�
VN;!.ri � rj /; Q


.k/
N;!.s/

�ˇ̌
ds

D

Z t

0

dsjTrL�1i L�1j J .k/z LiLjU
.k/.t � s/WijLiLj Q


.k/
N;!.s/LiLj

�TrLiLjJ .k/z L�1i L�1j U .k/.t � s/LiLj Q

.k/
N;!.s/LiLjWij j

6
Z t

0

dskL�1i L�1j J .k/z LiLj kopkU
.k/
kopkWij kTrLiLj Q


.k/
N;!.s/LiLj

C

Z t

0

dskLiLjJ
.k/
z L�1i L�1j kopkU

.k/
kopkWij kTrLiLj Q


.k/
N;!.s/LiLj

6 CJ t:

That is,

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

B

N
D lim

N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

kD

N
D 0:
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We now use Lemma A.2 (stated and proved in Appendix A), which compares the ı-function and its
approximation, to prove

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

D D b0

Z t

0

TrJ .k/z U .k/.t � s/
�
ı.rj � rkC1/; Q


.kC1/.s/
�
ds: (68)

Pick a probability measure � 2L1.R3/ and define �˛.r/D ˛�3�.r=˛/. Letting M .k/
s�t D J

.k/
z U .k/.t � s/,

we haveˇ̌
TrJ .k/z U .k/.t � s/

�
�VN;!.rj � rkC1/ Q


.kC1/
N;! .s/� b0ı.rj � rkC1/ Q


.kC1/.s/
�ˇ̌
D IC IIC IIIC IV;

where

ID
ˇ̌
TrM .k/

s�t

�
�VN;!.rj � rkC1/� b0ı.rj � rkC1/

�
Q

.kC1/
N;! .s/

ˇ̌
;

IID b0
ˇ̌
TrM .k/

s�t

�
ı.rj � rkC1/� �˛.rj � rkC1/

�
Q

.kC1/
N;! .s/

ˇ̌
;

IIID b0
ˇ̌
TrM .k/

s�t�˛.rj � rkC1/
�
Q

.kC1/
N;! .s/� Q
 .kC1/.s/

�ˇ̌
;

IVD b0
ˇ̌
TrM .k/

s�t

�
�˛.rj � rkC1/� ı.rj � rkC1/

�
Q
 .kC1/.s/

ˇ̌
:

Consider I. Writing V!.r/D .1=!/V.x=
p
!; z/, we have VN;! D .N!/3ˇV!..N!/ˇ r/. Lemma A.2

then yields

I6
Cb0

.N!/ˇ�

�Z
jV!.r/jjr j

� dr

��
kLjJ

.k/
z L�1j kopCkL

�1
j J .k/z Lj kop

�
LjLkC1 Q


.kC1/
N;! .s/LjLkC1

D CJ

�R
jV!.r/jjr j

� dr

�
.N!/ˇ�

:

Notice that
�R
jV!.r/jjr j

� dr
�

grows like .
p
!/�, so

I 6 CJ
� p

!

.N!/ˇ

��
;

which converges to zero as N;!!1 in the way in which N > !
1
2ˇ
�1C. So we have proved

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

I D 0:

Similarly, for II and IV, via Lemma A.2, we have

II6 Cb0˛�
�
kLjJ

.k/
z L�1j kopCkL

�1
j J .k/z Lj kop

�
TrLjLkC1 Q


.kC1/
N;! .s/LjLkC1 6 Cb0˛�CJ .k/z

C 2;

where the second inequality follows from Corollary 3.2, and

IV6 Cb0˛�
�
kLjJ

.k/
z L�1j kopCkL

�1
j J .k/z Lj kop

�
TrLjLkC1 Q


.kC1/.s/LjLkC1 6 Cb0˛�CJ .k/z
C 2;
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where the second inequality follows from Corollary 4.2; that is,

II6 CJ˛� and IV6 CJ˛�;

due to the energy estimate (Corollary 4.2). Hence II and IV converge to 0 as ˛! 0, uniformly in N, !.
For III,

III6 b0
ˇ̌̌̌
TrJ .k/s�t�˛.rj � rkC1/

1

1C "LkC1

�
Q

.kC1/
N;! .s/� Q
 .kC1/.s/

�ˇ̌̌̌
C b0

ˇ̌̌̌
TrJ .k/s�t�˛.rj � rkC1/

"LkC1

1C "LkC1

�
Q

.kC1/
N;! .s/� Q
 .kC1/.s/

�ˇ̌̌̌
:

The first term in the above estimate goes to zero as N;!!1 for every " > 0, since we have assumed
condition (65) and J .k/s�t�˛.rj � rkC1/.1C "LkC1/

�1 is a compact operator. Due to the energy bounds
on Q
 .kC1/N;! and Q
 .kC1/, the second term tends to zero as "! 0, uniformly in N and !.

Putting together the estimates for I–IV, we have justified limit (68). Hence, we have obtained
Theorem 5.1. �

Combining Corollary 4.2 and Theorem 5.1, we see that Q
 .k/z in fact solves the 1D focusing Gross–
Pitaevskii hierarchy with the desired coupling constant b0

�R
jh1.x/j

4 dx
�
.

Corollary 5.2. Let �.t/ D f Q
 .k/g1
kD1

be a N > !v.ˇ/C" limit point of
˚
�N;!.t/ D f Q


.k/
N;!g

N
kD1

	
with

respect to the product topology �prod. Then f Q
 .k/z D Trx Q
 .k/g1kD1 is a solution to the 1D Gross–Pitaevskii
hierarchy (24) subject to initial data Q
 .k/z .0/ D j�0ih�0j

˝k with coupling constant b0
�R
jh1.x/j

4 dx
�
,

which, rewritten in integral form, is

Q
 .k/z D U
.k/.t/ Q
 .k/z .0/

C ib0

�Z
jh1.x/j

4 dx

� kX
jD1

Z t

0

U .k/.t � s/TrzkC1
�
ı.zj � zkC1/; Q


.kC1/
z .s/

�
ds: (69)

Proof. This is a direct computation by plugging (63) into (64). �

Appendix A: Basic operator facts and Sobolev-type lemmas

Lemma A.1 [Erdős et al. 2007, Lemma A.3]. Let Lj D .1�4rj /
1
2 . Then we have

L�1i L�1j V.ri � rj /L

�1
i L�1j




op 6 CkV kL1 :

Lemma A.2. Let f 2 L1.R3/ be such that
R

R3
hri

1
2 jf .r/j dr <1 and

R
R3
f .r/ dr D 1 but we allow

that f not be nonnegative everywhere. Define f˛.r/ D ˛�3f .r=˛/. Then, for every � 2
�
0; 1
2

�
, there

exists C� > 0 such thatˇ̌
TrJ .k/

�
f˛.rj � rkC1/� ı.rj � rkC1/

�

 .kC1/

ˇ̌
6 C�

�Z
jf .r/jjr j� dr

�
˛�
�
kLjJ

.k/L�1j kopCkL
�1
j J .k/Lj kop

�
TrLjLkC1


.kC1/LjLkC1

for all nonnegative 
 .kC1/ 2 L1.L2.R3kC3//.
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Proof. This is the same as [X. Chen and Holmer 2016b, Lemma A.3; 2013, Lemma 2]. See [Kirkpatrick
et al. 2011; T. Chen and Pavlović 2011; Erdős et al. 2007] for similar lemmas. �

Lemma A.3 (some standard operator inequalities).

(1) Suppose that A> 0, Pj D P �j , and I D P0CP1. Then A6 2P0AP0C 2P1AP1.

(2) If A> B > 0, and AB D BA, then A˛ > B˛ for any ˛ > 0.

(3) If A1 > A2 > 0, B1 > B2 > 0 and AiBj D BjAi for all 16 i; j 6 2, then A1B1 > A2B2.

(4) If A> 0 and AB D BA, then A
1
2B D BA

1
2 .

Proof. For (1), kA
1
2f k2DkA

1
2 .P0CP1/f k

26 2kA 1
2P0f k

2C2kA
1
2P1f k

2. For (3), A1B1>A2B1D
B1A2 > B2A2 D A2B2. The rest, (2) and (4), are standard facts in operator theory. See, for example,
[Reed and Simon 1978; Stein and Shakarchi 2005, Proposition 6.3]. �

Lemma A.4. Recall
zS D .1� @2zC!.�2�4xCjxj

2//
1
2 :

We have

zS2 & 1��r ; (70)

zS2P>1 & P>1.1� @
2
z �!4xC!jxj

2/P>1; (71)

zS2P>1 & !P>1: (72)

Proof. Directly from the definition of zS , we have

P>1.1� @
2
z �!4xC!jxj

2/P>1„ ƒ‚ …
all terms positive

D 2!P>1C zS
2P>1: (73)

The eigenvalues of the 2D Hermite operator ��xCjxj2 are f2kC 2g1
kD0

. So

2!P>1 6 !.�2�4xCjxj2/P>1 6 zS2P>1: (74)

Inequalities (71) and (72) immediately follow from (73) and (74).
We now establish (70) using (71). On the one hand, we have

zS2 > .1� @2z/: (75)

On the other hand,
P0.�4x/P0 . 16 zS2 (76)

since P0 is merely the projection onto the smooth function Ce�
1
2
jxj2. Moreover, by (71),

P>1.�4x/P>1 6 zS2P>1 6 zS2: (77)

Thus Lemma A.3(1), (76) and (77) together imply,

�4x . zS2: (78)

The claimed inequality (70) then follows from (75) and (78). �
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Lemma A.5. Suppose � W L2.R3k/! L2.R3k/ has kernel

�.rk; r
0
k/D

Z
 .rk; rN�k/ .r

0
k; rN�k/ drN�k

for some  2 L2.R3N /, and let A;B W L2.R3k/! L2.R3k/. Then the composition A�B has kernel

.A�B/.rk; r
0
k/D

Z
.A /.rk; rN�k/.B

� /.r 0k; rN�k/ drN�k :

It follows that
TrA�B D hA ;B� i:

Let Kk denote the class of compact operators on L2.R3k/, let L1
k

denote the trace class operators on
L2.R3k/, and let L2

k
denote the Hilbert–Schmidt operators on L2.R3k/. We have

L1k � L2k � Kk :

For an operator J on L2.R3k/, let jJ j D .J �J /
1
2 and denote by J.rk; r 0k/ the kernel of J and by

jJ j.rk; r
0
k
/ the kernel of jJ j, which satisfies jJ j.rk; r 0k/> 0. Let

�1 > �2 > � � �> 0

be the eigenvalues of jJ j repeated according to multiplicity (the singular values of J ). Then

kJ kKk D k�nk`1n D �1 D k jJ j kop D kJ kop;

kJ kL2
k
D k�nk`2n D kJ.rk; r

0
k/kL2.rk ;r 0k/

D .TrJ �J /
1
2 ;

kJ kL1
k
D k�nk`1n D kjJ j.rk; rk/kL1.rk/ D Tr jJ j:

The topology on Kk coincides with the operator topology, and Kk is a closed subspace of the space of
bounded operators on L2.R3k/.

Lemma A.6. On the one hand, let � be a smooth function on R3 such that �.�/ D 1 for j�j 6 1 and
�.�/D 0 for j�j> 2. Let

.QMf /.rk/D

Z
eirk ��k

kY
jD1

�.M�1�j / Of .�k/ d�k :

On the other hand, with respect to the spectral decomposition of L2.R2/ corresponding to the operator
Hj D�4

2
xj
Cjxj j

2, let XjM be the orthogonal projection onto the sum of the first M eigenspaces (in the
xj -variable only) and let

RM D

kY
jD1

X
j
M :

We then have the following:

(1) Suppose that J is a compact operator. Then JM WDRMQMJQMRM ! J in the operator norm.

(2) HjJM , JMHj , �rj JM and JM�rj are all bounded.
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(3) There exists a countable dense subset fTig of the closed unit ball in the space of bounded operators
on L2.R3k/ such that each Ti is compact and in fact for each i there exists M (depending on i ) and
Yi 2 Kk with kYikop 6 1 such that Ti DRMQMYiQMRM .

Proof. (1) If Sn! S strongly and J 2 Kk , then SnJ ! SJ in the operator norm and JSn! JS in the
operator norm.

(2) This is straightforward.

(3) Start with a subset fYng of the closed unit ball in the space of bounded operators on L2.R3k/ such
that each Yn is compact. Then let fTig be an enumeration of the set RMQMYnQMRM , where M ranges
over the dyadic integers. By (1) this collection will still be dense. The fYig in the statement of (3) is just
a reindexing of fYng. �

Appendix B: Deducing Theorem 1.1 from Theorem 1.2

We first give the following lemma.

Lemma B.1. Assume Q N;!.0/ satisfies (a), (b) and (c) in Theorem 1.1. Let � 2 C10 .R/ be a cut-off such
that 06 �6 1, �.s/D 1 for 06 s 6 1 and �.s/D 0 for s > 2. For � > 0, we define an approximation of
Q N;!.0/ by

Q �N;!.0/D
�
�
�. zHN;! � 2N!/=N

�
Q N;!.0/

���. zHN;! � 2N!/=N � Q N;!.0/

 :

This approximation has the following properties:

(i) Q �N;!.0/ verifies the energy condition

˝
Q �N;!.0/; .

zHN;! � 2N!/
k Q �N;!.0/

˛
6
2kN k

�k
:

(ii) supN;!


 Q N;!.0/� Q �N;!.0/

L2 6 C� 12 .

(iii) For small enough � > 0, we have Q �N;!.0/ is asymptotically factorized as well:

lim
N;!!1

Tr
ˇ̌
Q

�;.1/
N;! .0; x1; z1I x

0
1; z
0
1/� h.x1/h.x

0
1/�0.z1/�0.z

0
1/
ˇ̌
D 0;

where Q
�;.1/N;! .0/ is the one-particle marginal density associated with Q �N;!.0/, and �0 is the same as
in assumption (b) in Theorem 1.1.

Proof. Let us write �.�. zHN;! � 2N!// as � and Q N;!.0/ as Q N;! . This proof closely follows [Erdős
et al. 2010, Proposition 8.1(i)–(ii); 2007, Proposition 5.1(iii)].

Property (i) follows by definition. In fact, denote the characteristic function of Œ0; �� by 1.s 6 �/. We
see that

�
�
�. zHN;! � 2N!/=N

�
D 1

�
zHN;! � 2N! 6 2N=�

�
�
�
�. zHN;! � 2N!/=N

�
:
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Thus˝
Q �N;!.0/; .

zHN;!�2N!/
k Q �N;!.0/

˛
D

�
� Q N;!

k� Q N;!k
; 1
�
zHN;!�2N!6 2N=�

�
. zHN;!�2N!/

k � Q N;!

k� Q N;!k

�
6


1
�
zHN;!�2N!6 2N=�

�
. zHN;!�2N!/

k




op

6
2kN k

�k
:

We prove (ii) with a slightly modified proof of [Erdős et al. 2010, Proposition 8.1(ii)]. We still have

k Q �N;! �
Q N;!kL2 6 k� Q N;! � Q N;!kL2 C





 � Q N;!

k� Q N;!k
�� Q N;!






L2

6 k� Q N;! � Q N;!kL2 C
ˇ̌
1�k� Q N;!k

ˇ̌
6 2k� Q N;! � Q N;!kL2 ;

where

k� Q N;! � Q N;!k
2
L2
D

�
 N ;

�
1��

�
�. zHN;! � 2N!/

N

��2
 N

�
6
�
 N ; 1

��. zHN;! � 2N!/
N

> 1
�
 N

�
:

To continue estimating, we notice that if C > 0, then 1.s>1/6 1.sCC >1/ for all s. So

k� Q N;! � Q N;!k
2
L2
6
�
Q N;! ; 1

�
�. zHN;! � 2N!/

N
> 1
�
Q N;!

�
6
�
Q N;! ; 1

�
�. zHN;! � 2N!CN˛/

N
> 1
�
Q N;!

�
:

With the inequality 1.s>1/6 s for all s > 0 and the fact that

zHN;! � 2N!CN˛ > 0;

proved in Theorem 3.1, we arrive at

k� Q N;! � Q N;!k
2
L2
6
�

N

˝
Q N;! ; . zHN;! � 2N!CN˛/ Q N;!

˛
6
�

N

˝
Q N;! ; . zHN;! � 2N!/ Q N;!

˛
C˛�h Q N;! ; Q N;!i:

Using (a) and (c) in the assumptions of Theorem 1.1, we deduce that

k� Q N;! � Q N;!k
2
L2
6 C�;

which implies

k Q �N;! �
Q N;!kL2 6 C�

1
2 :

Property (iii) does not follow from the proof of [Erdős et al. 2010, Proposition 8.1(iii)] in which the
positivity of V is used. Instead (iii) follows from the proof of [Erdős et al. 2007, Proposition 5.1(iii)],
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which does not require V to hold a definite sign. Lemma B.1 follows the same proof as [Erdős et al.
2007, Proposition 5.1(iii)] if one replaces HN by . zHN;! � 2N!/ and yHN by

NX
j>kC1

�
�@zj C!.�2��xj Cjxj j

2/
�
C
1

N

X
kC1<i<j6N

VN;!.ri � rj /:

Notice that we are working with VN;! D .N!/3ˇV!..N!/ˇ r/, where V!.r/D .1=!/V.x=
p
!; z/; thus

we get

.N!/
3
2
ˇ
kV!k

2
L2
�
.N!/

3
2
ˇ

!

instead of N
3
2
ˇ in [Erdős et al. 2007, (5.20)] and hence we get .N!/

3
2
ˇ�1 in the estimate (5.18) of the

same work, which tends to zero as N;!!1 for ˇ 2
�
0; 2
3

�
. �

Via (i) and (iii) of Lemma B.1, Q �N;!.0/ verifies the hypothesis of Theorem 1.2 for small enough � > 0.
Therefore, for Q
�;.1/N;! .t/, the marginal density associated with eit zHN;! Q �N;!.0/, Theorem 1.2 gives the
convergence

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

Tr
ˇ̌̌̌
Q

�;.k/
N;! .t;xk; zkIx

0
k; z
0
k/�

kY
jD1

h1.xj /h1.x
0
j /�.t; zj /�.t; z

0
j /

ˇ̌̌̌
D 0 (79)

for all small enough � > 0, all k > 1, and all t 2 R.
For Q
 .k/N;!.t/ in Theorem 1.1, we notice that, 8J .k/ 2 Kk , 8t 2 R, we haveˇ̌

TrJ .k/
�
Q

.k/
N;!.t/�

ˇ̌
h1˝�.t/ihh1˝�.t/

ˇ̌˝k�ˇ̌
6
ˇ̌
TrJ .k/

�
Q

.k/
N;!.t/� Q


�;.k/
N;! .t/

�ˇ̌
C
ˇ̌
TrJ .k/

�
Q

�;.k/
N;! .t/� jh1˝�.t/ihh1˝�.t/j

˝k
�ˇ̌

D IC II:

Convergence (79) then takes care of II. To handle I, part (ii) of Lemma B.1 yields

eit zHN;! Q N;!.0/� eit zHN;! Q �N;!.0/

L2 D 

 Q N;!.0/� Q �N;!.0/

L2 6 C� 12 ;
which implies

I D
ˇ̌
TrJ .k/

�
Q

.k/
N;!.t/� Q


�;.k/
N;! .t/

�ˇ̌
6 CkJ .k/kop�

1
2 :

Since � > 0 is arbitrary, we deduce that

lim
N;!!1

C1N
v1.ˇ/6!6C2N

v2.ˇ/

ˇ̌
TrJ .k/

�
Q

.k/
N;!.t/� jh1˝�.t/ihh1˝�.t/j

˝k
�ˇ̌
D 0I

i.e., as trace class operators

Q

.k/
N;!.t/! jh1˝�.t/ihh1˝�.t/j

˝k weak*.

Then again, Grümm’s convergence theorem upgrades the above weak* convergence to strong. Hence, we
have concluded Theorem 1.1 via Theorem 1.2 and Lemma B.1.
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