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For a family of systems of linear elasticity with rapidly oscillating periodic coefficients, we establish
sharp boundary estimates with either Dirichlet or Neumann conditions, uniform down to the microscopic
scale, without smoothness assumptions on the coefficients. Under additional smoothness conditions,
these estimates, combined with the corresponding local estimates, lead to the full Rellich-type estimates
in Lipschitz domains and Lipschitz estimates in C1,α domains. The Cα, W 1,p, and L p estimates in
C1 domains for systems with VMO coefficients are also studied. The approach is based on certain
estimates on convergence rates. As a biproduct, we obtain sharp O(ε) error estimates in Lq(�) for
q = 2d/(d − 1) and a Lipschitz domain �, with no smoothness assumption on the coefficients.
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1. Introduction

The purpose of this paper is to establish sharp boundary estimates with either Dirichlet or Neumann
conditions, uniform down to the microscopic scale, for a family of second-order elliptic systems in
divergence form with rapidly oscillating coefficients, without any smoothness assumption on the coeffi-
cients. Under additional smoothness conditions, these estimates, combined with the corresponding local
estimates, lead to the full Rellich-type estimates in Lipschitz domains and Lipschitz estimates in C1,α

domains. The Cα, W 1,p, and L p estimates in C1 domains for systems with VMO coefficients are also
investigated. To fix the idea we shall consider the systems of linear elasticity with periodic coefficients
in this paper. However, the same results, without the complications introduced by rigid displacements,
hold for general second-order elliptic systems with periodic coefficients satisfying the stronger ellipticity
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condition (1-11) (the symmetry condition is also needed for Rellich estimates in Lipschitz domains). We
further point out that although we restrict ourselves to the periodic case, our approach, which is based on
certain estimates on convergence rates in H 1 and L2, extends to nonperiodic settings, provided that the
interior correctors or approximate correctors satisfy certain L2 conditions. The compactness methods,
which were introduced to the study of homogenization in [Avellaneda and Lin 1987] and have played
an important role in establishing regularity results in the periodic setting (see, e.g., [Avellaneda and Lin
1987; 1989; Kenig et al. 2013; Kenig and Prange 2015]), are not used in this paper. As a biproduct of our
new approach, we also obtain sharp O(ε) error estimates in Lq(�) for q = 2d/(d − 1) and a Lipschitz
domain �, with no smoothness assumption on the coefficients.

More precisely, consider the systems of linear elasticity,

Lε =− div(A(x/ε)∇)=−
∂

∂xi

[
aαβi j (x/ε)

∂

∂x j

]
, ε > 0. (1-1)

We will assume that A(y)= (aαβi j (y)) with 1≤ i, j, α, β ≤ d is real, bounded measurable, and satisfies
the elasticity condition

aαβi j (y)= aβαj i (y)= aiβ
α j (y),

κ1|ξ |
2
≤ aαβi j (y)ξ

α
i ξ

β

j ≤ κ2|ξ |
2

(1-2)

for a.e. y ∈Rd and for any symmetric matrix ξ = (ξαi )∈Rd×d, where κ1, κ2> 0 (the summation convention
is used throughout the paper). We will also assume that A(y) is 1-periodic; i.e.,

A(y+ z)= A(y) for a.e. y ∈ Rd and z ∈ Zd. (1-3)

Theorem 1.1. Suppose that A satisfies conditions (1-2)–(1-3). Let � be a bounded Lipschitz domain
in Rd. Let uε ∈ H 1(�;Rd) be the weak solution to the Dirichlet problem

Lε(uε)= F in � and uε = f on ∂�, (1-4)

where F ∈ L p(�;Rd) for p = 2d/(d + 1) and f ∈ H 1(∂�;Rd). Then, for ε ≤ r < diam(�),{
1
r

∫
�r

|∇uε|2
}1/2

≤ C
{
‖F‖L p(�)+‖ f ‖H1(∂�)

}
, (1-5)

where �r = {x ∈ � : dist(x, ∂�)<r}. The constant C depends only on d, κ1, κ2, and the Lipschitz
character of �.

Let R denote the space of rigid displacements,

R=
{

Mx + q : MT
= −M ∈ Rd×d and q ∈ Rd}, (1-6)

where (Mx)α = Mα
i xi and MT denotes the transpose of matrix M. By u ⊥ R we mean u ⊥ R in

L2(�;Rd), i.e.,
∫
�

u ·φ = 0 for any φ ∈R . We will use ∂uε/∂νε to denote the conormal derivative of uε
associated with Lε.
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Theorem 1.2. Suppose that A and � satisfy the same conditions as in Theorem 1.1. Let uε ∈ H 1(�;Rd)

be a weak solution to the Neumann problem

Lε(uε)= F in � and
∂uε
∂νε
= g on ∂�, (1-7)

where F ∈ L p(�;Rd) for p = 2d/(d + 1), g ∈ L2(∂�;Rd) and
∫
�

F ·φ+
∫
∂�

g ·φ = 0 for any φ ∈R .
Also assume that uε ⊥R . Then, for ε ≤ r < diam(�),{

1
r

∫
�r

|∇uε|2
}1/2

≤ C
{
‖F‖L p(�)+‖g‖L2(∂�)

}
, (1-8)

where C depends only on d, κ1, κ2, and the Lipschitz character of �.

Estimates (1-5) and (1-8), which are scaling-invariant, may be regarded as the Rellich estimates,
uniform down to the scale ε, in Lipschitz domains for the elasticity operators Lε. Indeed, if the coefficient
matrix A is constant, then (1-5) and (1-8) hold for any 0 < r < diam(�). Suppose that F = 0 and
uε ∈ C1(�;Rd). By letting r→ 0, one recovers the full Rellich estimates in Lipschitz domains,

‖∇uε‖L2(∂�) ≤ C‖uε‖H1(∂�) and ‖∇uε‖L2(∂�) ≤ C
∥∥∥∥∂uε
∂νε

∥∥∥∥
L2(∂�)

, (1-9)

which were proved in [Fabes et al. 1988; Dahlberg et al. 1988] for second-order elliptic systems with
constant coefficients, using integration by parts (see [Kenig 1994] for references on related work on
boundary value problems in Lipschitz domains). We should note that our proof of Theorems 1.1 and 1.2
uses the nontangential maximal function estimates in [Dahlberg et al. 1988]. On the other hand, under
certain smoothness conditions on A, the Rellich estimates hold for the operator L1 on Lipschitz domains
with diam(�)≤ 1. By a blow-up argument as well as some localization procedures, this implies

‖∇uε‖L2(∂�) ≤ C
{
‖∇tanuε‖L2(∂�)+ ε

−1/2
‖∇uε‖L2(�ε)

}
,

‖∇uε‖L2(∂�) ≤ C
{∥∥∥∥∂uε
∂νε

∥∥∥∥
L2(∂�)

+ ε−1/2
‖∇uε‖L2(�ε)

}
,

(1-10)

where ∇tanuε denotes the tangential derivative of uε on ∂�. We emphasize that the estimates (1-10) are
local and structure conditions such as periodicity are not needed. However, with the additional periodicity
condition, one may combine the local estimates (1-10) with the estimates in Theorems 1.1 and 1.2 to
obtain the full Rellich estimate (1-9), uniform in ε, for operators Lε (see Remark 3.1). Thus we have
been able to completely separate the large-scale regularity due to homogenization from the small-scale
regularity due to smoothness of the coefficients.

Under the periodicity condition and the Hölder continuity condition on A, the uniform Rellich estimates
(1-9) were proved in [Kenig and Shen 2011a; 2011b] for a family of elliptic operators {Lε}, where Lε =
− div(A(x/ε)∇) and A(y)= (aαβi j (y)) with 1≤ i, j ≤ d and 1≤α, β≤m satisfies the ellipticity condition

µ|ξ |2 ≤ aαβi j (y)ξ
α
i ξ

β

j ≤
1
µ
|ξ |2 (1-11)

for y ∈ Rd and ξ = (ξαi ) ∈ Rd×m as well as the symmetry condition A∗ = A, i.e., aαβi j = aβαj i . The results
were used to establish the uniform solvability of the L2 Dirichlet, regularity, and Neumann problems for
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the system Lε(uε)= 0 in Lipschitz domains. It is worth pointing out that the Rellich estimates (1-9) are
not accessible by compactness methods. One of the key steps in [Kenig and Shen 2011a; 2011b] uses
integration by parts and relies on the observation that L1(Q)= Q(L1), where

Q(u)(x ′, xd)= u(x ′, xd + 1)− u(x ′, xd).

As a result, the approach does not seem to apply if the coefficients are not periodic. We mention that even
with periodic coefficients, the direct extension of the methods used in [Kenig and Shen 2011a; 2011b] is
problematic for the system of elasticity, due to the weaker ellipticity condition and the lack of (uniform)
Korn inequalities on boundary layers.

In this paper we develop a new approach to uniform boundary regularity in quantitative homogenization
of elliptic equations and systems. Let u0 denote the solution of the boundary value problem for the
homogenized system with the same data. The basic idea is to consider the function

wε = uε − u0− εχ
β

j (x/ε)K
2
ε

(
∂uβ0
∂x j

ηε

)
(1-12)

in �, where χ = (χβj ) denotes the matrix of correctors, K 2
ε = Kε ◦Kε with Kε being a smoothing operator

at scale ε, and ηε ∈C∞0 (�) is a cut-off function with support in {x ∈� : dist(x, ∂�)≥ 3ε}. Using energy
estimates for the operator Lε as well as sharp boundary regularity estimates for u0, we are able to bound

ε−1/2
‖wε‖H1(�)

by the right-hand sides of estimates (1-5) and (1-8), respectively. This, together with sharp estimates
for u0, yields the desired estimates for

r−1/2
‖∇uε‖L2(�r )

for ε ≤ r < diam(�). We mention that since L0 has constant coefficients, the sharp boundary estimates in
Lipschitz domains in terms of nontangential maximal functions are known [Fabes et al. 1988; Dahlberg
et al. 1988]. Also, because of the use of the smoothing operator Kε, which is motivated by [Pastukhova
2006; Suslina 2013a] (also see [Griso 2004; Onofrei and Vernescu 2007; Kenig et al. 2012; Suslina
2013b]), we only need to assume that

sup
x∈Rd

∫
B(x,1)

(
|χ(y)|2+ |∇χ(y)|2

)
dy <∞,

and that a similar estimate holds for a dual corrector φ = (φαβki j ) (see (2-5) for its definition). As such, it is
possible to extend the approach to the almost-periodic or other nonperiodic settings. We plan to carry out
this study in a separate work.

As we mentioned before, the estimates in Theorems 1.1 and 1.2 may be used to establish uniform
solvability of L2 boundary value problems for Lε in Lipschitz domains [Kenig and Shen 2011a; 2011b].
They can also be used to obtain sharp O(ε) error estimates in Lq(�) for q = 2d/(d − 1) and a Lipschitz
domain �, with no smoothness assumption on the coefficients.



BOUNDARY ESTIMATES IN ELLIPTIC HOMOGENIZATION 657

Theorem 1.3. Suppose that A and � satisfy the same conditions as in Theorem 1.1. Let uε be a weak
solution to (1-4) or (1-7), and u0 the weak solution of the homogenized system with the same data. Suppose
that u0 ∈ H 2(�;Rd). In the case of the Neumann problem (1-7) we further assume that uε, u0⊥R . Then

‖uε − u0‖Lq (�) ≤ Cε‖u0‖H2(�), (1-13)

where q = p′ = 2d/(d − 1) and C depends only on d, κ1, κ2, and �.

We remark that if � is C2 and uε = 0 or ∂uε/∂νε = 0 on ∂�, the O(ε) estimate

‖uε − u0‖L2(�) ≤ Cε‖F‖L2(�) (1-14)

was proved in [Suslina 2013a; 2013b] for a broader class of elliptic operators with measurable periodic
coefficients, which contains the systems of elasticity considered here (also see [Griso 2004; Onofrei and
Vernescu 2007; Kenig et al. 2012; 2014] and their references for related work on convergence rates).
Note that q = 2d/(d − 1) > 2 and ‖u0‖H2(�) ≤ C‖F‖L2(�) if � is C2 and L0(u0)= F in � with u0 = 0
or ∂u0/∂ν0 = 0 on ∂�. Thus our estimate (1-13) is stronger than (1-14). In the case of scalar elliptic
equations with Dirichlet condition uε = 0 on ∂�, it is known that ‖uε − u0‖Lq (�) ≤ Cε‖F‖L p(�), where
1< p< d and 1/q = 1/p−1/d (see [Kenig et al. 2014, p. 1234]). Although the exponent q = 2d/(d−1)
may not be sharp, Theorem 1.3 seems to be the first result on the sharp O(ε) estimate of uε−u0 in Lq(�)

with q > 2 for elliptic systems with bounded measurable periodic coefficients.
As we indicated above, the proof of Theorems 1.1 and 1.2 only uses the energy estimates in L2 for

Lε and thus requires no smoothness assumptions on the coefficients. In the second part of this paper we
apply the similar ideas in the L p setting for 1< p <∞. To do this we first establish the W 1,p estimates
for the systems

Lε(uε)= div(h) in �, (1-15)

where h = (hαi ) ∈ L p(�;Rd×d), with either the Dirichlet or Neumann boundary conditions, under the
additional assumptions that � is C1 and A = A(y) belongs to VMO(Rd). As a result, the L p analogues
of estimates (1-5) and (1-8) are proved under these additional conditions, which are more or less sharp.
Consequently, by combining the L p estimates on the boundary layer �ε with local estimates for L1,
which hold for Hölder continuous coefficients, we may obtain the uniform Rellich estimates in L p for
solutions of Lε(uε)= 0 in C1 domains under the assumptions that A is Hölder continuous and satisfies
(1-2)–(1-3). By the method of layer potentials, this will lead to the uniform solvability of the L p Dirichlet,
regularity, and Neumann problems in C1 domains (details will be provided in a separate work). Previously,
these results in L p are known only in C1,α domains for operators Lε with Hölder continuous coefficients
satisfying (1-11) and A∗ = A [Kenig et al. 2013]. We remark that the W 1,p estimates (local or global) for
operators with nonsmooth coefficients in nonsmooth domains are of interest in their own rights and have
been studied extensively in recent years (see [Caffarelli and Peral 1998; Auscher and Qafsaoui 2002;
Wang 2003; Byun and Wang 2004; 2005; Shen 2005; 2008; Krylov 2007; Dong and Kim 2010; Kenig
et al. 2013; Geng 2012; Geng et al. 2012] and their references). Our approach to the W 1,p estimates is
based on a real-variable argument, which originated in [Caffarelli and Peral 1998] and further developed
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in [Wang 2003; Shen 2005; 2007]. The required (weak) reverse Hölder estimates at the boundary are
proved by combining the interior Lipschitz estimates down to the scale ε with boundary Cα estimates.

Theorems 1.1 and 1.2 as well as their L p analogues, given in Section 7, are the main contributions
of this paper. For a comprehensive study in the boundary regularity for Lε, in Sections 8 and 9, we
investigate the boundary Lipschitz estimates, uniform down to the scale ε, for solutions in C1,α domains
with the Dirichlet or Neumann conditions. Let

Dr =
{
(x ′, xd) ∈ Rd

: |x ′|< r and ψ(x ′) < xd <ψ(x ′)+ r
}
,

1r =
{
(x ′, xd) ∈ Rd

: |x ′|< r and xd = ψ(x ′)
}
,

(1-16)

where ψ : Rd−1
→ R is a C1,α function for some α > 0 with ψ(0)= 0 and ‖∇ψ‖Cα(Rd−1) ≤ M.

Theorem 1.4. Suppose that A satisfies conditions (1-2)–(1-3). Let uε ∈ H 1(D1;R
d) be a weak solution to

Lε(uε)= F in D1 and uε = f on 11. (1-17)

Then, for ε ≤ r < 1,(
−

∫
Dr

|∇uε|2
)1/2

≤ C
{(
−

∫
D1

|∇uε|2
)1/2

+‖ f ‖C1,σ (11)+‖F‖L p(D1)

}
, (1-18)

where p > d and σ ∈ (0, α). The constant C depends only on d, κ1, κ2, p, σ , and (α,M).

Theorem 1.5. Suppose that A satisfies (1-2)–(1-3). Let uε ∈ H 1(D1;R
d) be a weak solution to

Lε(uε)= F in D1 and
∂uε
∂νε
= g on 11. (1-19)

Then, for ε ≤ r < 1,(
−

∫
Dr

|∇uε|2
)1/2

≤ C
{(
−

∫
D1

|∇uε|2
)1/2

+‖g‖Cσ (11)+‖F‖L p(D1)

}
, (1-20)

where p > d and σ ∈ (0, α). The constant C depends only on d, κ1, κ2, p, σ , and (α,M).

As in the case of Rellich estimates, under additional smoothness conditions on A, using local Lipschitz
estimates for L1 and a blow-up argument, one may derive from Theorems 1.4 and 1.5 the full boundary
Lipschitz estimates

‖∇uε‖L∞(D1/2) ≤ C
{(
−

∫
D1

|uε|2
)1/2

+‖ f ‖C1,σ (11)+‖F‖L p(D1)

}
(1-21)

for solutions of (1-17), and

‖∇uε‖L∞(D1/2) ≤ C
{(
−

∫
D1

|uε|2
)1/2

+‖g‖Cσ (11)+‖F‖L p(D1)

}
(1-22)

for solutions of (1-19). We remark that for elliptic systems satisfying the ellipticity condition (1-11),
the periodicity condition (1-3) and the Hölder continuity condition, the estimate (1-21) was proved in
[Avellaneda and Lin 1987], while (1-22) was established in [Kenig et al. 2013] under the additional
symmetry condition A∗ = A. This symmetry condition was removed recently in [Armstrong and Shen
2016]. However, our estimates in Theorems 1.4 and 1.5 are new for the system of elasticity.
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Our proof of Theorems 1.4 and 1.5 also uses the function wε, given by (1-12). As a consequence of its
estimates in L2, for each r ∈

(
ε, 1

4

)
, we are able to construct a function v such that L0(v)= F in Dr with

the same (Dirichlet or Neumann) data on 1r as uε, and(
−

∫
Dr

|uε − v|2
)1/2

≤ C(ε/r)1/2
{(
−

∫
D2r

|uε|2
)1/2

+ terms involving given data
}
.

This allows us to use a general scheme for establishing Lipschitz estimates down to the scale ε, which
was formulated recently in [Armstrong and Smart 2016] and used for interior estimates in stochastic
homogenization with random coefficients (also see [Armstrong and Mourrat 2016] as well as related work
in [Gloria and Otto 2011; 2012; Gloria et al. 2014; 2015]). Our argument is similar to (and somewhat
simpler and more transparent than) that in [Armstrong and Shen 2016], where the scheme was adapted to
prove the full boundary Lipschitz estimates for second-order elliptic systems with almost-periodic and
Hölder continuous coefficients. As indicated earlier, we have been able to completely avoid the use of
compactness methods (even in the case of Cα estimates). Although it is possible to prove the interior
Lipschitz estimates as well as the boundary Cα estimates, down to the scale ε without smoothness, by the
compactness methods, as demonstrated in [Avellaneda and Lin 1987; Gu and Shen 2015], the compactness
methods for boundary Lipschitz estimates require the same estimates for boundary correctors, which are
not easy to establish [Avellaneda and Lin 1987; Kenig et al. 2013].

The paper is organized as follows. In Section 2 we establish some key convergence results in H 1. These
results are used in Section 3 to prove Theorems 1.1 and 1.2. In Section 4 we study the convergence rates
in Lq for q = 2d/(d − 1) and give the proof of Theorem 1.3, which uses the estimates in Theorems 1.1
and 1.2 as well as a duality argument. In Sections 5 and 6 we obtain the boundary Cα and W 1,p estimates,
respectively, in C1 domains for operators with VMO coefficients. These estimates are used in Section 7 to
establish the L p analogues of (1-5) and (1-8) in C1 domains. Finally, Theorem 1.4 is proved in Section 8,
and Section 9 contains the proof of Theorem 1.5.

Throughout the paper we use −
∫

E u = (1/|E |)
∫

E u to denote the average of u over the set E . We will
use C and c to denote constants that may depend on d , κ1, κ2, A and �, but never on ε.

2. Convergence rates in H1

In this section we establish certain results on convergence rates in H 1, which will play a crucial role in
the proof of our main results. Throughout the section we assume that A = A(y) satisfies (1-2)–(1-3) and
� is a bounded Lipschitz domain in Rd.

Let χ = (χβj (y))= (χ
αβ

j (y)) denote the matrix of correctors for Lε, where 1≤ j, α, β ≤ d . This means
that χβj ∈ H 1

loc(R
d
;Rd) is 1-periodic,

∫
Y χ

β

j = 0, and

L1(χ
β

j )=−L1(P
β

j ) in Rd, (2-1)

where Y = [0, 1)d and Pβj = y j (0, . . . , 1, . . . , 0) with 1 in the β-th position. The homogenized operator is
given by L0 =− div( Â∇), where Â = (âαβi j ) is the matrix of effective coefficients with

âαβi j = −

∫
Y

{
aαβi j + aαγik

∂

∂yk
(χ

γβ

j )

}
. (2-2)
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It is known that the constant matrix Â satisfies the elasticity condition (1-2) [Oleı̆nik et al. 1992; Jikov
et al. 1994]. Define

bαβi j (y)= aαβi j + aαγik
∂

∂yk
(χ

γβ

j )− âαβi j . (2-3)

By the definition of Â and (2-1), ∫
Y

bαβi j = 0 and
∂

∂yi
(bαβi j )= 0. (2-4)

It follows that there exist φαβki j ∈ H 1
loc(R

d) such that φαβki j is 1-periodic,

bαβi j =
∂

∂yk
(φ
αβ

ki j ) and φ
αβ

ki j =−φ
αβ

ik j (2-5)

(see, e.g., [Jikov et al. 1994; Kenig et al. 2012]).
Fix ϕ ∈ C∞0

(
B
(
0, 1

4

))
such that ϕ ≥ 0 and

∫
Rd ϕ = 1. Define

Kε( f )(x)= f ∗ϕε(x)=
∫

Rd
f (x − y)ϕε(y) dy, (2-6)

where ϕε(y)= ε−dϕ(y/ε).

Lemma 2.1. Let f ∈ L p(Rd) for some 1≤ p <∞. Then for any g ∈ L p
loc(R

d),

‖g(x/ε)Kε( f )‖L p(Rd ) ≤ C sup
x∈Rd

(
−

∫
B(x,1)

|g|p
)1/p

‖ f ‖L p(Rd ), (2-7)

where C depends only on d.

Proof. By Hölder’s inequality,

|Kε( f )(x)|p ≤
C

|B(0, ε)|

∫
Rd
| f (y)|pχB(x,ε)(y) dy,

from which the estimate (2-7) follows readily by Fubini’s theorem. �

It follows from (2-7) that if g ∈ L p
loc(R

d) and is 1-periodic, then

‖g(x/ε)Kε( f )‖L p(Rd ) ≤ C‖g‖L p(Y )‖ f ‖L p(Rd ). (2-8)

Lemma 2.2. Let f ∈W 1,q(Rd) for some 1< q <∞. Then

‖Kε( f )− f ‖Lq (Rd ) ≤ Cε‖∇ f ‖Lq (Rd ). (2-9)

Moreover, if p = 2d/(d + 1),

‖Kε( f )‖L2(Rd ) ≤ Cε−1/2
‖ f ‖L p(Rd ),

‖ f − Kε( f )‖L2(Rd ) ≤ Cε1/2
‖∇ f ‖L p(Rd ).

(2-10)

The constant C depends only on d.



BOUNDARY ESTIMATES IN ELLIPTIC HOMOGENIZATION 661

Proof. To see (2-9), we note that

‖ f ( · − y)− f ( · )‖Lq (Rd ) ≤ |y|‖∇ f ‖Lq (Rd )

for any y ∈ Rd. Thus, by Minkowski’s inequality,

‖Kε( f )− f ‖Lq (Rd ) ≤

∫
Rd
ϕε(y)‖ f ( · − y)− f ( · )‖Lq (Rd ) dy

≤

∫
Rd
ϕε(y)|y| dy ‖∇ f ‖Lq (Rd )

= Cε‖∇ f ‖Lq (Rd ).

Next, by Parseval’s theorem and Hölder’s inequality,∫
Rd
|Kε( f )|2 dx =

∫
Rd
|ϕ̂(εξ)|2 | f̂ (ξ)|2 dξ

≤

(∫
Rd
|ϕ̂(εξ)|2d dξ

)1/d

‖ f̂ ‖2L p′ (Rd )

≤ Cε−1
‖ f ‖2L p(Rd )

,

where f̂ denotes the Fourier transform of f , and we have used the Hausdorff–Young inequality ‖ f̂ ‖L p′(Rd )≤

‖ f ‖L p(Rd ). This gives the first inequality in (2-10). To see the second inequality, we note that ϕ̂(0) =∫
Rd ϕ = 1. It follows that

‖ f − Kε( f )‖L2(Rd ) ≤ C
{∫

Rd
|ϕ̂(εξ)− ϕ̂(0)|2d

|ξ |−2d dξ
}1/(2d)

‖∇̂ f ‖L p′ (Rd )

≤ Cε1/2
‖∇ f ‖L p(Rd ),

where we have used |ϕ̂(ξ)− ϕ̂(0)| ≤ C |ξ | for the last step. �

Lemma 2.3. Let uε, u0 ∈ H 1(�;Rd). Suppose that Lε(uε) = L0(u0) in � and either uε = u0 or
∂uε/∂νε = ∂u0/∂ν0 on ∂�. Let

wαε = uαε − uα0 − εχ
αβ

j (x/ε)K
2
ε

(
∂uβ0
∂x j

ηε

)
,

where K 2
ε = Kε◦Kε, ηε ∈C∞0 (�) and supp(ηε)⊂ {x ∈� : dist(x, ∂�)≥ 3ε}. Then∫
�

A(x/ε)∇wε · ∇wε dx =
∫
�

[ Â− A(x/ε)][∇u0− K 2
ε ((∇u0)ηε)] · ∇wε dx

−

∫
�

B(x/ε)K 2
ε ((∇u0)ηε) · ∇wε dx

− ε

∫
�

A(x/ε)χ(x/ε)∇K 2
ε ((∇u0)ηε) · ∇wε dx, (2-11)

where B(y)= (bαβi j (y)) is defined in (2-3).
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Proof. We first note that if uε = u0 on ∂�, then wε ∈ H 1
0 (�;R

d), as K 2
ε ((∇u0)ηε) ∈ C∞0 (�). Since

Lε(uε)= L0(u0) in �, it follows that∫
�

A(x/ε)∇uε · ∇wε dx =
∫
�

Â∇u0 · ∇wε dx . (2-12)

In the case of the Neumann condition ∂uε/∂ε = ∂u0/∂ν0 on ∂�, equation (2-12) continues to hold. This
is because wε ∈ H 1(�;Rd) and both sides of (2-12) are equal to

〈L0(u0), wε〉(H1(�))′×H1(�)+

〈
∂u0

∂ν0
, wε

〉
H−1/2(∂�)×H1/2(∂�)

.

Using (2-12), we obtain∫
�

A(x/ε)∇wε · ∇wε dx =
∫
�

[ Â− A(x/ε)]∇u0 · ∇wε dx

−

∫
�

A(x/ε)∇χ(x/ε)K 2
ε ((∇u0)ηε) · ∇wε dx

− ε

∫
�

A(x/ε)χ(x/ε)∇K 2
ε ((∇u0)ηε) · ∇wε dx,

from which the formal (2-11) follows by the definition of B(y). �

Lemma 2.4. Let φ(y)= (φαβki j (y)) be defined by (2-5). Then∫
�

B(x/ε)K 2
ε ((∇u0)ηε) · ∇wε dx =−ε

∫
�

φ
αβ

ki j (x/ε)
∂wαε

∂xi
·
∂

∂xk
K 2
ε

(
∂uβ0
∂x j

ηε

)
dx . (2-13)

Proof. Using (2-5), we see that

B(x/ε)K 2
ε ((∇u0)ηε) · ∇wε = bαβi j (x/ε)K

2
ε

(
∂uβ0
∂x j

ηε

)
·
∂wαε

∂xi

= ε
∂

∂xk

(
φ
αβ

ki j (x/ε)
)

K 2
ε

(
∂uβ0
∂x j

ηε

)
·
∂wαε

∂xi

= ε
∂

∂xk

{
φ
αβ

ki j (x/ε)
∂wαε

∂xi

}
K 2
ε

(
∂uβ0
∂x j

ηε

)
,

from which equation (2-13) follows readily. �

Lemma 2.5. Let uε (ε ≥ 0) be a solution to the Dirichlet problem (1-4) or the Neumann problem (1-7).
Let wε be defined as in Lemma 2.3 with ηε satisfying

ηε ∈ C∞0 (�), 0≤ η ≤ 1,
supp(ηε)⊂ {x ∈� : dist(x, ∂�)≥ 3ε},
ηε = 1 on {x ∈� : dist(x, ∂�)≥ 4ε},
|∇ηε| ≤ Cε−1.

(2-14)



BOUNDARY ESTIMATES IN ELLIPTIC HOMOGENIZATION 663

Then∣∣∣∣∫
�

A(x/ε)∇wε · ∇wε dx
∣∣∣∣

≤ C‖∇wε‖L2(�)

{
‖∇u0‖L2(�4ε)+‖(∇u0)ηε − Kε((∇u0)ηε)‖L2(�)+ ε‖Kε((∇

2u0)ηε)‖L2(�)

}
. (2-15)

Proof. It follows from Lemmas 2.3 and 2.4 by the Cauchy inequality that∣∣∣∣∫
�

A(x/ε)∇wε·∇wε dx
∣∣∣∣≤C‖∇wε‖L2(�)

{
‖∇u0−K 2

ε ((∇u0)ηε)‖L2(�)+ε‖χ(x/ε)∇K 2
ε ((∇u0)ηε)‖L2(�)

+ε‖φ(x/ε)∇K 2
ε ((∇u0)ηε)‖L2(�)

}
≤C‖∇wε‖L2(�)

{
‖∇u0−K 2

ε ((∇u0)ηε)‖L2(�)+ε‖∇Kε((∇u0)ηε)‖L2(�)

}
,

where we have used Lemma 2.1 as well as the fact that χ, φ ∈ L2
loc(R

d) and are 1-periodic for the last
inequality. Observe that

‖∇u0− K 2
ε ((∇u0)ηε)‖L2(�) ≤ ‖(∇u0)(1− ηε)‖L2(�)+‖(∇u0)ηε − Kε((∇u0)ηε)‖L2(�)

+
∥∥Kε

(
(u0)ηε − Kε((∇u0)ηε)

)∥∥
L2(�)

≤ ‖∇u0‖L2(�4ε)+C‖(∇u0)ηε − Kε((∇u0)ηε)‖L2(�).

Also,
ε‖∇Kε((∇u0)ηε)‖L2(�) ≤ ε‖Kε((∇

2u0)ηε)‖L2(�)+ ε‖Kε((∇u0)(∇ηε))‖L2(�)

≤ ε‖Kε((∇
2u0)ηε)‖L2(�)+C‖∇u0‖L2(�4ε). �

Finally, we are in a position to state and prove the main result of this section.

Theorem 2.6. Suppose that A(y) satisfies (1-2)–(1-3). Let � be a bounded Lipschitz domain. Let uε
(ε ≥ 0) be the solutions to the Dirichlet problem (1-4) in � with f ∈ H 1(∂�;Rd) and F ∈ L p(�;Rd),
where p = 2d/(d + 1). Then∥∥∥∥uε − u0− εχ

β

j (x/ε)K
2
ε

(
∂uβ0
∂x j

ηε

)∥∥∥∥
H1

0 (�)

≤ Cε1/2{
‖ f ‖H1(∂�)+‖F‖L p(�)

}
, (2-16)

where ηε ∈ C∞0 (�) satisfies (2-14). The constant C depends only on d , κ1, κ2, and the Lipschitz character
of �.

Proof. Let wε denote the function on the left-hand side of (2-16). Since wε ∈ H 1
0 (�;R

d), it follows from
(2-15) by the first Korn inequality [Oleı̆nik et al. 1992] that

‖wε‖H1
0 (�)
≤ C

{
‖∇u0‖L2(�4ε)+‖(∇u0)ηε − Kε((∇u0)ηε)‖L2(�)+ ε‖Kε((∇

2u0)ηε)‖L2(�)

}
. (2-17)

To bound the right-hand side of (2-17), we write u0 = v+ h, where

v(x)=
∫
�

00(x − y)F(y) dy

and 00(x) denotes the matrix of fundamental solutions for the homogenized operator L0 in Rd, with pole
at the origin. Note that L0(v)= F in �, and by the well known singular integral and fractional integral
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estimates,

‖∇
2v‖L p(Rd )+‖∇v‖L p′ (Rd ) ≤ C p‖F‖L p(�), (2-18)

where we have used the observation 1/p′ = 1/p− 1/d. Let e= (e1, . . . , ed) ∈ C1
0(R

d
;Rd) be a vector

field such that 〈e, n〉 ≥ c0 > 0 on ∂� and |∇e| ≤ Cr−1
0 , where r0 = diam(�) and n denotes the outward

unit normal to ∂�. It follows from the divergence theorem that

c0

∫
∂�

|∇v|2 dσ ≤
∫
∂�

|∇v|2〈e, n〉 dσ

=

∫
�

|∇v|2 div(e) dx +
∫
�

ei
∂

∂xi
∇v · ∇v dx

≤ C
{

r−1
0

∫
�

|∇v|2 dx +
∫
�

|∇v||∇2v| dx
}

≤ C
{
r−1

0 ‖∇v‖
2
L2(�)
+‖∇v‖L p′ (�)‖∇

2v‖L p(�)

}
≤ C‖F‖2L p(�), (2-19)

where we have used (2-18) for the last step. Note that the same argument also gives ‖∇v‖L2(St ) ≤

C‖F‖L p(�), where St = {x ∈ Rd
: dist(x, ∂�)= t} for 0< t < cr0. Consequently, by the coarea formula,

we obtain {
1
r

∫
�̃r

|∇v|2 dx
}1/2

≤ C‖F‖L p(�), (2-20)

where 0< r < diam(�) and �̃r = {x ∈ Rd
: dist(x, ∂�) < r}.

Next, we observe that L0(h)= 0 in � and

‖h‖H1(∂�) ≤ ‖ f ‖H1(∂�)+‖v‖H1(∂�)

≤ ‖ f ‖H1(∂�)+C‖F‖L p(�),

where we have used (2-19) for the last inequality. It follows from the estimates for solutions of the L2 reg-
ularity problem in Lipschitz domains for the operator L0 in [Dahlberg et al. 1988; Verchota 1986] that

‖(∇h)∗‖L2(∂�) ≤ C
{
‖ f ‖H1(∂�)+‖F‖L p(�)

}
, (2-21)

where (∇h)∗ denotes the nontangential maximal function of ∇h. This, together with (2-20), gives

‖∇u0‖L2(�r ) ≤ Cr1/2{
‖ f ‖H1(∂�)+‖F‖L p(�)

}
(2-22)

for any 0 < r < diam(�). As a result, the first term on the right-hand side of (2-17) is bounded by
Cε1/2

{‖ f ‖H1(∂�)+‖F‖L p(�)}.
To handle the third term on the right-hand side of (2-17), we use Lemma 2.2 to obtain

ε‖Kε((∇
2u0)ηε)‖L2(�) ≤ ε‖Kε((∇

2v)ηε)‖L2(�)+ ε‖Kε((∇
2h)ηε)‖L2(�)

≤ Cε1/2
‖(∇2v)ηε‖L p(�)+Cε‖(∇2h)ηε‖L2(�)

≤ Cε1/2
‖F‖L p(�)+Cε‖∇2h‖L2(�\�3ε). (2-23)
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Since L0(∇h)= 0 in �, we may use the interior estimate for L0,

|∇
2h(x)| ≤

C
δ(x)

(
−

∫
B(x,δ(x)/8)

|∇h|2
)1/2

,

where δ(x)= dist(x, ∂�), to show that

‖∇
2h‖L2(�\�3ε) ≤ C‖(∇h)[δ(x)]−1

‖L2(�\�ε)

≤ Cε−1/2{
‖ f ‖H1(∂�)+‖F‖L p(�)

}
, (2-24)

where the last inequality follows from (2-21). This, together with (2-23), gives

ε‖Kε((∇
2u0)ηε)‖L2(�) ≤ Cε1/2{

‖ f ‖H1(∂�)+‖F‖L p(�)

}
. (2-25)

Finally, to bound the second term on the right-hand side of (2-17), we again write u0 = v+h as before.
Note that by Lemma 2.2,

‖(∇v)ηε−Kε((∇v)ηε)‖L2(�)≤‖∇v−Kε(∇v)‖L2(Rd )+‖(∇v)(1−ηε)‖L2(�)+‖Kε((∇v)(1−ηε))‖L2(�)

≤Cε1/2
‖∇

2v‖L p(Rd )+C‖∇v‖L2(�̃8ε)

≤Cε1/2
‖F‖L p(�),

where we have used (2-18) and (2-20) for the last inequality. Also, by Lemma 2.2,

‖(∇h)ηε − Kε((∇h)ηε)‖L2(�) ≤ Cε‖∇((∇h)ηε)‖L2(�)

≤ C
{
ε‖∇2h‖L2(�\�3ε)+‖∇h‖L2(�4ε)

}
≤ Cε1/2{

‖ f ‖H1(∂�)+‖F‖L p(�)

}
.

Consequently, the second term on the right-hand side of (2-17) is dominated by the right-hand side of
(2-16). This completes the proof of Theorem 2.6. �

The next theorem is an analogue of Theorem 2.6 for the Neumann boundary conditions.

Theorem 2.7. Suppose that A= A(y) satisfies (1-2)–(1-3). Let � be a bounded Lipschitz domain. Let uε
(ε ≥ 0) be the solutions to the Neumann problem (1-7) in � with g ∈ L2(∂�;Rd) and F ∈ L p(�;Rd),
where p = 2d/(d + 1). Also assume that uε, u0 ⊥R . Then∥∥∥∥uε − u0− εχ

β

j (x/ε)K
2
ε

(
∂uβ0
∂x j

ηε

)∥∥∥∥
H1(�)

≤ Cε1/2{
‖g‖L2(∂�)+‖F‖L p(�)

}
, (2-26)

where ηε ∈ C∞0 (�) satisfies (2-14). The constant C depends only on d , κ1, κ2, and the Lipschitz character
of �.

Proof. The proof, which uses the estimate in Lemma 2.5, is similar to that of Theorem 2.6. We will only
point out the differences and leave the details to the reader.

Let wε denote the function on the left-hand side of (2-26). Let{
ϕ j : j = 1, . . . , J = 1

2 d(d + 1)
}
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be an orthonormal basis of R, as a subspace of L2(�;Rd). By the second Korn inequality [Oleı̆nik et al.
1992],

‖wε‖H1(�) ≤ C
∣∣∣∣∫
�

A(x/ε)∇wε · ∇wε dx
∣∣∣∣+C

J∑
j=1

∣∣∣∣∫
�

wε ·ϕ j dx
∣∣∣∣. (2-27)

Since uε, u0 ⊥R, it follows that∣∣∣∣ ∫
�

wε ·ϕ j dx
∣∣∣∣≤ Cε‖χ(x/ε)K 2

ε ((∇u0)ηε)‖L2(�)

≤ Cε‖∇u0‖L2(�).

This, together with (2-27) and Lemma 2.5, shows that

‖wε‖H1(�)

≤C
{
‖∇u0‖L2(�4ε)+ε‖∇u0‖L2(�)+‖(∇u0)ηε−Kε((∇u0)ηε)‖L2(�)+ε‖Kε((∇

2u0)ηε)‖L2(�)

}
. (2-28)

To bound the right-hand side of (2-28), we write u0 = v+ h, where v is the same as in the proof of
Theorem 2.6. Since L0(h)= 0 in � and∥∥∥∥ ∂h

∂ν0

∥∥∥∥
L2(∂�)

≤

∥∥∥∥∂u0

∂ν0

∥∥∥∥
L2(∂�)

+

∥∥∥∥ ∂v∂ν0

∥∥∥∥
L2(∂�)

≤ C
{
‖g‖L2(∂�)+‖F‖L p(�)

}
,

we may use the estimates in [Dahlberg et al. 1988; Verchota 1986] for solutions of the L2 Neumann
problem for L0 in Lipschitz domains to obtain

‖(∇h)∗‖L2(∂�) ≤ C
{
‖g‖L2(∂�)+‖F‖L p(�)+

J∑
j=1

∣∣∣∣∫
�

h ·ϕ j

∣∣∣∣}
≤ C

{
‖g‖L2(∂�)+‖F‖L p(�)

}
, (2-29)

where we have used the assumption u0 ⊥R . With the nontangential maximal function estimate (2-29) at
our disposal, the rest of the proof is exactly the same as that of Theorem 2.6. �

Remark 2.8. Since
‖χ(x/ε)K 2

ε ((∇u0)ηε)‖L2(�) ≤ C‖∇u0‖L2(�),

it follows from the estimate (2-16) that

‖uε − u0‖L2(�) ≤ Cε1/2{
‖ f ‖H1(∂�)+‖F‖L2(�)

}
, (2-30)

where Lε(uε)= L0(u0)= F in � and uε = u0 = f on ∂�. Similarly, the estimate (2-26) implies

‖uε − u0‖L2(�) ≤ Cε1/2{
‖g‖L2(∂�)+‖F‖L2(�)

}
, (2-31)

where uε, u0 are given in Theorem 2.7. These O(ε1/2) estimates in L2 are not sharp (see Section 4), but
they will be sufficient for us to establish the boundary Cα and Lipschitz estimates.
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3. Proof of Theorems 1.1 and 1.2

Theorems 1.1 and 1.2 are consequences of Theorems 2.6 and 2.7, respectively. We give the proof of
Theorem 1.1. Theorem 1.2 follows from Theorem 2.7 in the same manner.

Without loss of generality we may assume that

‖ f ‖H1(∂�)+‖F‖L p(�) = 1.

Let wε denote the function on the left-hand side of (2-16). By Theorem 2.6, for ε ≤ r < diam(�),

‖∇uε‖L2(�r ) ≤ ‖∇u0‖L2(�r )+‖∇wε‖L2(�)+ ε
∥∥∇{χ(x/ε)K 2

ε ((∇u0)ηε)
∥∥

L2(�r )

≤ Cr1/2
+
∥∥∇χ(x/ε)K 2

ε ((∇u0)ηε)
∥∥

L2(�r )
+ ε

∥∥χ(x/ε)∇K 2
ε ((∇u0)ηε)

∥∥
L2(�r )

≤ Cr1/2
+C‖Kε((∇u0)ηε)‖L2(�2r )+Cε‖∇Kε((∇u0)ηε)‖L2(�2r ),

where we have used (2-22) and Lemma 2.1 as well as the fact that the operator Kε is a convolution with a
kernel supported in B(0, ε/4). Note that by (2-22) and (2-25),

‖Kε((∇u0)ηε)‖L2(�2r ) ≤ C‖∇u0‖L2(�3r ) ≤ Cr1/2,

and
ε‖∇Kε((∇u0)ηε)‖L2(�2r ) ≤ ε‖Kε((∇

2u0)ηε)‖L2(�2r )+ ε‖Kε((∇u0)(∇ηε))‖L2(�2r )

≤ ε‖Kε((∇
2u0)ηε)‖L2(�2r )+C‖∇u0‖L2(�3r )

≤ Cr1/2.

The proof of Theorem 1.1 is complete.

Remark 3.1. Under certain smoothness conditions on A, it is possible to extend the Rellich estimates in
[Dahlberg et al. 1988] for the Lamé systems with constant coefficients to the operator L1 with variable
coefficients satisfying the condition (1-2). We refer the reader to [Kenig and Shen 2011b], where this is
done in the case that the coefficients satisfy the ellipticity condition (1-11). It follows that if L1(u)= 0
in D2, where Dr is defined by (1-16) with ψ(0)= 0 and ‖∇ψ‖∞ ≤ M, then

∫
∂Dr

|∇u|2 dσ ≤ C
∫
∂Dr

∣∣∣∣∂u
∂ν

∣∣∣∣2 dσ +C
∫

Dr

|∇u|2 dx,∫
∂Dr

|∇u|2 dσ ≤ C
∫
∂Dr

|∇tanu|2 dσ +C
∫

Dr

|∇u|2 dx
(3-1)

for any r ∈
(
1, 3

2

)
, where C depends only on d , A, and M. By integrating both sides of the inequalities in

(3-1) with respect to r over
(
1, 3

2

)
, we obtain

∫
11

|∇u|2 dσ ≤ C
∫
12

∣∣∣∣∂u
∂ν

∣∣∣∣2 dσ +C
∫

D2

|∇u|2 dx,∫
11

|∇u|2 dσ ≤ C
∫
12

|∇tanu|2 dσ +C
∫

D2

|∇u|2 dx,
(3-2)
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where 1r = {(x ′, ψ(x ′)) ∈ Rd
: |x ′|<r and xd=ψ(x ′)}. We now take advantage of the fact that the

dependence of C on ψ is only through M. Since Lε(uε)= 0 implies L1{uε(εx)} = 0, one may deduce
from (3-2) that if Lε(uε)= 0 in D2ε, then

∫
1ε

|∇uε|2 dσ ≤ C
∫
12ε

∣∣∣∣∂uε
∂νε

∣∣∣∣2 dσ + C
ε

∫
D2ε

|∇uε|2 dx,∫
1ε

|∇uε|2 dσ ≤ C
∫
12ε

|∇tanuε|2 dσ + C
ε

∫
D2ε

|∇uε|2 dx .
(3-3)

Now, suppose that uε ∈ H 1(�;Rd) and Lε(uε)= 0 in �, where � is a bounded Lipschitz domain in Rd.
By covering ∂� with a finite number of suitable balls of size cε, it follows from (3-3) that

∫
∂�

|∇uε|2 dσ ≤ C
∫
∂�

∣∣∣∣∂uε
∂νε

∣∣∣∣2 dσ + C
ε

∫
�cε

|∇uε|2 dx,∫
∂�

|∇uε|2 dσ ≤ C
∫
∂�

|∇tanuε|2 dσ + C
ε

∫
�cε

|∇uε|2 dx .
(3-4)

Notice that up to this point, we have only used the smoothness condition of A, not the periodicity of A.
With the additional periodicity condition we may invoke the estimates in Theorems 1.1 and 1.2 to bound
the volume integrals of |∇uε|2 over the boundary layer �cε. This yields the full Rellich estimates,∫

∂�

|∇uε|2 dσ ≤ C
∫
∂�

∣∣∣∣∂uε
∂νε

∣∣∣∣2 dσ (3-5)

if uε ⊥R, and ∫
∂�

|∇uε|2 dσ ≤ C
∫
∂�

|∇tanuε|2 dσ +Cr−2
0

∫
∂�

|uε|2 dσ. (3-6)

It is well known that estimates (3-5)–(3-6) may be used to solve the L2 boundary value problems in
Lipschitz domains by the method of layer potentials. We refer the reader to [Kenig and Shen 2011b] for
the case where A(y) satisfies (1-11). The details for the system of linear elasticity have been carried out
in a separate work [Geng et al. 2017].

4. Convergence rates in Lq for q = 2d/(d− 1)

We now establish sharp O(ε) estimates for ‖uε − u0‖Lq (�) with q = 2d/(d − 1), using Theorems 1.1
and 1.2 and a duality argument. Throughout this section we will assume that � is a bounded Lipschitz
domain and A = A(y) satisfies (1-2)–(1-3).

We start with the Dirichlet boundary condition.

Lemma 4.1. Let uε (ε ≥ 0) be the solution of (1-4). Suppose that u0 ∈ H 2(�;Rd). Then∥∥∥∥uε − u0− εχk(x/ε)Kε

(
∂ ũ0

∂xk

)
− vε

∥∥∥∥
H1

0 (�)

≤ Cε‖∇2ũ0‖L2(Rd ), (4-1)
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where ũ0 ∈ H 2(Rd
;Rd) is an extension of u0 and vε ∈ H 1(�;Rd) is the weak solution to

Lε(vε)= 0 in � and vε =−εχk(x/ε)Kε

(
∂ ũ0

∂xk

)
on ∂�. (4-2)

Proof. Let

wε = uε − u0− εχk(x/ε)Kε

(
∂ ũ0

∂xk

)
− vε.

Using Lε(uε)= L0(u0) and Lε(vε)= 0 in �, a direct computation shows that

Lε(wε)=−
∂

∂xi

{
[âαβi j − aαβi j (x/ε)]

∂uβ0
∂x j

}
−Lε

{
εχk(x/ε)Kε

(
∂ ũ0

∂xk

)}

=−
∂

∂xi

{
[âαβi j − aαβi j (x/ε)]

[
∂uβ0
∂x j
− Kε

(
∂ ũβ0
∂x j

)]}
+

∂

∂xi

{
bαβi j (x/ε)Kε

(
∂ ũβ0
∂x j

)}
+ ε

∂

∂xi

{
aαβi j (x/ε)χ

βγ

k (x/ε)Kε

(
∂2ũγ0
∂x j∂xk

)}
, (4-3)

where bαβi j is defined by (2-3). Using (2-5), we see that

∂

∂xi

{
bαβi j (x/ε)Kε

(
∂ ũβ0
∂x j

)}
= ε

∂

∂xi

{
φ
αβ

ik j (x/ε)Kε

(
∂2ũβ0
∂xk∂x j

)}
. (4-4)

Indeed, the left-hand side of (4-4) equals

bαβi j (x/ε)Kε

(
∂2ũβ0
∂xi∂x j

)
,

while the right-hand side equals

bαβk j (x/ε)Kε

(
∂2ũβ0
∂xk∂x j

)
+φ

αβ

ik j (x/ε)
∂2

∂xi∂xk
Kε

(
∂ ũβ0
∂x j

)
and the second term is zero due to the skew-symmetry φαβki j =−φ

αβ

ik j .
It follows from (4-3) and (4-4) by Lemmas 2.1 and 2.2 that

‖Lε(wε)‖H−1(�) ≤ Cε‖∇2ũ0‖L2(Rd ),

where C depends only on d, κ1, κ2, and �. Since wε ∈ H 1
0 (�;R

d), this gives the estimate (4-1) by the
energy estimate. �

The following theorem establishes the sharp O(ε) estimate in Lq with q = 2d/(d−1) for the Dirichlet
boundary condition.

Theorem 4.2. Suppose that A satisfies (1-2)–(1-3). Let � be a bounded Lipschitz domain in Rd. Let uε
(ε ≥ 0) be the weak solution to Dirichlet problem (1-4). Assume that u0 ∈ H 2(�;Rd). Then

‖uε − u0‖Lq (�) ≤ Cε‖u0‖H2(�), (4-5)

where q = 2d/(d − 1) and C depends only on d, κ1, κ2, and �.
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Proof. We begin by choosing ũ0 ∈ H 2(Rd
;Rd) such that ũ0 = u0 in � and ‖ũ0‖H2(Rd ) ≤ C‖u0‖H2(�),

where C depends only on �. Since � is Lipschitz, this is possible by an extension theorem due to
A. Calderón [Stein 1970, Theorem 5, p. 181]. Next, since H 1

0 (�)⊂ Lq(�) and∥∥∥∥χk(x/ε)Kε

(
∂ ũ0

∂xk

)∥∥∥∥
Lq (�)

≤ C‖∇ũ0‖Lq (Rd ) ≤ C‖u0‖H2(�),

in view of Lemma 4.1, it suffices to show that

‖vε‖Lq (�) ≤ Cε‖u0‖H2(�), (4-6)

where vε is given by (4-2).
To this end we fix G ∈ L p(�;Rd), where p = q ′ = 2d/(d + 1), and let hε ∈ H 1

0 (�;R
d) be the weak

solution to

Lε(hε)= G in � and hε = 0 on ∂�. (4-7)

It follows from (4-2), (4-7), and the divergence theorem that∫
�

vε ·G dx =−
∫
∂�

vε ·
∂hε
∂νε

dσ

= ε

∫
∂�

χk(x/ε)Kε

(
∂ ũ0

∂xk

)
·
∂hε
∂νε

(ηε − 1) dσ

=

∫
�

∂χ
αγ

k

∂xi
(x/ε)Kε

(
∂ ũγ0
∂xk

)
aαβi j (x/ε)

∂hβε
∂x j

(ηε − 1) dx

+ ε

∫
�

χ
αγ

k (x/ε)Kε

(
∂2ũγ0
∂xi∂xk

)
aαβi j (x/ε)

∂hβε
∂x j

(ηε − 1) dx

− ε

∫
�

χ
αγ

k (x/ε)Kε

(
∂ ũγ0
∂xk

)
Gα(ηε − 1) dx

+ ε

∫
�

χ
αγ

k (x/ε)Kε

(
∂ ũγ0
∂xk

)
aαβi j (x/ε)

∂hβε
∂x j

∂ηε

∂xi
dx,

where ηε ∈ C∞0 (�) satisfies (2-14). This implies∣∣∣∣∫
�

vε ·G dx
∣∣∣∣≤ C

∫
�

|∇χ(x/ε)||Kε(∇ũ0)||∇hε||ηε − 1| dx

+Cε
∫
�

|χ(x/ε)||Kε(∇
2ũ0)||∇hε||ηε − 1| dx

+Cε
∫
�

|χ(x/ε)||Kε(∇ũ0)||G||ηε − 1| dx

+Cε
∫
�

|χ(x/ε)||Kε(∇ũ0)||∇hε||∇ηε| dx . (4-8)
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Note that by Cauchy’s inequality and (2-14), the first and fourth terms on the right-hand side of (4-8) are
bounded by

C
(∫

�4ε

∣∣(|∇χ(x/ε)| + |χ(x/ε)|)Kε(∇ũ0)
∣∣2 dx

)1/2(∫
�4ε

|∇hε|2 dx
)1/2

≤ C
(∫

�̃5ε

|∇ũ0|
2 dx

)1/2(∫
�4ε

|∇hε|2 dx
)1/2

,

where �r = {x ∈� : dist(x, ∂�)<r}, �̃r = {x ∈ Rd
: dist(x, ∂�)<r}, and we have used Lemma 2.1 for

the last inequality. Using the divergence theorem, as in (2-19), one may prove that

‖∇ũ0‖L2(Sr ) ≤ C‖ũ0‖
1/2
H1(Rd )

‖ũ0‖
1/2
H2(Rd )

,

where Sr = {x ∈ Rd
: dist(x, ∂�)=r}. It follows by the coarea formula that

‖∇ũ0‖L2(�̃r )
≤ Cr1/2

‖ũ0‖
1/2
H1(Rd )

‖ũ0‖
1/2
H2(Rd )

. (4-9)

This, together with the estimate in Theorem 1.1 for hε, shows that the first and fourth terms on the
right-hand side of (4-8) are bounded by

Cε‖u0‖H2(�)‖G‖L p(�),

where p = q ′ = 2d/(d + 1). Finally, we note that the second and third terms on the right-hand side of
(4-8) are bounded by

Cε‖∇2ũ0‖L2(Rd )‖∇hε‖L2(�)+Cε‖∇ũ0‖Lq (Rd )‖G‖L p(�) ≤ Cε‖u0‖H2(�)‖G‖L p(�).

As a result, we have proved that∣∣∣∣∫
�

vε ·G dx
∣∣∣∣≤ Cε‖u0‖H2(�)‖G‖L p(�),

which, by duality, gives the estimate (4-6) and completes the proof. �

Next we consider the solutions with the Neumann boundary conditions.

Lemma 4.3. Let uε (ε ≥ 0) be the solutions of (1-7) such that uε ⊥ R . Suppose that u0 ∈ H 2(�;Rd).
Then ∥∥∥∥uε − u0− εχk(x/ε)Kε

(
∂ ũ0

∂xk

)
− vε

∥∥∥∥
H1(�)

≤ Cε
{
‖∇

2ũ0‖L2(Rd )+‖∇ũ0‖L2(Rd )

}
, (4-10)

where ũ0 is an extension of u0 and vε ∈ H 1(�;Rd) is the weak solution to
Lε(vε)= 0 in �,

∂vε

∂νε
=
ε

2

(
nk

∂

∂xi
− ni

∂

∂xk

){
φki j (x/ε)Kε

(
∂ ũ0

∂x j

)}
on ∂�,

vε ⊥R.

(4-11)
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Proof. Let

wε = uε − u0− εχk(x/ε)Kε

(
∂ ũ0

∂xk

)
− vε.

Using ∂uε/∂νε = ∂u0/∂ν0 on ∂�, a direct computation shows that

∂wε

∂νε
=
∂u0

∂ν0
−
∂u0

∂νε
−

∂

∂νε

{
εχk(x/ε)Kε

(
∂ ũ0

∂xk

)}
−
∂vε

∂νε

= ni [â
αβ

i j − aαβi j (x/ε)]
[
∂uβ0
∂x j
− Kε

(
∂uβ0
∂x j

)]
− ni b

αβ

i j (x/ε)Kε

(
∂uβ0
∂x j

)
− ni a

αβ

i j (x/ε) · εχ
βγ

k (x/ε)Kε

(
∂2ũγ0
∂x j∂xk

)
−
∂vε

∂νε
. (4-12)

Using (2-5), we also see that

ni b
αβ

i j (x/ε)Kε

(
∂ ũβ0
∂x j

)
+
∂vε

∂νε
= εni

∂

∂xk
[φ
αβ

ki j (x/ε)]Kε

(
∂ ũβ0
∂x j

)
+
∂vε

∂νε

=
ε

2

(
ni

∂

∂xk
− nk

∂

∂xi

)
[φ
αβ

ki j (x/ε)]Kε

(
∂ ũβ0
∂x j

)
+
∂vε

∂νε

=−εniφ
αβ

ki j (x/ε)Kε

(
∂2ũβ0
∂xk∂x j

)
. (4-13)

As a result, we obtain

∂wε

∂νε
= ni [â

αβ

i j − aαβi j (x/ε)]
[
∂uβ0
∂x j
− Kε

(
∂uβ0
∂x j

)]
+ εniφ

αβ

ki j (x/ε)Kε

(
∂2ũβ0
∂xk∂x j

)
− ni a

αβ

i j (x/ε) · εχ
βγ

k (x/ε)Kε

(
∂2ũγ0
∂x j∂xk

)
. (4-14)

Next, we note that as in the proof of Lemma 4.1,

Lε(wε)=−
∂

∂xi

{
[âαβi j − aαβi j (x/ε)]

[
∂uβ0
∂x j
− Kε

(
∂ ũβ0
∂x j

)]}
− ε

∂

∂xi

{
φ
αβ

ki j (x/ε)Kε

(
∂2ũβ0
∂xk∂x j

)}
+ ε

∂

∂xi

{
aαβi j (x/ε)χ

βγ

k (x/ε)Kε

(
∂2ũγ0
∂x j∂xk

)}
. (4-15)

Thus, by (1-2) and the energy estimate,

‖∇wε+(∇wε)
T
‖L2(�)

≤ C‖∇wε‖L2(�)

{
‖∇u0−Kε(∇ũ0)‖L2(�)+ε‖φ(x/ε)Kε(∇

2ũ0)‖L2(�)+ε‖χ(x/ε)Kε(∇
2u0)‖L2(�)

}
≤ Cε‖∇wε‖L2(�)‖∇

2ũ0‖L2(Rd ),
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where we have used Lemmas 2.1 and 2.2 for the last step. By the second Korn inequality, this implies

‖wε‖H1(�) ≤ Cε‖∇2ũ0‖L2(Rd )+C
J∑

j=1

∣∣∣∣∫
�

wε ·ϕ j dx
∣∣∣∣

≤ Cε‖∇2ũ0‖L2(Rd )+Cε‖χ(x/ε)Kε(∇ũ0)‖L2(�) ≤ Cε
{
‖∇

2ũ0‖L2(Rd )+‖∇ũ0‖L2(Rd )

}
,

where {ϕ j : j = 1, . . . , J } forms an orthonormal basis of R, as a subspace of L2(�;Rd). �

The next theorem is an analogue of Theorem 4.2 for the Neumann boundary conditions.

Theorem 4.4. Suppose that A satisfies (1-2)–(1-3). Let � be a bounded Lipschitz domain in Rd. Let
uε (ε ≥ 0) be the weak solutions to the Neumann problem (1-7) with the property uε ⊥R . Assume that
u0 ∈ H 2(�;Rd). Then

‖uε − u0‖Lq (�) ≤ Cε‖u0‖H2(�), (4-16)

where q = 2d/(d − 1) and C depends only on d, κ1, κ2, and �.

Proof. As in the proof of Theorem 4.2, it suffices to show that

‖vε‖Lq (�) ≤ Cε‖u0‖H2(�), (4-17)

where vε is given by (4-11). To this end we fix G ∈ L p(�;Rd) with G ⊥R and let hε ∈ H 1(�;Rd) be
the weak solution to

Lε(hε)= G in � and
∂hε
∂νε
= 0 on ∂�, (4-18)

with the property hε ⊥R . It follows from (4-18), (4-11), and Green’s formula that∫
�

vε ·G dx =
∫
�

A(x/ε)∇vε · ∇hε dx =
∫
∂�

∂vε

∂νε
· hε dσ

=
ε

2

∫
∂�

(
nk

∂

∂xi
− ni

∂

∂xk

){
φ
αβ

ki j (x/ε)Kε

(
∂ ũβ0
∂x j

)}
· hαε dσ

=−
ε

2

∫
∂�

φ
αβ

ki j (x/ε)Kε

(
∂ ũβ0
∂x j

)
·

(
nk

∂

∂xi
− ni

∂

∂xk

)
hαε · (1− ηε) dσ

=−ε

∫
�

∂

∂xk

{
φ
αβ

ki j (x/ε)Kε

(
∂ ũβ0
∂x j

)
(1− ηε)

}
·
∂hαε
∂xi

dx,

where ηε ∈ C∞0 (�) satisfies (2-14) and we have used the divergence theorem as well as (2-5) for the last
inequality. This leads to∣∣∣∣∫

�

vε ·G dx
∣∣∣∣≤ C

∫
�4ε

|∇φ(x/ε)||Kε(∇ũ0)||∇hε| dx

+Cε
∫
�4ε

|φ(x/ε)||Kε(∇
2ũ0)||∇hε| dx

+Cε
∫
�4ε

|φ(x/ε)||Kε(∇ũ0)||∇ηε||∇hε| dx . (4-19)
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Note that by the Cauchy inequality, the first and third term on the right-hand side of (4-19) are bounded by

C
∥∥(|∇φ(x/ε)| + |φ(x/ε)|)Kε(∇ũ0)

∥∥
L2(�4ε)

‖∇hε‖L2(�4ε) ≤ C‖∇ũ0‖L2(�̃5ε)
‖∇hε‖L2(�4ε)

≤ Cε‖u0‖H2(�)‖G‖L p(�),

where we have used Lemma 2.2 for the first inequality and Theorem 1.2 as well as estimate (4-9) for
the second. Also, the second term on the right-hand side of (4-19) is bounded by

Cε‖φ(x/ε)Kε(∇
2ũ0)‖L2(�)‖∇hε‖L2(�) ≤ Cε‖u0‖H2(�)‖G‖L p(�).

Hence we have proved that for any G ∈ L p(�;Rd) with the property G ⊥A,∣∣∣∣∫
�

vε ·G dx
∣∣∣∣≤ Cε‖u0‖H2(�)‖G‖L p(�).

Since vε ⊥A, this gives the estimate (4-17) by duality and completes the proof. �

Note that by combining Theorems 4.2 and 4.4, one obtains Theorem 1.3.

5. Cα estimates in C1 domains

In this section we investigate uniform boundary Cα estimates in C1 domains. The results will be used in
the next section to establish uniform boundary W 1,p estimates in C1 domains. Throughout the section we
will assume that the defining function ψ in Dr and 1r is C1 and ψ(0)= 0. To quantify the C1 condition
we further assume that

sup
{
|∇ψ(x ′)−∇ψ(y′)| : x ′, y′ ∈ Rd−1 and |x ′− y′| ≤ t

}
≤ τ(t), (5-1)

where τ(t)→ 0 as t→ 0+.
The rescaling argument is used frequently in this paper. Suppose that Lε(uε)= F in D2r and uε = f

on 12r . Let w(x)= uε(r x). Then

Lε/r (w)= G in D̃2 and w = g on 1̃2,

where G(x)= r2 F(r x), g(x)= f (r x), and

D̃2 =
{
(x ′, xd) ∈ Rd

: |x ′|<2 and ψr (x ′)<xd<ψr (x ′)+ 2
}
,

1̃2 =
{
(x ′, xd) ∈ Rd

: |x ′|<2 and xd=ψr (x ′)
}
,

with ψr (x ′) = r−1ψ(r x ′). Note that ψr (0) = 0 and ‖∇ψr‖∞ = ‖∇ψ‖∞. Moreover, if ψ is C1 and
satisfies (5-1), then ψr satisfies (5-1) uniformly in r for 0< r ≤ 1.

Lemma 5.1. Let 0 < ε ≤ r ≤ 1. Let uε ∈ H 1(D2r ;R
d) be a weak solution of Lε(uε) = 0 in D2r with

uε = 0 on 12r . Then there exists v ∈ H 1(Dr ;R
d) such that L0(v)= 0 in Dr , v = 0 on 1r , and(

−

∫
Dr

|uε − v|2
)1/2

≤ C(ε/r)1/2
(
−

∫
D2r

|uε|2
)1/2

, (5-2)

where ‖∇ψ‖∞ ≤ M, and C depends only on d, κ1, κ2, and M.
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Proof. By rescaling we may assume r = 1. By Caccioppoli’s inequality,(
−

∫
D3/2

|∇uε|2
)1/2

≤ C
(
−

∫
D2

|uε|2
)1/2

. (5-3)

It follows from (5-3) and the coarea formula that there exists t ∈
[ 5

4 ,
3
2

]
such that

‖∇uε‖L2(∂Dt\12)+‖uε‖L2(∂Dt\D2) ≤ C‖uε‖L2(D2). (5-4)

Let v be the solution to the Dirichlet problem: L0(v) = 0 in Dt and v = uε on ∂Dt . Note that v = 0
on 11, and by Remark 2.8,

‖uε − v‖L2(Dt ) ≤ Cε1/2
‖uε‖H1(∂Dt ). (5-5)

This, together with (5-4), gives

‖uε − v‖L2(D1) ≤ ‖uε − v‖L2(Dt ) ≤ Cε1/2
‖uε‖L2(D2). �

Theorem 5.2. Suppose that A = A(y) satisfies (1-2)–(1-3). Let uε be a weak solution of Lε(uε)= 0 in
D1 with uε = 0 on 11, where the defining function ψ in D1 and 11 is C1. Then, for any α ∈ (0, 1) and
ε ≤ r ≤ 1

2 , (
−

∫
Dr

|∇uε|2
)1/2

≤ Cαrα−1
(
−

∫
D1

|uε|2
)1/2

, (5-6)

where Cα depends only on d, α, κ1, κ2, and the function τ(t) in (5-1).

Proof. Fix β ∈ (α, 1). For each r ∈
[
ε, 1

2

]
, let v = vr be the function given by Lemma 5.1. By the

boundary Cβ estimates in C1 domains for the operator L0 (see, e.g., [Auscher and Qafsaoui 2002; Byun
and Wang 2004]), (

−

∫
Dθr

|v|2
)1/2

≤ C0θ
β

(
−

∫
Dr

|v|2
)1/2

for any θ ∈ (0, 1), where C0 depends only on d , κ1, κ2, β and τ(t). It follows that(
−

∫
Dθr

|uε|2
)1/2

≤

(
−

∫
Dθr

|v|2
)1/2

+C
(
−

∫
Dθr

|uε − v|2
)1/2

≤ Cθβ
(
−

∫
Dr

|v|2
)1/2

+Cθ−d/2
(
−

∫
Dr

|uε − v|2
)1/2

≤ C1θ
β

(
−

∫
Dr

|uε|2
)1/2

+C1θ
−d/2(ε/r)1/2

(
−

∫
D2r

|uε|2
)1/2

for any ε ≤ r ≤ 1
2 . We now choose θ ∈

(
0, 1

4

)
so small that C1θ

β−α < 1
4 . With θ fixed, choose N > 1

large so that
C12αθ−d/2−αN−1/2

≤
1
4 .

It follows that if r ≥ Nε,
φ(θr)≤ 1

4{φ(r)+φ(2r)}, (5-7)
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where

φ(r)= r−α
(
−

∫
Dr

|uε|2
)1/2

.

By integration we may deduce from (5-7) that∫ θ/2

θa
φ(r)

dr
r
≤

1
4

∫ 1/2

a
φ(r)

dr
r
+

1
4

∫ 1

2a
φ(r)

dr
r
,

where Nε ≤ a < 1
2 . This implies∫ 1

θa
φ(r)

dr
r
≤ C

∫ 1

θ/2
φ(r)

dr
r
≤ Cφ(1).

Hence, φ(r)≤Cφ(1) for any r ∈ [ε, 1], and the estimate (5-6) now follows by Caccioppoli’s inequality. �

Remark 5.3. Under the stronger assumption that the defining function φ for D1 is C1,σ for some σ > 0,
we will show in Section 8 that the estimate (5-6) holds for α = 1. In particular, it follows from the
argument in Section 7 that if Lε(uε)= 0 in B(0, 1), then(

−

∫
B(0,r)
|∇uε|2

)1/2

≤ C
(
−

∫
B(0,1)

|∇uε|2
)1/2

(5-8)

for any ε ≤ r < 1. This is the interior Lipschitz estimate down to the scale ε.

A function A is said to belong to VMO(Rd) if the left-hand side of (5-9) goes to zero as t→ 0+. To
quantify this assumption we assume that

sup
x∈Rd

0<r<t

−

∫
B(x,r)

∣∣∣∣A(y)− −∫
B(x,r)

A
∣∣∣∣ dy ≤ ρ(t), (5-9)

where ρ(t)→ 0 as t→ 0+.
The following corollary was essentially proved in [Avellaneda and Lin 1987] by a compactness method.

Corollary 5.4. Suppose that A satisfies (1-2)–(1-3). Also assume that A ∈ VMO(Rd). Let uε ∈
H 1(D1;R

d) be a weak solution of Lε(uε) = 0 in D1 with uε = 0 on 11. Then, for any α ∈ (0, 1),

‖uε‖Cα(D1/2) ≤ Cα

(
−

∫
D1

|uε|2
)1/2

, (5-10)

where Cα depends only on d, κ1, κ2, α, and the functions τ(t), ρ(t).

Proof. We may assume 0< ε < 1
2 , as the case of ε ≥ 1

2 is local. Since L1(uε(εx))= 0, it follows from the
boundary Cα estimates in C1 domains (see, e.g., [Auscher and Qafsaoui 2002; Byun and Wang 2004])
for the operator L1 by rescaling that if α ∈ (0, 1) and 0< r < ε,(

−

∫
Dr

|∇uε|2
)1/2

≤ C(r/ε)α−1
(
−

∫
Dε

|∇uε|2
)1/2

,
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where C depends only on d, κ1, κ2, α, τ(t) and ρ(t). This, together with Theorem 5.2, shows that the
estimate (5-6) holds for any 0< r < 1

2 . By combining (5-6) with a similar interior estimate, we obtain

rα−1
(
−

∫
B(x,r)∩D1/2

|∇uε|2
)1/2

≤ C‖uε‖L2(D1) (5-11)

for any 0< r < c and x ∈ D1/2. The estimate (5-10) follows from (5-11) by Campanato’s characterization
of Hölder spaces. �

The rest of this section is devoted to the boundary Cα estimates for solutions with the Neumann
boundary conditions.

Lemma 5.5. Let 0 < ε ≤ r ≤ 1. Let uε ∈ H 1(D2r ;R
d) be a weak solution of Lε(uε) = 0 in D2r with

∂uε/∂νε = 0 on 12r . Then there exists a function w ∈ H 1(Dr ;R
d) such that L0(w) = 0, ∂w/∂ν0 = 0

in 1r , and (
−

∫
Dr

|uε −w|2
)1/2

≤ C(ε/r)1/2
(
−

∫
D2r

|uε|2
)1/2

, (5-12)

where ‖∇ψ‖∞ ≤ M, and C depends only on d, κ1, κ2, and M.

Proof. By rescaling we may assume r = 1. As in the proof of Lemma 5.1, there exists t ∈
[ 5

4 ,
3
2

]
such that

‖uε‖L2(∂Dt\12)+‖∇uε‖L2(∂Dt\12) ≤ C‖uε‖L2(D2).

Let φε be a function in R such that uε −φε ⊥R in L2(Dt ;R
d). Let v be the solution to the Neumann

problem: L0(v)= 0 in Dt and ∂v/∂ν0 = ∂uε/∂νε on ∂Dt , with v ⊥R . It follows from Remark 2.8 that

‖uε −φε − v‖L2(D1) ≤ ‖uε −φε − v‖L2(Dt )

≤ Cε1/2
∥∥∥∥∂uε
∂νε

∥∥∥∥
L2(∂Dt )

≤ Cε1/2
‖uε‖L2(D2).

It is easy to see that the function w = v+φε satisfies the desired conditions. �

Theorem 5.6. Suppose that A = A(y) satisfies (1-2)–(1-3). Let uε be a weak solution of Lε(uε)= 0 in
D1 with ∂uε/∂νε = 0 on 11, where the defining function ψ in D1 and 11 is C1. Then, for any α ∈ (0, 1)
and ε ≤ r ≤ 1, (

−

∫
Dr

|∇uε|2
)1/2

≤ Cαrα−1
(
−

∫
D1

|∇uε|2
)1/2

, (5-13)

where C depends only on d, α, κ1, κ2, and the function τ(t).

Proof. Fix β ∈ (α, 1). For each r ∈
[
ε, 1

2

]
, let w = wr be the function given by Lemma 5.5. By the

boundary Cβ estimates in C1 domains for the operator L0,

inf
q∈Rd

(
−

∫
Dθr

|w− q|2
)1/2

≤ C0θ
β inf

q∈Rd

(
−

∫
Dr

|w− q|2
)1/2

,
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where C0 depends only on d , β, κ1, κ2, and τ(t). This, together with Lemma 5.5, gives

inf
q∈Rd

(
−

∫
Dθr

|uε − q|2
)1/2

≤ C inf
q∈Rd

(
−

∫
Dθr

|w− q|2
)1/2

+

(
−

∫
Dθr

|uε −w|2
)1/2

≤ Cθβ inf
q∈Rd

(
−

∫
Dr

|w− q|2
)1/2

+C0θ
−d/2

(
−

∫
Dr

|uε −w|2
)1/2

≤ Cθβ inf
q∈Rd

(
−

∫
Dr

|uε − q|2
)1/2

+Cθ−d/2(ε/r)1/2
(
−

∫
D2r

|uε|2
)1/2

.

By replacing uε with uε − q, we obtain

φ(θr)≤ Cθβ−αφ(r)+Cθ−α−d/2(ε/r)1/2φ(2r)

for any r ∈
[
ε, 1

2

]
, where

φ(r)= r−α inf
q∈Rd

(
−

∫
Dr

|uε − q|2
)1/2

.

By the integration argument used in the proof of Theorem 5.2, we may conclude that φ(r)≤ Cφ(1) for
r ∈

[
ε, 1

2

]
, which yields (5-13) by Caccioppoli’s inequality. �

Remark 5.7. Under the stronger condition that the defining function for D1 and 11 is C1,σ for some
σ > 0, we will show in Section 9 that the estimate (5-13) holds for α = 1.

The following corollary was essentially proved in [Kenig et al. 2013] by a compactness method.

Corollary 5.8. Suppose that A satisfies (1-2)–(1-3). Also assume that A ∈ VMO(Rd). Let uε ∈
H 1(D1;R

d) be a weak solution of Lε(uε)= 0 in D1 with ∂uε/∂νε = 0 on 11. Then, for any α ∈ (0, 1),

‖uε‖Cα(D1/2) ≤ Cα

(
−

∫
D1

|uε|2
)1/2

, (5-14)

where Cα depends only on d, κ1, κ2, α, and the functions τ(t), ρ(t).

Proof. As in the case of the Dirichlet boundary condition, the additional smoothness assumption A ∈
VMO(Rd) ensures that the estimate (5-13) holds for any r ∈

(
0, 1

2

)
(see, e.g., [Byun and Wang 2005]

for estimates for L1). This, together with the interior estimates, gives the estimate (5-14) by the use of
Campanato’s characterization of Hölder spaces. �

6. W1, p estimates in C1 domains

In this section we study the uniform W 1,p estimates in C1 domains. Throughout the section we will
assume that A = A(y) satisfies (1-2)–(1-3), A ∈ VMO(Rd), and � is C1. Our goal is to prove the
following two theorems.

Theorem 6.1. Suppose that A satisfies (1-2)–(1-3). Also assume that A ∈ VMO(Rd). Let 1 < p <∞
and � be a bounded C1 domain in Rd. Let uε ∈W 1,p(�;Rd) be a weak solution to the Dirichlet problem

Lε(uε)= div( f ) in � and uε = 0 on ∂�, (6-1)
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where f = ( f αi ) ∈ L p(�;Rd×d). Then

‖uε‖W 1,p(�) ≤ C p‖ f ‖L p(�), (6-2)

where C p depends only on d, p, A, and �.

Theorem 6.2. Suppose that A satisfies the same conditions as in Theorem 6.1. Let 1< p <∞ and � be
a bounded C1 domain in Rd. Let uε ∈W 1,p(�;Rd) be a weak solution to the Neumann problem

Lε(uε)= div( f ) in � and
∂uε
∂νε
=−n · f on ∂�, (6-3)

where f = ( f αi ) ∈ L p(�;Rd×d). Assume that uε ⊥R . Then

‖uε‖W 1,p(�) ≤ C p‖ f ‖L p(�), (6-4)

where C p depends only on d, p, A, and �.

Recall that a function uε is called a weak solution of (6-1) if uε ∈W 1,p
0 (�;Rd) and∫

�

aαβi j (x/ε)
∂uβε
∂x j
·
∂ϕα

∂xi
dx =−

∫
�

f αi ·
∂ϕα

∂xi
dx (6-5)

for any ϕ = (ϕα) ∈ C∞0 (�;R
d). Similarly, uε is called a weak solution of (6-3) if uε ∈W 1,p(�;Rd) and

(6-5) holds for any ϕ = (ϕα) ∈ C∞0 (R
d
;Rd). Under the assumptions that A ∈ VMO(Rd) and � is C1,

the existence and uniqueness of solutions of (6-1) and (6-3) are more or less well known (see [Auscher
and Qafsaoui 2002; Byun and Wang 2004; 2005] for references). The main interest here is that the
constants C in the W 1,p estimates (6-2) and (6-4) are independent of ε. We mention that for Lε with
coefficients satisfying (1-3), (1-11) and the Hölder continuity condition, estimates (6-2) and (6-4) were
established in [Avellaneda and Lin 1987; 1991; Shen 2008; Kenig et al. 2013]. The results were extended
to the case of almost-periodic coefficients in [Armstrong and Shen 2016]. Also, for Lε with coefficients
satisfying (1-2)–(1-3) in Lipschitz domains, some partial results may be found in [Geng et al. 2012].

Theorems 6.1 and 6.2 are proved by a real-variable argument. The required weak reverse Hölder
inequalities (6-6) and (6-2) for p > 2 are established by combining local estimates for L1 and boundary
Hölder estimates in Section 4 with the interior Lipschitz estimates, up to the scale ε.

Lemma 6.3. Let uε ∈ H 1(B(x0, 2r);Rd) be a weak solution to Lε(uε)= 0 in B(x0, 2r) for some x0 ∈Rd

and r > 0. Then, for any 2< p <∞,(
−

∫
B(x0,r)

|∇uε|p
)1/p

≤ C p

(
−

∫
B(x0,2r)

|∇uε|2
)1/2

, (6-6)

where C p depends only on d, p, κ1, κ2, and the function ρ(t) in (5-9).

Proof. By translation and dilation we may assume that x0 = 0 and r = 1. We may also assume that
0 < ε < 1

4 . The case ε ≥ 1
4 for B(0, 1) is local, since A(x/ε) satisfies the smoothness condition (5-9)
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uniformly in ε. For each y ∈ B(0, 1), we use the local W 1,p estimates for the operator L1 (see, e.g.,
[Auscher and Qafsaoui 2002; Byun and Wang 2004]) and a simple blow-up argument to show that(

−

∫
B(y,ε/2)

|∇uε|p
)1/p

≤ C
(
−

∫
B(y,ε)

|∇uε|2
)1/2

. (6-7)

By the interior Lipschitz estimate, up to the scale ε, we have(
−

∫
B(y,ε)

|∇uε|2
)1/2

≤ C
(
−

∫
B(y,1)

|∇uε|2
)1/2

. (6-8)

We point out that the estimate (6-8) will be proved in Section 8 with no smoothness assumption on A
(see Theorem 8.6). Hence, for any y ∈ B(0, 1),(

−

∫
B(y,ε/2)

|∇uε|p
)1/p

≤ C
(
−

∫
B(y,1)

|∇uε|2
)1/2

≤ C‖∇uε‖L2(B(0,2)). (6-9)

By covering B(0, 1) with balls of radius ε/2, we may deduce (6-6) readily from (6-9). �

Lemma 6.4. Let uε ∈ H 1(D2r ;R
d) be a weak solution to Lε(uε) = 0 in D2r with either uε = 0 or

∂uε/∂νε = 0 in 12r , where 0< r ≤ 1. Then, for any 2< p <∞,(
−

∫
Dr

|∇uε|p
)1/p

≤ C p

(
−

∫
D2r

|∇uε|2
)1/2

, (6-10)

where C depends only on d, p, κ1, κ2, τ(t) in (5-1), and ρ(t) in (5-9).

Proof. Note that the function r−1ψ(r x ′) satisfies the condition (5-1) uniformly for 0< r ≤ 1. Thus, by
rescaling, it suffices to prove the lemma for r = 1. Using Lemma 6.3, Theorem 5.2 and Theorem 5.6, we
obtain (

−

∫
B(y,δ(y)/8)

|∇uε|p
)1/p

≤ C
(
−

∫
B(y,δ(y)/4)

|∇uε|2
)1/2

≤ Cα[δ(y)]α−1
‖∇uε‖L2(D2) (6-11)

for any α ∈ (0, 1), where y ∈ D1 and δ(y)= dist(y, ∂D2). We now fix α ∈
(
1− 1

p , 1
)
. It follows from

(6-11) that ∫
D1

(
−

∫
B(y,δ(y)/8)

|∇uε|p dx
)

dy ≤ C‖∇uε‖
p
L2(D2)

. (6-12)

Using the fact that δ(x)≈ δ(y) if y ∈ D1 and |y− x |< 1
8δ(y), it is not hard to verify that (6-12) implies

(6-10). �

Proof of Theorems 6.1 and 6.2. By duality and a density argument it suffices to consider the case where
p > 2 and f = ( f αi ) ∈ C1

0(�;R
d×d). Furthermore, by a real-variable argument, which originated in

[Caffarelli and Peral 1998] and further developed in [Shen 2005; 2007], one only needs to establish weak
reverse Hölder inequalities for solutions of Lε(uε)= 0 in B(x0, r)∩� with either uε = 0 or ∂uε/∂νε = 0
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on B(x0, r)∩ ∂�, where x0 ∈� and 0< r < c0 diam(�). These inequalities are exactly those given by
Lemmas 6.3 and 6.4. We omit the details and refer the reader to [Shen 2005; 2008; Geng 2012] for details
in the case of scalar elliptic equations. �

Remark 6.5. Suppose that A and � satisfy the same conditions as in Theorem 6.1. By some fairly
standard extension and duality arguments (see, e.g., [Kenig et al. 2013]), one may deduce from Theorem 6.1
that the solution of the Dirichlet problem

Lε(uε)= div(h)+ F in � and uε = f on ∂�

satisfies

‖uε‖W 1,p(�) ≤ C p
{
‖h‖L p(�)+‖F‖L p(�)+‖ f ‖W 1/p,p(∂�)

}
for any 1 < p <∞, where W α,p(∂�) denotes the Sobolev space on ∂� of order α with exponent p.
Similarly, the solutions of the Neumann problem

Lε(uε)= div(h)+ F in � and
∂uε
∂νε
=−n · h+ g on ∂�

with uε ⊥R satisfies

‖uε‖W 1,p(�) ≤ C p
{
‖h‖L p(�)+‖F‖L p(�)+‖g‖W−1/p,p(∂�)

}
,

where W−1/p,p(∂�) is the dual of W 1/p,p′(∂�).

7. L p estimates in C1 domains

The W 1,p estimates in the last section allow us to establish the Rellich-type estimates in L p, down to the
scale ε, in C1 domains under the additional assumption that A belongs to VMO(Rd).

Theorem 7.1. Suppose that A = A(y) satisfies (1-2)–(1-3). Also assume that A ∈ VMO(Rd). Let
1 < p <∞ and � be a bounded C1 domain in Rd. Let uε ∈ W 1,p(�;Rd) be a weak solution to the
Dirichlet problem

Lε(uε)= F in � and uε = f in ∂�, (7-1)

where F ∈ L p(�;Rd) and f ∈W 1,p(∂�;Rd). Then, for any ε ≤ r < diam(�),{
1
r

∫
�r

|∇uε|p
}1/p

≤ C p
{
‖F‖L p(�)+‖ f ‖W 1,p(∂�)

}
, (7-2)

where �r = {x ∈ Rd
: dist(x, ∂�)<r}. The constant C p depends only on d, p, A and �.

Theorem 7.2. Suppose that A and � satisfy the same conditions as in Theorem 7.1. Let 1< p <∞. Let
uε ∈W 1,p(�;Rd) be a weak solution to the Neumann problem

Lε(uε)= F in � and
∂uε
∂νε
= g in ∂�, (7-3)
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where F ∈ L p(�;Rd), g ∈ L p(∂�;Rd) and
∫
�

F +
∫
∂�

g = 0. Also assume that uε ⊥R . Then, for any
ε ≤ r < diam(�), {

1
r

∫
�r

|∇uε|p
}1/p

≤ C p
{
‖F‖L p(�)+‖g‖L p(∂�)

}
, (7-4)

where C p depends only on d, p, A and �.

The proof of Theorems 7.1 and 7.2 follows a similar line of argument as for Theorems 1.1 and 1.2 by
considering

wε = uε − u0− εχ
β

j (x/ε)Kε

(
∂uβ0
∂x j

ηε

)
, (7-5)

where u0 is the solution of the homogenized problem, Kε is a smoothing operator defined by (2-6), and
ηε ∈ C∞0 (�) is a cut-off function satisfying (2-14).

Throughout this section we will assume that � is C1 and A satisfies (1-2)–(1-3) and (5-9).

Lemma 7.3. Let uε (ε ≥ 0) be the solutions of the Dirichlet problems (7-1). Let wε be defined by (7-5).
Then

‖wε‖W 1,p(�) ≤ C pε
1/p{
‖ f ‖W 1,p(∂�)+‖F‖L p(�)

}
, (7-6)

where C p depends only on d, p, A and �.

Proof. A direct computation shows that

Lε(wε)=−
∂

∂xi

{
[âαβi j − aαβi j (x/ε)]

[
∂uβ0
∂x j
− Kε

(
∂uβ0
∂x j

ηε

)]}
+

∂

∂xi

{
bαβi j (x/ε)Kε

(
∂uβ0
∂x j

ηε

)}
+ ε

∂

∂xi

{
aαβi j (x/ε)χ

βγ

k (x/ε)
∂

∂x j

(
Kε

(
∂uγ0
∂xk

ηε

))}
,

where bαβi j (y) is defined by (2-3). Using (2-5), we obtain

∂

∂xi

{
bαβi j (x/ε)Kε

(
∂uβ0
∂x j

ηε

)}
=−ε

∂

∂xi

{
φ
αβ

ki j (x/ε)
∂

∂xk

(
Kε

(
∂uβ0
∂x j

ηε

))}
.

It follows that

Lε(wε)=−
∂

∂xi

{
[âαβi j − aαβi j (x/ε)]

[
∂uβ0
∂x j
− Kε

(
∂uβ0
∂x j

ηε

)]}
− ε

∂

∂xi

{
φ
αβ

ki j (x/ε)
∂

∂xk

(
Kε

(
∂uβ0
∂x j

ηε

))}
+ ε

∂

∂xi

{
aαβi j (x/ε)χ

βγ

k (x/ε)
∂

∂x j

(
Kε

(
∂uγ0
∂xk

ηε

))}
. (7-7)
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Since wε = 0 on ∂�, we may apply the W 1,p estimate in Theorem 6.1 to obtain

‖wε‖W 1,p(�) ≤ C
{
‖∇u0− Kε((∇u0)ηε)‖L p(�)+ ε‖φ(x/ε)∇Kε((∇u0)ηε)‖L p(�)

+ ε‖χ(x/ε)∇Kε((∇u0)ηε)‖L p(�)

}
≤ C

{
‖∇u0− Kε((∇u0)ηε)‖L p(�)+ ε‖∇((∇u0)ηε)‖L p(�)

}
≤ C

{
‖∇u0‖L p(�4ε)+ ε‖(∇

2u0)ηε‖L2(�)

}
, (7-8)

where we have used Lemmas 2.1 and 2.2 for the second and third inequalities.
We now write u0 = v+w, where

v(x)=
∫
�

00(x − y)F(y) dy (7-9)

and 00(x − y) denotes the matrix of fundamental solutions for the operator L0 in Rd, with pole at the
origin. Note that ‖v‖W 2,p(Rd ) ≤ C p‖F‖L p(�) and

‖∇v‖L p(St ) ≤ C p‖F‖L p(�),

where St = {x ∈ Rd
: dist(x, ∂�)=t} for t small (see the proof of Theorem 2.6). It follows that

‖∇v‖L p(�4ε)+ ε‖∇
2v‖L p(�) ≤ Cε1/p

‖F‖L p(�). (7-10)

Finally, we observe that L0(w)= 0 in � and

‖w‖W 1,p(∂�) ≤ ‖ f ‖W 1,p(∂�)+‖v‖W 1,p(∂�) ≤ C
{
‖ f ‖W 1,p(∂�)+‖F‖L p(�)

}
.

It follows from the solvability of the L p regularity problem for the operator L0 in C1 domain �, which
follows from [Fabes et al. 1978; Lewis et al. 1993; Hofmann et al. 2015], that

‖(∇w)∗‖L p(∂�) ≤ C
{
‖ f ‖W 1,p(∂�)+‖F‖L p(�)

}
.

Also, using the interior estimate

|∇
2w(x)| ≤

C
δ(x)

(
−

∫
B(x,δ(x)/8)

|∇w|p
)1/p

,

where δ(x)= dist(x, ∂�), we may show that∫
�\�3ε

|∇
2w|p dx ≤ C

∫
�\�2ε

|∇w(x)|p[δ(x)]−p dx

≤ Cε1−p
‖(∇w)∗‖

p
L p(∂�) ≤ Cε1−p{

‖ f ‖p
W 1,p(∂�)

+‖F‖p
L p(�)

}
.

As a result, we obtain

‖∇w‖L p(�4ε)+ ε‖(∇
2w)ηε‖L p(�) ≤ Cε1/p{

‖ f ‖W 1,p(∂�)+‖F‖L p(�)

}
.

This, together with the estimate (7-10) for v, gives

‖∇u0‖L p(�4ε)+ ε‖(∇
2u0)ηε‖L p(�) ≤ Cε1/p{

‖ f ‖W 1,p(∂�)+‖F‖L p(�)

}
, (7-11)

which, in view of (7-8), completes the proof. �
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Proof of Theorem 7.1. Without loss of generality we may assume that

‖ f ‖W 1,p(∂�)+‖F‖L p(�) = 1.

Let ε ≤ r < diam(�). It follows from Lemma 7.3 that

‖∇uε‖L p(�r )

≤ ‖∇u0‖L p(�r )+C‖∇χ(x/ε)Kε((∇u0)ηε)‖L p(�r )+Cε‖χ(x/ε)∇Kε((∇u0)ηε)‖L p(�r )+Cε1/p

≤ C‖∇u0‖L p(�2r )+Cε‖∇((∇u0)ηε)‖L p(�)+Cε1/p

≤ C‖∇u0‖L p(�2r )+Cε1/p, (7-12)

where we have used Lemma 2.1 for the second inequality and (7-11) for the third. An inspection of the
proof of Lemma 7.3 shows that

‖∇u0‖L p(�2r ) ≤ Cr1/p,

which, in view of (7-12), gives
‖∇uε‖L p(�r ) ≤ Cr1/p. �

To prove Theorem 7.2, we need the following lemma.

Lemma 7.4. Let uε (ε ≥ 0) be solutions of the Neumann problem (7-3). Also assume that uε, u0 ⊥ R .
Let wε be defined by (7-5). Then

‖wε‖W 1,p(�) ≤ C pε
1/p{
‖g‖L p(∂�)+‖F‖L p(�)

}
, (7-13)

where C p depends only on d, p, A and �.

Proof. The proof is similar to that of Lemma 7.3. Let φε be a function in R such that wε − φε ⊥R in
L2(�;Rd). It follows from the formula (7-7) and the W 1,p estimates in Theorem 6.2 that

‖wε −φε‖W 1,p(�) ≤ C
{
‖∇u0‖L p(�4ε)+ ε‖(∇

2u0)ηε‖L2(�)

}
. (7-14)

To estimate the right-hand side of (7-14), we proceed as in the proof of Lemma 7.3, but use the nontangential
maximal function estimate [Fabes et al. 1978; Lewis et al. 1993; Hofmann et al. 2015]

‖(∇w)∗‖L p(∂�) ≤ C
∥∥∥∥ ∂w∂ν0

∥∥∥∥
L p(∂�)

,

where L0(w)= 0 in � and w ⊥R in L2(�;Rd). As a result, we obtain

‖wε −φε‖W 1,p(�) ≤ Cε1/p{
‖g‖L p(∂�)+‖F‖L p(�)

}
. (7-15)

Finally, note that since uε − u0 ⊥R,

‖φε‖W 1,p(�) ≤ Cε‖χ(x/ε)Kε((∇u0)ηε)‖L p(�)

≤ Cε‖∇u0‖L p(�).

This, together with (7-15), yields the estimate (7-13). �
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Proof of Theorem 7.2. The estimate (7-4) follows from (7-13), as in the case of the Dirichlet conditions.
We omit the details. �

Remark 7.5. Under certain smoothness condition on A, such as Hölder continuity, it is possible to solve
the L p Dirichlet, regularity, and Neumann problems for L1(u)= 0 in C1 domains for any 1< p <∞.
By the same localization procedure and blow-up argument as in Remark 3.1, this implies

∫
∂�

|∇uε|p dσ ≤ C
∫
∂�

∣∣∣∣∂uε
∂νε

∣∣∣∣p

dσ +
C
ε

∫
�cε

|∇uε|p dx,∫
∂�

|∇uε|p dσ ≤ C
∫
∂�

|∇tanuε|p dσ +
C
ε

∫
�cε

|∇uε|p dx,
(7-16)

where Lε(uε)= 0 in �. It then follows from Theorems 7.1 and 7.2 that∫
∂�

|∇uε|p dσ ≤ C
∫
∂�

∣∣∣∣∂uε
∂νε

∣∣∣∣p

dσ (7-17)

if uε ⊥R, and ∫
∂�

|∇uε|p dσ ≤ C
∫
∂�

|∇tanuε|p dσ +C
∫
∂�

|uε|p dσ. (7-18)

As in the case p = 2, by the method of layer potentials, estimates (7-17)–(7-18) lead to the uniform
solvability of the L p Dirichlet, regularity, and Neumann problems in C1 domains. The details will be
given elsewhere.

8. Lipschitz estimates in C1,α domains, part I

In this section we investigate the Lipschitz estimates, down to the scale ε, in C1,α domains with Dirichlet
boundary conditions and give the proof of Theorem 1.4. The Neumann boundary conditions will be treated
in the next section. The proof of Theorems 1.4 and 1.5 is based on a general scheme for establishing
Lipschitz estimates at large scales in homogenization, recently formulated in [Armstrong and Smart 2016]
for interior estimates. Our approach to the boundary Lipschitz estimates in C1,α domains is similar to
that used in [Armstrong and Shen 2016] for elliptic systems with almost-periodic coefficients. We remark
that Lemma 8.5, which is a continuous version of Lemma 3.1 in [Armstrong and Shen 2016] and whose
proof is simpler, makes the argument more transparent.

Let Dr and 1r be defined by (1-16) with ψ(0)= 0 and ‖∇ψ‖∞ ≤ M.

Lemma 8.1. Let uε ∈ H 1(D2;R
d) be a weak solution of Lε(uε) = F in D2 with uε = f on 12. Then

there exists v ∈ H 1(D1;R
d) such that L0(v)= F in D1, v = f on 11, and

‖uε − v‖L2(D1) ≤ Cε1/2{
‖uε‖L2(D2)+‖F‖L2(D2)+‖ f ‖L∞(12)+‖∇tan f ‖L∞(12)

}
, (8-1)

where C depends only on d, κ1, κ2, and M.

Proof. By Caccioppoli’s inequality,∫
D3/2

|∇uε|2 ≤ C
{∫

D2

|uε|2+
∫

D2

|F |2+‖ f ‖2L∞(12)
+‖∇tan f ‖2L∞(12)

}
.
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By the coarea formula this implies that there exists some t ∈
[ 5

4 ,
3
2

]
such that∫

∂Dt\12

(|∇uε|2+ |uε|2)≤ C
{∫

D2

|uε|2+
∫

D2

|F |2+‖ f ‖2L∞(12)
+‖∇tan f ‖2L∞(12)

}
.

Let v be the weak solution to the Dirichlet problem,

L0(v)= F in Dt and v = uε on ∂Dt .

It follows from Remark 2.8 that

‖uε − v‖L2(D1) ≤ ‖uε − v‖L2(Dt )

≤ Cε1/2{
‖uε‖H1(∂Dt )+‖F‖L2(Dt )

}
≤ Cε1/2{

‖uε‖L2(D2)+‖F‖L2(D2)+‖ f ‖L∞(12)+‖∇tan f ‖L∞(12)

}
,

where C depends only on d , κ1, κ2, and M. �

Lemma 8.2. Let ε ≤ r < 1. Let uε ∈ H 1(D2r ;R
d) be a weak solution of Lε(uε)= F in D2r with uε = f

on 12r . Then there exists v ∈ H 1(Dr ;R
d) such that L0(v)= F in Dr , v = f on 1r , and(

−

∫
Dr

|uε − v|2
)1/2

≤ C(ε/r)1/2
{(
−

∫
D2r

|uε|2
)1/2

+ r2
(
−

∫
D2r

|F |2
)1/2

+‖ f ‖L∞(12r )+ r‖∇tan f ‖L∞(12r )

}
, (8-2)

where C depends only on d, κ1, κ2, and M.

Proof. This follows from Lemma 8.1 by rescaling. �

In the rest of this section we will assume that the defining function ψ in the definition of Dr and 1r is
C1,α for some α ∈ (0, 1) with ψ(0)= 0 and ‖∇ψ‖Cα(Rd−1) ≤ M.

Lemma 8.3. Let v be a solution of L0(v)= F in Dr with v = f on 1r . For 0< t ≤ r , define

G(t; v)= 1
t

inf
M∈Rd×d

q∈Rd

{(
−

∫
Dt

|v−Mx − q|2
)1/2

+ t2
(
−

∫
Dt

|F |p
)1/p

+‖ f −Mx − q‖L∞(1t )

+ t‖∇tan( f −Mx − q)‖L∞(1t )+ t1+σ
‖∇tan( f −Mx − q)‖C0,σ (1t )

}
, (8-3)

where p > d and σ ∈ (0, α). Then there exists θ ∈
(
0, 1

4

)
, depending only on d, p, κ1, κ2, σ , α and M,

such that

G(θr; v)≤ 1
2 G(r; v). (8-4)

Proof. The lemma follows from the boundary C1,α estimates for elasticity systems with constant
coefficients. We refer the reader to [Armstrong and Shen 2016, Lemma 7.1] for the case L0(v)= 0. The
argument for the general case F ∈ L p with p > d is the same. �
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Lemma 8.4. Let 0< ε < 1
2 . Let uε be a solution of Lε(uε)= F in D1 with uε = f on 11. Define

H(r)= 1
r

inf
M∈Rd×d

q∈Rd

{(
−

∫
Dr

|uε −Mx − q|2
)1/2

+ r2
(
−

∫
Dr

|F |p
)1/p

+‖ f −Mx − q‖L∞(1r )

+ r‖∇tan( f −Mx − q)‖L∞(1r )+ r1+σ
‖∇tan( f −Mx − q)‖C0,σ (1r )

}
(8-5)

and

8(r)= 1
r

inf
q∈Rd

{(
−

∫
D2r

|uε− q|2
)1/2

+ r2
(
−

∫
D2r

|F |p
)1/p

+‖ f − q‖L∞(12r )+ r‖∇tan f ‖L∞(12r )

}
, (8-6)

where p > d and σ ∈ (0, α). Then

H(θr)≤ 1
2 H(r)+C

(
ε

r

)1/2
8(2r) (8-7)

for any r ∈
[
ε, 1

2

]
, where θ ∈

(
0, 1

4

)
is given by Lemma 8.3.

Proof. Fix r ∈
[
ε, 1

2

]
. Let v be a solution of L0(v)= F in Dr with v = f on 1r . Observe that

H(θr)≤ 1
θr

(
−

∫
Dθr

|uε − v|2
)1/2

+G(θr; v)

≤
1
θr

(
−

∫
Dθr

|uε − v|2
)1/2

+
1
2 G(r; v)

≤
C
r

(
−

∫
Dr

|uε − v|2
)1/2

+
1
2 H(r),

where we have used Lemma 8.3 for the second inequality. This, together with Lemma 8.2, gives

H(θr)≤ 1
2 H(r)+C

(
ε

r

)1/2 1
r

{(
−

∫
D2r

|uε|2
)1/2

+ r2
(
−

∫
D2r

|F |2
)1/2

+‖ f ‖L∞(12r )+ r‖∇tan f ‖L∞(12r )

}
.

Since H(r) remains invariant if we subtract a constant from uε, the inequality (8-7) follows. �

Lemma 8.5. Let H(r) and h(r) be two nonnegative continuous functions on the interval (0, 1]. Let
0< ε < 1

4 . Suppose that there exists a constant C0 such that max
r≤t≤2r

H(t)≤ C0 H(2r),

max
r≤t,s≤2r

|h(t)− h(s)| ≤ C0 H(2r)
(8-8)

for any r ∈
[
ε, 1

2

]
. We further assume that

H(θr)≤ 1
2 H(r)+C0ω(ε/r){H(2r)+ h(2r)} (8-9)

for any r ∈
[
ε, 1

2

]
, where θ ∈

(
0, 1

4

)
and ω is a nonnegative increasing function [0, 1] such that ω(0)= 0

and ∫ 1

0

ω(t)
t

dt <∞. (8-10)
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Then
max
ε≤r≤1
{H(r)+ h(r)} ≤ C{H(1)+ h(1)}, (8-11)

where C depends only on C0, θ , and ω.

Proof. It follows from (8-8) that
h(r)≤ h(2r)+C0 H(2r)

for any ε ≤ r ≤ 1
2 . Hence,∫ 1/2

a

h(r)
r

dr ≤
∫ 1/2

a

h(2r)
r

dr +C0

∫ 1/2

a

H(2r)
r

dr

=

∫ 1

2a

h(r)
r

dr +C0

∫ 1

2a

H(r)
r

dr,

where ε ≤ a ≤ 1
4 . This implies∫ 2a

a

h(r)
r

dr ≤
∫ 1

1/2

h(r)
r

dr +C
∫ 1

2a

H(r)
r

dr

≤ C{h(1)+ H(1)}+C
∫ 1

2a

H(r)
r

dr,

which, by (8-8), gives

h(a)≤ C
{

H(2a)+ h(1)+ H(1)+
∫ 1

2a

H(r)
r

dr
}

≤ C
{

h(1)+ H(1)+
∫ 1

a

H(r)
r

dr
}

(8-12)

for any a ∈
[
ε, 1

4

]
.

Next, we use (8-9) and (8-12) to obtain

H(θr)≤ 1
2 H(r)+Cω(ε/r){h(1)+ H(1)}+Cω(ε/r)

∫ 1

r

H(r)
r

dr.

It follows that∫ θ

αθε

H(r)
r

dr ≤ 1
2

∫ 1

αε

H(r)
r

dr +Cα{h(1)+ H(1)}+C
∫ 1

αε

ω(ε/r)
{∫ 1

r

H(t)
t

dt
}

dr
r
,

where α > 1 and we have used the condition (8-10). Using (8-10) and the observation that∫ 1

αε

ω(ε/r)
{∫ 1

r

H(t)
t

dt
}

dr
r
=

∫ 1

αε

H(t)
{∫ 1/α

ε/t

ω(s)
s

ds
}

dt
t
≤ (4C)−1

∫ 1

αε

H(t)
dt
t

if α > α0(ω), we see that∫ θ

αθε

H(r)
r

dr ≤ 1
2

∫ 1

αε

H(r)
r

dr +Cα{h(1)+ H(1)}+ 1
4

∫ 1

αε

H(r)
r

dr.
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It follows that ∫ 1

ε

H(r)
r

dr ≤ C{h(1)+ H(1)}, (8-13)

which, together with (8-8) and (8-12), yields the estimate (8-11). �

Proof of Theorem 1.4. We may assume that 0< ε < 1
4 . Let uε be a solution of Lε(uε)= F in D1 with

uε = f on 11, where F ∈ L p(D1) for some p> d and f ∈C1,σ (11) for some σ ∈ (0, α). For r ∈ (0, 1),
we define the function H(r) by (8-5). It is easy to see that H(t)≤ C H(2r) if t ∈ (r, 2r).

Next, we let h(r)= |Mr |, where Mr is the d × d matrix such that

H(r)= 1
r

inf
q∈Rd

{(
−

∫
Dr

|uε −Mr x − q|2
)1/2

+ r2
(
−

∫
Dr

|F |p
)1/p

+‖ f −Mr x − q‖L∞(1r )

+ r‖∇tan( f −Mr x − q)‖L∞(1r )+ r1+σ
‖∇tan( f −Mr x − q)‖C0,σ (1r )

}
.

Let t, s ∈ [r, 2r ]. Using

|Mt −Ms | ≤
C
r

inf
q∈Rd

(
−

∫
Dr

|(Mt −Ms)x − q|2
)1/2

≤
C
t

inf
q∈Rd

(
−

∫
Dt

|uε −Mt x − q|2
)1/2

+
C
s

inf
q∈Rd

(
−

∫
Ds

|uε −Ms x − q|2
)1/2

≤ C{H(t)+ H(s)}

≤ C H(2r),
we obtain

max
r≤t,s≤2r

|h(t)− h(s)| ≤ C H(2r).

Furthermore, if 8 is defined by (8-6), then

8(r)≤ H(2r)+ h(2r).

In view of Lemma 8.4 this gives

H(θr)≤ 1
2 H(r)+Cω(ε/r){H(2r)+ h(2r)}

for r ∈
[
ε, 1

2

]
, where ω(t) = t1/2. Thus the functions H(r) and h(r) satisfy the conditions (8-8), (8-9)

and (8-10) in Lemma 8.5. Consequently, we obtain that for r ∈
[
ε, 1

2

]
,

inf
q∈Rd

1
r

(
−

∫
Dr

|uε − q|2
)1/2

≤ C{H(r)+ h(r)}

≤ C{H(1)+ h(1)}

≤ C
{(
−

∫
D1

|uε|2
)1/2

+‖F‖L p(D1)+‖ f ‖C1,σ (11)

}
,

which, together with Caccioppoli’s inequality, gives the estimate (1-18). �
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The argument used in this section may be used to prove the interior Lipschitz estimates, down to the
scale ε.

Theorem 8.6. Suppose that A satisfies (1-2)–(1-3). Let uε ∈ H 1(B(x0, R);Rd) be a weak solution of
Lε(uε)= F in B(x0, R) for some x0 ∈Rd and R> 0, where F ∈ L p(B(x0, R);Rd) for some p> d. Then,
for ε ≤ r < R, (

−

∫
B(x0,r)

|∇uε|2
)1/2

≤ C
{(
−

∫
B(x0,R)

|∇uε|2
)1/2

+ R
(
−

∫
B(x0,R)

|F |p
)1/p}

, (8-14)

where C depends only on d, κ1, κ2, and p.

9. Lipschitz estimates in C1,α domains, part II

In this section we study the Lipschitz estimate, down to the scale ε, with Neumann boundary conditions,
and give the proof of Theorem 1.5. Throughout this section we will assume that the defining function ψ
in Dr and 1r is C1,α for some α ∈ (0, 1) and ‖∇ψ‖Cα(Rd−1) ≤ M.

Lemma 9.1. Let � be a bounded Lipschitz domain. Let uε ∈ H 1(�;Rd) be a weak solution to the
Neumann problem: Lε(uε) = F in � and ∂uε/∂νε = g on ∂�. Then there exists w ∈ H 1(�;Rd) such
that L0(w)= F in �, ∂w/∂ν0 = g on ∂�, and

‖uε −w‖L2(�) ≤ Cε1/2{
‖g‖L2(∂�)+‖F‖L2(�)

}
. (9-1)

Proof. Choose φε ∈R such that uε−φε ⊥R in L2(�;Rd). Let u0 be the weak solution to the Neumann
problem: L0(u0)= F in� and ∂u0/∂ν0= g on ∂� with the property u0⊥R . It follows from Remark 2.8
that

‖uε −φε − u0‖L2(�) ≤ Cε1/2{
‖g‖L2(∂�)+‖F‖L2(�)

}
.

By letting w = u0+φε this gives (9-1). �

Lemma 9.2. Let ε ≤ r < 1. Let uε ∈ H 1(D2r ;R
d) be a weak solution of Lε(uε) = F in D2r with

∂uε/∂νε = g on 12r . Then there exists w ∈ H 1(Dr ;R
d) such that L0(w)= F in Dr , ∂w/∂ν0 = g on 1r ,

and (
−

∫
Dr

|uε −w|2
)1/2

≤ C(ε/r)1/2
{(
−

∫
D2r

|uε|2
)1/2

+ r2
(
−

∫
D2r

|F |2
)1/2

+ r‖g‖L∞(12r )

}
, (9-2)

where C depends only on d, κ1, κ2, and M.

Proof. By rescaling we may assume r = 1. As in the case of Dirichlet conditions in Lemma 8.2, the
desired estimate follows from Lemma 9.1 by using the coarea formula and the Caccioppoli inequality∫

D3/2

|∇uε|2 ≤ C
{∫

D2

|uε|2+
∫

D2

|F |2+‖g‖2L∞(12)

}
, (9-3)

where Lε(uε)= F in D2 and ∂uε/∂νε = g on 12. �
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Lemma 9.3. Let w be a solution of L0(w)= F in Dr with ∂w/∂ν0 = g on 1r . For 0< t ≤ r , define

I (t;w)= 1
t

inf
M∈Rd×d

q∈Rd

{(
−

∫
Dt

|w−Mx − q|2
)1/2

+ t2
(
−

∫
Dt

|F |p
)1/p

+ t
∥∥∥∥ ∂

∂ν0
(w−Mx)

∥∥∥∥
L∞(1t )

+ t1+σ
∥∥∥∥ ∂

∂ν0
(w−Mx)

∥∥∥∥
C0,σ (1t )

}
, (9-4)

where p > d and σ ∈ (0, α). Then there exists θ ∈
(
0, 1

4

)
, depending only on d, p, κ1, κ2, σ , α and M,

such that
I (θr;w)≤ 1

2 I (r;w). (9-5)

Proof. By rescaling we may assume r = 1. The lemma then follows from the boundary C1,σ estimates
with Neumann boundary conditions in C1,α domains for elasticity systems with constant coefficients. �

Lemma 9.4. Let 0 < ε < 1
2 . Let uε be a solution of Lε(uε) = F in D1 with ∂uε/∂νε = g on 11, where

F ∈ L p(D1;R
d) for some p > d and g ∈ Cσ (11;R

d) for some σ ∈ (0, α). Define

J (r)= 1
r

inf
M∈Rd×d

q∈Rd

{(
−

∫
Dr

|uε −Mx − q|2
)1/2

+ r2
(
−

∫
Dr

|F |p
)1/p

+ r
∥∥∥∥g−

∂

∂ν0
(Mx)

∥∥∥∥
L∞(1r )

+ r1+σ
∥∥∥∥g−

∂

∂ν0
(Mx)

∥∥∥∥
C0,σ (1r )

}
(9-6)

and

9(r)= 1
r

inf
q∈Rd

{(
−

∫
D2r

|uε − q|2
)1/2

+ r2
(
−

∫
D2r

|F |p
)1/p

+ r‖g‖L∞(12r )

}
. (9-7)

Then
J (θr)≤ 1

2 J (r)+C(ε/r)1/29(2r) (9-8)

for any r ∈
[
ε, 1

2

]
, where θ ∈

(
0, 1

4

)
is given by Lemma 9.3.

Proof. Fix r ∈
[
ε, 1

2

]
. Let w be the function in H 1(Dr ;R

d) given by Lemma 9.2. Then

J (θr)≤ I (θr;w)+ 1
θr

(
−

∫
Dθr

|uε −w|2
)1/2

≤
1
2 I (r;w)+ 1

θr

(
−

∫
Dθr

|uε −w|2
)1/2

≤
1
2 J (r)+ C

r

(
−

∫
Dr

|uε −w|2
)1/2

,

where we have used Lemma 9.3 for the second inequality. In view of Lemma 9.2, this gives

J (θr)≤ 1
2 J (r)+ C

r

{(
−

∫
D2r

|uε|2
)1/2

+ r2
(
−

∫
D2r

|F |p
)1/p

+ r‖g‖L∞(12r )

}
,

from which the estimate (9-8) follows, as the function J (r) is invariant if we replace uε by uε−q for any
q ∈ Rd. �



692 ZHONGWEI SHEN

Proof of Theorem 1.5. With Lemma 9.4 at our disposal, Theorem 1.5 follows from Lemma 8.5, as in the
case of Dirichlet boundary conditions. We omit the details. �

As we indicate in the Introduction, under additional smoothness conditions, the full Lipschitz estimates,
uniform in ε, follow from Theorem 1.4, Theorem 1.5, and local Lipschitz estimates by a blow-up argument.

Corollary 9.5. Suppose that A satisfies (1-2)–(1-3). Also assume that A is Hölder continuous. Let
uε ∈ H 1(B(0, 1);Rd) be a weak solution of Lε(uε)= F in B(0, 1), where F ∈ L p(B(0, 1);Rd) for some
p > d. Then

‖∇uε‖L∞(B(0,1/2)) ≤ C p
{
‖uε‖L2(B(0,1))+‖F‖L p(B(0,1))

}
, (9-9)

where C p depends only on d, p and A.

Corollary 9.6. Suppose that A satisfies (1-2)–(1-3). Also assume that A is Hölder continuous. Let
uε ∈ H 1(D1;R

d) be a weak solution of L(uε) = F in D1 with uε = f on 11, where the defining
function ψ in D1 and 11 is C1,α with ‖∇ψ‖Cα(Rd−1) ≤ M for some α > 0. Then

‖∇uε‖L∞(D1/2) ≤ C
{
‖uε‖L2(D1)+‖F‖L p(D1)+‖ f ‖C1,σ (11)

}
, (9-10)

where p > d, σ ∈ (0, α), and C depends only on d, p, σ , A, α and M.

Corollary 9.7. Suppose that A, D1 and 11 satisfy the same conditions as in Corollary 9.6. Let uε ∈
H 1(D1;R

d) be a weak solution of L(uε)= F in D1 with ∂uε/∂νε = g on 11. Then

‖∇uε‖L∞(D1/2) ≤ C
{
‖uε‖L2(D1)+‖F‖L p(D1)+‖g‖Cσ (11)

}
, (9-11)

where p > d, σ ∈ (0, α), and C depends only on d, p, σ , A, α and M.

As we mentioned in Introduction, for Lε with coefficients satisfying (1-11), (1-3) and the Hölder
continuity condition, estimates (9-9) and (9-10) were proved in [Avellaneda and Lin 1987], while (9-11)
was established in [Kenig et al. 2013; Armstrong and Shen 2016].

Acknowledgements

The author thanks Carlos E. Kenig for several very helpful discussions regarding this work. The author
also would like to thank Scott N. Armstrong for insightful conversations and discussions regarding the
work [Armstrong and Smart 2016].

References

[Armstrong and Mourrat 2016] S. N. Armstrong and J.-C. Mourrat, “Lipschitz regularity for elliptic equations with random
coefficients”, Arch. Ration. Mech. Anal. 219:1 (2016), 255–348. MR Zbl

[Armstrong and Shen 2016] S. N. Armstrong and Z. Shen, “Lipschitz estimates in almost-periodic homogenization”, Comm.
Pure Appl. Math. 69:10 (2016), 1882–1923. MR Zbl

[Armstrong and Smart 2016] S. N. Armstrong and C. K. Smart, “Quantitative stochastic homogenization of convex integral
functionals”, Ann. Sci. Éc. Norm. Supér. (4) 49:2 (2016), 423–481. MR Zbl

[Auscher and Qafsaoui 2002] P. Auscher and M. Qafsaoui, “Observations on W 1,p estimates for divergence elliptic equations
with VMO coefficients”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5:2 (2002), 487–509. MR Zbl

http://dx.doi.org/10.1007/s00205-015-0908-4
http://dx.doi.org/10.1007/s00205-015-0908-4
http://msp.org/idx/mr/3437852
http://msp.org/idx/zbl/1344.35048
http://dx.doi.org/10.1002/cpa.21616
http://msp.org/idx/mr/3541853
http://msp.org/idx/zbl/06646894
http://smf4.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_423-481.php
http://smf4.emath.fr/Publications/AnnalesENS/4_49/html/ens_ann-sc_49_423-481.php
http://msp.org/idx/mr/3481355
http://msp.org/idx/zbl/1344.49014
https://eudml.org/doc/195627
https://eudml.org/doc/195627
http://msp.org/idx/mr/1911202
http://msp.org/idx/zbl/1173.35419


BOUNDARY ESTIMATES IN ELLIPTIC HOMOGENIZATION 693

[Avellaneda and Lin 1987] M. Avellaneda and F.-H. Lin, “Compactness methods in the theory of homogenization”, Comm. Pure
Appl. Math. 40:6 (1987), 803–847. MR Zbl

[Avellaneda and Lin 1989] M. Avellaneda and F.-H. Lin, “Compactness methods in the theory of homogenization, II: Equations
in nondivergence form”, Comm. Pure Appl. Math. 42:2 (1989), 139–172. MR Zbl

[Avellaneda and Lin 1991] M. Avellaneda and F.-H. Lin, “L p bounds on singular integrals in homogenization”, Comm. Pure
Appl. Math. 44:8–9 (1991), 897–910. MR Zbl

[Byun and Wang 2004] S.-S. Byun and L. Wang, “Elliptic equations with BMO coefficients in Reifenberg domains”, Comm.
Pure Appl. Math. 57:10 (2004), 1283–1310. MR Zbl

[Byun and Wang 2005] S.-S. Byun and L. Wang, “The conormal derivative problem for elliptic equations with BMO coefficients
on Reifenberg flat domains”, Proc. London Math. Soc. (3) 90:1 (2005), 245–272. MR Zbl

[Caffarelli and Peral 1998] L. A. Caffarelli and I. Peral, “On W 1,p estimates for elliptic equations in divergence form”, Comm.
Pure Appl. Math. 51:1 (1998), 1–21. MR Zbl

[Dahlberg et al. 1988] B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota, “Boundary value problems for the systems of
elastostatics in Lipschitz domains”, Duke Math. J. 57:3 (1988), 795–818. MR Zbl

[Dong and Kim 2010] H. Dong and D. Kim, “Elliptic equations in divergence form with partially BMO coefficients”, Arch.
Ration. Mech. Anal. 196:1 (2010), 25–70. MR Zbl

[Fabes et al. 1978] E. B. Fabes, M. Jodeit, Jr., and N. M. Rivière, “Potential techniques for boundary value problems on
C1-domains”, Acta Math. 141:3–4 (1978), 165–186. MR Zbl

[Fabes et al. 1988] E. B. Fabes, C. E. Kenig, and G. C. Verchota, “The Dirichlet problem for the Stokes system on Lipschitz
domains”, Duke Math. J. 57:3 (1988), 769–793. MR Zbl

[Geng 2012] J. Geng, “W 1,p estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains”, Adv.
Math. 229:4 (2012), 2427–2448. MR Zbl

[Geng et al. 2012] J. Geng, Z. Shen, and L. Song, “Uniform W 1,p estimates for systems of linear elasticity in a periodic
medium”, J. Funct. Anal. 262:4 (2012), 1742–1758. MR Zbl

[Geng et al. 2017] J. Geng, Z. Shen, and L. Song, “Boundary Korn inequality and Neumann problems in homogenization of
systems of elasticity”, Arch. Ration. Mech. Anal. 224:3 (2017), 1205–1236. MR

[Gloria and Otto 2011] A. Gloria and F. Otto, “An optimal variance estimate in stochastic homogenization of discrete elliptic
equations”, Ann. Probab. 39:3 (2011), 779–856. MR Zbl

[Gloria and Otto 2012] A. Gloria and F. Otto, “An optimal error estimate in stochastic homogenization of discrete elliptic
equations”, Ann. Appl. Probab. 22:1 (2012), 1–28. MR Zbl

[Gloria et al. 2014] A. Gloria, S. Neukamm, and F. Otto, “A regularity theory for random elliptic operators”, preprint, 2014.
arXiv

[Gloria et al. 2015] A. Gloria, S. Neukamm, and F. Otto, “Quantification of ergodicity in stochastic homogenization: optimal
bounds via spectral gap on Glauber dynamics”, Invent. Math. 199:2 (2015), 455–515. MR Zbl

[Griso 2004] G. Griso, “Error estimate and unfolding for periodic homogenization”, Asymptot. Anal. 40:3–4 (2004), 269–286.
MR Zbl

[Gu and Shen 2015] S. Gu and Z. Shen, “Homogenization of Stokes systems and uniform regularity estimates”, SIAM J. Math.
Anal. 47:5 (2015), 4025–4057. MR Zbl

[Hofmann et al. 2015] S. Hofmann, M. Mitrea, and M. E. Taylor, “Symbol calculus for operators of layer potential type on
Lipschitz surfaces with VMO normals, and related pseudodifferential operator calculus”, Anal. PDE 8:1 (2015), 115–181. MR
Zbl

[Jikov et al. 1994] V. V. Jikov, S. M. Kozlov, and O. A. Oleı̆nik, Homogenization of differential operators and integral functionals,
Springer, 1994. MR Zbl

[Kenig 1994] C. E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional
Conference Series in Mathematics 83, Amer. Math. Soc., Providence, RI, 1994. MR Zbl

[Kenig and Prange 2015] C. Kenig and C. Prange, “Uniform Lipschitz estimates in bumpy half-spaces”, Arch. Ration. Mech.
Anal. 216:3 (2015), 703–765. MR Zbl

http://dx.doi.org/10.1002/cpa.3160400607
http://msp.org/idx/mr/910954
http://msp.org/idx/zbl/0632.35018
http://dx.doi.org/10.1002/cpa.3160420203
http://dx.doi.org/10.1002/cpa.3160420203
http://msp.org/idx/mr/978702
http://msp.org/idx/zbl/0645.35019
http://dx.doi.org/10.1002/cpa.3160440805
http://msp.org/idx/mr/1127038
http://msp.org/idx/zbl/0761.42008
http://dx.doi.org/10.1002/cpa.20037
http://msp.org/idx/mr/2069724
http://msp.org/idx/zbl/1112.35053
http://dx.doi.org/10.1112/S0024611504014960
http://dx.doi.org/10.1112/S0024611504014960
http://msp.org/idx/mr/2107043
http://msp.org/idx/zbl/1087.35028
http://dx.doi.org/10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.3.CO;2-N
http://msp.org/idx/mr/1486629
http://msp.org/idx/zbl/0906.35030
http://dx.doi.org/10.1215/S0012-7094-88-05735-3
http://dx.doi.org/10.1215/S0012-7094-88-05735-3
http://msp.org/idx/mr/975122
http://msp.org/idx/zbl/0699.35073
http://dx.doi.org/10.1007/s00205-009-0228-7
http://msp.org/idx/mr/2601069
http://msp.org/idx/zbl/1206.35249
http://dx.doi.org/10.1007/BF02545747
http://dx.doi.org/10.1007/BF02545747
http://msp.org/idx/mr/501367
http://msp.org/idx/zbl/0402.31009
http://dx.doi.org/10.1215/S0012-7094-88-05734-1
http://dx.doi.org/10.1215/S0012-7094-88-05734-1
http://msp.org/idx/mr/975121
http://msp.org/idx/zbl/0685.35085
http://dx.doi.org/10.1016/j.aim.2012.01.004
http://msp.org/idx/mr/2880228
http://msp.org/idx/zbl/1234.35048
http://dx.doi.org/10.1016/j.jfa.2011.11.023
http://dx.doi.org/10.1016/j.jfa.2011.11.023
http://msp.org/idx/mr/2873858
http://msp.org/idx/zbl/1236.35035
http://dx.doi.org/10.1007/s00205-017-1103-6
http://dx.doi.org/10.1007/s00205-017-1103-6
http://msp.org/idx/mr/3621821
http://dx.doi.org/10.1214/10-AOP571
http://dx.doi.org/10.1214/10-AOP571
http://msp.org/idx/mr/2789576
http://msp.org/idx/zbl/1215.35025
http://dx.doi.org/10.1214/10-AAP745
http://dx.doi.org/10.1214/10-AAP745
http://msp.org/idx/mr/2932541
http://msp.org/idx/zbl/06026087
http://msp.org/idx/arx/1409.2678
http://dx.doi.org/10.1007/s00222-014-0518-z
http://dx.doi.org/10.1007/s00222-014-0518-z
http://msp.org/idx/mr/3302119
http://msp.org/idx/zbl/1314.39020
https://hal.archives-ouvertes.fr/hal-00619958
http://msp.org/idx/mr/2107633
http://msp.org/idx/zbl/1071.35015
http://dx.doi.org/10.1137/151004033
http://msp.org/idx/mr/3505170
http://msp.org/idx/zbl/1327.35017
http://dx.doi.org/10.2140/apde.2015.8.115
http://dx.doi.org/10.2140/apde.2015.8.115
http://msp.org/idx/mr/3336923
http://msp.org/idx/zbl/1317.31012
http://dx.doi.org/10.1007/978-3-642-84659-5
http://msp.org/idx/mr/1329546
http://msp.org/idx/zbl/0838.35001
http://dx.doi.org/10.1090/cbms/083
http://msp.org/idx/mr/1282720
http://msp.org/idx/zbl/0812.35001
http://dx.doi.org/10.1007/s00205-014-0818-x
http://msp.org/idx/mr/3325774
http://msp.org/idx/zbl/1317.35043


694 ZHONGWEI SHEN

[Kenig and Shen 2011a] C. E. Kenig and Z. Shen, “Homogenization of elliptic boundary value problems in Lipschitz domains”,
Math. Ann. 350:4 (2011), 867–917. MR Zbl

[Kenig and Shen 2011b] C. E. Kenig and Z. Shen, “Layer potential methods for elliptic homogenization problems”, Comm. Pure
Appl. Math. 64:1 (2011), 1–44. MR Zbl

[Kenig et al. 2012] C. E. Kenig, F. Lin, and Z. Shen, “Convergence rates in L2 for elliptic homogenization problems”, Arch.
Ration. Mech. Anal. 203:3 (2012), 1009–1036. MR Zbl

[Kenig et al. 2013] C. E. Kenig, F. Lin, and Z. Shen, “Homogenization of elliptic systems with Neumann boundary conditions”,
J. Amer. Math. Soc. 26:4 (2013), 901–937. MR Zbl

[Kenig et al. 2014] C. E. Kenig, F. Lin, and Z. Shen, “Periodic homogenization of Green and Neumann functions”, Comm. Pure
Appl. Math. 67:8 (2014), 1219–1262. MR Zbl

[Krylov 2007] N. V. Krylov, “Parabolic and elliptic equations with VMO coefficients”, Comm. Partial Differential Equations
32:1–3 (2007), 453–475. MR Zbl

[Lewis et al. 1993] J. E. Lewis, R. Selvaggi, and I. Sisto, “Singular integral operators on C1 manifolds”, Trans. Amer. Math. Soc.
340:1 (1993), 293–308. MR Zbl

[Oleı̆nik et al. 1992] O. A. Oleı̆nik, A. S. Shamaev, and G. A. Yosifian, Mathematical problems in elasticity and homogenization,
Studies in Mathematics and Its Applications 26, North-Holland, Amsterdam, 1992. MR Zbl

[Onofrei and Vernescu 2007] D. Onofrei and B. Vernescu, “Error estimates for periodic homogenization with non-smooth
coefficients”, Asymptot. Anal. 54:1–2 (2007), 103–123. MR Zbl

[Pastukhova 2006] S. E. Pastukhova, “Some estimates from homogenized elasticity problems”, Dokl. Akad. Nauk 406:5 (2006),
604–608. In Russian; translated in Dokl. Math. 73:1 (2006), 102–106. MR Zbl

[Shen 2005] Z. Shen, “Bounds of Riesz transforms on L p spaces for second order elliptic operators”, Ann. Inst. Fourier
(Grenoble) 55:1 (2005), 173–197. MR Zbl

[Shen 2007] Z. Shen, “The L p boundary value problems on Lipschitz domains”, Adv. Math. 216:1 (2007), 212–254. MR Zbl

[Shen 2008] Z. Shen, “W 1,p estimates for elliptic homogenization problems in nonsmooth domains”, Indiana Univ. Math. J.
57:5 (2008), 2283–2298. MR Zbl

[Stein 1970] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30,
Princeton University Press, 1970. MR Zbl

[Suslina 2013a] T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic systems: L2-operator error estimates”,
Mathematika 59:2 (2013), 463–476. MR Zbl

[Suslina 2013b] T. Suslina, “Homogenization of the Neumann problem for elliptic systems with periodic coefficients”, SIAM J.
Math. Anal. 45:6 (2013), 3453–3493. MR Zbl

[Verchota 1986] G. C. Verchota, “Remarks on 2nd order elliptic systems in Lipschitz domains”, pp. 303–325 in Miniconference
on operator theory and partial differential equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ. 14,
Austral. Nat. Univ., Canberra, 1986. MR Zbl

[Wang 2003] L. H. Wang, “A geometric approach to the Calderón–Zygmund estimates”, Acta Math. Sin. (Engl. Ser.) 19:2
(2003), 381–396. MR Zbl

Received 9 Aug 2016. Revised 21 Nov 2016. Accepted 22 Jan 2017.

ZHONGWEI SHEN: zshen2@uky.edu
Department of Mathematics, University of Kentucky, Lexington, KY 40506, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1007/s00208-010-0586-3
http://msp.org/idx/mr/2818717
http://msp.org/idx/zbl/1223.35139
http://dx.doi.org/10.1002/cpa.20343
http://msp.org/idx/mr/2743875
http://msp.org/idx/zbl/1213.35063
http://dx.doi.org/10.1007/s00205-011-0469-0
http://msp.org/idx/mr/2928140
http://msp.org/idx/zbl/1258.35086
http://dx.doi.org/10.1090/S0894-0347-2013-00769-9
http://msp.org/idx/mr/3073881
http://msp.org/idx/zbl/1277.35166
http://dx.doi.org/10.1002/cpa.21482
http://msp.org/idx/mr/3225629
http://msp.org/idx/zbl/1300.35030
http://dx.doi.org/10.1080/03605300600781626
http://msp.org/idx/mr/2304157
http://msp.org/idx/zbl/1114.35079
http://dx.doi.org/10.2307/2154557
http://msp.org/idx/mr/1124170
http://msp.org/idx/zbl/0786.35156
http://msp.org/idx/mr/1195131
http://msp.org/idx/zbl/0768.73003
http://www.math.utah.edu/~onofrei/AsymAnal.pdf
http://www.math.utah.edu/~onofrei/AsymAnal.pdf
http://msp.org/idx/mr/2356467
http://msp.org/idx/zbl/1141.35329
https://doi.org/10.1134/S1064562406010285
http://msp.org/idx/mr/2347320
http://msp.org/idx/zbl/1155.35309
http://aif.cedram.org/item?id=AIF_2005__55_1_173_0
http://msp.org/idx/mr/2141694
http://msp.org/idx/zbl/1068.47058
http://dx.doi.org/10.1016/j.aim.2007.05.017
http://msp.org/idx/mr/2353255
http://msp.org/idx/zbl/1210.35080
http://dx.doi.org/10.1512/iumj.2008.57.3344
http://msp.org/idx/mr/2463969
http://msp.org/idx/zbl/1166.35013
http://msp.org/idx/mr/0290095
http://msp.org/idx/zbl/0207.13501
http://dx.doi.org/10.1112/S0025579312001131
http://msp.org/idx/mr/3081781
http://msp.org/idx/zbl/1272.35021
http://dx.doi.org/10.1137/120901921
http://msp.org/idx/mr/3131481
http://msp.org/idx/zbl/1288.35045
http://projecteuclid.org/ euclid.pcma/1416336609
http://msp.org/idx/mr/912947
http://msp.org/idx/zbl/0662.35034
http://dx.doi.org/10.1007/s10114-003-0264-4
http://msp.org/idx/mr/1987802
http://msp.org/idx/zbl/1026.31003
mailto:zshen2@uky.edu
http://msp.org


Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard
patrick.gerard@math.u-psud.fr

Université Paris Sud XI
Orsay, France

BOARD OF EDITORS

Nicolas Burq Université Paris-Sud 11, France
nicolas.burq@math.u-psud.fr

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Vadim Kaloshin University of Maryland, USA
vadim.kaloshin@gmail.com

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

Richard B. Melrose Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Wilhelm Schlag University of Chicago, USA
schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

Maciej Zworski University of California, Berkeley, USA
zworski@math.berkeley.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2017 is US $265/year for the electronic version, and $470/year (+$55, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://msp.org/apde
mailto:patrick.gerard@math.u-psud.fr
mailto:nicolas.burq@math.u-psud.fr
mailto:berti@sissa.it
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:vadim.kaloshin@gmail.com
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:mueller@math.uni-bonn.de
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 10 No. 3 2017

513The weak-A∞ property of harmonic and p-harmonic measures implies uniform rectifiability
STEVE HOFMANN, PHI LE, JOSÉ MARÍA MARTELL and KAJ NYSTRÖM

559The one-phase problem for harmonic measure in two-sided NTA domains
JONAS AZZAM, MIHALIS MOURGOGLOU and XAVIER TOLSA

589Focusing quantum many-body dynamics, II: The rigorous derivation of the 1D focusing cubic
nonlinear Schrödinger equation from 3D

XUWEN CHEN and JUSTIN HOLMER

635Conformally Euclidean metrics on Rn with arbitrary total Q-curvature
ALI HYDER

653Boundary estimates in elliptic homogenization
ZHONGWEI SHEN

695Convex integration for the Monge–Ampère equation in two dimensions
MARTA LEWICKA and MOHAMMAD REZA PAKZAD

729Kinetic formulation of vortex vector fields
PIERRE BOCHARD and RADU IGNAT

2157-5045(2017)10:3;1-V

A
N

A
LY

SIS
&

PD
E

Vol.10,
N

o.3
2017


	1. Introduction
	2. Convergence rates in H^1
	3. Proof of Theorems 1.1 and 1.2
	4. Convergence rates in L^q for q=2d/(d-1)
	5. C^alpha estimates in C^1 domains
	6. W^(1,p) estimates in C^1 domains
	7. L^p estimates in C^1 domains
	8. Lipschitz estimates in C^(1, alpha) domains, part I
	9. Lipschitz estimates in C^(1, alpha) domains, part II
	Acknowledgements
	References
	
	

