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For a family of systems of linear elasticity with rapidly oscillating periodic coefficients, we establish
sharp boundary estimates with either Dirichlet or Neumann conditions, uniform down to the microscopic
scale, without smoothness assumptions on the coefficients. Under additional smoothness conditions,
these estimates, combined with the corresponding local estimates, lead to the full Rellich-type estimates
in Lipschitz domains and Lipschitz estimates in C'"* domains. The C% W', and L? estimates in
C! domains for systems with VMO coefficients are also studied. The approach is based on certain
estimates on convergence rates. As a biproduct, we obtain sharp O(¢) error estimates in LY (2) for
q =2d/(d — 1) and a Lipschitz domain €2, with no smoothness assumption on the coefficients.
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1. Introduction

The purpose of this paper is to establish sharp boundary estimates with either Dirichlet or Neumann
conditions, uniform down to the microscopic scale, for a family of second-order elliptic systems in
divergence form with rapidly oscillating coefficients, without any smoothness assumption on the coeffi-
cients. Under additional smoothness conditions, these estimates, combined with the corresponding local
estimates, lead to the full Rellich-type estimates in Lipschitz domains and Lipschitz estimates in C1-¢
domains. The C% WP, and L? estimates in C! domains for systems with VMO coefficients are also
investigated. To fix the idea we shall consider the systems of linear elasticity with periodic coefficients
in this paper. However, the same results, without the complications introduced by rigid displacements,
hold for general second-order elliptic systems with periodic coefficients satisfying the stronger ellipticity

This work was supported in part by NSF grant DMS-1161154 .
MSC2010: primary 35B27, 35J55; secondary 74B05.
Keywords: homogenization, systems of elasticity, convergence rates, Rellich estimates, Lipschitz estimates.

653


http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2017.10-3
http://dx.doi.org/10.2140/apde.2017.10.653
http://msp.org

654 ZHONGWEI SHEN

condition (1-11) (the symmetry condition is also needed for Rellich estimates in Lipschitz domains). We
further point out that although we restrict ourselves to the periodic case, our approach, which is based on
certain estimates on convergence rates in H' and L?, extends to nonperiodic settings, provided that the
interior correctors or approximate correctors satisfy certain L? conditions. The compactness methods,
which were introduced to the study of homogenization in [Avellaneda and Lin 1987] and have played
an important role in establishing regularity results in the periodic setting (see, e.g., [Avellaneda and Lin
1987; 1989; Kenig et al. 2013; Kenig and Prange 2015]), are not used in this paper. As a biproduct of our
new approach, we also obtain sharp O (¢) error estimates in LY (2) for ¢ =2d/(d — 1) and a Lipschitz
domain €2, with no smoothness assumption on the coefficients.
More precisely, consider the systems of linear elasticity,

Lo = —div(A(x/e)V) = —%[af{jﬁ(x/s)%], e>0. (1-1)
i J

We will assume that A(y) = (afljﬁ (y)) with 1 <1, j, o, B <d is real, bounded measurable, and satisfies

the elasticity condition
af () =d () =al ), 02
k11617 < alf (NEFED < ralé

for a.e. y € R? and for any symmetric matrix £ = (&f) € R?*4 where k1, k> > 0 (the summation convention
is used throughout the paper). We will also assume that A(y) is 1-periodic; i.e.,

A(y+2z)=A(y) forae.yeR?andz ez’ (1-3)

Theorem 1.1. Suppose that A satisfies conditions (1-2)—(1-3). Let 2 be a bounded Lipschitz domain
in RY Let u, € H'(2; RY) be the weak solution to the Dirichlet problem

Le(ug)=F inQ and us.=f onoQ, (1-4)
where F € LP(Q; RY) for p=2d/(d+ 1) and f € H' (3Q; RY). Then, for ¢ <r < diam(R2),

1/2

1

{;/ |ws|2} < C{IFlr@+1f lmaw (1-5)
Q

where Q, = {x € Q : dist(x, d2) <r}. The constant C depends only on d, k1, Kz, and the Lipschitz
character of 2.

Let R denote the space of rigid displacements,
R={Mx+q:M"=—MeR” and g € R}, (1-6)

where (Mx)* = Mx; and MT denotes the transpose of matrix M. By u L. R we mean ¥ L R in
L*(Q; RY), ie., fQ u-¢ =0 forany ¢ € R. We will use du./dv, to denote the conormal derivative of u,
associated with L.
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Theorem 1.2. Suppose that A and Q2 satisfy the same conditions as in Theorem 1.1. Let u, € H'(2; RY)
be a weak solution to the Neumann problem

oug

Lo(u)=F inQ and =g onadQ, (1-7)

0V,

where F € LP(Q; R?) for p=2d/(d+1),g € L*OQx R and [ F -+ [, 8¢ =0forany ¢ € R.
Also assume that u; 1 R. Then, for e <r < diam(S2),

1/2

1

{;f |ws|2} < C{IFlr@ +lIglzan (1-8)
Q

where C depends only on d, k1, k3, and the Lipschitz character of 2.

Estimates (1-5) and (1-8), which are scaling-invariant, may be regarded as the Rellich estimates,
uniform down to the scale ¢, in Lipschitz domains for the elasticity operators £.. Indeed, if the coefficient
matrix A is constant, then (1-5) and (1-8) hold for any 0 < r < diam(€2). Suppose that F = 0 and
u, € C'(Q; R?Y). By letting r — 0, one recovers the full Rellich estimates in Lipschitz domains,

oug

: (1-9)
TRIGE)

IVuellr2go) < Clluellpioey  and  [[Vuell 2o <C o
fo

which were proved in [Fabes et al. 1988; Dahlberg et al. 1988] for second-order elliptic systems with
constant coefficients, using integration by parts (see [Kenig 1994] for references on related work on
boundary value problems in Lipschitz domains). We should note that our proof of Theorems 1.1 and 1.2
uses the nontangential maximal function estimates in [Dahlberg et al. 1988]. On the other hand, under
certain smoothness conditions on A, the Rellich estimates hold for the operator £; on Lipschitz domains
with diam(€2) < 1. By a blow-up argument as well as some localization procedures, this implies

IVuell 250y < C{lIVanttell 200y + & I Vuell 12 )

1-10
[Vuellr20) < C” (1-10)

oug

—1/2
+e /||Vug||Lz<Q€)},

Ve [l 2290

where Vyu. denotes the tangential derivative of u, on d€2. We emphasize that the estimates (1-10) are
local and structure conditions such as periodicity are not needed. However, with the additional periodicity
condition, one may combine the local estimates (1-10) with the estimates in Theorems 1.1 and 1.2 to
obtain the full Rellich estimate (1-9), uniform in ¢, for operators L. (see Remark 3.1). Thus we have
been able to completely separate the large-scale regularity due to homogenization from the small-scale
regularity due to smoothness of the coefficients.

Under the periodicity condition and the Holder continuity condition on A, the uniform Rellich estimates
(1-9) were proved in [Kenig and Shen 2011a; 2011b] for a family of elliptic operators {L.}, where £, =
—div(A(x/e)V) and A(y) = (a?jﬁ(y)) with 1 <i, j <d and 1 <«, B <m satisfies the ellipticity condition

1
ulel? <alf (el < L lEP (1-11)
fory e R? and &£ = &) e RY*™ as well as the symmetry condition A* = A, i.e., afljﬁ
were used to establish the uniform solvability of the L? Dirichlet, regularity, and Neumann problems for

= af l.a. The results
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the system L, (us) = 0 in Lipschitz domains. It is worth pointing out that the Rellich estimates (1-9) are
not accessible by compactness methods. One of the key steps in [Kenig and Shen 2011a; 2011b] uses
integration by parts and relies on the observation that £{(Q) = Q(L), where

Qu)(x', xg) = u(x’, xa + 1) —u(x’, xa).

As a result, the approach does not seem to apply if the coefficients are not periodic. We mention that even
with periodic coefficients, the direct extension of the methods used in [Kenig and Shen 2011a; 2011b] is
problematic for the system of elasticity, due to the weaker ellipticity condition and the lack of (uniform)
Korn inequalities on boundary layers.

In this paper we develop a new approach to uniform boundary regularity in quantitative homogenization
of elliptic equations and systems. Let u#y denote the solution of the boundary value problem for the
homogenized system with the same data. The basic idea is to consider the function

du’
we = ue —ug —ex* (x/e) K2 —2 1-12
e = Ug 0 8Xj(x/8) e\ 3 Ne ( )
Xj
in , where x = (x f ) denotes the matrix of correctors, K 3 = K. o0 K, with K, being a smoothing operator
at scale €, and 1, € C§°(2) is a cut-off function with support in {x € 2 : dist(x, d2) > 3¢}. Using energy
estimates for the operator £, as well as sharp boundary regularity estimates for ug, we are able to bound

—1/2
e 2 |lwell g g

by the right-hand sides of estimates (1-5) and (1-8), respectively. This, together with sharp estimates
for ug, yields the desired estimates for

—1/2
r 2 Vugll g,

for ¢ <r < diam(£2). We mention that since Lo has constant coefficients, the sharp boundary estimates in
Lipschitz domains in terms of nontangential maximal functions are known [Fabes et al. 1988; Dahlberg
et al. 1988]. Also, because of the use of the smoothing operator K., which is motivated by [Pastukhova
2006; Suslina 2013a] (also see [Griso 2004; Onofrei and Vernescu 2007; Kenig et al. 2012; Suslina
2013b]), we only need to assume that

sup /B( 1)(|x(y)|2+ IVx(»)[*)dy < o0,

xeRd

and that a similar estimate holds for a dual corrector ¢ = (¢Z‘£.) (see (2-5) for its definition). As such, it is
possible to extend the approach to the almost-periodic or other nonperiodic settings. We plan to carry out
this study in a separate work.

As we mentioned before, the estimates in Theorems 1.1 and 1.2 may be used to establish uniform
solvability of L? boundary value problems for £, in Lipschitz domains [Kenig and Shen 2011a; 2011b].
They can also be used to obtain sharp O (e) error estimates in L7 (€2) for ¢ = 2d/(d — 1) and a Lipschitz

domain €2, with no smoothness assumption on the coefficients.
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Theorem 1.3. Suppose that A and 2 satisfy the same conditions as in Theorem 1.1. Let u, be a weak
solution to (1-4) or (1-7), and ug the weak solution of the homogenized system with the same data. Suppose
that uy € H*(Q2; RY). In the case of the Neumann problem (1-7) we further assume that u., ug L R. Then

lue —uollLe@) < Cg”“OHHZ(Q)» (1-13)

where g = p' =2d/(d — 1) and C depends only on d, k1, k3, and Q.

We remark that if  is C? and u, =0 or oug/dv, =0 on 92, the O (¢) estimate
lue —uoll 2@ < CellFll2g) (1-14)

was proved in [Suslina 2013a; 2013b] for a broader class of elliptic operators with measurable periodic
coefficients, which contains the systems of elasticity considered here (also see [Griso 2004; Onofrei and
Vernescu 2007; Kenig et al. 2012; 2014] and their references for related work on convergence rates).
Note that g =2d/(d — 1) > 2 and |lugl| g2(@) < CIIF |l 12(q) if 2 is C? and Lo(ug) = F in Q with ug =0
or dug/dvg = 0 on dQ2. Thus our estimate (1-13) is stronger than (1-14). In the case of scalar elliptic
equations with Dirichlet condition u, = 0 on 9€2, it is known that [lu, — uo| re(@) < Ce||F||Lr(Q), Where
l<p<dand1/q=1/p—1/d (see [Kenig et al. 2014, p. 1234]). Although the exponent g =2d/(d —1)
may not be sharp, Theorem 1.3 seems to be the first result on the sharp O (¢) estimate of u, —ug in L9(2)
with ¢ > 2 for elliptic systems with bounded measurable periodic coefficients.

As we indicated above, the proof of Theorems 1.1 and 1.2 only uses the energy estimates in L? for
L, and thus requires no smoothness assumptions on the coefficients. In the second part of this paper we
apply the similar ideas in the L? setting for 1 < p < oo. To do this we first establish the W!-? estimates
for the systems

Le(ug) =div(h) in Q, (1-15)

where h = (h}) € L7 (2; R4*d), with either the Dirichlet or Neumann boundary conditions, under the
additional assumptions that 2 is C land A = A(y) belongs to VMO(RY). As a result, the L” analogues
of estimates (1-5) and (1-8) are proved under these additional conditions, which are more or less sharp.
Consequently, by combining the L? estimates on the boundary layer 2, with local estimates for £,
which hold for Holder continuous coefficients, we may obtain the uniform Rellich estimates in L? for
solutions of £, (u;) =0 in C' domains under the assumptions that A is Holder continuous and satisfies
(1-2)—(1-3). By the method of layer potentials, this will lead to the uniform solvability of the L? Dirichlet,
regularity, and Neumann problems in C! domains (details will be provided in a separate work). Previously,
these results in L” are known only in C'** domains for operators £, with Holder continuous coefficients
satisfying (1-11) and A* = A [Kenig et al. 2013]. We remark that the W7 estimates (local or global) for
operators with nonsmooth coefficients in nonsmooth domains are of interest in their own rights and have
been studied extensively in recent years (see [Caffarelli and Peral 1998; Auscher and Qafsaoui 2002;
Wang 2003; Byun and Wang 2004; 2005; Shen 2005; 2008; Krylov 2007; Dong and Kim 2010; Kenig
et al. 2013; Geng 2012; Geng et al. 2012] and their references). Our approach to the W!-? estimates is
based on a real-variable argument, which originated in [Caffarelli and Peral 1998] and further developed
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in [Wang 2003; Shen 2005; 2007]. The required (weak) reverse Holder estimates at the boundary are
proved by combining the interior Lipschitz estimates down to the scale ¢ with boundary C* estimates.
Theorems 1.1 and 1.2 as well as their L? analogues, given in Section 7, are the main contributions
of this paper. For a comprehensive study in the boundary regularity for £, in Sections 8 and 9, we
investigate the boundary Lipschitz estimates, uniform down to the scale &, for solutions in C'** domains
with the Dirichlet or Neumann conditions. Let
D, ={(x',xq) € R?:|x'| <rand ¥ (x') < xg < ¥ (x)) +r}, (1-16)
Ar={(,x) eR: x| <rand x4 = ¥ (x)},
where ¢ : R*"! — Ris a C'** function for some o > 0 with ¥ (0) =0 and ||V || ca(ge-1y < M.
Theorem 1.4. Suppose that A satisfies conditions (1-2)—(1-3). Letu, € H L(Dy; R?) be a weak solution to
Le(ug)=F in D and us=f onAi. (1-17)

Then, fore <r <1,

12 172
(][ |Vua|2) SC{<][ |V’/‘8|2) +||f||cw(A])+||F||LP(D1)}, (1-18)
D, D,

where p > d and o € (0, @). The constant C depends only on d, k1, k3, p, o, and (¢, M).
Theorem 1.5. Suppose that A satisfies (1-2)—(1-3). Let u, € H'(Dy; RY) be a weak solution to

oug

Le(ug)=F in D and =g onAj. (1-19)

0V,
Then, fore <r <1,

12 12
(][ |VM5|2) < C{<][ |VMs|2) +lgllcoay + ”F”LP(DI)}, (1-20)
D, D

where p > d and o € (0, a). The constant C depends only on d, k1, k3, p, o, and (o, M).

As in the case of Rellich estimates, under additional smoothness conditions on A, using local Lipschitz
estimates for £ and a blow-up argument, one may derive from Theorems 1.4 and 1.5 the full boundary
Lipschitz estimates

12
Vel LoD, ) < C{(][ Iue|2> +fllcroan + ||F||LP(D1)} (1-21)
D,

for solutions of (1-17), and

12
VuellLoe(p, ) < C{(f |Ms|2) +llgllcoay + ||F||LP(D1)} (1-22)
D,

for solutions of (1-19). We remark that for elliptic systems satisfying the ellipticity condition (1-11),
the periodicity condition (1-3) and the Holder continuity condition, the estimate (1-21) was proved in
[Avellaneda and Lin 1987], while (1-22) was established in [Kenig et al. 2013] under the additional
symmetry condition A* = A. This symmetry condition was removed recently in [Armstrong and Shen
2016]. However, our estimates in Theorems 1.4 and 1.5 are new for the system of elasticity.
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Our proof of Theorems 1.4 and 1.5 also uses the function w,, given by (1-12). As a consequence of its
estimates in L2, for each r € ( g, 4) we are able to construct a function v such that £y(v) = F in D, with
the same (Dirichlet or Neumann) data on A, as u,, and

1/2 1/2
(][ lu, — v|2> < C(s/r)1/2{(][ |ug|2> + terms involving given data}.
D, D»,

This allows us to use a general scheme for establishing Lipschitz estimates down to the scale ¢, which
was formulated recently in [Armstrong and Smart 2016] and used for interior estimates in stochastic
homogenization with random coefficients (also see [Armstrong and Mourrat 2016] as well as related work
in [Gloria and Otto 2011; 2012; Gloria et al. 2014; 2015]). Our argument is similar to (and somewhat
simpler and more transparent than) that in [Armstrong and Shen 2016], where the scheme was adapted to
prove the full boundary Lipschitz estimates for second-order elliptic systems with almost-periodic and
Holder continuous coefficients. As indicated earlier, we have been able to completely avoid the use of
compactness methods (even in the case of C* estimates). Although it is possible to prove the interior
Lipschitz estimates as well as the boundary C* estimates, down to the scale ¢ without smoothness, by the
compactness methods, as demonstrated in [Avellaneda and Lin 1987; Gu and Shen 2015], the compactness
methods for boundary Lipschitz estimates require the same estimates for boundary correctors, which are
not easy to establish [Avellaneda and Lin 1987; Kenig et al. 2013].

The paper is organized as follows. In Section 2 we establish some key convergence results in H'. These
results are used in Section 3 to prove Theorems 1.1 and 1.2. In Section 4 we study the convergence rates
in L? for ¢ = 2d/(d — 1) and give the proof of Theorem 1.3, which uses the estimates in Theorems 1.1
and 1.2 as well as a duality argument. In Sections 5 and 6 we obtain the boundary C* and W7 estimates,
respectively, in C! domains for operators with VMO coefficients. These estimates are used in Section 7 to
establish the L? analogues of (1-5) and (1-8) in C! domains. Finally, Theorem 1.4 is proved in Section 8,
and Section 9 contains the proof of Theorem 1.5.

Throughout the paper we use fE u=(1/|E|) [, g U to denote the average of u over the set £. We will
use C and c to denote constants that may depend on d, k1, k>, A and €2, but never on €.

2. Convergence rates in H'!

In this section we establish certain results on convergence rates in H', which will play a crucial role in
the proof of our main results. Throughout the section we assume that A = A(y) satisfies (1-2)—(1-3) and
Qisa bounded Lipschitz domain in R?.

Let X = (X )= (Xaﬁ (y)) denote the matrlx of correctors for L., where 1 < j, o, B <d. This means

that x” ;€ HILC([R{" R?) is 1-periodic, fY =0, and
zl(xf) =—L1(Pf) inR, (2-1)
where Y =0, 1)¢ and Pﬁ =y;(0,. , 0) with 1 in the B-th position. The homogenized operator is

given by Lo = — dlv(AV) where A = (a“ﬂ ) is the matrix of effective coefficients with

~ofp
Q! =][Y{ o 2 )} (2-2)
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It is known that the constant matrix A satisfies the elasticity condition (1-2) [Oleinik et al. 1992; Jikov
et al. 1994]. Define

b (y) = aif +afy (x, )—at. (2-3)
By the definition of A and (2-1),

/Y b =0 and —(b“ﬂ) (2-4)
It follows that there exist d),‘fl’j € H! (R?) such that qbkl ; 1s 1-periodic,

bl = —<¢,‘§‘fj> and ¢y = — g7, (2-5)

(see, e.g., [Jikov et al. 1994; Kenig et al. 2012]).
Fix ¢ € CgO(B(O, ‘l‘)) such that ¢ > 0 and /Rd ¢ = 1. Define

Ke(f)(x) =f*wa(x)zfdf(x—y)%(y)dy, (2-6)
R
where g, (y) =& “o(y/e).
Lemma 2.1. Let f € LP(R?) for some 1 < p < oo. Then for any g € LIOC(Rd),
1/p
g (x/e)Ke (S Lr ey = C sup (][ Igl”) I/ L (wey, (2-7)
xeRd \J B(x,1)
where C depends only on d.
Proof. By Holder’s inequality,
K. P < P dy,
|Ke (f)(x)] = B0. )|/ L fF O xBx,e)(¥) dy
from which the estimate (2-7) follows readily by Fubini’s theorem. O
It follows from (2-7) that if g € LY (R?) and is 1-periodic, then
lg(x/e)Ke () llLrwey < ClgNLrny Il f Il Lr wey- (2-8)
Lemma 2.2. Let f € WH4(R?) for some 1 < g < oo. Then
1Ke(f) = fllpamay < CellV fllLaey- (2-9)

Moreover, if p=2d/(d+ 1),

IKe (Ol 2@y < Ce™ 21 f Nl Loy
If = Ke(O)ll2ay < Ce 2V f Nl Lo gy

The constant C depends only on d.

(2-10)
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Proof. To see (2-9), we note that

/G =) = FCleamay < VIV fllLamay
for any y € R. Thus, by Minkowski’s inequality,

I1Ke(f) = fllpamey < /Rd eI —=y)— fCOla@meydy

< /dgoe<y>|y|dy 1V £l oy
R
— CellV fll o).

Next, by Parseval’s theorem and Holder’s inequality,

[ kpRas= [ 1eeorifer e

1/d
~ 2d F12
< ( [ ol ds) 1A12, g
< Ce 70y

where f denotes the Fourier transform of £, and we have used the Hausdorff—Young inequality || £ | LY @)y
| f Il e ey This gives the first inequality in (2-10). To see the second inequality, we note that ¢(0) =
fRd @ = 1. It follows that

1/(2d)
If — Ke( )l 2y < C{ f 19(e8) - $0)[* &~ ds} IV Fll Lo ey
R
< Ce' 2|V £l o ey
where we have used |[¢(&) — @(0)| < C|&| for the last step. a

Lemma 2.3. Let u,,uy € H'(Q; R?). Suppose that L.(u:) = Lo(ug) in Q and either u, = ug or
oug/0ve = dug/dvy on 0K2. Let

ap 2 3”g
wy =uy —ug—ex; (/K| e
j

ox
where Kf = K.0K;, n. € C;°(R2) and supp(n,) C {x € Q:dist(x, d2) > 3¢}. Then
/ A(x/e)Vw, - Vw, dx = / [A —A(x/e)][Vug — K?((Vuo)ng)] -Vwedx
Q Q
- [ BO/R (Va0 - V. dx
Q

—ef A(x/a)x(x/e)VKZ((Vuo)ng)-ngdx, (2-11)
Q

where B(y) = (b?;ﬂ (v)) is defined in (2-3).



662 ZHONGWEI SHEN

Proof. We first note that if u, = ug on 9<2, then w, € H(} (2; RY), as Kg((Vuo)ng) € C3°(£2). Since
Le(ug) = Lo(ug) in €2, it follows that

/A(x/s)Vug-ngdx:/ AVug -V, dx. (2-12)
Q Q

In the case of the Neumann condition du./de = dug/dvg on €2, equation (2-12) continues to hold. This
is because w, € H'(2; R?) and both sides of (2-12) are equal to

oug
(Lo(uo), we) w1y < (@ + <8_’ w5> .
Vo H-120Q)x H/2(38)

Using (2-12), we obtain
/QA(x/e)Vwa Vwedx = /Q[A — A(x/&)]Vug - Vw, dx
— fg Ax/e)V x (x/e)KZ((Vuo)ne) - Ve dx
—e fg A(x/e)x (x/e)VKZ(Vuo)ne) - Ve dx,
from which the formal (2-11) follows by the definition of B(y). Il

Lemma 2.4. Let ¢(y) = (q&gg (v)) be defined by (2-5). Then

) op we d [ dul
B(x/e)K;((Vup)ne) -Vwedx = —¢ | ¢y;:(x/¢e) -—K | —n.)dx. (2-13)
Q Q ox;  0xy j

Proof. Using (2-5), we see that

B
ou Jw?
B(x/e)K2(Vuo)e) - Vw, = b (x/e)Kf(—axo_ ns) =
J

B
D (s L(oul N e
—e— (¢ K2 =0y, ) ==
& BXk ((pbk[j (x/8)> & (axj 778 ax1

B

du
K2 0, ).
} ‘ (ij ns)

from which equation (2-13) follows readily. 0

_ d ap aw‘g
= sa)Ck { kij(x/e) ox;

Lemma 2.5. Let u, (¢ > 0) be a solution to the Dirichlet problem (1-4) or the Neumann problem (1-7).
Let w, be defined as in Lemma 2.3 with n, satisfying

USGCSO(Q), 0<n<l,

supp(ne) C {x € Q : dist(x, 02) > 3¢},
ne=1 on{x e Q:dist(x, 9Q) > 4e},
Vel < Ce™ L.

(2-14)
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Then

‘/ A(x/e)Vw, - Vw, dx
Q

< ClIVwell 2 {11 Vutoll 12,y + I1(Vito) e — Ko ((Vuo)ne) |2 + e 1Ko (Vuo)n)ll 2y} (2-15)
Proof. 1t follows from Lemmas 2.3 and 2.4 by the Cauchy inequality that
< ClIVwell 2o {II Vo= KZ (Vo) ne) | L2y +ell x (x /&) VK (Vuo)ne) 2o
+ellp (x/e)VKZ(Vuo)ne)ll 2 }
<C||Vw, ”LZ(Q){”VMO_KSZ((VUO)WS)||L2(Q)+3|IVK8((VUO)778)||L2(§2)},

‘/ A(x/e)Vwe-Vw.dx
Q

where we have used Lemma 2.1 as well as the fact that x, ¢ € leoc([R{d ) and are 1-periodic for the last
inequality. Observe that

IVuo — KZ(Vuo)ne)ll 2y < 1(Vuo) (1 = n)ll 2@y + 1(Vuo)ne — Ke(Vuo)ne) |l 12y
+ “ KE ((UO)Ua - K«S‘((Vuo)né‘)) || LZ(Q)

< IVuoll 2,y + Cll(Vuo)ne — Ke(Vuo)ne) |l 12(q)-
Also,
ellVK:(Vuo)ne) 2 < el Ke(VZuo)ne)ll 12y + eIl Ke (Vo) (V) 120

< e Ke((VZuo)ne)ll 2@ + CllViol 2. O
Finally, we are in a position to state and prove the main result of this section.

Theorem 2.6. Suppose that A(y) satisfies (1-2)—(1-3). Let Q2 be a bounded Lipschitz domain. Let u,
(e > 0) be the solutions to the Dirichlet problem (1-4) in Q with f € H'(0Q2; RY) and F € LP(; RY),
where p =2d/(d + 1). Then

<Ce"{I flm e + 1 Fllre), (2-16)

B 2 3“5
Ug —U)—EX; (X/E)Kg — N 1
Hy ()

8Xj

where 1 € C3°(R2) satisfies (2-14). The constant C depends only on d, k1, k2, and the Lipschitz character
of .

Proof. Let w, denote the function on the left-hand side of (2-16). Since w, € H (Q; R?), it follows from
(2-15) by the first Korn inequality [Oleinik et al. 1992] that

lwe ll 1 ) = ClIIVuoll 2@y + 1(Vuo)ne — Ke (Vuo)ne)ll 2@y + el Ke (Vuo)ne) 2} (2-17)
To bound the right-hand side of (2-17), we write ug = v + h, where

v(x) = /Q Fotx — y)F(y) dy

and ['g(x) denotes the matrix of fundamental solutions for the homogenized operator £y in RY, with pole
at the origin. Note that Lo(v) = F in €2, and by the well known singular integral and fractional integral
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estimates,

1920l Loy + 1V 01l o iy < CpllFllLoceys (2-18)

where we have used the observation 1/p'=1/p—1/d. Lete = (ey, ..., e4) € Cé (R?; R?) be a vector
field such that (e, n) > ¢y > 0 on dQ2 and |Ve| < Cro_], where ry = diam(£2) and n denotes the outward
unit normal to 9€2. It follows from the divergence theorem that

C()/ |Vv|2do§f IVv|*(e, n) do
Q2 Q2

3
=/ |Vv|2div(e)dx+/ ei—Vv-Vvodx
Q Q 0x;

Xi
§C{r01/ |Vv|2dx+/ |Vv||v2v|dx}
Q Q
< C{rg "IVl F IVl @) IV Vllr@ } < CIF 11700, (2-19)

where we have used (2-18) for the last step. Note that the same argument also gives [|Vv|l 2,y <
C||Fl|lrr(w), where S; = {x € R? : dist(x, 92) =1} for 0 < ¢ < cry. Consequently, by the coarea formula,
we obtain

| 12
([ ivetas] <cirie, (2-20)
o

where 0 < r < diam(£2) and S~2r ={xe RY : dist(x, 992) < r}.
Next, we observe that Ly(h) =0 in 2 and

1Az oo < 1 lar oo + IV A 0o
< fllaee +ClIFIL -

where we have used (2-19) for the last inequality. It follows from the estimates for solutions of the L? reg-
ularity problem in Lipschitz domains for the operator Ly in [Dahlberg et al. 1988; Verchota 1986] that

(VA I 1200) < C{Il fllmiee) + I FlliLr} (2-21)

where (Vh)* denotes the nontangential maximal function of VA. This, together with (2-20), gives

IVuoll 2,y < Cr{ Il fllm o + 1 FlliLr@)) (2-22)

for any 0 < r < diam(€2). As a result, the first term on the right-hand side of (2-17) is bounded by
Ce'2{|I fl gy + IIFlLr@}-
To handle the third term on the right-hand side of (2-17), we use Lemma 2.2 to obtain
el Ke (Vo)) 120y < el Ke (Vo)) 2@ + el Ke (Ve 120
< Ce' 2 I(V20)ne @) + Cell (VPR nell 2oy
< Ce'P|Fllrrey + Cel V2Rl 2@\ (2-23)
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Since Lo(Vh) =0 in 2, we may use the interior estimate for Lo,

12
2 c 2\
IVoh(x)| < — |Vh| ,
() \JBx,5(x)/8)

where §(x) = dist(x, d€2), to show that

IV2h1 20 < CIOVDIBOT 200,
<Ce "I flmpe +IIFlr@). (2-24)

where the last inequality follows from (2-21). This, together with (2-23), gives

ell Ko (VZuo)ne) 12y < Ce {1 fll ey + 1 FllLr@ - (2-25)

Finally, to bound the second term on the right-hand side of (2-17), we again write ug = v + h as before.
Note that by Lemma 2.2,

[(VU)ne—K:(Vu)ne)ll ) < IVo=Ke (V)| L2@ey + (V) A=) | L2() HI Ke (VU)A=0)) | 12(02)
< Ce"2 V2l Lo gy +C IVl 25,
<Ce"|Fllpre.

where we have used (2-18) and (2-20) for the last inequality. Also, by Lemma 2.2,

(VA — Ke(VION) |l 1200 < CelIV((VR)N) Il 120
< el Vil 2vas) + 1IVA 200 )
<Ce"{I flmoe + 1 Fllre -

Consequently, the second term on the right-hand side of (2-17) is dominated by the right-hand side of
(2-16). This completes the proof of Theorem 2.6. (|

The next theorem is an analogue of Theorem 2.6 for the Neumann boundary conditions.

Theorem 2.7. Suppose that A = A(y) satisfies (1-2)—(1-3). Let Q2 be a bounded Lipschitz domain. Let u,
(¢ = 0) be the solutions to the Neumann problem (1-7) in Q2 with g € L?(32%:; RY) and F € LP(Q; RY),
where p =2d/(d + 1). Also assume that u,, ug L R. Then

B 2 a”g
Ug —U)—EX; (X/E)Kg gns
J

< Ce' gl o0 + 1 FllLr@ ]} (2-26)
HY(Q)

where 1 € C3°(R2) satisfies (2-14). The constant C depends only on d, k1, k2, and the Lipschitz character
of Q.

Proof. The proof, which uses the estimate in Lemma 2.5, is similar to that of Theorem 2.6. We will only
point out the differences and leave the details to the reader.
Let w, denote the function on the left-hand side of (2-26). Let

lej:j=1,....0=3dd+1)}
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be an orthonormal basis of R, as a subspace of L%(Q; RY). By the second Korn inequality [Oleinik et al.

1992],
J
/ W -@jdx
Q

+C>

j=l1

lwellg) < C)f A(x/e)Vw, - Vw, dx . 2-27)
Q

Since u,, ug L R, it follows that
‘ / We-@jdx
Q

This, together with (2-27) and Lemma 2.5, shows that

< Cellx(x/e)KZ(Vuo)ne) 120

< Cel|Vuoll12(q)-

lwell g1 (@)
< C{lIVuoll 2+l Vol 2+ 11 (Vo) e — Ko (Vo) ne) | 12y He Il Ke (Vuo)ne) 2y} (2-28)

To bound the right-hand side of (2-28), we write ug = v + h, where v is the same as in the proof of
Theorem 2.6. Since Lo(h) = 0 in  and

’8h

81)()
we may use the estimates in [Dahlberg et al. 1988; Verchota 1986] for solutions of the L? Neumann
problem for Ly in Lipschitz domains to obtain
[}
Q

< Clligl 200 + I FllLr@}, (2-29)

v

31)()

oug

81)0

L2(09) ‘
< C{liglzp + 1 FllLr@}

=
L2(3S2) L2(3S)

J
IV Il 200 < c{ lgll 20 + 1 Fllr@) + )
j=1

where we have used the assumption u#y L R. With the nontangential maximal function estimate (2-29) at
our disposal, the rest of the proof is exactly the same as that of Theorem 2.6. O

Remark 2.8. Since
llx (/&) KZ(Vuo)ne) | 12y < ClIVuoll 120

it follows from the estimate (2-16) that

e —uoll 2@y < Ce {1 fllaragy + I1Fll 2@ ) (2-30)
where L. (u;) = Lo(ug) = F in Q and u, = ug = f on 92. Similarly, the estimate (2-26) implies

lue —uoll 2y < Ce'*{llgll 20 + 1 Fll 2@} (2-31)

where u,, ug are given in Theorem 2.7. These O (¢'/?) estimates in L? are not sharp (see Section 4), but
they will be sufficient for us to establish the boundary C* and Lipschitz estimates.
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3. Proof of Theorems 1.1 and 1.2

Theorems 1.1 and 1.2 are consequences of Theorems 2.6 and 2.7, respectively. We give the proof of
Theorem 1.1. Theorem 1.2 follows from Theorem 2.7 in the same manner.
Without loss of generality we may assume that

oo + 1 Ellre = 1.
Let w, denote the function on the left-hand side of (2-16). By Theorem 2.6, for ¢ < r < diam(£2),

IVuelli2i,) < 1 Vuoll 2o, + IVwell 2 + ] Vix (x/) K2 (Vuo)no) | g,
< Cr'2 4| Vx /) K (Vuo)ne) || 2, , + &l X /) VKZ(Vuo)ne) || 2
< Cr' 4+ CIK:((Vuo)ne)ll 2@y, + CEIVK(Vuo)no)ll 20, )

where we have used (2-22) and Lemma 2.1 as well as the fact that the operator K, is a convolution with a
kernel supported in B(0, ¢/4). Note that by (2-22) and (2-25),

| Ke(Vuo)ne)ll 2,y < ClIVuoll 12,y < cr'’?,

and
eIVK(Vuo)ne)ll 2,y < elKe(V2uo)ne)ll 2,y + el Ke (Vo) (Vo) 20y

< ell Ko (V2uo)n)ll 2y + Cl Vol 2y
< cri/?,

The proof of Theorem 1.1 is complete.

Remark 3.1. Under certain smoothness conditions on A, it is possible to extend the Rellich estimates in
[Dahlberg et al. 1988] for the Lamé systems with constant coefficients to the operator £; with variable
coefficients satisfying the condition (1-2). We refer the reader to [Kenig and Shen 2011b], where this is
done in the case that the coefficients satisfy the ellipticity condition (1-11). It follows that if £;(u) =0
in Dy, where D, is defined by (1-16) with ¥(0) =0 and ||[V{ || < M, then

0
/ \Vul? do 5c/ “
aD, ap, |0

vV
/ |Vu|?> do 50/ IVtanu|2da+C/ |Vul|* dx
aD, .

r D}

2
da+C/ |Vul?dx,
D,

(3-1)

for any r € (1, %), where C depends only on d, A, and M. By integrating both sides of the inequalities in
(3-1) with respect to r over (1, %), we obtain

9
f \Vul? do §C/ “
Aj As ov

/|Vu|2da§C/ |Vmu|2d0—|—C/ |Vul?dx,
Ay Ar D,

2

da+C/ |Vu|?dx,
b2 (3-2)
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where A, = {(x/, ¥(x")) € R? : |x’| <r and x;=v(x")}. We now take advantage of the fact that the
dependence of C on v is only through M. Since L. (u.) = 0 implies £;{u.(ex)} = 0, one may deduce
from (3-2) that if £.(u,) = 0 in D»,, then

2

5
/ |Vu£|2da§C/ Yol go+ S [ Ve dx,
As Ase | OV € JD,, (3-3)
/ \Vu, 2 do 5C/ Ventte2do + S | |Vu. 2 dx.
& AZS € D2£

Now, suppose that u, € H 1€ RY) and L, (u,) = 0 in 2, where € is a bounded Lipschitz domain in R4
By covering 92 with a finite number of suitable balls of size ce, it follows from (3-3) that

d
/|w€|2d050/ -
90 aQl 0

Ve
fqu8|2do*§C/ IVtanuelzdo—i-g/ \Vu, | dx.
a0 aQ ¢ Ja.

Notice that up to this point, we have only used the smoothness condition of A, not the periodicity of A.

&

2
da+9/ \Vu, |2 dx.
€ Ja.

(3-4)

With the additional periodicity condition we may invoke the estimates in Theorems 1.1 and 1.2 to bound
the volume integrals of |Vu,|> over the boundary layer Q.. This yields the full Rellich estimates,

9 2
/ |Vug|2d0§C/ “o| do (3-5)
IQ aQ| Ove
ifu; L R, and
/ |Vu|> do §C/ |Vtanu£|2da—|—Cr02/ lug|? do. (3-6)
Q2 Q2 Q2

It is well known that estimates (3-5)—(3-6) may be used to solve the L? boundary value problems in
Lipschitz domains by the method of layer potentials. We refer the reader to [Kenig and Shen 2011b] for
the case where A(y) satisfies (1-11). The details for the system of linear elasticity have been carried out
in a separate work [Geng et al. 2017].

4. Convergence rates in L? forqg =2d/(d — 1)

We now establish sharp O(e) estimates for ||u, — ug||re(@) With ¢ = 2d/(d — 1), using Theorems 1.1
and 1.2 and a duality argument. Throughout this section we will assume that €2 is a bounded Lipschitz
domain and A = A(y) satisfies (1-2)—(1-3).

We start with the Dirichlet boundary condition.

Lemma 4.1. Let u, (¢ > 0) be the solution of (1-4). Suppose that ug € H*(2; R?). Then

ditg -
Ug — U — SXk(x/S)Ke<§) — Vg < Ce|| V2ol 2 o), (4-1)

k H}(Q)
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where iig € H*(R?; RY) is an extension of uy and v, € H'(2; R?) is the weak solution to
. dug
Le(v) =0 inQ and ve = —exr(x/e)K, r. on 092.
Xk
Proof. Let
I
Wwe =u, —ug—exr(x/e)Ke ( )—vg.
0Xk

Using L, (uy) = Lo(ug) and L (v:) = 0 in €2, a direct computation shows that

0 ~af op aMO
Le(we) = =21 la;; —a;; (X/g)]— e EXk(x/8)Ke
X; 3xk

O finap _ ap du’ dil 0 [, up
=_3_x,{[aJ —a; (x/e)]|:a 0 —Ke(g(; +a—xi b (x/e)Ke\ —

9 by 3%
4—85;;{ Px/enl” (x/e)K. <a o

B . .
where b?; is defined by (2-3). Using (2-5), we see that

N oiif K. 0%l
g s (o)) = oo ()}

Indeed, the left-hand side of (4-4) equals

32ib
b (x/e)K 0 ),
ij (x/e) €<axi3xj')

while the right-hand side equals
2 ~/3

82 52 diif
af 0
bkj (x/g)Ka<a 9x )+¢,kj(x/8)a Bxk <E)
and the second term is zero due to the skew-symmetry ¢kl ; q&l ki
It follows from (4-3) and (4-4) by Lemmas 2.1 and 2.2 that

2~
1£e(We)ll -1y < Cell Vol L2ga).

669

(4-2)

) o

(4-4)

where C depends only on d, k1, k2, and €2. Since w, € HO1 (2; RY), this gives the estimate (4-1) by the

energy estimate.

g

The following theorem establishes the sharp O (¢) estimate in L9 with ¢ =2d /(d — 1) for the Dirichlet

boundary condition.

Theorem 4.2. Suppose that A satisfies (1-2)—(1-3). Let Q2 be a bounded Lipschitz domain in RY Let u,

(¢ = 0) be the weak solution to Dirichlet problem (1-4). Assume that ug € H 2(Q; RY). Then

lue —uollLa) < Celluoll p2(g)

where g =2d/(d — 1) and C depends only on d, k1, k2, and 2.

(4-5)
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Proof. We begin by choosing iy € H*(R?; R?) such that it = u¢ in © and ol g2may < Clluoll g2
where C depends only on Q2. Since €2 is Lipschitz, this is possible by an extension theorem due to
A. Calder6n [Stein 1970, Theorem 5, p. 181]. Next, since HO1 () C L1(2) and

.
‘Xk(X/S)K (a °>
Xk

in view of Lemma 4.1, it suffices to show that

< ClIVigll aray < Clluoll g2(g)»
L9(Q)

lvellLa@) = Celluoll g2 () (4-6)
where v, is given by (4-2).

To this end we fix G € L”(Q2; R?), where p =g’ =2d/(d + 1), and let h, € Hj (Q; RY) be the weak
solution to

Le(he)=G inQ and hy =0 ondS. 4-7)

It follows from (4-2), (4-7), and the divergence theorem that

oh,
/vg-de=—/ Vg -
Q o Ove
=8/ xk(x/e)K, ( ) ne —1)do
9
a Y
-5

+¢& Xky(x/g) (

du Uy aﬁ
(x/ VK xe a;; (x/e)—(ns—l)dx
J

>a‘?‘.ﬂ(x/s)%(n —1)dx
Y x; ' °

J
/xky<x/s>K (a )G“(ns—l)dx

oiil | OhE o,
+8f Xky(x/s)K <3 > a;; 3xJ o id

where 7, € C;°(R2) satisfies (2-14). This implies

/vg-de
Q

SC/ IVx(x/e)|Ks(Vitg)| [Vhe|Ine — 1] dx
Q
+C8/ X Ce/&)] |1 Ke(V2ito)| | Vhel e — 1] dx
Q
+C8/ |x (/) IKe (Vo) 1GlIne — 1] dx
Q

+C8L|X(x/8)||K8(VﬂO)||Vh8||V778|dx' (4-8)
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Note that by Cauchy’s inequality and (2-14), the first and fourth terms on the right-hand side of (4-8) are
bounded by

N 12
C(/Q |(IVXx (x/e) + 1x (x/e)]) Ke (Vitg) | dx) (/Q |th|2dx)

1/2 1/2
50(/ |Vﬁ0|2dx> (/ |Vhs|2dx> ,
555 948

where Q, = {x € Q : dist(x, 0Q2) <r}, SNZr = {x e R? : dist(x, Q) <r}, and we have used Lemma 2.1 for
the last inequality. Using the divergence theorem, as in (2-19), one may prove that

~ ~ 172 ~ 172
”vu()”Lz(Sr) = C””O”HI (R?) ||u0||H2([R")’
where S, = {x € R? : dist(x, 3Q)=r}. It follows by the coarea formula that
~ - 12~ 11/2 ~ 1/2
IVioll 2@,y < Cr' ol )1 g, ol 15 g, (4-9)

This, together with the estimate in Theorem 1.1 for 4., shows that the first and fourth terms on the
right-hand side of (4-8) are bounded by

Celluoll p2 ) 1GllLr ()

where p = ¢’ = 2d/(d + 1). Finally, we note that the second and third terms on the right-hand side of
(4-8) are bounded by

2~ s
Ce||Vouoll 2wy I Vhell 2@y + Cell Vol Lo ey | GllLr ) < Celluoll g2 1GllLr(@)-

/ ve-Gdx
Q

which, by duality, gives the estimate (4-6) and completes the proof. O

As a result, we have proved that

< Celluoll g2 IGllLr ()

Next we consider the solutions with the Neumann boundary conditions.

Lemma 4.3. Let u. (¢ > 0) be the solutions of (1-7) such that u, 1. R. Suppose that ugy € H?(2; RY).
Then

ol
ug —ug—exp(x/e)Ke| — ) —ve

™ < CelIV3ioll L2 ey + 1 Vil L2 (4-10)

H'(Q)

where U is an extension of ug and v, € H' (2 RY) is the weak solution to

Le(ve) =0 in<,

v, & 0 0 0l

L P N Y Ry o s )9, (“-11)
oy Z(nkaxi nzaxk){¢ktj(x/€) s(axj)} on
ve LR.
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Proof. Let

8u0
We =u, —ug—exr(x/e)Ke — V.
axk

Using dug/dv, = dug/dvp on 02, a direct computation shows that

0 0 0 0 0 0
e =ﬂ—ﬂ——{m<x/s>lf ( ”°>}— e

AV dvg dve 0, 0Xk 0V,

@ — P ey 20, (2 b (/K. oup
=nila.. —a.. (x —_— = —n; X
Y Y 0x; ¢ 8xj axj

By 82u0 dv,
—na (x/s) EXp (x/s)K( )——. (4-12)

0x;0xy oV

Using (2-5), we also see that

p ~p
ou v dtyy av
af 0 e €
nib;] uys)Kg(ax )-+——— Enis— [¢mj(/8) (ax )-+

j 81)5 J avs
-8
& 0 0 B dtyy 0V,
=—(nj— —np— P K.|—2 i
2(”’axk ”kaxi>[¢k”(x/8” €<ax, L™
%P
B 0
= —en; gyl (x /g)Kg(axkaxj). (4-13)

As a result, we obtain

8w5

dul du
af _ _op 0
B, =n;la;; —a;; (x/¢)] [Bx (8x1>}
.

3%}
+an@uuﬂﬂK( %o )—na @m)gmywﬂﬂK(: 0). (4-14)

0xx0x; 0x;0xy

Next, we note that as in the proof of Lemma 4.1,

, D rap aﬂ( 3u€ aug ad K. a2u0

R A x/”][ax; 8(@)“‘%—%{"%’}“@ (5 kax,>}
V
O

9
4‘85;;{ (x/s)xky(x/s)li (8 - k)}. (4-15)

Thus, by (1-2) and the energy estimate,

IVwe+(Vwa) " [l 12
< ClIVwell 20 {IVto— Ko (Viio) || 2 ()€ ll¢ (x /&) Ko (VZiio) || 2y e Il x (/&) Ko (V2uo) |l 12y )

2~
< Cel|Vwell 2 1 Vouoll L2 ey
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where we have used Lemmas 2.1 and 2.2 for the last step. By the second Korn inequality, this implies
J
lwell g1y < Cell V2ol 2ay +C Y

/Qws-cpjdx
j=1

< Cel|V3iigll 2 ey + Cellx (x /) Ko (Viig) | 12y < Ce{lIV2iioll 2 gey + I Vol L2ray )

where {¢; : j =1,..., J} forms an orthonormal basis of R, as a subspace of L?(Q; RY). O
The next theorem is an analogue of Theorem 4.2 for the Neumann boundary conditions.

Theorem 4.4. Suppose that A satisfies (1-2)—(1-3). Let Q2 be a bounded Lipschitz domain in RY. Let
U (¢ > 0) be the weak solutions to the Neumann problem (1-7) with the property u, L R. Assume that
ug € H*(2; RY). Then

lue —uollLa) < Celluoll g2(q)» (4-16)
where g =2d/(d — 1) and C depends only on d, k1, k2, and 2.

Proof. As in the proof of Theorem 4.2, it suffices to show that

lvellLa@) < Celluoll g2 4-17)

where v, is given by (4-11). To this end we fix G € L?(Q; R?) with G L R and let h, € H'(22; R?) be

the weak solution to
ohg

AVA

with the property 4, L R. It follows from (4-18), (4-11), and Green’s formula that
ad
/ ve -G dx = / A(x/€)Vv, - Vhy dx = / % by do
Q Q

aQ Ve

e i) AN]
=z/ (i =z | eibesoom (5 )|
/QS (x/e)K( ﬁ)-(nki—nvi)h“-(l—n)da
kij Xj 8)(,' laxk & ¢
diih e
:—8'/95{ klj(x/e)K (axj>(1—ng)} ox, £ dx,

where 1, € Ci°(R2) satisfies (2-14) and we have used the divergence theorem as well as (2-5) for the last

Le(he)=G 1inQ and

=0 onof2, (4-18)

inequality. This leads to

/vg-de
Q

SC/Q IV (x /&) | K (Viio)| Ve dix
+Cef 16Ge/e) ]| Ko (V2iio)| [ Ve | dx
Q48

-i-CS/Q lp(x/e)|Ke(Vitg)|[Vne|[Vhe|dx. (4-19)
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Note that by the Cauchy inequality, the first and third term on the right-hand side of (4-19) are bounded by
Cl(IVex/e) + 1o (x/)) Ke(Vito) | 2, I Vel 20y < ClIV Ol 2835, I VeI 12020
< Celluoll g2 @) IGllLr(s)s

where we have used Lemma 2.2 for the first inequality and Theorem 1.2 as well as estimate (4-9) for
the second. Also, the second term on the right-hand side of (4-19) is bounded by

C8||¢(X/S)K8(V2ﬁ0) 220 Vhe 2 =< Celluoll g2 1GllLr -

Hence we have proved that for any G € L?(2; RY) with the property G L A,

/vg-de
Q

Since v, L A, this gives the estimate (4-17) by duality and completes the proof. g

< Celluoll g2 IG Il Lr ()

Note that by combining Theorems 4.2 and 4.4, one obtains Theorem 1.3.

5. C“ estimates in C! domains

In this section we investigate uniform boundary C* estimates in C' domains. The results will be used in
the next section to establish uniform boundary W7 estimates in C' domains. Throughout the section we
will assume that the defining function ¥ in D, and A, is C! and v (0) = 0. To quantify the C' condition
we further assume that

sup{|[Vy (x) = VY ()] :x' y € R and |x' — y'| <1} < 7 (1), (5-1)

where t(1) > 0 as t — 0F.
The rescaling argument is used frequently in this paper. Suppose that L, (1) = F in Dy, and u, = f
on Ay,. Let w(x) = u.(rx). Then

Ley(w)y=G inDy and  w=g onA,,
where G(x) = r?F(rx), g(x) = f(rx), and
Dy ={(x',xa) e R : x| <2 and ¥, (x) <xg < ¥ (x)) + 2},
Ay ={(x,xg) € RY: x| <2 and xg =, (x)) },

with ¥, (x") = r ' (rx’). Note that 1/,(0) = 0 and ||[V¥,]lec = ||[V¥|lee. Moreover, if ¥ is C' and
satisfies (5-1), then i, satisfies (5-1) uniformly in r for 0 <r < 1.

Lemma 5.1. Let 0 <& <r < 1. Let u, € H'(Day; R?) be a weak solution of Le(ug) = 0in Dy, with
us =0 on Ay,. Then there exists v e H' (D,; [F\?d) such that Lo(v) =01in D,,v=0o0n A,, and

1/2 1/2
(][ |u£—v|2) sC(s/r)W(][ |ug|2) : (5-2)
D, D»,

where |V |loo < M, and C depends only on d, k1, k2, and M.
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Proof. By rescaling we may assume r = 1. By Caccioppoli’s inequality,

12 12
(][ |ws|2) §C<][ |u8|2) . (5-3)
D3 Ds

It follows from (5-3) and the coarea formula that there exists ¢ € [f'v %] such that

IVuelli2p\n0) + 1uell 2Dy < ClluellL2(py)- (5-4)

Let v be the solution to the Dirichlet problem: Ly(v) =0 in D, and v = u, on d D;. Note that v =0
on Ay, and by Remark 2.8,

1/2
lue — U||L2(D,) <Ce / ||Ms||H1(aD,)- (5-5)
This, together with (5-4), gives
1/2
lue = vll2(py) < lte = vli2p,) < Ce'lluell2(p,)- O

Theorem 5.2. Suppose that A = A(y) satisfies (1-2)—(1-3). Let u, be a weak solution of L(u.) =0 in
Dy with u, =0 on Ay, where the defining function W in Dy and Ay is C'. Then, for any a € (0, 1) and

e<r<1
1/2 1/2
(][ |Vu8|2) scar“-l(][ |ug|2> : (5-6)
D, D,

2 9
where Cy, depends only on d, a, k1, k2, and the function t(t) in (5-1).

Proof. Fix B € (a, 1). For each r € [, %], let v = v, be the function given by Lemma 5.1. By the
boundary C# estimates in C' domains for the operator Ly (see, e.g., [Auscher and Qafsaoui 2002; Byun

and Wang 2004]),
1/2 1/2
()" e )
Dy, D,

for any 6 € (0, 1), where Cq depends only on d, k1, k2, B and t(¢). It follows that

1/2 1/2 1/2
(][ |u8|2) S(][ |v|2) +C(][ |u8—v|2)
Dy, Do, Dy,
1/2 172
sceﬂ(][ |v|2> +ce—d/2<][ |ug—v|2)
D, D,
1/2 1/2
scleﬂ<][ |u8|2) +cle—"/2<e/r>”2<][ |ue|2>
D, D,

forany e <r < % We now choose 0 € (O, ‘l‘) so small that C,6#~¢ < JT. With 6 fixed, choose N > 1
large so that

C2%0~42— =172 < %.

It follows that if r > Ng,
P (Or) < Ho(r) +¢2r)}, (5-7)
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12
6 () =r—“(][ |us|2> .
D,

By integration we may deduce from (5-7) that

o2 dr (V2 dr o1 [t dr
p(r)—=7 ¢>(F)—+Z/ ¢(r)—,
r r 2a r

Oa _4a

where

where Ne <a < % This implies

1

dr ! dr
¢(F)T§C p(r)— = Co(l).

fa 6/2 r

Hence, ¢ (r) <C¢ (1) for any r € [¢, 1], and the estimate (5-6) now follows by Caccioppoli’s inequality. [

Remark 5.3. Under the stronger assumption that the defining function ¢ for Dy is C!*? for some o > 0,
we will show in Section 8 that the estimate (5-6) holds for « = 1. In particular, it follows from the
argument in Section 7 that if £.(u.) =0 in B(0, 1), then

1/2 1/2
( ][ |Vu£|2> < C( ][ |Vu€|2) (5-8)
B(0,r) B(0,1)

for any ¢ <r < 1. This is the interior Lipschitz estimate down to the scale ¢.

A function A is said to belong to VMO(RY) if the left-hand side of (5-9) goes to zero as t — 0. To
quantify this assumption we assume that

sup ][
xeR? JB(x,r)

O<r<t

A(y)—][ A‘dyﬁp(t), (5-9)
B(x,r)

where p(t) — Oast — 0.
The following corollary was essentially proved in [Avellaneda and Lin 1987] by a compactness method.

Corollary 5.4. Suppose that A satisfies (1-2)—(1-3). Also assume that A € VMO(RY). Let u, €
HY(Dy; RY) be a weak solution of Lo(ug) = 0 in Dy with u, = 0 on Ay. Then, for any o € (0, 1),

1/2
||u8||CQ(D1/2) =< Ca(f |u€|2) s (5_10)
D

where Cy, depends only on d, k1, Ky, a, and the functions t(t), p(t).

Proof. We may assume 0 < ¢ < 1 as the case of & > % is local. Since L (us(ex)) =0, it follows from the
boundary C% estimates in C! domains (see, e.g., [Auscher and Qafsaoui 2002; Byun and Wang 2004])
for the operator £; by rescaling that if ¢ € (0, 1) and 0 <r < ¢,

1/2 172
(f |ws|2) sc<r/e)“—1< |ws|2) :
D, D,
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where C depends only on d, k1, k2, o, T(¢) and p(¢). This, together with Theorem 5.2, shows that the
estimate (5-6) holds for any 0 < r < % By combining (5-6) with a similar interior estimate, we obtain

1/2
re-! ( ][ |wg|2) < Clluell2(p,) (5-11)
B(x,r)NDy 2

forany 0 <r < c and x € Dy 2. The estimate (5-10) follows from (5-11) by Campanato’s characterization
of Holder spaces. 0

The rest of this section is devoted to the boundary C“ estimates for solutions with the Neumann
boundary conditions.

Lemma 5.5. Let 0 <& <r < 1. Let u, € H'(Ds,; R?) be a weak solution of Le(ug) =0 in Dy, with
duy/0ve = 0 on Ay,. Then there exists a function w € H'(D,; R?) such that Lo(w) = 0, ow/dvyg =0

in A,, and
1/2 1/2
(][ |u€—w|2) §C(e/r>”2(][ |ug|2) : (5-12)
D, D,

where |V |lco < M, and C depends only on d, k1, k2, and M.

Proof. By rescaling we may assume » = 1. As in the proof of Lemma 5.1, there exists ¢ € [% %] such that

luell 2D ay T 1IVUell 2D\ A2) < ClluellL2(p,)-

Let ¢, be a function in R such that u, — ¢, L R in L2(D;; RY). Let v be the solution to the Neumann
problem: Lo(v) =0 in D, and dv/dvy = du./dv, on 0 D;, with v L R. It follows from Remark 2.8 that

lue — @e —vllr2(p) < llue — Pe — vll2(p,)

< el 24

e ll220p,)
12
< Ce"llucll2py)-
It is easy to see that the function w = v + ¢, satisfies the desired conditions. O

Theorem 5.6. Suppose that A = A(y) satisfies (1-2)—(1-3). Let u, be a weak solution of L. (u.) =0 in
Dy with du, /dv, = 0 on Ay, where the defining function y in Dy and Ay is C'. Then, for any o € (0, 1)

ande <r <1,
1/2 1/2
(][ |Vug|2) scar“—l(][ |Vu£|2) , (5-13)
D, D

where C depends only on d, o, k1, k2, and the function t(t).

Proof. Fix B € (o, 1). For each r € [8, %], let w = w, be the function given by Lemma 5.5. By the
boundary C# estimates in C! domains for the operator £,

1/2 172
inf <][ |w—q|2) < Cof” inf (][ |w—q|2) ,
qeRI\ J Dy, qeRI\ Jp,
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where Cy depends only on d, 8, k1, k2, and t(¢). This, together with Lemma 5.5, gives

172 1/2 1/2
inf(f |us—q|2> scmf(][ |w—q|2> +(][ |u8—w|2>
qERd Dﬁr qERd D@r D9r
1/2 172
< C6” inf (][ |w—q|2) —|—C09_d/2<][ Iug—w|2>
qeRI\ Jp, D,
1/2 172
< C6” inf <][ |u8—q|2> +C9_d/2(e/r)1/2(][ |u8|2> .
qERd Dr D2r

By replacing u, with u, — g, we obtain

P Or) < COP2p(r) + CO 2 (e/r) 2p(2r)

1/2
dr)y=r"¢ inf(][ |u8—q|2> .
q€RI\ J p,

By the integration argument used in the proof of Theorem 5.2, we may conclude that ¢ (r) < C¢ (1) for
re [8, %], which yields (5-13) by Caccioppoli’s inequality. (|

1

for any r € [8, 5], where

Remark 5.7. Under the stronger condition that the defining function for D; and A; is C'“ for some
o > 0, we will show in Section 9 that the estimate (5-13) holds for o = 1.

The following corollary was essentially proved in [Kenig et al. 2013] by a compactness method.

Corollary 5.8. Suppose that A satisfies (1-2)—(1-3). Also assume that A € VMO(R?). Let u, €
H'(Dy: RY) be a weak solution of Le(ug) =0in Dy with du./dv, =0 on Ay. Then, forany o € (0, 1),

12
luellcap, ) < Ca<][ |ue|2) : (5-14)
D

where C, depends only on d, k1, k2, ®, and the functions t(t), p(t).

Proof. As in the case of the Dirichlet boundary condition, the additional smoothness assumption A €
VMO(R?) ensures that the estimate (5-13) holds for any r € (0, %) (see, e.g., [Byun and Wang 2005]
for estimates for £1). This, together with the interior estimates, gives the estimate (5-14) by the use of
Campanato’s characterization of Holder spaces. O

6. WLP estimates in C! domains

In this section we study the uniform W7 estimates in C!' domains. Throughout the section we will
assume that A = A(y) satisfies (1-2)—(1-3), A € VMO(R?), and Q is C'. Our goal is to prove the
following two theorems.

Theorem 6.1. Suppose that A satisfies (1-2)—(1-3). Also assume that A € VMO(R?). Let 1 < p <00
and Q be a bounded C' domain in R%. Let u, € WP (Q2; R?) be a weak solution to the Dirichlet problem

Le(uy) =div(f) inQ and u, =0 onaf, (6-1)



BOUNDARY ESTIMATES IN ELLIPTIC HOMOGENIZATION 679
where f = (f) € LP(; RY*?). Then

luellwir)y < Cpll fliLr), (6-2)
where C, depends only on d, p, A, and SQ.

Theorem 6.2. Suppose that A satisfies the same conditions as in Theorem 6.1. Let 1 < p < 0o and Q2 be
a bounded C' domain in R%. Let u, € WP (Q; R?) be a weak solution to the Neumann problem

9
Lo(us) =div(f) inQ  and 8”5 ——n-f onoQ, (6-3)
Ve

where [ = (f) € LP(; R4*4Y. Assume that u, L R. Then

luellwir)y < Cpll fliLr), (6-4)
where C, depends only ond, p, A, and SQ.

Recall that a function u, is called a weak solution of (6-1) if u, € WO1 P(Q; R?) and

:B o o

aul 9 5

/af’ﬁ(x/g) fe 29 dx:—/fl."‘- LA (6-5)
Q / 8x] 8xl' Q axi

for any ¢ = (p%) € C§°(£2; R4). Similarly, u. is called a weak solution of (6-3) if u, € WP (Q; RY) and
(6-5) holds for any ¢ = (¢%) € Cgo([Rd; R?). Under the assumptions that A € VMO(R?) and Q is C!,
the existence and uniqueness of solutions of (6-1) and (6-3) are more or less well known (see [Auscher
and Qafsaoui 2002; Byun and Wang 2004; 2005] for references). The main interest here is that the
constants C in the W7 estimates (6-2) and (6-4) are independent of . We mention that for £, with
coefficients satisfying (1-3), (1-11) and the Holder continuity condition, estimates (6-2) and (6-4) were
established in [Avellaneda and Lin 1987; 1991; Shen 2008; Kenig et al. 2013]. The results were extended
to the case of almost-periodic coefficients in [Armstrong and Shen 2016]. Also, for £, with coefficients
satisfying (1-2)—(1-3) in Lipschitz domains, some partial results may be found in [Geng et al. 2012].

Theorems 6.1 and 6.2 are proved by a real-variable argument. The required weak reverse Holder
inequalities (6-6) and (6-2) for p > 2 are established by combining local estimates for £; and boundary
Holder estimates in Section 4 with the interior Lipschitz estimates, up to the scale ¢.

Lemma 6.3. Let u, € H'(B(xo, 2r); R?) be a weak solution to L, (u.) = 0 in B(xg, 2r) for some xo € R?
andr > 0. Then, forany?2 < p < 00,

1/p 1/2
(][ IVusl”) SCp(][ IVus|2> ; (6-6)
B(xo,r) B(x0,2r)

where C,, depends only on d, p, k1, k2, and the function p(t) in (5-9).

Proof. By translation and dilation we may assume that xo = 0 and » = 1. We may also assume that
O<e< Zly The case ¢ > ‘—1‘ for B(0, 1) is local, since A(x/¢) satisfies the smoothness condition (5-9)
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uniformly in e. For each y € B(0, 1), we use the local W!:? estimates for the operator £; (see, e.g.,
[Auscher and Qafsaoui 2002; Byun and Wang 2004]) and a simple blow-up argument to show that

1/p 1/2
(][ |Vug|f’> sc( ][ |wg|2> . 6-7)
B(y.e/2) B(y,e)

By the interior Lipschitz estimate, up to the scale ¢, we have

1/2 1/2
(f |w8|2) sc(][ |Vug|2) . 6-8)
B(y,e) B(y,1)

We point out that the estimate (6-8) will be proved in Section 8 with no smoothness assumption on A
(see Theorem 8.6). Hence, for any y € B(0, 1),

1/p 1/2
(f |Vus|f’> < c(f |Vug|2>
B(y,e/2) B(y,1)

< Cl[Vuellz2(0,2))- (6-9)
By covering B(0, 1) with balls of radius £/2, we may deduce (6-6) readily from (6-9). Il

Lemma 6.4. Let u, € H'(D,,; RY) be a weak solution to L.(u;) = 0 in Dy, with either u, = 0 or
dug/0ve =0 in Ay, where 0 <r < 1. Then, forany?2 < p < o0,

1/p 1/2
(][ |Vug|!’) scp(][ |wg|2) : (6-10)
D, D,

where C depends only on d, p, k1, k2, T(t) in (5-1), and p(t) in (5-9).

Proof. Note that the function rl ¥ (rx’) satisfies the condition (5-1) uniformly for O < r < 1. Thus, by
rescaling, it suffices to prove the lemma for r = 1. Using Lemma 6.3, Theorem 5.2 and Theorem 5.6, we

1/p 1/2
(][ |Vug|f’) < C<][ |wg|2)
B(y,8(y)/8) B(y,8(y)/4)

obtain

< Cal 8" Vtell 2y (6-11)
for any o € (0, 1), where y € Dy and 6(y) = dist(y, D). We now fix o € (1 — %, 1). It follows from
(6-11) that

IVuaI”dX> dy < C||Vuell?, , . (6-12)

/Dl (][B<y,s<y>/8> LD
Using the fact that §(x) ~ §(y) if y € Dy and |y — x| < %S(y), it is not hard to verify that (6-12) implies
(6-10). O

Proof of Theorems 6.1 and 6.2. By duality and a density argument it suffices to consider the case where
p>2and f=(f") € Cé (Q; R¥*4). Furthermore, by a real-variable argument, which originated in
[Caffarelli and Peral 1998] and further developed in [Shen 2005; 2007], one only needs to establish weak
reverse Holder inequalities for solutions of £, (u#.) = 0 in B(xg, r) N 2 with either u, = 0 or du,/dv, =0
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on B(xg, r) N3, where xg € Q and 0 < r < co diam(2). These inequalities are exactly those given by
Lemmas 6.3 and 6.4. We omit the details and refer the reader to [Shen 2005; 2008; Geng 2012] for details
in the case of scalar elliptic equations. (|

Remark 6.5. Suppose that A and 2 satisfy the same conditions as in Theorem 6.1. By some fairly
standard extension and duality arguments (see, e.g., [Kenig et al. 2013]), one may deduce from Theorem 6.1
that the solution of the Dirichlet problem

Le(ug)=div(h)+ F 1in Q and us=f onad2
satisfies

luellwir@y < Cp{lhlir@ + 1 Fllie@ + 1L lwvrroe )
for any 1 < p < oo, where W*?(9€2) denotes the Sobolev space on 92 of order o with exponent p.

Similarly, the solutions of the Neumann problem

g
0V,

Le(uy) =div(h)+ F in Q and =—n-h+g onodQ

with u, 1 R satisfies

luellwir@ < CplllhliLe@ + 1 FllLr@) + lgllw-1rroe)}

where W=1/P-2(3) is the dual of W/P-P'(3).

7. LP estimates in C! domains

The W7 estimates in the last section allow us to establish the Rellich-type estimates in L?, down to the
scale ¢, in C!' domains under the additional assumption that A belongs to VMO(R?).

Theorem 7.1. Suppose that A = A(y) satisfies (1-2)—(1-3). Also assume that A € VMO(R?). Let
1 < p < 00 and Q be a bounded C' domain in Re Let u, € WhP(Q; RY) be a weak solution to the
Dirichlet problem

Le(ug)=F inQ and us = f inoQ, (7-1)

where F € LP(Q; RY) and f € WP (32; RY). Then, for any ¢ <r < diam(S),

1/p
1
{;f |Vus|p} = Cp{”F”LP(Q) + ||f||W1,p(aQ)}’ (7-2)
Q,

where Q, = {x € R< : dist(x, 9K2) <r}. The constant C,, depends only on d, p, A and Q.

Theorem 7.2. Suppose that A and 2 satisfy the same conditions as in Theorem 7.1. Let 1 < p < 0o. Let
u, € WP (Q: RY) be a weak solution to the Neumann problem

Ug

Le(ug)=F inQ2 and

=g ind<2, (7-3)

Ve
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where F € LP(Q2; RY), g € LP(32; RY) and fQ F+ fasz g = 0. Also assume that u, 1. R. Then, for any
e <r < diam(R2),

1/p
1
{;/ |Vbls|p} < Co{IlFllLry +lIglron ), (7-4)
Q,

where C, depends only ond, p, A and Q2.

The proof of Theorems 7.1 and 7.2 follows a similar line of argument as for Theorems 1.1 and 1.2 by
considering

u B
we =, —uo—ex" (x/e)K, (Wne) (7-5)
J

where ug is the solution of the homogenized problem, K, is a smoothing operator defined by (2-6), and
ne € C§° (L) is a cut-off function satisfying (2-14).
Throughout this section we will assume that €2 is C ! and A satisfies (1-2)—(1-3) and (5-9).

Lemma 7.3. Let u. (¢ > 0) be the solutions of the Dirichlet problems (7-1). Let w, be defined by (7-5).
Then

lwellwirigy < CoeP{I fllwrrae) + IIF e} (7-6)
where C,, depends only ond, p, A and Q.

Proof. A direct computation shows that
B
Gl ~af aﬂ 8l'tO
£8(w8)__8_xl{[a” —aq; (X/S)][E—K (gjﬁg
3 [, up ul
N b Ks - e
+ ax,‘ { Y (X/S) <3x]' g
0 By Buo
+88_xl- (x/e)xk (X/S)— W’]e

where b (y) is defined by (2-3). Using (2-5), we obtain

d | op aug 0 Bug
8_)51-{19” (x/s)Kg(gjﬂe)} = _Eaxi { k,j(x/g) < (a’h))}

It follows that

8x.,-

Xi
9 dup
_SBXi{ o (/e )—( (En»}
8142)/
) e

N

+i{ B x/o)xl? (x o)~
gaxi x/€) X} xeaxj



BOUNDARY ESTIMATES IN ELLIPTIC HOMOGENIZATION 683

Since w, = 0 on 32, we may apply the W!-? estimate in Theorem 6.1 to obtain

lwellwir@ < C{lIVuo — Ke(Vuo)ne) ey +€lld (x/) VK (Vuo)ne)llLr )
+ellx (x/e)VK(Vuo)ne) | Lr }

< C{IIVuo — Ko (Vuo)ne) ey + ellV(Vuo)ne) e }
< C{lIIVuollLr @) + el (Vuo)nsl 2o} (7-8)

where we have used Lemmas 2.1 and 2.2 for the second and third inequalities.
We now write ug = v + w, where

v(x) = /Q Co(x —y)F(y)dy (7-9)

and ['g(x — y) denotes the matrix of fundamental solutions for the operator Ly in R4, with pole at the
origin. Note that [[v|ly2.p@ey < Cpl| FllLr (o) and

IVullLres,) < CpllFllLr ),
where S, = {x € R? : dist(x, 82) =1} for ¢ small (see the proof of Theorem 2.6). It follows that
IVollLeu,) + el V0llrg) < Ce/PIFllLr)- (7-10)
Finally, we observe that Ly(w) = 0 in €2 and
lwllwirao < I1f lwirea) + Ilwiree < C{ILf lwiroo + I FliL @}

It follows from the solvability of the L regularity problem for the operator £y in C! domain €2, which
follows from [Fabes et al. 1978; Lewis et al. 1993; Hofmann et al. 2015], that

I(Vw)*ILree) < C{ILflwir@e + 1F e -

Also, using the interior estimate

C 1/p
V2w(x)] < —(][ |Vw|f’> ,
() \JB(x.,5(x)/8)

where & (x) = dist(x, 0€2), we may show that

/ |V2w|pdx§C/ IVw@)P[8()] 7 dx
Q\ Q3. Q\ 2

< Ce" PNV o0y = Ce {1 0+ IF 170 )
As a result, we obtain
IVwlLr @) + Il (V2WINellLr @) < CeP{Il fllwrraey + I FllLr@)}-
This, together with the estimate (7-10) for v, gives
IVuollr (@i +ell(Vuo)nellr@) < Ce/P{I fllwiraa) + I Fllee ) (7-11)

which, in view of (7-8), completes the proof. O
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Proof of Theorem 7.1. Without loss of generality we may assume that

I fllwirao) + 1 FllLr@ =1
Let ¢ <r < diam(£2). It follows from Lemma 7.3 that
VuellLr @,
< IVuollzr(@,) + ClIVx (x/&) Ke(Vuo)n) e, + Cellx (x /) VK (Vuo)ne)ll e, + Ce'/P
< C|[VuollLr(@y) + CellV((Vuo)ne) | Loy + Ce'/P
< C||VugllLr(es,) +Ce"'?, (7-12)
where we have used Lemma 2.1 for the second inequality and (7-11) for the third. An inspection of the

proof of Lemma 7.3 shows that
IVuollLra,) < Cr'/?,

which, in view of (7-12), gives
IVuellLe,) < Cr'/?. O
To prove Theorem 7.2, we need the following lemma.

Lemma 7.4. Let u; (¢ > 0) be solutions of the Neumann problem (7-3). Also assume that us, ug L R.
Let w be defined by (77-5). Then

lwellwirg) < Cpe' P {lgllr@e) + IIFlr@)}, (7-13)
where C,, depends only on d, p, A and Q2.
Proof. The proof is similar to that of Lemma 7.3. Let ¢, be a function in R such that w, — ¢, L. R in
L?(2; RY). It follows from the formula (7-7) and the W' estimates in Theorem 6.2 that

lwe — @ellwiriy < CLIVUOllLr (@) + el (VZuo)ne Nl 20 }- (7-14)

To estimate the right-hand side of (7-14), we proceed as in the proof of Lemma 7.3, but use the nontangential
maximal function estimate [Fabes et al. 1978; Lewis et al. 1993; Hofmann et al. 2015]
ow

Vw)* p <C
I(Vw) [ Lrpo) < Havo

LP(BQ)’
where L£o(w) =0in Q and w L R in L2(22; RY). As a result, we obtain
lwe = ellwrrie) < Ce/Plglrae) + 1 FllLr@]- (7-15)
Finally, note that since u, —ug L R,
@ellwir) < Cellx (x/e)Ke (Vuo)ne)llLr )
< Cel|VugllLr)-

This, together with (7-15), yields the estimate (7-13). O
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Proof of Theorem 7.2. The estimate (7-4) follows from (7-13), as in the case of the Dirichlet conditions.
We omit the details. O

Remark 7.5. Under certain smoothness condition on A, such as Holder continuity, it is possible to solve
the L? Dirichlet, regularity, and Neumann problems for £;(x) =0 in C' domains for any 1 < p < oo.
By the same localization procedure and blow-up argument as in Remark 3.1, this implies

dug |P C
/ \Vu,|” do gcf 8”8 da+—/ Vi |P dx,
v 3
IQ aq| OVe Cszcg (7-16)
/ |Vug|Pdo < C/ |Veantte|P do + —/ |[Vu,|P dx,
a0 a0 € JQu
where L. (u.) = 0 in 2. It then follows from Theorems 7.1 and 7.2 that
9 p
/ \Vu.|” do < c/ Yol do (7-17)
i1o) 9| Ove
ifu; L 'R, and
/ |Vug|P do < C/ |Vianute|P do +C/ lug|? do. (7-18)
a0 aQ a0

As in the case p = 2, by the method of layer potentials, estimates (7-17)—(7-18) lead to the uniform
solvability of the L? Dirichlet, regularity, and Neumann problems in C' domains. The details will be
given elsewhere.

8. Lipschitz estimates in C'** domains, part I

In this section we investigate the Lipschitz estimates, down to the scale &, in C'** domains with Dirichlet
boundary conditions and give the proof of Theorem 1.4. The Neumann boundary conditions will be treated
in the next section. The proof of Theorems 1.4 and 1.5 is based on a general scheme for establishing
Lipschitz estimates at large scales in homogenization, recently formulated in [Armstrong and Smart 2016]
for interior estimates. Our approach to the boundary Lipschitz estimates in C'** domains is similar to
that used in [Armstrong and Shen 2016] for elliptic systems with almost-periodic coefficients. We remark
that Lemma 8.5, which is a continuous version of Lemma 3.1 in [Armstrong and Shen 2016] and whose
proof is simpler, makes the argument more transparent.
Let D, and A, be defined by (1-16) with ¢ (0) =0 and || V{/||e0c < M.

Lemma 8.1. Let u, € H'(Dy; R?) be a weak solution of Lo(ug) = F in Dy withu, = f on Ay. Then
there exists v e H'(Dy; RY) such that Lo(v) = F in Dy, v = fon Ay, and

lue = vliz2pyy < Ce*{lluellr2ip, + 1 F 2y + I lzean + 1V flean ), (81
where C depends only on d, k1, k2, and M.
Proof. By Caccioppoli’s inequality,

/ |wg|250{/ |u8|2+/ |F|2+||f||%oo<A2>+||vtanf||%oo<A2>}.
D3> D, D,
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By the coarea formula this implies that there exists some ¢ € [% %] such that

/ (|ws|2+|ug|2>50{f |u8|2+/ |F|2+||f||im2)+||me||im2)}.
D\ Ay Dy D,

Let v be the weak solution to the Dirichlet problem,
Lo(w)=F in Dy and v=u, ondD;.
It follows from Remark 2.8 that

lue = vl 2pyy < llue —vl2p,)
1/2
< Ce"{lluellgopy + 1 F 2o, )
1/2
<Cs {lell 22(pa) + 1 F 22Dy + 11 F o (a0) + 1 Vian f ll L an) }

where C depends only on d, k1, k», and M. O

Lemma 8.2. Let e <r < 1. Let u, € H (D»,; RY) be a weak solution of Le(ug) = F in Dy withu, = f
on Ay, Then there exists v € H' (D, ; [Rd) such that Lo(v) = F in D, v= f on A,, and

1/2
(][ |u8—v|2)
D,
1/2 1/2
§C<s/r>”2{(][ |ug|2> +r2<][ |F|2) +||f||Loo<A2,)+r||vtanf||Loo<A2,)}, (8-2)
D», D,

where C depends only on d, k1, k2, and M.
Proof. This follows from Lemma 8.1 by rescaling. g

In the rest of this section we will assume that the defining function v in the definition of D, and A, is
C for some « € (0, 1) with ¥ (0) = 0 and IV cora-1y < M.

Lemma 8.3. Let v be a solution of Ly(v) = F in D, withv = f on A,. For 0 <t <r, define

| 12 1/p
G(r;v)== inf lv—Mx—q|*) 417 |FI7 ) +I1f = Mx —qllzea,)
t MeRddxd D, D,

+ 1l Vian(f — Mx = @)l (a + 1 Vian (f — Mx — Q)Ilcovom,)}, (8-3)

where p > d and o € (0, @). Then there exists 6 € (O, Alf), depending only on d, p, k1, k3, 0, o and M,
such that

G(0r; v) < $G(r; v). (8-4)

Proof. The lemma follows from the boundary C'® estimates for elasticity systems with constant
coefficients. We refer the reader to [Armstrong and Shen 2016, Lemma 7.1] for the case Lo(v) = 0. The
argument for the general case F' € L? with p > d is the same. O
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Lemma 84. Let0 < e < % Let ug be a solution of L¢(us) = F in Dy withu, = f on Ay. Define

- ) 172 ) 1/p
H(r)=- inf lug = Mx —q| +r IFIP) +1f —Mx —qlle~a,)
r MeR"dX‘f D, D,

q€R
+ 7| Vian (f = Mx — @)l (a,) + 777 Vian(f — Mx — 61)||c°-”(Ar)} (8-5)
and
1 1/2 1/p
®(r) = - inf {(][ Ius—qlz) +r2<][ |F|p> +IIf—qllLoo(Az,>+r||Vtanf||Loc(A2,)}, (8-6)
r qERd Dy Dy,

where p > d and o € (0, @). Then
] e\1/2
H(Or) < LH(r) + c(;) ®(2r) (8-7)

foranyr € [8, %], where 0 € (0, }‘) is given by Lemma 8.3.
Proof. Fix r € [8, %] Let v be a solution of Ly(v) = F in D, with v = f on A,. Observe that

1 12
H(9r)§—<][ |u8—v|2> +G(6r; v)
Or Dy,

1/2
(][ |u8—v|2) +3G(r; v)
Dﬁr
1/2
(][ |us—v|2> +LHG),
D,

where we have used Lemma 8.3 for the second inequality. This, together with Lemma 8.2, gives

/21 ) 172 , , 12
Hen < 3H) +0(%) —{(][ |u£|) +r (][ |F|) +||f||Loo<A2,)+r||vmf||Loo<A2,)}.
r r D», D,

Since H (r) remains invariant if we subtract a constant from u,, the inequality (8-7) follows. O

IA
Sl

IA

S0

Lemma 8.5. Let H(r) and h(r) be two nonnegative continuous functions on the interval (0, 1]. Let
O<e< %. Suppose that there exists a constant Cy such that

max H(t) < CoH(Q2r),
r<t<2r (8-8)
max |h(t) —h(s)| < CoHQ2r)

r<t,s<2r
foranyr € [8, %] We further assume that
HOr) < $H(r) + Cow(e/r){H (2r) + h(2r)} (8-9)

foranyr e [8, %], where 0 € (0, i) and w is a nonnegative increasing function [0, 1] such that v (0) =0

1
/ @ 4 < 0. (8-10)
0 t

and
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Then
grgflfl{H(r) +h(r)} < C{H(1) +h(1)},

where C depends only on Cy, 6, and w.

Proof. Tt follows from (8-8) that
h(r) <hQ@2r)+CoH(2r)

forany e <r < % Hence,

/1/2 M 4y < /1/2 "0 gy c /1/2 HCD o
a r N a r ‘ a r

1
:/ @dr Hr) dr,
2a T r

2a

where ¢ <a < }1. This implies

/za@dr /lwdwc HO
a 172

r r 2a r

VH(r)
§C{h(1)+H(1)}+C/ d
2a

which, by (8-8), gives

2a ]
fOI' any a e 8, _1|.

Next, we use (8-9) and (8-12) to obtain

1
h(a) < C{H(2a) chy+r0) s [ 2O dr}

H@Or) < %H(r) 4+ Cw(e/r){h(1)+ H(1)} +Ca)(s/r)/

It follows that
0 1
HVMHSL/’H“)
r 2 r

1

dr + Colh(1) + H(D)} + c/

oe

w(s/r){

r

where o > 1 and we have used the condition (8-10). Using (8-10) and the observation that

1 H([) 1 1/a a)(s) .
f a)(s/r){ —dt } . :/ H(t){// . }— < @4C)” / H(t)_
aE r ae t

if @ > ap(w), we see that

THO) 1/1 H(r) VH(r)
r -2 r

dr+ Gl +H) + [

led

VH()

(8-11)

(8-12)
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It follows that

1
/ B 4 < ciny+ HOY), (8-13)

,
which, together with (8-8) and (8-12), yields the estimate (8-11). Il
Proof of Theorem 1.4. We may assume that 0 < ¢ < %. Let u, be a solution of L. (u,) = F in D; with
u, = f on Ay, where F € LP(Dy) for some p > d and f € C"?(A;) for some ¢ € (0, «). For r € (0, 1),

we define the function H (r) by (8-5). It is easy to see that H(¢t) < CH(2r) if t € (r, 2r).
Next, we let h(r) = |M, |, where M, is the d x d matrix such that

. , 172 ) 1/p
H(r)= - inf lug — Myx —q| +r [FI7) 0 f —Mrx —qllLea,
I geRrd D, D,

+ 7 Vean(f — Mrx — @ llze(a,) + 77 Vian (f — Myx — Q)”CO-“(A,)}-

Let ¢, s € [r, 2r]. Using

c , 12
M, — M| < = in[{d(][ (M, = My)x =g )
q€ D,

c 12 - 1/2
< — inf (][ |u8—Mtx—q|2) + — inf (][ |u8—M‘Yx—q|2>
I qeri\Jp, § geR!\ Jp,

=C{H()+ H(s)}

<CHQ@r),
we obtain
max_|h(t) —h(s)| < CH(Q2r).

r<t,s<2r

Furthermore, if ® is defined by (8-6), then
O(r) < HQ2r)+ h(2r).
In view of Lemma 8.4 this gives
HOr) < 1H(r)+ Co(s/r){HQ2r)+h(2r)}
forr e [8, %], where w(7) = t'/2. Thus the functions H(r) and A(r) satisfy the conditions (8-8), (8-9)

and (8-10) in Lemma 8.5. Consequently, we obtain that for r € [e, 1],

| 1/2
inf —(][ |us—q|2) <C{H(r)+h(r)}
Dr

geRd ¥

= C{H()+h(D)}

12
< C{(][ |u€|2) + 1 FllLrpy) + ”f”Cl“"(Al)}s
D

which, together with Caccioppoli’s inequality, gives the estimate (1-18). O
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The argument used in this section may be used to prove the interior Lipschitz estimates, down to the
scale ¢.

Theorem 8.6. Suppose that A satisfies (1-2)—(1-3). Let u, € H'(B(xg, R); R be a weak solution of
Le(ue) = F in B(xg, R) for some xy € R¢ and R > 0, where F € L?(B(xo, R): Rd)for some p > d. Then,

fore <r <R,
1/2 1/2 1/p
(][ |Vug|2) EC:(][ |wg|2) +R(][ |F|”) } (8-14)
B(xo,r) B(xo,R) B(xo,R)

where C depends only on d, k1, k3, and p.

9. Lipschitz estimates in C** domains, part IT

In this section we study the Lipschitz estimate, down to the scale e, with Neumann boundary conditions,
and give the proof of Theorem 1.5. Throughout this section we will assume that the defining function ¥
in D, and A, is C"* for some « € (0, 1) and VY| coma-1y < M.

Lemma 9.1. Let Q be a bounded Lipschitz domain. Let u, € H'(Q; R?) be a weak solution to the
Neumann problem: L (u.) = F in Q and du./0v, = g on 092. Then there exists w € HY(Q; RY) such
that Lo(w) = F in Q, dw/dvy = g on 02, and

lue —wllz2@) < Ce'*{lgll2 o0 + I1Fll 2@ }- (9-1)

Proof. Choose ¢, € R such that u, — ¢, L R in L*(Q; R?). Let ug be the weak solution to the Neumann
problem: Ly(up) = F in 2 and duy/dvy = g on 92 with the property ug L R. It follows from Remark 2.8
that

lue — de —uoll 2y < Ce'*{lgll 250 + 1 Fll 2 }-
By letting w = ug + ¢ this gives (9-1). Il

Lemma 9.2. Let ¢ <r < 1. Let u, € H'(Da,; R?) be a weak solution of Le(ug) = F in Dy, with
oug/0v, = g on Ay,. Then there exists w € H'(D,; R?) such that Lo(w) = F in D,, ow/dvg =g on A,,

and
12 12 12
(][ |ug—w|2> sC(e/r)W{(][ |ug|2) +r2(][ |F|2) +r||g||Loo<A2,)}, 9-2)
D, D, D»;,

where C depends only on d, k1, k3, and M.

Proof. By rescaling we may assume r = 1. As in the case of Dirichlet conditions in Lemma 8.2, the
desired estimate follows from Lemma 9.1 by using the coarea formula and the Caccioppoli inequality

f |Vug|250{/ |us|2+/ |F|2+||g||%oo(A2>}, 9-3)
D3> D, D,

where L.(u.) = F in D, and du./dv, = g on Aj. O
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Lemma 9.3. Let w be a solution of Lo(w) = F in D, with 0w/dvy = g on A,. For 0 <t <r, define

1 1/2 1/p
[(t;w)== inf lw—Mx—q|*| +1¢° |F|P
4 MeRddX‘i D, D,

qeR

i(w—Mx)

140
+1t
31)0

Le(Ap)

+1t (9-4)

)
—(w— Mx)
avo

CO*”(A:)}

where p > d and o € (0, @). Then there exists 0 € (0, %), depending only on d, p, k1, k3, 0, o and M,
such that
1(0r; w) < 31 (r; w). (9-5)

Proof. By rescaling we may assume » = 1. The lemma then follows from the boundary C' estimates
with Neumann boundary conditions in C!*% domains for elasticity systems with constant coefficients. [

Lemma 94. Let0 < ¢ < % Let ug be a solution of L:(u.) = F in Dy with du./0v, = g on A1, where
F e LP(Dy; Rd)for some p >d and g € C? (Ay; [Rd)for some o € (0, «). Define

] 1/2 1/p
J(r)=~ inf {(][ |u8—Mx—q|2> +r2<][ |F|P>
rMERddXd Dr Dr

R

qe
9 9
+rl|lg——(Mx) 4 plto g— —(Mx) } 9.6
81)0 LO(A,) al)() COo(A,) ( - )
and
| 12 1/p
Y(r) == inf{(][ |u5—q|2> +r2(][ |F|p) +r||g||Loo<A2,>}. (9-7)
r qERd D», D»,
Then
J(Or) < 3J(r)+C(e/r)'/*W(2r) (9-8)

foranyr € [8, %] where 0 € (0, }‘) is given by Lemma 9.3.
Proof. Fix r € [8, %] Let w be the function in H'(D,; RY) given by Lemma 9.2. Then

| 1/2
J(Or) < I1(6r; w)+—(][ Iug—w|2>
or Do,

| 1/2
<Ly 1 o2
_zl(r,w)+9r(]€)erlus wl)

C 1/2
<3J(r)+ —(][ |ute —w|2> :
r Dr

where we have used Lemma 9.3 for the second inequality. In view of Lemma 9.2, this gives

C 1/2 1/p
J(er)séf(rw—{(][ |ug|2) +r2<][ |F|P) +r||g||Lec(A2,>},
r Dy, Ds,

from which the estimate (9-8) follows, as the function J(r) is invariant if we replace u, by u, — g for any
g €RY O



692 ZHONGWEI SHEN

Proof of Theorem 1.5. With Lemma 9.4 at our disposal, Theorem 1.5 follows from Lemma 8.5, as in the
case of Dirichlet boundary conditions. We omit the details. (|

As we indicate in the Introduction, under additional smoothness conditions, the full Lipschitz estimates,
uniform in &, follow from Theorem 1.4, Theorem 1.5, and local Lipschitz estimates by a blow-up argument.

Corollary 9.5. Suppose that A satisfies (1-2)—(1-3). Also assume that A is Holder continuous. Let
u, € HY(B(0, 1); R?) be a weak solution of Lo(us) = F in B(O, 1), where F € L?(B(0, 1); Rd)for some
p>d. Then

IVuellL=o.1/2) < Cp{lluelli2epo.1y) + 1 FllLeo.1y ), 9-9)

where C, depends only on d, p and A.

Corollary 9.6. Suppose that A satisfies (1-2)—(1-3). Also assume that A is Holder continuous. Let
u, € HY(Dy; RY) be a weak solution of L(u,) = F in Dy with u, = f on Ay, where the defining
function  in Dy and Ay is C'* with IV |l co(ra-1y < M for some a > 0. Then

IVuell Lo, < C{luellz2py + 1 F ey + 1L flcrean ) (9-10)
where p > d, o € (0, @), and C depends only ond, p,o, A, @ and M.

Corollary 9.7. Suppose that A, D1 and A satisfy the same conditions as in Corollary 9.6. Let u, €
H'(Dy: RY) be a weak solution of L(ug) = F in Dy with du,/dv, = g on Ay. Then

Vel ) < C{lluell2my) + 1 FlliLewn + 1gllcean ) (9-11)
where p > d, o € (0, ®), and C depends only ond, p,o, A, a and M.

As we mentioned in Introduction, for £, with coefficients satisfying (1-11), (1-3) and the Holder
continuity condition, estimates (9-9) and (9-10) were proved in [Avellaneda and Lin 1987], while (9-11)
was established in [Kenig et al. 2013; Armstrong and Shen 2016].
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