Download this article
 Download this article For screen
For printing
Recent Issues

Volume 18, 1 issue

Volume 17, 10 issues

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
Conformally Euclidean metrics on $\mathbb R^n$ with arbitrary total $Q$-curvature

Ali Hyder

Vol. 10 (2017), No. 3, 635–652
Abstract

We study the existence of solution to the problem

(Δ)n2u = Qenu in n ,κ :=nQenu dx < ,

where Q 0, κ(0,) and n 3. Using ODE techniques, Martinazzi (for n = 6) and Huang and Ye (for n = 4m + 2) proved the existence of a solution to the above problem with Q  constant > 0 and for every κ (0,). We extend these results in every dimension n 5, thus completely answering the problem opened by Martinazzi. Our approach also extends to the case in which Q is nonconstant, and under some decay assumptions on Q we can also treat the cases n = 3 and n = 4.

Keywords
$Q$-curvature, nonlocal equation, conformal geometry
Mathematical Subject Classification 2010
Primary: 35G20, 35R11, 53A30
Milestones
Received: 5 August 2016
Revised: 8 November 2016
Accepted: 22 January 2017
Published: 17 April 2017
Authors
Ali Hyder
Departement Mathematik und Informatik
Universität Basel
CH-4051 Basel
Switzerland