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As a starting point for studying the long-time behavior of the 3-dimensional water waves system in the
flat bottom setting, we try to improve the understanding of the Dirichlet–Neumann operator in this set-up.
As an application, we study the 3-dimensional gravity waves system and derive a new energy estimate of
L2�L1 type, which has good structure in theL1-type space. This has been used in our Ph.D. thesis (2016)
to prove the global regularity of the 3-dimensional gravity waves system for suitably small initial data.
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1. Introduction

1A. The full water waves system above a flat bottom. We are interested in the long-time behavior of the
3-dimensional water waves system for suitably small initial data in the flat-bottom setting.

The water waves system describes the evolution of an inviscid incompressible fluid with constant
density (e.g., water) inside a time-dependent region �.t/, which has a free interface �.t/ and a fixed flat
bottom †. Above the domain �.t/, there is a vacuum.

Without loss of generality, we normalize the depth of �.t/ to be 1. In the Eulerian coordinate system,
we can represent the domain �.t/, the interface �.t/ and the bottom † as follows:

�.t/ WD f.x; y/ W x 2 R2; �1� y � h.t; x/g;

�.t/ WD f.x; y/ W x 2 R2; y D h.t; x/g; † WD f.x; y/ W x 2 R2; y D�1g:

We remark that, for the case we are considering, the size of h.t; � / will be small for all time.
We assume that the velocity field is irrotational. The evolution of fluid is subject to the gravity effect

or the surface tension effect. We can describe the evolution of fluid by the Euler equation as�
@tuCu � ruD�rp�g.0; 0; 1/;

r �uD 0; r �uD 0; u.0/D u0;
(1-1)
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where g denotes the constant of the gravity effect.
Moreover, we have the boundary conditions8<:

u � EnD 0 on †;
P D �H.h/ on �.t/;
@t Cu � r tangents to

S
t �.t/ on �.t/;

(1-2)

where � denotes the surface tension coefficient and H.h/ denotes the mean curvature of the interface,
which is given by

H.h/Dr �

�
rhp

1Cjrhj2

�
:

The first boundary condition in (1-2) means that the fluid cannot go through the fixed bottom. The
second boundary condition in (1-2) comes from the Young–Laplace equation for the pressure. The third
boundary condition in (1-2) represents the kinematic boundary condition, which says that the free interface
moves with the normal component of the velocity.

Recall that the velocity field is irrotational. Hence, we can represent it in terms of a velocity potential �.
We use  to denote the restriction of the velocity potential to the boundary �.t/, i.e.,  .t; x/ WD
�.t; x; h.t; x//. From the incompressible condition and the boundary conditions, we can derive the
following Laplace equation with two boundary conditions, Neumann-type on the bottom and Dirichlet-
type on the interface:

.�xC @
2
y/� D 0;

@�

@En

ˇ̌̌̌
†

D 0; �j�.t/ D  : (1-3)

Hence, we can reduce (e.g., see [Zakharov 1968]) the motion of fluid inside the water region �.t/ to
the evolution of the height h and the restricted velocity potential  on the interface �.t/:8<:@thDG.h/ ;@t D�ghC �H.h/�

1
2
jr j2C

.G.h/ Crh � r /2

2.1Cjrhj2/
;

(1-4)

where G.h/ D
p
1Cjrhj2N .h/ and N .h/ is the Dirichlet–Neumann operator on the interface.

The system (1-4) has the conservation law

H
�
h.t/;  .t/

�
WD

�Z
1
2
 .t/G.h.t// .t/C 1

2
gjh.t/j2C

� jrh.t/j2

1C
p
1Cjrh.t/j2

�
DH

�
h.0/;  .0/

�
:

Intuitively speaking, after diagonalizing the system (1-4), we find ourselves dealing with the following
type of quasilinear dispersive equation:

.@t C i Qƒ/uDN .u;ru/; QƒD
p
jrj tanh.jrj/.gC � jrj2/; uD hC i Qƒ�1jrj tanh jrj ; (1-5)

u W Rt �R2x! C: (1-6)

Readers can temporarily take (1-5) for granted. It will be much clearer after we obtain the linear term of
the Dirichlet–Neumann operator, which is jrj tanhjrj , in Section 3.
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1B. Motivation and the main result of this paper. Note that the best decay rate that one can expect for
a 2-dimensional dispersive equation is 1=t , which is critical in establishing the global regularity for small
initial data.

For a 2-dimensional nonlinear dispersive equation, generally speaking, it is crucial to know what the
quadratic terms are when studying the long-time behavior of the solution. Unfortunately, to the best of
our knowledge, there is no previous work that addresses this issue for the water waves system in the
flat-bottom setting. It motivated us to study the problem in this paper.

Identifying the quadratic terms requires a more careful analysis of the Dirichlet–Neumann operator in
the flat-bottom setting. Note that the water waves system in the Eulerian coordinate formulation (1-4) is
dimensionless. Since we don’t want to limit our scope to the 3-dimensional setting, in this paper, we will
identify structures inside the Dirichlet–Neumann operator as much as we can.

We summarize and explain several important properties of the Dirichlet–Neumann operator here to
help readers understand the discussion of it in this paper. These properties will play important roles in the
study of the long-time behavior of the water waves system.

(i) Unlike the infinite-depth setting, in the flat-bottom setting, we do not have the null structure in the
low-frequency part. More precisely, if the frequencies of two inputs are 1 and 0 respectively, then the size
of the symbol is 1 (flat-bottom setting) instead of 0 (infinite-depth setting).

We remark that the principal symbol of the Dirichlet–Neumann operator in the flat-bottom setting
is still the same as in the infinite-depth setting. Intuitively speaking, the high-frequency parts of the
Dirichlet–Neumann operator in the two settings are almost the same.

(ii) We give the explicit formula for the quadratic terms of the Dirichlet–Neumann operator, which
provides the first step in studying the long-time behavior of (1-5).

(iii) We formulate the cubic and higher-order terms of the Dirichlet–Neumann operator in a fixed-
point-type formulation, which provides a good way to control the cubic and higher-order terms over
time.

As a starting point and also as an example, we study a specific setting of the water waves system (1-4),
which is the gravity water waves system. More precisely, we consider the gravity effect and neglect
the surface tension effect. After normalizing the gravity effect constant g to be 1, the system (1-4) is
reduced to 8<:@thDG.h/ ;@t D�h�

1
2
jr j2C

.G.h/ Crh � r /2

2.1Cjrhj2/
:

(1-7)

Correspondingly, the diagonalized equation (1-5) is reduced to the quasilinear dispersive equation

.@t C iƒ/uDN .u;ru/; ƒD
p
jrj tanh jrj; uD hC iƒ : (1-8)

For the water waves system in the flat-bottom setting, a typical issue is that the phases are highly degen-
erate at the low-frequency part. For example, we consider a phase associated with a quadratic term of (1-8),

ƒ.j�j/�ƒ.j���j/Cƒ.j�j/� .j�j� j���jC j�j/� 1
6
.j�j3�j���j3Cj�j3/; j�j � j�j � j���j � 1:
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When � and �� are in the same direction, the above phase is of size j�j2j�j, which is highly degenerate.
Because of this issue, generally speaking, there is no hope to prove the sharp 1=t decay rate of the
nonlinear solution over time. As a result, a rough energy estimate is not sufficient to control the growth
of energy in the long run. However, it turns out that there is a relatively simple way to control the growth
of energy. It relies on two observations about the system (1-7):

(i) We can derive a new energy estimate of L2�L1 type after carefully analyzing the structures inside
the quadratic terms in (1-7). The input inside the quadratic terms is, roughly speaking, not put in
L1 but rather in a weaker L1-type space, which has derivatives in front. See (1-12).

(ii) The low-frequency parts of the derivatives compensate for the decay rate of the solution of (1-7).
We can prove that the solution with some derivatives in front decays sharply, despite the fact that
the solution itself may not have the sharp decay rate. The proof of this fact involves a very delicate
Fourier analysis. Interested readers are referred to [Wang 2016] for more details.

Before stating our main result, we define the function spaces

kf k zW 
 WD

X
k�0;k2Z

2
kkPkf kL1 CkP�0f kL1 ; (1-9)

kf k yW 
;˛ WD

X
k2Z

.2˛kC 2
k/kPkf kL1 ; 0� ˛ � 
; kf k yW 
 WD kf k yW 
;0 : (1-10)

Theorem 1.1. Let 0< ı < c, ˛ 2 .0; 1�, and N0 � 6, where c is some sufficiently small constant. If the
initial data .h0; ƒ 0/ 2HN0C1=2.R2/�HN0.R2/ satisfies the smallness condition

k.h0; ƒ 0/k zW 4 � ı; (1-11)

then there exists T > 0 such that the system (1-7) has the unique solution

.h;ƒ / 2 C 0
�
Œ0; T �IHN0.R2/�HN0.R2/

�
:

Moreover, we have a new type of energy estimate in the time interval of existence:

d

dt
EN0.t/.N0

�
k.h;ƒ /.t/k yW 4;˛ Ck.h;ƒ /.t/k

2
yW 4

�
EN0.t/; (1-12)

where the energy EN0.t/ is defined in (5-3). The size of energy is comparable to k.h;ƒ /.t/k2
HN0

.

Remark 1.2. Note that smallness condition is not assumed in [Alazard, Burq and Zuily 2011; 2014a;
2014b; Lannes 2005] to derive the local wellposedness. For the purpose of obtaining a global solution,
we impose the smallness condition (1-11) to derive our desired estimate (1-12), which is the first step to
obtaining global existence for small initial data.

In [Wang 2016], based on the results we obtained in this paper, we show that the solution of the
system (1-7) exists globally and scatters to a linear solution. We will study the long-time behavior of the
water waves system (1-4) in other settings in the future. For example, do we still have global solutions if
only the surface tension is effective or both the gravity and the surface tension are effective? We expect
that the results we obtained in this paper will be very helpful to the future study of the water waves system
in the flat-bottom setting.
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1C. Previous results. To be concise, we mainly discuss work on the local behavior of the water waves
system in this subsection. For a more detailed discussion on the long-time behavior, please refer to the
introduction of [Wang 2016].

Starting with [Nalimov 1974] and [Yosihara 1982], there has been a considerable amount of work on
the local theory of the water waves system. In the framework of Sobolev spaces and without smallness
assumptions on the initial data, the local wellposedness was first obtained by Wu [1997; 1999] for the
gravity waves system. The local wellposedness was also obtained when the surface tension is effective by
Beyer and Günther [1998]. Later, different methods were developed and many important results were
obtained to improve our understanding of the local behavior of the water waves system. Among them, we
mention [Christodoulou and Lindblad 2000; Ambrose and Masmoudi 2005; Lannes 2005; Shatah and
Zeng 2008; Coutand and Shkoller 2007; Alazard, Burq and Zuily 2011; 2014a; 2014b].

Roughly speaking, the local existence for the water waves system (1-4) holds even when the initial
interface has an unbounded curvature and the bottom is very rough. A fixed-length separation between
the interface and the bottom is sufficient. See [Alazard, Burq and Zuily 2011; 2014a; 2014b; Lannes
2005] for more details and more precise descriptions.

1D. Main ideas and the outline of this paper. To prove our main theorem, we have to pay attention to
both the low- and high-frequency parts.

For the high-frequency part, due to the quasilinear nature of the gravity waves system (1-7), we have
to get around the difficulty of losing one derivative. Thanks to [Lannes 2005; Alazard and Métivier 2009;
Alazard, Burq and Zuily 2011; 2014a; 2014b], we can utilize the paralinearization method to get around
the potential loss of one derivative. However, for their purposes, only the high-frequency part has been
carefully studied in their works. In this paper, we will do the paralinearization process and pay special
attention to the low-frequency part at the same time.

For the low-frequency part, more careful estimates of the Dirichlet–Neumann operator are essential
since it is not straightforward to see the fact that we can gain ˛ derivatives for input in yW 4;˛ . For example,
for the quadratic term rh � r of the Dirichlet–Neumann operator, it is problematic to gain ˛ derivatives
when  has smaller frequency because the total number of derivatives of  in (1-12) is 1C ˛ in the
low-frequency part when the input  of the quadratic terms is in L1.

To conclude the argument, we will use the hidden structure inside the system (1-7) for different scenarios.
Without describing too many details, we give two examples as follows to explain the main ideas:

(i) When  has a smaller frequency inside rh � r , we can use the hidden symmetry to move one
derivative from rh to r during the energy estimate; hence we have two derivatives in total for  .

(ii) For some terms, e.g., the good remainder term of the paralinearization process, we can lower their
regularities to L2. Hence, we can put r in L2 and put rh in L1; as a result the desired estimate
(1-12) also holds for this case.

Outline: In Section 2, we introduce notation and give a quick summary of paradifferential calculus. In
Section 3, we study various properties of the Dirichlet–Neumann operator. In Section 4, we use the
paralinearization method to show the good structures inside the system (1-7), which help us find good
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substitution variables. In Section 5, we prove the new energy estimate (1-12) by using the symmetries
inside the equations satisfied by the good substitution variables. In the Appendix, we calculate explicitly
the quadratic terms of good remainder terms. This is intended to help readers understand the fact that we
can gain ˛ derivatives in (1-12) for an input of quadratic terms, which lies in the L1-type space.

2. Preliminaries

2A. Notation. For any two numbers A and B , we use A.B and B &A to denote A�CB , where C is
an absolute constant. We use A.� B to denote A� C�B , where the constant C� depends on �. For an
integer k 2 Z, we use kC to denote maxfk; 0g and use k� to denote minfk; 0g.

Throughout this paper, we will abuse the notation ofƒ. When there is no lower script associated withƒ,
we let ƒ WD

p
tanh.jrj/jrj, which is the linear operator associated with the system (1-8). For p 2 NC,

we use ƒp.N / to denote the p-th order terms of a nonlinearity N when a Taylor expansion for the
nonlinearity N is available. For example, ƒ2ŒN � denotes the quadratic term of N. We also use ƒ�pŒN �

to denote the p-th and higher-order terms. More precisely, ƒ�pŒN � WD
P
q�p ƒqŒN �. In this paper, the

Taylor expansion and ƒpŒ � � are in terms of h and  when there is no special annotation.
We fix an even smooth function Q W R! Œ0; 1�, which is supported in

�
�
3
2
; 3
2

�
and is equal to 1 in�

�
5
4
; 5
4

�
. For any k 2 Z, define

 k.x/ WD Q .x=2
k/� Q .x=2k�1/;  �k.x/ WD Q .x=2

k/;  �k.x/ WD 1� �k�1.x/:

Denote the projection operatorsPk ,P�k andP�k by the Fourier multipliers k , �k and �k respectively.
For a well-defined function f , we will also use the notation fk to abbreviate Pkf .

The Fourier transform is defined as

F.f /.�/D
Z

R2
e�ix��f .x/ dx:

For two well-defined functions f and g and a bilinear form Q.f; g/, we will use the convention that the
symbol q. � ; � / of Q. � ; � / is defined in the following sense throughout this paper:

F ŒQ.f; g/�.�/D
1

4�2

Z
R2

Of .� � �/ Og.�/q.� � �; �/ d�: (2-1)

Meanwhile, for a trilinear form C.f; g; h/, its symbol c. � ; � ; � / is defined in the following sense:

F ŒC.f; g; h/�.�/D
1

16�4

Z
R2

Z
R2

Of .� � �/ Og.�� �/ Oh.�/c.� � �; �� �; �/ d� d�:

2B. Multilinear estimate. We define a class of symbols with an associated norm as

S1 WD
˚
m W R4 or R6! C; m is continuous and kF�1.m/kL1 <1

	
;

kmkS1 WD kF�1.m/kL1 ; km.�; �/kS1k;k1;k2WD


m.�; �/ k.�/ k1.� � �/ k2.�/

S1 ;

km.�; �; �/kS1
k;k1;k2;k3

WD


m.�; �; �/ k.�/ k1.� � �/ k2.�� �/ k3.�/

S1 :
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Lemma 2.1. Assume that m;m0 2 S1and p; q; r; s 2 Œ1;1�. Then the estimates

km �m0kS1 . kmkS1km0kS1 ; (2-2)



F�1�Z
R2
m.�; �/ Of .� � �/ Og.�/ d�

�




Lp
. kmkS1kf kLq kgkLr if 1

p
D

1
q
C
1
r
; (2-3)



F�1�Z

R2

Z
R2
m0.�; �; �/ Of .� � �/ Oh.�/ Og.�� �/ d� d�

�




Lp
. km0kS1kf kLq kgkLr khkLs (2-4)

hold for well-defined functions f .x/, g.x/, and h.x/, where 1
p
D

1
q
C
1
r
C
1
s

.

To estimate the S1
k;k1;k2

norm and the S1
k;k1;k2;k3

norm of symbols, we repeatedly use the following:

Lemma 2.2. For i 2 f1; 2; 3g; if f W R2i ! C is a smooth function and k1; : : : ; ki 2 Z, then we have the
estimate



Z

R2i
f .�1; : : : ; �i /

iY
jD1

eixj ��j kj .�j / d�1 � � � d�i






L1x1;:::;xi

.
iC1X
mD0

iX
jD1

2mkj k@m�j f kL
1 : (2-5)

Proof. The cases when i D 1; 3 can be estimated in the same way as the case when i D 2. We only do the
case i D 2 in detail here. Through scaling, it is sufficient to prove the above estimate for the case when
k1 D k2 D 0. From Plancherel’s theorem, we have the two estimates



Z

R2i
f .�1; �2/e

i.x1��1Cx2��2/ 0.�1/ 0.�2/d�1d�2






L2x1;x2

. kf .�1; �2/kL1
�1;�2

;





.jx1jCjx2j/3Z
R2i
f .�1; �2/e

i.x1��1Cx2��2/ 0.�1/ 0.�2/d�1d�2






L2x1;x2

.
3X

mD0

�
k@m�1f kL

1Ck@m�2f kL
1

�
;

which are sufficient to finish the proof of (2-5). �

2C. Paradifferential calculus. In this subsection, we discuss some necessary background material from
paradifferential calculus. For more details and related topics, please refer to [Métivier 2008].

Definition 2.3. Given �2NC, �� 0 and m2R, we use �m� .R
2/ to denote the space of locally bounded

functions a.x; �/ on R2 � .R2=f0g/, which are C1 with respect to � for � ¤ 0. Moreover, they satisfy
the estimate

8j�j � 1
2
; k@˛� a. � ; �/kW �;1 .˛ .1Cj�j/m�j˛j; ˛ 2 N2;

where W �;1 is the usual Sobolev space. Note that W �;1 contains the spaces zW � and yW �;˛, which are
defined in (1-9) and (1-10), as subspaces.

Remark 2.4. In the above definitions, � is not necessarily an integer, but the integer case is sufficient for
our purposes.

Definition 2.5. (i) We use P�m� .R
2/ to denote the subspace of �m� .R

2/ which consists of symbols that
are homogeneous of degree m in �.

(ii) If aD
P
0�j<� a

.m�j /, where a.m�j / 2 P�m�j��j .R
2/, then we say a.m/ is the principal symbol of a.
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(iii) An operator T is said to be of order m, where m2R, if for all � 2R, it is bounded from H�.R2/ to
H��m.R2/. We use Sm to denote the set of all operators of order m.

For a symbol a 2 �m� , we can define its norm as

Mm
� .a/ WD sup

j˛j�2C�

sup
j�j� 1

2



.1Cj�j/j˛j�m@˛� a. � ; �/

W �;1 :

For a; f 2 L2 and a pseudodifferential operator Qa.x; �/, we define the operators Taf and TQaf as

Taf DF�1
�Z

R

Oa.���/�.���; �/ Of .�/ d�

�
; TQaf DF�1

�Z
R

Fx. Qa/.���; �/�.���/ Of .�/ d�
�
; (2-6)

where the cut-off function �.� � �; �/ is given by

�.� � �; �/D

�
1 when j� � �j � 2�10j�j and j�j � 1;
0 when j� � �j � 210j�j or j�j � 1:

For two well-defined functions a and b, we have the paraproduct decomposition

ab D TabCTbaCR.a; b/; (2-7)

where R.a; b/ contains those terms in which a and b have comparable size of frequencies or the frequency
of the output is less than 1.

We have the following composition lemma for paradifferential operators. It can be found, for example,
in [Alazard, Burq and Zuily 2011; Métivier 2008].

Lemma 2.6. Let m 2 R and � > 0. If given symbols a 2 �m� .R
d / and b 2 �m

0

� .R
d / we define

a ] b D
X
j˛j<�

1

i j˛j˛Š
@˛� a @

˛
xb;

then for all � 2 R, there exists a constant K such that

kTaTb �Ta]bkH�!H��m�m0C� �KM
m
� .a/M

m0

� .b/: (2-8)

Remark 2.7. It may be too early to give this remark here. However, we think that it is a good idea to
keep the following simple observation in mind, which will be very helpful to see the equivalence relations
later on. The simple observation is that if the symbols a and b all depend on rh instead of h, then the
rough estimate (2-8) is sufficient to gain one derivative in the low-frequency part.

Lemma 2.8. Let m 2R, � > 0 and a 2 �m� .R
d /. If we use .Ta/� to denote the adjoint operator of Ta

and use Na to denote the complex conjugate of a, then .Ta/��Ta� is of order m� �, where

a� D
X
j˛j<�

1

i j˛j˛Š
@˛� @

˛
x Na:

Moreover, the norm of the operator .Ta/��Ta� is bounded by Mm
� .a/.

Proof. See [Alazard, Burq and Zuily 2011, Theorem 3.10]. �

Remark 2.9. In most applications of Lemma 2.8, we have m� 1. If we let �D 1 in the above lemma,
then it is easy to see a� D Na. If, moreover, a is real, then a� D NaD a.
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3. Dirichlet–Neumann operator

The main goal of this section is to study various properties of the Dirichlet–Neumann operator, which
provide a foundation for carrying out the processes of paralinearization and symmetrization in Section 4
and obtaining the new energy estimate (1-12) in Section 5. The study of the Dirichlet–Neumann operator
is mainly reduced to a study of the velocity potential inside the water region �.t/.

Recall the smallness condition (1-11) of the initial data. From the local wellposedness result of the
gravity waves system (1-7), we know that there exists a positive time T such that the estimate

sup
t2Œ0;T �

k.h;ƒ /.t/k zW 4 � 2ı (3-1)

holds, which means that the L1 norm of solution remains small in the time interval Œ0; T �. Throughout
the rest of this paper, we restrict ourselves to the time interval Œ0; T �.

3A. Type I formulation of the Laplace equation (1-3). In this subsection, we reduce the Laplace equa-
tion (1-3) to a favorable formulation so that we can solve it and identify the fixed-point-type structure
inside the Laplace equation, which further enables us to estimate the Dirichlet–Neumann operator.

We do a change of variables and map the water region �.t/ to the strip S WD R2 � Œ�1; 0� using

.x; y/! .x; z/; z WD
y � h.t; x/

h.t; x/C 1
:

Very naturally, the inverse transformation is given by

y D hC .hC 1/z:

Define the velocity potential in the .x; z/-coordinate system as '.x; z/ WD �.x; hC .hC 1/z/. From
direct computations, we have the identities

�.x;y/D'

�
x;
y�h

1Ch

�
; @y�D

@z'

1Ch
; @2y�D

@2z'

.1Ch/2
; (3-2)

@xi�D @xi'C@z'

�
�@xih

1Ch
�
.y�h/@xih

.1Ch/2

�
D @xi'�

.yC1/@xih

.1Ch/2
@z'; (3-3)

@2xi�D @
2
xi
'�2

.yC1/@xih

.1Ch/2
@z@xi'C

�
�.yC1/@2xih

.1Ch/2
C2

.yC1/.@xih/
2

.1Ch/3

�
@z'C

.yC1/2.@xih/
2

.1Ch/4
@2z':

From the above identities and (1-3), it is easy to derive the equation

.�xC @
2
y/� D 0 D) Px;z' WD

�
�xC Qa@

2
zC
Qb � r@zC Qc@z

�
' D 0; (3-4)

where

QaD
.yC 1/2jrhj2

.1C h/4
C

1

.1C h/2
D
1C .zC 1/2jrhj2

.1C h/2
; (3-5)

Qb D�2
.yC 1/rh

.1C h/2
D
�2.zC 1/rh

1C h
; Qc D

�.zC 1/�xh

.1C h/
C 2

.zC 1/jrhj2

.1C h/2
: (3-6)
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To sum up, we can reduce the Laplace equation (1-3) with two boundary conditions in terms of ' as
follows:

Px;z' D 0; 'jzD0 D  ; @z'jzD�1 D 0; .x; z/ 2 R2 � Œ�1; 0�: (3-7)

3B. Type II formulation of the Laplace equation (1-3). In this subsection, we reduce the Laplace
equation (1-3) into another favorable formulation, which will be used to do the paralinearization of the
Dirichlet–Neumann operator in Section 4A.

We remark that we don’t use the type I formulation (3-7) to do the paralinearization process because
the coefficients Qa; Qb; Qc in (3-5) and (3-6) are very complicated, which complicates the paralinearization
process and prevents us from seeing clearly the principal symbol of the Dirichlet–Neumann operator.

Recall the smallness condition (3-1). Since the height of interface is very small, we know that there
exists a curve parallel to the interface �.t/ with depth 1

2
inside �.t/. More precisely, we have

�1.t/ WD
˚
.x; y/ W x 2 R2; h.t; x/� 1

2
� y � h.t; x/

	
; �1.t/��.t/:

Define

�2.t/ WD
˚
.x;y/ W x 2R2; h.t;x/�1

4
�y � h.t;x/

	
; �2.t/��1.t/��.t/; (3-8)

Q�.x;y/ WD�.y�h.t;x//�.x;y/; .x;y/2�1.t/; �.z/D 1 if z��1
4
; supp.�/�

�
�
1
2
;0
�
; (3-9)

where �.x/ is a fixed Schwartz function.
Recall the Laplace equation (1-3). From (3-9), it is easy to derive the identities

�x;y Q� D Qg WD�x;y Œ������x;y�; .x; y/ 2�1.t/;

Q�.x; y/D �.x; y/; Qg.x; y/D 0; .x; y/ 2�2.t/:
(3-10)

We can map the water region �1.t/ to the strip S 0 WD R2�
�
�
1
2
; 0
�

by changing the coordinate system
using

.x; y/! .x; w/; w WD y � h.t; x/:

Define the velocity potential in the .x; w/-coordinate system as ˆ.x;w/ WD Q�.x; !C h.t; x//. Hence
Q�.x; y/Dˆ.x; y � h.t; x//. From (3-10), it is easy to verify that the equality

Px;wˆ WD
�
�xC a

0@2w C b
0
� r@w C c

0@w
�
ˆD g0.x; w/ WD Qg.x; !C h.t; x// (3-11)

holds, where
a0 D 1Cjrhj2; b0 D�2rh; c0 D��h: (3-12)

Remark 3.1. From (3-5), (3-6), and (3-12), it is easy to see that the coefficients in (3-11) satisfied by ˆ
are much easier and more favorable than the coefficients in (3-4) satisfied by '. However, the formulation
satisfied by ˆ in (3-11) cannot be used as the starting point because we don’t know the estimates of ˆ in
the first place.

From the above definitions, the following identities hold inside the water region �2.t/, see (3-8), and
the corresponding regions in the new coordinate systems:
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ˆ.x;w/D '

�
x;

w

1C h

�
; '.x; z/Dˆ.x; .1C h/z/; .x; w/ 2 R2 �

�
�
1
4
; 0
�
;

@xiˆD @xi' �
w@z'@xih

.1C h/2
; @wˆD

@z'

1C h
:

(3-13)

From (3-2) and (3-13), the Dirichlet–Neumann operator G.h/ in terms of ' and ˆ and the quadratic
terms of G.h/ are given by

G.h/ D Œ�rh � r�C @y��jyDh D
1Cjrhj2

1C h
@z'jzD0�r � rh; (3-14)

G.h/ D .1Cjrhj2/@wˆjwD0�rh � r ; (3-15)

ƒ2ŒG.h/ �Dƒ2Œ@z'jzD0��ƒ1Œ@z'jzD0�h�r � rh: (3-16)

3C. A fixed-point-type formulation for the Dirichlet–Neumann operator. In this subsection, our main
goal is to obtain basic estimates for the Dirichlet–Neumann operator with special attention to the low-
frequency part, which will further help us to obtain a new energy estimate.

To this end, we study the reduced Laplace equation (3-7) and formulate rx;z' into a fixed-point-type
formulation, which enables us to use a fixed-point-type argument.

After moving all nonlinear terms to the right-hand, we can rewrite (3-7) as

@2z'C�x' D .@z � jrj/.@zCjrj/' D g.z/ WD .1� Qa/@
2
z' �

Qb � r@z' � Qc@z': (3-17)

Now, we will solve '.z/ from (3-17) by treating g.z/ in (3-17) as a given nonlinearity. Define
Qh.x; z/ WD .@z � jrj/'. Very naturally, we have�

.@zCjrj/ QhD g;

.@z � jrj/' D Qh; 'jzD0 D  ; @z'jzD�1 D 0:
(3-18)

We can solve the above system of equations with Qh.�1/ to be determined:

Qh.z/D e�zjrj Qh.�1/C

Z z

�1

e�.z�z
0/jrjg.z0/ dz0; (3-19)

'.z/D ezjrj'.0/C

Z z

0

e.z�z
0/jrj Qh.z0/ dz0

D ezjrj �

Z 0

z

e.z�z
0/jrjŒe�z

0jrj Qh.�1/C

Z z0

�1

e�.z
0�s/jrjg.s/ ds� dz0

D ezjrj � 1
2
jrj
�1Œe�zjrj� ezjrj� Qh.�1/�

Z z

�1

Z 0

z

e.zCs�2z
0/jrjg.s/ dz0 ds

�

Z 0

z

Z 0

s

e.zCs�2z
0/jrjg.s/ dz0 ds

D ezjrj � 1
2
jrj
�1Œe�zjrj� ezjrj� Qh.�1/C

1

2

Z 0

�1

jrj
�1e.zCs/jrjg.s/ ds

�
1

2

Z 0

�1

jrj
�1e�jz�sjjrjg.s/ ds: (3-20)
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The unknown Qh.�1/ is determined by the Neumann-type boundary condition @z'jzD�1 D 0. We
calculate @z' from the formula (3-20) and have the equality

@z'Djrje
zjrj C1

2
ŒezjrjCe�zjrj� Qh.�1/C

1

2

Z 0

�1

e.zCs/jrjg.s/ds�
1

2

Z 0

�1

e�jz�sjjrj sign.s�z/g.s/ds:

After evaluating the above equality at the point z D�1, we have

Qh.�1/D�
2jrje�jrj 

e�jrjC ejrj
�

Z 0

�1

e.s�1/jrj� e�.sC1/jrj

e�jrjC ejrj
g.s/ ds; (3-21)

which further gives us

@z' D
e.zC1/jrj� e�.zC1/jrj

e�jrjC ejrj
jrj �

1

2

ezjrjC e�zjrj

e�jrjC ejrj

Z 0

�1

Œe.s�1/jrj� e�.sC1/jrj�g.s/ ds

C
1

2

Z 0

�1

e.zCs/jrjg.s/ds�
1

2

Z 0

�1

e�jz�sjjrj sign.s� z/g.s/ ds: (3-22)

Moreover, we can reduce (3-20):

'.z/D

�
e�.zC1/jrjCe.zC1/jrj

e�jrjCejrj

�
 C

1

2
jrj
�1 e
�zjrj�ezjrj

e�jrjCejrj

Z 0

�1

�
e.s�1/jrj�e�.sC1/jrj

�
g.s/ds

C
1

2

Z 0

�1

jrj
�1e.zCs/jrjg.s/ds�

1

2

Z 0

�1

jrj
�1e�jz�sjjrjg.s/ds: (3-23)

However, we cannot use the formulation (3-23) to estimate the velocity potential and the Dirichlet–
Neumann operator because g.z/ actually depends on the velocity potential '.z/; see (3-17).

To get around this issue, we observe that there exists a fixed-point-type structure inside g.z/. Recall
(3-17), (3-5), and (3-6). Note that

g D @z

�
2hC h2� .zC 1/2jrhj2

.1C h/2
@z'C

2.zC 1/rh � r'

1C h

�
�
2rh � r'

1C h
C
.zC 1/�h

1C h
@z';

and

.zC 1/�h

1C h
@z' Dr �

�
.zC 1/rh@z'

1C h

�
C
.zC 1/jrhj2@z'

.1C h/2
� @z

�
.zC 1/rh � r'

1C h

�
C
rh � r'

1C h
:

Hence, we can decompose the nonlinearity g.z/ into three parts:

g.z/D @zg1.z/Cg2.z/Cr �g3.z/; (3-24)

where

g1.z/D
2hC h2� .zC 1/2jrhj2

.1C h/2
@z'C

.zC 1/rh � r'

1C h
; g1.�1/D 0; (3-25)

g2.z/D
.zC 1/jrhj2@z'

.1C h/2
�
rh � r'

1C h
; g3.z/D

.zC 1/rh@z'

1C h
: (3-26)
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To simplify the notation, we define

Qh1 WD
2hC h2

.1C h/2
; Qh2 WD

jrhj2

.1C h/2
; Qh3 WD

rh

1C h
: (3-27)

As a result, we have

g1.z/D Qh1@z' � .zC 1/
2 Qh2@z'C .zC 1/ Qh3 � r'; (3-28)

g2.z/D .zC 1/ Qh2@z' � Qh3 � r'; g3.z/D .zC 1/ Qh3@z': (3-29)

Note that g1.z/, g2.z/, and g3.z/ are all linear with respect to rx;z'.z/.
After decomposing g.s/ in (3-23) into three parts, @sg1, g2 and r �g3, we integrate by parts in s to

move the derivative @s in front of @sg1. As a result, we have

'.z/D

�
e�.zC1/jrjCe.zC1/jrj

e�jrjCejrj

�
 

C
1

2
jrj
�1 e
�zjrj�ezjrj

e�jrjCejrj

Z 0

�1

�
e.s�1/jrj.g2Cr�g3�jrjg1/�e

�.sC1/jrj.g2Cr�g3Cjrjg1/
�
ds

C
1

2

Z 0

�1

jrj
�1e.zCs/jrjŒg2Cr�g3�jrjg1�ds

�
1

2

Z 0

�1

jrj
�1e�jz�sjjrjŒg2Cr�g3�sign.z�s/jrjg1�ds: (3-30)

Now, we know that the nonlinearity in (3-30) is linear with respect to rx;z'.
To see the fixed-point-type structure of rx;z', we take the derivative rx;z on both sides of (3-30). As

a result, we derive a fixed-point-type formulation for rx;z':

rx;z'D

"�
e�.zC1/jrjCe.zC1/jrj

e�jrjCejrj

�
r ;

e.zC1/jrj�e�.zC1/jrj

e�jrjCejrj
jrj 

#

C
1

2

"
r

jrj

e�zjrj�ezjrj

e�jrjCejrj

Z 0

�1

�
e.s�1/jrj.g2Cr�g3�jrjg1/�e

�.sC1/jrj.g2Cr�g3Cjrjg1/
�
ds;

�
ezjrjCe�zjrj

e�jrjCejrj

Z 0

�1

�
e.s�1/jrj.g2Cr�g3�jrjg1/�e

�.sC1/jrj.g2Cr�g3Cjrjg1/
�
ds

#

C
1

2

"Z 0

�1

r

jrj
e.zCs/jrjŒg2Cr�g3�jrjg1�ds�

Z 0

�1

r

jrj
e�jz�sjjrjŒg2Cr�g3�sign.z�s/jrjg1�ds;

Z 0

�1

e.zCs/jrjŒg2Cr�g3�jrjg1�ds�

Z 0

�1

e�jz�sjjrjŒsign.s�z/.g2Cr�g3/Cjrjg1�ds

#
CŒ0;g1.z/�: (3-31)
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To simplify the notation, we define operators

K1.z;s/ WD
1

2

�
r

jrj

e�zjrj�ezjrj

e�jrjCejrj
e.s�1/jrjC

r

jrj
e.zCs/jrj;�

ezjrjCe�zjrj

e�jrjCejrj
e.s�1/jrjCe.zCs/jrj

�
; (3-32)

K2.z;s/ WD
1

2

�
r

jrj

e�zjrj�ezjrj

e�jrjCejrj
e�.sC1/jrj;�

ezjrjCe�zjrj

e�jrjCejrj
e�.sC1/jrj

�
; (3-33)

K3.z;s/ WD
1

2

�
r

jrj
e�jz�sjjrj; e�jz�sjjrj sign.s�z/

�
: (3-34)

With the above operators, we can rewrite (3-31) as

rx;z' D

"�
e�.zC1/jrjC e.zC1/jrj

e�jrjC ejrj

�
r ;

e.zC1/jrj� e�.zC1/jrj

e�jrjC ejrj
jrj 

#
C Œ0; g1.z/�

C

Z 0

�1

ŒK1.z; s/�K2.z; s/�K3.z; s/�.g2.s/Cr �g3.s// ds

C

Z 0

�1

K3.z; s/jrj sign.z� s/g1.s/� jrjŒK1.z; s/CK2.z; s/�g1.s/ ds: (3-35)

To make sure that we can conclude the fixed-point-type argument, we need to estimate the operators
Ki .z; s/ so that the issue of losing derivatives does not exist. More precisely, the following lemma holds.

Lemma 3.2. For k; 
 � 0, we have the estimates

3X
iD1





Z 0

�1

Ki .z;s/rg.s/ds






L1z Hk

C





Z 0

�1

Ki .z;s/g.s/ds






L1z Hk

. kg.z/kL1z Hk ; (3-36)

3X
iD1





Z 0

�1

Ki .z;s/rg.s/ds






L1z zW 


C





Z 0

�1

ŒK1.z;s/�K2.z;s/�K3.z;s/�g.s/ds






L1z zW 


. kg.z/k
L1z zW 
 :

(3-37)

Proof. We first prove the desired estimate (3-36). Recall (3-32), (3-33), and (3-34). From Lemma 2.2, we
have

sup
z;s2Œ�1;0�



F�1�F�ŒK1.z;s/�K2.z;s/�K3.z;s/�Œ0; .1�sign.s�z//=2��
�
.�/ k1.�/

�


L1
. 2k1;�; (3-38)

sup
z;s2Œ�1;0�

3X
iD1



F�1�F�Ki .z;s/�.�/ k1.�/�

L1 . 1: (3-39)

We will use above estimates for the case when k1 < 0. However, when k1 � 0, we cannot use the
estimate (3-39) directly to estimate the left-hand side of (3-36); otherwise we lose one derivative. An
important observation is that the integration with respect to s actually compensates for the loss.

For any fixed k� 0, k 2Z, we have the following formulation in terms of the kernel:Z 0

�1

Ki .z; s/rPkŒg.s/� ds D

Z 0

�1

Z
R2
Ki Ik.z; s; y/g.s; x�y/ dy ds; (3-40)
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where
Ki Ik.z; s; y/D

Z
R2
eiy��F.K1.z; s//.�/ k.�/� d�: (3-41)

After integration by parts in � many times, we have the pointwise estimate

jKi Ik.z; s; y/j. 23k.1C 2kjyjC 2kjz� sj/�10 (3-42)

for i 2 f1; 2; 3g, which further implies that the kernel Ki Ik.z; s; y/ belongs to L1s;y for fixed z. Therefore,
from (3-39) and (3-42), we have the estimateˇ̌
the left-hand side of (3-36)

ˇ̌2
.
X
k1�0

kPk1 Œg.z/�k
2
L1z L2

C

3X
iD1

X
k1�0

22kk1kKi Ik1.z; s/k
2
L1s;y
kPk1 Œg.z/�k

2
L1z L2

. kg.z/k2
L1z Hk ;

hence finishing the proof of (3-36). Very similarly, from (3-38), (3-39), and (3-42), our desired estimate
(3-37) follows in the same way. �

From (3-35) and estimates in Lemma 3.2, now it is clear that we can estimate rx;z' by using a
fixed-point-type argument.

However, if we do it naively, then the resulting estimate will not tell the difference between rx'
and @z'. To capture the fact that @z' actually has two derivatives at the low-frequency part, while rx'
only has one derivative, we decompose rx;z' as

rx;z' Dƒ1Œrx;z'�Cƒ�2Œrx;z'�: (3-43)

From (3-35), it is easy to see that ƒ1Œrx;z'� is given by

ƒ1Œrx;z'�D

"�
e�.zC1/jrjC e.zC1/jrj

e�jrjC ejrj

�
r ;

e.zC1/jrj� e�.zC1/jrj

e�jrjC ejrj
jrj 

#
: (3-44)

From (3-44), it is easy to see that ƒ1Œ@z'� has two derivatives at the low-frequency part. Now, the goal is
reduced to estimating ƒ�2Œrx;z'�, which is done again by a fixed-point-type argument.

Recall (3-35). To identify the fixed-point-type structure insideƒ�2Œrx;z'�, it is sufficient to reformulate
ƒ�2Œgi .z/�, i 2 f1; 2; 3g.

Recall (3-28) and (3-29). After using the decomposition (3-43) for rx;z' in gi .z/, i 2 f1; 2; 3g, we
have the decomposition of ƒ�2Œgi .z/�, i 2 f1; 2; 3g,

ƒ�2Œg1.z/�D Qh1ƒ�2Œ@z'�� .zC 1/
2 Qh2ƒ�2Œ@z'�C .zC 1/ Qh3 �ƒ�2Œr'�

C Qh1ƒ1Œ@z'�� .zC 1/
2 Qh2ƒ1Œ@z'�C .zC 1/ Qh3 �ƒ1Œr'�; (3-45)

ƒ�2Œg2.z/�D .zC 1/ Qh2ƒ�2Œ@z'�� Qh3 �ƒ�2Œr'�C .zC 1/ Qh2ƒ1Œ@z'�� Qh3 �ƒ1Œr'�; (3-46)

ƒ�2Œg3.z/�D .zC 1/ Qh3ƒ�2Œ@z'�C .zC 1/ Qh3ƒ1Œ@z'�: (3-47)

From (3-45), (3-46), and (3-47), now it is easy to see that there exists a fixed-point-type structure for
ƒ�2Œrx;z'� in ƒ�2Œgi .z/�, i 2 f1; 2; 3g. From the standard fixed-point-type argument and the estimates
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in Lemma 3.2, we obtain basic estimates for ƒ�2Œrx;z'�, which further give us more precise estimates
for rx;z' from (3-43).

More precisely, our main results in this subsection are summarized as follows,

Lemma 3.3. For 
 0; k0� 1, 0< ı� 1, ˛ 2 .0; 1�, if h 2 zW 
 0\Hk0 satisfies the smallness assumption

khk zW 
0 < ı; (3-48)

then the following L2-type estimate and L1-type estimate for the velocity potential ' hold:

krx;z'kL1z Hk . kr kHk CkhkHkC1kr k zW 0 ; (3-49)

krx'kL1z zW 
 . kr k zW 
 ; k@z'kL1z zW 
 . kr k yW 
;˛ Ckhk zW 
C1kr k zW 
 ; (3-50)

kƒ�2Œrx;z'�kL1z zW 
 . kr k zW 
khk zW 
C1 ; (3-51)

kƒ�2Œrx;z'�kL1z Hk . khk zW 1kjrj kHk Ckr k zW 0 khkHkC1 ; (3-52)

where k � k0� 1 and 1� 
 � 
 0� 1. In the above estimates, the range of z for the L1z norm is Œ�1; 0�.

Proof. We first estimate ƒ�2Œrx;z'�. Recall (3-35), (3-45), (3-46) and (3-47). From estimate (3-37) in
Lemma 3.2, we have

kƒ�2Œrx;z'�kL1z zW 
 . kƒ�2Œ.g1.z/; g2.z/; g3.z//�kL1z zW 


. khk zW 
C1kƒ�2Œrx;z'�kL1z zW 
 Ckhk zW 
C1kr k zW 
 :

Hence, by the smallness condition (3-48),

kƒ�2Œrx;z'�kL1z zW 
 . khk zW 
C1kr k zW 
 : (3-53)

Very similarly, from estimate (3-36) in Lemma 3.2, we have

kƒ�2Œrx;z'�kL1z Hk

. kƒ�2Œ.g1.z/;g2.z/;g3.z//�kL1z Hk

. khk zW 1kƒ�2Œrx;z'�kL1z HkCkhkHkC1kƒ�2Œrx;z'�kL1z zW 0CkhkHkC1kr k zW 0Ckr kHkkhk zW 1

. khk zW 1kƒ�2Œrx;z'�kL1z HkCkhkHkC1kr k zW 0.1Ckhk zW 1/Ckr kHkkhk zW 1 :

Again, by the smallness assumption (3-48), we conclude

kƒ�2Œrx;z'�kL1z Hk . khkHkC1kr k zW 0 Ckr kHkkhk zW 1 : (3-54)

From estimates (3-53) and (3-54) and the explicit formulas of ƒ1Œrx;z'� in (3-44), we have

krx;z'kL1Hk . kr kHk CkhkHkC1kr k zW 0 ; krx'kL1z zW 
 . kr k zW 
 ;

k@z'kL1z zW 
 . kƒ2 k zW 
 Ckhk zW 
C1kr k zW 
 . kr k yW 
;˛ Ckhk zW 
C1kr k zW 
 : �
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3D. The quadratic terms of the Dirichlet–Neumann operator. The content of this subsection is not
related to the proof of our main theorem. However, it is crucial to the study of the long-time behavior of
the water waves system in the flat-bottom setting.

Generally speaking, the main enemies of the global existence for a 2-dimensional dispersive equation
are the quadratic terms. The first step is to know exactly what the enemies are. Surprisingly, as a
byproduct of the fixed-point-type formulation (3-35), we can calculate explicitly the quadratic terms of
the Dirichlet–Neumann operator.

More precisely, the main result of this subsection is stated as follows:

Lemma 3.4. In terms of h and  , the quadratic terms of the Dirichlet–Neumann operator are

ƒ2ŒG.h/ �D�r � .hr /� jrj tanhjrj.hjrj tanhjrj /: (3-55)

Remark 3.5. Before we proceed to prove the above lemma, we compare the main difference between
the flat-bottom setting, which is less studied, and the infinite depth setting, which is recently well-studied.
In the infinite-depth setting, the quadratic terms of the Dirichlet–Neumann operator are

(infinite-depth setting) ƒ2ŒG.h/ �D�r � .hr /� jrj.hjrj /: (3-56)

If the frequency � of  is of size 1 and the frequency � � � of h is of size 0, from (3-55) and (3-56), it
is easy to check the size of the symbol of quadratic terms:

(flat-bottom setting) � � �� j�jj�j tanh j�j tanh j�j D
4j�j2

.ej�jC e�j�j/2
� 1;

(infinite-depth setting) � j�jj�jC � � �D 0:

That is to say, unlike the infinite-depth setting, we do not have the null structure at the low-frequency part
in the flat-bottom setting. As a result, we expect a much stronger nonlinear effect from the quadratic terms,
which makes the global regularity problem in the flat-bottom setting more delicate and more difficult than
the infinite-depth setting.

Proof of Lemma 3.4. Recall (3-14) and (3-44). We have

ƒ2ŒG.h/ �Dƒ2Œ@z'jzD0�� hjrj tanhjrj �rh � r : (3-57)

Hence, the problem is reduced to calculating explicitly the quadratic terms of @z'jzD0. Recalling (3-35),

ƒ2Œ@z'jzD0�D�
1

ejrjCe�jrj

Z 0

�1

Œe.s�1/jrj�e�.sC1/jrj�Œƒ2Œg2Cr�g3��ds

C
1

ejrjCe�jrj

Z 0

�1

Œe.s�1/jrjCe�.sC1/jrj�jrjŒƒ2Œg1��ds

C

Z 0

�1

esjrjƒ2Œg2Cr�g3�jrjg1�dsCƒ2Œg1.0/�

D

Z 0

�1

e.sC1/jrjCe�.sC1/jrj

ejrjCe�jrj
ƒ2Œg2Cr�g3�ds

�

Z 0

�1

e.sC1/jrj�e�.sC1/jrj

ejrjCe�jrj
jrjƒ2Œg1.s/�dsCƒ2Œg1.0/�: (3-58)
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From (3-25), (3-26), and (3-44), it is easy to derive the equalities

ƒ2Œg1.s/�D 2h
e.sC1/jrj� e�.sC1/jrj

ejrjC e�jrj
jrj C .sC 1/rh � r

e.sC1/jrjC e�.sC1/jrj

ejrjC e�jrj
 ;

ƒ2Œg1.0/�D 2hjrj tanhjrj Crh � r ;

ƒ2Œg2.s/�D�rh � r
e.sC1/jrjC e�.sC1/jrj

ejrjC e�jrj
 ;

ƒ2Œg3.s/�D .sC 1/rh
e.sC1/jrj� e�.sC1/jrj

ejrjC e�jrj
jrj :

(3-59)

After plugging in the above explicit formula of ƒ2Œgi .z/�, i 2 f1; 2; 3g, the goal is to calculate explicitly
the symbols of the two integrals in (3-58). Define

Q1.h;  / WD

Z 0

�1

e.sC1/jrjC e�.sC1/jrj

ejrjC e�jrj
ƒ2Œg2Cr �g3� ds DQ1;1.h;  /CQ1;2.h;  /; (3-60)

Q2.h;  / WD �

Z 0

�1

e.sC1/jrj� e�.sC1/jrj

ejrjC e�jrj
jrjƒ2Œg1� ds DQ2;1.h;  /CQ2;2.h;  /; (3-61)

where

Q1;1.h;  /D

Z 0

�1

e.sC1/jrjC e�.sC1/jrj

ejrjC e�jrj

�
r � Œ.sC 1/rh

e.sC1/jrj� e�.sC1/jrj

ejrjC e�jrj
jrj 

�
ds;

Q1;2.h;  /D

Z 0

�1

e.sC1/jrjC e�.sC1/jrj

ejrjC e�jrj

�
�rh � r

e.sC1/jrjC e�.sC1/jrj

ejrjC e�jrj
 

�
ds;

Q2;1.h;  /D�

Z 0

�1

e.sC1/jrj� e�.sC1/jrj

ejrjC e�jrj
jrj

�
2h
e.sC1/jrj� e�.sC1/jrj

ejrjC e�jrj
jrj 

�
ds;

Q2;2.h;  /D�

Z 0

�1

e.sC1/jrj� e�.sC1/jrj

ejrjC e�jrj
jrj

�
.sC 1/rh � r

e.sC1/jrjC e�.sC1/jrj

ejrjC e�jrj
 

�
ds:

The symbol qi;j .� � �; �/ of the bilinear operator Qi;j .h;  /, i; j 2 f1; 2g, is given by

q1;1.���;�/D
�� �.���/j�j

.ej�jCe�j�j/.ej�jCe�j�j/

Z 0

�1

.sC1/Œe.sC1/j�jCe�.sC1/j�j�Œe.sC1/j�j�e�.sC1/j�j�ds

D
�� �.���/j�j

.ej�jCe�j�j/.ej�jCe�j�j/

�
.j�jCj�j�1/ej�jCj�j�.�j�j�j�j�1/e�j�j�j�j

.j�jCj�j/2

C
.j�j�j�j�1/ej�j�j�j�.j�j�j�j�1/ej�j�j�j

.j�j�j�j/2

�
; (3-62)

q1;2.���;�/D
.���/��

.ej�jCe�j�j/.ej�jCe�j�j/

Z 0

�1

Œe.sC1/j�jCe�.sC1/j�j�Œe.sC1/j�jCe�.sC1/j�j�ds

D
.���/��

.ej�jCe�j�j/.ej�jCe�j�j/

�
ej�jCj�j�e�j�j�j�j

j�jCj�j
C
ej�j�j�j�ej�j�j�j

j�j�j�j

�
; (3-63)
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q2;1.���;�/D
�2j�jj�j

.ej�jCe�j�j/.ej�jCe�j�j/

Z 0

�1

Œe.sC1/j�j�e�.sC1/j�j�Œe.sC1/j�j�e�.sC1/j�j�ds

D
�2j�jj�j

.ej�jCe�j�j/.ej�jCe�j�j/

�
ej�jCj�j�e�j�j�j�j

j�jCj�j
�
ej�j�j�j�ej�j�j�j

j�j�j�j

�
; (3-64)

q2;2.���;�/D
j�j.���/��

.ej�jCe�j�j/.ej�jCe�j�j/

Z 0

�1

.sC1/Œe.sC1/j�j�e�.sC1/j�j�Œe.sC1/j�jCe�.sC1/j�j�ds

D
j�j.���/��

.ej�jCe�j�j/.ej�jCe�j�j/

�
.j�jCj�j�1/ej�jCj�j�.�j�j�j�j�1/e�j�j�j�j

.j�jCj�j/2

�
.j�j�j�j�1/ej�j�j�j�.j�j�j�j�1/ej�j�j�j

.j�j�j�j/2

�
: (3-65)

In the above computations, we have used the simple factZ 0

�1

.sC 1/e.sC1/a ds D
1C .a� 1/ea

a2
:

From (3-57)–(3-61), we have

ƒ2ŒG.h/ � WD zQ.h; /DQ1.h;  /CQ2.h;  /C hjrj tanhjrj :

Therefore, the symbol Qq.� � �; �/ of zQ.h; / is given by

Qq.� � �; �/D
X

i;jD1;2

qi;j .� � �; �/C
ej�j� e�j�j

ej�jC e�j�j
j�j:

Although the above formulae look complicated, actually there are cancellations inside. Note that

q1;2.� � �; �/C q2;1.� � �; �/C
ej�j� e�j�j

ej�jC e�j�j
j�j

D
� � �

.ej�jC e�j�j/.ej�jC e�j�j/

�
ej�jCj�j� e�j�j�j�j

j�jC j�j
C
ej�j�j�j� ej�j�j�j

j�j � j�j

�
�

j�jj�j

.ej�jC e�j�j/.ej�jC e�j�j/

�
Œej�jCj�j� e�j�j�j�j�

j�jC j�j
�
ej�j�j�j� ej�j�j�j

j�j � j�j

�
; (3-66)

q1;1.� � �; �/C q2;2.� � �; �/

D
.�j�jj�jC � � �/

.ej�jC e�j�j/.ej�jC e�j�j/

.j�jC j�j � 1/ej�jCj�j� .�j�j � j�j � 1/e�j�j�j�j

j�jC j�j

�
.�jj�jC � � �/

.ej�jC e�j�j/.ej�jC e�j�j/

.j�j � j�j � 1/ej�j�j�j� .j�j � j�j � 1/ej�j�j�j

j�j � j�j
: (3-67)

From (3-66) and (3-67), now it is easy to verify

Qq.� � �; �/D � � �� j�jj�j tanh j�j tanh j�j: (3-68)

Hence our desired equality (3-55) holds. �
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Lemma 3.6. For k1; k2; k 2 Z, the following estimate holds for the symbol of the quadratic terms for the
Dirichlet–Neumann operator:

k Qq.� � �; �/kS1
k;k1;k2

. 2kCk2: (3-69)

Proof. From (3-68) and the estimate in Lemma 2.2, it is straightforward to derive the above estimate. �

3E. A fixed-point-type formulation for ƒ�3Œrx;z'�. As in the previous subsection, the content of this
subsection is not related to the proof of the main theorem but is related to the future study of the long-time
behavior of the water waves system in different settings.

Although, intuitively speaking, the quadratic terms are the leading terms for the dispersive equation (1-8)
in 2 dimensions, we also have to control the cubic and higher-order remainder terms to see that their effects
are indeed small over time. In this subsection, our goal is to formulate ƒ�3Œrx;z'� into a fixed-point-type
formulation, which provides a good way to estimate the cubic and higher-order remainder terms.

Recall the fixed-point-type formulation of rx;z' in (3-35), we truncate it at the cubic-and-higher level
and get

ƒ�3Œrx;z'�D Œ0;ƒ�3Œg1.z/��C
Z 0

�1

ŒK1.z;s/�K2.z;s/�K3.z;s/�
�
ƒ�3Œg2.s/�Cr�ƒ�3Œg3.s/�

�
ds

C

Z 0

�1

K3.z;s/jrjsign.z�s/ƒ�3Œg1.s/��jrjŒK1.z;s/CK2.z;s/�ƒ�3Œg1.s/�ds: (3-70)

Recall (3-28) and (3-29). Similar to the decomposition we did in (3-45)–(3-47), we can separate
ƒ�3Œgi .z/�, i 2 f1; 2; 3g, into two parts: (i) one of them contains ƒ�3Œrx;z'�, which involves the
fixed-point structure; (ii) the other part does not depend on ƒ�3Œrx;z'�, and hence can be estimated
directly.

More precisely, we decompose ƒ�3Œgi .z/�, i 2 f1; 2; 3g, as follows:

ƒ�3Œg1.z/�D Qh1ƒ�3Œ@z'��.zC1/
2 Qh2ƒ�3Œ@z'�C.zC1/ Qh3�ƒ�3Œr'�

C

X
iD1;2

ƒ�3�i Œ Qh1�ƒi Œ@z'��.zC1/
2ƒ�3�i Œ Qh2�ƒi Œ@z'�C.zC1/ƒ�3�i Œ Qh3��ƒi Œr'�; (3-71)

ƒ�3Œg2.z/�D .zC1/ Qh2ƒ�3Œ@z'�� Qh3�ƒ�3Œr'�

C

X
iD1;2

.zC1/ƒ�3�i Œ Qh2�ƒi Œ@z'��ƒ�3�i Œ Qh3��ƒi Œr'�; (3-72)

ƒ�3Œg3.z/�D .zC1/ Qh3ƒ�3Œ@z'�C
X
iD1;2

.zC1/ƒ�3�i Œ Qh3�ƒi Œ@z'�: (3-73)

From (3-27), it is easy to verify that

ƒ�2Œ Qh1�D h
2
� .2hC h2/ Qh1; ƒ�2Œ Qh2�D Qh2; ƒ�2Œ Qh3�D�h Qh3: (3-74)

We can summarize the above decomposition in the following lemma.
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Lemma 3.7. We have

ƒ�3Œrx;z'.z/�D

3X
iD1

C iz.h;  ;
Qhi /C h zC

i
z.h;  ;

Qhi /CT
i
z .
Qhi ; ƒ�3Œrx;z'�/;

where C iz and zC iz are some trilinear operators and T iz is some bilinear operator. Assume that the
corresponding symbols are ciz. � ; � ; � /, Qc

i
z. � ; � ; � /, and t iz. � ; � / respectively. Then we have the estimates

sup
z2Œ�1;0�

3X
iD1

kciz.�1; �2; �3/kS1k;k1;k2;k3
CkQcz.�1; �2; �3/kS1

k;k1;k2;k3

. 23maxfk1;k2;k3gC; (3-75)

sup
z2Œ�1;0�

3X
iD1

kt iz.�1; �2/kS1k;k1;k2
. 23maxfk1;k2gC: (3-76)

Proof. The proof is straightforward. From Lemma 2.2, our desired estimates (3-75) and (3-76) can be
derived by checking the symbol of each term inside the equations (3-70), (3-71), (3-72) and (3-73). Note
that there are at most three derivatives in total. �

4. Paralinearization and symmetrization of the system

Since the gravity waves system (1-7) is quasilinear and lacks symmetric structures inside, we cannot use
this system directly to do the energy estimate because of the difficulty of losing one derivative.

To identify the hidden symmetries inside the gravity waves system (1-7) and get around the issue of
losing derivatives, we use the method of paralinearization and symmetrization which was introduced and
studied in [Alazard and Métivier 2009; Alazard, Burq and Zuily 2011; 2014a; 2014b]. Interested readers
may refer to those works for more details. Here, we only briefly discuss this method to help readers
understand how this method works and get a sense of what they will read about in this section.

For a fully nonlinear term, it is very hard to tell which part actually loses derivatives and which part
does not lose derivatives, which is clearly very important to get around the issue of losing derivatives.
With the help of the paralinearization process, we can identify the part that actually loses derivatives,
which is the real issue. In Section 4A, we will do the paralinearization process for the nonlinearity of the
equation satisfied by the height h, which is the Dirichlet–Neumann operator. In Section 4B, we will do
the paralinearization process for the nonlinearity of the equation satisfied by the velocity potential  .

Knowing which part loses derivatives is certainly very helpful, but it does not imply that we can get
around the issue of losing derivatives because the original system lacks good symmetric structures. With
the help of the symmetrization process, in Section 4C, we identify good substitution variables so that the
system of equations satisfied by the good substitution variables has the requisite symmetries. Moreover,
the good substitution variables have size of energy comparable to that of the original variables. Therefore,
instead of doing the energy estimate for the original variables, we do an energy estimate for the good
substitution variables.

4A. Paralinearization of the Dirichlet–Neumann operator. In this subsection, our main goal is to iden-
tify which part of the Dirichlet–Neumann operator actually loses derivatives by using the paralinearization
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method. In the meantime, we also pay attention to the low-frequency part for the purpose of proving our
new energy estimate (1-12).

More precisely, the goal of this subsection is to prove the following proposition.

Proposition 4.1. Let k�6, ˛2 .0; 1�. Assume that .h;ƒ / 2Hk and h satisfies the smallness condition
(3-48). Then we have

G.h/ DT�. �TBh/�TV �rhCF.h/ Dƒ
2. �TBh/CT��j�j. �TBh/�TV �rhC zF .h/ ; (4-1)

where

� WD

q
.1Cjrhj2/j�j2� .rh � �/2; (4-2)

B
abbr
D B.h/ D

G.h/ Crh � r 

1Cjrhj2
; V

abbr
D V.h/ Dr �Brh: (4-3)

The good remainder terms F.h/ and zF .h/ do not lose derivatives and satisfy the estimate

kƒ�2ŒF .h/ �kHkCk zF .h/ kHk .k
�
k.h;ƒ /k yW 4;˛Ck.h;ƒ /k

2
yW 4

��
khkHkCkr kHk�1

�
: (4-4)

Remark 4.2. We remark that, unlike the infinite-depth setting, the good remainder term F.h/ in (4-1)
actually contains a linear term, which is Œtanh.jrj/� 1�jrj 2H1.

For simplicity, we define the following equivalence relation. For two well-defined nonlinearities A
and B , which are nonlinear with respect to h and  , we say

AÐB () A�B is a good error term in the sense of (4-5);

kgood error termkHk.k
�
k.h;ƒ /k yW 4;˛Ck.h;ƒ /k

2
yW 4

��
khkHkCkr kHk�1

�
; ˛2.0;1�; k�0: (4-5)

Recall (3-15). Note that, essentially speaking, the only fully nonlinear term inside the Dirichlet–
Neumann operator G.h/ is @wˆjwD0. So the task is reduced to identifying which part of @wˆ actually
loses a derivative.

To this end, we will show that there exists a pseudodifferential operator A.x; �/ such that @wˆ�
TA.ˆ� T@wˆh/ actually does not lose derivatives, where ˆ� T@wˆh is the so-called good unknown
variable. This step is very nontrivial and technical. Unfortunately, to the best of our knowledge, there
is no physical intuitive explanation available. It relies heavily on the study of good structures for the
Laplace equation (3-11). We do this step in detail in the following subsubsection.

4A1. Paralinearization of the Laplace equation (3-11). Recall due to (3-11) and the fact that g0. � ; w/D 0
when w 2

�
�
1
4
; 0
�
, we have

Œ�xC a
0@2w C b

0
� r@w C c

0@w �ˆD 0;

a0 D 1Cjrhj2 Ð 1C 2Trh � rh; b0 D�2rh; c0 D��h:
(4-6)

We remark that w is also restricted inside
�
�
1
4
; 0
�

in the rest of this paper.
Before proceeding to the paralinearization process for (4-6), we need some necessary estimates of ˆ.

Essentially speaking, under a certain smallness condition, the size of ˆ is comparable to '. Note that we
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already have necessary estimates of '; see Lemma 3.3. More precisely, from the definition of ˆ (see
Section 3B) and estimates of ' in Lemma 3.3, the following lemma holds.

Lemma 4.3. Under the smallness estimate (3-1), we have the following estimates for k � 1; 
 � 3:

sup
w2Œ�1=4;0�

krx;wˆkHk . kr kHkCkhkHkC1kr k zW 1 ; (4-7)

sup
w2Œ�1=4;0�

krxˆk zW 
 . kr k zW 
 ; sup
w2Œ�1=4;0�

k@wˆk zW 
 . kr k yW 
;˛Ckhk zW 
C1kr k zW 
 ; (4-8)

sup
w2Œ�1=4;0�

kƒ�2Œrx;wˆ�kL2 .
�
k.h;ƒ /k yW 2;˛Ck.h;ƒ /k

2
yW 2

��
khkH1Ckr kL2

�
: (4-9)

Proof. This is postponed to the end of this subsection for the purpose of improving the presentation. �

After paralinearizing (4-6), we have

PˆC 2T@2wˆTrh � rh� 2Tr@wˆ � rh�T@wˆ�hÐ 0; (4-10)

where

P WD Œ�CTa0@
2
w CTb0 � r@w CTc0@w �: (4-11)

To see why the equivalence relation (4-10) holds, we mention that we can always put rh in L1 and put
@wˆ and @2wˆ in L2.

Define W WD ˆ � T@wˆh. As in [Alazard, Burq and Zuily 2011], we claim that PW Ð 0 when
w 2

�
�
1
4
; 0
�
. After using (2-7) and the composition in Lemma 2.6, the following equivalence relations

hold:

PW Ð 0 () P ŒT@wˆh�C 2T@2wˆTrh � rh� 2Tr@wˆ � rh�T@wˆ�hÐ 0 (4-12)

()
�
Ta0T@3wˆhCTb

0 � rT@2wˆhCTc
0T@2wˆhC 2Tr@wˆ � rh

�
C
�
2T@2wˆTrh � rh� 2Tr@wˆ � rh

�
Ð 0 (4-13)

()
�
Tb0 �T@2wˆrhC 2Tr@wˆ � rh

�
C
�
2T@2wˆTrh � rh� 2Tr@wˆ � rh

�
Ð 0 (4-14)

() TŒb0@2wˆC2@2wˆrh� � rhÐ 0 (4-15)

() 0Ð 0; as b0 D�2rh: (4-16)

Obviously, (4-16) holds. Hence, we can reverse the directions of all arrows back to conclude PW Ð 0.
Although tedious, it is not difficult to verify that all Ð equivalence relations hold in all the above

equations. As a typical example, we give a detailed proof of (4-13) here. To prove (4-13), it is sufficient
to estimate T�@wˆh. From the estimate (4-8) in Lemma 4.3, we have

sup
w2Œ�1=4;0�

kT�@wˆhkHk . sup
w2Œ�1=4;0�

khkHkk@wˆk zW 2 . Œkƒ k yW 4;˛ Ck.h;ƒ /k
2
yW 4
�khkHk :

Hence, the equivalence relation (4-13) holds. All other equivalence relations can be obtained very
similarly.
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The next step is to decompose the equation PW Ð 0 into a forward evolution equation and a backward
evolution equation. As a result, from Lemma 4.6, we can show that @wW �TAW actually does not lose
derivatives. Note that @wW �TAW � @wˆ�TA.ˆ�T@wˆh/. Hence, our desired result is obtained.

More precisely, we have the following lemma.

Lemma 4.4. There exist two symbols aD a.x; �/ and A.x; �/ with

aD a.1/C a.0/; AD A.1/CA.0/;

where

a.1/.x; �/D
1

1Cjrhj2
.irh � � �

p
.1Cjrhj2/j�j2� .rh � �/2/;

A.1/.x; �/D
1

1Cjrhj2
.irh � �C

p
.1Cjrhj2/j�j2� .rh � �/2/;

a.0/.x; �/D
1

A.1/� a.1/

�
i@�a

.1/
� @xA

.1/
�
�h a.1/

1Cjrhj2

�
;

A.0/.x; �/D
1

a.1/�A.1/

�
i@�a

.1/
� @xA

.1/
�
�h A.1/

1Cjrhj2

�
;

(4-17)

such that

P D Ta0.@w �Ta/.@w �TA/CR0CR1@w ; a0.aCA/D ib0 � �C c0; (4-18)

a0
h
a.1/A.1/C

1

i
@�a

.1/
� @xA

.1/
C a.1/A.0/C a.0/A.1/

i
D a0.a ]A/D�j�j2; (4-19)

where

R0 D Ta0TaTA��; R1 D�Ta0TaCACTb0 � r CTc0 : (4-20)

Moreover, the following estimate holds for good error operators R0 and R1:

kR0f kHk CkR1f kHkC1 . krhk zW 3kf kHk : (4-21)

Proof. Most parts of above lemma are cited directly from [Alazard, Burq and Zuily 2011, Lemma 3.18].
Given the a priori decomposition (4-18), from (4-11), we can calculate explicitly the formulae of R0
and R1, which are given in (4-20). Note that as a0 doesn’t depend on � , from (4-18)–(4-20), we have the
identities

R1 D�Ta0TaCACTa0.aCA/ D�Ta0TaCACT.a0].aCA//;

R0 D Ta0 ŒTaTA�Ta]A�CTa0Ta]A�Ta0.a]A/ D Ta0 ŒTaTA�Ta]A�CT.a0�1/Ta]A�T.a0�1/].a]A/:

From explicit formulations of a0, a and A, we can see that a0;a0�12�02 .R
2/ a;A;aCA2�12 .R

2/ and
a ]A 2 �22 .R

2/. The following estimates on their symbolic bounds hold:

M 2
2 .a ]A/CM

0
2 .a
0/. 1; M 1

2 .a/CM
1
2 .A/CM

1
2 .aCA/. krhk zW 3 ; M 0

2 .a
0
� 1/. krhk2

zW 3
:
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From estimate (2-8) in Lemma 2.6, we have

kR1f kHkC1 .M 0
2 .a
0/M 1

2 .aCA/kf kHk . krhk zW 3kf kHk ;

kR0f kHk .
�
M 0
2 .a
0/M 1

2 .a/M
1
2 .A/CM

0
2 .a
0
� 1/M 2

2 .a ]A/
�
kf kHk . krhk2zW 3

kf kHk :

Hence finishing the proof of (4-21). �

In the following lemma, we prove that @wW �TAW doesn’t lose a derivative.

Lemma 4.5. Let A.x; �/ be as defined in Lemma 4.4. For k � 1, we have the estimate

ƒ�2Œ.@wW �TAW /�jwD0

Hk .k
�
k.h;ƒ /k yW 4;˛ Ck.h;ƒ /k

2
yW 4

��
khkHk Ckr kHk�1

�
: (4-22)

Proof. Recalling the decomposition of the operator P in (4-18) and the fact that PW Ð 0, we have

Ta0.@w �Ta/.@w �TA/W Ð �R0W �R1@wW;

which further gives us
.@w �Ta/.@w �TA/W Ð Qg;

where

Qg D Ta0�1 Œ�R0W �R1@wW �C ŒI �Ta0�1Ta0 �.@w �Ta/.@w �TA/W;

D Ta0�1 Œ�R0W �R1@wW �C
�
I �T1CT.a0�1/.a0�1�1/�T.a0�1/T.a0�1�1/

�
.@w �Ta/.@w �TA/W:

From the estimate (4-21) in Lemma 4.4, and the fact that T.a0�1/.a0�1�1/�T.a0�1/T.a0�1�1/ is of order�2,
we have

sup
w2Œ�1=4;0�

kƒ�2Œ Qg.w/�kHk . krhk zW 3

�
kP�1=2ŒW �kHk Ck@wW kHk�1

�
.
�
k.h;ƒ /k yW 4;˛ Ck.h;ƒ /k

2
yW 4

��
khkHk Ckr kHk�1

�
:

Note that Œ@2w C��ƒ1ŒW.w/�D Œ@
2
w C��ƒ1Œˆ.w/�D 0 when w 2

�
�
1
4
; 0
�
; see (4-6). It is easy to see

that we have the equivalence relation

.@w �Ta/ƒ�2Œ.@w �TA/W �Cƒ�2
�
.@w �Ta/ƒ1Œ.@w �TA/W �

�
Ðƒ�2Œ Qg�: (4-23)

Note that

ƒ1Œ@wˆ�Dƒ1Œ@z'.w=.1C h//�D
e.wC1/jrj� e�.wC1/jrj

e�jrjC ejrj
jrj ;

ƒ1Œˆ�Dƒ1Œ'.w=.1C h//�D
e�.wC1/jrjC e.wC1/jrj

e�jrjC ejrj
 :

It is easy to verify that

ƒ1Œ.@w �TA/W �Dƒ1Œ@wˆ�Tj�jˆ� 2H
1;

ƒ�2�.@w �Ta/ƒ1Œ.@w �TA/W ��

Hk . krhk zW 3kr kHk�1 :

Therefore, from (4-23), we have

.@w �Ta/ƒ�2Œ.@w �TA/W �Ðƒ�2Œ Qg�:
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We reformulate the above equation as

.@w CT�a/ƒ�2Œ.@w �TA/W �Dƒ�2Œ Qg�C Og;

where
Og D error term from Ð equivalence relation:

Recalling the precise formula of a in Lemma 4.4, we know that �a satisfies the assumption in Lemma 4.6.
We can first choose a series of constants f�igkiD1 such that �iC1D 4�i and �k ��15 and then keep iterating
the estimate (4-25). As a result, we have the estimate

ƒ�2Œ.@w �TA/W jwD0�

Hk

.k sup
w2Œ�1=5;0�

�
kƒ�2Œ.@w �TA/W.w; � /�kL2 Ck Qg.w/kHk�1C� Ck Og.w/kHk�1C�

�
.k

�
k.h;ƒ /k yW 4;˛ Ck.h;ƒ /k

2
yW 4

��
khkHk Ckr kHk�1

�
; (4-24)

which concludes the proof. �

Lemma 4.6. Let a 2 �12 .R
2/ and suppose it satisfies the assumption ReŒa.x; �/�� cj�j for some positive

constant c. If u solves the equation

.@w CTa/u.w; � /D g.w; � /;

then we know that the following estimate holds for any fixed and sufficiently small constant � , and
arbitrarily small constant � > 0:

sup
w2Œ�;0�

ku.w/kHk .M 1
2 .a/

1Cj� j

j� j

�
sup

z2Œ4�;0�

ku.w/kHk�2.1��/ C sup
z2Œ4�;0�

kg.z/kH��.1��/

�
: (4-25)

Proof. A detailed proof can be found in [Alazard and Delort 2015] by combining Lemma 2.2.7 and the
proof of Lemma 2.2.8. �

4A2. Paralinearization of the Dirichlet–Neumann operator. In this subsubsection, we use the result we
obtained in the last subsubsection, which is the fact that @wW �TAW doesn’t lose derivatives, to identify
which part of the Dirichlet–Neumann operator loses derivatives.

Recall (3-15). For the reader’s convenience, we rewrite it as

G.h/ D
�
.1Cjrhj2/@wˆ�rh � rˆ

�ˇ̌
wD0

:

Define
V WD rˆ� @wˆrh; V

ˇ̌
wD0
D V:

Now we let w be inside the range
�
�
1
4
; 0
�

instead of being restricted to the boundary. By using (2-7)
and Lemma 2.6, we have the paralinearization result

.1Cjrhj2/@wˆ�rh �rˆÐ T1Cjrhj2@wˆC2T@wˆTrh �rh�Trh �rˆ�Trˆ �rh

Ð T1Cjrhj2@wˆCT2rh@wˆ�rˆ �rh�Trh �rˆ
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D T1Cjrhj2@w.W CT@wˆh/CT2rh@wˆ�rˆ �rh�Trh �r.W CT@wˆh/

Ð T1Cjrhj2@wW CT2rh@wˆ�rˆ �rh�Trh �rW �Trh@wˆ �rh

D T1Cjrhj2@wW �Trh �rW �TV �rh

D T1Cjrhj2 Œ@wW �TAW �C ŒT1Cjrhj2TA�Trh �r�W �TV �rh

D T�W �TV �rhCT1Cjrhj2 Œ@wW �TAW �CR2W; (4-26)
where

R2 WD ŒT1Cjrhj2TA�T.1Cjrhj2/A.1/ �;

and where � is given in (4-2). In (4-26), we used the identity

�D .1Cjrhj2/A.1/� i� �rh;

where A.1/ is given in (4-17). Note that

R2 D T.1Cjrhj2/TA.0/C
�
T.1Cjrhj2/TA.1/�T.1Cjrhj2/A.1/

�
D Ta0TA0C

�
T.a0�1/TA.1/�T.a0�1/]A.1/

�
:

Now, it is easy to see that R2 is an operator of order 0 with an upper bound given by krhk zW 3 . Hence,
we have the estimate

kR2W jwD0kHk D


R2ŒP�1=2ŒW �jwD0�

Hk

. krhk zW 3



P�1=2Œ �TB.h/ h�

Hk

.
�
k.h;ƒ /k yW 4;˛Ck.h;ƒ /k

2
yW 4

��
khkHkCkr kHk�1

�
: (4-27)

Combining (4-26), (4-27), and the estimate (4-22) in Lemma 4.5, it’s easy to see that Proposition 4.1
holds.

Now, we give the postponed proof of Lemma 4.3.

Proof of Lemma 4.3. For fixed w 2
�
�
1
4
; 0
�
, it’s easy to see ˆ.w/D '.w=.1Ch.x/// and that we have

the identity

rx;wˆDrx;z'.w=.1Ch//C

�
�wrh@z'.w=.1Ch//

.1Ch/2
;
�h@z'.w=.1Ch//

1Ch

�
: (4-28)

Therefore, we know that the leading term of rx;wˆ.w/ is rx;z'.w=.1C h//. Under the smallness
estimate (3-1), to estimate rx;wˆ, it is sufficient to estimate rx;z'.w=.1Ch//.

Recall that according to the fixed-point-type formulation of rx;z' in (3-35), we study the linear term
on the right-hand side of (3-35) first. Define

p˙.w; x; �/ WD ˙
e�.wC1/j�j.eh.x/wj�j=.1Ch.x//�1/

e�j�jCej�j
C
e.wC1/j�j.e�h.x/wj�j=.1Ch.x//�1/

e�j�jCej�j

D

X
n�1

1

nŠ

�
˙
e�.wC1/j�j

ej�jCe�j�j
.wj�j/n

�
h.x/

1Ch.x/

�n
C

ej�j

ej�jCe�j�j
ewj�j.wj�j/n

�
h.x/

1Ch.x/

�n�
D

X
n�1

1

nŠ

�
˙f 1n .w; �/gn.x/Cf

2
n .w; �/gn.x/

�
;
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where

f 1n .w; �/ WD
e�.wC1/j�j

ej�jCe�j�j
.wj�j/n; f 2n .w; �/ WD

ej�j

ej�jCe�j�j
ewj�j.wj�j/n; gn.x/ WD

�
h.x/

1Ch.x/

�n
:

It is easy to verify that

ƒ1Œrx'�.x; w=.1Ch.x///Dƒ1Œrx'�.x; w/CP1 .x;w/;

ƒ1Œ@z'�.x; w=.1Ch.x///Dƒ1Œ@z'�.x; w/CP2 .x;w/;

where

P1 .x;w/WD
1

4�2

Z
R2
eix�� O .�/i�pC.w;x;�/d�; P2 .x;w/WD

1

4�2

Z
R2
eix�� O .�/j�jp�.w;x;�/d�:

We will show that, under the smallness estimate (3-1), the size of ƒ1Œrx;z'�.x; w=.1Ch.x/// is
almost same as the size of ƒ1Œrx;z'�.x; w/. For k 2 Z, we define

p˙;k.w;x;�/ WD
1

4�2

Z
R2
eix��Fx.p/.w;�;�/ k.�/d�D

1

4�2

X
n�1

1

nŠ

�
˙f 1n .w;�/Cf

2
n .w;�/

�
PkŒgn�.x/;

P1;k .x;w/ WD

Z
R2
eix�� O .�/i�pC;k.w;x;�/d�;

P2;k .x;w/ WD

Z
R2
eix�� O .�/j�jp�;k.w;x;�/d�:

(4-29)

Since P2 can be treated in the same way as P1 , we only estimate P1 in detail here. We have the
decomposition

P1 D
X

k1;k22Z

P1;k1 k2 D IC II; ID
X
k2�k1

P1;k2 k1 ; IID
X
k1�k2

P1;k2 k1 :

From the bilinear estimate of L2�L1 type (2-3) in Lemma 2.1, it is easy to see that we have the following
estimates

kIkHk .
�X
k1

22k1C2kk1;CkPk1 k
2
L2

�X
n�1

1

nŠ
kP�k1gnkL1

�2�1
2

. kr kHkkhk zW 1 ;

kIIkH s .
X
n�1

1

nŠ

X
k2�k1

2k2Ckk1;CkPk1gnkL2kPk2 kL1 . khkH sC1kr k zW 1 ;

kIk zW 
 . khk zW 
kr k zW 
 ; kIIk zW 
 . khk zW 
kr k zW 
 :

Therefore 

ƒ1Œrx;z'��x;w=.1Ch.x//�

Hk . kr kHkCkhkHkC1kr k zW 1 ;

ƒ1Œrx'��x;w=.1Ch.x//�

 zW 
 . kr k zW 
 Ckhk zW 
kr k zW 
 . kr k zW 
 ;

ƒ1Œ@z'��x;w=.1Ch.x//�

 zW 
 . kƒ2 k zW 
 Ckhk zW 
kr k zW 
 :
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From the above estimates and (4-28), we conclude

kƒ1Œrxˆ�k zW 
 . kr k zW 
 ; kƒ1Œ@wˆ�k zW 
 . kƒ2 k zW 
 Ckhk zW 
kr k zW 
 ; (4-30)

kƒ1Œrx;wˆ�kHk .


ƒ1Œrx;z'��x;w=.1Ch/�

HkC



ƒ1Œrx;z'��x;w=.1Ch/�

 zW 0khkHkC1

. kr kHkCkhkHkC1kr k zW 1 : (4-31)

Following a similar procedure, we can handle the integral part in (3-35) in the same way. Similar to
what we did in the proof of Lemma 3.2, we use the size of the symbol directly when j�j � 1 and estimate
the associated kernel when j�j � 1. As a result, we have the estimates

all terms in the right-hand side of (3-35) except for the linear part

�
x;w=.1Ch.x//

�


Hk

.
3X
iD1

kgi .z; � /kL1z HkCkhkHkC1kgi .z; � /kL1z zW 0 . kr k zW 0khkHkC1Ckr kHkkhk zW 0

. kr k zW 0khkHkC1Ckr kHkkhk zW 0 : (4-32)

all terms in the right-hand side of (3-35) except for the linear part
�
x;w=.1Ch.x//

�


zW 


.
X

iD1;2;3

kgi .z; � /kL1z zW 
 . khk zW 
C1kr k zW 
 : (4-33)

From (4-28), (4-30)–(4-33), now it’s easy to see that estimates (4-7) and (4-8) hold.
Now, we proceed to prove (4-9). From (4-28) and the same procedure as above, we have the estimate

kƒ�2Œrx;wˆ�kL2 .


ƒ�2Œrx;z'��x;w=.1Ch.x//�

L2CkhkH1



@z'�x;w=.1Ch.x//�

 zW 0

. khkH1

�
kƒ k yW 2;˛Ckhk zW 1kr k zW 1

�
C

3X
iD1

kgikL1z L2 : (4-34)

Recall (3-25) and (3-26). Note that r' appears together with rh inside the quadratic terms of gi .z/,
i 2 f1; 2; 3g. When estimating the L1z L

2 norm of gi .z/, i 2 f1; 2; 3g, we always put r' in L2 and put
@z' in L1. As a result, the following estimate holds, i.e., our desired estimate (4-9) holds:

(4-34). khkH1kƒ k yW 2;˛C
�
k.h;ƒ /k yW 2;˛Ck.h;ƒ /k yW 2

�
.khkH1Ckr kL2/

.
�
k.h;ƒ /k yW 2;˛Ck.h;ƒ /k yW 2

�
.khkH1Ckr kL2/: �

4B. Paralinearization of the equation satisfied by the velocity potential. In this subsection, our main
goal is to do the paralinearization process for the nonlinearity of the equation satisfied by  in (1-7),
which shows which part of the nonlinearity actually loses derivatives.

More precisely, the main result of this subsection is stated in the following proposition,

Proposition 4.7. We have the paralinearization

1
2
jr j2�

.rh �r CG.h/ /2

2.1Cjrhj2/
Ð TV �rŒ �TB.h/ h��TBG.h/ (4-35)

for the nonlinearity of the equation satisfied by  .
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Proof. Recall that V Dr �rhB . From (2-7) and the composition Lemma 2.6, we have

1
2
jr j2�

.rh �r CG.h/ /2

2.1Cjrhj2/

D
1
2
jr j2� 1

2
.1Cjrhj2/B2

D
1
2
jV j2CV �rhBC 1

2
jrhj2B2� 1

2
.1Cjrhj2/B2 D 1

2
jV j2CV �rhB� 1

2
B2

Ð TV �V CTB.V �rh/CTV �rhB�TBB D TV �V CTV �rhB�TBG.h/ 

D TV �r �TV �.rhB/CTV �rhB�TBG.h/ 

Ð TV �r �TV TB �rh� ŒTV �Trh�TV �rh�B�TBG.h/ 

Ð TV � Œr �TB �rh��TBG.h/ Ð TV �rŒ �TB.h/ h��TBG.h/ : �

4C. Symmetrization of the full system. Based on the paralinearization results we obtained in previous
subsections, in this subsection, we will find out the good substitution variables by doing the symmetrization
process such that the resulting system has the requisite symmetric structures inside.

Define ! D  �TB.h/ h, which is the so-called good unknown variable. After combining the good
decomposition (4-1) in Proposition 4.1 and the good decomposition (4-35) in Proposition 4.7, we reduce
the system of equations satisfied by h and  to the system of equations satisfied by h and !,�

@thDƒ
2!CT��j�j!�TV �rhC zF .h/ ;

@t! D�Tah�TV �r!Cf
0;

(4-36)

where

a WD 1C@tBCV �rB;

which is the so-called Taylor coefficient, and f 0 is a good error term in the sense of estimate (4-5).
However, the system (4-36) cannot be used to do the energy estimate. When using the system (4-36)

to do the energy estimate, one might find that the termZ
R2
@Nx h@

N
x ŒT��j�j!�C@

N
xƒ!@

N
xƒŒ�Tah�; where N is the prescribed top derivative level, (4-37)

loses one derivative and cannot be simply treated.
To get around this difficulty, we will symmetrize the system (4-36) by following the same procedures

in [Alazard, Burq and Zuily 2014a]. Define

U1 WD hCT˛h; U2 WDƒŒ!CTˇ!�Ð ŒTp��j�j1=2!�Cƒ!; U WD U1C iU2; (4-38)

where

˛ WD
p
a�1; ! WD  �TB.h/ h; ˇ WD

p
�=j�j�1D

4
p
.1Cjrhj2/�.rh ��=j�j/2�1: (4-39)

Note that

ƒ1Œa�Dƒ1Œ@tƒ
2 �D�ƒ2h; ƒ1Œ@ta�D�ƒ

4 ; ƒ1Œ@t˛�D�
1
2
ƒ4 ; ƒ1Œ˛�D�

1
2
ƒ2h:
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We take the estimates of the Taylor coefficient in Lemma 4.8 for granted first. Then it is easy to see
that the following estimate and equivalence relations hold:

k.U1; U2/�.h;ƒ /kHk . k.h;ƒ /k zW 3k.h;ƒ /kHk ; (4-40)

@tU1 Ðƒ2!C ŒT��j�j!��TV �rhCT@t˛hCT˛Œ@th�

Ð Œƒ2�Tj�j�!CT�!�TV �rU1CTV �T˛rhCT˛
�
T�!�TV �rh

�
Ð Œƒ2�Tj�j�ƒ�1U2CT�pa!�TV �rU1 ÐƒU2C ŒTp�˛Tp�!��TV �rU1
ÐƒU2C ŒTp�˛U2��TV �rU1; (4-41)

@tU2 Ðƒ.1CTˇ /Œ�Tah�TV �r!�CƒT@tˇ! Ð �ƒU1� ŒTp�T˛U1��TV �rTp�!CT@tˇƒ!

Ð �ƒU1� ŒTp�˛U1��TV �rU2CT@tˇU2: (4-42)

Hence, the problematic terms in (4-37) become the terms (modulo good error terms)Z
R2
@Nx U1@

N
x ŒT
p
�˛
U2��@

N
x U2@

N
x ŒT
p
�˛
U1�; where N is the prescribed top derivative level. (4-43)

Therefore, we can move derivatives in (4-43) around so that these cubic terms do not lose derivatives.
See (5-5) for more details.

4D. Estimates of the Taylor coefficient. The main goal of this subsection is to obtain some basic esti-
mates for the Taylor coefficient, which are necessary for the energy estimate.

Lemma 4.8. Under the smallness estimate (3-1), for 
 � 3, 
1� 2 we have the estimates

ka�1kHk . krhkHkCk.h;r /kHkk.h;r /k zW 2 ;

ka�1k zW 
 . krhk zW 
 C
�
kr k zW 
C1Ckrhk zW 


�2
;

k@takHk . kr kHkC1Ck.h;r /k zW 3k.h;r /kHkC1 ;

k@tak zW 
1
. kƒ2 k zW 
1C1

Ck.rh;r /k2
zW 
1C1

:

Proof. Recall (4-3), (1-7), and

aD 1CV �rBC@tB; B D @z'=.1Ch/jzD0:

To estimate a and @ta, it is sufficient to estimate @z@t' and @z@2t '. From the fixed-point-type formulation
of rx;z' in (3-35), we can derive the equality

rx;z@t' D

"�
e�.zC1/jrjCe.zC1/jrj

e�jrjCejrj

�
r@t ;

e.zC1/jrj�e�.zC1/jrj

e�jrjCejrj
jrj@t 

#
CŒ0; @tg1.z/�C

C

Z 0

�1

ŒK1.z; s/�K2.z; s/�K3.z; s/�.@tg2.s/Cr�@tg3.s// ds

C

Z 0

�1

K3.z; s/jrj sign.z�s/@tg1.s/�jrjŒK1.z; s/CK2.z; s/�@tg1.s/ ds: (4-44)
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Following the same fixed-point-type argument that we used in the proof of Lemma 3.3, we can derive the
estimates

krx;z@t'kL1z zW 


. krhk zW 
 Ck@thk zW 
C1krx;z'kL1z zW 
 . krhk zW 
 C
�
kr k zW 
C1Ckrhk zW 


�2
; (4-45)

krx;z@t'kL1z Hk

. kr@t kHkCkhkHkC1krx;z@t'k zW 1Ck@thkHkC1krx;z'k zW 1Ck@thk zW 1krx;z'kL1z Hk

. krhkHkCk.h;r /kHkk.h;r /k zW 2 :

We can take another time derivative at both sides of (4-44) to derive a fixed-point-type formulation for
rx;z@

2
t '. Following a similar argument, we can derive the estimate

krx;z@
2
t 'kL1z zW 
 . k@2t k zW 
C1Ck@thk zW 
C1k@trx;z'kL1z zW 
 Ck@

2
t hk zW 
C1krx;z'kL1z zW 
 :

Recalling the system of equations satisfied by h and  in (1-7), we have

@2t hD @tG.h/ D @t Œ.1Cjrhj
2/B�rh �r �;

@2t D�@thCr �r@t C.1Cjrhj
2/B@tBCrh �r@thB

2:

Hence,

k@2t k zW 
C1 . kƒ2 k zW 
C1C
�
krhk zW 
C1Ckr k zW 
C1

�2
:

Combining the above estimate, (4-45) and (3-50) in Lemma 3.3, we have

krx;z@
2
t 'kL1z zW 
 . kƒ2 k zW 
C1C

�
krhk zW 
C1Ckr k zW 
C1

�2
:

Following the same argument, we derive the L2-type estimate of @2t ',

krx;z@
2
t 'kL1z Hk . k@2t kHkC1Ck@thkHkC1krx;z@t'kL1z zW 1Ck@thk zW 1krx;z@t'kL1z Hk

Ck@2t hkHkkrx;z'kL1z zW 1Ck@
2
t hk zW 1krx;z'kL1z Hk

CkhkHkC1k@2trx;z'kL1z zW 1Ckhk zW 1krx;z@
2
t 'kL1z Hk ;

which further gives us the estimate

krx;z@
2
t 'kL1z Hk . kƒ2 kHkC1Ckrhk zW 2kƒ

2 kHkC1Ckr k zW 2khkHkC1

. kr kHkC1Ck.h;r /k zW 3k.h;r /kHkC1 :

Therefore, our desired estimates of the Taylor coefficient hold. �

5. Energy estimate

The goal in this section is to prove our main result, Theorem 1.1. Since the energy of .U1; U2/ is
comparable with the energy of .h;ƒ /, see(4-40), it is sufficient to estimate the energy of .U1; U2/. Let
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N0 be the prescribed top regularity level. From (4-41) and (4-42), we know that the system of equations
satisfied by .U1; U2/ is given by�

@tU1�ƒU2 D Tp�˛U2�TV �rU1CR1;
@tU2CƒU1 D�Tp�˛U1�TV �rU2CR2:

(5-1)

The precise formulations of good remainder terms R1 and R2 are not so important in the energy estimate.
From (4-41) and (4-42), we know that they are good error terms, i.e.,

kR1kHN0CkR2kHN0 .N0
�
k.h;ƒ /k yW 4;˛Ck.h;ƒ /k

2
yW 4

�
k.�;ƒ /kHN0 : (5-2)

Define the energy of U1 and U2 as

EN0.t/ WD
1

2

�
kU1kL2CkU2kL2C

X
kCjDN0
0�k;j2Z

k@k1@
j
2U1k

2
L2
Ck@k1@

j
2U2k

2
L2

�
: (5-3)

From (5-1), we haveˇ̌̌̌
d

dt
EN0.t/

ˇ̌̌̌
. k.U1; U2/kHN0k.R1;R2/kHN0

C

X
kCjDN0
0�k;j2Z

ˇ̌̌̌Z
R2

�
@k1@

j
2U1@

k
1@
j
2 Œ�TV �rU1�C@

k
1@
j
2U2@

k
1@
j
2 Œ�TV �rU2�

�
dx

ˇ̌̌̌

C

ˇ̌̌̌Z
R2
@k1@

j
2U1@

k
1@
j
2.ŒT
p
�˛
U2�/�@

k
1@
j
2U2@

k
1@
j
2.ŒT
p
�˛
U1�/

ˇ̌̌̌
.N0

�
krV k zW 1Ck.h;ƒ /k yW 4;˛Ck.h;ƒ /k

2
yW 4

�
k.U1; U2/k

2
HN0
CEN0

.N0
�
k.h;ƒ /k yW 4;˛Ck.h;ƒ /k

2
yW 4

�
k.U1; U2/k

2
HN0
CEN0 ; (5-4)

where

EN0 D
X

kCjDN0
0�k;j2Z

ˇ̌̌̌Z
R2

�
@k1@

j
2U1T

p
�˛
@k1@

j
2U2�@

k
1@
j
2U2T

p
�˛
@k1@

j
2U1

�ˇ̌̌̌

D

X
kCjDN0
0�k;j2Z

ˇ̌̌̌Z
R2

�
@k1@

j
2U1

�
Tp

�˛
�.Tp

�˛
/�
�
@k1@

j
2U2

�ˇ̌̌̌
: (5-5)

Recall that
p
�˛ 2M

1=2
1 is a symbol of order 1

2
. Note that it is real. Hence, from Lemma 2.8, we know

that .
p
�˛/� is

p
�˛, and that the operator .Tp

�˛
/��Tp

�˛
is of order �1

2
. As a result, the estimate

EN0 .M
1=2
1 .
p
�˛/k.U1; U2/k

2
HN0
. krhk zW 2k.U1; U2/k

2
HN0

(5-6)

holds. Combining the above estimate with (5-4) and (4-40), we haveˇ̌̌̌
d

dt
EN0.t/

ˇ̌̌̌
.N0

�
k.h;ƒ /k yW 4;˛Ck.h;ƒ /k

2
yW 4

�
k.h;ƒ /k2

HN0
:
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Appendix: Quadratic terms of the good remainders

In this section, we calculate explicitly the quadratic terms of the good reminder terms R1 and R2 to help
readers understand the fact that we can gain one derivative in the new energy estimate (1-12) for the
inputs of quadratic terms, which are put in the L1-type space. Recall (4-38) and (4-39). We have

ƒ1ŒB�Dƒ
2 ; ƒ1Œa�Dƒ1Œ@tB�D�ƒ

2h; ƒ1Œ˛�D�
1
2
ƒ2h; ƒ1Œˇ�D 0:

Recall (5-1). By using the above definitions, we can reduce the equations satisfied by U1 and U2 to the
equations (

@th�ƒ
2 D zQ1.h;  /Cƒ2ŒR1�.h;  /Ccubic and higher1;

@tƒ CƒhD zQ2.h;  /Cƒ2ŒR2�.h;  /Ccubic and higher2;
(5-7)

satisfied by h and  , where

zQ1.h;  /D�ƒ
2.Tƒ2 h/C

1
2
Tƒ2hƒ

2 C 1
2
Tƒ4 h�

1
2
.Tƒ2hjrj

1=2ƒ /�Tr �rh;

zQ2.h;  /Dƒ.Tƒ2 ƒ
2 �Tƒ2hh/Cƒ

�
1
2
Tƒ2hh

�
C
1
2
.Tƒ2hjrj

1=2h/�Tr �rƒ :

Recall (1-7) and (3-55) in Lemma 3.4. We have

ƒ2ŒR1�.h;  /Dƒ2ŒG.h/ �� zQ1.h;  /

D�r �.Thr /�r �R.h;r /�T�2 h�ƒ
2.Thƒ

2 /

�ƒ2R.h;ƒ2 /C 1
2
Tƒ2hƒ.ƒ�jrj

1=2/ � 1
2
Tƒ4 h; (5-8)

ƒ2ŒR2�.h;  /Dƒ
�
�
1
2
jr j2C 1

2
jƒ2 j2

�
� zQ2.h;  /

Dƒ.�Tr �r /CTr �rƒ 

C
1
2

�
�ƒ.Tƒ2hh/CTƒ2hjrj

1=2h
�
�
1
2
ƒR.r ;r /C 1

2
ƒR.ƒ2 ;ƒ2 /: (5-9)

Note that

ƒ�jrj1=2 D jrj1=2.
p

tanhjrj�1/D
�2e�jrjjrj1=2

.
p

tanhjrjC1/.ejrjCe�jrj/
: (5-10)

Now, it is easy to see that ƒ2ŒR2�.h;  / and ƒ2ŒR2�.h;  / do not lose derivatives. It remains to check
that we can gain one derivative in the L1-type space. By (5-8) and (5-9), it is sufficient to check the term

�r �
�
Thr 

�
�ƒ2.Thƒ

2 /: (5-11)

The corresponding symbol for the above quadratic terms is�
� ���j�jj�j tanh j�j tanh j�j

�
�.���; �/; j���j � j�j � j�j:

We decompose this symbol into two parts:

p1.���; �/D � ���j�jj�j D �
1
2
j���j2C 1

2
j�j2C 1

2
j�j2�j�jj�j D �1

2
j���j2C 1

2
.j�j�j�j/2;

p2.���; �/D j�jj�j.1� tanh j�j tanh j�j/:
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Now, it is clear that the first part of (5-11), which is determined by p1.���; �/, does not lose derivatives
and gains two derivatives for h. For the second part of (5-11), which is determined by p2.���; �/, we
can lower its regularity to L2. Hence, we can place  in L1 and h in L2. As a result, we always gain
one derivative for inputs of quadratic terms that are in L1.
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