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We study the ground states of the following generalization of the Kirchhoff–Love functional,

J� .u/D
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�

.�u/2
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� .1� �/
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det.r2u/�
Z
�

F.x; u/;

where � is a bounded convex domain in R2 with C 1;1 boundary and the nonlinearities involved are
of sublinear type or superlinear with power growth. These critical points correspond to least-energy
weak solutions to a fourth-order semilinear boundary value problem with Steklov boundary conditions
depending on �. Positivity of ground states is proved with different techniques according to the range of
the parameter � 2 R and we also provide a convergence analysis for the ground states with respect to �.
Further results concerning positive radial solutions are established when the domain is a ball.

1. Introduction

The energy of a thin hinged plate under the action of a vertical external force of density f can be computed
by the Kirchhoff–Love functional

I� .u/D

Z
�

.�u/2

2
� .1� �/

Z
�

det.r2u/�
Z
�

f u;

where the bounded domain �� R2 describes the shape of the plate and u its deflection from the original
unloaded position. Since the plate is supposed to be hinged, the natural space in which to consider our
problem is H 2.�/\H 1

0 .�/. The coefficient �, called the Poisson ratio, depends on the material and
measures its transverse expansion (resp. contraction), according to its positive (resp. negative) sign, when
subjected to an external compressing force. Due to some thermodynamic considerations in elasticity
theory, the physical relevant interval for � is

�
�1; 1

2

�
. A detailed derivation of the model can be found in

[Ventsel and Krauthammer 2001], while a mathematical analysis concerning the positivity-preserving
property for I� has been carried out by Parini and Stylianou [2009]. Besides a further extension of their
results, here we are interested in a direct generalization of the Kirchhoff–Love functional, namely when
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the density f may depend also on the deflection of the plate itself:

J� .u/D

Z
�

.�u/2

2
� .1� �/

Z
�

det.r2u/�
Z
�

F.x; u/; (1-1)

where F.x; s/D
R s
0 f .x; t/ dt , and furthermore we let � 2 R. We are mainly interested in a power-type

nonlinearity, namely

F.x; u/D
g.x/jujpC1

pC 1
; where g 2 L1.�/ and g > 0 in �: (1-2)

In particular we look for existence and positivity of those critical points which have the lowest energy,
referred to in the literature as ground states.

If the boundary is sufficiently smooth, searching for critical points of J� with the nonlinearity (1-2) is
equivalent to finding weak solutions of the fourth-order semilinear boundary problem�

�2uD g.x/jujp�1u in �;
uD�u� .1� �/�un D 0 on @�;

(1-3)

where un stands for the normal derivative of u on @� and � is the signed curvature of the boundary
(positive on convex parts). These kinds of mixed boundary conditions are usually called Steklov from
their first appearance in [Stekloff 1902] and they are an intermediate situation between Navier boundary
conditions (when � D 1) and Dirichlet boundary conditions (u D un D 0, seen as the limit case as
� !C1).

Although fourth-order (or more generally, higher-order) problems have garnered attention even from
the first decade of the 20th century, most of the literature deals with the Navier case, where the maximum
principle still holds, or with Dirichlet boundary conditions, where Green’s function arguments are available.
Conversely, problems like (1-3) have been intensively studied only in the last decade, focusing on the
associated boundary eigenvalue problems (see [Ferrero et al. 2005; Bucur et al. 2009]), the positivity-
preserving property of the solution operator (see [Gazzola and Sweers 2008]) and some semilinear
problems (see, for instance, [Berchio and Gazzola 2011; Berchio et al. 2006; 2007]).

This paper is a contribution to the study of semilinear subcritical biharmonic Steklov problems in low
dimension. Here, we mainly focus on a nonlinearity of power-type as in [Berchio et al. 2007], where
the critical exponent in high dimensions is considered and the domain is a ball. On the other hand,
although some related subcritical problems have already appeared in [Berchio et al. 2006], we consider a
slightly different kind of nonlinearity; we let � be lying not only in the physical relevant interval, and the
techniques involved are different.

Besides the existence of ground states for J�, we mainly investigate their positivity. The question is
quite challenging since, like most fourth-order problems, one has to face the lack of a maximum principle.
Moreover, we will show that positivity is strongly related to the parameter � and different techniques
are needed to cover different regions in which � lies: the superharmonic method, some convergence
arguments and the dual cones decomposition.

The main results contained in this paper may be summarized as follows:
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Theorem 1.1 (existence, positivity). Let ��R2 be a bounded convex domain with @� of class C 1;1 and
let f .x; s/D g.x/jsjp�1s, with p 2 .0; 1/[ .1;C1/ and g 2 L1.�/, g > 0 a.e. in �. Then there exist
�� � �1 and �1 > 1 (depending on � and possibly infinite) such that the functional J� has no positive
critical points if � � ��, while it admits (at least) a positive ground state if � 2 .��; �1/.

Theorem 1.2 (convergence). Under the previous assumptions for � and f , let .uk/k2N be a sequence of
ground states for the respective sequence of functionals .J�k /k2N. Up to a subsequence,

(i) if �k& ��, then uk! 0 in H 2.�/ in the case p > 1, while uk!C1 in L1.�/ if p 2 .0; 1/;

(ii) if �k ! 1, then uk ! Nu in W 2;q.�/ for every q > 2, where Nu is a ground state for the Navier
problem;

(iii) if �k!C1, then uk! U in H 2.�/, where U is a ground state for the Dirichlet problem.

Notice that Theorem 1.1 might also be seen as an extension to the semilinear setting of the main
positivity results established by Gazzola and Sweers [2008, Theorem 4.1] for the linear case.

Finally, we want to stress our attempt to impose only the strictly necessary assumptions on the domain
in order to obtain our results and to have a well-defined second boundary condition in (1-3).

The paper is organized as follows: after a few preliminary results (Section 2), we establish existence
(Section 3) and positivity (Section 4) of ground states of J� when � belongs to the range .�1; 1� (which
contains the relevant physical interval) both for f sublinear and superlinear; the latter is due to an
argument based on the Nehari manifold. Except for the last section, the rest of the paper is devoted to
proving Theorem 1.1 in the cases � � �1 (Section 5) and � > 1 (Section 6). While the first situation
is quite easy to handle, the positivity in the second is more delicate and requires different tools. In this
context and also for this purpose, Theorem 1.2 will be established. Finally, Section 7 provides a further
investigation in the case � is the unit ball, concerning generic positive radially symmetric solutions.

2. Notation and preliminary results

Throughout the paper, r2u stands for the Hessian matrix of u and the derivatives are denoted by subscripts
(ux , uxy , . . . ). Moreover, n and � will be the exterior normal and the tangent vector, and un and u� the
normal and the tangential derivative of u. We say that u is superharmonic in � when ��u� 0 in � and
uD 0 on @�; u is strictly superharmonic when we have in addition that ��u 6� 0.

Let N � 2. We say �� RN is a domain when it is open and connected; moreover, � has a boundary
of class C k;1 if @� can be described in local coordinates by a C k function with Lipschitz continuous
k-th derivatives. Finally, � satisfies a uniform external ball condition if there exists R > 0 such that for
all x 2 @� there exists a ball BR of radius R such that x 2 @BR and BR � RN n�.

The topological dual of a normed space X is denoted by X�; for q 2 Œ1;C1�, the Lq.�/ norm is
denoted by k � kq and we have jrk � j

q
WD

� X
j˛jDk

kD˛ � kqq

�1
q

;

where ˛ is a multi-index.
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Let us also recall that, if��R2 is a bounded domain with Lipschitz boundary, by Sobolev embeddings
(see [Adams and Fournier 2003, Theorem 4.12, Part II]), H 2.�/ ,! C 0;�.�/ for any � 2 .0; 1/; thus we
have continuous embedding in Lq.�/ for every q 2 Œ1;1�.

Finally, we present some very useful facts about equivalence of norms inH 2.�/\H 1
0 .�/. The quoted

results have been already obtained by Nazarov, Stylianou and Sweers in [Nazarov et al. 2012]; we will
include the proof of the second equivalence in order to have a self-contained exposition.

Lemma 2.1. Let �� RN bounded with a Lipschitz boundary and � 2 .�1; 1�.

(i)
jr2 � j

2
and k � kH2.�/ are equivalent norms on H 2.�/\H 1

0 .�/.

(ii) If � D 1, assume additionally that � satisfies a uniform external ball condition. Then

kukH� .�/ WD

�Z
�

.�u/2� 2.1� �/

Z
�

det.r2u/
�1
2

(2-1)

defines a norm on H 2.�/\H 1
0 .�/ equivalent to the standard norm.

Proof. We prove here only (ii) and we refer to [Nazarov et al. 2012, Corollary 5.4] for a proof of (i).
Firstly

kuk2H� .�/ D

Z
�

u2xxCu
2
yy C 2u

2
xy C 2�.uxxuyy �u

2
xy/

�
jr2uj2

2
C 2j� j

�
u2xxCu

2
yy

2
Cu2xy

�
D .1Cj� j/

jr2uj2
2
:

Moreover, if � 2 .�1; 1/, one has

kuk2H� .�/ D

Z
�

u2xxCu
2
yy C 2.1� �/u

2
xy C 2�uxxuyy

�

Z
�

u2xxCu
2
yy C 2.1� �/u

2
xy � j� j.u

2
xxCu

2
yy/� .1� j� j/

jr2uj2
2
: (2-2)

The proof is completed by applying (i) and noticing that the map

.u; v/H� 7!

Z
�

�u�v� .1� �/

Z
�

uxx vyy Cuyy vxx � 2uxy vxy

defines a scalar product on H 2.�/\H 1
0 .�/ for every � 2 .�1; 1/ by the inequality (2-2). In the special

case � D 1, one has kukH1.�/ D k�uk2, which is an equivalent norm on H 2.�/\H 1
0 .�/ provided the

external ball condition is satisfied (see [Adolfsson 1992]). �

In the following, C0 D C0.�/ and CA D CA.�/ indicate the smallest positive constants such that

kuk2
H2.�/

WD kuk22C
jruj2

2
C
jr2uj2

2
� C0

jr2uj2
2

(2-3)

and
kuk2

H2.�/
� CAk�uk

2
2 (2-4)

for every u 2H 2.�/\H 1
0 .�/.
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3. Existence of ground states

In this section we investigate the existence of critical points of the generalized Kirchhoff–Love functional
J� WH

2.�/\H 1
0 .�/! R defined in (1-1) in the physical relevant interval � 2 .�1; 1�. Hereafter, we

assume � to be a bounded domain in R2. Concerning the nonlinearity, the functional J� is well defined
once we impose F. � ; s/2L1.�/ and F.x; � /2C 1.R/ (and thus there exists f .x; � / continuous such that
F.x; s/D

R s
0 f .x; t/ dt) and a power-type growth control on F, namely the existence of a; b 2 L1.�/

such that jF.x; s/j � a.x/C b.x/jsjq for some q > 0. With these assumptions on F, it is a standard fact
to prove that J� is a C 1 functional with Fréchet derivative

J 0� .u/Œv�D

Z
�

�u�v� .1� �/

Z
�

.uxx vyy Cuyy vxx � 2uxy vxy/�

Z
�

f .x; u/v:

Notice that, if � satisfies the assumptions of Lemma 2.1, we can rewrite the functional as

J� .u/D
1
2
kuk2H� .�/�

Z
�

F.x; u/:

Our aim is to investigate the ground states of the functional J�, i.e., the critical points on which the
functional assumes the lowest value. In fact, besides the interest from a physical point of view, we are
able to characterize them variationally and thus to apply a larger number of analytical tools.

Since the geometry of the functional plays an important role, from now on we have to distinguish
between the sublinear case, that is, when the density f has at most a slow linear growth in the real
variable (as it will be specified in the following), and the superlinear case, the opposite one. In fact, we
will see that in the first case J� behaves similarly to the linear Kirchhoff–Love functional studied in
[Parini and Stylianou 2009] since it is coercive and ground states are global minima, while, in the second
case, J� has a mountain pass geometry and the ground states are saddle points. Moreover, although in
the sequel we will be mainly interested in the power-type nonlinearity as in (1-2), in the sublinear case
we can easily generalize our analysis to a larger class of nonlinearities, as specified in Proposition 3.1.

We exclude from our analysis the case of general linear growths for the nonlinearity, for instance
f .x; u/D �g.x/u, since (1-3) becomes an eigenvalue problem and can be investigated with standard
techniques (see also [Berchio et al. 2006, Theorem 4]).

Sublinear case.

Proposition 3.1. With the assumptions for � and � as in Lemma 2.1, let p 2 .0; 2/ and suppose

jF.x; s/j � d.x/C c.x/jsjpC 1
2
.1� j� j/C�10 s2; (H)

where c; d 2 L1.�/. Then the functional J� is weakly lower semicontinuous and coercive; hence there
exists a global minimizer of J� in H 2.�/\H 1

0 .�/.

Proof. Let .uk/k2N �H
2.�/\H 1

0 .�/ 3 u be such that uk*u weakly in H 2.�/; since it is bounded
in H 2.�/ and consequently in L1.�/, one has

jF.x; uk/j � d.x/C c.x/M
p
C
1
2
.1� j� j/C�10 M 2
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for some M >0, which is integrable over �. Moreover, by the compactness of the embedding H 2.�/ ,!

Lp.�/, there exists a subsequence .ukj /j2N such that ukj ! u in Lp.�/ for a suitable p � 1, so
F.x; ukj .x//! F.x; u.x// a.e. in � by continuity of F.x; � /. Hence, by the dominated convergence
theorem, we have

R
� F.x; ukj /!

R
� F.x; u/. This, together with the weakly lower semicontinuity of

the norm, implies the same property for J�. If � 2 .�1; 1/, by (2-3)

J� .u/�
1
2
.1� j� j/

jr2uj2
2
�kdk1�C

p
kck1kuk

p

H2.�/
�
1
2
.1� j� j/C�10 kuk

2
2

�
1
2
.1� j� j/C�10

jr2uj2
2
�kck1C

pC
p
2

0

jr2ujp
2
�kdk1I

by (i) of Lemma 2.1, we deduce that J� .u/ ! C1 as kukH2.�/ ! C1, since p 2 .0; 2/. Easier
computations provide a similar estimate to conclude the proof also if � D 1. �

Remark 3.2 (model case). As an application of Proposition 3.1, we may consider the following kind of
sublinearity:

F.x; u/D g.x/jujpC1C d.x/u;

where p 2 .0; 1/ and d; g 2 L1.�/. In this case the functional is coercive and verifies (H). Notice also
that if g D 0 we retrieve the linear Kirchhoff–Love functional considered in [Parini and Stylianou 2009].

Superlinear case. This case is more involved and we have to restrict to the nonlinearity (1-2) with p > 1:

J� .u/ WD

Z
�

.�u/2

2
� .1� �/

Z
�

det.r2u/�
Z
�

g.x/jujpC1

pC 1
: (3-1)

Here the functional is not coercive anymore: in fact, fixing any u 2 H 2.�/\H 1
0 .�/ n f0g, we have

J� .tu/!�1 as t!C1. Following some arguments of [Castro et al. 1997; Grumiau and Parini 2008],
we will make use of the method of the Nehari manifold to infer the existence of a (nontrivial) critical
point. After some preliminary results, we will show that in our manifold the infimum of J� is attained
and then, using a deformation lemma, we will prove it is a critical point for J� in H 2.�/\H 1

0 .�/.
Let us define the Nehari manifold of J� as the set

N� WD
˚
u 2 .H 2.�/\H 1

0 .�// n f0g
ˇ̌
J 0� .u/Œu�D 0

	
;

which clearly contains all nontrivial critical points of J�. First of all, notice that u 2N� if and only ifZ
�

.�u/2� 2.1� �/

Z
�

det.r2u/D
Z
�

g.x/jujpC1;

so one has two equivalent formulations for J� restricted on N� ,

J� jN� .u/D

�
1

2
�

1

pC 1

�Z
�

g.x/jujpC1D

�
1

2
�

1

pC 1

��Z
�

.�u/2�2.1��/

Z
�

det.r2u/
�
; (3-2)

which implies J� jN� .u/ > 0 for every u 2N�.
A crucial step will be to study what happens on the half-lines of H 2.�/\H 1

0 .�/:
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Lemma 3.3. Let u 2H 2.�/\H 1
0 .�/ n f0g and the half-line ru be defined as ru WD ftu j t > 0g. The

intersection between ru and N� consists of a unique point t�.u/u, where

t�.u/ WD

�R
�.�u/

2� 2.1� �/
R
� det.r2u/R

� g.x/juj
pC1

� 1
p�1

: (3-3)

Moreover J� .t�.u/u/Dmaxt>0 J� .tu/.

Proof. For t > 0 and a fixed u 2H 2.�/\H 1
0 .�/ n f0g, we have tu 2N� if and only if

t2
�Z
�

.�u/2� 2.1� �/

Z
�

det.r2u/
�
D tpC1

Z
�

g.x/jujpC1;

from which we deduce t D t�.u/. Moreover, define

�.t/ WD J� .tu/D
t2

2

�Z
�

.�u/2� 2.1� �/

Z
�

det.r2u/
�
�
tpC1

pC 1

Z
�

g.x/jujpC1:

If we look for Nt > 0 such that �0.Nt /D 0, we find again that Nt D t�.u/ and, since �0.t/.t � t�.u// < 0 for
t ¤ t�.u/, we have that t�.u/u is the unique global maximum in the half-line ru. �

Lemma 3.4. The Nehari manifold is bounded away from 0; i.e., 0 …N � .

Proof. Suppose first that � 2 .�1; 1/ and let u 2H 2.�/\H 1
0 .�/ n f0g. By Lemmas 2.1 and 3.3 and the

embedding H 2.�/ ,! L1.�/, the following chain of inequalities holds:

.1Cj� j/kt�.u/uk2
H2.�/

� kt�.u/uk2H� .�/ D .t
�.u//pC1

Z
�

g.x/jujpC1

� .C�10 .1� j� j//
pC1
p�1

kuk
2.pC1/
p�1

H2.�/�R
� g.x/juj

pC1
� 2
p�1

� C.�; p; �/
kuk

2.pC1/
p�1

H2.�/�
kgk1kuk

pC1

H2.�/

� 2
p�1

D
C.�; p; �/

kgk
2
p�1

1

:

If � D 1, one can deduce the same result using the equivalent norm on H 2.�/\H 1
0 .�/ given by k� � k2.

In both cases, there exists a uniform bound from below for the H 2.�/ norm of the elements in the Nehari
manifold and thus 0 cannot be a cluster point for N�. �

Proposition 3.5. There exists u 2N� such that J� .u/D infv2N� J� .v/DW c.

Proof. As already noticed, c � 0, since it attains positive values on N�. Let now .uk/k2N � N� be a
minimizing sequence for J� : we claim that .uk/k2N is bounded in H 2.�/ norm. In fact, if � 2 .�1; 1/,
there exists a constant C > 0 such that, for every k 2 N,

C � J� .uk/D
�
1

2
�

1

pC1

�
kukk

2
H� .�/

�

�
1

2
�

1

pC1

�
.1� j� j/C�10 kukk

2
H2.�/

;
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while (2-4) provides the right estimate in the case �D1. Hence, there exists a subsequence .ukj /j2N�N�
and u2H 2.�/\H 1

0 .�/nf0g such that ukj *u weakly inH 2.�/ (and so weakly in .H 2.�/\H 1
0 .�/;

k � kH� / by Lemma 2.1) and strongly in L1.�/, by compact embedding. Consider now t� D t�.u/ such
that t�u 2N� : by weak semicontinuity of the norm,

c D inf
v2N�

J� .v/� J.t
�u/D .t�/2

�Z
�

.�u/2

2
� .1� �/

Z
�

det.r2u/
�
� .t�/pC1

Z
�

g.x/jujpC1

pC 1

� lim inf
j!C1

�
.t�/2

�Z
�

.�ukj /
2

2
� .1� �/

Z
�

det.r2ukj /
�
� .t�/pC1

Z
�

g.x/jukj j
pC1

pC 1

�
D lim inf
j!C1

J� .t
�ukj /� lim inf

j!C1
J� .ukj /D c; (3-4)

where the last inequality holds because the supremum of J� in each half-line ftukj j t > 0g is achieved
exactly in ukj by Lemma 3.3. Hence, the infimum of J� on N� is attained on t�u. �

In the proof of Proposition 3.5 something weird happened: we took a minimizing sequence, which
converges to an element u and we proved that there exists ˛ D t�.u/ 2 R such that ˛u is the minimum
point of our functional J�. One expects that the minimum is u itself and not a dilation of it. Indeed,
one may prove that t� D 1. In fact, with the same notation as in that proof, from (3-4) we deduce
J� .ukj /! c D J� .t

�u/ by construction and t�u 2N�, so

J� .ukj /!
�
1

2
�

1

pC1

�Z
�

g.x/jt�ujpC1:

Moreover, we took the sequence to be in the Nehari manifold itself, so

J� .ukj /D
�
1

2
�

1

pC1

� Z
�

g.x/jukj j
pC1;

and we have that ukj ! u strongly in L1.�/; thus

J� .ukj /!
�
1

2
�

1

pC1

� Z
�

g.x/jujpC1:

By the uniqueness of the limit, we must have t� D 1, so u 2N�.

Theorem 3.6. The minimum u of J� in N� is a critical point for J� in H 2.�/\H 1
0 .�/.

Proof. Suppose by contradiction that u is not a critical point. Since the functional is C 1, there exists a
ball centered in u and " > 0 such that, for all v 2 B,

c � "� J� .v/� cC "; kJ
0
� .v/k.H2.�/\H1

0 .�//
� �

1
2
";

where c D J� .u/D infv2N� J� .v/. Notice that on the half-line ru, the point u is the global maximum,
so J� .v/ < c for each v 2 B \ ru, v ¤ u.

If we define aD c � ", bD cC ", ıD 8, S DBr.u/ and S0DH 2.�/\H 1
0 .�/ nB

0, where r > 0
such that Br.u/bB 0 bB, applying [Gasiński and Papageorgiou 2006, Proposition 5.1.25], there exists a
locally Lipschitz homotopy of homeomorphisms �t on H 2.�/\H 1

0 .�/ such that
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(i) t 7! J� .�.t; v// is decreasing in Br.u/ and, in general, nonincreasing;

(ii) J� .�.t; v//D v for v 2 S0 and t 2 Œ0; 1�, and so also for all v 2 @B.

From (i) we deduce that J� .�.t; v// < c for every v 2 B \ ru and t ¤ 0. Moreover, define the map
 W B \ ru! R such that

 .v/ WD J 0� .�.1; v//Œ�.1; v/�

and consider v 2 @B\ru, so there exists ˛¤ 1 such that vD ˛u: we know from (ii) that �.1; v/D v and,
by Lemma 3.3, J 0� .˛u/Œ˛u� > 0 if ˛ 2 .0; 1/ and J 0� .˛u/Œ˛u� < 0 if ˛ 2 .1;C1/, so  .v/.v�u/ < 0 on
@B \ ru. As a result, since one can think of  as a continuous map from Œx1; x2�! R, where x1 and x2
correspond to the intersections between the half-line ru and the ball B, and since  .x1/>0 and  .x2/<0,
there exists a zero of  in .x1; x2/; i.e., there exists Nv 2 B \ ru such that J 0� .�.1; Nv//Œ�.1; Nv/�D 0.

Settingw WD�.1; Nv/, we havew2N� and J� .w/DJ� .�.1; Nv//<cDinfv2N� J� .v/, a contradiction. �

So far, we proved the existence of a ground state for J�. Actually, one can say more about the existence
of general critical points by means of the Krasnoselskiı̆ genus theory (see [Ambrosetti and Malchiodi 2007,
Section 10.2]). In fact, since our framework is subcritical, it is quite standard to prove the Palais–Smale
condition for J� by a compact embedding of H 2.�/ in every Lebesgue space. Moreover, our functional
is C 1, even and bounded from below on the unit sphere of H 2.�/\H 1

0 .�/: indeed, if kukH� .�/ D 1,
then kuk1 < C for some C > 0, so

J� .u/D
1

2
�

Z
�

g.x/jujpC1

pC 1
�
1

2
�
CpC1kgk1

pC 1
> �1:

Hence, by [Ambrosetti and Malchiodi 2007, Proposition 10.8], one can ensure the existence of an infinite
number of couples of critical points. The same argument may also be applied for the general sublinear
case, provided F.x; s/D F.x;�s/ for every s 2 R.

4. An identity and the positivity of ground states in convex domains

The aim of this section is to prove positivity for the ground states found in the previous section. Notice that
the problematic term in J� is the one involving the determinant of the Hessian matrix. In order to overcome
this difficulty, we need to rewrite it in an equivalent way, transforming it into a boundary term which can be
handled in order to prove the desired positivity. Nevertheless, since the signed curvature of the boundary
will be involved, we need to impose some regularity on @�. We will basically deduce the same statement
as Lemma 2.5(ii) of [Parini and Stylianou 2009], but we will extend it to a larger class of domains.

A crucial identity. Our goal is to generalize the following result:

Theorem 4.1 [Parini and Stylianou 2009, Lemma 2.5]. Let � be a bounded domain in R2 with C 2;1

boundary, and let � be its signed curvature. Then for all u 2H 2.�/ and for every ' 2H 3.�/, defining
K.u/ WD

R
� det.r2u/ dx, we have

hK 0.u/; 'i D

Z
@�

.�'nunC'��un�'�nu� /: (FPS)



952 GIULIO ROMANI

Hence, for all u 2H 2.�/\H 1
0 .�/,

K.u/D
1

2

Z
@�

�u2n: (F)

Going into the details of its proof, one can actually realize that the strong regularity assumption
on the boundary was needed only to derive (F) from (FPS) because the authors used the density of
H 3.�/\H 1

0 .�/ in H 2.�/\H 1
0 .�/, which strongly relied on the fact that @� 2 C 2;1 (see [Parini and

Stylianou 2009, Lemma 2.3]). Nevertheless, (FPS) requires only that all the elements therein are well
defined. Hence, our starting point is the following:

Corollary 4.2. Let �� R2 be a bounded domain of class C 1;1. Then for every v 2 C1.�/,

K.v/D 1
2
hK 0.v/; vi D

1

2

Z
@�

.�v2n � .vn� C v�n/v� /: (FPS2)

Proof. One only has to notice that if @� 2 C 1;1, then � is in L1.@�/ andZ
@�

.vn�v� C vnv�� /D

Z
@�

.vnv� /� D 0;

as @� is a closed curve and by the definition of the tangential derivative (i.e., as .d=ds/u..s//, where 
is the parametrization of the curve @� in the arch parameter s). �

Our strategy consists of two steps: using (FPS2), we will firstly prove that (F) holds also for every
v 2 C

1;1
0 .�/ WD fu 2 C 1;1.�/ j uj@� D 0g; then, by a density result, we will transfer (F) from C

1;1
0 .�/

to H 2.�/\H 1
0 .�/. We will make use of the following lemma, which makes a well-known result more

precise:

Lemma 4.3. Let � � RN be a bounded domain of class C 1 and u 2 C 1;1.�/. Then there exists a
sequence .uk/k2N 2 C

1.�/ such that uk! u in H 2.�/ and kukkW 2;1.�/ � CkukW 2;1.�/ for some
positive constant C .

Proof. First of all notice that C 1;1.�/ can be equivalently seen as W 2;1.�/, which is a subset of H 2.�/

since � is a bounded domain; moreover the fact that C1.�/ is dense in H 2.�/ in H 2.�/ norm if @�
is of class C 1 is a standard fact (see [Evans 2010, Section 5.3.3, Theorem 3]), so the only statement to
be verified is the W 2;1.�/ estimate. Since the main tool in the proof of the H 2.�/ convergence is the
local approximation, which is achieved by mollification, we only have to prove that the same inequality
holds there. So, let v 2L1.�/, "> 0 and consider

v".x/ WD .�" � v/.x/D

Z
B".0/

�".y/v.x�y/ dy;

where �" is the standard mollifier in RN, that is �" WD "�n�.x="/ and

�.x/D zCe
1

jxj2�1�B1.0/.x/;

where zC > 0 such that
R
B1.0/

�.z/ dz D 1. So v" is in �" WD fx 2� j d.x; @�/ > "g and we know that
v" 2 C

1.�"/ and �" is such that
R
B".0/

�".z/ dz D 1.
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We claim that kv"kL1.�"/ � kvkL1.�/. In fact,

kv"kL1.�"/ � sup
x2�"

Z
B".0/

j�".z/jjv.x� z/j dz � kvkL1.�/

Z
B".0/

j�".z/j dz D kvkL1.�/:

Also for derivatives of v the same inequality holds, because for any admissible multi-index ˛ we know
that D˛.v"/D .D˛.v//" (see [Gilbarg and Trudinger 1998, Lemma 7.3]).

At this point, following the aforementioned proof of [Evans 2010], it is easy to derive the desired
result. �

Proposition 4.4. Let �� R2 be a bounded domain of class C 1;1. Then, for all u 2 C 1;10 .�/,Z
�

det.r2u/D 1

2

Z
@�

�u2n:

Proof. Applying Lemma 4.3, let .uk/k2N � C
1.�/ be a sequence converging to u in H 2.�/, whose

norms in W 2;1 are controlled by the W 2;1 norm of u. By Corollary 4.2, the following identity holds:

K.uk/D
1

2

Z
@�

�
�.uk/

2
n� ..uk/n� C .uk/�n/.uk/�

�
: (4-1)

By the convergence in H 2.�/, one clearly has K.uk/!K.u/; moreover, since � 2 L1.@�/ and using
the trace theorem, one can deduce also thatZ

@�

�.uk/
2
n!

Z
@�

�u2n:

Finally we have to consider the terms in which tangential derivatives are involved. Similarly to the normal
derivative, one has .uk/� ! u� in L2.@�/, so .uk/� ! 0 in L2.@�/, since uj@� D 0. Furthermore,

.uk/n� Dr.uk/n � � Dr.ruk �n/ � � D .r
2uk �nCruk � rn/ � �

and (see [Sperb 1981, Chapter 4])

.uk/�n D

2X
i;jD1

@2uk

@xi @xj
�inj

and one can infer that .uk/n� and .uk/�n are uniformly bounded in L2.@�/. In fact, since the uk are
C1 functions and using Lemma 4.3,

k.uk/n�kL2.@�/ � j@�j
1
2 k.uk/n�kL1.@�/ � j@�j

1
2

�jr2uk �njL1.@�/C jruk � rnjL1.@�/�
� 2j@�j

1
2 knkW 1;1.@�/kukkW 2;1.�/ � C.�/kukW 2;1.�/

and similarly for .uk/�n. Consequently,Z
@�

�
.uk/n� C .uk/�n

�
.uk/� ! 0: �

In order to extend (F) to the space H 2.�/\H 1
0 .�/, we need a density result (Lemma 4.6 below)

which is taken from [Stylianou 2010, Theorem 2.2.4] and which can be adapted to our context: in fact, it
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concerns C 2 functions and diffeomorphisms but, with a little care, one can obtain the same result also in
the class C 1;1.

Definition 4.5 [Adams and Fournier 2003, 3.40, p. 77]. Let ˚ be a one-to-one transformation of a domain
� � RN onto a domain G � RN having inverse 	 WD ˚�1. We say that ˚ is a C 1;1 diffeomorphism
if, writing ˚ D .˚1; : : : ; ˚N / and 	 D .	1; : : : ; 	N /, then ˚i 2 C 1;1.�/ and 	i 2 C 1;1.G/ for every
i 2 f1; : : : ; N g.

Lemma 4.6. Let��RN be bounded and open such that for every x2@� there exists a j 2f0; : : : ; N�1g,
" > 0 and a C 1;1-diffeomorphism ˚ W RN ! RN such that the following hold:

� ˚.x/D 0.

� ˚.B".x/\�/� Sj WD fx D .x1; : : : ; xN / 2� j xi > 0 ;8i > j g.

� ˚.B".x/\ @�/� @Sj .

Then
C
1;1
0 .�/

k�k
H2.�/ DH 2.�/\H 1

0 .�/:

Theorem 4.7. Let �� R2 be a bounded domain of class C 1;1. Then, for all u 2H 2.�/\H 1
0 .�/,Z

�

det.r2u/D 1

2

Z
@�

�u2n: (F)

Proof. Let u 2H 2.�/\H 1
0 .�/; since the assumptions on the boundary are clearly fulfilled if @� is of

class C 1;1, applying Lemma 4.6 we get an approximating sequence .uk/k2N � C
1;1
0 .�/ converging in

H 2.�/ to u. With the same steps as in the proof of Proposition 4.4, by the H 2.�/ convergence, we have
both K.uk/!K.u/ and

R
@� �.uk/

2
n!

R
@� �u

2
n and one concludes by the uniqueness of the limit. �

From the functional to the PDE. As already briefly mentioned in the Introduction, if the boundary is
smooth enough (@� of class C 4;˛ for ˛ > 0), standard elliptic regularity results apply and one can
integrate by parts the Euler–Lagrange equation from J� to see that critical points satisfy (1-3). On the
other hand, assuming only that the boundary is of class C 1;1, the signed curvature is well defined in
L1.�/ and we can have a weak formulation of problem (1-3). More precisely, in this case, by a weak
solution of (1-3) here we mean a function u 2H 2.�/\H 1

0 .�/ which satisfiesZ
�

�u�' � .1� �/

Z
@�

�un'n D

Z
�

g.x/jujp�1u' for all ' 2H 2.�/\H 1
0 .�/: (4-2)

Consequently, we can equivalently say “ground states of J�” or “ground state solutions for (1-3)”. For a
proof of the equivalence of the two problems, we refer to [Gazzola and Sweers 2008].

Positivity of ground states in convex domains. Assuming @� is of class C 1;1, Theorem 4.7 enables us to
rewrite the functional J� in a more convenient way: in fact, we deduce that for every u2H 2.�/\H 1

0 .�/,

J� .u/D

Z
�

.�u/2

2
�
1� �

2

Z
@�

�u2n�

Z
�

F.x; u/; (4-3)

where we recall that F.x; s/D
R s
0 f .x; t/ dt .
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With this formulation, now we are able to establish the positivity of ground states of the functional J�
in convex domains with boundary of class C 1;1 if the density function f .x; u/ is nonnegative, both in
the sublinear and superlinear case. We will make use of the method of the superharmonic function, which
is quite a standard tool when dealing with fourth-order problems and which has already been successfully
used, for instance, in [Berchio et al. 2006; Gazzola and Sweers 2008; Nazarov et al. 2012], and whose
core is contained in the following lemma:

Lemma 4.8. Let � � RN be a bounded convex domain; fix u 2H 2.�/\H 1
0 .�/ and define Qu as the

unique solution in H 1
0 .�/ of the Poisson problem�

�� QuD j�uj in �;
QuD 0 on @�:

(4-4)

Then Qu 2H 2.�/\H 1
0 .�/ and either Qu > juj in � and Qu2n � u

2
n on @� or QuD u in �.

Proof. Since � is convex by assumption, it satisfies in particular a uniform external ball condition and
thus, by [Adolfsson 1992], we infer Qu 2H 2.�/. Suppose Qu 6� u. Since in particular �� Qu��u holds,
by the maximum principle for strong solutions (see [Gilbarg and Trudinger 1998, Theorem 9.6]), one
has Qu > �u in � and so Qun � �un. Similarly, �� Qu � ��u implies also Qu > u and Qun � un and so,
combining them, we have the result. �

Proposition 4.9 (sublinear case). Let �� R2 be a bounded convex domain with @� of class C 1;1 and
� 2 .�1; 1�. In addition to the assumption (H), suppose also that f � 0 and is positive for a subset of
positive measure. If u2H 2.�/\H 1

0 .�/ is a nontrivial minimizer of J�, then u is strictly superharmonic
in �, and thus positive.

Proof. Firstly notice that � � 0 a.e. on @� by the convexity of �. From u, define its superharmonic
function Qu as in Lemma 4.8. Supposing Qu 6� u, by that result we can infer

J� . Qu/D

Z
�

.� Qu/2

2
�
1� �

2

Z
@�

� Qu2n�

Z
�

F.x; Qu/�

Z
�

.�u/2

2
�
1� �

2

Z
@�

�u2n�

Z
�

F.x; Qu/: (4-5)

Nevertheless, since .@F=@s/ D f � 0, we have also that F.x; u/ < F.x; Qu/, and thus J� . Qu/ < J� .u/,
which leads to a contradiction. Hence necessarily Qu coincides with u, so ��uD�� QuD j�uj � 0. As
uD 0 on @� and u 6� 0, we deduce u > 0 in �. �

It is clear that, when f .x; 0/ 6D 0, by Proposition 3.1, we always find a nontrivial global minimizer,
which is positive by Proposition 4.9. For homogeneous nonlinearities this is not true in general. Anyway,
for our model f .x; s/D g.x/jsjp�1s, if we restrict our attention to the Nehari set, we easily see

J� .u/D
�
1

2
�

1

pC1

�
kukH� < 0

for every u 6D 0. So it is clear that in the minimization process we do not fall on 0. The same argument
holds for more general nonlinearities f .x; u/, provided

1
2
f .x; u/u�F.x; u/ < 0 for all u 2H 2.�/\H 1

0 .�/:

For instance this holds when f .x; s/D g.x/jsjp�1sC h.x/jsjq�1s for g; h>0, p; q 2 .0; 1/.



956 GIULIO ROMANI

Remark 4.10. We stress here that, as a direct consequence of Proposition 4.9, we have obtained the
positivity-preserving property also in the case of f not depending on u, i.e., for the linear Kirchhoff–Love
functional I� (see also Remark 3.2). This generalizes the corresponding result by Parini and Stylianou
[2009, Theorem 3.1] for bounded convex domains assuming only C 1;1 regularity on the boundary.

In our sublinear model case f .x; s/ D g.x/jsjp�1s, p 2 .0; 1/, something more may be deduced:
in fact, Lemma 3.3 still applies and, with the same steps as in the proof of Lemma 3.4, (reversing the
inequalities since now p� 1 < 0), one ends up with

kukH2.�/ �

�
kgk1C.�/

.1� j� j/C�10

� 1
1�p

for all u 2N� :

As a result, we can state the following:

Proposition 4.11. Let � be a bounded Lipschitz domain in R2 and let g 2 L1.�/ be positive a.e. in �.
For every � 2 .�1; 1/ fixed, all critical points of J� with f .x; s/ D g.x/jsjp�1s and p 2 .0; 1/ are
uniformly bounded in H 2.�/.

Notice that by continuous embedding H 2.�/ ,!L1.�/, one may also infer an a priori L1 bound for
all critical points of J�. The estimate becomes also uniform with respect to � if we restrict � 2 I b .�1; 1/.

Concerning the superlinear case with the nonlinearity (1-2), we obtain the same positivity result with
the same assumptions on � and � :

Proposition 4.12 (superlinear case). Let ��R2 be a bounded convex domain with @� of class C 1;1 and
� 2 .�1; 1�. Moreover suppose f .x; u/D g.x/jujp�1u, where p > 1 and g 2 L1.�/ positive a.e. in �.
Then the ground states of the functional J� are positive in �.

Proof. Suppose, by contradiction, that there exists u2N� such that J� .u/D inffJ� .v/ j v 2N�g and u is
not positive. With the same spirit of the proof of Proposition 4.9, consider the superharmonic function Qu
associated to u and suppose they are not the same. This time the inequality (4-5) is not sufficient to
have a contradiction since we do not know whether Qu 2N�. Nevertheless, by Lemma 3.3, there exists
t� WD t�. Qu/ 2 RC such that t� Qu 2N�. Then,

J� .t
�
Qu/D .t�/2

�Z
�

.� Qu/2

2
�
1��

2

Z
@�

� Qu2n

�
�.t�/pC1

Z
�

g.x/j QujpC1

pC1

< .t�/2
�Z
�

.�u/2

2
�
1��

2

Z
@�

�u2n

�
�.t�/pC1

Z
�

g.x/jujpC1

pC1
DJ� .t

�u/�J� .u/; (4-6)

which is again a contradiction. Notice that the last inequality holds since, by Lemma 3.3, J� restricted to
every half-line attains its maximum on the Nehari manifold. Thus necessarily Qu coincides with u, which
implies that u is strictly superharmonic and thus positive. �

Remark 4.13. Notice that in the proofs of Propositions 4.9 and 4.12, if � lies in the interval .�1; 1�, the
assumption � convex was necessary to have the good inequality for the second term of J� ; on the other
hand, if � > 1 we do not have anymore the right sign and we cannot conclude the argument.
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5. Beyond the physical bounds: � � �1

So far, we studied the existence of critical points of the functional J� with the assumption � 2 .�1; 1�, we
described in a variational way the geometry of the ground states and we finally established their positivity.
The aim of this section is to study what happens to the ground states of J� if we let the parameter be in
the whole R. Again, we are especially interested in studying their positivity.

Since the study is rather different if � � �1 or � > 1, we divide the subject into two sections. In
both, we will always assume that �� R2 is a bounded convex domain of class C 1;1 so that Theorem 4.7
holds. Moreover, as it seems more interesting from a mathematical point of view, we mainly focus on the
superlinear case f .x; u/D g.x/jujp�1u with p > 1, pointing out, if needed, the necessary adaptation
for the sublinear power p 2 .0; 1/.

A Steklov eigenvalue problem. Let us begin by recalling some known facts about the eigenvalue problem
associated to equation (1-3) (see [Gazzola and Sweers 2008] or, for the case � D 1, [Bucur et al. 2009;
Berchio et al. 2006]): 8<:

�2uD 0 in �;
uD 0 on @�;
�uD d�un on @�:

(5-1)

We define a Steklov eigenvalue to be a real value d such that (1-3) admits a nontrivial weak solution,
named a Steklov eigenfunction, i.e., u2H 2.�/\H 1

0 .�/, u¤0, such that for all ' 2H 2.�/\H 1
0 .�/,Z

�

�u�' � d

Z
@�

�un'n D 0: (5-2)

First of all, d must be positive. In fact, if u is a Steklov eigenfunction, taking uD ' in (5-2),

d

Z
@�

�.un/
2
D

Z
�

.�u/2 > 0;

since k� � k2 is a norm in H 2.�/\H 1
0 .�/. As � � 0, we have both d > 0 and

R
@� �u

2
n > 0. As a

complementary result, in order to show nontrivial solutions of (5-1), without loss of generality, we can
restrict to the subset

HD
�
u 2H 2.�/\H 1

0 .�/

ˇ̌̌̌ Z
@�

�.un/
2
¤ 0

�
:

Definition 5.1. We denote by Qı1.�/ the first Steklov eigenvalue for problem (5-1):

Qı1.�/ WD inf
Hnf0g

k�uk22R
@� �u

2
n

:

Proposition 5.2. The first Steklov eigenvalue is attained, is positive and there exists a unique (up to a
multiplicative constant) corresponding Steklov eigenfunction, which is positive in �.

Proof. We refer to [Gazzola and Sweers 2008, Lemma 4.4], just noticing that the continuity of the
curvature assumed therein was not necessary to obtain this result. �
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A nonexistence and an existence result. From Proposition 5.2, it is easy to deduce a nonexistence result
for positive solutions if � is negative enough:

Proposition 5.3. If � � �� WD 1 � Qı1.�/, there is no nonnegative nontrivial solution for the Steklov
boundary problem (1-3).

Proof. Let u be a nonnegative solution for (1-3) and ˆ1 > 0 be the first Steklov eigenfunction; we use
ˆ1 as a test function in (4-2):Z

�

�u�ˆ1� .1� �/

Z
@�

�un.ˆ1/n D

Z
�

g.x/upˆ1:

Then, interpreting u this time as a test function in (5-2), we haveZ
�

�u�ˆ1 D Qı1.�/

Z
@�

�.ˆ1/nun:

Combining the two equalities,

. Qı1.�/� .1� �//

Z
@�

�.ˆ1/nun D

Z
�

g.x/upˆ1 > 0:

Again by positivity of u and ˆ1, we have un � 0 and .ˆ1/n � 0 so, as � � 0, we finally end up with
Qı1.�/� 1C � > 0, which is exactly what we wanted. �

Remark 5.4. We already proved that our problem (1-3) admits positive solutions whenever � 2 .�1; 1�
with the same assumptions on �. Hence, we infer that, Qı1.�/� 2 and we have equality if �DB1.0/ (see
[Berchio et al. 2006, Proposition 12]). This result was already proved for C 2 bounded convex domains
of R2 by Parini and Stylianou [2009, Remark 3.3], using Fichera’s duality principle.

The next step is to investigate what happens if � 2 .��;�1� in case this interval is nonempty. We will
show that the existence and the positivity results found for � 2 .�1; 1� can be extended for this case. In
fact, the only restriction we have to overcome is the fact that here Lemma 2.1 is not the right way to
prove that the first two terms in the functional J� define indeed a norm on H 2.�/\H 1

0 .�/.

Lemma 5.5. For every � > ��, the map

u 7!

� Z
�

.�u/2� .1� �/

Z
@�

�.un/
2

� 1
2

WD kukH�

is a norm in H 2.�/\H 1
0 .�/ equivalent to the standard norm.

Proof. By the definition of Qı1.�/ as an inf, we have k�uk22� Qı1.�/
R
@� �u

2
n for each u2H 2.�/\H 1

0 .�/

and so, if d > 0 (which corresponds to � < 1),Z
�

.�u/2 �

Z
�

.�u/2� d

Z
@�

�u2n �

Z
�

.�u/2
�
1�

d

Qı1.�/

�
: (5-3)

On the other hand, if d < 0 (so that � > 1),Z
�

.�u/2 �

Z
�

.�u/2Cjd j

Z
@�

�u2n �

Z
�

.�u/2
�
1C

jd j

Qı1.�/

�
:
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As a result, we have to impose that d < Qı1.�/ to have the positivity of the constant in the first estimate,
while no restriction occurs in the second. The proof is completed noticing that the map

.u; v/H� 7!

Z
�

�u�v� d

Z
@�

�unvn

defines a scalar product on H 2.�/\H 1
0 .�/ by inequality (5-3) for all d < Qı1.�/. �

Proposition 5.6. Let��R2 be a bounded convex domain with boundary C 1;1 and suppose � 2 .��;�1�;
then the functional J� admits a positive ground state.

Proof. It is sufficient to notice that Lemma 3.4 holds for these values of � if we replace Lemma 2.1 by
Lemma 5.5, while all the other propositions that led to the existence and the positivity of ground states
are not affected by this change. �

Remark 5.7 (sublinear case). Both Propositions 5.3 and 5.6 hold in the case of a function f .x; u/ which
verifies the assumption (H) (modifying in a suitable way the constant in front of the quadratic term)
and f � 0, f 6� 0.

Approaching ��. As we know now the existence of positive ground state solutions for � 2 .��; 1� and
that there are no positive solutions if � � ��, a natural question that arises is determining the behaviour
of a sequence .uk/k2N, each of them being a ground state for the respective functional J�k , as �k& ��.
We will find an antipodal result for f .x; u/D g.x/jujp�1u as p 2 .1;C1/ or p 2 .0; 1/.

The following proof is an adaptation of [Berchio et al. 2007, Theorem 1], which covers the critical
case f .x; u/ D juj2

��2u when the dimension is N � 5. Moreover, the authors considered a slightly
different notion of solution, that is, the minimizers of the Rayleigh quotient associated to the boundary
value problem:

R� .u/ WD
k�uk22� .1� �/

R
@� �u

2
n�R

� g.x/juj
pC1

� 2
pC1

(5-4)

Anyway, it is a standard fact to prove that every ground state of J� is also a minimizer of R�, while the
converse is also true, up to a multiplication by a constant.

Theorem 5.8. Let� be as in Proposition 5.6 and �k&�� as k!C1. If p2 .0; 1/, then kukk1!C1,
while, if p > 1, then kukkH2.�/! 0.

Proof. Let p >0, p¤ 1; by the remark above, each ground state uk is such that

R�k .uk/D inf
0¤u2H2.�/\H1

0 .�/
R�k .u/ WD†�k � 0:

By Proposition 5.2, there exists a positive first Steklov eigenfunction ˆ1; since we have k�ˆ1k22 D
.1� ��/

R
@� �.ˆ1/

2
n, we have

0�†�k �R�k .ˆ1/D .�k � �
�/

R
@� �.ˆ1/

2
n�R

� g.x/jˆ1j
pC1

� 2
pC1

! 0
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as k!C1. Moreover, since uk is a ground state for J�k ,

k�ukk
2
2� .1� �k/

Z
@�

�.uk/
2
n D

Z
�

g.x/jukj
pC1

and, since R�k .uk/D†�k , we deduce�Z
�

g.x/jukj
pC1

�p�1
pC1

D†�k ! 0:

Hence, if p >1, then
R
� g.x/jukj

pC1! 0; otherwise, if p 2 .0; 1/, then
R
� g.x/jukj

pC1!C1, which
implies, by the Hölder inequality as g 2 L1.�/, that kukk1!C1.

We have now to prove that, if p > 1, this convergence to 0 is actually in the natural norm H 2.�/. By
Lemma 5.5, k � kH�k is a norm in H 2.�/\H 1

0 .�/ for every k, so we are able to decompose in that
norm the Hilbert space as H 2.�/\H 1

0 .�/D span.ˆ1/˚ Œspan.ˆ1/�?. Thus, for every k there exist a
unique ˛k 2 R and  k 2 Œspan.ˆ1/�? such that uk D ˛kˆ1C k .

Hence, for k large enough,

o.1/�

Z
�

g.x/jukj
pC1
D k�ukk

2
2� .1� �k/

Z
@�

�.uk/
2
n D .uk; uk/H�k

D ˛2k.ˆ1; ˆ1/H�k C . k;  k/H�k: (5-5)
First of all,

.ˆ1; ˆ1/H�k D k�ˆ1k
2
2� .1� �k/

Z
@�

�.ˆ1/
2
n D .�k � �

�/

Z
@�

�.ˆ1/
2
n: (5-6)

Moreover, denoting by Qı2.�/ the second eigenvalue of the Steklov problem, i.e.,

Qı2.�/D inf
span.ˆ1/?nf0g

k�vk22R
@� �v

2
n

;

and defining ��� WD 1� Qı2.�/, we get

k� kk
2
2 � .1� �

��/

Z
@�

�. k/
2
n;

from which

. k; k/H�k Dk� kk
2
2�.1��k/

Z
@�

�. k/
2
n�k� kk

2
2�

1��k

1����
k� kk

2
2D

�k��
��

1����
k� kk

2
2: (5-7)

As a result, combining (5-5) with (5-6) and (5-7), we get

o.1/�

Z
�

g.x/jukj
pC1
D ˛2k.�k � �

�/

Z
@�

�.ˆ1/
2
nC

�k � �
��

1� ���
k� kk

2
2:

Since we proved in Proposition 5.2 that the first Steklov eigenfunction is simple, we have ��� < �� and,
recalling that �k > �� by assumption, necessarily k� kk2! 0. Hence,Z

�

g.x/j˛kˆ1j
pC1
�

Z
�

g.x/
�
jukjC j kj

�pC1
� 2p

Z
�

g.x/
�
jukj

pC1
Cj kj

pC1
�

� 2p
Z
�

g.x/jukj
pC1
CCpC1.�/kgk1k kkH2.�/! 0:
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As a result, ˛k! 0 and we finally obtain

kukkH2.�/ � j˛kjkˆ1kH2.�/Ck kkH2.�/! 0: �

If we read carefully the proof of Theorem 5.8, we notice that the fact that each uk is a ground state
for J� was necessary only to deduce that

R
� g.x/jukj

pC1! 0, while to prove the convergence to 0 in
H 2.�/ norm it was only sufficient that each uk is a critical point (actually, an element of the Nehari
manifold N�k , since the only step of the proof involved is (5-5)). Consequently, we can directly state the
following lemma, which will be useful when we will look at the radial case in Section 7:

Lemma 5.9. Let .uk/k2N be a sequence of critical points of J�k in the superlinear case such thatR
� g.x/jukj

pC1! 0 as �k& ��. Then kukkH2.�/! 0.

6. Beyond the physical bounds: � > 1

As briefly announced at the beginning of the previous section, here we want to investigate the behaviour
of the ground states of J� when � > 1. We assume again hereafter that � � R2 is a bounded convex
domain with C 1;1 boundary and (1-2) concerning the nonlinearity. As a consequence, the extension of
the existence result is straightforward: in fact, in this case, by Lemma 5.5, k � kH� .�/ is still a norm on
H 2.�/\H 1

0 .�/ and we can repeat the usual steps. Notice also that it is equivalent by these assumptions
on � to consider critical points of J� as far as weak solutions of the semilinear problem (1-3).

The extension of positivity in this case seems not to be obvious, as already noticed in Remark 4.13.
We will provide here two different proofs (which will produce two slightly different results); the first one
relies on the study of the convergence of ground states as �! 1, which in the limit yields the Navier case,
while the second is based on the method of dual cones by Moreau, connecting our semilinear problem
with the linear one. We point out that the convergence result might be also of independent interest.

In the following, we will always consider the exponent of the nonlinearity (1-2) to be p > 1, but similar
results can be proved also in the sublinear framework (see Remarks 6.6 and 6.22).

Convergence of ground states of J� to ground states of JNAV as � ! 1. In this section, .uk/k2N will
always denote a sequence of ground states solutions of the Steklov problems�

�2uD g.x/jujp�1u in �;
uD�u� .1� �k/�un D 0 on @�

(6-1)

for a sequence .�k/k2N converging to 1. Moreover, in order to underline the peculiarity of the problem
when � D 1, we set JNAV WD J1, whose critical points are the weak solution of the following Navier
problem: �

�2uD g.x/jujp�1u in �;
uD�uD 0 on @�;

(6-2)

Finally, Nu will always denote a ground state of JNAV. Our main result is to prove the convergence uk! Nu
in the natural norm, i.e., in H 2.�/, as �k ! 1, no matter if �k is less or greater than 1. First of all, a
weaker result is enough:
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Lemma 6.1. Let .uk/k2N and Nu be as specified above. If uk * Nu weakly in H 2.�/, then (up to a
subsequence) uk! Nu strongly in H 2.�/ as �k! 1.

Proof. As uk* Nu weakly in H 2.�/, there exists M > 0 such that kukk2H2.�/
�M . Moreover, for each

k 2 N, we know uk is a solution of (6-1) and Nu of the Navier problem (6-2); thus, for every test function
' 2H 2.�/\H 1

0 .�/,Z
�

�uk �' � .1� �k/

Z
@�

�.uk/n'n D

Z
�

g.x/jukj
p�1uk';Z

�

� Nu�' D

Z
�

g.x/j Nujp�1 Nu':

(6-3)

Hence

C�1A kuk � Nuk
2
H2.�/

� k�uk �� Nuk
2
2 D

Z
�

�uk �.uk � Nu/�

Z
�

� Nu�.uk � Nu/

D .1� �k/

Z
@�

�.uk/n.uk � Nu/nC

� Z
�

g.x/jukj
p�1uk.uk � Nu/�

Z
�

g.x/j Nujp�1 Nu.uk � Nu/

�
:

For the first term,ˇ̌̌̌
.1� �k/

Z
@�

�.uk/n.uk � Nu/n

ˇ̌̌̌
� j1� �kjC

2
T k�kL1.@�/kukkH2.�/kuk � NukH2.�/

� j1� �kjC
2
T k�kL1.@�/M.M Ck NukH2.�//! 0;

where CT is the constant in the trace theorem. Concerning the second, it is enough to invoke the dominated
convergence theorem as we have pointwise convergence and sinceˇ̌

g.x/
�
jukj

p�1uk � j Nuj
p�1
Nu
�
.uk � Nu/

ˇ̌
� jg.x/j

�
C.�/pMp

Cj Nujp
��
C.�/M C Nu

�
2 L1.�/;

where C.�/ is the constant in the embedding H 2.�/ ,! L1.�/. �

Remark 6.2. This result holds not only for ground states, but for generic solutions; i.e., if .uk/k2N is a
sequence of weak solutions of the Steklov problem (6-1) and Nu a weak solution of the Navier problem
(6-2) and we know that uk* Nu weakly in H 2.�/, then, up to a subsequence, it converges strongly too.

A crucial observation is that the Nehari manifolds are nested with respect to the parameter � :

Lemma 6.3. Let �1 < �2 and fix u 2H 2.�/\H 1
0 .�/ n f0g. Then

t��1.u/� t
�
�2
.u/:

Proof. In fact, �.1� �1/ < �.1� �2/ and so

t��1.u/D

�R
�.�u/

2� .1� �1/
R
@� �u

2
nR

� g.x/juj
pC1

� 1
p�1

�

�R
�.�u/

2� .1� �2/
R
@� �u

2
nR

� g.x/juj
pC1

� 1
p�1

D t��2.u/: �

Notice that if u 2H 2
0 .�/ then one has the equality; if we suppose moreover that � > 0 a.e., we deduce

also the converse.



POSITIVITY FOR FOURTH-ORDER SEMILINEAR PROBLEMS 963

Proposition 6.4. The sequence of ground states .uk/k2N is bounded in H 2.�/.

Proof. Set kmax such that �kmaxD maxf.�k/k2N; 1g and so ukmax is a ground state for J�kmax
(with the

convention that if �kmaxD 1, then ukmax is a ground state for JNAV).
Defining wk WD t��k .ukmax/ukmax2N�k , that is, the “projection” of ukmax on the Nehari manifold N�k

along its half-line, one hasZ
�

g.x/jukj
pC1
�

Z
�

g.x/jwkj
pC1
�

Z
�

g.x/jukmax j
pC1: (6-4)

Indeed, the first inequality comes from the fact that uk is a ground state of J�k , which has the equivalent
formulation (3-2); the second is obtained by Lemma 6.3 sinceZ

�

g.x/jwkj
pC1
D .t��k .ukmax//

pC1

Z
�

g.x/jukmax j
pC1

� .t��kmax
.ukmax//

pC1

Z
�

g.x/jukmax j
pC1
D

Z
�

g.x/jukmax j
pC1:

Furthermore, for a generic � > 0 (and here we can assume it without loss of generality),Z
�

.�u/2� .1� �/

Z
@�

�u2n �minf�; 1gCA.�/kuk2H2.�/
: (6-5)

In fact, if � 2 Œ1;C1/ the proof is straightforward since �.1� �/� 0; otherwise, if � 2 .0; 1/,Z
�

.�u/2�.1��/

Z
@�

�u2n D

Z
�

.�u/2C2.1��/

Z
�

.� det.r2u//

D

Z
�

�
u2xxCu

2
yyC2�uxxuyyC2.1��/u

2
xy

�
� �

Z
�

.�u/2C2.1��/

Z
�

u2xy

� �

Z
�

.�u/2 � �C�1A .�/kuk2
H2.�/

:

As a result, combining (6-4) with (6-5), we get

kukk
2
H2.�/

�
CA.�/

minf�k; 1g

Z
�

g.x/jukj
pC1
�

CA.�/

minf�k; 1g

Z
�

g.x/jukmax j
pC1;

which is the estimate we needed. �

As a direct consequence of Proposition 6.4, the sequence .uk/k2N, up to a subsequence, is weakly
convergent to some u1 2H 2.�/\H 1

0 .�/ with strong convergence in L1.�/. It is also easy to see that
u1 is a weak solution of the Navier problem (6-2): it is enough to apply to (6-3) the weak convergence
in H 2.�/, the strong convergence in L2.@�/ of the normal derivatives and the dominated convergence
theorem. As a consequence, by Lemma 6.1, the convergence uk! u1 is strong in H 2.�/.

Theorem 6.5. Let �k! 1 and � be a bounded convex domain in R2 with boundary of class C 1;1. Then
the sequence .uk/k2N of ground state solutions for the Steklov problems (6-1) admits a subsequence
.ukj /j2N which converges in H 2.�/ to u1, which is a ground state for the Navier problem (6-2), and
thus strictly superharmonic.
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Proof. Clearly, as u1 is weak solution of (6-2), we have JNAV.u1/ � infNNAV JNAV. Now we have to
prove the converse inequality. Firstly, we have JNAV.u1/� lim infk!C1 J�k .uk/. Indeed,

lim inf
k!C1

J�k .uk/D lim inf
k!C1

Z
�

.�uk/
2

2
� lim
k!C1

1� �k

2

Z
@�

�.uk/
2
n� lim

k!C1

Z
�

g.x/jukj
pC1

pC 1

�

Z
�

.�u1/
2

2
�

Z
�

g.x/ju1j
pC1

pC 1
D JNAV.u1/;

having used the compactness of the map @n WH 1.�/2!L2.�/ and the dominated convergence theorem.
Moreover, if we suppose �k < 1 for k large enough, by Lemma 6.3 (with a similar argument to that in
(6-4)), for all k 2 N we have

J�k .uk/D
�
1

2
�

1

pC1

� Z
�

g.x/jukj
pC1
�

�
1

2
�

1

pC1

� Z
�

g.x/ju1j
pC1
D JNAV.u1/; (6-6)

so in this case we are done. If otherwise �k > 1 for a infinite number of indices, (6-6) does not hold. In
this case, without loss of generality, we can assume that �k& 1. By the existence theorems in Section 3,
we know that there exists a ground state Nu 2H 2.�/\H 1

0 .�/ for JNAV and we define Nuk WD t��k . Nu/ Nu to
be the “projection” on the Nehari manifold N�k . Then k Nuk � NukH2.�/ D j1� t

�
�k
. Nu/j

 NukH2.�/ with

1� .t��k . Nu//
p�1 Œ Nu2NNAV�

D .t�NAV. Nu//
p�1
� .t��k . Nu//

p�1
D 2.1� �k/

R
� det.r2 Nu/R
� g.x/j Nuj

pC1
! 0;

so Nuk! Nu in H 2.�/, which impliesZ
�

g.x/j Nukj
pC1
!

Z
�

g.x/j NujpC1: (6-7)

Nevertheless, since uk is a ground state of J�k ,Z
�

g.x/j Nukj
pC1

Œ Nuk2N�k �
D

�
1

2
�

1

pC1

�
J�k . Nuk/�

�
1

2
�

1

pC1

�
J�k .uk/

Œuk2N�k �
D

Z
�

g.x/jukj
pC1
I (6-8)

furthermore, since we assumed �k > 1 and by Lemma 6.3,Z
�

g.x/jukj
pC1
�

Z
�

g.x/jt�NAV.uk/ukj
pC1
D

�
1

2
�

1

pC1

�
JNAV.t

�
NAV.uk/uk/

�

�
1

2
�

1

pC1

�
JNAV. Nu/D

Z
�

g.x/j NujpC1: (6-9)

Combining (6-7), (6-8) and (6-9), we find thatZ
�

g.x/jukj
pC1
!

Z
�

g.x/j NujpC1; (6-10)

from which J�k .uk/! JNAV. Nu/, which completes our equality.
To conclude, notice that we have already obtained in the proof of Proposition 4.12 that ground states

of the Navier equation (6-2) are strictly superharmonic. �
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Remark 6.6. The same analysis may be adapted also for the sublinear case p 2 .0; 1/, paying attention
to some minor changes: for instance, Lemma 6.3 holds with the reverse inequality, but this compensates
for the fact that this time the coefficient 1

2
�
1
p

in the equivalent formulation of J� is negative.

Regularity of solutions andW 2;q convergence of ground states. The convergence result of the previous
section will be used to derive positivity of ground states when � lies in a right neighborhood of 1.
Nevertheless, we will need a C 0;1 convergence to be able to control the normal derivatives on the
boundary; thus we have to upgrade our convergence to a stronger norm. The first step will be to
investigate, for a fixed � > ��, the regularity of solutions of (1-3) and (6-2) with just a slightly more
regular boundary (actually, we will have to impose that @� is of class C 2). This will be obtained by
means of the following lemma by Gazzola, Grunau and Sweers, which follows from a result by Agmon,
Douglis and Nirenberg [Agmon et al. 1959, Theorem 15.30, p. 707]:

Lemma 6.7 [Gazzola et al. 2010, Corollary 2.23]. Let q > 1 and take an integer m � 4. Assume that
@� 2 Cm and a 2 Cm�2. Then there exists C D C.m; q; a;�/ > 0 such that

kukWm;q.�/ � C
�
kukqCk�

2ukWm�4;q.�/CkukWm�1=q;q.@�/Ck�u� aunkWm�2�1=q;q.@�/

�
for every u 2W m;q.�/. The same statement holds for any m� 2 provided the norms on the right-hand
side are suitably interpreted.

Hence we have to define �2u as a distribution in W �2;q.�/, i.e., acting on functions in W 2;q0

0 .�/.
Let u 2H 2.�/\H 1

0 .�/ be a weak solution of (1-3); we define the linear functional over H 2.�/

�2u WH 2.�/ 3 ' 7! h�2u; 'i WD

Z
�

�u�';

which is well defined and continuous. If we let

upg W ' 7! hu
p
g ; 'i WD

Z
�

g.x/jujp�1u';

it is clearly well defined and continuous on W 2;q0

0 .�/ and, by the weak formulation of the PDE, on the
subset H 2

0 .�/ it acts identically as �2u. As a result, we define

�2u WW
2;q0

0 .�/ 3 ' 7! h�2u; 'i WD

Z
�

g.x/jujp�1u': (6-11)

Proposition 6.8. If @� 2 C 2, for every � > �� the weak solutions of Steklov and Navier problems (6-1)
and (6-2) lie in W 2;q.�/ for every q > 2.

Proof. Let u 2 H 2.�/\H 1
0 .�/ be a weak solution of (1-3). Applying Lemma 6.7 with m D 2 and

aD .1� �/� 2 C0.@�/ (aD 0 for the Navier case), we find

kukW 2;q.�/ � C.q; �;�/
�
kukqCk�

2ukW �2;q.�/
�
;

which is well defined in view of (6-11). Since

k�2ukW �2;q.�/ D sup
0¤'2W

2;q0

0 .�/

ˇ̌R
� g.x/juj

p�1u'
ˇ̌

k'k
W
2;q0

0 .�/

� C.p; q;�/kgk1kuk
p

H2.�/
; (6-12)
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we finally deduce from (6-12) that

kukW 2;q.�/ � C.q; �;�/
�
kukqCC.p; q;�/kgk1kuk

p

H2.�/

�
<C1: �

We stress that we did not use either the fact that u is a ground state solution, or its positivity: the above
result holds true for every weak solution of Steklov and Navier problems.

Let us now recall the following interpolation result:

Lemma 6.9 (interpolation of fractional Sobolev spaces, [Brezis and Mironescu 2001, Corollary 2]). For
0� s1<s2<C1, 1<p1; p2<C1, for every s, p such that s D �s1C .1� �/s2 and 1

p
D

�
p1
C
1��
p2

,
we have

kf kW s;p.RN / � Ckf k
�
W s1;p1 .RN /

kf k1��
W s2;p2 .RN /

:

Proposition 6.10. Let � be of class C 2 and .uk/k2N be a sequence of weak solutions for the Steklov
problems (6-1) converging in H 2.�/ to Nu, a weak solution for the Navier problem (6-2). Then the
convergence is in W 2;q.�/ for every q � 2.

Proof. Let q � 2 and apply the regularity estimate of Lemma 6.7 to uk � Nu with mD 2, aD 0:

kuk � NukW 2;q.�/

� C.q;�/
�
kuk � NukqCk�

2uk ��
2
NukW �2;q.�/Cj1� �kj

�.uk/nkW �1=q;q.@�/�; (6-13)

using that on @� we have �.uk � Nu/� a.uk � Nu/n D�uk �� NuD .1� �k/�.uk/n.
By (6-11) and the dominated convergence theorem,

k�2uk ��
2
NukW �2;q.�/ D sup

0¤'2W
2;q0

0 .�/

ˇ̌R
� g.x/jukj

p�1uk' �
R
� g.x/j Nuj

p�1 Nu'
ˇ̌

k'k
W
2;q0

0 .�/

! 0;

similarly to (6-12). We need now to prove that .�.uk/n/k2N is bounded in W �
1
q
;q.@�/. Notice that if

we provide a uniform bound in Lq.@�/, then we are done. In fact W �
1
q
;q.@�/ WD W

1
q
;q0.@�/� and

W
1
q
;q0.@�/ ,! Lq

0

.@�/, so we directly infer W �
1
q
;q.@�/ - Lq.@�/.

Moreover, it is known that, with our assumptions on @�, the normal trace of functions in W s;p.�/

lies in Lp.@�/, provided s > 1C 1
p

(for this and some further sharper results, see [Marschall 1987,
Theorem 2]). Hence,

k�.uk/nkW �1=q;q.@�/ � C.q;�/k�.uk/nkLq.@�/ � C.q;�/k�kL1.@�/k.uk/nkLq.@�/

� C.q;�; s/k�kL1.@�/kukkW s;q.�/ (6-14)

for some s > 1C 1
q

. Thus, we need to find an appropriate fractional Sobolev space in which H 2.�/

is embedded. We claim that H 2.�/ ,!W 1C 3
2q
;q.�/. Actually, it is enough to prove that H 1.�/ WD

W 1;2.�/ ,! W
3
2q
;q.�/ by the definition of W s;p.�/ for s > 1. So, let u 2 W 1;2.�/; by the Stein

total extension theorem [Adams and Fournier 2003, Theorem 5.24] there exists U 2W 1;2.R2/ such that
Uj� Du a.e. and kU kW 1;2.R2/�CkukW 1;2.�/ for some positive constant independent of u. Applying the
interpolation result Lemma 6.9 to U with � D 3

2q
and the Sobolev embedding W 1;2.R2/ ,! L4q�6.R2/
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since 4q� 6� 2,

kU kW 3=2q;q.R2/ � CkU k
3
2q

W 1;2.R2/
kU k

1� 3
2q

L4q�6.R2/
� C1kU kW 1;2.R2/:

Hence,

kukW 3=.2q/;q.�/ D kU kW 3=.2q/;q.�/ � kU kW 3=.2q/;q.R2/ � C1kU kW 1;2.R2/ � C2kukW 1;2.�/:

As a result, noticing that s D 1C 3
2q
> 1C 1

q
, we can continue (6-14), obtaining

k�.uk/nkW �1=q;q.@�/ � C.q;�/k�kL1.@�/kukkW 1C3=.2q/;q.�/ �
zC.q;�/k�kL1.@�/kukkH2.�/;

which is uniformly bounded in k. Combining estimate (6-13) with the ones above for the second and the
third terms of (6-13), we finally end up with the strong convergence in W 2;q.�/. �

Extending positivity, part 1: A convergence argument. Let us start by noticing that, by Morrey’s em-
beddings, the convergence in W 2;q.�/ for every q � 2 of Proposition 6.10 implies the convergence in
C 1;˛.�/ for every ˛ < 1, thus in particular in C 1.�/. This will be the main ingredient in the next proof.

Proposition 6.11. Let �� R2 be a bounded convex domain of class C 2 and .�k/k2N be a sequence of
parameters such that �k& 1 and .uk/k2N be a sequence of ground states for the functional J�k . Then
there exists a subsequence .ukj /j2N and j0 2 N such that ukj > 0 in � for every j � j0.

Proof. By Propositions 6.8 and 6.10 and by the previous observation, we know that, up to a subsequence,
uk! Nu in C 1.�/ for some Nu, a ground state for JNAV.

Since � has a C 2 boundary, the interior sphere condition holds and one can extend the outer normal
vector n in a small neighborhood !0 � � of @� and thus define here Nun WD r Nu � n (see [Sperb 1981,
Chapter 4]). Moreover, since Nu is strictly superharmonic, the normal derivative Nun is negative on @� and,
by compactness of @� and continuity of Nun, there exists ˛ > 0 such that

Nunj@�
� �˛ < 0:

Hence, again by continuity, there exists a second neighborhood ! � !0 of @� such that

Nunj! � �
2
3
˛ < 0:

Take now "1D
1
3
˛: by the C 1.�/ convergence, there exists k1 2N such that for every k � k1 and x 2 !,

j.uk/n.x/j � j Nun.x/j � j.uk/n.x/� Nun.x/j>
2
3
˛�

jnj
L1.!/

jruk �r NujL1.�/ > 2
3
˛� "1 >

1
3
˛:

By the interior sphere condition, the map !! @�, x 7! x0, such that d.x; x0/D inffd.x; y/jy 2 @�g
is well defined and the vector x� x0 has the same direction as n.x/ and n.x0/. Hence by the Lagrange
theorem and recalling that uk j@� D 0, for x 2 !,

juk.x/j D juk.x/�uk.x0/j � min
y2Œx0;x�

j.uk/n.y/jjx� x0j>
1
3
˛jx� x0j> 0: (6-15)

Moreover, notice that by compactness of �0 WD� n!, the remaining part of �, we have

Nuj�0
�min

�0
Nu WDm> 0
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and so by the uniform convergence it is easy to deduce that, for k large enough, uk.x/ > 1
2
m for every

x 2�0. The result follows by combining this with (6-15). �

Theorem 6.12. Let �� R2 be a bounded convex domain of class C 2; then there exists �1 > 1 such that
for every � 2 .1; �1/ the ground states of J� are positive in �.

Proof. By contradiction, suppose that such �1 does not exist. Hence we would be able to find a sequence
.�k/& 1 such that for each of them there exists a ground state uk for J�k which is not positive. This
would contradict Proposition 6.11. �

Remark 6.13. As we are dealing with continuous functions, since H 2.�/ ,! C 0.�/, we are interested
in the strict positivity everywhere in � and not only a.e. in �. Theorem 6.12 gives a positive answer
for this question: in fact, as Nu 2H 2.�/DW 2;N .�/ is strictly superharmonic, by the strong maximum
principle for strong solutions [Gilbarg and Trudinger 1998, Theorem 9.6], we deduce that it cannot
achieve its minimum on the interior of �; thus Nu.x/ > 0 for every x 2�. By the C 1 convergence we
deduce the same strict inequality for u�, with � 2 .1; �1/.

Extending positivity, part 2: Moreau dual cones decomposition. Our aim is to investigate a further
extension of the positivity result found in Theorem 6.12, possibly for the whole range � 2 .1;C1/. It
seems natural if we think of the following fact: similarly to what we already obtained for the Navier
problem, one can prove the convergence in H 2.�/, as �!C1, of a sequence of ground states of J� to
a least-energy solution of the Dirichlet problem�

�2uD g.x/jujp�1u in �;
uD un D 0 on @�;

(6-16)

at least when � is positive a.e. on @�. Since we already know that in some cases the ground states of
(6-16) are positive (for instance if � is a ball, see [Ferrero et al. 2007]), we expect to be able to completely
extend positivity for such domains.

After a brief explanation of the convergence just mentioned above, we will apply Moreau’s method
of dual cones to infer the intervals of positivity for the semilinear problem. At the end, one may also
compare the resulting analysis with the respective one for the linear problem with the same boundary
conditions, due to Gazzola and Sweers [2008].

The Dirichlet problem. The argument is similar to what we used in the subsection on page 961 for the
convergence to the Navier problem, but now we have to pay attention to the fact that in this case the two
functional spaces are different (H 2.�/\H 1

0 .�/ for the Steklov problem and H 2
0 .�/ for the Dirichlet).

We are not giving here the details of the proof of the existence of ground states of (6-16), as it can be
obtained as for the Steklov framework by the Nehari method of Section 3. In the following, we assume
� to be a bounded convex domain in R2 with boundary of class C 1;1 and � > 1. We suppose also that
the curvature � is positive a.e, that is @� has parts that are not flat. Moreover, as usual, uk will always
denote a ground state for J�k and Nu a ground state for JDIR WH

2
0 .�/! R defined as

JDIR.u/D
1

2

Z
�

.�u/2�
1

pC1

Z
�

g.x/jujpC1;
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whose critical points are weak solutions of (6-16). Moreover, as in the Steklov case, we define the Nehari
manifold for JDIR:

NDIR WD
˚
u 2H 2

0 .�/nf0g
ˇ̌
J 0DIR.u/Œu�D 0

	
:

First of all, notice that, by the definition of J�, for each �,

J� j
H2
0
.�/
D JDIR; (6-17)

so N� restricted to the subspace H 2
0 .�/ coincides with NDIR.

Theorem 6.14. Let �k!C1 and � be a bounded convex domain in R2 with boundary of class C 1;1.
Assume also that the curvature k is positive a.e on @�. Then the sequence .uk/k2N of ground states of
.J�k /k2N admits a subsequence .ukj /j2N convergent in H 2.�/ to Nu, which is a ground state for the
Dirichlet problem (6-16).

Proof. We follow the same steps as in the subsection on page 961 to deduce Theorem 6.5. Firstly, we
prove that .uk/k2N is bounded in H 2.�/. Indeed, fix Nw 2 H 2

0 .�/, a ground state for the Dirichlet
problem (6-16). Then

k�ukk
2
2 �

Z
�

.�uk/
2
� .1� �k/

Z
@�

�.uk/
2
n D

Z
�

g.x/jukj
pC1
D inf
v2N�k

Z
�

g.x/jvjpC1

� inf
v2N�k\H

2
0 .�/

Z
�

g.x/jvjpC1 D

Z
�

g.x/j NwjpC1: (6-18)

Hence, there exists Nu 2 H 2.�/\H 1
0 .�/ such that, up to a subsequence, uk * Nu weakly in H 2.�/.

Moreover, (6-18) implies that

0� .�k � 1/

Z
@�

�.uk/
2
n �

Z
�

g.x/jukj
pC1
� C.�; p/kgk1kukk

pC1

H2.�/
�D.�;p; g/

and, taking into account that �k!C1, we deduce thatZ
@�

�.uk/
2
n! 0:

Furthermore, by the compactness of the map @n WH 2.�/! L2.@�/, we have also thatZ
@�

�.uk/
2
n!

Z
@�

� Nu2n:

Hence, combining the two and recalling that we assumed � > 0 on @�, we deduce that Nun � 0 on @�
and thus Nu 2H 2

0 .�/.
Finally, testing the weak formulation of problem (6-1) with ' 2H 2

0 .�/ and passing to the limit as
k!C1, we deduce that Z

�

� Nu�' D

Z
�

g.x/j Nujp�1 Nu';
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so Nu is a solution of the Dirichlet problem (6-16) and, similarly to Lemma 6.1, we can prove that the
convergence is strong in H 2.�/. It remains to prove that Nu is actually a ground state for JDIR. Let
Nw 2H 2

0 .�/ be a ground state solution of JDIR. Then, by (6-17),

mD JDIR. Nw/D J�k .t
�
�k
. Nw/ Nw/� inf

N�k\H
2
0 .�/

J�k � inf
N�k

J�k D J�k .uk/I

hence we deduce that m� lim infk!C1 J�k .uk/. Moreover, by strong convergence,

JDIR. Nu/D
�
1

2
�

1

pC1

� Z
�

g.x/j NujpC1 D lim
k!C1

�
1

2
�

1

pC1

� Z
�

g.x/jukj
pC1
D lim
k!C1

J�k .uk/:

Finally, since Nu is a solution of the Dirichlet problem (6-16), we have Nu 2NDIR, so

m� JDIR. Nu/� lim inf
k!C1

J�k .uk/�m: �

Moreau dual cones decomposition. So far, we have proved the existence of ground states for the Dirichlet
problem (6-16) and the convergence result as � !C1. Proving positivity of ground states of (6-16) is
quite a hard subject, since it strongly relies on the geometry of the domain, even in the linear case, where
f .x; u/D f .x/: we refer to [Sweers 2001] for a short survey. Anyway, there are some cases in which
it holds: for instance, the Dirichlet problem in the ball has been studied in [Ferrero et al. 2007], which
covers the case where g � 1, but whose arguments hold also in the general situation.

Our strategy is mainly inspired by this last work and it was firstly applied to fourth-order problems
by Gazzola and Grunau [2001]. Briefly, we use Moreau decomposition in dual cones (for the original
paper, see [Moreau 1962]) to obtain from a supposed sign-changing ground state solution u, a function w
of one sign and in the same space with a strictly lower energy level, leading to a contradiction. In our
case, in order to apply this machinery, we have to impose that the associated linear problem is positivity
preserving: this will be the connection between the two problems.

Definition 6.15. Let � � R2 be a bounded domain of class C 1;1 and fix � 2 R. The linear Steklov
boundary problem �

�2uD f in �;
uD�u� .1� �/�un D 0 on @�

(6-19)

is positivity preserving in� if there exists a unique solution u2H 2.�/\H 1
0 .�/ and f � 0 implies u� 0,

and this holds for each f 2 L2.�/. We shorten this by saying that “� is a [PPP� ] domain for (6-19)”.

Definition 6.16. Let H be a Hilbert space with scalar product . � ; � /H and K �H be a nonempty closed
convex cone. Its dual cone K� is defined as

K� WD fw 2H j .w; v/H � 0 for all v 2Kg:

Theorem 6.17 (Moreau dual cone decomposition, [Gazzola et al. 2010, Theorem 3.4]). Let H be a
Hilbert space with scalar product . � ; � /H and K and K� as before. Then for every u 2H , there exists a
unique couple .u1; u2/ 2K �K� such that uD u1Cu2 and .u1; u2/H D 0.
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Our aim is to apply this result with .H; k � kH / D .H 2.�/\H 1
0 .�/I k � kH� /, where k � kH� is the

norm (2-1), and K WD fv 2H j v � 0g, the cone of nonnegative functions, looking for a decomposition of
each element of the space in positive and negative “parts”. Hence we need a characterization of the dual
cone K�:

Lemma 6.18. If � is a ŒPPP� � domain for (6-19) for a fixed � 2R, thenK��fw 2H jw<0 a.e.g[f0g.

Proof. We adapt here the proof of [Gazzola et al. 2010, Proposition 3.6]. Let ' 2C1c .�/, ' � 0 and let
v' 2H

2.�/\H 1
0 .�/ be the unique weak solution of the linear problem�

�2v' D ' in �;
v' D�v' � .1� �/�.v'/n D 0 on @�I

that is, for every test function w 2H 2.�/\H 1
0 .�/, we have

.v' ; w/H� WD

Z
�

�v' �w� .1� �/

Z
@�

�.v'/nwn D

Z
�

'w:

Hence, suppose wD u 2K�: as � is a [PPP� ] domain and ' � 0, we deduce that v' � 0, so v' 2K and
thus .v' ; u/H� � 0. As a result, we have obtained that for every ' 2C1c .�/, ' � 0, we have

R
� 'u� 0,

which implies that u� 0 a.e. in �.
Moreover, let us suppose that the null set of u, namely N WD fx 2� j u.x/D 0g, has positive measure,

consider  WD �N ¤ 0 and let v0 be the unique solution of the linear Navier problem�
�2v0 D  in �;
v0 D�v0 D 0 on @�:

(6-20)

Then v0 is strictly superharmonic by the maximum principle; thus v0 > 0 and, by the Hopf Lemma,
.v0/n < 0. As a result, for any function v 2H 2.�/\H 1

0 .�/ one can produce two positive constants ˛,
ˇ such that vC˛v0 � 0 and v�ˇv0 � 0. Moreover we claim that .u; v0/H� � 0. In fact, as v0 is the
weak solution of (6-20) and by the definition of  ,Z

�

�u�v0 D

Z
�

u D

Z
N

uD 0:

Thus, since � >1, � � 0, un� 0 as u� 0, and .v0/n<0,

.u; v0/H� WD

Z
�

�u�v0� .1� �/

Z
@�

�un.v0/n � 0:

As a result, recalling that u2K�, vC˛v0 2K and v�ˇv0 2 .�K/, we have the chain of inequalities

0� .u; vC˛v0/H� D .u; v/H�C˛.u; v0/H� � .u; v/H� � .u; v/H� �ˇ.u; v0/H� D .u; v�ˇv0/H� � 0;

which implies that .u; v/H� D 0, and this holds for all v 2H 2.�/\H 1
0 .�/. Hence this is true also for

v defined as the unique solution of the Steklov problem�
�2v D u in �;
v D�v� .1� �/�vn D 0 on @�;

(6-21)
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and, using u as a test function, we deduce that

0D .u; v/H� D

Z
�

u2 D kuk22;

which implies uD 0 a.e. �

Proposition 6.19. Let � > 1 and suppose � is a ŒPPP� � domain for (6-19). Then the ground states of J�
are a.e. strictly of only one sign.

Proof. Let u 2 H 2.�/\H 1
0 .�/ be such a ground state and suppose by contradiction that u is sign-

changing. Denoting as before the cone of nonnegative functions by K, by Moreau decomposition there
exists a unique couple .u1; u2/ 2K �K� such that uD u1Cu2 and .u1; u2/H� D 0. Hence we know
that u1 � 0 and, by Lemma 6.18, u2 < 0. Moreover, u is supposed to change sign, so u1 ¤ 0.

Defining w WD u1�u2 2H 2.�/\H 1
0 .�/, we have w > juj. Indeed,

w D u1�u2 > u1Cu2 D u; w D u1�u2 > �u1�u2 D�u:

Consequently,
R
� g.x/jwj

pC1 >
R
� g.x/juj

pC1 and, since the decomposition is orthogonal under that
norm, kwk2H� D ku1k

2
H�
C ku2k

2
H�
D kuk2H�. Moreover, by Lemma 3.3, there exists t� WD t�.w/ 2

.0;C1/ such that w� WD t�.w/w 2N�. Hence we deduce

J� .w
�/D

.t�/2

2
kwk2H� �

.t�/pC1

pC 1

Z
�

g.x/jwjpC1

<
.t�/2

2
kuk2H� �

.t�/pC1

pC 1

Z
�

g.x/jujpC1 D J� .t
�.w/u/� J� .u/;

since u is the maximum of J� on the half-line ftu j t 2 .0;C1/g by Lemma 3.3; thus we have a
contradiction again, since u was the infimum of J� on the Nehari manifold N�. Hence we infer that u� 0.

Finally, as u is a critical point of J�, we have for each a positive test function ' 2H 2.�/\H 1
0 .�/,

.u; '/H� D

Z
�

�u�' � .1� �/

Z
@�

�un'n D

Z
�

g.x/up' � 0;

which implies that �u 2K�. Applying now Lemma 6.18, we get �u < 0, that is, u > 0. �

As a consequence, the problem of proving positivity of ground state is led back to a problem of
positivity preserving for the linear problem, which was already tackled and solved by Gazzola and Sweers
[2008].

Theorem 6.20. Let � > 1 and �� R2 be a bounded convex domain with @� of class C 2. There exists
Qıc.�/ 2 .1;C1� such that if � 2 .1; Qıc.�//, the ground states of the functional J� are a.e. strictly of
only one sign.

Proof. We follow the notation of [Gazzola and Sweers 2008]. Choosing ˇ D � in Theorem 4.1(iii)
of that paper, we infer the existence of ıc;�.�/ 2 Œ�1; 0/ such that if .1� �/� � ıc;�.�/�, then the
positivity preserving for problem (6-19) holds in �. Hence, defining Qıc.�/ WD 1C jıc;�.�/j, we can
apply Proposition 6.19, provided � < Qıc.�/. �
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Comparing Theorems 6.20 and 6.12, one may argue that we have nothing more than what we already
knew: in both we obtain the existence of �1 D �1.�/ > 1 such that for all � 2 .1; �1/ the ground
state solutions of problem (1-3) are positive. Nevertheless, in Theorem 6.20 we get further precise
information about how the interval of positivity depends on the domain, relating it strongly with the
positivity-preserving property. This fact is striking in the case of the disk and allows us to finally answer
the question which opened the section.

Corollary 6.21. Let B � R2 be a disk and let � > 1. Then the ground states of the functional J� are a.e.
strictly of only one sign.

Proof. It is enough to notice that here � D 1 and applying [Gazzola and Sweers 2008, Theorem 2.9] one
can deduce ıc;�.B/D�1, which implies Qıc.B/DC1. �

One should finally notice that here the positivity found by the dual cones method is up to a subset of
the domain with zero Lebesgue measure, so almost everywhere in �. This is the price we have to pay to
extend the positivity beyond the parameter �1 found in Theorem 6.12 (see also Remark 6.13).

Remark 6.22. Again, up to some easy modifications in the proofs, both the convergence in Theorem 6.14
and the positivity result in Theorem 6.20 hold also in the sublinear case p 2 .0; 1/.

7. Radial case

This section is devoted to some further investigations when the domain is a disk in R2 and the function g
is radial, regarding existence, positivity and some qualitative properties of radially symmetric solutions.
Moreover, we establish the counterpart of the convergence results of Sections 5 and 6, but for general
radial positive solutions.

For simplicity, we focus on the problem�
�2uD g.x/jujp�1u in B;
uD�u� .1� �/un D 0 on @B;

(7-1)

where B WDB1.0/�R2, gDg.jxj/ lies in L1.B/ and it is strictly positive inside B. Moreover, we let
� 2 R and p 2 .0; 1/[ .1;C1/ to cover both the sublinear and the superlinear case. Notice that the
curvature does not appear in the mixed boundary condition since �.B/� 1.

Positive radially decreasing solutions and global bounds. First of all, by Proposition 5.3, our analysis
concerns only the range � > �1: in fact, if �D B, one has �� D�1, since the first Steklov eigenvalue
Qı1.B/ is 2 (see [Berchio et al. 2006, Proposition 12]).

Retracing exactly the same steps of Sections 3 and 4, it is quite easy to obtain the existence of a positive
radial solution. In fact, confining ourselves to the closed subspace of radial functions

Hrad.B/ WD
˚
u 2H 2.B/\H 1

0 .B/
ˇ̌
u.x/D u.jxj/ for all x 2 B

	
D FixO.2/.H

2.B/\H 1
0 .B//;

we deduce the existence of a critical point of J� restricted to Hrad.B/. Then it is enough to notice that
J� is invariant under the action of O.2/ and to apply the principle of symmetric criticality due to Palais



974 GIULIO ROMANI

(see [Willem 1996, Theorem 1.28]), retrieving that these points are critical for J� also with respect to the
whole space.

Finally, if we restrict to the interval .�1; 1�, the positivity of such critical points is proved as in
Propositions 4.9 and 4.12, realizing that the superharmonic function of a radially symmetric function
is radial too (see (4-4)). On the other hand, if � > 1, one can apply the dual cone decomposition to the
Hilbert space Hrad.B/ and argue as in Lemma 6.18 and Proposition 6.19, taking into account that B is a
[PPP� ] domain for every � > �1. Summarizing, we have shown the following:

Proposition 7.1. Let p 2 .0;1/[.1;C1/, gD g.jxj/ 2L1.B/, g > 0. If � � �1, there is no positive
nonnegative nontrivial solution for (7-1), while, if � > �1, there exists at least a positive radial solution,
which is strictly superharmonic whenever � 2 .�1; 1�.

Now, we want to prove some qualitative properties of radial positive solutions of (7-1). The first result
concerns the radial behaviour, while the second the uniform boundedness in L1.B/. Before proving
these results, one should notice that such solutions are strong solutions, namely in W 4;q.B/, provided
g 2 Lq.B/ for some q > 2 and also classical assuming in addition that g 2 W 1;q.B/ for some q > 2.
This is a straightforward application of Lemma 6.7 combined with Morrey’s embeddings.

Lemma 7.2. Let B WD BR.0/ be the ball of radius R in R2 centered in 0, q > 2 and Qh 2 W 2;q.B/ be
radial. Defining h W Œ0; R�! R to be its restriction to the radial variable, for all t 2 Œ0; R� the following
equality holds:

th0.t/D

Z t

0

s �h.s/ ds: (7-2)

Proof. If h is of class C 2, it comes directly from integration by parts and from the radial representation of
the laplacian as

� Qh.x/D h00.jxj/C
1

jxj
h0.jxj/:

Otherwise, let . Qfk/k2N � C
1.B/ be such that Qfk! Qh in W 2;q.B/, so in C 1.B/. Since Qh is radial, we

claim that it is possible to choose each Qfk to be radial and we denote its restriction to the radial variable
as fk . If so, for every k 2 N, we have

tf 0k.t/D

Z t

0

s �fk.s/ ds:

As a result, as k!C1,ˇ̌̌̌ Z t

0

s.�fk.s/��h.s// ds

ˇ̌̌̌
D

1

2�
k� Qfk �� QhkL1.Bt .0// � C.q/k

Qfk � QhkW 2;q.B/! 0:

The result is proved by the convergence in C 1.B/ and the uniqueness of the limit. Now we have to justify
our previous claim. Since Qh 2W 2;q.B/, we haveX

i;˛

Z
B

ˇ̌̌̌
@˛ Qh

@i˛
.x; y/

ˇ̌̌̌q
dx dy <C1;
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where i 2 fx; yg and ˛ is a multi-index of length 0 � j˛j � 2. Since each .@˛ Qh/=.@i˛/ is radial, this
is equivalent to saying that h 2 W 2;q.Œ0; R�; r/, that is, the weighted Sobolev space with weight r .
Hence, by [Kufner 1985, Theorem 7.4] (M D f0g, "D 1 in notation therein), there exists a sequence
.fk/k2N � C

1.Œ0; R�/ such that fk! h in W 2;q.Œ0; R�; r/, that isX
i;˛

Z R

0

r

ˇ̌̌̌
@˛h

@i˛
.r/�fk.r/

ˇ̌̌̌q
dr! 0:

Hence, defining Fk.x/ WD fk.jxj/, each Fk 2 C1.B/ is radial and

k Qh�FkkW 2;q.B/ D

X
i;˛

Z
B

ˇ̌̌̌
@˛ Qh

@i˛
.x; y/�Fk.x; y/

ˇ̌̌̌q
dx dy D 2�

X
i;˛

Z R

0

r

ˇ̌̌̌
@˛h

@i˛
.r/�fk.r/

ˇ̌̌̌q
dr! 0;

and the claim is proved. �

Proposition 7.3 (radial decay). Assume g 2 Lq.B/ for some q >2, g is radial and g >0, and let u 6� 0
be a nonnegative radial solution of (7-1) with � 2 .�1; 1� and p 2 .0; 1/[ .1;C1/. Then u is strictly
radially decreasing; thus u > 0 in B.

Proof. By the assumption on g, we infer that u is a strong solution; thus w WD �u 2W 2;q.B/. Since
�wD�2uD g.jxj/up � 0 in Œ0; 1�, applying Lemma 7:2, we have w0 > 0 in .0; 1�. Hence �u is strictly
increasing in .0; 1�. Moreover, since u is nonnegative and u.1/ D 0, we have u0.1/ � 0; hence, using
the second boundary condition, �u.1/D .1� �/u0.1/� 0. Since �u is strictly increasing in .0; 1�, we
deduce that �u < 0 in Œ0; 1/, and finally, applying again Lemma 7.2, u0 < 0 in .0; 1�. �

In the next result we find a uniform upper bound for positive radial solutions of (7-1), which may be
seen as a superlinear counterpart of Proposition 4.11. We will make use of a blow up method which
goes back to Gidas and Spruck [1981], and which was adapted to the polyharmonic case by Reichel and
Weth [2009; 2010]. Briefly, our argument will be the following: supposing the existence of a sequence
of positive radial solutions with diverging L1 norm, we rescale each of them in order to have another
sequence of functions with the same L1 norm, satisfying the same equation in nested domains which
tend to occupy the whole R2. Then we show that, up to a subsequence, it converges uniformly on compact
subsets to a continuous nonnegative but nontrivial function. This turns out to be a solution of the same
equation on R2, which is a contradiction with the following Liouville-type result by Wei and Xu, with
N D 2 and mD 2:

Lemma 7.4 [Wei and Xu 1999, Theorem 1.4]. Let m 2 N and assume that p > 1 if N � 2m and
1 < p � .N C 2m/=.N � 2m/ if N > 2m. If u is a classical nonnegative solution of

.��/muD up in RN;

then u� 0.

In our proof we will make also use of the following local regularity estimate, which is a particular case
of a more general result by Reichel and Weth:



976 GIULIO ROMANI

Lemma 7.5 [Reichel and Weth 2009, Corollary 6]. Let �DBR.0/�RN, m2N, h2Lp.�/ for some
p 2 .1;C1/ and suppose u 2W 2m;p.�/ satisfies

.��/muD h in �:

Then there exists a constant C D C.R;N; p;m/ such that for any ı 2 .0; 1/,

kukW 2m;p.BıR.0//
�

C

.1� ı/2m

�
khkLp.BR.0//CkukLp.BR.0//

�
:

Proposition 7.6. Let � 2 .�1; 1�. Let g 2 Lq.B/ for some q > 2, g be radial and g > 0. Suppose also
that g is continuous in 0. Then, there exists C > 0 independent of � such that kuk1 � C for every u
radial positive solution of (7-1).

Proof. By contradiction, suppose there exists a sequence .vk/k2N of radial positive solutions such that
kvkk1%C1. According to Proposition 7.3, each vk is radially decreasing, so vk.0/Dkvkk1%C1.
For each k � 1, define

uk.x/D �
4
p�1

k
vk.�kx/;

where �k 2 RC are such that �
4
p�1

k
D 1=vk.0/. With this choice, each uk satisfies(

�2uk D g.j�kxj/u
p

k
in B 1

�k

.0/;

uk D�uk � .1� �/�k.uk/n D 0 on @B 1
�k

.0/;
(7-3)

is in W 4;q.B 1
�k

.0//, radially decreasing and

kukkL1.B1=�k .0//
D uk.0/D �

4
p�1

k
vk.0/D 1: (7-4)

We claim that the sequence .uk/k2N is uniformly bounded on compact sets of R2 in W 4;q norm. In fact,
letK �R2 be compact; then there exists � > 0 such that B�.0/�K and, for k large enough, each uk is in
K since B 1

�k

.0/� B2�.0/ definitively. For such k, by (7-4) and applying Lemma 7.5 with �D B2�.0/,

mDN D 2 and ı D 1
2

,

kukkW 4;q.K/ � kukkW 4;q.B�.0//
�
C.�; q/

1=24
.k�2ukkLq.B2�.0//CkukkLq.B2�.0///

� 16C.�; q/.kg.j�k � j/kLq.B2�.0//CjB2�.0/j
1
q /: (7-5)

Moreover, fixing " > 0 and supposing k large enough,

kg.j�k � j/kLq.B2�.0// D .4��
2/
1
q

�
1

jB2��k .0/j

Z
B2��k .0/

jg.y/jq dy

�1
q

� .4��2/
1
q g.0/C "; (7-6)

where the last inequality follows from the Lebesgue differentiation theorem. Hence, combining (7-5)
with (7-6), we infer kukkW 4;q.K/ � C.p; q;K; g/, which is uniform on k. Incidentally, notice that this
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constant does not depend on �. Hence we find u 2W 4;q.K/ such that, up to subsequences, uk! u in
C 3.K/, where u2C 3.R2/, u� 0 and u.0/D 1 by (7-4) and satisfying

�2uD g.0/up in R2:

So, by a bootstrap method, we deduce that u is also a classical solution. Finally, setting for all x 2 R2

w.x/ WD u.bx/ with b WD g.0/�
1
4 , one has w is a nonnegative solution of

�2w D wp in R2;

with w.0/D u.0/D 1, which contradicts Lemma 7.4. �

Convergence results. We want to investigate what happens at the endpoints of the interval .�1; 1� in
which � lies, by means of the last results. More precisely, our aim is to examine if any result similar to
Theorems 5.8 and 6.5 can be found assuming .uk/k2N to be a sequence of positive radial solutions of
(7-1) with � D �k but without imposing any “minimizing” requirement. Unless otherwise stated, we
assume g � 1 and p > 1.

Let us start with the behaviour for � ! 1, where the main ideas are taken from the same result for
ground states. Notice that we know everything for the Navier problem in the ball: in fact, Dalmasso [1995]
proved that there exists a unique positive solution, which is radially symmetric and radially decreasing
thanks to a result by Troy [1981].

Proposition 7.7. Let .uk/k2N be a sequence of positive radial solutions of (7-1) with �k % 1. Then
uk! Nu in H 2.B/, where Nu is the unique positive solution of the Navier problem.

Proof. We firstly claim that such a sequence is bounded in H 2.B/. Indeed, by Proposition 7.6,

kukk
2
H2.B/

� C0k�ukk
2
2 � C0

�
1�

1� �k

2

��1
kukk

2
H�k
D

2C0

1C �k
kukk

pC1
pC1 � 2�C0C

pC1:

Hence, we can extract a subsequence .ukj /j2N such that there exists Nv 2 H 2.B/\H 1
0 .B/ such that

ukj * Nv weakly inH 2.B/. By Lemma 6.1, together with Remark 6.2, one can infer that this subsequence
is actually strongly convergent in H 2.B/ and then that Nv is a weak solution of the Navier problem (thus
classical by regularity theory). Moreover, since the convergence is pointwise, we immediately deduce
that Nv is nonnegative, radially symmetric and radially nonincreasing. Nevertheless, by Proposition 7.3, Nv
is actually strictly decreasing and positive in B, so it coincides with the unique positive solution Nu of the
Navier problem. By the uniqueness of the limit and applying Urysohn subsequence principle, we retrieve
the convergence of the whole sequence .uk/k2N from which we started. �

Let us now investigate the case � !�1. As already noticed in Lemma 5.9, it is enough to understand
the behaviour of the LpC1.B/ norm of a sequence of solutions to infer the convergence in H 2.B/ norm.
Since the proof of Theorem 5.8 strongly relies on the fact that it deals with ground states, we need a
different technique. The first step is a Pohozaev-type identity by Mitidieri [1993]: it will allow us to
prove an inequality involving Lp.B/ and LpC1.B/ norms which, combined with the uniform bound of
Proposition 7.6, will lead us to the convergence result.
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Lemma 7.8 [Mitidieri 1993, Proposition 2.2]. Let � be a smooth domain and u 2 C 4.�/. The following
identity holds:Z
�

.�2u/x � ru�
N

2

Z
�

.�u/2� .N � 2/

Z
�

r�u � ru

D�
1

2

Z
@�

.�u/2x �nC

Z
@�

�
.�u/n.x � ru/Cun.x � r�u/�r�u � ru.x �n/

�
:

Corollary 7.9. Suppose u is a positive solution for problem (7-1) with g � 1. Then the following identity
holds: Z

@BR

�
.�u/nC .1� �/

�
1�

1��

2

�
un

�
un D�

�
1C

2

pC1

� Z
BR

upC1: (7-7)

Proof. By similar computations as in the proof contained in [Berchio et al. 2007, Section 6], from
Lemma 7.8 one infers�

N�4

2
�

N

pC1

� Z
�

upC1 D

Z
@�

�
x � r�uC 1

2
N.1� �/�un�

1
2
.1� �/2�2un.x �n/

�
un: (7-8)

If N D 2 and �D B, we have x D n and � D 1, so x � r�uD .�u/n and (7-7) follows. �

The next result follows from some ideas of Berchio and Gazzola: we give here a sketch, while we
refer to [Berchio and Gazzola 2011, Proposition 4], for a more detailed proof.

Lemma 7.10. Let � 2 .�1; 1/ and u be a positive radial solution of problem (7-1) with g � 1. Then the
following estimate holds:

kuk
pC1
pC1 �

3
64

�
1� 3

64
.1� �/

� 1

�.1C �/

pC 1

pC 3
k�2uk21: (7-9)

Proof. By radial symmetry, (7-7) reduces to

2.�u/0.1/u0.1/C .1� �/.1C �/.u0.1//2 D�
pC 3

pC 1

1

�

Z
B

upC1: (7-10)

Moreover, by the divergence theorem we have

u0.1/D
1

2�

Z
B

�u and .�u/0.1/D
1

2�

Z
B

�2u;

so, taking the first Steklov eigenfunction w.x/D 1
4
.1� jxj2/ and after some elementary computations,

one gets �Z
B

�2u� .1� �/

Z
B

w�2u

�Z
B

w�2uD
pC 3

pC 1
.1C �/�

Z
B

upC1: (7-11)

Noticing that 0� w � 1
4

, we have

3

64

Z
B

�2u�

Z
B

w�2u�
1

4

Z
B

�2u:

Hence, defining now d WD .1��/, s WD
R
Bw�

2u and A WD
R
B�

2u, the left-hand side of (7-11) becomes

As� ds2; with s 2
�
3
64
AI 1

4
A
�
:
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Since d > 0, we know  W s 7! As�ds2 is a concave function, so it attains its minimum on the extremal
values of the interval: in this case, with 0 < d < 2, one has

 .s/� 3
64

�
1� 3

64
d
�
A2:

Combining this with (7-11), one finds the desired estimate (7-9). �

Theorem 7.11. Let �k & �1 and .uk/k2N be a sequence of positive radial functions, each of them a
solution of the problem (7-1) with g � 1 and � D �k . Then, uk! 0 in H 2.B/.

Proof. By Lemma 5.9, it is enough to prove the convergence in LpC1.B/ norm. Since every solution
of (7-1) is smooth, we have k�2ukk1 D kukk

p
p . Moreover, by the uniform L1 estimate found in

Proposition 7.6, we know that there exists a constant C > 0 not depending on �k , such that

kukk
pC1
pC1 � kukk

pC1
1 jBj � �CpC1:

As a result, using the estimate provided by Lemma 7.10, one has

1C �k

1� 3
64
.1� �k/

�
pC 1

pC 3

3

64�2CpC1
kukk

2p
p ; (7-12)

so, letting �k!�1 we deduce kukkp! 0. This, together with the L1.B/ estimate of Proposition 7.6,
gives us the convergence in LpC1.B/ and so the desired result. �

8. Open problems

We end our paper with some unsolved questions that would complete the present investigation.

� If � is a ball, are the ground states of J� radially symmetric‹

In fact, we deduced the existence of ground states and radial solutions which are indeed ground states
among all possible radial solutions; both of them are positive and have the same behaviour when �!�1
and �! 1. But no standard techniques such as the Talenti symmetrization principle seem to apply (except
for the Navier case) to prove that these classes of functions are indeed the same.

� Are the radial positive solutions radially decreasing if � > 1‹

Indeed, the radial decay property proved in Proposition 7.3 does not apply in this setting and, by now, we
cannot extend Proposition 7.6 for these values of �.

Moreover, in the spirit of [Dalmasso 1995] and [Ferrero et al. 2007]:

� Can we say something about the uniqueness of .at least/ the positive radially symmetric ground state
of J� for some values of �‹

Finally, all the techniques developed in Section 3 strongly relied on the assumptions we made on the
boundary, that is, @� of class C 1;1, in order to have � 2 L1.@�/. In particular, Theorem 4.7 allowed us
to rewrite in an appropriate way our functional. Also the convexity played a crucial role in proving the
positivity: see in particular Propositions 4.9, 4.12 and 5.6 as well as Theorem 6.20.
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� May we deduce the positivity of ground states of J� when the domain � is not convex anymore or
with less regularity on the boundary‹

Since in the Navier case their positivity is always assured simply by the maximum principle, we expect
that, even without the convexity assumption, it continues to hold whenever � belongs to a neighborhood
of 1 which may depend on “how far” the domain is from being convex.

Concerning the regularity of the boundary, if we consider the particular case of a convex polygon P, it
is known that ground states of J� are positive for every � : in fact, the superharmonic method applies
easily once we have

R
P det.r2u/D 0 thanks to a result by Grisvard [1992, Lemma 2.2.2]. We believe

that positivity for ground states of J� still holds imposing, for instance, only Lipschitz regularity for @�.
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