Vol. 10, No. 4, 2017

Download this article
Download this article For screen
For printing
Recent Issues

Volume 12
Issue 7, 1643–1890
Issue 6, 1397–1642
Issue 5, 1149–1396
Issue 4, 867–1148
Issue 3, 605–866
Issue 2, 259–604
Issue 1, 1–258

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Ethics Statement
Author Index
To Appear
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Other MSP Journals
This article is available for purchase or by subscription. See below.
Positivity for fourth-order semilinear problems related to the Kirchhoff–Love functional

Giulio Romani

Vol. 10 (2017), No. 4, 943–982

We study the ground states of the following generalization of the Kirchhoff–Love functional,

Jσ(u) =Ω(Δu)2 2 (1 σ)Ω det(2u) ΩF(x,u),

where Ω is a bounded convex domain in 2 with C1,1 boundary and the nonlinearities involved are of sublinear type or superlinear with power growth. These critical points correspond to least-energy weak solutions to a fourth-order semilinear boundary value problem with Steklov boundary conditions depending on σ. Positivity of ground states is proved with different techniques according to the range of the parameter σ and we also provide a convergence analysis for the ground states with respect to σ. Further results concerning positive radial solutions are established when the domain is a ball.

PDF Access Denied

However, your active subscription may be available on Project Euclid at

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

biharmonic operator, positivity-preserving property, semilinear problem, positive least-energy solutions, Nehari manifold
Mathematical Subject Classification 2010
Primary: 35G30, 49J40
Received: 29 June 2016
Revised: 6 February 2017
Accepted: 7 March 2017
Published: 9 May 2017
Giulio Romani
Aix Marseille Univ, CNRS, Centrale Marseille
Institute de Mathématique de Marseille (I2M)
13453 Marseille