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HARDY-SINGULAR BOUNDARY MASS AND
SOBOLEV-CRITICAL VARIATIONAL PROBLEMS

NASSIF GHOUSSOUB AND FREDERIC ROBERT

We investigate the Hardy—Schrodinger operator L, = —A — y/|x|* on smooth domains £ C R" whose
boundaries contain the singularity 0. We prove a Hopf-type result and optimal regularity for variational
solutions of corresponding linear and nonlinear Dirichlet boundary value problems, including the equation
L,u=u>®=1/|x|, where y < in? s €[0,2) and 2*(s) :=2(n —s)/(n —2) is the critical Hardy—Sobolev
exponent. We also give a complete description of the profile of all positive solutions — variational or not —
of the corresponding linear equation on the punctured domain. The value y = }T(nz — 1) turns out to be a
critical threshold for the operator L,. When §(n* — 1) < y < 1n? anotion of Hardy singular boundary
mass m,, (§2) associated to the operator L, can be assigned to any conformally bounded domain €2 such
that 0 € 9Q2. As a byproduct, we give a complete answer to problems of existence of extremals for
Hardy—Sobolev inequalities, and consequently for those of Caffarelli, Kohn and Nirenberg. These results
extend previous contributions by the authors in the case y = 0, and by Chern and Lin for the case
y < %(n — 2)% More specifically, we show that extremals exist when 0 < y < }‘(n2 — 1) if the mean
curvature of 9€2 at 0 is negative. On the other hand, if i(rz2 —-<y< %,12, extremals then exist whenever
the Hardy singular boundary mass m,, (£2) of the domain is positive.
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1. Introduction
The borderline Dirichlet boundary value problem

—Au— y# — uH/0-D) o
u>0 on 2, (I-1)

u=>0 on 092,

on a smooth bounded domain 2 of R” (n > 3) has no energy minimizing solutions if the singularity 0
belongs to the interior of the domain €2; see the discussion after inequality (1-15). The situation changes
dramatically, however, if 0 is situated on the boundary 0€2. Indeed, Chern and Lin [2003; 2010] showed that
solutions exist in this case provided the mean curvature of 9€2 at O is negative, n >4, and 0 < y < %(n —2)2
The condition on y ensures that the Hardy—Schrédinger operator L, :== —A —y/ |x|? is positive on
HO] (€2). This is the case as long as y < yg(£2), the latter being the best constant in the corresponding
Hardy inequality, i.e.,

2
Jo|Vul”dx -uezﬂﬁan\{m}. (1-2)

)/H(Q) = lnf{m .

Here D'>(Q) —or H} () if the domain is bounded — is the completion of C2°(2) with respect to the
norm given by ||u 1> = fQ |Vu|? dx, and it is well known that for any domain €2 having 0 in its interior,
we have

y(Q) =yu(R") = 1(n —2)~ (1-3)

On the other hand, yp (RY) = %nz when R’} := {x € R" : x| > 0} is the half-space, and if 2 is any domain
having O on its boundary, then necessarily

71 =2" <y (Q) < yn’ (1-4)

The question of what happens when %(n —2)? < ¥ < yu () provided the initial motivation for this
paper. To start with, we shall show that the negative mean curvature condition at 0 is still sufficient for
the existence of solutions for (1-1) as long as y remains below a new (higher) threshold, namely when
n >4 and

0<y=<im®—D. (1-5)

However, the situation changes dramatically for the remaining interval, i.e., when
i =1 <y <yn(Q. (1-6)

In this case, we show that local geometric conditions at O become irrelevant for solving (1-1) and more
global properties of the domain must come into play. This will be illustrated by the notion of Hardy
singular boundary mass of the domain Q2 that we introduce as follows.

We first consider the Hardy—Schrodinger operator L, :=—A —y /|x |> on R’. , and notice that the most
basic solutions for L, u = 0 satisfying u = 0 on dR’, are of the form u,(x) = x1|x|™% and that L, u, =0
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on R} if and only if « is either «_(y) or ey (y), where

ar(y)i=4nt/In2—y. (1-7)

Actually, a byproduct of our analysis below gives that any nonnegative solution of L, u =0 on R with
u=0on dR’ is a linear combination of these two solutions. Note thata_(y) < %n < o4 (y), which points
to the difference — in terms of behavior around 0 — between the “small” solution x — x|x|~% ), and
the “large” one x — x; |x|~*+®), Indeed, the small solution is “variational”, i.e., is locally in Dl’z(Ri),
while the large one is not.

This turns out to hold in more general settings, as we show that any variational solution of L, u =a(x)u
behaves like x — d (x, d2)|x|~*- ") around 0, while any positive nonvariational solution is necessarily like
x = d(x, 3Q)|x| %+ ") around 0. The profile can be made more explicit when y > %(n2 —1), as it is the
only situation in which one can write a solution of L, u =0 as the sum of the two above described profiles
(plus lower-order terms), while if y < }T(nz — 1), there might be some intermediate terms between the
two profiles. This led us to define the following notion of mass, which is reminiscent of the positive mass
theorem of Schoen and Yau [1988] that was used to complete the solution of the Yamabe problem. This will
allow us to settle the remaining cases left by Chern and Lin, since we establish that the positivity of such
a boundary singular mass is sufficient to guarantee the existence of solutions for (1-1) in low dimensions.
Theorem 1.1. Let Q2 be a smooth bounded domain of R" such that 0 € 0K2. Assume }‘(n2— D)<y <yu(Q).
Then, up to multiplication by a positive constant, there exists a unique function H € C*(Q\ {0}) such that

—AH-L H=0 inq,

x|
H=>0 in €2, (1-8)
H=0 on 02\ {0}.

Moreover, there exists a constant ¢ € R and H satisfying (1-8) such that

d(x, 02) d(x, 02) (d(x,&Q)

Hx) = x|+ ) x 2= x|e-0)

) as x — 0.

Due to the uniqueness of solutions to (1-8) up to multiplication by a constant, the coefficient c is uniquely
defined. It will be denoted by m, (2) := c € R, and will be referred to as the Hardy singular boundary
mass of Q.

It will be shown in Section 7 that this notion of mass is conformally invariant in the following sense: if
two sets are diffeomorphic via an inversion fixing O (see Definition 7.3 and (7-16)), then they have the
same mass. As a consequence, we shall be able to define a notion of Hardy singular boundary mass for
unbounded domains that are conformally bounded (that is, those that are smooth and bounded up to an
inversion that fixes 0). We shall show that €2 — m,, (€2) is a monotone set-function and that m,, (R’}) = 0.
These properties will allow us to construct in Section 9, examples of bounded domains €2 in R" with
0 € 02 with either positive or negative boundary mass, while satisfying any local behavior at 0 one
wishes. In other words, the sign of the Hardy-singular boundary mass is totally independent of the local
properties of d€2 around 0.
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One motivation for considering equation (1-1) came from the problem of existence of extremals for
the Caffarelli-Kohn—Nirenberg (CKN) inequalities [1984]. These state that in dimension n > 3, there is a
constant C := C(a, b, n) > 0 such that, for all u € C2°(R"),

2/q
( |x|—”q|u|4) <C [ |xI™|Vu|*dx, (1-9)
Rn Rn

where

n—2 2n
—o<a< , 0<b—a<l1, and ¢ = .
2 n—2+20b-—a)

(1-10)

If we let Dal*z(Q) be the completion of CZ°(£2) with respect to the norm ||u||§ = fQ |x]724|Vu|? dx, then
the best constant in (1-9) is given by

Jo 1x17% | Vu|* dx
(Jop Ix1=241u1) " dx

S(a,b, Q)= inf{ cu e DM2(@)\{0}1. (1-11)
The extremal functions for S(a, b, 2) — whenever they exist— are then the least-energy solutions of the
corresponding Euler—Lagrange equations

—div(]x|7%Vu) = |x|*u4™" on Q,
u>0 on 2, (1-12)
u=20 on 0L2.

To make the connection with the Hardy—Schrédinger operator, note that the substitution v(x) =
|x|"%u(x) with a < %(n — 2), gives—via the Hardy inequality —that u € D}-?>(Q) if and only if
v € D"2(Q) and that u is a variational solution of (1-12) if and only if v is a solution of equation

2*(s)—1

—Av—ylzL on 2,
|x|? |x|* 13
v>0 on €2, (1-13)

v=0 on 9%2,

where
( 2 ) (b ) d 2* 2n (1-14)
=amn—-2—-a), s=b-—-a an = . -
Y 9 n—2+20b—a)

The Caffarelli-Kohn—Nirenberg inequalities are then equivalent to the Hardy—Sobolev inequality

02 2/2%(s) 12
C(/ . dx) 5/ |Vu|2dx—yf —dx forallu € D"*(Q), (1-15)
o IxI° Q Q x|

at least in the case when y < 3—1(11 —2)2, which is optimal for domains €2 having 0 in their interior. If € is
also bounded, then the best constant in (1-15) is never attained; that is, (1-13) has no energy minimizing
solution.
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However, when 0 € 02, inequality (1-15) holds for y all the way up to ‘_1‘”2’ and we shall work thereafter
towards solving (1-13) by finding extremals for the variational problem

iy, (Q) = inf{J2 () :u € D"2(Q)\ {0}, (1-16)
where Jygfs is the functional on D!2($2) defined by

Vyul? — 2162 d
Jﬁﬂ(u)::ff?' ul =y Ju/lxdx. (1-17)

(1l dx)

We shall therefore consider the more general equation (1-13). The study of this type of nonlinear singular

problems when 0 € 92 was initiated by Ghoussoub and Kang [2004] and studied extensively by Ghoussoub
and Robert [2006a; 2006b] in the case y = 0. Chern and Lin [2003; 2010] and Lin and Wadade [2012]
dealt with the case y < }T(n — 2)% For more contributions, we refer to [Attar, Merchdn and Peral 2015;
Davila and Peral 2011; Gmira and Véron 1991].

Theorem 1.2. Let 2 be a smooth bounded domain in R" (n > 3) such that 0 € 0K2. Assume y < %(”2 -1
and 0 <s < 2. If either {s > 0} or {s =0, n >4 and y > 0}, then there are extremals for j1,, ;(S2) provided
the mean curvature of 02 at 0 is negative.

As mentioned above, our main contribution here to this problem is to consider the cases when
%(n2 -<y< inz, as well as when n =3, s =0 and y > 0, which were left open by Chern and Lin
[2010]. We now introduce the new ingredients that we bring to the discussion.

We first note that standard compactness arguments [Ghoussoub and Kang 2004; Chern and Lin 2010]

yield that for u,, ;(€2) to be attained it is sufficient to have that

My,s(sz) < My,s(Rz—)’ (1-18)

and in order to prove the existence of such a gap, one tries to construct test functions for i, ;(£2) that are
based on the extremals of w, (R’}) provided the latter exist. The cases where this is known are given by
the following standard proposition. See, for instance, [Bartsch, Peng and Zhang 2007; Chern and Lin
2010]. A complete proof is given in [Ghoussoub and Robert 2016].

Proposition 1.3. Assume y < J—tnz, n>3and0<s < 2. Then:
(1) wy s (RY) is attained provided either {s > 0} or {s =0, n >4 and y > 0}.
(2) On the other hand, there are no extremals for ., s(RY) for any n > 3 if {s =0and y <0}.
(3) Furthermore, whenever v, o(R'.) has no extremals, then necessarily

_ Jpr |Vu|* dx 1
myoR) = inf = ,
4 + uEDl’z(Rn)\{O} (/‘Rn |u|2* dx)2/2 K(n, 2)2

(1-19)

where 2* :=2n/(n —2) and 1/K (n, 2)? is the best constant in the Sobolev inequality.

The only unknown situation on R’ is again when s =0, n =3 and y > 0, which we address in
Section 10.
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Assuming first that an extremal for u,, (R’ exists and that one knows its profile at infinity and at 0,
this information can be used to construct test functions for p,, ;(€2). This classical method has been used
by Kang and Ghoussoub [2004], by Ghoussoub and Robert [2006b; 2006a] when y = 0, and by Chern
and Lin [2010] for0 < y < %(n —2)2 in order to establish (1-18) under the assumption that €2 has a
negative mean curvature at 0. Actually, the estimates of Chern and Lin [2010] extend directly to establish
Theorem 1.2 for all y < }‘(n2 — 1) under the same negative mean curvature condition. However, the case
where y = 3—1(112 — 1) already requires estimates on the profile of variational solutions of (1-13) on R’ that
are finer than those used by Chern and Lin [2010]. The following description of such a profile will allow
us to construct sharper test functions and to prove existence of solutions for (1-13) when y = A—ll(n2 - 1.

Theorem 1.4. Assume y < 3—1112 and 0 <s <2, andletu € Dl'Z(R’i), u>0, u#0 be aweak solution to

2%(s)—1
14 u .
—Au — —|x|2u = —|X|S in R (1-20)
Then, there exist Ky, K> > 0 such that
1 X1
u@) ~xmo KipeTes and ul) ~iiro Koo s

The solution of the problem on R’} also enjoys the following natural symmetry that will be crucial for
the sequel. This was carried out by Ghoussoub and Robert [2006a] when y = 0, and their proof extends
immediately to the case 0 < y < %nz. Chern and Lin [2010] gave another proof which also includes the
case where y < 0.

Theorem 1.5 [Chern and Lin 2010]. If u is a nonnegative solution to (1-20) in D"*(R"), then u oo = u
for all isometries of R" such that o (R',) = R',.. In particular, there exists v € C*((0, +00) x R) such
that for all x; > 0 and all x' € R"™, we have that u(xi, x') = v(x1, |x’]).

The following theorem summarizes the situation for low dimensions.
Theorem 1.6. Let Q2 be a bounded smooth domain of R" (n > 3) such that 0 € 9S2, hence %(n —-2)° <
v (R2) < ‘_ltnz' Let0<s < 2.
D) If yu(2) <y < %nz, then there are extremals for v, ((2) for all n > 3.
Q) If ‘—lt(n2 — 1) <y <yu(RQ) and either {s > 0} or {s =0, n >4 and y > 0}, then there are extremals
for w, < (2) provided the Hardy singular boundary mass m,, (S2) is positive.
(3) If {s =0and y <0}, then there are no extremals for v, 0(S2) for any n > 3.
Finally, we address in Section 10 the only remaining case, i.e., n=3, s=0and y € (O, %). In this
situation, there may or may not be extremals for ,uy,o([R{i). If they do exist, we can then argue as before —
using the same test functions — to conclude existence of extremals under the same conditions, that is,

either y < 2 and the mean curvature of 92 at 0 is negative, or y > 2 and the mass m,, (2) is positive.
However, if no extremals exist for uy,o(Ri), then as noted in (1-19), we have that

. |Vu|?dx 1
ueD 2 @O} ([os u]® dx) K@3,2)
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Hardy term dimension geometric condition extremal
—oco<y < J—t(nz— 1) n>3 negative mean curvature at 0 yes
}L(nz—l) <y < }Tnz n>3 positive boundary-mass yes

Table 1. Singular Sobolev-critical term: s > 0.

Hardy term dimension geometric condition extremal
0 <12y n=3 negative mean curvature at 0 and positive internal mass yes
< < (n"— .

v =30 ) n>4 negative mean curvature at yes

1, 2 1 n=3 positive boundary-mass and positive internal mass yes
("= <y <yn .

n>4 positive boundary mass yes

y <0 n>3 — no

Table 2. Nonsingular Sobolev-critical term: s = 0.

and we are back to the case of the Yamabe problem with no boundary singularity. This means that one
needs to resort to a more standard notion of mass R, (€2, x¢) associated to L,, and an interior point xo € 2
in order to construct suitable test functions in the spirit of [Schoen 1984]. Such an interior mass will
be introduced in Section 10. We get the following (note that the boundary mass m,, (€2) was defined in
Theorem 1.1).

Theorem 1.7. Let Q be a bounded smooth domain of R such that 0 € 3. In particular % <yp(R) < %.

) Ifyg(Q)<y< %, then there are extremals for 1, 0(S2).
(2) If 0 < y < yu(R2) and if there exists xo € 2 such that R, (£2, xo) > 0, then there are extremals for
Wy,0(82) under either one of the following conditions:

(a) y <2 and the mean curvature of 02 at 0 is negative.
(b) ¥ > 2 and the boundary mass m,, (S2) is positive.

More precisely, if there are extremals for ,uy,o(l]@), then conditions (a) and (b) are sufficient to get
extremals for w, o(€2). If there are no extremals for My,o(R3), then the positivity of the internal mass
R, (€2, xo) is sufficient to get extremals for ., (€2). Tables 1 and 2 summarize our findings.

Notation. In the sequel, C;(a,b,...) (i =1, 2,...) will denote constants depending on a, b, .. .. The
same notation can be used for different constants, even in the same line. We will always refer to the
monograph [Gilbarg and Trudinger 1998] for the standard results on elliptic PDEs.

2. Old and new inequalities involving singular weights

The following general form of the Hardy inequality is well known. See, for example, [Cowan 2010] or
the book [Ghoussoub and Moradifam 2013].
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Theorem 2.1. Let Q be a connected open subset of R" and consider p € C*°(2) such that p > 0 and
—Ap > 0. Then, for any u € D"2(Q2) we have

—A
/ pu2dx§/ \Vul? dx. 2-1)
Q P Q

Moreover, the case of equality is achieved exactly on Rp N DY2(Q). In particular, if p & DV2(R2), there
are no nontrivial extremals for (2-1).

The above theorem applies to various weight functions p. See, for example, [Cowan 2010; Ghoussoub
and Moradifam 2013]. For this paper, we use it to derive the following inequality.

Corollary 2.2. Fix 1 <k < n. We then have the following inequality.

(n ok — 2)2 L Jrt xrv IV dx

2 T fRﬁXR"_k u?/|x12dx’
where the infimum is taken over all u in DI’Z(IR]_‘|r x R\ {0}. Moreover, the infimum is never achieved.
Proof. Take p(x) := x - - - x¢|x| ™ for all x € Q:= Rk x R*7*\ {0}. Then

—Ap  a(n+2k—2—-a)
P |x|?

We then maximize the constant by taking o := %(n + 2k —2). Since p ¢ Dl’z([RR’jr x R"~%), Theorem 2.1
applies and we obtain that

2%k — 2\ 2
(”Jr—> / “—zdng \Vul? dx (2-2)
2 Rk xRk | X] RK x R~k

for all u € Dl’z([R'fF x R"%), and that the extremals are trivial.

It remains to prove that the constant in (2-2) is optimal. This will be achieved via the following
test function estimates. Construct a sequence (0c¢)e=o € Dl’z([R{'fF x R*K) as follows. Starting with
p(x)=x1 - x¢|x|7% we fix 8 > 0 and define

lx/elPp(x)  if x| <e,
pe(x) 1= p(x) ife <|x| <1/e, (2-3)
le - x| Pp(x) if |x] > 1/e,

with o 1= %(n + 2k —2). As one checks, p. € Dl’z([R’fIr x R"~K) for all € > 0. The changes of variables

x =€y and x =€z yield

2 2
/ Pe_dx=0(1). / Pe_ix =0(1).
B R

L |x]? nB,_ 0 X2

(2-4)
[ wetax=om. [ vprar=o.
B (0) R*\B_-1(0)
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when € — 0. By integrating by parts, we get

A
/ ) |Vpe|2dx=f 2P a0
B._1(0)\Be(0) B —1(0)\B¢(0) P

A\2 2
:(w> / P x+ o). 2-5)
B

2 LO\B O 1X]?

when € — 0. Using polar coordinates, we obtain

2 k 2
/ L dx=c@ml,  where c(2):=2 / [T« do. (2-6)
B (0\B.(0) |XI € sty

Therefore, by using (2-4), (2-5) and (2-6),

fR/erRn—k |V106|2d-x n—|—2k—2 2

2 24 = 2 +o(D)

fRﬁxR”*k pe/1x|=dx

as € — 0, and we are done. Note that the infimum is never achieved since p ¢ Dl’z([R’f|r x R"K). O

Another approach to prove Corollary 2.2 is to see [R{’_i x R"~* as a cone generated by a domain of the
unit sphere. Then the Hardy constant is given by the Hardy constant of R” plus the first eigenvalue of the
Laplacian of the Dirichlet of the above domain of the unit sphere endowed with its canonical metric. This
point of view is developed in [Pinchover and Tintarev 2005] (see also [Fall and Musina 2012; Ghoussoub
and Moradifam 2013] for an exposition in book form).

We also have the following generalized Caffarelli-Kohn—Nirenberg inequality.

Proposition 2.3. Let Q2 be an open subset of R". Let p, p’ € C*(Q) be such that p, p' > 0 and
—Ap, —Ap’' > 0. Fix s € [0, 2] and assume that there exists € € (0, 1) and p. € C*(2) such that

—A —A
Y <(-e Pe
0

in Q with pe, —Ape > 0.

€

Then, for all u € C°(2),

RN - 276
(L) o) et o
Q Q

Proof. The Sobolev inequality yields the existence of C(n) > 0 such that

2/2*
([ |u|? dx) §C(n)/ |Vul|*dx
Q Q

for all u € C°(R2), where 2* = 2*(0) = 2n/(n — 2). A Holder inequality interpolating between this
Sobolev inequality and the Hardy inequality (2-1) for p’ yields the existence of C > 0 such that for all

ueCxr(Q),
AN 2/2(s)
(/( /p> u|? (s)dx) §C/ \Vul dx. (2-8)
Q 1Y Q
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By applying (2-1) to p., we get for v e C2°(2),

fp2|w|2dx=f |V<pv>|2dx—/ 20 vy dx
Q Q Q P
z/ |V<pv)|2dx—<1—e>/ ﬂ(pvfdxzef V(w2
Q Q  Pe Q

Taking u := pv in (2-8) and using this latest inequality yield (2-7). U

Corollary 2.4. Fixk € {1,...,n — 1}. There exists then a constant C := C(a, b, n) > 0 such that for all
u e CORE x R"F),

k

q 2/q k
(/R - 'x'_bq(n"f) '”'q) /R . k(HXx) |~ Val dx, (2:9)
+ i=

1 i=1

where
— 242k 2
—oo<a<u, 0<b—a<l, g¢g= " . (2-10)
2 n—2420b—a)

Proof. Apply Proposition 2.3 with p(x) = p'(x) = (]_[l 1xl)|x| and pe(x) = (]_L 1x,)|x|_(”_2+2k)/2
for all x € [R{'jr Rk, Corollary 2.4 then follows for suitable a, b, q. |

Remark. Observe that by taking k = 0, we recover the classical Caffarelli-Kohn—Nirenberg inequalities
(1-9). However, one does not see any improvement in the integrability of the weight functions since
(]_[f:1 x,-) |x|~¢ is of order k —a > —%(n — 2), hence as close as we wish to (n — 2)/2 with the right
choice of a. The relevance here appears when one considers the Hardy inequality of Corollary 2.2.

3. On the best constants in the Hardy and Hardy—Sobolev inequalities

As mentioned in the Introduction, the best constant in the Hardy inequality yg (€2) does not depend on the
domain © C R" if the singularity O belongs to the interior of €2, and it is always equal to l(n — 2)2 We
have seen, however, in the last section that the situation changes whenever 0 € 92, since yy (R) =

Some properties of the best Hardy constants were studied in [Fall and Musina 2012; Fall 2012]. In thlS
section, we shall collect whatever information we shall need later on about y.

Proposition 3.1. The best Hardy constant yy satisfies the following properties:

(1) yu () = le(” — 2)2f0r any smooth domain Q2 such that 0 € Q.
(2) If 0 € 09, then §(n —2)* < yp(Q) < jn>

3) yu ()= J—‘nzfor every 2 such that 0 € 92 and 2 C R’}

@) If yu(Q) < in% then it is attained in D1-*(Q).

(5) We have inf{yy(Q):0 € 0Q} = 1(n — 2)°

(6) For every € > 0, there exists a smooth domain R} C Q¢ C R" such that 0 € 9€2, and 1 n —€<
yH(Qe) < 3n’
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Proof. Properties (1)—(4) are well known (see [Fall and Musina 2012; Fall 2012]). We sketch proofs since
we will make frequent use of the test functions involved. Note first that Corollary 2.2 already yields that
yn(RY) = g

(2) Since © C R"*, we have that y5(Q2) > yg(R") = %(n —2)2 Assume by contradiction that yg (2) =
le(” —2)2 It then follows from Theorem 3.6 below (applied with s = 2) that y5(€2) is achieved by
a function in ug € D"2(Q) \ {0} (note that o,y (82) = yu(2) — y). Therefore, yy(R") is achieved
in DV2(R"). Up to taking |uo|, we can assume that o > 0. Therefore, the Euler—Lagrange equation
and the maximum principle yield ug > 0 in R”: this is impossible since uy € D'?(2). Therefore
yr(Q) > 3(n—2)%

For the other inequality, the standard proof normally uses the fact that the domain contains an interior
sphere that is tangent to the boundary at 0. We choose here to perform another proof based on test
functions, which will be used again to prove Proposition 3.3. It goes as follows: since Q2 is a smooth
bounded domain of R” such that 0 € 9€2, there exist U, V open subsets of R" such that 0 e U and 0 € V
and there exists ¢ € C*°(U, V) a diffeomorphism such that ¢(0) =0 and

eUN{x;1>0H)=eWU)NQ2 and eUN{x;=0}) =¢U)NI.

Moreover, we can and shall assume that dgyg is an isometry. Let n € C2°(U) such that n(x) =1 for
x € Bs(0) for some § > 0 small enough, and consider (o¢)¢=0 € (0, +00) such that o = o(¢) as € — 0.
For € > 0, define

n(Mac " pe(y/ae) forall x € p(U)NR, x = p(y),

(3-1)
0 elsewhere.

U (x) := {

Here pe is constructed as in (2-3) with k = 1. Now fix o € [0, 2], and note that only the case 0 =2 is

needed for the above proposition. Immediate computations yield
lue ()I*

dy:C(o)lnl—i—O(l) ase€ — 0, (3-2)
o Iyl° €

where C(0) :=2 fgn,] |]_[f:1 X; |2*(U) do. Similar arguments yield

2
/ |Vu€|2dy:%C(2) lné—i—O(l) as € — 0. (3-3)
Q

As a consequence, we get that

Jo IVuclPdx  p2
sz-i-O(l) ase—>0.
€

In particular, we get that yg (Q2) < %nz’ which proves the upper bound in item (2) of the proposition.

(3) Assume that  C R".. Then D'*(Q) C D"*(R"), and therefore y5 () > yu (R%) = in’ With the
reverse inequality already given by item (2), we get that yy (Q2) = %n2 for all 2 C R’} such that 0 € 9<2.

(4) This will be a particular case of Theorem 3.6 when s = 2.
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(5) Let 2¢ be a bounded domain of R” such that 0 € ¢ (i.e., it is not on the boundary). Given § > 0, we
chop out a ball of radius 8 with 0 on its boundary to define Q5 := Q0 \ Bs/4((—38,0,...,0)). Note
that for § > 0 small enough, €2 is smooth and 0 € 92. We now prove that

lim v (25) = 3 (1 = 2)”. (3-4)

Define n, € C*°(R") such that n;(x) =0if |x| < 1 and n;(x) = 1 if [x| > 2. Let ns(x) := m(é_lx) for
all § > 0 and x € R". Fix U € CZ°(R") and consider, for any 6 > 0, an €5 > 0 such that lims_,( §/e5 =
lims_,0 €5 = 0. For § > 0, we define
us(x) = ng(x)ea_(n_z)/zU(es_lx) for all x € Q5.
For § > 0 small enough, we have that us € C2°(£25). Since 6 = o(€s) as § — 0, a change of variable yields
2 2
U
lim “_52 dx = / —> dx.
§—0 Qs |x| R~ |x|

We also have for § small,

|Vus|* dx = |VM5|2dx=/ IV (U - ns/e,)|* dx
Qs R Rn

:/ |VU|2n§/€8dx+f N5je; (—AT5¢,) U dx. (3-5)
R7 Rr

Let R > 0 be such that U has support in Bg(0). Since n > 3, we have

5 €s 2 S n—2
/R Ns/es (—AnNsjes ) U dx = 0((3) Vol(Bg (0) ﬂSupp(—Ang/ea))) = 0((6—) ) =o(l)

8

as 6 — 0. This latest identity, (3-5) and the dominated convergence theorem yield

lim/ |Vus|>dx = | |VU|?dx.
§—0 Qs R

Therefore, for U € C2°(R"), we have

|Vus|* dx L IVU 2 dx
lim sup yy (R25) < lim an 5 = Jr VU ]
50 50 /95 u?/|x|? dx fRn U?/|x|?>dx

Taking the infimum over all U € C2°(R"), we get that

limsupyy(Q) < inf M—y R") = L(n—2)2
50 = 2@ o) Jon U 1xPdx — " 4 '

Since yg(25) > i(n —2)2 for all § > 0, this completes the proof of (3-4), yielding (5).
For (6) we use the following observation.

Lemma 3.2. Let (®y)ren € CH(R", R") be such that
kligloo(lld% —Idgr [loo + |V (Pr —Idre) [loo) =0 and @4 (0) =0. (3-6)
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Let D CR" be an open domain such that 0 € 0 D (not necessarily bounded or regular), and set Dy := @ (D)
forall k e N. Then 0 € 0Dy, for all k € N and

lim yy(Dy) = yu(D). (3-7)
k—+o00
Proof. If u € C(Dy), then u o &y € C(D) and

2 2
/Dk \Vul? dx = /M [V (1 0 @) ey 1ac B dx. (3-8)

2 1) 2
[ 2 dx :f M Jac &y | dx, (3-9)

Dy X1 R | Pr(x)]

where here and in the sequel ®;Eucl is the pull-back of the Euclidean metric via the diffeomorphism ®y.
Assumption (3-6) yields

lim sup
k—+00 yep

where §;; =1 if i = j and 0 otherwise. This limit, (3-8), (3-9) and a density argument yield (3-7). U

[Pk ()]
x|

1‘ + spp}(al- Dy (x), 8; Pk (x)) — 8| + [Jac Dy — 1|> =0,
L]

We now prove (6) of Proposition 3.1. Let ¢ € C®(R" ") suchthat 0 < ¢ <1, ¢(0)=0, and p(x') =1
for all x’ € R"~! be such that |x’| > 1. For r > 0, define ®, (x1, x) := (x; —t@(x'), x’) for all (x1, x") € R™
Set ﬁt =P (R}) andjlpply Lemma 3.2 to note that lim._, ¢ yﬂ(ﬁt) = )/HN([R’i) = }Tnz. Since ¢ > 0 and
¢ # 0, we have R’} C Q, for all 1 > 0. To get (6) it suffices to take Q. := €2, for r > 0 small enough. [

As in the case of yy(£2), the best Hardy—Sobolev constant
Jo IVul>dx —y [ou?/|x|*dx
o1l )7

will depend on the geometry of 2 whenever 0 € 9€2.

fy.s(Q) :=inf cu e DV2(Q)\ {0}

Proposition 3.3. Let Q2 be a bounded smooth domain such that 0 € 9€2.
(1) If y < gn? then p, 4(Q) > —oc.
(2) If y > gn? then p, 4(Q) = —oc.
Moreover,
) If v < yu (), then ., (S2) > 0.
@ If yu(Q) <y < [—llnz, then 0 > p, ¢(2) > —o0.
(5) If y = yu(Q) < 3n’ then 11,,4(Q) = 0.

Proof. Assume that y < A—Itn2 and let € > 0 be such that (1 +¢€)y < A—I‘nz. It follows from Proposition 3.5
that there exists C. > 0 such that for u € D'2(Q),

2

2
”—/“—2dx5(1+e)/ |Vu|2dx+C5/u2dx.
4 Jq x| Q Q
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For any u € D'2(Q) \ {0}, we have
1—@y/n?)(1+¢€)) [oIVul* dx—(4y /n*)Ce [, uzdx 4yC Jqu*dx
(fQ |M|2*(S)/|X|S dx)Z/Z*(S) - l’l2 (fQ |M|2*(‘Y)/|X|S dx)2/2*(s)

It follows from Holder’s inequality that there exists C > 0 independent of u such that

2%(s) 2/2*(s)
2 |ue]
u“dx <C dx .
Q o IxI°

It then follows that J)f?s (u) > —(4y/n2)C€C for all u € D2(2)\ {0}. Therefore y,s (§2) > —o0 whenever
y < }‘n2

Assume now that y > %nz and define for every € > 0 a function u, € D'2(Q) as in (3-1). It then
follows from (3-2) and (3-3) that as € — 0,

In2 —y)Cc@)In(1/e) + 0(1) c©) |\& /=9
TS (ue _Gri=y) =(12— —— 1)(1 —) .
J’vs(u ) (C(S) ln(l/e)—{— 0(1))2/2*(5) (4” y)C(S)Z/z*(S) o(1) n €

IS ) = (

Since s <2 and y > n we have lim._, ¢ J "y (ue) = —oo; therefore uy, (£2) = —oo.

If y <y (R2), Sobolev’s embedding theorem yields po s (€2) > 0; hence the result is clear for all y <0
since then s (2) > o (). If now 0 < y < y5(£2), it follows from the definition of y (€2) that for
allu e DV2(Q) \ {0},

fQ|Vu|2—nyu2/|x|2de<l y > Jo IVul*dx ><1

(fu2® /Ix]s dx)™*® vt () ([ 1) x ] dx) /7O

Therefore 1, Y(Q) > (1 — /Y (§2))pro,s(2) > 0 when y < yn (€2).
Ifyg(Q)<y< n then Proposition 3.1(4) yields that yg (€2) is attained. We let ug be such an extremal.
In particular JyH(Q),s(u) >0= J}Z(Q),s(”())’ and therefore 1, (Q),s(€2) =0. Since yg(2) <y < an, we

have that J% (u9) < 0, and therefore s, () < 0 when v () <y < 2 O

JE ()= — > ().
y,s(u) VH(Q) I'LO,( )

Remark 3.4. The case y = %n2

v (Q) < %nz then 24 ((2) <0, while if yy () = }an then p1,2/4 ,(2) > 0. It is our guess that many
examples reflecting different regimes can be constructed.

is unclear and anything can happen at that value of y. For example, if

We shall need the following standard result.

Proposition 3.5. Assume y < %nz and s € [0, 2]. Then, for any € > 0, there exists C. > 0 such that, for
allu € D'(Q),

|u|2*(s) 2/2%(s) 1 u2 )
dx < /(qul -y — )dx-i—C /u dx. (3-10)
(/Q |x|* > <uys(R ) ) x| “Ja

This result says that, up to adding an L>-term (indeed, any subcritical term fits), the best constant in

the Hardy—Sobolev embedding can be chosen to be as close as one wishes to the best constant in the
model space R’ . One can see this by noting that for functions that are supported in a small neighborhood
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of 0, the domain 2 looks like [RR{L, and the distortion is determined by the radius of the neighborhood.
The case of general functions in D?() is dealt with by using a cut-off, which induces the L?-norm. A
detailed proof is given in [Ghoussoub and Robert 2016].

The following result is central for the sequel. The proof is standard, ever since T. Aubin’s proof of the
Yamabe conjecture in high dimensions, where he noted that the compactness of minimizing sequences is
restored if the infimum is strictly below the energy of a “bubble”. In our case below, this translates to
My,s(82) < 1y s (R ). We omit the proof, which can be found in [Ghoussoub and Robert 2016].

Theorem 3.6. Assume that y < Alrnz, 0<s=<2and pny(2) < pys(R). Then there are extremals
for w, s(2). In particular, there exists a minimizer u in DI2(Q) \ {0} that is a positive solution to the

equation
u 2*(s)—1
—A“_VW=M;/,S(Q) P in 2, -
u=>0 in o<, G-1D)
u=20 on 02.

4. Profile at 0 of the variational solutions of L,u = a(x)u

Here and in the sequel, we shall assume that 0 € 92, where 2 is a smooth domain. Recall from the
Introduction that two solutions for L, u = 0, with u =0 on 9R’, are of the form u, (x) = x1|x|™% where

a € {a_(y), ar(y)} with

oa_(y)::%n—,/%nz—y and a+(y)::%n+,/in2—y. 4-1)

These solutions will be the building blocks for sub- and supersolutions of more general linear equations
involving L, on other domains. This section is devoted to the proof of the following result. To state the
theorem, we use the following terminology:

We say that u € DI’Z(Q)IOC,O if there exists n € C2°(R") such that n = 1 around 0 and nu € D'2(Q).
We say that u € Dl*z(Q)locvo is a weak solution to the equation

—Au=F € (D"*(Q)10c.0)

if for any ¢ € D'2(Q) and n € C>°(R") with sufficiently small support around 0, we have
/(Vu, V(ng))dx = (F, ng).
Q

Theorem 4.1. Fixy < }Tnz andt >0, and let u € D1’2(§2)1oc,0 be a weak solution of

y +0(x[")
—-———u

—Au
|x|?

=0 in D"*(Q)i0c.0- (4-2)

Then, there exists K € R such that
u(x)
im =
x—0d(x,9Q)|x|~e-0)
Moreover, if u > 0 and u # 0, we have that K > 0.
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By a slight abuse of notation,

y +O(x[")
U —Ay — ——
x|
will denote an operator
y tal)
U~ —Au———-u,
|x|?

where a € C%() such that a(x) = O(|x|?) as T — 0. In Section 6, we will give a full description of solu-
tions to (4-2) that are not necessarily variational (we also refer to [Pinchover 1994] for related problems).

We need the following lemmas, which will be used frequently throughout the paper. The first is only the
initial step towards proving rigidity for the solutions of L, u =0 on R’, . Indeed, the pointwise assumption
u(x) < Clx|'~* will not be necessary as it will be eventually removed in Proposition 6.4, which will be a
consequence of the classification Theorem 6.1. We omit the proof as it can be inferred from the work of
Pinchover and Tintarev [2005].

Lemma 4.2 (rigidity). Letu € C 2(@ \ {0}) be a nonnegative solution of

14 .
—Au — Wu =0 inRY,

u=>0 on BR’jr.

(4-3)

Suppose u(x) < C|x|'~* on R’ fora € {a_(y), ay(y)}, then there exists . > 0 such that u(x) = Ax|x|™*
forall x e R}.

We now construct basic sub- and supersolutions for the equation L, u =a(x)u, where a(x) = O (|x| T=2)
for some 7 > 0.

Proposition 4.3. Lety < inz andaef{a_(y),ar(y)}. LetO<t<land BeRbe suchthata—t < B <a
and B € {a—_(y), oy (y)}. Then, there existr > 0, and uy 4, Uy — € C®(Q\ {0}) such that

Uy +, Ug— >0 in 2N B,(0),
Uy +, Ug— =0 on 022N B, (0),
—Aug 1+ — %&Cmua,+ >0 in QN B.(0), (4-4)
—Auy - — %lgxlr)ua, <0 inQNB,(0).
Moreover, we have as x — 0, x € Q, that
g,y (X) = %(1 +O0(x|7F)) and uq(x) = %(1 +o(x|*F). @45

Proof. We first choose an adapted chart to lift the basic solutions from R’,. Since 0 € 92 and €2 is
smooth, there exist l7, V two bounded domains of R" such that 0 € U and 0 € 17, and there exists a
C™-diffeomorphism ¢ € C®(U, V) such that ¢(0) = 0,

cUN{x; >0 =c(@)NQ and (U N{x;=0}) =c(0)NIN.
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The orientation of d€2 is chosen in such a way that for any x’ € Un {x; =0},
{31000, ), 3200, "), ..., 3,¢(0, x)}

is a direct basis of R” (canonically oriented). For x’ € Un {x1 =0}, we define v(x’) as the unique orthonor-
mal inner vector at the tangent space T, )2 (it is chosen such that {v(x'), 92¢(0, x'), ..., 3,¢(0, x")}
is a direct basis of R"). In particular, on R’} := {x; > 0}, we have v(x"):=(,0,...,0).

Here and in the sequel, we write for any » > 0
B, :=(=r,r) x B"D(0), (4-6)

where B,(”_l)(O) denotes the ball of center 0 and radius r in R”~L. It is standard that there exists § > 0
such that

¢: By —> R,
(x1.x) €Rx R > ¢(0, x') + x10(x), @7
is a C*°-diffeomorphism onto its open image <p(§25), and
¢(BasN{x1>0) = p(B) NQ and  ¢(Bas N {x1=0)) = p(Bzs) N 9. (4-8)
We also have, for all x’ € Bs(0)"~ D,
v(x") is the inner orthonormal unit vector at the tangent space Ty(0,x082. (4-9)
An important remark is that
d(p(x1,x'),9Q) = [xi| forall (x;,x") € Bos close to 0. 4-10)

Consider the metric g := ¢*Eucl on Bos, that is, the pull-back of the Euclidean metric Eucl via the
diffeomorphism ¢. Following classical notations, we define

gij(x) = (3;9(x), 9j9p(x))g,, forallxe Byandi,j=1,...,n. 4-11)

Up to a change of coordinates, we can assume that (d,¢(0), ..., 9,¢(0)) is an orthogonal basis of
To0 2. In other words, we then have that

gij(O):(S,'j foralli,jzl,...,n. (4—12)
As one checks,
gi1(x) =& forallerzs andi=1,...,n. (4-13)

Fix now o € R and consider ® € C °°(§23) such that ®(0) = 0 and which will be constructed later
(independently of o) with additional needed properties. Fix n € C f°(§25) such that n(x) = 1 for all
X € Eg. Define u, € C*(22\ {0}) as

ug o @(xy, x') :=n)x1|x| (1 +0O(x)) forall (x1,x") e Eza \ {0}. (4-14)

In particular, uy(x) > 0 for all x € <p(§25) N and uy(x) =0o0n 2\ (p(§23).
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We claim that with a good choice of ®, we have that

—Aug = %ua + 0(”“"—("6)) as x — 0. (4-15)
X X

Indeed, using the chart ¢, we have that
(—Aug) o p(xy, X/) = _Ag(uoz o) (x1, )C/)
for all (x1,x") € Es \ {0}. Here, — A, is the Laplace operator associated to the metric g; that is,
—Ag = —g"(0;; — T ),
where
Ffj = %gkm(aigjm +0;8im — Im&ij)

and (g%) is the inverse of the matrix (g; 7). Here and in the sequel, we have adopted Einstein’s convention
of summation. It follows from (4-13) that

(= Atg)op = — Apuei (uao@)— Y (87 —=6")0;j(ug09)+8" T} 01 (ua0p)+ Y _ 8T di(ugop). (4-16)
i,j>2 k>2

It follows from the definition (4-14) that there exists C > 0 such that for any i, j, k > 2, we have that
|9 (e 0 @) (x1,x)| < Claxy|-1x]7*7 and |3k (ug 0 @) (x1, x)| < Clxy| - x| ¢!

for all (x1,x") € Bs \ {0}. It follows from (4-12) that g'/ — 8" = O(|x|) as x — 0. Therefore, (4-16)
yields that as x — 0,

(—Autg) 09 = —Apuai(ita 0 @) + 8T} 31 (ug 09) + O (x1 x| 7*7). (4-17)

The definition of g;; and the expression of ¢ (x1, x") then yield that as x — 0,

g’y = ) Z 8" 018

i,j>2
= Z g e, x) ((3i9(0, x"), 3;v(x")) +x1(3; (x"), dv(x")))
i,j>2
=— > 870, x)(3ip(0, x), 3v(x)) + O(x1]) = H(x") + O(|x1]),
i,j>2

where H (x') is the mean curvature of the (n—1)-manifold 32 at ¢ (0, x’) oriented by the outer normal
vector —v(x’). Using the expression (4-14) and using the smoothness of ©, (4-17) yields

(—Attg) 0@ = (— Apua(x1 X1 7)) - (14 ©) + x| (H(x) (1 + ©) —28;0) + O (x1 x| ") as x — 0.

We now define
O(xy, x) = e HO2 _ 1 forall x = (x1, x') € Bas.

Clearly ®(0) =0 and © € C“(Ezg). We then get that as x — 0,
a(n—a)

P X1 x| 7Y (1+0) + O (xy[x] 7. (4-18)

(—Aug)op =
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With the choice that g;; (0) = §;;, we have that (3;¢(0));=1....., is an orthonormal basis of R", and therefore
lp(x)] = |x|(1 4+ O(|x])) as x — 0. It then follows from (4-18) and (4-14) that

_ a(n—a)

—Aug = E e + O(|x|"'ug) asx — 0. (4-19)
X

This proves (4-15). We now proceed with the construction of the sub- and supersolutions. Let o €

{a_(y), a4 (y)} in such a way that «(n — o) = y and consider 8, A € R to be chosen later. It follows
from (4-15) that

Y HO)
|x|?

MB—B)—y) . O(x[") . -
"W up + |x)|62 g+ O(1x] ™ utg) + O (x| 2up)

= ;%(Mﬂ(n —B) =)+ O(x[") + O(x|"TF~%) + O (x| TF~))

)(ua +Aug) =

as x — 0. Choose $ such that « — 7 < 8 < « in such a way that 8 # «_(y) and B # a4 (y). In particular,
B>a—1and B(n — B) —y # 0. We then have

0 T
(—A R V+|x—|<2'x')><ua Fhug) =T BB H) =)+ OWTT) @-20)

as x — 0. Choose A € R such that A(8(n—B) —y) > 0. Finally, let uy 1 :=uo+Aug and uy, _ :=uq —Aug.

They clearly satisfy (4-4) and (4-5), which completes the proof of Proposition 4.3. (|
Lemma 4.4. Assume that u € DI’Z(Q)R,C,O is a weak solution of
0 T
—Au~— H—(Jx')u =0 in D"*(Q)ioc.0,
|x] (4-21)
u=>0 on Bys(0) NI

for some T > 0 and § > 0. Then, there exists C; > 0 such that

lu(x)| < Cd(x, 3Q)|x|" ") for x € QN Bs(0). (4-22)
Moreover, if u > 0 in 2, then there exists C, > 0 such that

u(x) > Cod(x, 9Q)|x|7%")  for x € QN Bs(0). (4-23)

Proof. Assume first that u € DI’Z(Q)loc,o and u > 0 on Bs(0) N 2. We claim that there exists Cy > 0 such

that
1 d(x,d9Q) d(x,08)
————— <u@x) < Co—————+
Co |x|e-®) |x =)

Indeed, since u is smooth outside 0, it follows from Hopf’s maximum principle that there exists Cq, C2 >0
such that

for all x € QN Bs(0). (4-24)

Ci1d(x,0R) <u(x) < Cad(x,92) forall x € 2N 3B;s(0). (4-25)

Let uy_(y),+ be the supersolution constructed in Proposition 4.3. It follows from (4-25) and the asymptotics
(4-5) of uy_(y),+ that there exists C3 > 0 such that

u(x) < C3ug_(y),+(x) forall x € 9(B5(0) N€2).
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Since u is a solution and uy_(y) + is a supersolution, both being in D'2(22)joc,0, it follows from the
maximum principle (by choosing § > 0 small enough so that —A — (y 4+ O(|x|?))|x|2 is coercive on
Bs(0)N2) that u(x) < C3uq_(y),+(x) for all x € Bs(0) N 2. In particular, it follows from the asymptotics
(4-5) of uy_(y),+ that there exists C4 > 0 such that u(x) < Cad(x, Q) x|~ for all x € QN Bs(0).
Arguing similarly with the lower-bound in (4-25) and the subsolution u,_(,),—, we get the existence of
Co > 0 such that (4-24) holds. This yields Lemma 4.4 for u > 0.

Now we deal with the case when u is a sign-changing solution for (4-21). We then define u;, u; :
Bs(0) N2 — R such that

—Aul—%gxmu] —0 in Bs(0)NQ, —Auz—%W:o in Bs(0)N,
u1(x) = max{u(x), 0} on 0(Bs(0)NL), usr(x) = max{—u(x), 0} on d(Bs(0)NL).

The existence of such solutions is ensured by choosing é > 0 small enough so that the operator —A — (y +
O(|x|%))|x|~2 is coercive on Bs(0) N . In particular, u1, us € D"2(Q)10c.0, U1, 42 >0 and u =u; — us.
It follows from the maximum principle that for all i, either #; = 0 or u; > 0. The first part of the proof
yields the upper bound for u;, uy. Since u = u; — uy, we then get (4-22). O

The following lemma allows to construct sub- and supersolutions with Dirichlet boundary conditions
on any small smooth domain.

Proposition 4.5. Let 2 be a smooth bounded domain of R", and let W be a smooth domain of R" such
that for some r > 0 small enough, we have

B(ONQCWCByO)NQL and B (0)NIW = B,(0)NIQ. (4-26)
Fixy <in® 0<t<1and B R suchthat a (y) —1t < B < ay(y) and o_(y). Then, for r small
1
enough, there exists ué‘?(y)’Jr, u((i)(y)y_ e C®(W \ {0}) such that
(d) (d) _ .
Uy ()40 M)+ =0 in 9W \ {0},
) Yy +O0(x[") (@ )
—Alty ()~ —|x|2 Uy ()t ™ 0 inW, 4-27)
@) Yy +O00xI") @ )
—Auw(y)’_ — —|x|2 Uy ()= < 0 inW.
Moreover, we have as x — 0, x € Q that
4@ d(x, 0€2)
o+ 0) = =y (1 O™ M), (4-28)
4@ d(x, 0%2)
o)~ () = ey (L Ol ). (4-29)

Proof. Take n € C*°(R") such that n(x) =0 for x € Bs;4(0) and n(x) =1 for x € R" \ Bs/3(0). Define

on W the function .
Y+ O(|x[7)
fx) = (—A TTTRE (M, ).+
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where uy, (), + is given by Proposition 4.3. Note that f vanishes around 0 and that it is in C ®(W). Let

v € DV2(W) be such that

O T
_rHOM
xP

v=20 on dW.

—Av

Note that for 7 > 0 small enough, —A — (y 4+ O (|x|%))|x| =2 is coercive on W, and therefore, the existence
of v is ensured for small r. Define

(d) —
o)+ = Uar (), + — Moy (p),+ +v.

The properties of W and the definitions of 7 and v yield

ulo, =0 in 9W \ {0},
@) y+O0Ux|") @ .
—Aua+(y)’+——|x|2 Uy, () + >0 inW.

Since —Av — (y + O(|x|9))|x|2v = 0 around 0 and v € D'2(W), it follows from Lemma 4.4 that
there exists C > 0 such that |v(x)| < Cd(x, W)|x|~% ) for all x € W. Then (4-28) follows from the

asymptotics (4-5) of uy_ ;) + and the fact that @ (y) < a4 (y). We argue similarly for u((i)( P U

Lemma4.6. Letuc D! ’Z(Q)loc,o such that (4-2) holds. Assume there exists C >0and o € {a(y), a_(y)}
such that
lu(x)| < Clx|'™® forx — 0, x € Q. (4-30)

(1) Then, there exists C1 > 0 such that

[Vu(x)| < Ci|x|™® asx — 0, x € Q. (4-31)
(2) If limy_0 |x|* 'u(x) = 0, then lim,_o |x|% |Vu(x)| = 0. Moreover, if u > 0, then there exists | >0
such that .
im ) g lim e Vaol =1 (4-32)
x—0d(x, 082) x—0,xe0Q

Proof. Assume that (4-30) holds. Set w(x) := |x|%u(x)/d(x, 02) for x € Q. Let (x;); € 2 be such that

lim x; =0 and lim w(x) =1 (4-33)

i——+00 i——+o00

Choose a chart ¢ as in (4-7) such that dgpy = Idg~. For any i, define X; € R, such that x; = ¢(X;),
ri :=|X;| and 6; := X;/|X;|. In particular, lim; 4~ 7; =0 and |6;| = 1 for all i. Set

u;(x):= rf"_lu(go(r,-x)) forall i and x € BR(0)NR", x #0.

1
Equation (4-2) can then be rewritten as

—A, U ————"U; = in BRp(0)NR",
wlli = b &) (4-34)

ii; =0 in Br(0)N IR,
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where g;(x) := (¢*Eucl)(r;x) is a metric that goes to Eucl on every compact subset of R"” as i — oo.
Here, o(1) — 0 in C? (m \ {0}). It follows from (4-30) and (4-33) that

loc

li;(x)| < C|x|'"® foralli and all x € Bg(0) "R, (4-35)

It follows from elliptic theory that there exists & € CZ(IRTT‘F \ {0}) such that it; — i in ClloC (@ \ {0}). By
letting 0 :=lim; _, o, 6; (|0] = 1), we then have that 9;u;(6;) — 0;u(0) asi — +oo forany j=1,...,n,
which can be rewritten as

lim |x|* 9ju(x;) = 9;u(@) forall j=1,...,n. (4-36)
1—+00

We now prove (4-31). For that, we argue by contradiction and assume that there exists a sequence
(x;); € 2 that goes to 0 as i — +oo and such that |x;|* |Vu(x;)| — +00 as i — +o00. It then follows
from (4-36) that |x;|*|Vu(x;)| = O(1) as i — +oo. This is a contradiction to our assumption, which
proves (4-31). The case when |x|“u(x) — 0 as x — 0 goes similarly.

Now we consider the case when u# > 0, which implies that #; > 0 and # > 0. We let [ € [0, +o00] and
(x;); € 2 be such that

lim x; =0 and lim w(x;)=I. 4-37)
i——400 [—> 400
We claim that
0<l<+40c0 and lin})a)(x) =1[ €0, +00). (4-38)
xX—>
Indeed, using the notations above, we get that
u; (6;)
im =1.
i—+oo ()1

The convergence of i; in C ! (@ \ {0}) then yields [ < 4+oc. Passing to the limit as i — 400 in (4-34),

loc
we get
— Apuaii — xLu =0 inR",

>0 in R,

0 in ORY .
The limit (4-37) can be rewritten as u(0) = [0, if 0 € R, and 0,u(0) =1 if & € OR’.. The rigidity lemma,
Lemma 4.2, then yields
u(x) =Ix|x|™® forall x e R}.

In particular, since the differential of ¢ at 0 is the identity map, it follows from the convergence of u; to i
locally in C! that

26 NN [6)

lim sup - = =1 (4-39)
i—>+00 xeQnaB,, (0) d(X, ID[X|™*  yerrnoB, o) X11X]17¢
and _
lim  inf uw u(r) (4-40)

_— = 1mn =
i—>+00xeQNdB, (0) d(x, 0Q)[x|™%  xeRLNIB(0) X1 |x|~¢
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We distinguish two cases:

Case 1: o = a4 (y). Let W and ufi)(y) _ be as in Proposition 4.5, and fix € > 0. Note that the existence

) ’
o (y),—
that there exists ig such that for i > i, we have

and properties of u do not use the lemma that is currently being proved. It follows from (4-40)

(@)= (—eul | _(x) forallx e WNaB, ().

Since (—A —(y+ 0(|x|’))|x|_2) (u — (- e)uédj(y)’_) > 0in W\ By, (0) and since uq_ (5),— vanishes on

oW \ {0}, it follows from the comparison principle that

u(@) = (—eul | _(x) forallx e W\aB, ().

Letting i — o0 yields
u(x) = (I —eul’  _(x) forallx e W\{0}.

(d)

It follows from this inequality and the asymptotics for u (),

_ that
liminfw(x) > 1.
x—0
Note that this is valid for any / € R satisfying (4-37). By taking / := lim sup,_, , w(x), we then get that
lim,_ow(x) =1.
Case 2: a =a_(y). Consider the super- and subsolutions u_(y), 1, Ua_(y),— constructed in Proposition 4.3.
It follows from (4-39) and (4-40) that for € > 0, there exists i such that, for i > iy, we have
(=g ),—(x) Su(x) < (+€)ug_),+(x) forallx € QNAIB,(0).

Since the operator —A — (y + O(|x[")) |x|~2 is coercive on 2N B,, (0) and the functions we consider are

in D2

h oc,o(Q N B,,(0)) (i.e., they are variational), it follows from the maximum principle that

(I —ug_),—(x) fulx) < (I +€)ug_ )+ (x) forall x € 2N B, (0).

Using the asymptotics (4-5) of the sub- and supersolutions, we get that

(I —¢) < liminf u(x) < lim sup u(x)
=0 d(x, Q) |x|74®) o0 d(x, 9Q)|x|7*-»)

<(+e).

Letting € — 0 yields lim,_.gw(x) =1 > 0. This ends Case 2 and completes the proof of (4-38).

The case u# > 0 is a consequence of (4-38) and (4-36) (note that for the second limit, x; € €2 can be
rewritten as 0; € dR’, and therefore (6;); = 0). This ends the proof of Lemma 4.6. Il

Proof of Theorem 4.1. First, assume that u € D2()10c.0 satisfies (4-2) and u > 0 on B5(0) N Q. It then
follows from Lemma 4.4 that there exists Cy > 0 such that

1 d(x,99) d(x, 98)

<u(x) <Cy MCRS for all x € 2N Bs(0).

Co |x[*-0 =

Since u > 0, this estimate coupled with Lemma 4.6 yields the theorem for u > 0.
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If now u is a sign-changing solution for (4-2), we define u1, us : Bs(0) N 2 — R as in the proof of
Lemma 4.4. The first part of the proof yields that there exist /1, [ > 0 such that

. uy(x) . uz(x)
lim =/I; and lim =1.
x=0d(x, 82)|x |- ) 20 d(x, 3Q)|x |- )
Since u = u; — uy, we get Theorem 4.1 by taking [ :=1; — I,. O

Here is an immediate consequence.

Corollary 4.7. Suppose y < yu(2) and consider the first eigenvalue of L, , i.e.,

Vul? —u? 2\ 4
@yye inp delVuE —wty/Ixl) dx

> 0.
ueD2()\(0} Jou?dx

If ug € DV2(Q) \ {0} is a minimizer, then there exists A # 0 such that

d(x,0%)

uo(x) ~x0 A e

Proof. The existence of a minimizer u( that doesn’t change sign is standard. The Euler-Lagrange equation
is —Au —uy/|x|*> = ku for some k € R. We then apply Theorem 4.1. U
5. Regularity of solutions for related nonlinear variational problems

This section is devoted to the proof of the following key result.

Theorem 5.1 (optimal regularity and generalized Hopf’s lemma). Fix y < }Tnz andlet f: QxR—R
be a Carathéodory function such that

|v|2*(s)—2
[fx,v)] < C|v|(1 +T> forall x € Q and v € R.
Letu e DI’Z(Q)loc,o be a weak solution of
0 T
o= YFOND ey in DY@t (5-1)

|x|?
for some T > 0. Then, there exists K € R such that

. u(x)
lim =
x—0 d(x, BQ) |x|*“*(7’)

(5-2)

Moreover, if u > 0 and u # 0, we have that K > 0.

Note that when f = 0, this is nothing but Theorem 4.1. The result can be viewed as a generalization
of Hopf’s lemma in the following sense: when y = 0 (and then «_(y) = 0), the classical Nash—-Moser
regularity scheme yields u € C IOC, and when u > 0, u # 0, Hopf’s comparison principle yields d,u(0) < 0,
which is a reformulation of (5-2) when a_(y) = 0.

The following lemma will be of frequent use in the sequel.
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Lemma 5.2. Let f : Q X R — R be as in the statement of Theorem 5.1, and consider u € DI’Z(Q)loC,O
such that (5-1) holds. Assume that for some C > 0,

lu@)| < Clx|'" " forx -0, x € Q. (5-3)
Then, u satisfies the conclusion of Lemma 4.6.

Proof. Assume that (5-3) holds. We claim that we can assume that for some 7 > 0,

Y+ 0(x]")
——u

—Au
|x|?

=0 in D"} (Q)ioc.0- (5-4)
Indeed, we have as x — 0,

el (% (s)— _ |ue| . (5)— _ fu
Gl < Clul (1 x| 7 7072 070) < €55 (P 1O 00) = 0”25

for some 7’ > 0. Plugging this inequality into (5-1) and replacing T by min{z, t’} yields (5-4). The lemma
now follows from Lemma 4.6. U

Proof of Theorem 5.1. We let here u € DI’Z(Q)IOC,O be a solution to (5-1); that is,

7+ 03[

—Au
|x|?

u=f(x,u) weakly in D?(Q)1oc.0 (5-5)

for some T > 0. We shall first use the classical De Giorgi—-Nash—Moser iterative scheme (see [Gilbarg
and Trudinger 1998; Hebey 1997] for expositions in book form). We skip most of the computations and
refer to [Ghoussoub and Robert 2006a, Proposition A.1] for the details. We fix §p > 0 such that

(i) there exists 7 € C°°(Bys,(0)) such that 7(x) =1 for x € Bys,(0),
(i) fju € DV23(), and

(iii) u is a weak solution to (5-5) when tested on ¢ with ¢ € D'-2(Q) (see the definition of weak solution
given in the preceding section).

The proof goes through four steps.
Step 1: Let B > 1 be such that 48/(8 + 1)? > 4y /n®. Assume that u € LP+1(Q2N Bs,(0)). We claim that

u e L 2ED QN By, (0)). (5-6)

Indeed, fix 5> 1, L >0, and define G, H; : R — R as

|t1F =11 if t| <L,
GL(t):=3BLF "¢ —L)+LP ift>L, (5-7)
BLA 't +L)—LP ifr<—L
and
|| B=D72y if [t| <L,
Hp():= 3B+ DLED2@ —Ly+LFD2 ifr> L, (5-8)

LB+ DLED2 4Ly —LED2 ifp <L,
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As is easily checked,

4p
B+1)2
forall # € R and all L > 0. We fix § > 0 small, which will be chosen later. We let n € C°(R") be
such that n(x) = 1 for x € B;/>(0) and n(x) = 0 for x € R" \ B5(0). Multiplying equation (5-5) with
n?Gr(u) € D*(Q), we get that

0<tGr(t) <HL(t)* and G (t) = ———(H](1))* (5-9)

/Q(Vu,V(nZGL(u)))dx—/Q% 2uGL(u) dx_/ £, wn*Gr(u)dx. (5-10)

Integrating by parts, and using formulae (5-7)—(5-9) (see [Ghoussoub and Robert 2006a] for details) yields

/ (Vu, V(*Gr())) dx
Q B 4,3
S (B+1?

where J; (¢) := fot G (t)dr. This identity and (5-10) yield

4 (0]
(ﬁfl)z/Q|V<nHL<u))|2dx—fQV+|—|(2'x') %G () dx

< /Q = AGP)|- 1L @)] dx + C(B. 8)

/Q(IV(HHL(M))IQ—n(—A)nHL(u)z)dx+/Q—A(772)JL(u)dx, (5-11)

5 |u|2 (s)—2 5
|Hy ()2 dx +C f e HL ) . (512
QN Bs(0) Q

Holder’s inequality and the Sobolev constant given in (1-16) yield

2* (S)—z o* (S‘) (2* (S)—Z)/Z*(s) o (Y) 2/2*(S)
Ll u Hp(u
[ e ([ HEZ ) (f ool )
e P ongs©) |xI° o x|

|u|2*(s) (2*(s)—2)/2*(s) 1 5
< dx . / IV(nHp(u))|”dx.
</QOB,;(O) x| ) wo,s(2) Jo

Plugging this estimate into (5-12) and defining y4 := max{y, 0} yields

(nHp (u))?
<ﬂ+ 1)2 / IV HL @) dx — (ys +C5° )f AL dx
<C(B,9) (IHL @) * + T w)]) dx +06(5)f |V(nHy(w))|* dx,
) QNBs(0) Q

where |u|2"(s) (2%(s)—=2)/2*(s) 1

a(8) = C(/ . dx) . ,

QnB;0) 1X[° Ho,s(§2)
so that
e =

It follows from Hardy’s inequality that
n? / (HL (1))

—5—dx §(1+6(5))/ |V (nHp(w)|* dx,
x| Q
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where lims_,g €(8) = 0. Therefore, we get that

4p ! )
((ﬂﬂ)z —a(®) = (y+ +C4 );(1+e(5)))/9|V(nHL(u))| dx

<C(@B. 9 (IHL > + I )]) dx < C(B, §) P dx.
QN B, (0) B ONS

Let 6 € (0, 8p) be such that

_4
(B+1)?

This is possible since 48/(B + 1)> > 4y /n’. Using Sobolev’s embedding, we then get that

2/2* 2/2*
(/ Hy ()] dx) < (/ 0 Hi ) 2 dx)
Bs2(0)N2 R7

=< MO,O(Q)lf \V(nHL(w)|* dx < C(B, 8, )/)/ lulP dx.
Y Bs(0)NQ

4
o(8) — (y+ +C67)E(1 +€(8)) > 0.

Since u € L1 (Bs, (0)NL), let L — +00 and use Fatou’s lemma to obtain that u € L*/2B+D (B; » (0)NQ).
The standard iterative scheme then yields u € C' (2N Bs,(0) \ {0}). Therefore u € L>"/2B+D(Bs (0)N Q).

Step 2: We now show that

if y <0, thenu € L (N Bs(0)) forall p > 1, (5-13)
ify >0, thenu € LP(2N B3(0)) forall pe (1, ———" ). (5-14)
n—2a_(y)
The case y <0 is standard, so we only consider the case where y > 0. Fix p >2 and set § := p—1. We have
48 4 n n

Gr02 2 T o) P ey

Since a4 (y) > %n and p > 2,

48 4 — n
—_— > — < .
B2 a2’ oty
Therefore, it follows from Step 1 thatif u € L? (2N Bs,), with p <n/a_(y), thenu € L/ =2 (QnN Bs,).
Since u € L>(2N Bs,), (5-14) follows.

Step 3: We claim that for any A > 0,

x| 22| (x)| = O (x| 2/ 2mmaxie01=R)y g x ), (5-15)

Indeed, take p € (2*, n?/((n—2)o_ (y))) if y >0, and p > 2*if y <0. This is possible since 2* =2n/(n—2)
and a_(y) < %n We fix a sequence (¢;); € (0, +00) such that lim;_, ; -, €, = 0 and we fix a chart ¢ as
in (4-7) to (4-12). For any i € N, we define

ui(x) = e;’/pu(w(eix)) for all x € Eg/el..
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Equation (5-5) then can be written as

€7 (y + O(€f 1x]))
lp(eix)|?

where g; (x) := ¢*Eucl(¢;x) and

—Agiui — u; = ﬁ(x, Ml‘), u; = 0 on 8R1 N Eg/ei, (5-16)

i, up)| = CePlui| 4+ Cef DOy 2O i By
We fix R > 0 and define wg := (Bg \ §R71 )NR’.. With our choice of p above and using (5-14), we get that

luillLrwg) < C, (5-17)
and
| fi(x, ui)| < Crlui| + Crlu; | O~ for all x € wg. (5-18)

Fix ¢ > p > 2* It follows from elliptic regularity that

1eti Nl 4/ gy < € i @ < 30(27(s) = D),
luill i@ <C = luillir@we <C forallr > 1if g = 3n(2*(s) — 1),
il L% @ey < € if g > 3n(2%(s) = 1),
where
I 2%(s)—1 2
7" a9
and the constants C, C’ are uniform with respect to i. It then follows from the standard bootstrap iterative
argument and the initial bound (5-17) that ||u; || L% (wg/4) < C" Taking R > 0 large enough and going back

to the definition of u;, we get that for all i € N,
1x["? |u(x)] < C forall x € 2N By, (0)\ Be, 2(0).

Since this holds for any sequence (€;);, we get that |x|"/P |lu(x)| < C around O for any

n2

D
(n—2)a_(y)

when y > 0. Letting p go to n>/((n —2)a_(y)) yields (5-15) when y > 0. For y <0, we let p — +o0.

2*<p

To finish the proof of Theorem 5.1, we rewrite equation (5-5) as

a(x)

—Au —
x|

u=0,
where for x € Q,
ax) =y + 0(x|")+ 0(x>) + O(Ix)*~* |u|* 2
— 7+ O(xI) + O (k) + O (x|~ 2 u(x) > 2,

Sincea_(y) < %n, it then follows from (5-15) that there exists 7’ > 0 such thata(x) =y +O(|x |T/) asx — 0.
We are therefore back to the linear case; hence we can apply Theorem 4.1 and deduce Theorem 5.1. [
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As a consequence we get the following result, which will be crucial for the sequel.

Corollary 5.3. Suppose u € DI*Z(R'jF), u>0, uz£0is a weak solution of

uZ -1

—Au — Lzu =—— inR}.
x| |x]*

Then, there exist K|, K> > 0 such that
X1

PR (5-19)

X1
u(x) ~x-0 KIW and  u(x) ~|x|—+o0 K

Proof. Theorem 5.1 yields the behavior when x — 0. The Kelvin transform #(x) := x> "u(x/|x)?) is a
solution to the same equation in DI’Z(R’i), and its behavior at O is given by Theorem 5.1. Going back
to u yields the behavior at co. O

6. Profile around 0 of positive singular solutions of L, u = a(x)u

In this section we describe the profile of any positive solution — variational or not— of linear equations
involving L, . Here is the main result of this section.

Theorem 6.1. Let u € C*(Bs(0) N (2\ {0})) be such that

—Au— %ﬁxmu —0 in N Bs(0),
u>0 in QN Bs(0), (6-1)
u=0 on (082N Bs(0)) \ {0}.

Then, there exists K > 0 such that either

d(x,082) d(x,0%)

u(x) ~x—o0 K (o= or u(x)~x-o T

In the first case, the solution u € DI’Z(Q)]OC,() is a variational solution to (6-1).

It is worth noting that Pinchover [1994] tackled similar issues. The proof of Theorem 6.1 will require
two additional results. The first is a Harnack-type result.

Proposition 6.2. Let Q2 be a smooth bounded domain of R", and let a € L°°(R2) be such that ||a|lcoc < M
for some M > 0. Assume U is an open subset of R" and consider u € C*(U N Q) to be a solution of

—Agu+au=0 inUNK,
u=>0 inUNS,
u=~0 on UNJK.

Here g is a smooth metric on U. If U' € U is such that U' N Q is connected, then there exists C > 0
depending only on 2, U', M and g such that

u(x) - u(y)
d(x,0Q) ~ d(y, Q)

forallx,y e U NQ. (6-2)
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Proof. We first prove a local result. The global result will be the consequence of a covering of U’. Fix
Xxo € 0Q2. For § > 0 small enough, there exists a smooth open domain W such that

Bs(xg) NQ2 C W C Bys(xg) N2 and Bs(xg) NoW = Bs(xg) NaS2. (6-3)

Let G be the Green’s function of —A, +a with Dirichlet boundary condition on W, then its representation
formula reads as

u(x):/ u(0)(—=0ysG(x,0)) da:/ u(0)(—0,,G(x,0))do (6-4)
aw IW\IQ

for all x € W, where 9, - G(x, o) is the normal derivative of y — G (x, y) at o € dW. Estimates of the
Green’s function (see [Robert 2010; Ghoussoub and Robert 2006a]) yield the existence of C > 0 such
that forall x e W and o € W,

1d(x,dW) d(x,dW)
- 2 <-8,,G(x,0) < C—— =,
Clx—oal lx —ol|"

It follows from (6-3) that there exists C(§) > 0 such that for all x € Bs/2(xo) N2 C W and o0 € dW \ 9€2,

md(x W) <—-0,,G(x,0) <C(@)d(x,dW).

Since u vanishes on d€2, it then follows from (6-4) that for all x € Bj/2(xo) N €2,

C(5) d(x, 8W)/ u(o)do <u(x) <C(@)d(x, 8W)/ u(o)do.

It is easy to check that under the assumption (6-3), we have that d(x, dQ2) = d(x, dW). Therefore, we
have for all x € Bj/>(xo) N €2,

Cu()
C(a)/ 7= A - C(‘S)/ u(o)do.

Since these lower and upper bounds are independent of x, we get inequality (6-2) for any x, y € Bs/2(x0)NS2.

The general case is a consequence of a covering of U’ N Q by finitely many balls. Note that for balls
intersecting 92, we apply the preceding result, while for balls not intersecting d<2, we apply the classical
Harnack inequality. This completes the proof of Proposition 6.2. U

Proof of Theorem 6.1. Let u be a solution of (6-1) as in the statement of Theorem 6.1. We claim that
u(x) = 0(d(x, 3Q)|x|~ ")) forx — 0, x € Q. (6-5)

Indeed, otherwise we can assume that

I u(x) + (6-6)
1m Su = Q. -
P A, 9% x| a0

In particular, there exists (x); € €2 such that for all k € N,

lim x;=0 and u(xk)

6-7
k—>~400 d(xy, 8Q)|xk|—a+(y) - ©-7)



HARDY-SINGULAR BOUNDARY MASS AND SOBOLEV-CRITICAL VARIATIONAL PROBLEMS 1047
We claim that there exists C > 0 such that

u(X) 1 Lp—
d(x. 9D x| @) > Ck forall x € QN 3B, (0), with ry := |x¢| — 0. (6-8)

We prove the claim by using the Harnack inequality (6-2): first take the chart ¢ at 0 as in (4-7), and define
ur(x) :=uo@p(rx) forxe R'J’r N B3(0) \ {0}.

Equation (6-1) can be written as

—Agug +aup =0 in RN B3(0)\ {0}, (6-9)
with
+ 0 T T
ey i 2 Y HOUTID)

lo(rix) |2
In particular, there exists M > 0 such that |a;(x)| < M for all x € R} N B3(0) \ B 13(0). Since u; > 0,
the Harnack inequality (6-2) yields the existence of C > 0 such that

) S MDD ey e R" N B,(0)\ B1,2(0). (6-10)

V1 X1

Let x; € R’} be such that x; = @ (riXi). In particular, |xi| = 1 +o0(1) as k — +oo. It then follows from
(6-7), (6-9) and (6-10) that

uo@(riy) =

——————=_>C-k forall yeR" NBy0)\ Bi,2(0).
d(@(ry). 99) ¥ !

In particular, (6-8) holds.

We let now W be a smooth domain such that (4-26) holds for r > 0 small enough. Take the supersolution
(d)

Uy, (y)— defined in Proposition 4.5. We have that
C-k
u(x) = = ul’  _(x) forallx e WNaB,(0).
Since ”«(i)(y),— vanishes on d W, we have u(x) > %(C -k)u((i)(y)’_(x) for all x € 3(W N B, (0)). Moreover,
we have that
() y +O0(xI") @ _ y +0(x|")
—Aua+(y)?_——|x|2 Uy, (y).— <O_—Au——|x|2 n W.

Up to taking r even smaller, it follows from the coercivity of the operator and the maximum principle
that

C-k
u(x) > T“gi)(w,—(x) for all x € W N B, (0). (6-11)

For any x € W, we let kg € N such that r, < |x]| for all k > kg. It then follows from (6-11) that
u(x) > %(C ~k)u((i)(y)’_(x) for all k > kg. Letting k — +o0 yields that u((i)(y)y_(x) goes to zero for all

x € W. This is in contradiction with (4-29). Hence (6-6) does not hold, and therefore (6-5) holds.
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A straightforward consequence of (6-5) and Lemma 5.2 is that there exists / € R such that

u(x)

’ —/ 6-12
<20 d(x, 09 |x |-+ @) (6-12)

We now show the following lemma:

Lemma 6.3. If
u(x)

lim =0,
x—0.d(x, 9§2)|x |+ ()

then u € DI*Z(Q)MCVO and there exists K > 0 such that u(x) ~¢_o Kd(x, 3Q)/|x|* 7.

Proof. We shall use Theorem 4.1. Take W as in (4-26) and let n € C*°(R") be such that n(x) = 0 for
x € Bs/4(0) and n(x) = 1 for x € R" \ Bs;3(0). Define

Yy +0@x)
2

fx):= <—A )(nu) forx e W.

The function f € C>°(W) vanishes around 0. Let v € D2(2) be such that

0 T
vt (le)v:f in W,
|x|?

v=0 on dW.

—Av

Note again that for r > 0 small enough, —A — (y + O (|x|%))|x|~2 is coercive on W, and therefore, the
existence of v is ensured for small . Define

i:=u—nu-+v.

The properties of W and the definition of 1 and v yield

0 T
g YOO W
|x|?

u=20 in dW \ {0}
Moreover, since —Av — (¥ + O (]x|%))|x|~>v =0 around 0 and v € D">(W), it follows from Theorem 4.1
that there exists C > 0 such that [v(x)| < Cd(x, W)|x|~% ") for all x € W. Therefore, we have that
lim u(x) —0.
x—0d(x, BQ)|X|_O‘+(V)

(6-13)

It then follows from Lemma 5.2 that

1imO lx|%+|Vi(x)| = 0. (6-14)
xX—

Let y € C°(W) and w € D'2(W) be such that

0 T
vt (le)w:w in W,
x|

w=0 on oW.

—Aw
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Since ¥ vanishes around 0, it follows from Theorem 4.1 and Lemma 5.2 that
wx) =0, IW)|x|" ") and |[Vwx)|=0(x|"* ") asx— 0. (6-15)

Fix € > 0 small and integrate by parts, using that both & and w vanish on dW, to get

0 T
0:/ (—Aﬁ—y—i_—gxl)ﬁ)wdx
W\ B (0) x|

O T
=/ (—Aw—y—i_—(zlxnw)ﬁdx—i—/ (—wdyii + iidyw) do
W\B.(0) |x| D(W\B(0))

=/ Yudx —/ (—wdyu +udyw)do.
W\ B (0) N9 B¢ (0)

Using the limits and estimates (6-13), (6-14) and (6-15), and that ¥ vanishes around 0, we get
o:/ Yidx+o(e" (e Wemer ) el ema-))) =f Vidx+o(l), ase— 0.
W\ B (0) WA\ B, (0)

Therefore, we have fW Yiudx =0 forall y € C°(W). Since & € L? is smooth outside 0, we then get
that iz = 0, and therefore u = nu + v. In particular, u € DI’Z(Q)loc,O is a distributional positive solution to

7403l

—Au
|x|?

=0

on W. It then follows from Theorem 4.1 that there exists K > 0 such that u(x) ~,_.0 Kd(x, 89)/|x|"‘—(1’).

This proves Lemma 6.3. U
Combining Lemma 6.3 with (6-12) completes the proof of Theorem 6.1. U
As a consequence of Theorem 6.1, we improve Lemma 4.2 as follows.

Proposition 6.4. Let u € C 2(@ \ {0}) be a nonnegative function such that

14 .
—Au——u=0 inR},

u=~0 on IR

(6-16)

Then there exist _, .4 > 0 such that
u(x) = r_xy x| + A x x| 7Y forall x € R

Proof. Without loss of generality, we assume that u s 0, so that u > 0. We consider the Kelvin transform
of u defined by @ (x) := |x|>"u(x/|x|?) for all x € R".. Both u and i are then nonnegative solutions
of (6-16). It follows from Theorem 6.1 that, after performing back the Kelvin transform, there exist
a1, 0 € {at(y), a—(y)} such that

. ou(x) . u(x)
Iim —=1[/;>0 and lim
x—0 x1 x|~ lx|—o00 xp |x |72

=12>0.
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If o) < ap, then u(x) < Cxy|x|™* for all x € R"}.. The result then follows from Lemma 4.2. If a; > a,
then o = a4 (y) and ap = @—_(y). We define

i(x) :=u(x) —lixy|x| 7@ forall x e RL.

to obtain that —Aii — iy /|x|* =0in R, i =0 on dR™, and i(x) = o(x1|x|~*?)) as x — 0. Arguing
as in the proof of Lemma 6.3, we get that it € Dl*z([R’i)k,C,o and i(x) = O(x;|x|7*®)) as x — 0.
Moreover, we have that i(x) = (I, + o(1))x;|x|™* ) as |x| — +oo; therefore ii(x) > 0 for |x| > 1.
Since it € Dl’z(Ri)loc,o, the comparison principle then yields & > 0 everywhere. We also have that
i(x) < Cxy|x|7*=® for all x € R". It then follows from Lemma 4.2 that there exists A_ > 0 such that
A(x) = A_xi|x|7%W) for all x € R, from which Proposition 6.4 follows. O

7. The Hardy singular boundary mass of a domain 2 when 0 € 92

We shall proceed in the following theorem to define the mass of a smooth bounded domain €2 of R” such
as 0 € 9Q2. It will involve the expansion of positive singular solutions of the Dirichlet boundary problem
L,u=0.

Theorem 7.1. Let Q2 be a smooth bounded domain 2 of R" such as 0 € 02, and assume that Al—t(n2 -1 <
¥ <vu (). Then, up to multiplication by a positive constant, there exists a unique function H € C*(Q\{0})
such that

AH-Y-H=0 ne

|x|?
H=>0 inQ, (7-1)
H=0 on 3\ {0}.

Moreover, there exists c; > 0 and ¢, € R such that

d(x,082) d(x,0%) (d(x,c’)Q)

A@) = raey Yo em [

) as x — 0. (7-2)

The quantity m, (S2) := c2/cy € R, which is independent of the choice of H satisfying (7-1), will be called
the Hardy b-mass of 2 associated to L,,.

Proof. First, we start by constructing a singular solution Hy for (7-1). For that, consider uy_ (,) as in
(4-14) and let n € C°(R™) be such that n(x) = 1 for x € Bs/2(0) and n(x) =0 for x € R" \ B5(0). Set

14 .=
fi==AMug, ) — W(num_(y)) in 2\ {0}.
It follows from (4-19) and (4-5) that f is smooth outside 0 and that
f) = 0(d(x,8Q)1x| 7+ 71) = O (x| in QN Bs2(0).

Since y > §(n* — 1), we have that a.(y) < 1(n + 1), and therefore f € L>"/"*2(Q) = (L*(Q))' C
(D"2(Q))". It then follows from the coercivity assumption y < yx () that there exists v € D?(Q)

such that
14

|—xl—zvzf in (D"2(Q)).
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Let vy, vo € DV2(Q) be such that

A —Yoo=f and —Am—Lwm=F  in(D"2Q). (7-3)
|x|? |x|?

In particular, v =v; — v, and vy, v € cl(Q \ {0}), and they vanish on 92\ {0}.

Assume that f # 0. Since f} > 0, the comparison principle yields v > 0 on 2\ {0} and d,,v; <0 on
a2\ {0}. Therefore, for any é > 0 small enough, there exists C(§) > O such that v;(x) > C(§)d(x, 02)
for all x € dBs(0) N Q2. Let uy_(,),— be the subsolution defined in (4-4). It follows from the asymptotic
(4-5) that there exists C’(§) > 0 such that v; > C'(8)uq_(),— in dBs(0) N Q. Since this inequality also
holds on d(Bs(0) N 2) and

(—A - #)@1 Ot 20 in BO)NE,
X

coercivity and the maximum principle yield vi > C'(8)uq_(y),— in Bs(0) N K. It then follows from (4-5)
that there exists ¢ > 0 such that

vi(x)>c-d(x, Q) x| in Bs(0)N K.
Therefore, we have for x € Bs(0) N €2,

fr(x) <Cd(x, BQ)|x|_°‘+(V)—1 < £|x|a*(y)_a+(y)_lv1(x) < £|x|ﬂf7(y)—a+()/)+1 U|1 (I);)
c c X

Therefore, (7-3) yields

4+ O (x| W —ar(n+1 '
_Avl—l—y ( || 2 )v1=O in Bs(0) N 2.
X

Since y > ;(n? — 1), we have that _(y) — a4 (y) + 1 > 0. Since v; € D"*(Q), v; > 0 and vy £0, it
follows from Theorem 4.1 that there exists K; > 0 such that

d(x, 082) (d(x,BQ)

vi(x) = K, x |- ) x |- )

) asx — 0. (7-4)

If f4 =0, then vy =0 and (7-4) holds with K| = 0. Arguing similarly for f_, and using that v = v; — vy,
we then get that there exists K € R such that

d(x,092) d(x,0R)
v(x) =—-K ) < MCED ) asx — 0. (7-5)
Set
Ho(x) :=n(xX)ug, )(x) —v(x) forall x € Q\ {0}. (7-6)

It follows from the definition of v and the regularity outside O that

_AHO_#HFO inQ,  Ho(x)=0 inaQ\ {0}
X
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Moreover, the asymptotics (4-5) and (7-5) yield Hy(x) > 0 on N By (0) for some §’ > 0 small enough.
It follows from the comparison principle that Hy > 0 in 2.

We now perform an expansion of Hy. First note that from the definition (4-14) of u_ (,, the asymptotic
(7-5) of v and the fact that o4 (y) —a—_(y) < 1, we have

H _d(x,aSZ) 140 Kd(x,aSZ) d(x,08) _d(x,(‘)Q) Kd(x,E)Q) d(x,02)
0(x) = | |+ ) (1+0(x)+ |x|o- () o |x|e- ) - ||+ ) |x |- ) 0 |x o= ()
as x — 0. In particular, since in addition Hy > 0 in €2, there exists ¢ > 1 such that
1d(x,09) <H - d(x,09Q) for all o 7.7
EW_ O(X)_CW or all x € ya. (-)

Finally, we establish the uniqueness. For that, we let H € C 2(Q\ {0}) be as in (7-1) and set
Ao :=max{A >0: H > AHp}.

The number A is clearly defined, and so we set H:=H-— MoHp > 0. Assume that H % (. Since
—AH— y|x|*2ﬁ = 0, it follows from Theorem 6.1 that there exists o € {a4(y), «—(y)} and K > 0
such that
d(x,09)
H(x) ~y—0 K———. (7-8)
|x ¥

If o =a_(y), then He D'2(Q) is a variational solution to —AH - IEIJy/|x|2 = 0 in 2. The coercivity
then yields that H=0, contradicting the initial hypothesis.

Therefore « = a4 (y). Since H > 0 vanishes on 92 \ {0}, we have that for any é > 0, there exists
¢(8) > 0 such that

H(x) > c(8)d(x,dQ) forxeQ \ Bs(0). (7-9)

Therefore, (7-8), (7-9) and (7-7) yield the existence of ¢ > 0 such that H > cHy, and then H > (Ag+c) Hy,
contradicting the definition of Ag. It follows that H= 0, which means that H = Ao Hj for some Ao > 0.
This proves uniqueness and completes the proof of Theorem 7.1. 4

Now we establish the monotonicity of the mass with respect to set inclusion.

Proposition 7.2. The mass m,, is a strictly increasing set-function in the following sense: Assume 21, Q2
are two smooth bounded domains such that 0 € 021 N 32, and }1(112 — 1) <y <min{yg (1), vy (22)}.
Then

QCR = my(Q) <my (). (7-10)
Moreover, if @ C R and §(n* — 1) <y < {n? then m, (Q) < 0.
Proof. It follows from the definition of the mass that for i = 1, 2, there exists H; € C*(X; \ {0}) such that
Y H =0 in%.
x|
Hi >0 in Qi, (7‘11)
H =0 on 0€2;,

—AH; —



HARDY-SINGULAR BOUNDARY MASS AND SOBOLEV-CRITICAL VARIATIONAL PROBLEMS 1053

with
H _d(x,08) o d(x,0%;) d(x,0%;) 712
i) = |x |+ () +my (S4) |x|e- ) |x|e-) (7-12)
asx — 0, x € Q;. Set h := Hy — Hy on 1. Since 21 C £2;, we have that
—Ah—Lh=0 ingq,
x| (7-13)

h>0,h#£0 on 9L2;.

First, we claim that 4 € H'2(). Indeed, it follows from the construction of the singular function in
(7-6) that there exists w € H"2(Q) such that

_ d(x,08) —d(x, 0%2)
- |x |+ ()

h(x)

+w(x) forallx € Q. (7-14)

Since 2] C 2, and 0 is on the boundary of both domains, the tangent spaces at 0 of €2 and €2, are equal,
and one gets that d(x, 021) —d(x, 02p) = O(|x|?) as x — 0. Since oy (y)—a—_(y) <1, we then get that
_d(x,080) —d(x, 08)

) =O0(x|'"" ") asx —0.
X |%t

h(x):

Similarly, |[VA(x)| = O(]x|~*-?)) as x — 0. Therefore, we deduce that 7 € H"2($2)). It then follows
from (7-14) that h € H'2(Q1).

To prove the monotonicity, note first that since y < yy(21) and h € H L2(Q)), it follows from
(7-13) and the comparison principle that 4 > 0 in €2; (indeed, this is obtained by multiplying (7-13) by
h_e Df(SZ) and integrating; therefore, coercivity yields #_ = 0). Since h # 0, it follows from Hopf’s
maximum principle that for any § > 0 small, there exists C(§) > 0 such that A(x) > C(8)d(x, 9€21) for
all x € dBs(0) N €2;. We define the subsolution u,_(,),— as in Proposition 4.3. It then follows from the
inequality above and the asymptotics in (4-5) that there exists €9 > 0 such that h(x) > 2€quq_(y),— (x)
for all x € 9Bs(0) N ;. This inequality also holds on Bs(0) N 9€2; since uq_(;),— vanishes on 0€2;. It
then follows from the maximum principle that 4(x) > 2epuy_(y),— (x) for all x € Bs(0) N 2. With the
definition of /4 and the asymptotic (4-5), we then have that for 8’ > 0 small enough
d(x y 0 Q])

Hy(x) — Hi(x) = € MCR

for all x € By (0) N 2. (7-15)

We let v be the inner unit normal vector of 9€2; at 0. This is also the inner unit normal vector of 325 at 0.
Therefore, for any r > 0 small enough, we have that d(tv, 82;) =t for i = 1, 2. It then follows from the
expressions (7-12) and (7-15) that

t t t
(my, (S2) —my, (Q1)) i o(ta(y)> Ze0 oy st 1 0.

We then get that m,, (€22) —m,, (21) > €, and therefore m,, (£22) > m,, (€21). This proves (7-10) and ends
the first part of Proposition 7.2.

The proof of the second part is similar. Indeed, we take €2, := R’} and we define H>(x) := x;/ x| (),
Arguing as above, we get that 0 > m,, (£2), which completes the proof of Proposition 7.2. O
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Note that we have used above that the mass m,, (R} ) is 0 even though we had only defined the mass
for bounded sets. In the rest of the section, we shall extend the notion of mass to certain unbounded sets
that include R’ . For that, we shall use the Kelvin transformation, defined as follows: for any xo € R", let

i () 1= X0 + X022 for all x € R" \ {xo). (7-16)

X0
|x —xo/?
The inversion iy, is clearly the identity map on 9 B|, (xo) (the ball of center x¢ and of radius |xpl), and in
particular i,,(0) = 0.

Definition 7.3. We say that a domain Q C R" (0 € dQ) is conformally bounded if there exists xo & Q
such that i,,(€2) is a smooth bounded domain of R" having both 0 and x( on its boundary 9 (i, (£2)).

One can easily check that R’} is a smooth domain at infinity. For instance, take xo:=(—1,0, ..., 0). The
following proposition shows that the notion of mass extends to unbounded domains that are conformally
bounded.

Proposition 7.4. Let Q2 be a conformally bounded domain in R" such that 0 € 02. Assume that yg(2) >
%(n2 — 1) and that y € (}L(n2 —1), vy (Q)). Then, up to a multiplicative constant, there exists a unique
function H € C*(Q\ {0}) such that

v

—AH——H=0 1inQ,
|x|?
H=>0 in S, (7-17)
H=0 on 02\ {0},
H(x) < Clx|'"+®) forx e Q.
Moreover, there exists ¢ > 0 and ¢y € R such that
d(x,08) d(x,0Q) d(x,0)
H(x)=c o as x — 0.
|x|o=+ () |x|@- () |x|o- ()
We define the mass b, (2) := c2/c1, which is independent of the choice of H in (7-17).
Proof. For convenience, up to a rotation and a dilation, we can assume that xo := (—1,0,...,0) € R" so

that the inversion becomes

. x—x0
i) =x0+ ———
|x — xol

for all x € R" \ {xo}.
For any u € C*>(U), with U C R", we define its Kelvin transform 7 : U->R by
i(x) == |x —xo|* "u(i(x)) forallx e U:=i""(U\ {xo}).

This transform leaves the Laplacian invariant in the following sense:

—AG(x) = |x — x0| "2 (= Au)(i(x)) forall x € U. (7-18)
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Define § := i(€2) and suppose u € C*(\ {0}) is such that
—Au—LuzO in 2,
X

u=>0 in €2,
u=>0 on 0%2.

The Kelvin transform & of u then satisfies

—Aii—Vi=0 in%,

where
V)= ——2— forxeR"\ {0, xo). (7-19)
|x|?x — xol?
It is easy to check that
0 O(lx —
vay= YO0 v 0 ad vy = X0 XD
|x|? |x — xo/?

In other words, the Kelvin transform allows us to reduce the study of the Hardy-singular boundary mass of a
conformally bounded domain €2 into defining a notion of mass for the Schrodinger operator —A +V on Q.

Note that the coercivity of —A —y |x|~2 on  (since y < yr(L2)) yields the coercivity of —A —V
on 5; that is, there exists co > 0 such that

/N(|W|2 —V@)u?)dx > cO/N |Vu>dx forallu € D"2(Q).
Q Q

Arguing as is Section 4, we get for § > 0 small enough, a function u,, satisfying

(—A = V)ug, = O(d(x, Q) |x|7+M=1) in QN Bj,

Ug, >0 in QN B,
Ua, =0 on 982\ {0},
and 5
d(x,0%)
Ug, (x) = W(l +0(x|) asx— 0.
The function f := —Auy, — Vu,, then satisfies for all x € Qn Eg,

| fo(x)| < Cd(x, 882)|x| "+ =1 < C|x |79+,

where C is a positive constant. Since y > 1(n*> — 1), it follows that fy € L*/ ®+2(Q). Let now
vy € Dl*z(ﬁ) be such that

—Avg—Vuvo= fy weakly in D"3(). (7-20)

The existence follows from the coercivity of —A—V on €, and the proof of Theorem 7.1 yields that |vg(x)|
is bounded by |x|'*-#) around 0. Note that around x,, we have —Avy — Vvo = 0 and the regularity
theorem, Theorem 5.1, yields a control by |x — xo|! =), which means that there exists C > 0 such that

lvo(x)| < Cd(x, 3) (Jx| 7= + |x —xo|™=Y))  forall x € .
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The construction of the mass, Theorem 7.1, and the regularity theorem, Theorem 5.1, then yield that
there exists Ky € R such that

vo(x) = K

d(x, 0%) (d(x’ 35)) (7-21)

07 |- x |-

Define now ﬁo(x) = Uq, (y)(x) —vo(x) forall x € 9] \ {0, x0}, and consider its Kelvin transform
Ho(x) := |x = xo* ™" Ho(i (¥)) = |x — X0/ " (ta,, ) = v0) (i (X)), x € Q. (7-22)

It follows from (7-18) and the definitions of u,_ ;) and v that Hy satisfies the properties

—AHy— Y-Hy,=0 inQ,
|x |2

Hy>0 in Q, (7-23)
Hy=0 in 3Q \ {0}.

Concerning the pointwise behavior, we have that

Hy(x) =

d(x,09) K d(x, 02) o(d(x, aQ2)

0
x|+ |x[*-

) asx —> 0, xeQ, (7-24)

|x|0l,
and

Ho(x) < Clx|'"™ forall x € Q, |x| > I. (7-25)

This proves the existence part in Proposition 7.4. In order to show uniqueness, we let H € C 2(5_3 \ {0}) be
as in Proposition 7.4, and consider its Kelvin transform H (x):=|x—xo|* "H(i(x)) forall x € & \ {0, xo}.
The transformation law (7-18) yields

—~AH—-VH=0 in%,
H>0 in Q, (7-26)
H=0 in 92\ {0, xo}.

Moreover, we have that I-Nl(x) < Clx|'=*+® 4 Clx — xo|' 7@ for all x € Q. It then follows from
Theorem 6.1 that there exist Cy, C> > 0 such that

d(x,d%)

d(x, d)
|x — xo[*- )"

x| and ﬁ(x) ~x—x (6)

H(x) ~y-0 Ci (7-27)
where o € {d_(y), a+(y)}. We claim that « = o4 (y). Indeed, otherwise, we would have He DI’Z(SNZ)
(see Theorem 6.1) and then (7-26) and coercivity would yield H= 0, which is a contradiction. Therefore
o = a4 (y). By the same reasoning, the estimates (7-27) hold for ﬁo (with different constants Cy, C»).
Arguing as in the proof of Theorem 7.1, we get that there exists A > 0 such that H = )Hy, and therefore

H = MLHy. This proves uniqueness and completes the proof of Proposition 7.4. O

Note that as a consequence of (7-24), the mass m,, (€2) is well-defined and is equal to — K.
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8. Test functions and the existence of extremals
Let Q2 be a domain of R” such that 0 € Q2. For y € R and s € [0, 2), recall that

Q) := inf J% (), 8-1
pys (@)= b T (8-1)

where
_ JoUVul? —uty /Ix?) dx

(Jo, 1) /1x]5 dx)**

Note that critical points u € D'?(Q) of J]f?s are weak solutions to the PDE

Q .
Jy’s(u) :

|2*—2M

u
Y —x'

e M for some A € R, (8-2)
X by

which can be rescaled to be equal to 1 if A > 0 and to be —1 if A < 0. In this section, we investigate the
existence of minimizers for J]f?s. We start with the following easy case, where we do not have extremals.

Proposition 8.1. Ler Q C R” be a smooth domain such that 0 € 02 (no boundedness is assumed). When
s =0and y <0, we have that j1,, ((2) =1/K (n, 2)2 (where 1/K (n, 2)2 = wo.0(R"™) is the best constant
in the Sobolev inequality (1-19)) and there is no extremal.

Proof. Note that 2*(s) = 2*(0) = 2* Since y <0, we have for any u € C2°(2) \ {0},
JoVul —w’y/lxPydx _ [o|VuPdx 1
(o lul dx)™ 7 (Jylu> dx)®* ~ K@, 2%

(8-3)

and therefore ., 0(2) > 1/K (n, 2)2. Fix now xo € Q and let n € C2°(£2) be such that (x) = 1 around xo.
Set

€ (n—=2)/2
ue(x) :=n(x) (m)

for all x € 2 and € > 0. Since x( £ 0, it is classical (see, for example, [Aubin 1976]) that lim¢_, Jé?o(ue) =
1/K (n, 2)2 1t follows that 1, o(2) < 1/K (n, 2)>. This proves that i, o(2) = 1/K (n, 2)*.

Assume now that there exists an extremal ug for pu, 0(£2) in D'2(Q) \ {0}. It then follows from
(8-3) that ug € D"?(Q) ¢ D"?(R") is an extremal for the classical Sobolev inequality on R". But these
extremals are known (see [Aubin 1976]) and their support is the whole of R”, which is a contradiction
since uo has bounded support in 2. It follows that there is no extremal for ., 0(£2). O

The remainder of the section is devoted to the proof of the following.

Theorem 8.2. Let Q be a smooth bounded domain in R" (n > 3) such that 0 € 0Q and let 0 < s < 2 and
y < %nz. Assume that either s > 0, or that {s =0, n >4 and y > 0}. There are then extremals for 1, ;(S2)
under one of the following two conditions:

1) y< Alf(n2 — 1) and the mean curvature of 92 at 0 is negative.

2) y > ‘l‘(n2 — 1) and the mass m, (2) of Q is positive.
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Moreover, if v < yg(Q) (resp., y = vu(R2)), then such extremals are positive solutions for (8-2) with
A >0 (resp., . <0).

The remaining case n =3, s =0 and y > 0 will be dealt with in Section 10.

According to Theorem 3.6, in order to establish existence of extremals, it suffices to show that
My,s(2) < py s(R). The rest of the section consists in showing that the above-mentioned geometric
conditions lead to such a gap. The existence of extremals on R’} as described in Proposition 1.3 is essential
here.

In the sequel, ~(0) will denote the mean curvature of 92 at 0. The orientation is chosen such that the
mean curvature of the canonical sphere (as the boundary of the ball) is positive. Since {s > 0}, or {s =0,
n>4and y > 0}, it follows from Proposition 1.3 that there are extremals for w1, (R ). The following
proposition combined with Theorem 3.6 clearly yield the claims in Theorem 8.2.

Proposition 8.3. We fix y < %nz. Assume that there are extremals for (1, (R'). There exist then two
families (ui)é>0 and (uZ)€>o in DV2(Q), and two positive constants cjlm and c)%’s such that:

(1) Fory < le(n2 — 1), we have that
Tl =pysRD(1+c,,-ha(0)-€+o(€)) whene— 0. (8-4)
2) Fory = }L(n2 — 1), we have that
J(ui)==uyJ(R1)(1#—C;S'hQ(O)-ehlé—%o(ehlé)> when € — 0. (8-5)
3) Fory > Alf(n2 — 1), we have as € — 0, that
J(ug) — /Ly,s(R’i)(l _ C;Z/,s -my(Q) e+ () —a-(y) + O(Ea+(y)—a—(y))). (8-6)
Remark. When y < Alf(n2 — 1), this result is due to Chern and Lin [2010]. Actually, they stated the result

for y < }l(n —2)2 but their proof works for y < %(n2 — 1). However, when y > 4—11(112 — 1), we need the
exact asymptotic profile of U that was described by Corollary 5.3.

Proof. By assumption, there exists U € DI’Z(R’jr) \ {0}, U >0, that is a minimizer for u, (R ). In other
words,

o S (VU = U2y /1x2) dx

J,5s(U) = = (R™).
y,S( ) (fRn |U|2*(S)/|x|s dx)z/z*(v) :u'}/,S( J,-)
+
Therefore, there exists A > 0 such that
U2 -1
AU-LUu=31"— R,
xP xe N .
U>0 in R, (8-7)
U=0 in 0R7,
and there exist K, K> > 0 such that
X1 X1
Ux) ~0 K1 and U (x) ~yj>so0 K (8-8)

, L
lx|*- e+
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where here and in the sequel, we write for convenience
or:=ay(y) and o_:=a_(y).

In particular, it follows from Lemma 5.2 (after reducing all limits to happen at 0 via the Kelvin transform)
that there exists C > 0 such that

Ux) <Cxilx|™™ and |[VU(X)| <C|x|™™ forallx e R]. (8-9)

We shall now construct a suitable test function for each range of y. First note that

y <%(n2—1) = oy—a_>1,

y:%(nz—l) = op—a_=1.
Concerning terminology, here and in the sequel, we define as in (4-6)

B, :=(—r,r) x B"D(0) c R x R""!
for all » > 0 and

Vi=VNRL

for all V C R”". Since Q2 is smooth, up to a rotation, there exist § > 0 and ¢y : B(g"_l)(O) — R such that
©0(0) =V (0)| =0 and ~
¢ : B3y —> R",
, o (8-10)
(x1, x7) = (x1 +@o(x), x7),
that realizes a diffeomorphism onto its image and such that
9(B3s NRL) = ¢(B3)NQ and  ¢(Bsy; NORYL) = (B3s) N Q.
Let n € C2°(R") be such that n(x) =1 for all x € Eg and n(x) =0 for all x ¢ Ezl;.
Case 1: y < %(n2 — 1). As in [Chern and Lin 2010], for any € > 0, we define
Ue(x) = (ne_(”_z)/zU(e_lx)) o (p_l(x) for x € (p(§25) N Q2 and 0 elsewhere.
This case is devoted to giving a Taylor expansion of J)f’zs (ue) as € — 0. In the sequel, we adopt the

following notation: given (ac)e=o € R, let ®,, (ac) denote a quantity such that, as € — 0,

o(ar) ify <im?*-1),
®y(ae):={(€) .y T( )
O(acr) ify=3@m*—1).
A. Estimate of [, |Vue|* dx. It follows from (8-9) that
[Vie(x)| < Ce*2|x|7% forall x € Qand € > 0. (8-11)

Therefore, fq) |Vue|?dx = 0©,(¢) as € — 0. It follows that

((B3s\Bs)NR™)

/ |Vue|? dx =/~ |V (ue O‘P)|Z*Eucl|JaC‘P| dx+0,() ase—0,
Q Bs,+
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where §3’+ = Eg N R’ . The definition (8-10) of ¢ yields Jac ¢ = 1. Moreover, for any 6 € (0, 1), we
have as x — 0,

1 ;%o ) 146
*Eucl := J =1d+ H + O(|x|'t?),
4 (3i(ﬂo dij+0i9o 990 ()

0 3'(p0>
H = J )
(3i¢o 0

/|we|2dx=/~ V(e 0@)ppadx — | HY8;(ue 0 9)d;(ue o) dx
Q Bs,+

Bs,+

where

It follows that

+0(/~ x| "V (ue ogo)|2dx) +0,() ase—0. (8-12)
Bs,+
We have that

HY9; (uc0p)d; (ucop) dx

Bs.+

23 [ Y8 (o)t weopydx =23 / 0" (tc0); (4 .0p) dx

i>2 B+ i>2

-2y / 3,100(0) (¥') 1 (1co0)?) (ugocp)dx—i-O( /

i,j>2 Bs.+

|x|2|V(u60(p)|2dx) ase€—0. (8-13)

We let II be the second fundamental form at O of the oriented boundary 9<2. By definition, for any
X, Y € Tp0L2, we have that

(X, Y) := (dVo(X), Y)Euc,

where v : 92 — R” is the outer unit normal vector of 9. In particular, we have that v(0) = (-1, 0, -, 0).
For any i, j > 2, we have that

IL;; == 11(3;¢(0), 3;9(0)) = (3; (V 0 9)(0), 8;0(0)) = —(V(0), 8;;9(0)) = 3;¢0(0).

Plugging (8-13) in (8-12), and using a change of variables, we get that

/ |Vuc|* dx :/~
Q

VU > dx —211;; Z/ (x)/9,U ;U dx

=15+ i,j>2 =15+
+0(/~ x| "1V (ue og0)|2dx) +©,() ase—>0. (8-14)
Bs,+

We now choose 6 in the following way:
(i) If y < ;(n* — 1), then take 6 in (0, oy —or— — 1).
(ii) If y = 2(n> — 1), take 6 € (0, 1).
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In both cases, we get by using (8-11), that
/N X" V(e o@)|Pdx =0, () ase— 0. (8-15)
Bs +
Moreover, using (8-9), we have that

/N IVU*dx= | |VU|*dx+0©,() ase—>0. (8-16)
B

n
Lo+ R

Plugging together (8-14)—(8-16) yields

/|w€| dx—/ VU2 dx —211; Z/ () 9,U8;U dx + O, (e). (8-17)

i,j>2 —ls,+

B. Estimate for fQ lue|* @ /|x|* dx. Fix o € [0, 2]. We will apply the estimates below to o = s € [0, 2)
or to o := 2. The first estimate in (8-9) yields

lue(x)] < Ce®"2d (x, 9Q) x| 7% < Ce®+ /2| x|l 7o+ (8-18)

for all € > 0 and all x € 2. Since Jac ¢ = 1, this estimate then yields

2*(0) 2*(0)
u u
el - dx:/N e —dx+0,(e)
Q x| 0B X

2*(0)
:/ Jueo ol 7 410, ase— 0. (8-19)
B, le)]”

Ify < ;(m*—1Dorif y =1»>—1) and o <2, we choose 6 € (0, (e —a_)2*(0)/2—1) N (0, 1). If
y = Alf(n2 —1) and 0 =2, we choose any 6 € (0, 1). Using the expression of ¢(x;, x’), a Taylor expansion
yields

P = |x|7° (1 — =5 ) djpo0) () (x) + 0<|x|‘+9)> as € — 0. (8-20)

2 |x |2
i,j>2

The choice of 8 yields

2*(o)
/ Jueo@l” 7 140 4y — @ () ase— 0. (8-21)
By ()7
Putting together (8-19)—(8-21), using a change of variable and (8-9), we get as € — 0 that
ue ¥ / IUIZ*(“) / |U|2 @ X
dx = - — ell;; — NN dx+ 0, (). (8-22)
/Q x| y x| Z T, e kP2 g

We now compute the terms in U by using its symmetry property established in [Chern and Lin 2010].
Indeed, there exists U : (0, +00) x R such that U (x1, x') = U (x1, |x]) for all (x|, x') € R’ . Therefore,
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for any i, j > 2, we get that

U@ x ; Bij P x
i — @) @Y dx = | — S|
B, X7 1] B, X7 Ix|

e_|5,+

dx

and that

NJ 5,'1' ’
) 01U 9;U dx = U, VU) dx,
B n—1Jg

15+ 5_15,+

where x = (x1, x) € R’, . Therefore, the identities (8-17) and (8-22) can be rewritten as

2 _ 2 - 2hQ(O) /
VuPdx= | |VUdx ¢ U (X', VU) dx + O, (€) (8-23)
Q R -1 s,
and
2*(o) UZ*(G) ho(0 UZ(G)
|”€|U dx:/ | 'U dx — e © ) | 'G Sl WP dx+©,(e) (8-24)
o Rl LIl 20-1 i, Kl P

as € — 0, where hqo(0) = ), II;; is the mean curvature at 0.

C. An intermediate identity. We now claim that as € — 0,

/; UK, VU) dx
B

6_15,+
"o 2(s) 2 "o 2
U U U
=/ x| 121 (k s +y 2)dx_/ de%—@%,(l), (8-25)
B 2|x| 2(s) 7 Ja] oRNB ., 4

6"5,+

where A > 0 is as in (8-7). This was shown by Chern and Lin [2010], and we include it for the sake of
completeness. Here and in the sequel, v; denotes the i-th coordinate of the direct outward normal vector
on the boundary of the relevant domain (for instance, on dR’, , we have that v; = —§y;). We write

/~ U (x, VU)dx—Z/ U (X) 9;U dx
B B

-5+ j=>2 =15+
|x'|?
—Z/ U 9 ( )a Udx
j=2° P ls 4
| x /Iz Ix 2
=Y | = WU=-3;Uvjdo— Z 0,01 U 9;U) dx
j=2 (B 715_+) 1o+
| /|2
_Z/ —0;Uv; d0'+0</ |x/|2|VU|2(x)d0>
j>2 RnﬁB —1g R"HBE 15
| x ’IZ
—Z/ (3, Ud;U+d,Ud;;U)dx. (8-26)
B

j>2 —ls 4+
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Since U (0, x) =0 for all x’ € R"~!, using the upper-bound (8-9) and writing V' = (d,, . . ., 3,), we get that

A

12
U, VU)dx = — Zf |x| U 3;U+0,U 9j;U) dx + 0, (1)

Is + ]>2 =15+

, 72
=_/ |x4| H(V'UP) dx +/~ |x2| WU(=AU+0nU)dx +0,(1)

Be’lé‘-%— Be’lé,-%—

x/ 2 vV'U 2 x/ 2
:_/~ %P |Wlx+/~ ¥’
8(36715.4—) 4 B€7 2

s+
/;
B€

<|J€/I2(31U)2
| ——
Using again that U vanishes on 9R’, and the bound (8-9), we get as € — 0,

J ) dx+0,(1). (8-27)

s+

/~ UK, VU)dx
B

=15+

12 12 nuU 2
:/ ol 81U(—AU)a’x—|—/ dewo(/ |x/|2|VU|2dx)+®y(1)
By, 2 orinB_,, 4 3(B.—1)NRY,
2 nuU 2
:/ ] 81U(—AU)dx—/ PO 4t ). (8-28)
EE’IS.-%— 2 oR DE Ls 4
Now use equation (8-7) to get that
12 72 2*(s)—1
U U
f Wl 81U(—AU)dx:f Eal A +y— ) dx. (8-29)
B, 2 B, 2 |x]* |x|?
els+ —1s 4

Integrating by parts, using that U vanishes on dR’, and the upper-bound (8-9), for o € [0, 2], we get that

y? -1 U2
/ |x/|zalU—dx:/ |x/|2|x|_‘781< - )dx
B x| By, 2*(0)

15+
U? )
=/~ x') x|~ 1dx—f
9B, ) 2*(0) B,

U?©)
al(|x’|2|x|—”)( )dx

15+ 15+ 2*(0)
/2
_ (/ |x|2—aU2’((r) do) + o x| 7x1 XX 200) 4
Rﬁ_ﬂage 15+ 2*(S) 55718’ |x|0+2
= U@ dx4+0,(1) ase— 0. 8-30
> J5_,, W O (830

Putting together (8-28)—(8-30) yields (8-25).
D. Estimate for J$* (u¢). Since U € D'*(R"), it follows from (8-7) that

U2
VU= Y U2 dx =2 dx. (8-31)
" |x|? o fxl?
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This equality, combined with (8-23) and (8-24) gives
Jo(IVuc? —uly /|x|?) dx
(fio laelZ® /s dx) >
Ja (IVUP = Uy /1xP?) dx (1+ ha(0)
= < € —
(Jor 1UIZS) /1x]5 dx)> (n =D fgu [UFO/|x]* dx
"

where for all € > 0,

T3 (ue) =

C.:= —2/ HU (X, VU)dx +y

Bs_18,+ Be_15,+

The identity (8-25) then yields as € — 0,
72 aU 2
cm [  EPOO, o,
oRLNE,_,, 2

Therefore, (8-32) yields that as € — 0,
ha(0) fi’R'lNi—la x/[2(3,U)* dx’
2(n — DA fR’i U126 /|x|s dx

I3 ue) = uy,smi)(l +e

We now distinguish two cases:

+ ®y(e)).

/ |X/|2)C1 U2 s |x’|2x1 U2*(s)
—— x —
~ ~ 2 2 * ~ 2
xP Ixl 2o Ja_,, . Il

x|

C.+ @V(e)>, (8-32)

(8-33)

1 y < }T(nz — 1). The bound (8-9) then yields x” — |x’|?|9,U (x")|? is in Ll(alR'jr) and so we get from

(8-33) that
T (ue) =y (R (14 Co - ho(0) -€ +o(e)) ase — 0,
with
Soger X' 12(01U)? dx’
o= S T [ U e
(=D fpu [UFO/x]* dx

) y = }‘(n2 —1). From (8-8), Lemma 5.2 and the Kelvin transform, we have that

lim |x'|%"0,U(0, x")| = K, > 0.

[x’|—400
Since 2ay —2 =n — 1, we get that
/ I P(0U)? dx’ = o1 K2 1nl+o(1n 1)
IRLNB 1, € €
as € — (. Therefore, (8-33) yields

IS (o) = My,s(Ri)Q + Chha(0)eln % +o(1n é)) as € — 0,

where )
/. Wn—1 K 2

Cl = 0
O 20— D J U0 /Ixf dx g

Cases (i) and (ii) prove Proposition 8.3 when y < %(n2 —1).

(8-34)

(8-35)
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Case 2: y > %(n2 —1). In this case, the construction of test functions is more subtle. First, use Theorem 7.1
to obtain H € C2( \ {0}) such that (7-1) holds and
d(x,0Q) d(x,0) d(x,0R)

Hx)=——7—+m, () [ +o

x|+

) when x — 0. (8-36)

|x|Ol,

As above, we fix n € C2°(R") such that n(x) =1 for all x € Eg and n(x) =0 for all x ¢ Ezg. We then
define B such that

x|
H(x) = (n

||+

) o '(x)+B(x) forallx €.

Here ¢ is as in (4-7)—(4-12). Note that 8 € D"?(2) and
d(x, d%2) (d(x, Q)
o

|x|(¥,

B(x) =my (£2)

) as x — 0. (8-37)

|x|(¥,

Indeed, since o1 — @ < 1, an essential point underlying all of this case is that
x| =o(]x]|**7%) asx — 0.

We choose U as in (8-7). By multiplying by a constant if necessary, we assume that K, = 1; that is,

X1 X1

U(x) ~c0 K P and U (X) ~ x| +oo e (8-38)
Now define
ue(x) ;== (e " A2U@E ! Yo (x) +€@74)28(x) forx e Qand e > 0. (8-39)
We start by showing that for any k > 0,
lim ——<— = H in Ck (Q\ {0}). (8-40)

e—0 elar—a-)/2

0
loc

the asymptotic behavior (8-38). For convergence in C k we need in addition that Vi(U — x;|x|~%+) =

Indeed, the convergence in C (Q \ {0}) is a consequence of the definition of u., the choice K, =1 and

o(Jx|'=*+~%) as x — +oo0 for all i > 0. This estimate follows from (8-38) and Lemma 5.2.
In the sequel, we adopt the following notation: 6 will denote any quantity such that there exists
0 : R — R such that lim._,¢ lim¢_,¢ 65 = 0.

We first claim that for any ¢ > 0, we have that

/ (|Vu€|2 — Lzuz) dx
Q\0(B.(0)4) |x|

Wy — n—2)w,_
=% ((a+ — D" —;nl +m,,(§2)—( )01

) + 05 7% (8-41)
2n

Indeed, it follows from (8-40) that

|Vuel* —uly/|x|?) dx
iy Jmots (Ve e W) | <|VH|2—L2H2> dx. (8-42)
Q\¢(B.(0)4) |

e—0 €0+ x|
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Since H vanishes on dQ \ {0} and satisfies —AH — Hy /|x|*> =0, integrating by parts yields

/ (|VH|2—L2H2) dx:—/ Ho,Hdo
Q\@(B:(0)) |x| (RN B.(0))

= —f Hogdy,,(Hop)d(p o), (8-43)
R".N3 B, (0)

where in the two last equalities, v(x) is the outer normal vector of B.(0) at x € 9 B.(0).

We now estimate H o d,,, H og. Since ¢,v(x) =x/|x|+ O(|x]) as x — 0, it follows from (8-36) that

(Ol_,_—l) X1 2

H o8, (H 09) = —ommrh 4 (1= Dmy () s |+1+o(|x|1 ") asx — 0.

Integrating this expression on B.(0), = R’ N dB.(0) and plugging into (8-43) yields

-1 n—20 B _
[ (i ) ar = DO @)t v,
Q\0(B.(0)4) |x] 2n 2n

where lim._,¢ 6. = 0. Here, we have used that

1 1 Wp—1
x12 do=— x12 do=— Ix|*do = ——, w,_|:= do.
Si—] 2 gn—-1 21’1 §n—l 211 S"—l

This equality and (8-42) prove (8-41).

We now claim that

2%(s)
/Q(|Vu5| —Wuz>dx=)\/n P dx+m },(Q)% T4 o(e*7Y) ase—0. (8-44)
+

Indeed, define U, (x) := e~ "2/2U (e~ !x) for all x € R’, . The definition (8-39) of u. can be rewritten as
e 0 9(x) = Ue(x) + €@+ 7260 p(x) forall x € R" N Bj.

Fix ¢ € (0, §), which we will eventually let go to 0. Since dgy is an isometry, we get that

/ (qu€|2—L2u€> dx
0(B.(0)) x|
Y 2
= |V (e 0 @) |2epue — —— (tte 0 @) )|Jac<o|dx
/Bc«m( e g ()2 e

= IVU,|? U2>|JaC(p|dx
fwn( €yt |<>|2

+ 2€(a+—a)/2/ ((VUE, V(Bo (p))q;*Eucl

Uc(ue o (p)) |Jac ¢| dx
B:(0)+

[ ( lo(0)?
R V(Bog)l2 Jac ¢| dx. 8-45
+€ ‘/I;(:(O)Jr (l (:3 ¢)|¢ Eucl — | (x )|2(:3 QD) >| an0| X ( )
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Since ¢*Eucl = Eucl+0(|x]), |¢(x)| =|x|+ O(|x|>) and B € D'?(R), we get that

/ (|Vue 2 - %u?) dx
¢(B.(0)+) |x|
2
YV 12 2 U¢
= VU |3 ——U)dx+0(/ |x|<|VU| +—>dx)
/Bcwn( N TE B.(0)4 BT

4 2¢(@+ma-)/2 / ((VUE, V(B o ¢))Euc — #Ue (Bo w)) dx

Bc(o)+
Uc|B o gl

vo(eemr [ (1vuLlv@ep)+ dx) + €7 60f (8-46)
B.(0), 2

as € — (. The pointwise estimates (8-38) yield

Y 2 YV ;2
IVue|>*———u )dx:/ (|VU |z ———=U >dx
/gow(,(om( e B\ X2

H2e e / ((vue, V(Bo) ke — 5 Ue (ﬁw)) dx+€*+ 7 6;
B.(0)+ x|

as € — (. Integrating by parts yields

:/ (—AUG_LZUE>U€ dx+/ U.d,U,. do
B.0)4 |x| 3(B.(0)+)

+ 2¢(@r—a-)/2 (f (—AUE — LZUE),B opdx + / Bogd,U. do) + €4+ 7-p¢
B.(0)4 |x| 3(B.(0)4)

as € — 0. Since both U and B o ¢ vanish on dR’, \ {0}, we get that

/ (|Vu€ Z—Lzu§> dx
0(B.(0)1) |x]

:/ (—AUG_LZUG)Ude—i—/ Ue 9,U. do
B.(0); |x] R N9 B, (0)

+2e<“+—“>/2<f (—Aué —L2U€>,80<pdx+/ Bogd,U. dcr) + €T g¢
B.(0)4 x| R™.N9 B, (0)
(8-47)

as € — 0. The asymptotic estimate (8-38) of U and Lemma 5.2 yield (after a Kelvin transform)
0y Ue = —(org. — D) @702 [ 77 4 o (e 702 x 7
as € — 0 uniformly on compact subsets of IRT:L \ {0}. We then get that

BogdUe=e 2 (—m, (Q)(ay — Dxilx| ™ +o(x|'™)
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and

Ue 9Ue = €7 (= (s — D7 x| 7247 4 o(|x|'724))
as € — 0 uniformly on compact subsets of [RT{L \ {0}. Plugging these identities into (8-47) and using
equation (8-7) yields, as € — 0,

v 2*(s) o
/ <|VME|2 o _2”3) dx = / p dx — (oy — H—— o2
¢(B.(0)1) |x] B, |XI° 2n

p2®-1
+2e<“+—“)/2/ I———Bogpdx
B, Xl
— (g — D2 (e o % ge (8-48)
As € — 0, we have that

2%(s) 2%(s)
/ I~ dx =/ A—— dx + o(e®+ %), (8-49)

B.(0); IXI® Ry |xl

The expansion (8-37) and the change of variable x := €y yield as € — 0,

dy + e@+)/2g¢. (8-50)

2%(s)—1 2%(s)—1
U U
/ A— ﬁogodx:)»my(Q)e(‘”_a)/Z/ b
B.0),  |xI* T B R Y b

Integrating by parts, and using the asymptotics (8-38) for U, we have

U2*(s)—1
x/ Ny
re YIS |yl

n
+

UZ"(S)—I
= lim Y M gy= lim (—AU—%U) N
R—+00 Jpooy,  IYI* [yI* R—+00 J pr(0), |yl |y[%-

. 14 Vi Y1 Wp—1
= lim Ul-A—-— dy—/ U do =(ag —1) . (8-51)
R—+00 Jp.(0), ( |y|2)(|Y|“) 20Br Oy, |yI% " 2n

Putting together (8-49)—(8-51) gives

ure — ),
/ (lvue|2 - Lzug) dx = )\,/ dx —|—my(§2)wea+*af _{_O(E‘M*“—)

|x| |x[* 2n

as € — 0. This finally yields (8-44).
We finally claim that

2%(s) 2(s) * _

U 2 D

/ Y dx= / dx+ 2 (@O ey gge 0. (8-52)
o IxI* Ry |x[* A 2n
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Indeed, fix ¢ > 0. Due to estimates (8-37) and (8-38), we have that

42 L2
/ < dx:/ € dx+o(e™+ %)
o |x® o(B.0)4) [XI°

U. +e@i—a)/2g o |26
:/ |Ue ‘ﬁo<p| |Jac ¢| dx + o(e“+7%")
B.(0)4 lo(x)]*

[ e o
B.(0)4 |x[®

(I+O0(Ix) dx +o(e** ™)

as € — 0. As one checks, there exists C > 0 such that for all X, Y € R,
IX 4+ YO — [ X]7C = 2() [ X P O2XY | < CUXPTO2 Y+ Y 7). (8-53)

Therefore, using the asymptotics (8-37) and (8-38) of U and g, we get that

2%(s) 2%(s)

u U,
/ — dx=f “—|(1+0(|x])) dx
o |x/ B.(0), X

U
+2%(s)e e / i Bop(140(|x])) dxte“r7e)/2;
B, |x°

2*(s) 2*(s)—1

U
— / dx+2*(s)e )2 / < Bopdx+e“+7)29¢  as e — 0.
B X[’ B, X

Then (8-52) follows from this latest identity, combined with (8-49)—(8-51).
We finally use (8-31), (8-44) and (8-52) to get

(ot = 3n)@n
2*(s)
n)\fm U~ /|x|sdx

IS () = Jf?”t(U)(l = m,, (e~ +o(e“+—°‘)) as € — 0,

which proves (8-6). This completes Proposition 8.3 and therefore Theorem 8.2. 0

9. Domains with positive mass and an arbitrary geometry at 0

In this section, we construct smooth bounded domains in R" with positive or negative mass, regardless of
the local geometry of d€2 at 0. This is illustrated by the following result.

Theorem 9.1. Let w be a smooth open set of R". Then, there exist ro > 0 and two smooth bounded
domains Q, Q_ of R" such that

Q4N B, (0) =Q_N B, (0)=wnN B, (0), 9-1)
min{yy (), yu(Q2)} > > — 1), (9-2)
my,(24) >0>m,(Q), (9-3)

whenever ‘—ll(n2 —1) <y <min{yg(R4), ya(2_)}.

We shall need the following stability result for the mass under continuous deformations and truncations.
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Proposition 9.2. Let Q C R" be a conformally bounded domain such that 0 € 0K2. Assume that yg(2) >
%(n2 —Dandfixy € (}l(n2 —1), yH(Q)). For any R > 0, let Dg be a smooth domain of R" such that
* Bgr(xo) C Dg C Bar(x0),

e QN Dg is a smooth domain of R".
Let ® € C*°(R x R", R") be such that
o &, := (1, -) is a smooth diffeomorphism of R”,
o &,(x) =x forall |x| > % andallt € R,
®,(0)=0forallt eR,
o Oy = Idgn.

Set Q; g := () N Dg. Then as t — 0, R — 400, we have that yy (2 r) > }L(n2 — 1) and m,, (2 r)
is well defined. In addition,

im  my(Q.p) =m,(Q).

t—0, R—>+o0

As a preliminary remark, we claim that if €2 is a conformally bounded domain of R" such that 0 € 9€2,
then

liminf yp(Q.x) = ya (9. 9-4)

t—0,R—

where €2; g are defined as in Proposition 9.2. Indeed, by definition, yg (2; r) = yu (2¢) = yu (D, (£2)).
Inequality (9-4) then follows from (3-7) of Lemma 3.2.

We shall use the same approach as in the proof of Proposition 7.4. Assuming xp :=(—1,0,...,0) e R",
and denoting the corresponding Kelvin inversion by i, this transformation allows us to map the operator
—A —y/|x|* on a conformally bounded domain 2 into the Schrodinger operator —A + V on the bounded
domain ?2, where V is the potential defined in (7-19).

Set now =1(2), 3)(t, x):=io®(¢,i(x)) for (z, x) e Rx R”", and 5, :=R"\i(D,-1) in R". Observe
that R — 400 in Proposition 9.2 is equivalent to r — 0 in here. Note that ® € C®(RxR", R") is such that:

e For any t € (-2, 2), the map 5, = 5(t, -) is a C*°-diffeomorphism onto its open image 5,([@").

o $p=1Id.

« &,(0)=0forall 7 € (=2,2).

. 3>,(x) =x forall t € (—2,2) and all x € Bys(xg) with § < }L.
Set €, := @,(Q) and note that the sets D, satisfy the following properties:

* B.j2(x0) C Dy C By (xp).

o Q= SNZ, \ 5, is a smooth domain of R”.
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In particular, we have that SNZJ,,, =i(8,1). Letu e CZ(S_ZH \ {0}) be such that
14

—Au——zuzo in ; ,,
x| .

u>0 in € ,,

u=>0 on 92 .

We shall need the following.

Lemma 9.3. Foranyt € (—1, 1), there exists u; € Cz(f_i, \ {0, x0}) such that

—Au,—Vu,zo in 5;,
U >0 in 5;,
uy =0 on 98, \ {0, xo},

ur(x) < Clx|'=+@) 4 Clx — xo|' 7@ forx € ?2;.

Moreover, we have that
d(x,0%;)

ey (L Ol mem)

u(x) =

as x — 0, uniformly with respecttot € (—1, 1).

1071

(9-5)

(9-6)

Proof. We construct approximate singular solutions as in Section 4. For all t € (=2, 2), there exists
a chart ¢, that satisfies (4-7)—(4-12) for ﬁ,. Without restriction, we assume that lim; ¢ ¢; = ¢ in
C*(Bys, R"). We define a cut-off function 7z such that ns(x) = 1 for x € Bs and ns(x) = 0 for x & Bos.

As in (4-14), we define uq, (), € C 2(51 \ {0}) with compact support in gat(gz,;) such that

U, 1 0@ (x1, X') i= s (xp, X )x1 x| 7% (1 + ©;(x))  forall (xy, x) € Bys \ {0},

9-7)

where O, (x1, x') := e 1H /2 _1{ for all x = (x|, x') € Bys and all 1 € (—2, 2). Here, H,(x') is the mean

curvature of af“zt at the point ¢, (0, x"). Note that lim, .o ®; = Q¢ in C k). Arguing as in Section 4, we

get that
(—A = V)itg, ; = O(d(x, 02,)|x|~ =1 in @, N B;,
ug, >0 in ?2; N E(;,
U, ;=0 on 9%, \ {0},
and N
Ug, (X) = d(x, 9%2) (1+0(x|) asx— 0.

|x|05+(1/)

The construction in Section 4 also yields
limug, ;o® =uq, 0 in Cpo($2\{0}).
t—0
Note also that all these estimates are uniform in # € (—1, 1). In particular, defining

Jii= _Aua+,t - Vua+,t,

(9-8)

(9-9)
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there exists C > 0 such that
| fi(x)] < Cd(x, 38 |x| "+~ < Clx| 72+ (9-10)

forall t € (—1,1) and all x € ﬁt N Ea. Therefore, since y > ‘—i(n2 — 1), it follows from (9-8) and this
pointwise control that f; € L/ (”+2)(§2t) for all r € (—1, 1) and that

tlgl(l) | ft o ®; — f0||L2n/(n+2>(g~z) =0. 9-11)
Forany r € (—1, 1), we let v; € DI'Z(S~2,) be such that
—Av, — Vv, = f; weakly in Dl’z(ﬁt).

The existence follows from the coercivity of —A — V on ﬁ,, which follows itself from the coercivity on
Q = Q. We then get from (9-11) and the uniform coercivity on €2, that

lim v 0@ = vy in D"2(8Y) and C..(&\ {0, xo}).
t—

It follows from the construction of the mass in Section 7 (see the proof of Theorem 7.1) that around
0, |v;(x)] is bounded by |x|'=*-®). Around x,, we know —Av; — Vv, = 0 and the regularity theorem,
Theorem 4.1, yields a control by |x — xo|'~*-). These controls are uniform with respect to t € (—1, 1).
Therefore, there exists C > 0 such that

|0, (x¥)] < Cd(x, ) (1] P + [x — xo| ")

for all 7 € (—1, 1) and all x € ;. Now define u,(x) := uy, ,(x) — v,(x) forall € (—1, 1) and x € ;.
This function satisfies all the requirements of Lemma 9.3. O

Proof of Proposition 9.2. Let ©, , =, \ D,, and note that for r € (0, 18), we have &, ,NBs(0) = 2N B (0).
We shall define a mass associated to the potential V as in Proposition 7.4 and prove its continuity.
Step 1: The function f; : 5, — R defined in (9-9) has compact support in B,s5(0); therefore, it is well
defined also on ﬁt,r. Let v, , € Dl*z(ﬁ,,,) be such that

—Av,, — Vv, = f; weakly in D"(Q,,). (9-12)

Since the operator —A — V' is uniformly coercive on §~2t, it is also uniformly coercive on §~2,,r with respect
to (¢, r), so that the definition of v; , via (9-12) makes sense. The uniform coercivity and (9-9)—-(9-10)
yield the existence of C > 0O such that ||v; , ||Dl’2(§t,r) < C forall ¢, r. Since xo & 'SVZ,,,, (9-9)-(9-10) and

regularity theory yield v; , € C ! (SEZ,,, \ {0}) and for all p > 0, there exists C(p) > 0 independent of ¢
and r such that

1oz, ller s, (8, UB, xo) = C(P)- (©-13)
Step 2: There exists C > 0 such that for all r € (—1, 1) and all x € fi,,,,

v (X)] < Cd(x, 3Q2) (X7 + |x — x| 7= @). (9-14)
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Indeed, around 0, we know 's“z,, » coincides with ﬁt, and the proof of the control goes as in the construction
of the mass in Section 7 (see the proof of Theorem 7.1). The argument is different around xy. We let
ro > 0 be such that S~2t N By, (x0) = Qn By, (x0). Therefore, for r € (0, r9), we have that

Qu.r N Bary(x0) = (2 \ Dy) N Bayy (x0).
Arguing as in the proof of Proposition 4.3, there exists i,_ € C“(EEZ \ {0} and 7’ > O such that

iy >0 in N By, (x0),

g =0 in (8€2) N Bay, (x0),

—Adiy — Viig_ >0 in N By, (xo).
Moreover, we have that

ﬁaf(x)zm(l—i—Oﬂx—xoD) as x — xg, x € Q2. (9-15)
lx — xo[%
Therefore, since v; , vanishes on By, (xp) N 8(52 \ 5r), it follows from (9-13) and the properties of it,_
that there exists C > 0 such that v; , < Cii,_ on the boundary of (?2 N 5,) N By, (xp). Since in addition
(—A = V), =0 < (—A — V)(Ciy,_), it follows from the comparison principle that v, , < Cii,_ in
(€2\ D,) N By, (xo). Arguing similarly with —v, , and using the asymptotic (9-15), we get (9-14).

Step 3: We have B
lim v, 0® =vp in D"*(Q)joc.ixo)e N Cho (2 {0, x0}), (9-16)

t,r—0

where vy was defined in (7-20), and the convergence in D1’2(§~2)10C’{ xo}c means that lim; , .o nv; ,o®; =nvy
in Dl’z(fl) for all n € C*°(R") vanishing around x(. Indeed, v, , o ®; € DI’Z(EZ \ 5,) C Dl’z(ﬁ).
Uniform coercivity yields weak convergence in D1’2(S~2) tov e Dl’z(ﬁ). Passing to the limit, one gets
(—=A —=V)v = fy, so that v = vg. Uniqueness then yields convergence in Clloc(f_? \ {0, xo}). With a change
of variable, (9-12) yields an elliptic equation for v; , o ®;. Multiplying this equation by 12 - (v , o ®; — vp)
for 7 € C*°(R") vanishing around xo, one gets convergence of nv;. o ®; to nug in D2(£2). This proves

the claim.

It follows from the construction of the mass (see Theorem 7.1) and the regularity theorem, Theorem 4.1,
that there exists Ko € R and for all (¢, ) small, there exists K; , € R such that

d(x,d8) d(x, d8,) d(x,d) d(x,d%)
|x|01—(}/) |x|06—()/) |x|oz_(}/) |x|a_(y)

v, (¥) = Ko, ) and  vo(x) = Ko ) (9-17)

as x € Q goes to 0. Note that around 0, we know ﬁt,r coincides with ?2,.

Step 4: We claim that
lim K;, = Kj. (9-18)

t,r—0

We only give a sketch. Noting v; , := v; , o ®;, the proof relies on (9-16) and the fact that
—Agrpualiy — Vo @b, = fio®, in N Bs(0).

The comparison principle and the definitions (9-17) then yield (9-18).
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Note that
my (£2) = =Ko, (9-19)
where the mass of a conformally bounded €2 is defined as in Proposition 7.4.

Step 5: convergence of the mass. We claim that

lim  m, (2 r) =m, (2). (9-20)

1—0,R—00
We define ﬁ,,r ‘= Uq, + — Vs, SO that
—AH,,—VH,=0 in%,.
It follows from (9-6) and (9-17) that H, » > 0 around 0. From the maximum principle, we deduce that

Ht »>0on Q, , and that it vanishes on 89, +\ {0, xo}.
It follows from (9-6) and (9-17) that

~ d(x, 98.,) d(x,92,) = (d(x,3%Q:,)
Ht,r(x) = x|+ - Kt,r o T

|x|()l_
asx—0, xe 5,7,. Coming back to €; g with R = r~! via the inversion i with
H, g(x) := |x — xo|* ™" Hy (i (x))

for all x € Q; g, we get that

~AH.p ylet k=0 in Qg
H g>0 in € g,
H r=0 in 92 g \ {0}
and
H, p(x) = d(X|,j(it,R) 3 Kt,rd(x|’j3”R) 0<d(X|,jSt,R)>

as x — 0, x € Q; r. Therefore, it follows from the definition of the mass (see Theorem 7.1) that
my (2 r) =—K;, forallt,r, R= r~1. Claim (9-20) then follows from (9-18) and (9-19). O

In order to prove Theorem 9.1, we need to exhibit prototypes of unbounded domains with either
positive or negative mass.

Proposition 9.4. Let 2 be a domain such that 0 € Q2 and Q2 is conformally bounded. Assume that
v (2) > 4(n —1Dandfixy € ( n*>—1), )/H(Q)) Then m,(2) > 0 if R C Q, and m, (2) < 0 if
QCRE.

= Nt

Proof. With Hy defined as in (7-22), we set

U(x) ;= Hy(x) —xq|x|”% forall x € Q.
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We first assume that R, C €2. We then have that

—Au-L =0 inmr,
x| (9-21)
=0 in 9R™ \ {0}.
We claim that

|V dx < +o00. (9-22)
Ry

Indeed, at infinity, this is the consequence of the fact that [VU[(x) < C|x|™%* for all x € R’} large, this
latest bound being a consequence of (7-25) combined with elliptic regularity theory. At 0, the argument
is different. Indeed, one first notes that d(x, 92) = x; + O(|x|?) for x € R’} close to 0, and therefore,
WU(x) = O(|x|'=*) for x — 0. The control on the gradient |VU|(x) < C|x|~% at O follows from the
construction of Hy. This yields integrability at O and proves (9-22).

We claim that U > 0 in R’,.. Indeed, it follows from (9-21) and (9-22) that U_ € DI’Z(RZ‘F). Multiplying
equation (7-23) by U_, integrating by parts on (Bz(0) \ B(0)) N"R” , and letting ¢ — 0 and R — 400
by using (9-22), one gets U_ = 0, and then U > 0. The result follows from Hopf’s maximum principle.

We now claim that

m, (2) > 0. (9-23)

Indeed, since U > 0 in R}, there exists ¢ > 0 such that AU(x) > cox|x|~* for all x € 9(B1(0),). It then
follows from (9-22), (9-21) and the comparison principle that U(x) > cox;|x| "% for all x € B1(0). The
expansion (7-24) then yields — Ky > ¢g > 0. This combined with (9-19) proves the claim.

When @ C R}, the argument is similar except that one works on €2 (and not R’} ) and that AU < 0 in
a2\ {0}. This ends the proof of Proposition 9.4. O

Proof of Theorem 9.1. Let @ be a smooth domain of R” such that 0 € 2. Up to a rotation, there exists
¢ € C®°(R"1) such that ¢(0) =0, V¢(0) =0 and there exists 8y > 0 such that

@ N B, (0) = {x1 > ¢(x) : (x1, x") € Bs,(0)}.
Let n € C2°(Bj5,(0)) be such that n(x) = 1 for all x € Bs,,2(0), and define

@(tx')

®,(x) := (x1 +1n(x) ,x/> forallt > 0 and x € R",

and @ := Idg-. It is easy to see that &, satisfies the hypotheses of Proposition 9.2. Moreover, for
0 <t < 1, we have that

LN (Byy2(0) = &, (R N By 2(0)).
We let 2 be a smooth domain at infinity such that

QNB(0)=RLNB(0) and yy(Q) > 1(n*—1), (9-24)
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(for example, R”), and let €2; g be as in Proposition 9.2. It is easy to see that
wNtD;(Bs,2(0)) =12 g Nt D;(Bs,2(0)).
Therefore, for ¢ > 0 small enough, we have that
® N Bsy 3(0) =12 g N Bysy3(0).

Moreover, yg (12 gr) = v (S2,R) > %(n2 —1)ast— 0and R — +o0; see (9-4). Concerning the mass,
we have

1=y (1Q, g) = m, (Q.g) — my () ast—> 0, R — +oo.

We now choose €2 appropriately.

To get a negative mass, we choose 2 smooth at infinity such that 2N B;(0) =R’ N B (0) and 2 C R
Then y5(R2) = inz, (9-24) holds and Proposition 9.4 yields m,, (€2) < 0. With this choice of €2, we take
Q_ :=Q; g for t small and R large.

To get a positive mass, we choose R’} C €2 such that (9-24) holds (this is possible for any value of
vy (2) arbitrarily close to Alrnz, see point (5) of Proposition 3.1). Then Proposition 9.4 yields m,, (€2) > 0.
With this choice of €2, we take 2 := €2; g for # small and R large. This proves Theorem 9.1. O

10. The Hardy singular interior mass and the remaining cases

The remaining situation not covered by Proposition 8.1 and Theorem 8.2 is s =0, n=3 and y € (0, 1n?).
If y > yn (S2), then Proposition 3.3 and Theorem 3.6 yield ., 0(€2) < 0 < u,, o(R’) and the existence of
extremals is guaranteed. When p,, o(R’, ) does have an extremal U, then Proposition 8.3 and Theorem 3.6
provide sufficient conditions for the existence of extremals. The rest of this section addresses the
remaining case, that is, when y € (0, yg(£2)) and when w, o(R) has no extremal, and therefore
M},,O([Ri) =1/K(@3, 2)2 according to Proposition 1.3.

We first define the “interior” mass in the spirit of Schoen and Yau [1988].

Proposition 10.1. Let @ C R be an open smooth bounded domain such that 0 € 3. Fix xo € Q. If
y € (0, yg (K2)), then the equation

_AG-YG=0 inQ\{x),
|x|?

G=>0 in Q\ {xo},
G=0 on I\ {0}

has a solution G € C*(2 \ {0, xo}) N D%(Q \ {x0D1oc.0 that is unique up to multiplication by a constant.
Moreover, for any xq € 2, there exists a unique R, (xo) € R independent of the choice of G and cg > 0
such that

G(x)=cqg (—

+ R, (x0) ) +0o(1) asx— xo.
lx — xo
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Proof. Since y < yg (), the operator —A — y|x|~2 is coercive and we can consider G to be its Green’s
function at xo on € with Dirichlet boundary condition. In particular, for any ¢ € C°(2), we have that

P(y)
o= | Gx(y)(—mp(y)— —2) dy forxeQ,
Q |yl
where G, := G(x, ). Fix xo € Q and let n € C2°(2) be such that n(x) = 1 around xo. Define the

distribution By, : 2 — R as

Gxo(X):i< n(x) +,3xo(x)) forall x € Q,
@ \ |x — xol

where w, := 47 is the volume of the canonical 2-sphere. As one checks,

14 4 n(x)
—“A———= By =—|-4—-—
(2= )p == 5) ()
= f=0(x—x|™"

in the distributional sense. Since f € L%(£2) and, by uniqueness of the Green’s function (since the operator

is coercive), we have that 8, € D'2(). It follows from standard elliptic theory that
Bry € CX(Q\ {0, x0)) N C*¥(2\ B5(0))
for all 6 € (0, 1) and § > 0. Since f vanishes around 0, it follows from Theorem 4.1 and Lemma 5.2 that
B () = O(Ix|'™")) and |VB,,(x)|= O(x|™* ")) when x — 0. (10-1)

We can therefore define the mass of €2 at x( associated to the operator L, by R, (€2, xo) := By,(x0). As
one checks, By, (xo) is independent of the choice of 7.

The uniqueness is proved as in Theorem 7.1. The behavior on the boundary is given by Theorem 4.1
and the interior behavior around xg is classical. Ol

Lemma 10.2. Let Q C R? be an open smooth bounded domain such that 0 € 32 and xo € Q. Assume that
y € (0, yg (2)) and that My,O(Ri) = 1/K (3, 2)%. Then, there exists a family (u¢)e in DV2(Q) such that

1 (1 Ry, (x0)

T2 (ue) = —
rolie) K(n,2)? 3 [ U¥ dx

€ +0(e)> as e — 0, (10-2)

where U(x) := (1 + |x|>) Y2 for all x € R and 2* =2*(0) = 2n/(n —2).

Proof. The proof is very similar to what was performed by Schoen [1984] (see [Druet 2002a; 2002b;
Jaber 2014]). For € > 0, define the functions

172
€ 1,2
= for all x € .
ue(x) n(x)(€2+|x_x0|2> +e /By, (x) forallx

As one checks, u. € D'2(Q). Proceeding as in the case y > %(n2 — 1) of Section 8, we get (10-2). We
omit the details that are standard. This proves Lemma 10.2. O

We finally get the following.
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Theorem 10.3. Let Q2 be a bounded smooth domain of R? such that 0 € 9.
() If y = yu(82), then there are extremals for 1, o(£2).
(2) If y <0, then there are no extremals for 1, o(§2).

(3) If 0 <y < yu(Q2) and there are extremals for (i, o(R'.), then there are extremals for i1, 0(S2) under
either one of the following conditions:

oy < Alf(n2 — 1) and the mean curvature of 92 at 0 is negative.
oy > }L(n2 — 1) and the mass m,, (2) is positive.

D If 0 <y < yu(R) and there are no extremals for ,, o(R",), then there are extremals for (1, o(S2) if
there exists xo € Q2 such that R, (2, x¢) > 0.

Proof. The two first points of the theorem follow from Proposition 8.1 and Theorem 3.6. The third point
follows from Proposition 8.3. For the fourth point, in this situation, it follows from Proposition 1.3 that
myo(RY) =1/K (n, 2)2, and then Lemma 10.2 gives 1y, 0(€2) < py,0(R’}), which yields the existence of
extremals by Theorem 3.6. This proves Theorem 10.3. O
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CONICAL MAXIMAL REGULARITY
FOR ELLIPTIC OPERATORS VIA HARDY SPACES

Y1 HUANG

We give a technically simple approach to the maximal regularity problem in parabolic tent spaces for
second-order, divergence-form, complex-valued elliptic operators. By using the associated Hardy space
theory combined with certain L2-L? off-diagonal estimates, we reduce the tent space boundedness in
the upper half-space to the reverse Riesz inequalities in the boundary space. This way, we also improve
recent results obtained by P. Auscher et al.
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1. Introduction

Let Rf" be the upper half-space R, x R" with Ry = (0, o0) and n € Ny = {1, 2, ... }. Define the tent
space Tp’;r, n/(n+1) < p < oo, as the space of all locally square-integrable functions on Rf" such that

1. 112y (y) e
1F g, == (/ (/fH ST @ ) Pdidy ) dx) < co. (1)
re \J JrL+

The scale Tp’;r, n/(n+1) < p < 00, is a parabolic analogue of the tent spaces introduced by R. R. Coifman,
Y. Meyer and E. M. Stein [Coifman et al. 1985].

Let A = A(x) be an n x n matrix of complex L™ coefficients, defined on R", and satisfying the
ellipticity (or “accretivity”) condition

MEIP <ReAf-£ and |AE-7| < AJE|lZ] ()
for &, ¢ € C" and for some A and A such that 0 < A < A < o0. Let
L:=—divAV
MSC2010: primary 42B37; secondary 47D06, 42B35, 42B20.
Keywords: maximal regularity operators, tent spaces, elliptic operators, Hardy spaces, off-diagonal decay, maximal

LP-regularity.
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(its precise definition will be recalled in next section). Consider the associated forward maximal regularity
operator ML+ given by

t
M} (F), = / Le "9 F ds, (3)
0

originally defined on F € LZ([R{Jr; D(L)). Here D(L) is the domain of L in L*(R") and F, = F(s, -).
By a classical result of L. de Simon [1964], MZr extends to a bounded operator on L2(R+; L%(RM)). By
Fubini’s theorem,

TR ~ L2R"; L*(R4)). (4)

par

For p different from 2, the analogous equivalence of (4) between Tpﬁr(Rf” ) and L?(R"; Lz([F\R+)) breaks
down. We shall refer to the maximal regularity (namely, the boundedness of Mzr) in Tp’;I as conical
maximal regularity for the reason that (parabolic) cones are involved in defining tent spaces in (1).

The maximal regularity operator M;" is a typical example of singular integral operators with operator-

valued kernels. Let 1 < p <2. Let
dist(E, E') :=inf{|x —y|:x € E, y € E'}.

We shall say that a class of uniformly L? = L*(R") bounded kernels {7 (¢)},~¢ satisfies the LP-L?
off-diagonal decay with some order M € N, if we have

dist(E, EN2\ M
11T O1g f |2 5 t—(n/Z)(l/P—1/2)<1 + y) I1e flie (5)

for all Borel sets E, E' CR",allt >0andall f € LPN L?. We shall say {T'(t)};~0 satisfies the LP-L?
off-diagonal decay if it satisfies the LP-L? off-diagonal decay with any order M € N,. Denote by
p_ = p_(L) the infimum of p for which the heat semigroup {e~'L'},. satisfies the L”-L? off-diagonal

decay. Define the index

np_
)y = . 6
(p-) ntpo (6)

For L=—A=—divV,onehas p_=1and l,=n/(n+1).
Our main result in this letter reads as follows.

Theorem 1.1. Let L = — div AV with A satisfying (2) and p— defined as in (6). Then for p € ((p—)«, 2],
the maximal regularity operator MZ defined as in (3) extends to a bounded operator on Tp[?ir.

We end the introduction with several remarks.

Remark 1.2. Under the assumption (p_), < 1, Theorem 1.1 was first proved by Auscher et al. [2012a,
Theorem 3.1] (with m =2, § = 0 and ¢ close to p_ in their statement). Indeed, we note that (p_), < 1
is equivalent to (p_)" > n, where (p_)’ is the dual exponent of p_. A threshold condition essentially the
same as (p_) > n is used in [Auscher et al. 2012a].

A general framework of singular integral operators on tent spaces is also presented by Auscher et al.
[2012a]. Their method is heavily based on the LP-L? off-diagonal decay of the family {tLe7"L},20



CONICAL MAXIMAL REGULARITY FOR ELLIPTIC OPERATORS VIA HARDY SPACES 1083

for p € (p—,2). Note that they already improved the previous result in [Auscher et al. 2012b], the
Tpﬁr-boundedness of ML+ for p € (24, 2], which assumes L%-12 off-diagonal decay only.

Here we shall give a technically simple approach to Theorem 1.1 by using the well-established
L-associated Hardy space theory combined (mainly) with L2-L? off-diagonal decay of {tLe~'L},.,.

Remark 1.3. The motivation of the reduction scheme
(operator theory on tent spaces) — (Hardy space theory),

which is involved in our proof of Theorem 1.1, comes from the study of conical maximal regularity (in
elliptic tent spaces) for first-order perturbed Dirac operators [Huang 2015, Chapter 5]. Furthermore,
the motivation of considering such conical (elliptic) maximal regularity estimates is suggested by their
applications to boundary-value elliptic problems (see [Auscher and Axelsson 2011] for example). In the
parabolic case, the conical maximal regularity results have already proven to be useful in various settings
(see for example [Auscher et al. 2014; Auscher and Frey 2015]).

Remark 1.4. Though the singularity of the integral operator MZr is at s = ¢, the most involved part
turns out to be the estimation of tent space norms when s — 0. For more explanations concerning the
“singularity” pertaining to singular integral operators and maximal regularity operators on tent spaces, see
[Auscher et al. 2012a, Remark 3.6; Auscher and Frey 2015, Remark 5.23].

Remark 1.5. Theorem 1.1 also extends to higher order elliptic operators. Then one changes correspond-
ingly the homogeneity of tent spaces and off-diagonal decay in (5). We leave this issue to the interested
reader.

2. Elliptic operators and Hardy spaces
We give some preliminary materials needed in the proof of Theorem 1.1.
Let A satisfy (2). We define the divergence-form elliptic operator
Lf :=—div(AVf),

which we interpret in the sense of maximal-accretive operators via a sesquilinear form. That is, D(L) is
the largest subspace contained in W2 for which

/ AV f-Vg| <Clgll

for all g € W'2, and we set Lf by
(Lf,g>=/ AV f-Vg
Rn

for f € D(L) and g € W!2. Thus defined, L is a maximal-accretive operator on L? and D(L) is dense
in W12, Furthermore, L has a square root, denoted by L!/? and defined as the unique maximal-accretive
operator such that

L2y — )

as unbounded operators [Kato 1976, p. 281].
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For L as formulated above, the development of an L-associated Hardy space theory was taken in
[Hofmann and Mayboroda 2009] (and independently in [Auscher et al. 2008] in a different geometric
setting), in which the authors considered the model case H Ll([F\R”). In presence of pointwise heat kernel
bounds, see [Duong and Yan 2005]. The definition of H Ll given in [Hofmann and Mayboroda 2009;
Auscher et al. 2008] can be extended immediately to n/(n 4+ 1) < p <2 [Hofmann et al. 2011]. To this
end, consider the (conical) square function associated with the heat semigroup generated by L

12
SL(H) = (// 2Le L f () dﬁfny) . xeR
I'(x) !

F(x)={(ty) eRI™:|x -yl <t}

where, as usual,

is a nontangential cone with vertex at x € R". As in [Hofmann and Mayboroda 2009; Hofmann et al.
2011], we define Hl’j([RR”) forn/(n+1) < p <2 as the completion of

{f € L*(R"): SL(f) € LP(R")}
in the quasinorm
I g2 gy == IISLCO Lo ey

We will not get into the dual side (p > 2) of the Hardy space theory.
For L?-L? off-diagonal decay related to {e~*L, sLe™*L, \/sVe L}, and other holomorphic func-
tions of L (for example (I — e~*L)° with o > 0), we refer to Chapter 2 of the memoir [Auscher 2007].

3. Proof of Theorem 1.1

Note that the extension of M + will be divided into two steps: first from F € L>(Ry; D(L)) to T, par and
then for n/(n +1) < p <2 from T2, N T par 1O Tpﬂr.

par

First we split the operator MZL for £ € N large, set
R, :=M; - V[, (8)

where for F € L>(R; D(L)) the singular part Rf: is given formally by
t
RL(F), = / Le =911 — e 1Y, ds 9)
0

and the regular part is defined by
¢

V=3 (i) Ve

k=1
with .
Vi (F); :=/ Le UHC=DILp gs 1 eR,.
0

For the above binomial sum Vf, it suffices to consider Vy := V| .
Let 2N} = {2, 4, ...}. We make the following observation.
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Lemma 3.1. For ¢ € 2N, and %E > % + Alfn, the operator Rt as given in (9) through (8), extends to a
bounded operator on Tp’;I foranyn/(n+1) < p <2.

Proof. The Tpir—boundedness is de Simon’s theorem plus the uniform L?-boundedness of {(I —e~>L) ).
By interpolation it suffices to consider n/(n + 1) < p <1, and this follows from Lemmata 3.4 and 3.5 of
[Auscher et al. 2012a] in the particular case m =2, B =0 and ¢ = 2.! Indeed, first we can decompose
the operator Ri as in [Auscher et al. 2012a] in the way

t t/2
R:(F), = / Le 9 — e LY F o ds + f Le U951 — e LY F ds = T+1L
/2 0

—2sL)£

Here we view 51 ={(I —e }s>0 as an operator on Tp’;r given by

T Frs T1(F)s = —e >L)F,,

with the similar interpretation for T, = {(I — e L)t /(sL)*/?},~¢ in

¢/2 (I _ e*ZSL)E
Leo—U=9L ([ _ p=25Lyt :( ) > L((f — sVL)/2e—1=9)L .
e (I—e ") P (t—s)L)"'~e TG

Note that  —s ~ ¢ when s < t/2. Therefore, to obtain the Ty-boundedness of R} forn/(n+1) < p <1,
we can use Lemma 3.4 of [Auscher et al. 2012a] together with the Tp’;I—boundedness of I to estimate |
and use Lemma 3.5 of [Auscher et al. 2012a] together with the Tp’;r—boundedness of I, to estimate II.
The latter tent space boundedness results on J;, i = 1, 2, are implied by their L>-L? off-diagonal decay
with order at least %E, which satisfies the condition

£ 1 n n 1 1
>4 -=——F—2).
2 2 4 2\n/(n+1) 2
This implication can be easily verified via the extrapolation method on tent spaces through atomic

decompositions. Note that we also need the condition %E > % + %n in (s/(t —s)¥%? ~ (s/1)%/* when
applying Lemma 3.5 of [Auscher et al. 2012a]. O

Next we rewrite the operator V;, in the following way:
VL(F) = =VL(F) +IL(F);, 1 €Ry, (10)
where for F € L2(R,; D(L)) the backward part VL is defined by
Vi(F), = foo Le "LE ds, teRy, (11)
1
and the trace part I is defined by

o0 o0
I, (F), := / Le_(’“L“')LFS ds =~+/Le " / \/Ze_SLFS ds.
0 0

We used the square root property ~/L~/L = L recalled in (7).

Iwe point out that one can also prove this lemma by adapting directly the arguments for Lemma 3.4 of [Auscher et al. 2012a]
(see [Huang 2015] for details).
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Lemma 3.2. The integral operator Vi as given in (11) extends to a bounded operator on Tp’ZLr for any
n/(n+1)<p<2?

Proof. This is a consequence of a more general claim by Auscher et al. [2012a, Proposition 3.7], again
corresponding to the case m =2, § =0 and ¢ = 2. Indeed, [Auscher et al. 2012a, Proposition 3.7] deals
with a counterpart to M;", namely the backward maximal regularity operator

oo
M; (F), = / Le “ DL F ds,
t

where F € L>(R,; D(L)), and they use the splitting

2t 00
M; (F), = f Le L F ds+ f Le “™LF ds = TII+1V.
t 2

t
We only need to use those arguments in proving [Auscher et al. 2012a, Proposition 3.7] with IV involved
since s —t ~ s when s > 2t, which is equivalent to s + ¢ ~ s when s > ¢ in our setting. We omit the
details. g

Now we use the L-associated Hardy spaces, which we recalled in Section 2, to treat the trace part I .
First, from the conical square function estimates [Hofmann et al. 2011, Proposition 4.9], one has, for
n/(n+1) <p<2,

“ VLe™t fo " VLe L, ds

,S ‘

o
/ VLeLF, ds
0

Tar Hy
for F € L>(Ry; D(L)). Next, from the reverse Riesz inequalities [Hofmann et al. 2011, Proposition 5.17],
one has, for p € ((p-)x, 2],

INLf gy SV flla
for f € L?; hence, one further has, for pE((po)s 2],

o0
f VLeLF, ds
0

<
pN
HL

o0
/ Ve *LF, ds
0

HP

Here, as usual, we use the convention H? = L? for p > 1.3

For F € Tp2ar, consider the sweeping operator

o
. (F) :=/ Ve L F, ds.
0

An equivalent formulation of the Kato square root estimate for L* [Auscher et al. 2002] is the square
function estimate

/ / e~ div F(y)Pdr dy < | FI2
R}E—n

2 As we will see in the proof, the lemma also holds for any 0 < p < 2. But that does not help in proving Theorem 1.1.
3We remark that in [Auscher and Frey 2015, Lemma 5.21] a variant of I is treated in a similar way, with informative
connections to the Hardy space theory associated with the first-order perturbed Dirac operators as alluded to in Remark 1.3.
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for all F € L%(R"; C"); hence, the mapping given by
Qs i F > Qe (F)(1, y) == (e div F)(y)

is bounded from L?(R"; C") to szar. Thereby, we see that 77, : szar — L? is a bounded operator by duality
with Q.

Recall that a Tp’;r—atom A supported in the parabolic Carleson cylinder
Cyl(B) :=(0,73) x B
for some ball B C R” (with radius rg) satisfies the size estimate

|Allz2 < |B|~4/P=1/2), (12)

par
We have the following result on 7.

Lemma 3.3. Foranyn/(n+1) < p <1 and any Tp’;r-atom A with supp A C Cyl(B) for some ball B C R"
(with radius rp),

r3
m:=mn(A) = / Vet A, ds
0

satisfies the uniform estimate
Imllgr < 1. (13)

Hence, m; extends to a bounded operator from Tp’zlr to H? forn/(n+1) < p <2.

Proof. For m = (A) with A being Tp’;I-atoms, n/(n+1) < p <1, and by adapting [Coifman et al. 1983,
Théoréme 3; 1985, Theorem 6], (13) follows from the L2-L? off-diagonal decay for the heat semigroup
{e™%L},~0 and the gradient family (Vs Ve LY., the size estimate (12) and the Coifman—Weiss molecular
theory for H?. Then for n/(n+ 1) < p <1, my extends to a bounded operator from Tp’;r to H?, and by
interpolation, r; extends to a bounded operator from Tp’;r to HP forn/(n+1) < p <2. Il

With the splittings (8) and (10), together with the conditions ¢ € 2N, and %E > % + %n, and using
Lemmata 3.1, 3.2 and 3.3 in order, the proof of Theorem 1.1 (with p € ((p—)«, 2]) is then concluded.
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LOCAL EXPONENTIAL STABILIZATION
FOR A CLASS OF KORTEWEG-DE VRIES EQUATIONS
BY MEANS OF TIME-VARYING FEEDBACK LAWS

JEAN-MICHEL CORON, IVONNE RIVAS AND SHENGQUAN XIANG

We study the exponential stabilization problem for a nonlinear Korteweg-de Vries equation on a bounded
interval in cases where the linearized control system is not controllable. The system has Dirichlet boundary
conditions at the end-points of the interval and a Neumann nonhomogeneous boundary condition at the
right end-point, which is the control. We build a class of time-varying feedback laws for which the
solutions of the closed-loop systems with small initial data decay exponentially to 0. We present also
results on the well-posedness of the closed-loop systems for general time-varying feedback laws.

1. Introduction
Let L € (0, +00). We consider the stabilization of the controlled Korteweg—de Vries (KdV) system

Vi + Yrxx +Yx +yye =0 for (¢, x) € (s, +00) x (0, L),
y(t,0)=y(t,L)=0 for t € (s, +00), (1-1)
yel(t, L) = u(t) fort € (s, +00),

where s € R and where, at time ¢ € [s, +00), the state is y(t, -) € L2(0, L) and the control is u(7) € R.

Boussinesq [1877] and Korteweg and de Vries [1895] introduced KdV equations for describing the
propagation of small-amplitude long water waves. For a better understanding of KdV equations, one can
see [Whitham 1974], in which different mathematical models of water waves are deduced. These equations
have turned out to be good models, not only for water waves but also to describe other physical phenomena.
For mathematical studies on these equations, let us mention [Bona and Smith 1975; Constantin and Saut
1988; Craig et al. 1992; Temam 1969], as well as the discovery of solitons and the inverse scattering
method [Gardner et al. 1967; Murray 1978] to solve these equations. We also refer here to [Bona et al.
2003; 2009; Coron and Crépeau 2004; Rivas et al. 2011; Zhang 1999] for well-posedness results of
initial-boundary-value problems of our KdV equation (1-1) or for other equations which are similar to
(1-1). Finally, let us refer to [Cerpa 2014; Rosier and Zhang 2009] for reviews on recent progresses on
the control of various KdV equations.

Coron and Rivas were supported by ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7).
Coron and Xiang were supported by ANR Project Finite4SoS (ANR 15-CE23-0007) and by LIASFMA.
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The controllability research on (1-1) began when Lionel Rosier [1997] showed that the linearized KdV
control system (around 0 in L2(0, L))

Yt + Yxxx + Yx = 0 in (O’ T) X (07 L)v
y(, 0=y, L)y=0 on(0,L), (1-2)
yil(t, L) = u(t) on (0, T)

is controllable if and only if L ¢ N, where N is called the set of critical lengths and is defined by

N o= [2n L2+ 1k +k2) 1 k e N (1-3)

From this controllability result Lionel Rosier, in the same article, deduced that the nonlinear KdV equations
(1-1) are locally controllable (around O in L?(0, L)) if L ¢ N. His work also shows that the L?(0, L)
space can be decomposed as H @& M, where M is the “uncontrollable” part for the linearized KdV control
systems (1-2), and H is the “controllable” part. Moreover, M is of finite dimension, a dimension which
strongly depends on some number theory property of the length L. More precisely, the dimension of M
is the number of different pairs of positive integers (/;, k;) satisfying

L =27,/ + 1k +D). (1-4)

For each such pair of (/;, k;) with [; > k;, we can find two nonzero real-valued functions (p{ and <p‘2/ such
that ¢/ := ¢{ +i¢; is a solution of
—io(lj, kel + (@) + ()" =0,
9/ (0) = ¢/ (L) =0, (1-5)
(/)" (0) = (¢/) (L) =0,
where ¢!, ¢} € C>([0, L]) and w(l;, k;) is defined by

Qli+kj)(Uj —kj)(2k; + 1))

w(l;, k) =
7 332+ 1k; + k)32

(1-6)

When [; > k;, the functions <p{ , go{ are linearly independent, but when /; = k;, we have w(l;, k;) =0 and
(pf , <pé are linearly dependent. It is also proved in [Rosier 1997] that
M =Span{g;, ¢, ..., ¢}, ¢5}. (1-7)

Multiplying (1-2) by ¢/, integrating on (0, L), performing integrations by parts and combining with (1-5),
we get

d L ' L .
$</ y(hX)(p’(XMX) =iw(l/,k;)f y(t, x)¢’ (x)dx,
0 0

which shows that M is included in the “uncontrollable” part of (1-2). Let us point out that there exists at
most one pair of (;, k;) such that /; = k;. Hence we can classify L € R™ into five different cases and
therefore divide R into five disjoint subsets of (0, +00), which are defined as follows:
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(1) C:= R\ N. Then M = {0}.

Q)N = {L € N : there exists exactly one ordered pair (/;, k;) satisfying (1-4) and [; = kj}. Then the
dimension of M is 1.

B) N, = {L € N : there exists exactly one ordered pair (I}, k;) satisfying (1-4) and [; > kj}. Then the
dimension of M is 2.

4 N3:= {L €N : there exist n>2 distinct ordered pairs (/;, k;) satisfying (1-4) and none satisfy /; =kj}.
Then the dimension of M is 2n.

(5) Ny:= {L €N : there exist n >2 distinct ordered pairs (/ i, kj) satisfying (1-4) and one satisfies /; =k,-}.
Then the dimension of M is 2n — 1.

The five sets C, {j\/i};‘:1 are pairwise disjoint and

Rt =CUN] UN, UN3 UANG,
N =N UN, UN3UN;.

Additionally, Eduardo Cerpa [2007, Lemma 2.5] proved that each of these five sets has infinite number of
elements; see also [Coron 2007, Proposition 8.3] for the case of Aj.

Let us point out that L ¢ A is equivalent to M = {0}. Hence, Lionel Rosier solved the (local) control-
lability problem of nonlinear KdV equations for L € C. Later on Jean-Michel Coron and Emmanuelle
Crépeau [2004] proved the small-time local controllability of nonlinear KdV equations for the second case
L € N, by a “power series expansion” method; the nonlinear term yy, gives this controllability. Later
on, Eduardo Cerpa [2007] proved the local controllability in large time for the third case L € N>, still by
using the “power series expansion” method. In this case, an expansion to the order 2 is sufficient but the
local controllability in small time remains open. Finally Eduardo Cerpa and Emmanuelle Crépeau [2009a]
concluded the study by proving the local controllability in large time of (1-1) for the two remaining critical
cases (for which dim M > 3). The proofs of all these results rely on the “power series expansion” method,
introduced in [Coron and Crépeau 2004]. This method has also been used to prove controllability results
for Schrodinger equations [Beauchard 2005; Beauchard and Coron 2006; Beauchard and Morancey 2014;
Morancey 2014] and for rapid asymptotic stability of a Navier-Stokes control system in [Chowdhury
and Ervedoza 2017]. In this article we use it to get exponential stabilization of (1-1). For studies on
the controllability of other KdV control systems problems, let us refer to [Capistrano-Filho et al. 2015;
Gagnon 2016; Glass and Guerrero 2010; Goubet and Shen 2007; Rosier 2004; Zhang 1999].

The asymptotic stability of O without control (control term equal to 0) has been studied for years; see,
in particular, [Cerpa and Coron 2013; Goubet and Shen 2007; Jia and Zhang 2012; Massarolo et al. 2007;
Pazoto 2005; Perla Menzala et al. 2002; Rosier and Zhang 2006; Russell and Zhang 1995; 1996]. For exam-
ple, the local exponential stability for our KdV equation if L ¢ A" was proved in [Perla Menzala et al. 2002].
Let also point out here that in [Doronin and Natali 2014], the authors give the existence of (large) stationary
solutions, which ensures that the exponential stability result in [Perla Menzala et al. 2002] is only local.

Concerning the stabilization by means of feedback laws, the locally exponential stabilization with
arbitrary decay rate (rapid stabilization) with some linear feedback law was obtained by Eduardo Cerpa
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and Emmanuelle Crépeau in [2009b] for the linear KdV equation (1-2). For the nonlinear case, the first
rapid stabilization for Korteweg—de Vries equations was obtained by Camille Laurent, Lionel Rosier and
Bing-Yu Zhang [Laurent et al. 2010] in the case of localized distributed control on a periodic domain.
In that case, the linearized control system, let us write it y = Ay 4 Bu, is controllable. These authors
used an approach due to Marshall Slemrod [1974] to construct linear feedback laws leading to the rapid
stabilization of y = Ay+ Bu and then proved that the same feedback laws give the rapid stabilization of the
nonlinear Korteweg de Vries equation. In the case of distributed control, the operator B is bounded. For
boundary control the operator B is unbounded. The Slemrod approach has been modified to handle this
case by Vilmos Komornik [1997] and by Jose Urquiza [2005], and [Cerpa and Crépeau 2009b] precisely
uses the modification presented in [Urquiza 2005]. However, in contrast with the case of distributed
control, it leads to unbounded linear feedback laws and one does not know for the moment if these linear
feedback laws lead to asymptotic stabilization for the nonlinear Korteweg de Vries equation. One does
not even know if the closed system is well posed for this nonlinear equation. The first rapid stabilization
result in the nonlinear case and with boundary controls was obtained by Eduardo Cerpa and Jean-Michel
Coron [2013]. Their approach relies on the backstepping method/transformation, a method introduced
by Miroslav Krstic and his collaborators (see [Krstic and Smyshlyaev 2008] for an excellent starting
point to this method). When L &€ N, by using a more general transformation and the controllability of
(1-2), Jean-Michel Coron and Qi Lii [2014] proved the rapid stabilization of our KdV control system.
Their method can be applied to many other equations, like Schrédinger equations [Coron et al. 2016] and
Kuramoto-Sivashinsky equations [Coron and Lii 2015]. When L € N, as mentioned above, the linearized
control system (1-2) is not controllable, but the control system (1-1) is controllable. Let us recall that for
the finite-dimensional case, the controllability doesn’t imply the existence of a (continuous) stationary
feedback law which stabilizes (asymptotically, exponentially, etc.) the control system; see [Brockett 1983;
Coron 1990]. However the controllability in general implies the existence of (continuous) time-varying
feedback laws which asymptotically (and even in finite time) stabilize the control system; see [Coron
1995]. Hence it is natural to look for time-varying feedback laws u (¢, y(z, - )) such that O is (locally)
asymptotically stable for the closed-loop system

Vi + Yexx +yx +yye =0 for (7, x) € (s, +00) x (0, L),
y(,0)=y@, L)=0 forz € (s, +00), (1-8)
Yx(t,L):M(t, y(ta)) forte(sv +OO)'

Let us also point out that in [Laurent et al. 2010], as in [Coron and Rosier 1994] by Jean-Michel Coron
and Lionel Rosier, which dealt with finite-dimensional control systems, time-varying feedback laws were
used in order to combine two different feedback laws to get rapid global asymptotic stability of the closed
loop system. Let us emphasize that u = 0 leads to (local) asymptotic stability when L € A} [Chu et al.
2015] and L € N, [Tang et al. 2016]. However, in both cases, the convergence is not exponential. It is
then natural to ask if we can get exponential convergence to O with the help of some suitable time-varying
feedback laws u(t, y(t, - )). The aim of this paper is to prove that it is indeed possible in the case where

L is in A3 or in Aj3. (1-9)
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Let us denote by
Py:L*0,L)—> H and Py :L*0,L)—> M

the orthogonal projections (for the L?-scalar product) on H and M respectively. Our main result is the
following one, where the precise definition of a solution of (1-10) is given in Section 2.

Theorem 1. Assume that (1-9) holds. Then there exists a periodic time-varying feedback law u, C > 0,
A > 0 andr > 0 such that, for every s € R and for every ”)’0”Li < r, the Cauchy problem

Vi + Yaxx +Yx Yy =0 for (¢, x) € (s, +00) x (0, L),
v, 0=yt L)=0 fort e (s, +00),

ya(t, L) =u(t, y(t,-)) fort € (s, +00),

y(s,)=Yo forx € (0, L)

has at least one solution in CO([S, +00); L2(0, L)) N leoc([s, +00); Hl(O, L)) and every solution y of

(1-10) is defined on [s, +00) and satisfies, for every t € [s, +00),

(1-10)

1Pz + 1 Pu G < Ce ™ (1Pa Gl + 1 PuGo)ll,5)- (1-11)

In order to simplify the notations, in this paper we sometimes simply denote y(¢, - ) by y(¢), if there
is no misunderstanding; sometimes we also simply denote L2(0, L) by L% and L*(0, T) by L:‘}. Let us
explain briefly an important ingredient of our proof of Theorem 1. Taking into account the uncontrollability
of the linearized system, it is natural to split the KdV system into a coupled system for (Pg (y), Py (y)).
Then the finite-dimensional analogue of our KdV control system is

X=Ax+Ri(x,y)+Bu, y=Ly+Q(x,x)+ Rax,y), (1-12)

where A, B, and L are matrices, Q is a quadratic map, R, R, are polynomials and u is the control. The
state variable x plays the role of Py (y), while y plays the role of Py,(y). The two polynomials R; and R»
are quadratic and R»(x, y) vanishes for y = 0. For this ODE system, in many cases the Brockett condition
[1983] and the Coron condition [2007] for the existence of continuous stationary stabilizing feedback laws
do not hold. However, as shown in [Coron and Rivas 2016], many physical systems of form (1-12) can
be exponentially stabilized by means of time-varying feedback laws. We follow the construction of these
time-varying feedback laws given in this article. However, due to the fact that H is of infinite dimension,
many parts of the proof have to be modified compared to those given in [Coron and Rivas 2016]; in
particular we do not know how to use a Lyapunov approach, in contrast to what is done in that paper.

This article is organized as follows. In Section 2, we recall some classical results and definitions about
(1-1) and (1-2). In Section 3, we study the existence and uniqueness of solutions to the closed-loop
system (1-10) with time-varying feedback laws u# which are not smooth. In Section 4, we construct our
time-varying feedback laws. In Section 5, we prove two estimates for solutions to the closed-loop system
(1-10) (Propositions 15 and 16) which imply Theorem 1. The article ends with three appendices where
proofs of propositions used in the main parts of the article are given.
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2. Preliminaries

We first recall some results on KdV equations and give the definition of a solution to the Cauchy problem
(1-10). Let us start with the nonhomogeneous linear Cauchy problem

Vi+Yex+ye=h  in (T}, T5) x (0, L),
v, 0=y L)y=0 on (T, T7),

(2-1)

yx(t, L) = h(t) on (T1, T»),

y(T1, x) = yo(x) on (0, L)
for

—o0<T) < T <+0o0, (2-2)
Yo € L*(0, L), (2-3)
heL'(Ty, T»; L*(0, L)), (2-4)
hel* Ty, ). (2-5)

Let us now give the definition of a solution to (2-1).

Definition 2. A solution to the Cauchy problem (2-1) is a function y € LY(Ty, T»; L?(0, L)) such that,
for almost every t € [T, T3], the following holds: for every ¢ € C 3([Ty, ] x [0, L)) such that

¢(t,0)=¢@, L) =¢:(1,0)=0 Vie[T,1], (2-6)

one has

T L T T L
[ [ @it onoyaxar- [ nooc.yar— [ [ haxar
T Jo Ty T Jo

L L

+/ y(T, x)p (7, x)dx —/ Yoo (T1, x)dx =0. (2-7)
0 0
For T7 and T satisfying (2-2), let us define the linear space By, 1, by

Br,.1, == C°([T1, Tx]; L*(0, L)) N L*(Ty, To; H'(0, L)). (2-8)

This linear space Br, 1, is equipped with the norm

T 1/2
11157, :=max{||y(r>||L%:re[Tl,Tz]}+([ Iye®I2, dz) . (2-9)
T

With this norm, Br, 7, is a Banach space.
Let A: D(A) C L?(0, L) — L?(0, L) be the linear operator defined by

D(A):={p € H(0,L): $(0) = p(L) = ¢ (L) =0}, (2-10)
A := =y —brxx VP € D(A). (2-11)

It is known that both A and A* are closed and dissipative (see, e.g., [Coron 2007, page 39]), and therefore
A generates a strongly continuous semigroup of contractions S(¢), € [0, +00) on L?(0, L).
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Rosier [1997], using the above properties of A together with multiplier techniques, proved the following
existence and uniqueness result for the Cauchy problem (2-1).

Lemma 3. The Cauchy problem (2-1) has one and only one solution. This solution is in B, 1, and there
exists a constant Co > 0 depending only on T, — Ty such that

I¥IB, 7, < C2(||y0||L2L + 2l z2ery, ) + ||E||L1(T1,T2;L2(0,L)))- (2-12)

In fact the notion of solution to the Cauchy problem (2-1) considered in [Rosier 1997] is a priori
stronger than the one we consider here (it is required to be in C 0([T1, T>1; L2(0, L)). However, the
uniqueness of the solution in the sense of Definition 2 still follows from classical arguments; see, for
example, [Coron 2007, Proof of Theorem 2.37, page 53].

Let us now turn to the nonlinear KdV equation

e+ Yo +ye +yye=H in (T1, 1) x (0, L),
y(, 0=y L)=0 on (T, 1),

yx(t, L) = H(t) on (T, T»),
y(T1, x) = yo(x) on (0, L).

Inspired by Lemma 3, we adopt the following definition.

(2-13)

Definition 4. A solution to (2-13) is a function y € Br, 7, which is a solution of (2-1) for h:=H— Yyx €
LY(Ty, T»; L*(0, L)) and h := H.

Throughout this article we will use similar definitions without giving them precisely, as, for example,
in the case for system (3-15).

Coron and Crépeau [2004] proved the following lemma on the well-posedness of the Cauchy problem
(2-13) for small initial data.

Lemma 5. There exist n > 0 and C3 > 0 depending on L and T, — T\ such that, for every yy € L%(0, L),
every H € L*(Ty, T») and every He LY(Ty, T»; L%(0, L)) satisfying

Iyollz2 + M N 2ery, 1) + W H L1y 10 2200,)) S 15 (2-14)
the Cauchy problem (2-13) has a unique solution and this solution satisfies

IylBr .. < C3(||y0||Li + 1 Hl 20, 1) + ||H||L'(T1,T2;L2(0,L)))- (2-15)

3. Time-varying feedback laws and well-posedness of the associated closed-loop system

Throughout this section u denotes a time-varying feedback law; it is a map from R x L?(0, L) with values
into R. We assume that this map is a Carathéodory map, i.e., it satisfies the three properties

VR >0, 3Cg(R) > 0 such that (||y||Li <R = |u(t,y)| <Cp(R) VieR), (3-1)
Vy € LZ(O, L), the function t € R +— u(t, y) € R is measurable, (3-2)

for almost every ¢t € R, the function y € LZ(O, L) — u(t, y) € R is continuous. (3-3)
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In this article we always assume that

Cp(R)=1 VRE€]0,+00), (3-4)
R €10, +00) — Cp(R) € R is a nondecreasing function. (3-5)
Let s € R and let yp € L?(0, L). We start by giving the definition of a solution to

Vi+Yixx +F e +yyc =0 forreR, x (0, L),
y(,0) =y, L)=0 fort € R, (3-6)
v, Ly=u(t,y(,-)) forteR,

and to the Cauchy problem

Vit Yox + Y +yyy =0 fort>s, x €(0,L),

y(, 0=y, L)=0 fort > s, (3-7)
ye(t, L)y =u(t, y(t,-)) fort > s,
y(s,x) = yo(x) for x € (0, L),

where yq is a given function in L?(0, L) and s is a given real number.

Definition 6. Let / be an interval of R with a nonempty interior. A function y is a solution of (3-6) on /
ifye CO(I; L%(0, L)) is such that, for every [T1, T;] C I with —oo < T} < T < 400, the restriction
of y to [T, T»] x (0, L) is a solution of (2-13) with H:= 0, H(t) :=u(t, y(t)) and yy := y(T7). A
function y is a solution to the Cauchy problem (3-7) if there exists an interval / with a nonempty interior
satisfying 1 N (—o0, s] = {s} such that y € CO(I; L%(0, L)) is a solution of (3-6) on I and satisfies the
initial condition y(s) = yo in L?(0, L). The interval I is denoted by D(y). We say that a solution y to
the Cauchy problem (3-7) is maximal if, for every solution z to the Cauchy problem (3-7) such that

D(y) C D(2), (3-8)
y(t) =z(t) foreverytin D(y), (3-9)

one has
D(y) = D(2). (3-10)

Let us now state our theorems concerning the Cauchy problem (3-7).

Theorem 7. Assume that u is a Carathéodory function and that, for every R > 0, there exists K(R) > 0
such that

(Iylz SR and zll2 <R) = (lu@y)—u@t, | <K®ly—zl VreR).  (3-11)

Then, for every s € R and for every yo € L*(0, L), the Cauchy problem (3-7) has one and only one
maximal solution y. If D(y) is not equal to [s, +00), there exists T € R such that D(y) = [s, t) and one
has

lim |ly(®)ll 2 = +oo. (3-12)
t—>1~
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Moreover, if Cg(R) satisfies

+00 R

then
D(y) =[s, +00). (3-14)

Theorem 8. Assume that u is a Carathéodory function which satisfies condition (3-13). Then, for every
s € R and for every yg € L2(0, L), the Cauchy problem (3-7) has at least one maximal solution y such
that D(y) = [s, +00).

The proofs of Theorems 7 and 8 will be given in Appendix B.
We end this section with the following proposition, which gives the expected connection between the
evolution of Py (y) and Py (y) and the fact that y is a solution to (3-6).

Proposition 9. Let u : R x L?(0, L) — R be a Carathéodory feedback law. Let —o0 < s < T < 400, let
y € B 1 and let yo € L*(0, L). Denote Py (y) by y1 and Py (y) by y>. Then y is a solution to the Cauchy
problem (3-7) if and only if

Yir + Yix + Yiexr + P (1 +32) (1 + y2)2) =0,
yi(t,0) =y, L) =0,

yix(t, L) = u(t, y1 + y2),

y1(0,-) = Pr(y0),

y2r + y2x + Yaexx + Pu (1 +y2) (01 4 y2)x) =0,
y2(t,0) = y2(t, L) =0,

yax(t, L) =0,

»2(0, ) = Py (yo)-

The proof of this proposition is given in Appendix A.

(3-15)

4. Construction of time-varying feedback laws

In this section, we construct feedback laws which will lead to the local exponential stability stated in
Theorem 1. Let us denote by M the set of elements in M having an L?-norm equal to 1:

Mii={yeM:|yl; =1} (4-1)
Let M/ be the linear space generated by (p{ and <p£ forevery j € {1,2,...,n}:
M/ = Span{g!, ¢]}. (4-2)
The construction of our feedback laws relies on the following proposition.

Proposition 10. There exist T > 0 and v € L*°([0, T] x My; R) such that the following properties hold:
(P1) There exists py € (0, 1) such that

IS(T) Y0l 20,2, < P1IYONG 2., Sfor every yo € H.
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(P>) Forevery yy € M,
||S(T)y0||iz(0’L) = ||y0||%12(O’L)-

(P3) There exists Cy > 0 such that
oz, y) —v(t, 2) I< Colly = zll 20,y V2 €[0,T], Vy, z € My. (4-3)
Moreover, there exists § > 0 such that, for every z € My, the solution (y1, y2) to the equation

Yir + Yix + Yixxx =0,
yi(t,0) =y (t, L) =0,
yix(t, L) =v(t, 2),
y1(0,x) =0,

1 4-4)
Yor +y2x + Yoxxx + PM(ylylx) = Oa
y2(2,0) = y2(t, L) =0,
y2x(t» L) = Oa
»2(0,x) =0,
satisfies
yi(T)=0 and (y2(T), S(T)z)120.1) < —28. (4-5)

Proof of Proposition 10. Property (P,) is given in [Rosier 1997]; one can also see (4-14) and (4-44). Prop-
erty (P) follows from the dissipativity of .4 and the controllability of (1-2) in H (see also [Perla Menzala
et al. 2002]). Indeed, integrations by parts (and simple density arguments) show that, in the distribution
sense in (0, +00),

d 2 _ 2
IS0l = =y3 (. 0). (4-6)
Moreover, as Rosier [1997] proved for every T > 0, there exists ¢ > 1 such that, for every yp € H,

Iy0l172 < ellyx (. O 72 7). (4-7)

Integration of identity (4-6) on (0, T') and the use of (4-7) give

2 c—1 2
||S(T)y0||L% < THYOHLzL- (4-8)

Hence p; := (c —1)/c € (0, 1) satisfies the required properties.
Our concern now is to deal with (P3). Let us first recall a result on the controllability of the linear
control system
i+ Yox F Y =0 in (0,7) x (0, L),
y(, 0=y, L)=0 on (0, L), (4-9)
yu(t, L) = u(t) on (0, T),

where, at time ¢ € [0, T], the state is y(t,-) € LQ(O, L). Our goal is to investigate the cases where
L € N> UNj3, but in order to explain more clearly our construction of v, we first deal with the case where

L:Zn\/§(12+1 x2+22)=2n\/§, (4-10)
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which corresponds to / = 1 and & = 2 in (1-3). In that case the uncontrollable subspace M is a two-
dimensional vector subspace of L2(0, L) generated by

¢1(x) = C(cos(\/%x) -3 cos(ﬁx) + 2cos(%x)),
¢2(x) = C(=sin(Z=x) = 3sin(=x) + 2sin(=x)),

where C is a positive constant such that ||¢ ||L% = ||<p2||L% = 1. They satisfy

@1+ = =2m¢2/p,
¢1(0) = @1(L) =0, 4-11)
91 (0) =@ (L) =0

and
" o__

¢+ 9y =2mo1/p,
¢2(0) = ¢2(L) =0, (4-12)
95(0) = ¢5(L) =0,

with (see [Cerpa 2007])

. 441 (4-13)
P = ovar
For every ¢ > 0, one has
S)M Cc M and S(t) restricted to M is the rotation of angle % (4-14)

if the orientation on M is chosen so that (¢;, ¢,) is a direct basis, a choice which is done from now
on. Moreover the control u has no action on M for the linear control system (1-2): for every initial
data yp € M, whatever u € L?(0, T), the solution y of (1-2) with y(0) = y satisfies Py (y(¢)) = S()yo
for every ¢ € [0, +00). Let us denote by H the orthogonal in L?(0, L) of M for the L2-scalar product
H := M~ This linear space is left invariant by the linear control system (1-2): for every initial data
Yo € H, whatever u € L?(0, T), the solution y of (1-2) satisfying y(0) = yy is such that y(t) € H for
every t € [0, +00). Moreover, as proved by Rosier [1997], the linear control system (1-2) is controllable
in H in small time. More precisely, he proved the following lemma.

Lemma 11. Let T > 0. There exists C > 0 depending only on T such that, for every yg, y1 € H, there
exists a control u € L*(0, T) satisfying

lull 2 < CClyollz +Iy1l2) (4-15)
such that the solution y of the Cauchy problem

Vit Yox +yx=0  in(0,7)x (0, L),
y(t, 0=y, L)=0 on(0,7),
ye(t, L) = u(r) on (0, T),
y(0,x) = yo(x) on (0, L)

satisfies y(T, - ) = y.
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A key ingredient of our construction of v is the following proposition.

Proposition 12. Let T > 0. For every L € N;UN5, forevery j €{1,2, ..., n}, there exists u e HY(0,T)
such that

a(T,-)=0 and Py;(B(T,-)) #0,

where (a, B) is the solution of

o + 0y + Oy =0,
a(t,0) =a(t, L) =0,
ax(t, L) = u/ (1),

«(0,x) =0,

,Bt +/3x + lgxxx +ao, = 0,
p,0)=p@ L)=0,
Pe(t, L) =0,

B0, x)=0.

(4-16)

Proposition 12 is due to Eduardo Cerpa and Emmanuelle Crépeau if one requires only u to be in
L%(0, T) instead of being in H 10, T): see [Cerpa 2007, Proposition 3.1] and [Cerpa and Crépeau 2009a,
Proposition 3.1]. We explain in Appendix C how to modify the proof of [Cerpa 2007, Proposition 3.1]
(as well as [Cerpa and Crépeau 2009a, Proposition 3.1]) in order to get Proposition 12.

We decompose § into 8 = B + B2, where B := Py(B8) and B, := Py (B). Hence, similarly to
Proposition 9, we get

Bar + Box + Boxxx + Pu(aoy) =0,
Pa(t,0) = pa(r, L) =0,

Pox(t, L) =0,

p2(0, x) =0,

where (T, -) = Py (B(T, -)) # 0. In particular, Py (B2(T, -)) = Py (B(T, ) # 0.
Combining (4-16) and (4-17), we get:

(4-17)

Corollary 13. For every L € N, UNj3, for every Ty > 0, for every j € {1,2,...,n}, there exists
u(]) € L°°(0, Ty) such that the solution (y1, y;) to equation (4-4) with v(t, z) := ué(t) satisfies

yi(To) =0 and Py (y2(To)) # 0. (4-18)
Now we come back to the case when (4-10) holds. Let us fix Ty > 0 such that
To < 3p. (4-19)
Let

q:=1p. (4-20)
Let ug be as in Corollary 13. We define

Y1) :=y1(1), Y2(1):=y2() forrel0,To] (4-21)
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and
Y1 = Ya(To) € M\ {0}. (4-22)

Let
Vo=S@y1eM, Y3=SCqyr1eM, Ys=SCq)VY1€M, (4-23)
T =3¢ +T (4-24)
Ky :=[3¢,3q +Tol, (4-25)
K> :=1[2q,2q + Tol, (4-26)
K3:=1[q,q +Tol, (4-27)
K4 :=10, Tp]. (4-28)

Note that (4-19) implies

K1, K>, K3 and K4 are pairwise disjoint. (4-29)

Let us define four functions [0, T] — R: uy, us, uz and u4 by requiring that, for every i € {1, 2, 3, 4},

0 0, T\ K;,
. on 0. 1\ & .
uo(- — ;) onK;,
with
T11=3q, ©m=29, ©1u=q, 14=0. (4-31)

One can easily verify that, for every i € {1, 2, 3, 4}, the solution of (4-4) for v = u; is given explicitly by

0 on [0, T\ K;,
Vi (1) = VK (432)
Yi(- — %) onKk;
and
0 on [0, 7;],
Yip®) =1 Y2(- —17) on K;, (4-33)
SC- =1, —To)y1 onl[t;+Tp, TI.
For z € M, let oy, an, a3 and a4 in [0, +00) be such that
—S(T)z = a1y + a2y +a3y3 +ass, (4-34)
o103 = 0, 04 = 0. (4—35)
Let us define
v(t, 2) = oqui(t) +aqus(t) + azus(t) + aguq(r). (4-36)
We notice that
(@ +ay+a5+aplvily; =1, (4-37)

which, together with (4-36), implies that

veL®(0,T] x My; R). (4-38)



1102 JEAN-MICHEL CORON, IVONNE RIVAS aAND SHENGQUAN XIANG

Moreover, using the above construction (and in particular (4-29)), one easily checks that the solution of
(4-4) satisfies

yi(®) = a1y 1) +ooyz 1 (1) +azys 1(t) +asys (1) forte[0,T], (4-39)
y2(t) = a7 y12(t) + @3 y22(1) + a3 y32() + o ya2(t) fort €0, T1. (4-40)
In particular
yi(T) =0, (4-41)
y2(T) = a1 + 032 + 0393 + oz Py (4-42)

From (4-34), (4-37) and (4-42), we can find that (4-5) holds if § > 0 is small enough. It is easy to check
that the Lipschitz condition (4-3) is also satisfied. This completes the construction of v(¢, z) such that
(P3) holds and also the proof of Proposition 10 if (4-10) holds.

For other values of L € A, only the values of ¢;, ¢, and p have to be modified. For L € N3, as
mentioned in the Introduction, M is now of dimension 2n, where n is the number of ordered pairs. It is
proved in [Cerpa and Crépeau 2009a] that (compare with (4-11)—(4-14)), by a good choice of order on

{e/}, one can assume
n

O<p' <p*<---<p (4-43)

where p/ :=2m/w’. For every t > 0, one has
. . ) 2t
S()M’ c M’ and S(¢) restricted to M/ is the rotation of angle — (4-44)
p

From (4-43), (4-44) and Corollary 13, one can get the following corollary (see also [Cerpa and Crépeau
2009a, Proposition 3.3]):

Corollary 14. For every L € N3, there exists Ty > 0 such that, for every j € {1, 2, ..., n}, there exists
u(]) € L*°(0, Ty) such that the solution (y1, y2) to equation (4-4) with v(t, 7) := u(J) (¢t) satisfies

(T =0 and y(Tp)=g]. (4-45)
Let us define
vl=9l, wi=Sa)el. vi=SCq)e]. v]:=50Cq)e], (4-46)

where g/ := p/ /4.
Comparing with (4-22)—(4-33), we can find T > Ty, and closed interval sets {K lj }, where i € {1, 2, 3,4}
and j € {1, 2,...,n}, such that

K/ cl0, 1], (4-47)
{K ij } are pairwise disjoint. (4-48)
We can also find functions {ulj} € L*([0, T]; R), with

ulj (t) supports on Kl.j , (4-49)



LOCAL EXPONENTIAL STABILIZATION FOR A CLASS OF KORTEWEG-DE VRIES EQUATIONS 1103

such that when we define the control as ulj , we get the solution of (4-4) satisfies

ylj ,(2) supports on Kij , (4-50)
/(1) =0, (4-51)
Yo (T) =y (4-52)

Then for z € My, let aij in [0, 4+00) be such that
—S(Mz=Y oy, (4-53)
i,j
ot{ozg =0, agai =0, 2:@{)2 =1, (4-54)
ij

where i € {1,2,3,4}and j €{1,2,...,n}. Let us define
v(t,2) =Y ofu (o). (4-55)
iJ
Then the solution of (4-4) with control defined as v(¢, z) satisfies
yi(T) =0, (4-56)
() =Y @)y (4-57)
ij
One can easily verify that condition (4-5) holds when § > 0 is small enough, and that Lipschitz condition

(4-3) also holds. This completes the construction of v(¢, z) and the proof of Proposition 10. U

We are now able to define the periodic time-varying feedback laws u; : R x L>(0, L) — R, which will
lead to the exponential stabilization of (1-1). For ¢ > 0, we define u, by

0 if Iy™]l,2 =0,
telio ryxrz (. ¥) =1 e/ IyMli2 v(t, SCOyM/IlyMil 2 ) i 0 < lyMll,2 <1, (4-58)
ev(t. S(=0y" /Iy l2) if M > 1,
with yM := Py (y), and
ug(t,y) = ”s|[0,T)xL§(t —[t/TIT,y) VteR, VyeL*O0,L). (4-59)

5. Proof of Theorem 1

Let us first point out that Theorem 1 is a consequence of the following two propositions.

Proposition 15. There exist e1 > 0, r; > 0 and Cy such that, for every Carathéodory feedback law u
satisfying
u(t, ) < ermin{ 1, V[ Pu@l 2} Vi €R. Yz e L3O, L), (5-1)
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for every s € R and for every maximal solution y of (3-6) defined at time s and satisfying ||y (s)]|| 2 <"
v is well-defined on [s, s + T and one has

IPE)B, .o HI PO B, < CI(HPH(Y(S))”ii‘i‘”PM()’(S))“L%)- (5-2)

Proposition 16. For p; as in Proposition 10, let py > p. There exists gy € (0, 1) such that, for every
e € (0, &9), there exists r. > 0 such that, for every solution y to (3-6) on [0, T'], for the feedback law
u = u, defined in (4-58) and (4-59), and satisfying ||y (0) ||L% < rg, one has

||PH(y(T))||i%+5||PM(Y(T))”Li < ,02”PH()’(O))||%€+8(1 - 882)”PM()’(0))”L2£- (5-3)

Indeed, it suffices to choose p; € (o1, 1), € € (0, &9) and u := u, defined in (4-58) and (4-59). Then,
using the T-periodicity of u# with respect to time, Proposition 15 and Proposition 16, one checks that
inequality (1-11) holds with

. In(py)  In(l —8e?)
A :=mins — , —
2T 2T

provided that C is large enough and that r is small enough. We now prove Propositions 15 and 16
successively.

Proof of Proposition 15. Performing a time translation if necessary, we may assume without loss of
generality that s = 0. The fact that the maximal solution y is at least defined on [0, T'] follows from
Theorem 8 and (5-1). We choose ¢; and r; small enough so that

riteT'?<n, (5-4)
where 1 > 0 is as in Lemma 5. From (5-1) and (5-4), we have
1y Ol 2 + lutt. ye) 3 <. (5-5)
which allows us to apply Lemma 5 with H (¢) :=u(¢, y(¢)) and H:=0. Then, using (5-1) once more, we get
Iylls < Cs(llyollz2 + e, y()ll2)

1
< G(n+ eV TTPuOleosz) < C(ri +617Cs + g Iyls).

which implies that
Iylls < 2C3(r1 + 3T C3). (5-6)

In the above inequalities and until the end of the proof of Proposition 16, B := By 7.
We have the following lemma; see the proof of [Rosier 1997, Proposition 4.1 and (4.14)] or [Perla Men-
zala et al. 2002, page 121].

Lemma 17. If y € L%*(0,T; H'(0, L)), then Yyx € LY, T; LZ(O, L)). Moreover, there exists c4 > 0,
which is independent of T, such that, for every T > 0 and for every y,z € L*>(0, T; H'(0, L)), we have

lyye =2zl 2 <eaT*(Ivls +lizlls) 1y = zls. (5-7)
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Let us define C4 := c4T'/%. To simplify the notation, until the end of this section, we write y; and y;
for Py (y) and Py (y) respectively. From (5-1), (5-6), Lemma 3, Lemma 17 and Proposition 9, we get

Iyills < Ca(llyg Nl + e, y1 4yl + [ Per (G + 32 G +32x) [ 11 12)
<Ca(Iyo' ez +er[[Viyalloz [ + 101+ G+ 32 1y 12)

1/2
< Calg' iz +ealyallyy e +Callyi+ 32072 ) (5-8)
and "
208 < C2(llyg 2 + 1Py (1 + y2) (1 +y2)x)||L1TLzL)

C
< C2(||)’(I)W||L§ + [ 1+ y2) 1+ y2)x HLITLZL)
< CoI38" 1z + Callyr +y2075 1)

<2C(I1yo" 12 + Callyill + Cally211)- (5-9)

Since M is a finite-dimensional subspace of H 1(0, L), there exists Cs > 0 such that

If 1o,y < Csllfll2  forevery feM. (5-10)
Hence
1v2lls = Iy2llpee 2 +My2ll 2 gy < Wy2llpser2 +C5\/7||y2||L%oL%. (5-11)

Since y;(¢) is the L?-orthogonal projection on M of y(t), we have
Iyl zens < Uyllizsz < lylls,
which, together with (5-6) and (5-11), implies
1205 < (1 +Csv/Dllylls < 2(1 + Csv/T)C3(r1 + &7 T C). (5-12)
Decreasing if necessary r; and 1, we may assume
4C,C4(1+ CsVT)C3(ry +£3TC3) < 1. (5-13)
From estimation (5-9) and condition (5-13), we get
Iy2lls < 4C2 (13801 2 + Callyn 13)- (5-14)
From (5-6), (5-8), (5-12) and (5-14), we deduce that
1311 <3C3 (0" 72 +et1y2lly 3 +CEllyi+y2072 1)
<3C3 (o' 17, +ei T2l e 13 +2CE 1Y I (11 13+ 12115))
<3C3 g 1, +F3C3 (1T +16CT(14+CsV T CI(r 46T C3)) 2l
+24C5CECE (46T C) 13
<3C3Nyg! 17, +12C3 (61T +16C3 (1+Csv/T)C3 (ri 61T C3)*) 159 Il 2

+(12c§c4(8%T+16C§(1+C5ﬁ)c33(r1+efTC3)3)+24c§c§c§(r1+s%Tcg)2)||y1||g. (5-15)
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Again, decreasing if necessary r; and &1, we may assume

12C3C4 (7T + 16C3(1 + CsV/T)C3(r1 + 63T C3)?) +24C3C2C3(r1 + 63T C3)* < L. (5-16)
From (5-15) and (5-16), we get

1115 < 6C31yg 17, +24C3 (61T + 16C3(1 + Csv/T)C3 (1 + 61T C3)) 1yl 2
<6C31y5' 17, + €3 yo" M.z
which, combined with (5-14), gives the existence of C; > 0 independent of y such that
Iyl + 1y2lls < Co(llyg 175 + 136" 1123)- (5-17)

This completes the proof of Proposition 15. O

Proof of Proposition 16. To simplify the notation, from now on we denote by C various constants which
vary from place to place but do not depend on ¢ and r.

By Lemma 3 applied with y := y;(¢) — S(t)yé{, h(t) :=u,(t, y(1)) and i := (y; + y2)(y1 + y2)x and
by Proposition 15, we have

1310 = S®)yg' 15 < C(lluell 2 + | Per (1 +32) G 4320 1112
1/2 2
(elly2ll /v 2 + Iyt +3215)

C
<C
1/2
< Clellyalld” + Iyt l% + y211%)
<C

1/2
e+ ("1 +130"1123)"" (5-18)
where r := ||yo||L% <71 < 1. On rg, we impose that
re < e (5-19)

From (5-18) and (5-19), we have
1@ = SOy s < Celyg 12 + 130" M2)"” (5-20)
Notice that, by Lemma 3, we have
[NGRE
1S@®)yg' I
Proceeding as in the proof of (5-20), we have
132(0) = Sy 5 < C[[ Pra (31 +y2) 01 + 320 13 12
< Cllyr + 13
< C(Iy2lls + 1S5 s +e g1 + 158" 1.2) %)
C((r+e)(lyg" 172 + 130" 12) + 135" 175)
C

< C(e?lyo" g + 159" 172). (5-23)

Cliyg' 2 (5-21)
Cllyg' 2. (5-22)

NN

N
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Let us now study successively the two cases
g 2 = &V Iyg" Nz, (5-24)
g 1z < e VIyo"ll - (5-25)

We start with the case where (5-24) holds. From (Py), (P»), (5-20), (5-23) and (5-24), we get the
existence of &, € (0, 1) such that, for every ¢ € (0, &),

I3 (D52 +ely2(T)l
< (Ce (g1 + 130" 2) >+ 1S@yg 2)” +e(C (158 1z + e’ 152) + 1ST)y3' l2)
< (192 135" 155 +Ce2 (" 17, + 13" 122) + Cellyg 17, + (e + Ce)llyg' Il .2
< pallyg Iz, +e (1 =851y Il 2 - (5-26)
Let us now study the case where (5-25) holds. Let us define
b=y} (5-27)
Then, from (5-20), (5-22), (5-23) and (5-25), we get
Iy1@lls < IS8 s +Ce (g1 +130"122) " < Cev/lBll 2 +Clyg 2 <C**Vlbllz (5-28)

and
1y2(6) = S@yg" s < 211l 2. (5-29)

which shows that y,(-) is close to S(-)y{!. Let z: [0, T] — L*(0, L) be the solution to the Cauchy
problem

21t + Zixxx + 212 =0 in (07 T) x (0, L),
t,0)=z;(t, L)=0 0, 7),
(6, 0) =211, L) on (0, T) 5:30)
Z]x(t’L)=v(t,b/||b”L%) on (07 T)»
z1(0,x) =0 on (0, L).
From (P3), we know that z; (7)) = 0. Moreover, Lemma 3 tells us that
b
lz1)lls < C v<t, —) (5-31)
1212 /122
Let us define w; by
wy =y = SO)yg —elbll Sz, (5-32)
Then w; is the solution to the Cauchy problem
Wi + Wixex + Wix + Py ((yl +y2)(y1 + y2)x) =0,
t,0) = t,L)=0,
wi (7, 0) = wi (s, L) (5-33)

wis(t, L) = e (13201 50 (1 S0y20/17201113) = 16135 7v(. b/161 1)),
wi(0, x) =0.
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By Lemma 3, we get

lwillz < C|| Pu (i +y) 1+ y2)x) | L2

12 w)_ 1/2( b ))
(Il)’z(t)H ( ol )~

Note that (5-29) ensures that the right-hand side of (5-34) is of order 2. Indeed, for the first term of the
right-hand side of inequality (5-34), we have, using (5-19), (5-28) and (5-29),

—I—sC’ (5-34)

2
LT

Cll P (1 +y2) 01 +y2)5) [ 112 < Cllyi + 321

1/2
< Ce*Ibll 3 + ClIbll 2 < ClbIS

12 172

1611 < Ce® 16115 (5-35)

For the second term of the right-hand side of inequality (5-34), by (4—14), the Lipschitz condition (4-3)
on v and (5-29), we get, for every ¢ € [0, T],

‘” ”1/2< ( b )_v(t’ S(—t)yz(t)>>‘
15123 132012

C||b||1/2( b _S(—l‘)yz(f))
1bl2 Iy2a@li2 /2
< CJb|| 1/zll)’z(t)llzil(ll)’z(f)llLi||b—S(—f)yz(f)llLi-i-||S(—t)yz(t)||Li|||y2(f)||Li —||b||L%|)
Ce*P bl (5-36)
and
2 _ i1/ (—f)m(f))’ e b 1/2. 5.37
‘(HYZ(f)H — a5 ) ( —Ilyz(t)llL% (11 (5-37)

Combining (5-35)—(5-37), we obtain the following estimate on w;:
lwills < Ce2ll 5. (5-38)
We fix
p3 € (p1, P2)- (5-39)
Then, by (5-32), (1) and the fact that z,(T) = 0, we get
13152 < p3llyg I +Cetlibll 3. (5-40)

We then come to the estimate of y,. Let 71(¢) := S(t)ygl and let 7, : [0, T] — L?(0, L) and z5 :
[0, T] — L2(0, L) be the solutions to the Cauchy problems

T + Toxxx + Tox + Py (T1y1x + Tixy1) — Pu(titix) =0,
72(1,0) = 12(¢, L) =0,

T (£, L) =0

7(0,x)=0

(5-41)
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and
221 + Z2xxx +22x + Py (z21212) =0,
22(2,0) = z22(1, L) = 0,
22:(t, L) =0,
22(0, x) = 0.

Lemmas 3 and 17, (5-25) and (5-28) show us that
Im2lls < C | Pu(Tiyix + Tixyt — Ti71x) ||L1TL2L
< Cllnilis(lyills + liTills)
< e bl Ly N2
L
and
lz2lls < lz1llp < C.
From (P3), (5-30) and (5-42), we get
(22(T), S(T)b) 12 12y < —28]bll 2.
Hence
1/2
[Sb+e21bl 3 22(D) | 2 = (ST + bl 3 22(T), ST+ bl 3 22(T) 2 12))
2 40112 2002 \1/2
< (16175 +¥lIbl17; € — 486716115 )
< bl (1 — 2824 Ce™y.
Let us define w, : [0, T] — L*(0, L) by
wy = y2 — 12— &°||bll 13 22 — S(1)b.

Then, from (3-15), (5-41) and (5-42), we get that

war = yor— T2 —€’ bl 12 22— (S (D)

1109

(5-42)

(5-43)

(5-44)

(5-45)

(5-46)

(5-47)

= — W —Warxx— Par (14+Y2) 014+Y2) )+ Pat (T1 Y12+ 710 y1) — Py (1 T2 ) +62 |1 22 Py (z121x)

12
= —Woy —Woxxx—& ||b||L/% Py (wizix+wixz1) — Py (wiwix) — Py (Y1 Y2 +Y2y1x+y220)-

Hence, w; is the solution to the Cauchy problem

W2+ Woxxx +Wox+€ ”b”zéZPM(wlzlx‘i‘wlel)‘i‘PM (Wiwi)+ Py (Y1y20+y2y1x+y2¥20) =0,

wa(1,0) =wy(t, L) =0,
w2x(ta L) =O,
wy(0,x)=0.

(5-48)
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From Lemmas 3 and 17, Proposition 15, (5-19), (5-25) and (5-38), we get

1/2
lwalls < CSlIbllL/% | Py (wizix + wlle)”LlTL% + Cll Py (wiwio)ll 1 2
+C[ Pr(iyze +y2y1x + 32520 [ 112

1/2 1/2 3/2
< Cellbl e b1, + Cetlibll,z + C (11, 1y l.2)”
< Cebl;. (5-49)

We can now estimate y,(T') from (5-43), (5-46), (5-47) and (5-49):
132Dl 2 = | wa(T) + 72(T) + €211bll 2 22(T) + S(Tb 2
<Ublgz (Ce® + 12662+ Ce®) + Ce¥2 b1 513" 3. (5-50)
Combining (5-27), (5-39), (5-40) and (5-50), we get the existence of £3 > 0 such that, for every ¢ € (0, €3],
Iy1 (I3 +elly2 (Dl 2
< P31y 15 +C¥ bl +e (bl 3 (Ce® + 12867 + Ce*) + Ce™2 1611 5 3¢ 1.2
< p2llyg 75 +e (= 8e%) 139"l 2. (5-51)

This concludes the proof of Proposition 16. O

Appendix A: Proof of Proposition 9

Proof of Proposition 9. 1t is clear that, if (y;, y;) is a solution to (3-15), then y is solution to (3-7). Let us
assume that y is a solution to the Cauchy problem (3-7). Then, by Definition 4, for every 7 € [s, T'] and
for every ¢ € C3([s, t] x [0, L]) satisfying

¢, 0)=¢(t, L) =0¢,(,00=0 Vrels, 1], (A-1)

we have

T pL T T pL
—// (¢t + &y + Prrx)ydx dl—/ u(t, y(t, - ))ex(t, L)dt+f/ Gyyx dx dt
s JO K s JO

L L
+/ y(T, )¢ (T, X)dx—/ Yoo (s, x)dx =0. (A-2)
0 0

Let us denote by ¢ and ¢, the projections of ¢ on H and M respectively: ¢; := Py (¢), ¢ := Py ().
Because M is spanned by go{ and gaé, j €{l,...,n}, which are of class C* and satisfy

0l (0) =9l (L) = ¢! (0) =] (L) =0,
93(0) = g3 (L) =3 (0)=¢; (L) =0,
the functions ¢, ¢» € C3([s, ] x [0, L]) and satisfy

$1(,0) =1, L) = ¢1:(1,0) =0 Vi els, 7], (A-3)
$2(1,0) = ¢o(t, L) = ¢ox (1, 0) = ¢ox (1, L) =0 V1 €[5, ]. (A-4)
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Using (A-2) for ¢ = ¢, in (A-2) together with (A-4), we get

T pL T pL
- / / (¢2t + ¢2x + ¢2xxx)y dx dt + / [ ¢>2ny dxdt
s JO s JO

L L
+/ y(z, x)pa(7, x) dx — / Yopa(s, x)dx =0, (A-5)
0 0
which, combined with the fact that ¢y, + @2y + Poxxx € M, gives

T pL T prL
_//0 (¢2t+¢2x+¢2xxx)y2dth+//O ¢2 Py (yyx) dx dt

L

L
+f0 yz(f,xwz(f,x)dx—/o Py(yo)$2(s, x)dx =0. (A-6)

Simple integrations by parts show that ¢y + @1 xx € M L — H. Since, ¢1 and ¢y, are also in H, we get
from (A-6) that

T pL T pL
_ / fo @1+ o+ dor)ya dx di + / /0 ¢ Py (yyx) dx di

L L
+/O yz(T,X)d)(T,X)dx—/O Py (yo)¢(s, x)dx =0, (A7)

which is exactly the definition of a solution of the y,-part of the linear KdV system (3-15). We then
combine (A-2) and (A-7) to get

T pL T T pL
- / fo @+ o+ Gon)yi dx di — / u(t, y(t, N (t, L) di + / /0 ¢ Prr(yyy) dx di

L L
+/O yl(T,x)¢(T,x)dx_/(; P (y0)¢(0,x)dx =0, (A-8)

and we get the definition of a solution to the y;-part of the linear KdV system (3-15). This concludes the
proof of Proposition 9. O

Appendix B: Proofs of Theorems 7 and 8

Our strategy to prove Theorem 7 is to prove first the existence of a solution for small times and then to
use some a priori estimates to control the L%—norm of the solution with which we can extend the solution
to a longer time, and to continue until the solution blows up. We start by proving the following lemma.

Lemma 18. Let Cp > 0 be as in Lemma 3 for T, — Ty = 1. Assume that u is a Carathéodory function and
that, for every R > 0, there exists K(R) > 0 such that

(Ivllz2 <R and zlz <R) = (lu@, ) —u@, )| <K®ly—zl,z YreR).  (B-D)

Then, for every R € (0, 400), there exists a time T (R) > 0 such that, for every s € R and for every
Yo € L?(0, L) with ||yo||L% < R, the Cauchy problem (3-7) has one and only one solution y on [s, s+T (R)].
Moreover, this solution satisfies

1915, .re, < Cr :=3CaR. (B-2)
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Proof of Lemma 18. Let us first point out that it follows from our choice of C, and Lemma 3 that, for
every —oo < T1 < T; < 400 such that T, — T} < 1, for every solution y of problem (2-1), estimation
(2-12) holds.

Let yo € L?(0, L) be such that

Iyoll2 < R. (B-3)
Let us define B; by
By :={y € Bss+r®) : 18,7 < Cr}-
The set B is a closed subset of By 7 (r). For every y € B, we define W(y) as the solution of (2-1) with

h:=—yy,, h(t) :=u(t, y(t,-)) and yo := yo. Let us prove that, for 7(R) small enough, the smallness
being independent of yy provided that it satisfies (B-3), we have

W (B;) C B;. (B-4)
Indeed for y € By, by Lemmas 3 and 17, we have, if T(R) < 1,

W W5 < Co(llvoll 2 + 1212 + 121110, 7:20.2)))

< C2(||)’0||L2L A llude, y(2, D2 + I=yyell L1547 (R): L20,1)))

< Co(R+Cp(CRT (R +caT (R yII5). (B-5)
In (B-5) and until the end of the proof of Lemma 18, for ease of notation, we simply write ||-||z for
118, s+ 7x, - From (B-5), we get that, if

R\ 1\
Cp(CR) 9c4C3R

then (B-4) holds. From now on, we assume that (B-6) holds.
Note that every y € BB such that W (y) = y is a solution of (3-7). In order to use the Banach fixed point

theorem, it remains to estimate |V (y) — W (z)||z. We know that W (y) — W (z) is the solution of equation
@2-1)with Ty :=s, Th =s +T(R), h:= —yy, + 225, h(t) == u(t, y(t,-)) —u(t, z(t,-)) and yp := 0.
Hence, from Lemmas 3 and 17 and (B-1), we get
W) = W@l < Co(lyoll 2 + Il 2 + 12l 120.7:220.1)
<0+ T(R)ZK(CR)lly —zls+ TRy —zlls(Iylls + I1zl15))
< Cally —zlls(T(R)' /K (Cr) +2caT (R)/*Cp),

which shows that, if

, 1 4 1 2
T < mm{(lzmc%R) ’ <4C2K(3C2R)) } ’ ®D

W () —¥(@)ls < 3y —zls.

then,
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Hence, by the Banach fixed point theorem, there exists y € 3] such that ¥ (y) = y, which is the solution
that we are looking for. We define T (R) as

R 2 1 4 1 2
T(R) = mln{(CB(?)CzR)) ’ <12c4c§R> ’ <4C2K(3C2R)) ’ 1}' (B-8)

It only remains to prove the uniqueness of the solution to the Cauchy problem (3-7) (the above proof

gives only the uniqueness in the set 31). Clearly it suffices to prove that two solutions to (3-6) which are
equal at a time t are equal in a neighborhood of 7 in [, +00). This property follows from the above
proof and from the fact that, for every solution y : [z, ;] = L?(0, L) of (3-7), if T > 0 is small enough
(the smallness depending on y),

IV, s < 3C2lly (@)l 2. (B-9)

This concludes the proof of Lemma 18. 0

Proceeding similarly to the proof of Lemma 18, one can get the following lemma concerning the
Cauchy problem (2-13).

Lemma 19. Let Cr > 0 be as in Lemma 3 for T, — T) = 1. Given R, M > 0, there exists T(R, M) > 0
such that, for every s € R, for every yo € L*(0, L) with ”)’OHLi < R, and for every measurable H :
(s,s+T (R, M)) > Rsuch that |H(t)| < M foreveryt € (s,s + T(R, M)), the Cauchy problem

Vi+Veox+F Y+ yye =0 in(s,s+T(R,M)) x (0, L),
y(,0) =y, L)=0 on(s,s +T(R, M)),

(B-10)
ye(t, L) =H(t) on(s,s+T(R,M)),
y(s, x) = yo(x) on (0, L)
has one and only one solution y on [s, s + T (R, M)]. Moreover, this solution satisfies
”y”B_;,_;_*_T(R,M) < 3C2R (B-ll)

We are now in position to prove Theorem 7.

Proof of Theorem 7. The uniqueness follows from the proof of the uniqueness part of Lemma 18. Let
us give the proof of the existence. Let yg € L%(0, L), lets € Rand let Ty := T(||yo||L%). By Lemma 18,
there exists a solution y € B; 547, to the Cauchy problem (3-7). Hence, together with the uniqueness
of the solution, we can find a maximal solution y : D(y) — L%(0, L) with [s, s + To] C D(y). By the
maximality of the solution y and Lemma 18, there exists T € [s + Ty, +00) such that D(y) = [s, 7). Let
us assume that T < 400 and that (3-12) does not hold. Then there exist an increasing sequence (f,)neN
of real numbers in (s, t) and R € (0, +00) such that

lim ¢, =T, (B-12)

n—+00

Iyl <R VneN. (B-13)
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By (B-12), there exists ng € N such that
tay>T—3T(R). (B-14)

From Lemma 18, there is a solution z : [#,,, t;,, + T(R)] — L?(0, L) of (3-7) for the initial time s := Ing
and the initial data z(t,,) := y(t,,). Let us then define ¥ : [s, t,,, + T(R)] — L?(0, L) by

y(@) :=y@) Vtels, tyl, (B-15)
§(t) :=z2(t) V1 € [ty tay + T (R)]. (B-16)

Then y is also a solution to the Cauchy problem (3-7). By the uniqueness of this solution, we have y =y
on D(y)N D(y). However, from (B-14), we have that D(y) ; D(y), in contradiction with the maximality
of y.

Finally, we prove that, if C(R) satisfies (3-13), then, for the maximal solution y to (3-7), we have
D(y) = [s, +00). We argue by contradiction and therefore assume that the maximal solution y is such
that D(y) = [s, ) with T < 400. Then (3-12) holds. Let us estimate ||y(t)||L% when ¢ tends to t—. We
define the energy E : [s, 7) — [0, +00) by

L
E(r) = / ly(t, x)|* dx. (B-17)
0
Then E € C 0([s, 7)) and, in the distribution sense, it satisfies
dE ) )
— Sty )P < CRVE). (B-18)

(We get such an estimate first in the classical sense for regular initial data and regular boundary conditions
vy (t, L) = @(¢) with the related compatibility conditions; the general case then follows from this special
case by smoothing the initial data and the boundary conditions, by passing to the limit, and by using the
uniqueness of the solution.) From (3-12) and (B-18), we get

1 [
= ————dE < +o0. (B-19)
2 /0 C3(VE)
However the left-hand side of (B-19) is equal to the left-hand side of (3-13). Hence (3-13) and (B-19) are
in contradiction. This completes the proof of Theorem 7. O

The proof of Theorem 8 is more difficult. For this proof, we adapt a strategy introduced by Carathéodory
to solve ordinary differential equations y = f (¢, y) when f is not smooth. Roughly speaking it consists
in solving y = f(¢, y(t — h)), where h is a positive time-delay, and then letting % tend to 0. Here we do
not put the time-delay on y (it does not seem to be possible) but only on the feedback law: u(¢, y(¢)) is
replaced by u(z, y(t — h)).

Proof of Theorem 8. Let us define H : [0, +00) — [0, +00) by

H(a)'—/a;dE—2/ﬁLdR (B-20)
~Jo (C(VE))? 0 (Cp(R)?
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From (3-13), we know that H is a bijection from [0, +o00) into [0, +00). We denote by H™':[0, +00) >
[0, +00) the inverse of this map.

For a given yg € L?(0, L) and s € R, let us prove that there exists a solution y defined on [s, +00) to
the Cauchy problem (3-7), which also satisfies

111720,y < H T (HUIyO)I7:) + (= 5)) < +00 Vi €5, +00). (B-21)
Let n € N* Let us consider the Cauchy system on [s, s + 1/n]

Vet Yoxx T Yx + Yy =0 in (s, s+ (1/n)) x (0, L),
y(,0)=y@, L)=0 on (s, s+ (1/n)),

yx(t, L) = u(t, yo) on (s,s + (1/n)),

y(s,x) = yo(x) on (0, L).

By Theorem 7 applied with the feedback law (¢, y) — u(¢, yo) (a measurable bounded feedback law

(B-22)

which now does not depend on y and therefore satisfies (3-11)), the Cauchy problem (B-22) has one and
only one solution y. Let us now consider the Cauchy problem on [s 4 (1/n), s + (2/n)]

Vi + Yexx T Yx +yye =0 in(s+(1/n),s+(2/n)) x (0, L),

y(t,0)=y(t, L) =0 on (s + (1/n), s + (2/n)), (B-23)
yo(t, L)y =u(t, y( —(1/n))) on(s+(1/n),s+(2/n)),
y(s, x) = yo(x) on (0, L).

As for (B-22), this Cauchy problem has one and only one solution, which we still denote by y. We
keep going and, by induction on the integer i, define y € C%([s, +00); L*(0, L)) so that, on [s + (i /n),
s+ (@ +1)/n)], i € N\ {0}, we have y is the solution to the Cauchy problem

Vit Youx Y +yye =0 in(s+@/n),s+ (G +1)/n)) x (0, L),
y(,0) =y, L)=0 on (s+(i/n),s+ (i +1)/n)),

yel(t, L)y =u(t, y(t = (1/n))) on (s +(i/n),s + (G + 1)/n)),
y(s+@/n)=y(s+(@@/n)—=0) on(0,L),

(B-24)

where, in the last equation, we mean that the initial value, i.e., the value at time (s + (i /n)), is the value
at time (s + (i /n)) of the y defined previously on [(s + ((i — 1)/n)), s + (i/n)].
Again, we let, for ¢ € [s, +00),

L
E(r) = / ly(t, x)|* dx. (B-25)
0
Then E € C%([s, +00)) and, in the distribution sense, it satisfies (compare with (B-18))

dE
—- S, yo)I? < C3(VE(s)), te(s,s+(1/n)), (B-26)

c;—f lu(t, y(t — (1 /n)* < CRGE@—(1/n), 1€ (s+/n),s+((+1)/n), i>0. (B-27)
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Let ¢ : [0, +00) — [0, +00) be the solution of

d
L =C3(eM). o) =EG). (B-28)

Using (B-26)—(B-28) and simple comparison arguments, one gets
E(@) <@(1) Vtels, +00), (B-29)

that is,
Et)<H ' (H(E(s))+ (t—s)) Vtel[s,+00). (B-30)

We now want to let n — +o00. In order to show the dependence on n, we write y" instead of y. In
particular (B-30) becomes

15" W72,y < H™ (H(Iyo(9)II7) + (t —5)) - V1 € s, +00). (B-31)

From Lemma 19, (B-31) and the construction of y", we get that, for every T > s, there exists M(T) > 0
such that
Iy 5, <M(T) VneN. (B-32)

Hence, upon extracting a subsequence of (y"),, which we still denote by (y"),, there exists
y € LS ([s, +00); L*(0, L)) N L (s, +00); H'(0, L)) (B-33)
such that, for every T > s,

y* =~y in L®(s, T; L*(0, L)) weak % as n — +00, (B-34)
y*—~y in L%(s, T; H'(0, L)) weak asn — 4oo. (B-35)

Let us define z" : [s, s +00) x (0, L) — R and y" : [s, +00) — R by

Z'(t) == yo vt € [s, s+ (1/n)], (B-36)
() = y"(t = (1/n)) Vi€ (s+(1/n), +00), (B-37)
y'(t) :=u(t,z") Vt € [s, +00). (B-38)

Note that y” is the solution to the Cauchy problem
Yt Vi £ Y8 Y =0 in (s, +00) x (0, L),
y'(t,0)=y"(t,L)=0 on (s, +00),
ye(, L) =y"(1) on (s, +09),
y(s, x) = yo(x) on (0, L).
From (B-32) and the first line of (B-39), we get that

(B-39)

d
VT >0, (Ey") is bounded in L%(s, s + T; H (0, L)). (B-40)
neN



LOCAL EXPONENTIAL STABILIZATION FOR A CLASS OF KORTEWEG-DE VRIES EQUATIONS 1117

From (B-34), (B-35), (B-40) and the Aubin-Lions lemma [Aubin 1963], we get
y*—y in L*(s,T; L*(0,L)) asn — +oo VT > s. (B-41)
From (B-41) we know that, upon extracting a subsequence if necessary, still denoted by (y"),,
nlir-ir-loo”yn ) —y(@) ||L% =0 for almost every ¢ € (s, +00). (B-42)
Letting n — 400 in inequality (B-30) for y" and using (B-42), we get
I y(;)||§2(0, L <SH'(H(| y0||ii )+ (t—s)) for almost every ¢ € (0, +00). (B-43)
Note that, for every T > s,

”Zn_y”Lz((s,T);L%) =< (1/\/};)“))0”[,%—’_ || yn( . _(l/n))_)’( . _(1/n))H LZ(S+(1/I’!),T;L2(O,L))
+ Hy( T (1/”))_)7( . ) ||Lz(s-l—(l/n),T;Lz(O,L))_{— ”y||L2(S,S+(l/n);L2(O,L))

< (1/«/5)||y0||L§+||yn—Y||L2(s,T;L2(0,L))
+ H y( t (l/n)) —)7( : ) || L2(s+(1/n),T;L2(0,L)) + ”y( : )||L2(S,S+(1/n);L2(0,L))' (B_44)

From (B-36), (B-37), (B-41) and (B-44), we get
"=y inL%*@s,T;L*0,L)) asn— 400 VT > s. (B-45)

Extracting, if necessary, from the sequence (z"), a subsequence, still denoted by (z"),, and using (B-45),
we have

11111 Iz" () — y(t)||LzL =0 for almost every ¢ € (s, +00). (B-46)
n——+00

From (3-1)—(3-3), (B-32), (B-36), (B-37) and (B-46), extracting a subsequence from the sequence (y"),
if necessary, still denoted by (¥"),, we may assume that

y" =y (t) :=u(t,y()) in L(s, T) weak * asn — +oo VT > s. (B-47)

Let us now check that

y is a solution to the Cauchy problem (3-7). (B-48)
Let Tt €[s, +00) and let ¢ € C3([s, t] x [0, L]) be such that
¢, 0) =0, L)=¢:(,00=0 Ve[l ] (B-49)

From (B-39), one has, for every n € N,

T pL
—/f 61+ 60+ duee)y" dx di — /w/)x(r L)dr+// oy dx di
T, 0 T

—|—/0 y(r,x)¢(t,x)dx—/ Yop (s, x)dx =0. (B-50)

0
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Let 7 be such that
i n — = -
Jim [y* () =y (@)l 2 =0. (B-51)

Let us recall that, by (B-42), (B-51) holds for almost every 7 € [s, +00). Using (B-35), (B-41), (B-47),
(B-51) and letting n — +o0 in (B-50), we get

T pL T T pL
—//(@+@+@Mwum—/umﬂmmmmm+//lmem
T:J0 T,J0

T

L L
+/ y(t,x)p(t, x)dx —/ Yoo (s, x)dx =0. (B-52)
0 0

Thus y is a solution to (2-1), with T} :=s, T, arbitrary in (s, +00), hi= —yyy € L! ([s, T»]; LQ(O, L))
and h = u(-, y(-)) € L?(s, T»). Let us emphasize that, by Lemma 3, it also implies that y € B, 7 for
every T € (s, +00). This concludes the proof of (B-48) and of Theorem 8. O

Appendix C: Proof of Proposition 12

Let us first recall that Proposition 12 is due to Eduardo Cerpa if one requires only u to be in L2(0, T) instead
of being in H'(0, T'); see [Cerpa 2007, Proposition 3.1] and [Cerpa and Crépeau 2009a, Proposition 3.1].
In his proof, he uses Lemma 11, the controllability in H with controls u € L2 Actually, the only place
in his proof where the controllability in H is used is on page 887 of [Cerpa 2007] for the construction
of a1, where, with the notations of that paper N(yy), I(y;) € H. We notice that R (y;), J(y,) share more
regularity and better boundary conditions. Indeed, one has

Aya+ v+ ¥y =0,
{yx(O) = (L) =0,
which implies that
R(ya). S(ya) € 1,
where
H:=Hn{we H0,L):w0) =w(L)=0}. (C-1)

In order to adapt Cerpa’s proof in the framework of u € H'(0, T), it is sufficient to prove the following
controllability result in A3 with control u € H'(0, T).

Proposition 20. For every yo, y1 € H> and for every T > 0, there exists a control u € H'(0, T) such that
the solution y € B to the Cauchy problem

Vi + Yaxx +Yx =0,
y(,0)=y( L)=0,
yx(t, L) = u(t),
y(0,-)=yo

satisfies y(T, - ) = y.
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The proof of Proposition 12 is the same as the one of [Cerpa 2007, Proposition 3.1], with the only
difference that one uses Proposition 20 instead of Lemma 11.

Proof of Proposition 20. Let us first point out that O is not an eigenvalue of the operator A. Indeed
this follows from property (P,), (1-5) and (1-6). Using Lemma 11 and [Tucsnak and Weiss 2009,
Proposition 10.3.4] with 8 = 0, it suffices to check that

for every f € H, there exists y € 73 such that — Vexx — Yx = [+ (C-2)

Let f € H. We know that there exists y € H>(0, L) such that

—Yaxx — Yx = [, (C-3)

y(0) =y(L) = yx (L) =0. (C-4)

Simple integrations by parts, together with (4-11), (4-12), (C-3) and (C-4), show that, with ¢ := ¢ + i@,

L L L ow [T
0=[ fde=f (_yxxx_yx)(pdxz/ y(soxxx+gox)dx=i—/ yedx, (C-5)
0 0 0 P Jo
which, together with (C-4), implies that y € #>. This concludes the proof of (C-2) as well as the proof of
Proposition 20 and of Proposition 12. g
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ON THE GROWTH OF SOBOLEV NORMS FOR NLS
ON 2- AND 3-DIMENSIONAL MANIFOLDS

FABRICE PLANCHON, NIKOLAY TZVETKOV AND NICOLA VISCIGLIA

Using suitable modified energies, we study higher-order Sobolev norms’ growth in time for the nonlinear
Schrodinger equation (NLS) on a generic 2- or 3-dimensional compact manifold. In two dimensions, we
extend earlier results that dealt only with cubic nonlinearities, and get polynomial-in-time bounds for any
higher-order nonlinearities. In three dimensions, we prove that solutions to the cubic NLS grow at most
exponentially, while for the subcubic NLS we get polynomial bounds on the growth of the H? norm.

1. Introduction

We are interested in long-time qualitative properties of solutions to the family of nonlinear Schrédinger
equations

{iatu—i-Agu = u|?"'u, (t,x)eRx M 0

u(0,x) =@ € H™(M?),
where Ay is the Laplace-Beltrami operator associated with a d-dimensional compact Riemannian
manifold (M¢, g) and H™ (M%), the standard Sobolev space associated to Ag, where m € N with m > 2.
More specifically we are interested in the analysis of the possible growth of higher-order Sobolev norms
for large times, namely the behavior of the quantity [|u(z, x)|| grm (pgay for m = 2 and £ > 1.

This issue of growth of higher-order Sobolev norms has garnered a lot of attention in recent years,
mainly because of its connection with the so-called weak wave turbulence, e.g., a cascade of energy from
low to high frequencies. In fact two main issues have been extensively studied in the literature: the first
one concerns a priori bounds on how fast higher-order Sobolev norms can grow along the flow associated
with Hamiltonian PDEs (see [Bourgain 1993; 1996; 1999a; 1999b; Colliander et al. 2012; Delort 2014;
Sohinger 2011a; 2011b; 2012; Staffilani 1997; Thirouin 2017; Zhong 2008]); the second one concerns
the existence of global solutions whose higher-order Sobolev norms are unbounded (see [Colliander et al.
2010; Gérard and Grellier 2016; 2015; Guardia 2014; Guardia et al. 2016; Guardia and Kaloshin 2015;
Hani 2014; Hani et al. 2015; Haus and Procesi 2015; Xu 2015]).

Here, we aim at dealing with the first problem, namely to provide a priori bounds on the growth
of higher-order Sobolev norms, or equivalently to understand how fast the dynamical system under
consideration can move energy from the low frequencies to the high frequencies.

Planchon was partially supported by ANR grant GEODISP, ERC grant SCAPDE and ERC grant BLOWDISOL, Tzvetkov was
partially supported by the ERC grant DISPEQ, and Visciglia was supported by the grant PRA 2016 Problemi di Evoluzione:
Studio Qualitativo e Comportamento Asintotico.

MSC2010: 35Q55.
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First of all we point out that solutions to (1) enjoy so-called mass and energy conservation laws:
2 _ 2
lu(t, x)|~ dvolg = lo(x)|~ dvolg,
Md M

2 1 +1 _ 2 1 +1
/Md <|Vgu(t, x)|g + P lu(z, x)|? )dvolg = /Md <|Vgg0(x)|g + mlgo(x”l’ )dvolg,

where Vg and |-|¢ are respectively the gradient and the norm associated with the metric g, and |- | denotes
the modulus of any complex number. These conservation laws immediately imply that

supg [|u(r, )| g1 (agay < 00, (2)

and therefore the growth in time of H™ norms is only of interest for m > 2.
In the sequel, with notation as above, we shall be interested in the following cases:

(d,p)=2,2n+1) withn €N, n> 1 (2-dimensional manifold and odd integer nonlinearity),
(d,p)=(3,3) (3-dimensional manifold and cubic nonlinearity),
d,p)=@G3,p) with 2 < p < 3 (3-dimensional manifold and subcubic nonlinearity).

In those settings, existence of local solutions follows by classical arguments, provided one assumes the
initial datum to be H2 On the other hand, following [Burq et al. 2004], one can establish local (and
hence global) Cauchy theory in H! for generic nonlinear potentials in the 2-dimensional case, as well as
local (and global) Cauchy theory in H '€ for the cubic and subcubic NLS in the 3-dimensional case
(see [Burq et al. 2003; 2004]). From now on and for the sake of simplicity, we shall assume existence
and uniqueness of a global solution, and focus on estimating the growth of higher-order Sobolev norms.
However, we point out that our argument not only provides polynomial bounds of such growth, but also
yields an alternative proof of global existence in three dimensions.

We will use as a basic tool (in fact, as a black box) available Strichartz estimates on manifolds (see
[Burq et al. 2004; Staffilani and Tataru 2002]) together with the introduction of suitable modified energies,
which is the main new ingredient in this context. For this reason we will not discuss further the issue of
global existence, which is indeed guaranteed by aforementioned previous results.

We first start with the 2-dimensional case. It is worth mentioning that, to the authors’ knowledge, no
results were available in the literature about growth of higher-order Sobolev norms for NLS with higher
than cubic nonlinearities, although one may reasonably believe that this problem could be addressed, at
least in two dimensions, by adapting the strategy pioneered by Bourgain (see for instance [Zhong 2008]).
Nevertheless as a warm up we show how this problem can be handled by a completely different strategy,
based on the introduction of suitable modified energies: its benefit relies on a clear decoupling between
higher-order energy estimates relying on clever integration by parts and the (deep) input provided by
dispersive estimates of Strichartz type. Moreover by using modified energies, one can deal as well with
generic nonlinear potential V(Ju|?) rather than |u|?~!, where VV may not necessarily be a pure power
(see also Remark 1.7 below).

We emphasize that modified energies have proved useful in different contexts (see, for instance, [Chiron
and Rousset 2009; Hunter et al. 2015; Koch and Tataru 2016; Kwon 2008; Ozawa and Visciglia 2016;
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Raphaél and Szeftel 2009; Tsutsumi 1989]), but the present work seems to provide the first example
where they are combined with dispersive bounds in order to get results on the growth of higher-order
Sobolev norms.

We underline that our argument, being essentially based on integration by parts, relies on the time
derivative of suitable higher-order energies &,,, whose leading term is essentially the norm ||u(z, x) ||§{m.
In fact, for m = 2k an even integer, one should think of ||8’,‘u(t, X) ||i2 as a good prototype of modified
energy, up to lower-order terms. In other words, one should think of replacing Ag by 9, rather than the
other way around when using the equation satisfied by u.

A direct consequence of this privileged use of d; is that in our approach the geometry of the manifold
is not directly involved in the computation, and integration by parts in the space variables, when required,
is performed thanks to the following elementary identity, available on any generic manifold:

Ag(fh) =hAgf +2(Vg [, Vgh)g + fAgh.

We also underline that the aforementioned energy &, is not preserved along the flow; however, by
computing its time derivative along solutions, we may estimate the resulting space-time integral taking
advantage of dispersive bounds, namely Strichartz estimates with loss, which are available on a generic
manifold (or better ones when available).

In order to state our result in two dimensions, we recall Strichartz estimates with loss:

||€itAg(p||L4((0,1)xM2) S el arso (ar2)- )

It is well known that estimate (3) holds on T? for any so > 0 (see [Bourgain 1993; 1999a]) and on the
sphere S? for any sg > é (see [Burq et al. 2004]). We can now state our first result, where we assume (3)
to be satisfied for some s in the range [0, %] We recall that the existence of such an s¢ is guaranteed on
every compact manifold M2 by [Burq et al. 2004].

Theorem 1.1. For every € >0, m € N with m > 2 and for every solution u(t,x) € C;(H™(M?)) to (1),
whered =2 and p =2n+ 1 forn > 1, we get

m—1 +
supo. 7y 14t X) | grm(pg2y < C(max{l, T}) =20 ", (4)

where C = C(e,m, ||l¢||gm) > 0 and s € [0, %] is given in (3).

Notice that bounds from Theorem 1.1 also apply to solutions of NLS on T. In fact the dynamics of
NLS on T is a subset of the dynamics on T2, and this framework is covered by Theorem 1.1, where we
can choose 5o = 0. In particular, Theorem 1.1 recovers results from [Colliander et al. 2012] for solutions
to NLS on T with p > 5. Notice that paper obtains a better T e growth for p = 5 by implementing a
normal-form method. We will address this better growth for all p > 5 with a suitable modification of our
argument in a later work.

Remark 1.2. We underline that the main point in order to establish Theorem 1.1 is the following bound:
forall T € (0,1), € >0,

2 2 ] It te
”u(t)”Hm(MZ) - ||u(0)”Hm(M2) 5 ﬁl|u||Lw((O,r);Hm(M2)) + ”u”LOO((O,‘E);H’"(Mz))' (5)
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Once this bound is established, a classical argument (which in turn requires the local well-posedness of
the Cauchy problem in the energy space H') leads to the polynomial growth. More specifically notice
that the exponent (m — 1)/(1 — 2sg) + € (which appears in the right-hand side of (4)) can be computed
as the quantity %, where 2 —2y = (2m — 3 + 2s¢)/(m — 1) + € is the power of the first term in the
right-hand side of (5). Next we choose t = t(||[u(0)|| 1) to be the time of existence provided by the
H' local Cauchy theory. Then (5) gives
2-2
”u(t + T)”%.Im(MZ) = ”u(z)”fqm(MZ) + C(”u||Loo(y(t,t+.[);Hm(M2)) + 1)
As a byproduct of the local existence theory in H ', and conservation of the energy, we get
2-2
||u(l + T)”%{m(MZ) = ”u(l)”i[m(MZ) + C(”u(Z)HHm{MZ) + 1)
Therefore the sequence o, = 1 + ||u(nr)||12qm(M2) satisfies o1 < ap + Ca, Y, which in turn implies
oy < n'/?, leading to (4) by induction on .

Next we present our result on the growth of higher-order Sobolev norms for the cubic NLS on a
generic 3-dimensional compact manifold M3 We recall that, following [Burq et al. 2004], the Cauchy
problem is globally well-posed for every initial data ¢ € H!1€0(As3), and that, following the crucial use
of logarithmic Sobolev type inequalities, one can get the following double exponential bound,

sup(o, 1) u(t, )| grmpr3y = C exp(exp(CT)).

Our main contribution is an improvement on the bound above; indeed, we will replace the double
exponential with a single one. It should be emphasized that, in the 3-dimensional case, it is at best unclear
to us how Bourgain’s original argument and derivatives thereof could be used in order to get Theorem 1.3.
More specifically, in three dimensions our use of modified energies appears to be a key tool in order to
eliminate one of the two exponentials.

Theorem 1.3. For every m € N with m > 2 and for every solution u(t, x) € C;(H™(M?)) to (1), where
(d, p) = (3, 3), we have

sup(o, ) U@, )| rmpr3y = C exp(CT),
where C = C(m, ||l¢| gm) > 0.
Remark 1.4. The proof of Theorem 1.3 follows by a straightforward iteration once the following bound
is established: for all T € (0, 1),

”u(t)“Zm(MS)) - ||u(0)”12t[m(M3) 5 T||u||i°°((0,‘r);Hm(M3)) + ||u||Jl/loo((0’r);Hm(M3))’ (6)
where y € (0, 2) is a suitable number and the implicit constant depends only on the energy of . Indeed,
using (6) for t small enough and the fact that y < 2, we get the bound

||u||i°°((0,t);Hm(M3)) = 2||”(0)||12qm(M3) +C.

Therefore the sequence o, = ||u(nt)||12qm (M) satisfies o, 4+1 < 2a + C, which implies the claimed
exponential bound.
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Remark 1.5. Notice that in Theorems 1.1 and 1.3 we provide bounds on the growth of the H" Sobolev
norm for initial data of regularity H™, for a given, odd or even, integer m. We point out that most of the
paper will be devoted to the case of even integers. In the last section we sketch how to adapt the argument
to odd integers. Of course, if we assume the initial datum ¢ to be H*1, then the growth of H™ with
m odd, can be obtained by interpolation between the growth of the two norms A1 and H™~!, with
m — 1 and m + 1 even. Hence if the initial datum is smooth enough, it is not necessary to deal separately
with the case m odd. However the situation is more delicate since we assume only the regularity H™
(with m odd) on the initial datum.

Finally, we end our presentation with a result dealing with NLS on a 3-dimensional compact manifold
M? with subcubic nonlinearity, establishing polynomial growth for the H? Sobolev norm. It makes
no sense to consider higher-order Sobolev norms, given that the nonlinearity is not smooth enough to
guarantee that regularity H™, with m > 2, is preserved along the evolution.

Nevertheless we emphasize that the next result appears to be the first one available in the literature about
polynomial growth of any Sobolev norms above the energy, on a generic 3-dimensional compact manifold.

Theorem 1.6. For every solution u(t, x) € C;(H*(M?)) to (1) withd = 3 and p € (2,3) we have

4
sup(o, 7y lu (@, )| gr2(pr3y = C(max{l, T})3-7,
where C = C(||¢||g2) > 0.
Remark 1.7. The proof of Theorem 1.6 follows once the following local bound is established: for all
T €(0,1),
D5

”u(f)”ZZ(M%) - ||u(0)||12112(M3) 5 T”u||LT’°((0,‘L');H2(M3)) + ||u||z°°((0,t);H2(M3)) (7)

for some y € (0, pTH). In order to conclude the polynomial growth from (7), we can combine Remarks 1.2
and 1.4. In fact arguing as in Remark 1.4 we get

124117 o 0.0y rmar3yy = 21O | Fmag3y + C-

Once this bound is established, the polynomial growth follows by using (7) and arguing exactly as in
Remark 1.2.

Remark 1.8. Following our approach to proving (7), there is no need to restrict oneself to pure power
nonlinearities. In particular, polynomial growth for solutions to NLS on generic 3-dimensional compact
manifolds could be established for general higher-order Sobolev norms (namely H™ with m > 2), provided
the subcubic nonlinearity is suitably regularized in order to guarantee that H™ regularity is preserved along
the flow. Nevertheless, for the sake of simplicity we elected not to deal with the full generality in this work.

2. Linear Strichartz estimates

Strichartz estimates on M?. In the sequel we shall make use without any further comment of the
following Strichartz estimate, which was already recalled in the Introduction:

||€itAg§0“L4((0,l)xM2) S Nl zrso (ar2)- ®
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By using Duhamel formula we also have at our disposal an inhomogeneous estimate that we state as an
independent proposition.

Proposition 2.1. Let v(t, x) be solution to
iv+Agv=F, (t,x)€ Rx M2,
u(0,x) =@ € H(M?).

Then we have, for T € (0, 1),

vl Laco,myxpr2y < @l rsoarzy + TN Fll Loo(0,1: H50 (Mr2))- )

Strichartz estimates on M 3. In the proofs of Theorems 1.3 and 1.6 we shall make use of the following
suitable version of the endpoint Strichartz estimate:

Proposition 2.2. Let v(t, x) be solution to
i+ Agu=F, (t,x)eRxM>
Then we have, for t € (0, 1),

V20,026 (M3)) Se VllLoo0,0); He a3y + IV L2 (0,00 11 72a3y) + 1 Fll L2(00,2);.6/5 (ar3yy- (10)

Notice that the above estimate may look somewhat unusual compared with the classical version of
Strichartz estimates, where on the right-hand side one expects a norm involving the initial datum v(0, x)
and another norm involving the forcing term F(¢, x).

Nevertheless we underline that in the case F' = 0, the estimate above reduces to the usual Strichartz
estimate with loss of half of a derivative (see [Burq et al. 2004; Staffilani and Tataru 2002]). On the
other hand, the main point of (10) is that no derivative losses occur on the forcing term F (¢, x) when this
term is not identically zero, and the loss of derivative indeed occurs only for the solution v(¢, x) on the
right-hand side. Estimates in this spirit are also of crucial importance in the low regularity well-posedness
theory for quasilinear dispersive PDEs (see, e.g., [Koch and Tzvetkov 2003]). We emphasize that the
estimate (10) comes from the following spectrally localized version (see [Burq et al. 2004; Staffilani and
Tataru 2002] and for more details Proposition 5.4 in [Bouclet and Tzvetkov 2007]):

v vl L2¢0.1): L6 (M3Y)
S mnvll oo, 1,223y + TNVl 20,1y, 51/2(0r3)) + 1N Fll 20, 1): .6/5 (Mr3))»

where () is the usual Littlewood-Paley spectral projector and N ranges over dyadic numbers. In fact
by taking squares and summing over N we get (10), provided that we make use of the bound

2 1 2
DNVl eo o,y 2y = 2 e IVl oo, ysmrecuy
N N

together with t}}e equivalence of the L” norm of v with the L” (1 < r < 00) norm of its squared function

(X lmvvl?)>.
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3. Modified energies associated with even Sobolev norms

Modified energies. In this subsection we consider the general Cauchy problem

i+ Agu = [u|P~u, (1, x) e Rx M¥, (11
u(0,x) = ¢ € H*(M49),
where (M¥, g) is a compact d-dimensional Riemannian manifold.
In the sequel we shall extensively make use of the following bound without further notice:
ell oo s 11 (1)) popo 1 (12)

For every solution u(¢, x) to the Cauchy problem (11) we introduce the following energy, to be used in
connection with growth of the Sobolev norm H 2k,

p—1 - 2 _ _ _ 2
Exke () = 10 ul| T2 pgay = 5 /Md\a’; Vg (lul)[ lulP 3 dvolg — /Md!a’; '(ul?~ )| dvol.

We have the following key identity.

Proposition 3.1. Let u(t, x) be a solution to (11), where p = 2n+ 1 > 3, with initial data ¢ € H**(M?).
Then we have

d —1 _ _ e ke
Eszk(u(z,x)):—pT/Md\a’; lvg(|u|2)}z’a,(|u|1’ 3)dvolg+2/Mda’;(|u|P 1ok "(IVgul3) dvolg

k—1

) ~ i
+Zc,~[Mda{vg(|u|2)a’; 'We(lu?)g 8 (Ju|P~3)dvol,
j=0

k—1
+ReZcJ-/ ¥ (Ju|P~h a,’“fu 8’,‘_1(|u|p_1ﬁ)dvolg
: M4
Jj=0
k—2 .
L ki
+Rech/ (P~ 8] (Agin) 8" udvolg
j=o M¢
k—1 ) )
+Im c,-/ o (ulP~yoF T u ok i dvol, (13)
j=1 M
where cj denote explicit constants that may change from line to line.

Proof. We start with the following computation:

= 2Re(@Tu, 0Fu) = 2Re (3 (—Agu + [u|P u), i 3%u)

d
o107 20z,

=2Im/ (05 Vgu, 5 Vgu)g dvolg + 2 Re(dX (lu|P~ u), i 9%u),
Mda
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where (f, g) denotes the usual L2(M?) scalar product Jaga [ - & dvolg. Since the first term on the
right-hand side vanishes identically we get

d — .
S0 Z 2 agay=2Re(d7 (P~ ). 0 u)
k—1
:2Re(8]t‘(|u|1’_1)u,iE)ﬁ‘u)+2Re(|u|1’_1 Fu.i Blt‘u)+ReZCj(8,J(|u|P_1)3,k_ju,i8]t‘u),
j=1

where ¢; are suitable integers. Notice that the second term on the right-hand side vanishes identically and
if we substitute for the equation again then we get

1wl 0
= 2Re(3 (jul?™ )u. —Ag (3™ 1)) + 2Re (87 (jul P~ yue, 877 ([P~ )
—I—Rekii cj (E),j|bt|1’_1 E)tk_ju,ialfu)
j=1
= 2Re(0f (jul "~ hut, =Ag (3" 0) + 2Re (37 (ul ™ a0, 95 (ful”~ )
—I—RekX_i ¢j (8{(|u|1’—1) 8,k_ju, alf_l(|u|p_1u)) —{—Rekiic]' (atj|“|p_1 3,k_ju,i8]t‘u)
j=0 i=1

= 2Re (¥ (JuP™Vyu, —Ag (3% u)) + /Md 3%~ (ju|P~ u)|? dvolg

k-1 k—1
+Re > ¢ (8] (ulP™H of w01 (ulP ) + Re D ¢ (87 (ulP7H of T wii Fu). (14)
j=0 j=1

Next we focus on the first term on the right-hand side
2Re(9F (lulP~Vyu, —Ag (35 1u)) =/ O (Ju P~y (—a 351 (Agu) — u dF 1 (Agir)) dvolg
Md

and we notice
k—2 ] ,
A g (9~ u) —uAG (O i) = 0f T (—iAgu —uAgit) +Re Y ¢; 3 (Agu) o V.
Jj=0
Moreover we have the identity
Ag(Jul?) = ulgii + i Agu +2|Vgul}.

Hence,

2Re(31f(|u|p_1)u, —Ag 3It‘_1u)

:-/ a’;(|u|1’—1)a’;—lAg(|u|2)dvolg+2/ K (|uP=1) 051 (| Vgu|2) dvol
Mda M4

k—2

+Re) cj/Md K (ul?~"y o (Agu) 1 i dvol,
j=0
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= /Md (5 Ve (lul?="), 85~ Vg (jul?)),, dvolg + 2/Md o ((ul?=") 951 (|Vgul2) dvolg
k—2
+Re Z cj/ K (ul?~") o (Agu) 1 it dvol,
j=o M
and by elementary computations we get

—1 _ _ _ _
= / (O (Ve ()l =), 9571 Vg (ju]?) , dvolg +2 / O (julP ™) 9571 (| Vgul2) dvol
M4 M4

k=2

+Re) c,-/ K (ul?~") 87 (Agu) 3 it dvol.
j=o M

Using the Leibniz rule to develop 8’,‘ we get

p—1 3 ok
..=T/Md(3’fvg(lu|2)lul” 3,051V, (jul?))g dvolg

k_l . k .

+ch/Md(3ng(lu|2),85_1Vg(lu|2))g O~ (JulP~?)dvolg

j=0

k—2
+2/Md a’;(|u|1’—1)a’;—l(|vgu|§,)dvolg+ReZc,—/Md K (lu|?=") 0/ (Agu) 3 it dvol,
Jj=0

p—1 k—1 212 -3
=T/Md8t|8t Ve (Jul®)[g|ulP~ dvolg

k—1
. 3 b i 3
£ [ @105 g 8 ) vl

j=0
k—2

+2/Md 8’f(|u|P—1) a’t‘—l (|Vgu|§) dvolg+Rech/Md 8’,‘(|u|1’_1) 9] (Agu) atk_l—mdvolg,
j=0

and we conclude by combining this identity with (14). O

Remark 3.2. In the specific case of the cubic NLS (i.e., (11) with p = 3) we have some simplifications;
more precisely we get

1 - 2 - 2
Exic) = 110 ullF2(pgay = 5 /Md\a’; Vg (lu?)], dvolg — /Md}a’; '(ul*u)|” dvolg

and also

d
Eé’zk(u(t,x))

k—2
_ i k—1—j -
:2/ d8’f(|u|2)a’tf 1(|Vgu|§,)dvolg+Rech/ d8’,‘(|u|2)at](Agu)8t i dvol,
M im0 M
k—1 k—1
+Rezcj/Mda{(|u|2)a,k‘fua’;—l(|u|2a)dv01g+1mzcj/mag(|u|2)a,’“fua’;advolg. (15)
j=0 j=1
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The norms || a,k ul| ;2 and ||u|| g2« are comparable. The aim of this subsection is indeed to prove that
the leading term in our modified energy E,x (1) is equivalent to the Sobolev norm ||u|| 72« , provided that
u(t, x) is a solution to (11) withd =2 and p >3 ord =3 and p = 3.

Proposition 3.3. Let u(t, x) be solution to (11), where either d = 2 and p > 3 is an integer, or d =3
and p = 3. Then for every k,s € N we have

||3tku — l'kAI;u”Hs(Md) §||(p||H1 ||u”Hs+2k—l(Md). (16)

Proof. We shall use the following identity (satisfied by every solution to (11) in any dimension d):

h—1
BthuzihAZ,u—l—ZCJ Bng_/_l(u|u|p_l), (17)
j=0
where ¢; € C are suitable coefficients. The elementary proof follows by induction on /2 and by using the

equation solved by u(¢, x).

First case: d =2, p > 3. We argue by induction on &, and hence we shall prove k = k + 1. By (17) we
aim at proving

”atj(1/!|1/l|p_1)||H2k—2j+s(M2) S ullgsvantiagzy,  J=0,....k, (18)

by assuming the property (16) is true for k. By expanding the time and space derivatives on the left-hand
side above, we deduce (18) by the chain of inequalities

I1 187 wllyyrsr 20 (pg2) S I1 107 6l g1 a2y
Jitetjp=j Jittjp=Jj
s1+tsp=2k—2j+s s1+tsp=2k—2j+s
< 1_[ ||”||H21'1+S1+1(M2)v
Jittjp=Jj

S1+tsp=2k—=2j+s

where we used the Sobolev embedding H!(M?) C L*?(M?) and we have used the induction hypothesis
at the last step. We can continue the estimate by a trivial interpolation argument as follows:

6 1-6
5 (T Wl o Il i)
I=1,...,p

where
Oi(s+2k+1)+(1—-6;)=2j;4+s;+ 1.

We conclude using (12), since lezl 0 =1for j=0,...,k.

Second case: d =3, p = 3. Arguing as above, and by assuming the result true for k, we are reduced to
proving

||atj(U|M|2)||H2k—2j+s(M3) S lullgsvanvragsy, 7 =0,....k. (19)
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Expanding again the time and space derivatives on the left-hand side, we are reduced to the estimate

||8tj1u||W/c1,6(M3) X ||a{2”||sz-6(M3) X ||azj3”||W"3’6(M3)
187 el g1 agsy X 007 ull g cagsy X 187l g1 agsy
S Mull grss+ier+1 sy 1l grintioo+1 sy 1l gris+s+1 a3y,
where
hti+j3=Jj, kitky+ks=2k-2j+s.

Notice that we have used the Sobolev embedding H'(M?) C L®(M?) and the induction hypothesis at
the last step. By interpolation we have

0 1-6
||”||H2f1+k1+1(M3) < ||u||bln+2k+1(M3)”“”Hl(lMs)’ I=12,3,
where
Oi(s+2k+1)+(1—-6)=2j;+k; +1,

and we conclude as above since 213=1 0p=1for j =0,...,k. |

Strichartz estimates for nonlinear solutions. In this subsection we get a priori bounds for the Strichartz
norms of solutions to (11) in dimension d = 2, with a general nonlinearity, and in dimension d = 3, with
cubic nonlinearity. In the sequel we denote by LZ X the space L?((0, 7); X), where X is a Banach space
and p €1, oo].

Proposition 3.4. We have the following estimate for every solution u(t, x) to (11) ford = 2 and p =
2n + 1> 3 is an integer: for any € > 0 and t € (0, 1),

J 1—s K
Hat M”L‘T1 WS~4(M2) 56’”‘””H1 ||u||L$OOHZj+s(M2) ||u||L0$OH2j+s+1(M2) ||u||z?°H21+2(M2)' (20)

Proof. We use (9), together with the equation solved by 3,j u, and we get

”atju”L‘T‘WsA(Mz)
<187 w0l grs-+s0 a2y + T3 @l Dl oo prsso (ar2)

<1187 w(0) 1750 118/ u(0)|] + T8] (ulu P12

i -1
E sz 197 Gl P~

50
Hs+H1(M2) L HSTI(M?2)"

Notice that the first term on the right-hand side can be estimated by Proposition 3.3. Hence we shall
complete the proof provided that for every € > 0,

10/ (u|u|1’—1)||HS(M2) §G’WHH1 ||u||H2j+S(M2)||u||;{2]‘+2(M2) forall j,s =1,2,....
Expanding the time derivative Btj and using

I/ &l mr a2y S WS a2y €l Loe a2y + 181 Er (a2 1 1| oo (ar2).

we are reduced to estimating

. . j
107 2]l s aazy X 1072wl oo a2y - X 107" ]| Loo ar2)-
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where j; +---+ j, = j. Notice that from

ol Lo ar2) Se 0l arz) 10052 002 @1

we get

. . ;
18/ ul grs (ar2y X 1072 ull pooagzy X - X 10/” ull poo (ar2)

Se 107 ull s agzy X 1972 ull ipiSepgzy X 18770l 50 - ||3’”u||H1(Mz) X ||3f”ullfqz<M2),
and hence by (16)

1— 1—
"2 ||”||H2f1+S(M2) X ||”||H261'2+1(M2) X ||”||2,21'2+2(M2) X X ||u||Hzejp+1(Mz) x ||“||jqsz+z(Mz)

1-6 6>(1— 1—-62)(1—
= 1 (S 7] o R el 11 i S
Op(1—¢) (1-6,)(1—¢) -1
Koo X ||u||152j+f(M2)||u||H1(]I\742) < x ||u||§1(127j+2)(M2)’

where at the last step we have used an interpolation argument with
0127 +s)+(1—61)=2j +s, 0;2j+s)+(1—=0)=2j;+1, [=2,...,p.
Notice that we get Zf;l 0; = 1 and we conclude by (12). O

Proposition 3.5. We have the following estimate for every solution u(t, x) to (11) for (p,1) = (3, 3) and
for every e >0, T € (0, 1):

J 1/2 1/2
||8 ””LZL((M?) e lol g1 ||8 “”LooLz(Ms)”at ”HZgoHl(Ms)“‘ﬁ”u”chonj(Ms)”””LgonjH(Ms)
VT D Ml g syl oo it syl Lo proinsiagsy, (22)
CJitiz2tiz=i
]1=maX{]1,]2,]3}
and
J J,n1—= j 1/2 1/2
”8t u||L%W1,6(M3) Se,||(p||H1 ”at U||L%>§H1(M3) Hat ul|z%°H2(M3)+\/;||u||L$°H2f+1(M3) ||u||L‘,’°H2f+2(M3)
+/T Z ||”||L<,>°H2J'1+1(M3)||“||L$°H2f2+1(M3)||”||L$°H2f3+1(M3)- (23)
JitJj2+iz=j

Proof. We prove (23), the proof of (22) being similar. By using Strichartz estimates and the equation
solved by 9/ u we get

107 2 .o agey S 107l oo priveqarsy + VTN wll oo prsacarsy + 137 @lul) 2 .o ars)

S ||aju||LooH1(M3)||8Z‘Ju||2$°H2(M3)

1/2 1/2 j
+ ”atJ“”L/goHl(M3)||at]“||L/<T>oH2(M3) + ||8tj (“|”|2)||L%W1,6/5(M3)~
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Notice that by expanding the time derivative, and by using Holder we get

. , . . .\
167 (ulul*) w5 aasy < Z 107 1l g1 (g 118720l Lo aay 107wl Lo (arsy
Jiti2tiz=i
]1=maX{jl,]2,j3}
< Z 107" well g1 a3y 10720l g arsy 197wl 1 agsy-
J1tj2+Jj3=Jj

Ji=max{j1,j2,j3}

We then conclude by using Proposition 3.3 in the special case of the cubic NLS on M3, O

4. Polynomial growth of H%¥ for pure power NLS on M2

This section is devoted to the proof of Theorem 1.1 in the case m = 2k. We shall need the following
estimate.

Proposition 4.1. Let us assume that u(t, x) solves (11) withd = 2 and p = 2n + 1 > 3. Then we have
the following bound for every T € (0, 1):

4k—342s0 Ak —4
+e >r—1 T€
2k—1

/ |}"lghl hand side Of (13)| ds < \/_”u”Longzlk(MZ) + ”u”L?gsz(MZ)'

Proof. Since we work on a 2-dimensional compact manifold we simplify notation as follows: L9, W54, H*
denote the spaces LI(M?), WS4 (M?), HS(M?). Moreover in the sequel we shall denote by € > 0
any arbitrary small constant whose value can change from line to line. We shall also make use of the
inequality

”u”L‘}OHS S”‘””Hl ” ”lzlkool}[ﬂcs s € [1,2k], (24)

which in turn follows by combining an elementary interpolation inequality with (12).
Let I, IT, I1I, IV, V, VI be the successive terms on each line of the right-hand side in (13). Estimating I
can be reduced to controlling the terms

T
k k —4
/ 19" el 1 a 1972w Foo N0l L2 Il foc” ds, Ky ko =k =1, (25)
0
and we have, by combining (21), Proposition 3.3, Proposition 3.4 and the Holder inequality,

[, 2= 2 ki, 2
(25 = T||u||L(<t>o;)2k2+l ||u||LeooH2k2+2 el oo £ 119; 1“”L‘}le4
4k—3+2s0

2(1— 2(1 2
S VTl g el oo 2 el 0 1 T3 iy o 0o gy S VT Nl Tt ™

where at the last step we have used (24). Notice that the value of € > 0 changes at each line, but can be
chosen arbitrarily small. Concerning II, we are reduced to controlling

T .
/0 ||azlu||Lz( I1 ||afhu||Loo)||af‘lu||W1,4||a,"2u||W1.4, (26)

h=2,...,p—1
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where we assume j; = max{ji, j2,..., jp—1} and
j1+--'+jp_1=k, ki+ky=k—1.

By using the interpolation estimate (21) together with Proposition 3.3, Proposition 3.4 and the Holder

inequality, we get

1_
(26) < v T”uHZ%OHZk ||u||L%onj1 ( 1_[ [|u] L%f’HZjh‘H)
h=2,....,p—1
1—s 1—s
x ||“||L<%o(;12k1+1 [[u ||LooH2k1+2 ”u”L%oO}IZkz-i-l [lu ||LooH2k2+2
4k—3+2s0
+e
SVrllull e

where we used (24) at the last step. Next we deal with III, and it is sufficient to control

T

h h i l /

/||a,1u||Loo||a,2u||W1,4||a;"1u||Lz( 1 ||a:"'u||Loo)||at‘u||Loo||aﬁu||W1.4, 27)

0 .
i=2,...,p—3

where we assume 1 = max{my,my,...,mp_3} and
hi+hy,=j€el0,k—1], I’}’Z1+-'-+Wlp_3=k—j, Lh+L=k—1.

Arguing as above, it can be estimated by
1—
27 < ﬁ”””i%"H% ||u||L(‘L?OH2hl+l ||”||Lo<§(;12h2+1 ||”||LooH2h2+2 ||u||L°°H2m1

X ( 1_[ ||“| LooHZWI +1) ||“| LooHZIl-H ”“”L;j(}{z/zﬂ ”“”2)3011212-4-2
i=2,...,p—3
4k—342s0
+e
SVrlull 2

In order to treat IV we are reduced to controlling

T . . .
/O”atjlu”Lz( [1 ”8tjhu”L°°)”atj(Ag”)”L4”atk_l_JL_’”L“’ (28)

h=2,...,p—1
where we assume j; = max{ji, j2,..., jp,—1} and
Ji et e =k,

and by an argument similar to those above we have

1—
(28) < ﬁ”””igonk ”“”L‘;OHZH ( l_[ ||M||L$§H2fh+1)

h=2,...,p—1

X ”u”l—so I_S()

L H2i+2 ||u||LooH2]+3 ||u||L$OH2k7272] ”u”Loonk 2j—1
4k—3+2s9

+e
< Vallul Zke
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In order to estimate V it is sufficient to control the terms

T
m; k—j k
[llatmlullu( I1 ||3t’u||Loo)||3; Tullpa 105 ull 2, (29)
0 i=2,..p—1
where we assume 7| = max{m,ms,...,mp_1} and

my+---+mp_g =7,
and as usual we get

1 f—
(29) 5 \/?”u”L_goesz || ”chfOPIZml ||u||Lc>oH2ml+l ( 1_[ ”Ul LOOHZm +1)

i=2,...,p—1
i=2,....p 5

50
X ||”||LooH2k 2j ||”||LgoH2k—2j+1

4k— 3+23‘() +e
SVrlull S

We conclude with the estimate of VI, which in turn can be reduced to controlling

T
i k—j li
/ ||a,"“u||Lz( I ||a,’"u||Loo)||a, Tul oo ||a£1u||Lz( I ||a,u||Loo), (30)

i=2,...,p—1 i=2,...,p

where we assume 7| = max{m,ms,...,mp_1} and

my+-+mp=j, Li+-+l=k—1,

and we get
(30) < tllull§ o gran ||u||L°°H2m1 ||”| o 2mj+1
LSH T L°H
i=2,..,p—1
|u||LooH2k 2j+1 Ul poo gran ||u|| oo g2l +1
T L? H
i=2,...,p—1
< el i 0

L$° H2k
The key estimate to deduce Theorem 1.1 is the following one (see Remark 1.2).

Proposition 4.2. Let us assume that u(t, x) solves (11) with d =2 and p > 3. Then we have the following
bound for every t € (0, 1) and for every € > 0:

4k—342s9

+€ 4k:4+6
”“(T)”sz - ”u(O)HHZA < \/—”u||LO§I}121k lull s,

L H2

Proof. We write £ (1) = [|0¥u||2, + Royc(u), where

p—1 — 2 _ _ _ 2
Rzk(u)=_7/}a’; 1vg(|u|2)|g|u|1’ 3dv01g—/}a’; Y(Jul?~ u)|” dvoly.

We claim that , et
St +e 2h—1T€

IRok )| Se llullgan’  + Ml o’ €1V
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In fact notice that arguing as in the proof of Proposition 4.1 we get

k—1 2412 -3 k 2 k 2 -3
/|8t Ve (lul )!glulp dvolg S Y 10 ull iz 19,2 ullF oo llull o

ki +ko=k—1
4k—4
2 2 55—1T€
< Z ||”||H2k1+1 ||”||H2k2+1 ||“||;12A < ||“||12L1k2k1
ki+k,=k—1
and also
k—1 -1.5|2 1,112 in, 112
18 Gt avol s 3 ||a:'u||L2( I ||a,"1u||Loo)
J1t+etip=k—1 h=1,...,p
2 +e
< ¥ ||u||H2,-l( I ||u||H2,h+1(M2))||u||LooH2k~||u||z';o;,2,,
Jitetip=k—1 h=1,....p

Next notice that if we integrate the identity (13) and we use Proposition 4.1 then

k 2 k 2 oA e S=t+e
”at ”(T)”Lz - ”at M(O)HLZ ~ Sup(O 7) |R2k(u)| + \/_”u”Looh;zk + ”u”Lgx:HZk'

We conclude by using (31) and Proposition 3.3. O

5. Exponential growth for H ¥ norms of solutions to the cubic NLS on M3

The aim of this section is the proof of Theorem 1.3 in the case m = 2k.
The following is the 3-dimensional version of Proposition 4.1 for the cubic NLS.

Proposition 5.1. Let us assume that u(t, x) solves (11) with d = 3 and p = 3. Then we have the following
bound for every T € (0, 1)

T
| right-hand side of (13)]ds 5 £l e+ 11 e
0 T

for some y € (0,2).

Proof. Since we work on a 3-dimensional compact manifold we simplify the notation as follows:
L9, WS4, H® denote the spaces LI(M3), W54 (M?), H*(M?). In the sequel we shall also make use
of the following inequalities, which in turn follow by combining an elementary interpolation inequality
with (12). We also notice that by combining Proposition 3.3 and Proposition 3.5 with (24) we get

1/2 1/2
107l 2 16 Se Nl 38 s 100 oo grar + VT Nl ot oy Il 28 gy
+ T Z ”u”L?OHZjI ”””L‘;OHZJ'Z‘H ||”||L$OH21'3+1

CJitiztiz=i
Jir=max{j1,j2,j3}
2j—ite 4=t 21
< ”“”Liolek +\/—”u|zg<:22k +ﬁ””|ic§}12k’ (32)
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provided that j > 1, and

1/2 1/2
197 1l 210 Se Nl s o 100 g2+ VN2 g D2 s
+ T Z ||“||Lg°H2i1+1 ||”||Lg°H21'z+l ||”||L<;°H2/'3+1
Jit+ij2+Jj3=Jj
ait
2 e+ VT N+ VR

We denote by [, II, III, IV the four terms on each line of the right-hand side in (15). We first estimate

the term I. By developing the time derivatives 8tk and Btk -1

. (33)

, and by using the Holder inequality, we are
reduced to estimating

T . .
/ 3¢ a2 102 ull o 187 ullwvs 107wl r.o ds. (34)
0
where we can assume kq > k, and
jl+j2=k—1, k1+k2=k.
Notice that by combining the Sobolev embedding H'(M?) C L%(M?) with Proposition 3.3 for d = 3
and p = 3, and (24) we have
(34) < ||“||L30H2k1 ||u||L<g0H2kz+1 ”3[]1“”L§W1,6 ||at12”||L%W1~6
< Nl poo e 17 uell L2 ppro 1077 ull L2 s
and we can continue the estimate by using (33). Indeed we should estimate ||8,j ull L2W16 by three terms
on the right-hand side in (33). However, we can consider only the term that gives the worst growth with
respect to the power of [|u| o gax (i.e., only the second term on the right-hand side of (33), as all the
other terms give a smaller power of [|u| oo g2« ). Summarizing we get
(34) 5 t”u”i?OHZk + ”u”JI/‘?onk

for a suitable y € (0, 2). Next we estimate the term II, which can be reduced to estimating the terms

T
k k j k—1—j
/0 19 el 2 119wl Lo 18] Agull o 19 ull s, (35)
where we can assume k; < k», and
j=0,....k=2, ki+ky,=k.

By using the Sobolev embedding H'(M?3) ¢ L%(M?) in conjunction with Proposition 3.3 we get

k k—1—j
(35) < Nl oo ot 10F2ull 2 g6 Nl oo proies 10K ™ 7l 2 .

By using (32) and (24) we get

4ky—1 4k—1—j)—1
= — 2
(35) S lutll oo prams el 7 Zo Nt zo raioes Nl poctgar S Tl g+ 10l oo e
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where y € (0, 2). Concerning the term III we are reduced to
T j k—j k k k
/0 197 wll oo 11072 ull oo 10 ull L2 110 wll o 19 > uell o 1197 ull Lo
Jitja=j, 0=j=<k-1, kitky+ks=k—1. (36)
By the Sobolev embeddings H'(M?3) Cc Lé(M?3) and H*>(M3) C L®(M?) and Proposition 3.3 we get
k k
(36) < ”””L$°H2f1+2 ||u||Lg°H2f2+2 ||”||L$°H2k—2/' |0 I”HL%L6 ||at2””L%L6 ||u||L$°H2k3+1-
By combining (32) with (24) we get
(36) < Tlullg oo gran + Nl oo gy
for y € (0, 2). Concerning 1V, it is sufficient to estimate
o s 4 .
/0 19 ull 2 18 ull po 118 uell Lo 113> ull Lo,
Jiti=j, 1=j=<k-1L (37)
We can control it by using H!(M3) ¢ L%(M?) and Proposition 3.3:
(37) < ull o v Nl oo gm0 18 ull 2 o 17l 2 o
Again by (32) and (24) we get
37 <l Foo graw + Nl oo pyan
for some y € (0, 2). O

In order to conclude the proof of Theorem 1.3, following the same argument as in the proof of
Theorem 1.1, we have to split £,z (1) as Ex (1) = ||3]t‘u||i2 + Rox (1), where

1 _ 2 _ 2
Rzk(u)=—§/}a’; 1vg(|u|2)|gdv01g—/\a’; "(Jul*u)|” dvolg,

and we need to estimate the term R,z (¢), namely

4k—3 +e

2k—1 $e=tte
IRk ()] < ”“”sz + ||u||[1(2k )

which is a version of (31) in three dimensions. Once we prove this estimate, the conclusion is similar to
Theorem 1.1. Notice that

k—1 2412 ki, 2 ko 12
/\8, Ve(ul)[pdvolg S Y 1197 ull i 1972l 7
ki1+ko=k—1

2 1—e 1+e St te
S Z ||u||H2k1+l ||“||H2k2+1 ||“||H2k2+2 < ”””sz ,
k1+ko=k—1
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where we used the estimate

1—e 1+€

lollzee S vl 2 il (38)

which in turn follows by combining interpolation with Sobolev embedding, Proposition 3.3 and (24).
Moreover we have

k—1 2,412
/}8, (Ju| u)} dvolg

1,02 2 12 i3, 112
< > 197 |72 1972 ull 7 oo 1073 Ul o0
Jitiz+jz=k—1

4k—5

2 1— 1—- 1 1 3k—1T€
IS > (2 o 7 ey 77 ety S 7 s 7 s I |71 S
Ji+iz2+j3=k-1

where we used (38), Proposition 3.3 and (24).

6. Polynomial growth of H ? for the subcubic NLS on M3

Next we prove Theorem 1.6. We introduce the energy

—1
Fr(v(t, x)) = / |9;v|? dvolg — (p — 1)/ lv|P! }Vg|v|‘2dvolg Y [v|*? dvolg.
M3 M3 p M3

Proposition 6.1. Let u(t, x) be solution to (11) for d = 3 and 2 < p < 3. Then we have

d
E]—}u(l, X)

— 2 —
:(p—l)(p—?))/M% || P72 0y |u| | Vg ul| dvolg+2(p—1)/M2 |u|P=2 3¢ [u| |Vgul; dvolg. (39)
Proof. We start with the following computation:

d
S 19eul|z2 = 2Re(8Fu. 0,u)
= 2Re(0;(—Agu + |u|?"u), i d,u)

= 2Im/ (0¢Vgu, d;Vgu)g dvolg + 2Re(8t(|u|p_lu), i a,u),
M3
where (f, g) = f 3 J & dvolg. Since the first term vanishes, we get

d
Eua,uniz = 2Re(d([u|?"")u,id;u) +2Re(|ulP " ;u,id.u)

= 2Re(3t(|u|p_1)u, —Agu) + 2Re(8,(|u|p_l)u, |u|p_1u)
—1d
= 2Re(d, (|u|” Y. —Agu) + pTE » |u|?? dvolg.
By using the identity

Ag(ul?) = ulgii + i Agu + 2|Vgul},
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we get
2Re (0 (Jul?Myu, —Agu)

= — (Ol Aglul®) + 23 Jul P, | Vgul2)

= (3 Viglul?™", Vglul®) + 23 ul P, | Vgul2)

= 2(p = V(3 (ulP "2V |ul), |4 Vglul) + 23 |u|?~, |Vgul2)

= 2(p— 1)L (P Vilul, | Vilul) = 2(p = 1)(1ulP >V lu], 3Ll Vil

—2(p = D)(ul? > Vglul. lu| Vg dlul) + 23 ul?~", | Vgul})
= 2(p = 1) 4 (P> Vglul. [ulVglul) = 2(p = 1)(ulP =2Vl & u| Ve
~ (0= (127 | Vlul ) 4 (0 = D@l [Velul ) + 2l [ Vgul?). O

The following proposition is a substitute for Proposition 5.1 in the subcubic case.

Proposition 6.2. We have for every T € (0, 1)
t . . pi+5 Y
/(; |right-hand side of (39)|ds < r||u||L§oH2 + ”””L?OHZ

for some y € (O, pT-l—S)‘

Proof. We can write the terms on the right-hand side of (39) as I and II. We estimate I and the estimate of

IT is similar. We estimate I as follows (we shall use the diamagnetic inequality in order to remove | - |
inside the derivatives Vg and d;) by the Holder inequality:

< 2 p—2 < 6=2p 2

] < lI0sullpgo 2 IIuIIL2 2 lullpe™ ST lloullpgepz lul™ o,

W Lt iwh5=p

where the pair (% %) is Strichartz admissible. Notice that by using the equation solved by u(z, x),

we are allowed to replace ||0;u| oo r2 with [|u||fo g2 and hence
6—2p 2
<t 3 lullpeome llull® s, -
LP T whs=p
Next notice that we have the bound
3—p pEl

< e 4
”u”Lrp‘sHWl’% ~ ”””L?oHl ””HL%Wl,ﬁ’

and hence due to the conservation of the energy, we can continue the estimate above as

6—2p
<78 |lullpeop |

4

|u ” L% wl.6®

We can continue the estimate by using the Strichartz estimates (33) for j = 0 (which are still available
for solutions to the subcubic NLS):

pt1
111 < ellullpge 2 Nl o o + Nl oo o
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for some y € (0, pTH) (indeed we have estimated the term ||u|| r2w1.6 With the middle term on the

right-hand side in (33) since it is the one that involves the larger power of [|u|| 0 2, and the lower

powers are absorbed in the term ||u ||zOO g2 |
T

Integrating (39) on [0, 7] and arguing exactly as in the proofs of Theorems 1.1 and 1.3, we get the bound
pt5

”u(‘[)HzZ(M%) ”u(O)HHZ(M%) S T||u||Loo((0 ), H2(M3)) + ”u”LOO((O 7); H2(M?3))

for some y € ((), pTH). This is sufficient to conclude Remark 1.7.

7. Growth of odd Sobolev norms H 2k+1

We point out that if we assume the initial datum ¢ to be H 2k+2 then the estimate

sup(o.7) lu(t, )| gra+1ap2y < C(max{1, T}) =250 2t
stated in Theorem 1.1, follows by interpolation between the following bounds, which have been already
proved by looking at growth of even Sobolev norms:

2k+1

sup(o.7) lte(t. x)|| rawv2apzy < Clmax{l, 7)) =20 "<,

sup(o. 1y l11(t. %) | g2 ag2) < Clmax{1, T} =26 ¢

A similar argument follows in order to prove Theorem 1.3 for m = 2k + 1.

However, the main point in this section is that we assume the initial datum ¢ to be only in H 2k+1 and
hence the argument above cannot be applied.

The proofs of Theorems 1.1 and 1.3 (which have been proved in the case m = 2k) can be adapted to
the case m = 2k + 1 by using the modified energies

1 1 _ p—1 _ 2
52k+1(u)=§||a’;vgu||§2+§/|u|1’ 1|a’;u|2dvolg+T/|u|P 3|0%(Jul?)|” dvolg

k—1
—ReZcJ/BJuak 7 (ju|P=Y) 97 dvoly,
J=

—ch / 05 (ul =) o (1ul?) 0% (jul?) dvol,. (40)
j=1

Indeed we have the following proposition, from which one may conclude the proof of Theorems 1.1
and 1.3 in the case m = 2k + 1, exactly as we did in the case m = 2k. We leave details to the reader.

Proposition 7.1. Let u(¢, x) be a solution to (1) with initial datum ¢ in H 2k+1 Then we have the identity
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jt52k+1(u(t X)) =- /at(|u|1’ H18*u)? dvol —ReZcJ/8J+lu8k 7 (juP~1) 9 dvol,

k—1
—Rezc,/afua" T )P l)akudvolg+—/ 8 (Jul?=)[9% (Ju|?)|” dvolg
J=

+ch / FTTH (|uP=3) 87 (|u|?) 8% (ju?) dvolg
j=1
k—1 o .
+Zq/ 3 ™ (ulP=3) 97 (|uf?) 0% (|u]*) dvolg
ji=1

k
+ZC;‘/8’§(|u|”“)3,’u8,"+1‘fﬁdv01g,
j=

where c¢;j € R are explicit real numbers that can change in different lines.
Proof. First of all notice that we have
Re(i 0T 1u, 0% u) = Re(3% (—Agu), 3% u) + Re(@* (u|u|P~1), 9% u)
= 18 Vgull} » + Re(3f (ulul?~"). 9fw).
Due to the identity above and by taking the time derivative, we get

(||3ngu||L2+Re(3k(u|u|p b, aku))_iRe(z 1y, 3%u) = Re(i 8% 2u, 0 u)

:Re(3k+1(—Agu) *u) + Re(@ 1 (|lu|?~ ), 9% u)

=2 LoV gull 2 + Re(@ ! ()" ), ).

Next we focus on the second term on the right-hand side:

Re(dF ™ (|u|?~"u). 0 u)

d _ _
=ERe(a’;(|u|P V), 8%u) —Re(@* (Jul?~ u), 0% 1u)
= % Re(d% (|l u), 0% u) —Re(@F (Jul?~"yu, 0F T 1u) — Re(u| P~ 0¥ u, 05 T u)
k—1
+Re Y ¢ (0 udf ™ (ulPY), 9 1u)
j=1
j; Re (0% (|u|P~ 1), 3 u) — Re(@* (ju|?~yu, 05 F1u) /|u|1’ 195 u|? dvol,

k—1
/at(|u|l’ H|8*u)? dvol, —I—ReZc](B]ua (P, okt )
j=1
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= L Re(@F (ulP~w), 0¥u) ~ Re (@ ()~ yu, 95 1u) 1 4 / )P~ |97 ul? dvol
k—1

1 _ i —j _
3 [ i iotul? avol, + 4 Re Y 6 @l (ulo .2k
k—1 . . = . .
~Re > ¢; @/ udf T (uP7Y). 95 u) —Re D ¢ (0 udf T (uf?7Y), ).
j=1 j=1

Next we deal with the third term on the right-hand side:
—Re(d (|u|”~"u. 9 u)

k
1 . .
= —5/a';(|u|p—1)a';+1(|u|2)dv01g + Zq/ of (ulP=") o w o '~ it dvol,
j=1

and we notice that 8’{(|u|1’_1) = %(p -1 8{‘_1(8,(|u|2)|u|1’_3). Hence we can continue the identity
above as follows:

k—1
p—l _ ki _ .
: :_T/ u|P73 0% (|u|?) 8’,‘+1(|u|2)dvolg+ZCj/8t T(u|P=3) 87 (Jul?) 95T (Ju)?) dvol,
—

k
+ c,-/ K (|u)?~ 0/ u 9T i dvol,
j=1

1d

p— _ —1 _
P [ o ) P avot P [ anui? =) ok )  avol

k—1 k
i IV
+Zc,-/a, T (|u|? 3)a{(|u|2)a’;+1(|u|2)dvolg+Zc,-/a’;(|u|1’ Yo/ u 9 i dvoly,.
j=1 j=1

Then by elementary considerations

p—1d _ 2 —1 - 2
..Z_TE/W *10F ()| dvolg+p7/at(|u|1’ o (jul?)|” dvolg

k—1 k—1
d P i .
729/ o (jul? 3>a{(|u|2>ai‘(|u|2)dvolg+2cj/ 0 T (ulP72) 87 (Jul) 0% (jul?) dvol
Jj=1 j=1
k_l . . k . .
+Zc,~/a,’“f(|u|l'—3)a{+1(|u|2)a’;(|u|2)dv01g+2c,-/a’;(|u|f’—1)agua,"“‘fadvolg. 0
j=1 j=1
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A SUFFICIENT CONDITION FOR GLOBAL EXISTENCE OF SOLUTIONS
TO A GENERALIZED DERIVATIVE NONLINEAR SCHRODINGER EQUATION
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We give a sufficient condition for global existence of the solutions to a generalized derivative nonlinear
Schrodinger equation (gDNLS) by a variational argument. The variational argument is applicable to
a cubic derivative nonlinear Schrédinger equation (DNLS). For (DNLS), Wu (2015) proved that the
solution with the initial data u is global if ||uo||i2 < 47 by the sharp Gagliardo—Nirenberg inequality.
The variational argument gives us another proof of the global existence for (DNLS). Moreover, by the
variational argument, we can show that the solution to (DNLS) is global if the initial data u satisfies
||uo||i2 = 4 and the momentum P (i) is negative.
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1. Introduction
1A. Background. The following equation is known as a derivative nonlinear Schrédinger equation:
i v+02v4id,(Jv*v) =0, (t,x)eRxR. (1-1)

This equation appears in plasma physics [Mio et al. 1976; Mjglhus 1976] and as a model for ultrashort
optical pulses [Moses et al. 2007]. Using the gauge transformation

u(t,x) =v(t, x) exp(% /x |v(t,x)|2dx>,

—0o0

we get a Hamiltonian form of (1-1):
iu+32u+ilulfdu=0, (t,x)eRxR. (DNLS)

Namely, this equation can be written as id;u = E’(u) (see below for the definition of the Hamiltonian E).
The Cauchy problem for (DNLS) (or equivalently (1-1)) has been studied by many researchers. It is known
that (DNLS) is locally well-posed in the energy space H'(R). See [Tsutsumi and Fukuda 1980; Hayashi
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and Ozawa 1992; Hayashi 1993; Hayashi and Ozawa 1994a; 1994b]. Hayashi and Ozawa [1994a] proved
that the solution is global if ||uo||i2 < 2m. See also [Ozawa 1996]. Wu [2013; 2015] proved that it holds if
luo ||%2 < 4. Recently, Miao, Tang, and Xu obtained the global well-posedness by a variational argument
(see the remark on page 1156). For the initial data with low regularity, there are also many references.
Takaoka [1999] proved that (DNLS) is locally well-posed in H*(R) when s > % by the Fourier restricted
method. Biagioni and Linares [2001] proved that the solution map from H*(R) to C([—T, T]: H*(R)),
where T > 0, for (DNLS) is not locally uniformly continuous when s < % Colliander, Keel, Staffilani,
Takaoka, and Tao [Colliander et al. 2002] proved that the H*-solution is global if ||ug ||%2 < 2m when s > %
by the /-method (see also [Colliander et al. 2001; Takaoka 2001]). Recently, Miao, Wu, and Xu [Miao
et al. 2011] showed that H'/?-solution is global if [lug||7, < 27. Guo and Wu [2017] improved their

1/2_solution is global if ||u()||%2 < 4. The orbital stability of solitary

result; that is, they proved that H
waves has been also studied. It is known that (DNLS) has a two-parameter family of the solitary waves
Uy c(t,x)= e"“”qﬁw,c(x —ct), where (w, ¢) satisfies @ > 02/4, or w= c2/4 and ¢ > 0 (see below for the
explicit formula of ¢, ). Guo and Wu [1995] proved that the solitary waves u,, . are orbitally stable when
w>c? /4 and ¢ < 0 by the abstract theory of Grillakis, Shatah, and Strauss [Grillakis et al. 1987; 1990] and
the spectral analysis of the linearized operators. Colin and Ohta [2006] proved that the solitary waves u,, .
are orbitally stable when @ > ¢2/4 by characterizing the solitary waves from the viewpoint of a variational
structure. The case of w = ¢?/4 and ¢ > 0 was treated by Kwon and Wu [2016]. Recently, the stability
of the multisolitons was studied by Miao, Tang, and Xu [Miao et al. 2017b] and Le Coz and Wu [2016].
To understand the structural properties of (DNLS), Liu, Simpson, and Sulem [Liu et al. 2013] introduced
an extension of (DNLS) with general power nonlinearity. The generalized derivative nonlinear Schrodinger
equation is
{i8,u+8fu+i|u|2"8xu=0, (t,x) e Rx R, (eDNLS)
u(0, x) =up(x), x €R,

where o > 0. Equation (gDNLS) is invariant under the scaling transformation

1/(20)

wy (t,x) == y"®uy’t yx), y>0.

This implies that its critical Sobolev exponent is s, = % —1/(20). In particular, (DNLS) is L?-critical.
Liu et al. [2013] investigated the orbital stability of a two-parameter family of solitary waves

Mw,c(ts xX) = eiwt¢w,c(x —ct),

where (w, ¢) satisfies w > ¢2/4, or w = ¢?/4 and ¢ > 0, and

P (x) = <1>w,c<x>exp(i§x - Zal - /O Dy (1) dy>, (1-2)

{ (0 + 14w —c?)

d, . (x) = 2/wcosh(o /4w — c2x) — ¢

w,c\X) = {M}I/QU)
02(cx)?2+1

1/(20)
} if o > ¢?/4,
(1-3)

if o=c?/4 and ¢ > 0.
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We note that ®,, . is the positive even solution of

20 +1

—  _|®*d =0, eR, 1-4
(20+2)2| | x (1-4)

—@" + (0 — )P+ 1| D —
and then the complex-valued function ¢, . satisfies
—¢" +wp+icy —ilp|* ¢’ =0, xeR.

Liu et al. [2013] proved that the solitary waves are orbitally stable if —2,/w < ¢ < 2z9+/w, and orbitally
unstable if 2zp./@ < ¢ < 24/@ when 1 < o < 2, where the constant zo = zo(o') € (—1, 1) is the solution of
00 2 %) 2
F,(z):= (0 — 1)2{/ (coshy —z)~'/° dy} — {/ (coshy —z)~ 1?1 (zcoshy — 1) dy} =0.
0 0

Moreover, they also proved that the solitary waves for all > ¢?/4 are orbitally unstable when o > 2 and
orbitally stable when 0 < o < 1. Recently, Fukaya [2016] proved that the solitary waves are orbitally
unstable if ¢ = 2z¢/@ when % < o < 2. More recently, Tang and Xu investigated stability of the sum of
two solitary waves for (gDNLS) (see [Tang and Xu 2017] for more details). Before Liu et al. [2013],
Hao [2007] considered (gDNLS) and proved the local well-posedness in H 172(R) when o > % Santos
[2015] proved the existence and uniqueness of a solution u € C([0, T]; H'/>(R)) for sufficiently small
initial data when o > 1. Recently, Hayashi and Ozawa [2016] proved local well-posedness in H'(R)
when o > 1 and that the following quantities are conserved:

1

Eu) := 3| dcull3, — Py Re/Rilu|2"ﬁ8xudx, (Energy)

M(u) = |Jull7.. (Mass)

P(u) = Re/ idyuudx. (Momentum)
R

Moreover, they proved global well-posedness for small initial data. They also constructed global solutions
for any initial data in H'(R) in the case 0 < o < 1 (L%-subcritical case). However, in the case o > 1
(L*-critical or supercritical case), there has been no global existence result for large data. In the present
paper, we investigate global well-posedness for (gDNLS) in the case o > 1 by a variational argument.
More precisely, we give a variational characterization of solitary waves and a sufficient condition for
global existence of solutions to (gDNLS) by using the characterization. Such an argument was done for
nonlinear hyperbolic partial differential equations by Sattinger [1968] (see also [Tsutsumi 1972; Payne
and Sattinger 1975]). Our argument is also applicable to (DNLS). Indeed, the variational argument gives
another proof of the result by Wu [2015]. Moreover, we prove that the solution of (DNLS) is global if the
initial data u satisfies [[ug||?, = 47 and P (uo) < 0.

1B. Main results. To state our main results, we introduce some notations. Let (w, ¢) satisfy

w>c*/4 or w=c*/4andc> 0. (1-5)
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For (w, c) satisfying (1-5), we define
Sw.c(9) = E(9) + 30M (9) + 3¢ P(¢).

We denote the nonlinear term by

N(p) == Re/ ilo|* pd ¢ dx.
R

We define
N 1 2 1 12 2 2042
Sw.c(W) = 2a w12 + L@ — 1A v + 300 +2> ——— 3% - m N®).
Then, we have S, (@) = Sy.c(e~“/?* ) by using the identities
cP(@) = =303, — 1 ll@ll7> + 13x (e~ /P ) |12, (1-6)
N(p) = —3clol3%3 + N(e /™ g). (1-7)

We denote the scaling transformation by f;‘ A (x) := e** f(e~P*x) for (e, B) € R* and any function f.
For (o, B) € R?, we define

Rab ) = 0,5, (05" izo,

Kt = Refe )

By a direct calculation, we have the explicit formulae

KeB) = (S, V), ayp — Bxd )

200 — ,3 a+p c? 2 {20 +2)a+B}c 2042
[|0x 1/f||Lz+T( —Z>||1/f||Lz+ 300 12) 1Yl —aN @),

K p) = <S;),C<e—“/2>”¢), ae™ g — By (7))

= (S, .(¢), ap+1cifxp—PBxd,p)

20— 20+ c? 20— Bc
5 w—Zﬂ)||</JII%2+TcP(<p)+—II<ﬂlli§ﬁ—OéN(f/)),

220 +2)
where we have used (1-6) and (1—7)

||3x§0||L2+<

Remark. (1) If g 7é 0, then K B is different from Iw c ((p) = S, C((pl )| »=0- Indeed, the explicit
formula of Iw n 18

—-B 20 + B
15:0(9) = =Nl + = —0lglia +ca P(9) —aN(p).
We note that K7 9 coincides with I o 9, and especially Kl 0 =1 9 is nothing but the Nehari functional.

(2) It is not clear Whether the momentum P is positive or not. That is why we introduce Sw,c by using
(1-6). Such an argument can be seen in [Bellazzini et al. 2014b] (see (14) therein for the details).

(3) The functional K g ¢ 1s more useful to obtain the characterization of the solitary waves when o = c?/4
and ¢ > 0 than Iw ¢ since Ka, Y contains the L2°+2-norm (see the proof in Section 2B).
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“4) §w,c and ng are relevant to the elliptic equation

—¥"+ (@@= g+ el Py =iy Y =0, xeR.
We define the following function space for (w, c) satisfying (1-5):
_[H'® if o> c?/4,
T IH R NLPE Y R) ifw=c2/4and ¢ > 0.
We consider the following minimization problem:

p& = inf{S,, (9) : e “Pp € X, \ {0}, K2 (9) =0}

= inf(Su.c (V) : ¥ € Xoe \ {0}, K2E(y) =0}

Remark. (1) We note that the solitary waves ¢.2 4 . do not belong to L?*(R) when o > 2. Therefore,
we define X2/ . := H H(R) N L2°*2(R) to characterize the solitary waves ¢ 4 . (cf. [Kwon and
Wu 2016]).

(2) S.24. seems meaningless on the function space { : ¢e~“/?%p € X2/, .} since Sp2/4,. contains
L%-norm. However, in fact, S, /4,c 18 well-defined on the function space since Ecz /4.¢ 18 defined
on H'(R) N L?***2(R) and the equality S.2/4 .(¢) = Se2/4 (e~ /¥ @) holds. Similarly, KS‘Z;Z,C is
well-defined on this function space.

(3) Since ¢ € H'(R) if and only if e=/?*¢p € H'(R), when w > ¢?/4, we have

n&h =inf(S, . (¢) : ¢ € H'(R)\ {0}, K&F (¢) = 0}.

However, when @ = ¢2/4 and ¢ > 0, the above equality does not hold.
We assume that («, 8) € R? satisfies
{2a—,8 >0,20+B>0,and Bc <0 when o > c?/4,

20 —f>0,2a+p>0,and 8 <0 whenw=c?/4andc>0.
We define some function spaces:

(1-8)

Ml =g e g € Xy \{O), Suc(9) = il KoL (@) =0},
Goc =9 179 € Xy e\ (0}, S, () =0}
We give the following characterization of the solitary waves.
Theorem 1.1. Let o > 1, (w, ¢) satisfy (1-5), and («, B) satisfy (1-8). Then,
MEP =G, =Dy, (- —x0) 100 € [0, 2m), xo € R},

Theorem 1.1 also means that M‘;‘)’i and ///;;‘f are independent of (o, 8) and //ﬁf is not empty. Thus,
we denote u%? by pe.c.

We define |
HEPT =9 e H'(R) : Su.c(@) < fhorc, K2F(p) > 0},

KL = {p e H'(R) : Supc(9) < pove, K2E () <O}

The characterization by Theorem 1.1 gives us the following sufficient condition for global existence.
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Theorem 1.2. Let o > 1, (w, ¢) satisfy (1-5), and (a, B) satisfy (1-8). Then, %ff’cﬁ’i are invariant under
the flow of (gDNLS). Namely, if the initial data uo belongs to %, ’cﬂ ’i, then the solution u(t) of (gDNLS)
also belongs to ,/"i/a‘,l ’Cﬂ =+ forallt € I, where Iy, denotes the maximal existence time.

Moreover, if the initial data uy belongs to %, ’f o+ for some (w, c) satisfying (1-5) and («, B) satisfying
(1-8), then the corresponding solution u of (gDNLS) exists globally in time and

lull Lo 11 )y < C(lluoll g1,
where C : [0, 00) — R is continuous.

Recently, Miao et al. [2017a] independently obtained the results similar to Theorems 1.1 and 1.2 when
o = 1. We will compare their method with our argument in the remark on page 1156.
We show that Theorem 1.2 gives us some interesting corollaries for (DNLS).

Corollary 1.3. Let o = 1. If the initial data ugp € H ) satisfies ||u0||i2 < 4m, then the solution of
(DNLS) is global.

Two proofs have been known for Corollary 1.3. One was obtained by Wu [2015] and another one by
Guo and Wu [2017]. We give another proof by Theorem 1.2. We compare the methods of [Wu 2015;
Guo and Wu 2017], which depend on the sharp Gagliardo—Nirenberg-type inequality, with our variational
argument. Using the gauge transformation to the solution of (DNLS)

X

u(t,x)ztu(t,x)(&xp(—%/ |w(t,x)|2dx>, (1-9)

—00

then w satisfies the equation

idw+ 02w + ilww — Fiw?d W + Slw|*w =0, (1,x) eRxR, (1-10)
w(0, x) = wo(x), x €R.
The energy and the momentum are transformed as
Ew) = 513 wll7> — g llwllfs.
P(w) =Ref idwin dx + Fw|a.
R
Hayashi and Ozawa [1992] used the sharp Gagliardo—Nirenberg inequality
4
1156 = 51 I l10: £117 (1-11)

in order to obtain an a priori estimate in H'!(R). We note that the optimizer for the inequality (1-11) is
given by O := @ o and Q satisfies the elliptic equation

~0"+0- %0 =0. (1-12)

Hayashi and Ozawa [1992] proved the H'-solution of (DNLS) is global if the initial data u satisfies
||uo||i2 = ||w0||i2 < || Qlli2 = 21 (see also [Weinstein 1982]). Wu [2015] used not only the energy but
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also the momentum and the sharp Gagliardo—Nirenberg inequality

_ 16/3 2/3
LFISs < 3Qm) 3 £ 10, FI125 (1-13)
We note that the optimizer for the inequality (1-13) is given by W := ®;,4 ; and W satisfies the elliptic
equation
—W+iwP - 2w =0. (1-14)

Wu [2015] proved that the H I_solution of (DNLS) is global if the initial data u( satisfies ||uo||i2 =
||w0||i2 < || W||2L2 = 4m. His proof depends on a contradiction argument. Supposing that there exists
a time sequence {f,},en With f, — Tiax O —Thin such that ||0,w(¢,)];2 — o0 as n — 00, where
(—Ttnins Tmax) 1s the maximal time interval, he mainly proved that X = ||w(z‘n)||5z4 / ||w(tn)||g(, satisfies
X3 — |wll?,X* 4+ 16{3(27)"**}3|lw||7, < 0, but this does not hold when [w||7, < 47. On the other
hand, Guo and Wu [2017] gave an a priori estimate directly for (1-10) by the sharp Gagliardo—Nirenberg
inequality (1-13). More precisely, they showed in [Guo and Wu 2017, Lemma 2.1] the inequality

||w||Lz)  8ymEW)|wll 2
27 lwli?,

and thus, ||8xw||i2 is bounded by P and & if ||w||i2 < 47 [Guo and Wu 2017, Lemma 2.2]. In our
variational argument, we do not use a contradiction argument, the gauge transformation like (1-9), or any

: (1-15)

P(w) = ku;(l -

sharp Gagliardo—Nirenberg inequality.
We give the global existence result in the threshold case by Theorem 1.2.

Corollary 1.4. Let 0 = 1. We assume that the initial data ug € H'(R) satisfies ||u0||i2 =4m. If P(ug) <O,
then the solution of (DNLYS) is global.

After submitting the present paper, Guo pointed out that Corollary 1.4 can be obtained by (1-15). We
also give the proof by (1-15) for the reader’s convenience.
The following corollary means that there exist global solutions with any large mass.

Corollary 1.5. Let o > 1. Given € H'(R), set the initial data as ug . = e'“/?*y. Then there exists
co > 0 such that, if ¢ > cg, then the corresponding solution u. of (gDNLS) is global.

Remark. The existence of blow-up solutions in finite time is still an open problem. It might be a very
interesting problem whether finite-time blow-up occurs when the initial data ug satisfies ||ug ||i2 =4n
and P (ug) > 0.

1C. Compare DNLS with mass-critical NLS. Equation (DNLS) is L?-critical in the sense that the
equation and L?-norm are invariant under the scaling transformation

]/zu(yzt, yx), y>0.

uy(t,x) =y
The same invariance holds for the quintic nonlinear Schrédinger equation in one-dimensional space:

idu+oju+ Zlul'u=0, (@t x)eRxR. (1-16)
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This equation has the same energy as (1-10). It is known that (1-16) is locally well-posed in the energy
space H'(R) and the solution is global if the initial data u satisfies ||uo||i2 < || Q||%2, where Q is the
ground state of the same elliptic equation (1-12). The condition ||u0||i2 < || Q||i2 is equivalent to the
condition obtained by the variational argument. In this argument, the momentum is not essential since
(1-16) is invariant under the Galilean transformation, and thus, we may assume that the momentum is zero.
On the other hand, (DNLS) is not invariant under the Galilean transformation. Therefore, the condition
by the variational argument is better than the assumption [|ug ||%2 < ||W ||%2 =47 . Indeed, the momentum

and the parameter ¢ play important roles in Corollaries 1.4 and 1.5.

1D. Idea of proofs. The proof of Theorem 1.1 is based on the method of Colin and Ohta [2006] (con-
centration compactness method). They characterized the solitary waves for w > ¢?/4 when o = 1 by the
Nehari functional / al):(c). However, in the case w = ¢?/4 and ¢ > 0, we cannot apply their argument directly
since the L?-norm in I 01)18 disappears by (1-6). Therefore, we introduce the new functional K, g’f for («, B)

L?°*2_norm instead of the L?-norm by using Kgf . That is why we

satisfying (1-8). We can use the
introduce the function space X, . as H'N L?**2 in the massless case (i.e., ® = ¢?/4 and ¢ > 0). Noting
that the solitary waves ¢, 4 . do not belong to L*(R) when o > 2, the function space X,, . is essential to
obtain the characterization of the solitary waves ¢ 2 4 .. Based on the argument of Colin and Ohta [2006],
we characterize the solitary waves ¢.2 /4 . by K;;‘;f . By the conservation laws and the characterization
of the solitary waves, we get an a priori estimate and thus obtain Theorem 1.2. The corollaries follow
from Theorem 1.2. In their proofs, the parameter ¢ plays an important role. More precisely, taking ¢ > 0
large, we get the corollaries. At last, we emphasize that we do not use the sharp Gagliardo—Nirenberg
inequality and we do not apply the gauge transformation to (gDNLS) since the equation after applying

the transformation is complicated unlike (DNLS).

Remark. Miao et al. [2017a] treated the case of o = 1. They considered (1-10) by using the gauge
transformation and defined the action by S, . := & +wM /2 4 ¢P/2. They applied a concentration
compactness argument to give the variational characterization of the solitary waves. Then, they use the
Nehari functional /C, . derived from the action S, . The explicit formula of C,, . is

. 2 3 6 2 . — 1 4
Kope(w) = 13w, — 21wl + wllw]2, +cRefRzaxwwdx +Lelw]s.

They defined
FE =9 € H'R) : 80.c(9) < Suvc @)y Kuve) Z 0},

and they also showed that ﬂafc are invariant under the flow of (1-10) and the solution to (1-10) is global

if wg € szfajf . for some (w, ¢). The functional Ky,  is useful to characterize the solitary waves ¢.2 4 . since

it contains L*-norm. Namely, one can use the Nehari functional by the gauge transformation. On the

other hand, we cannot use the Nehari functional when we do not apply the gauge transformation, and
. . o, B

thus, we introduce the new functionals K, ¢ .

The rest of the present paper is as follows. In Section 2A, we prepare some lemmas to obtain the
characterization of the solitary waves and prove the a priori estimate (see (2-2)). In Section 2B, we give
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the characterization of the solitary waves ¢.2 4 .. We remark that the characterization of the solitary waves
w.c for o > c2 /4 can be obtained in the same manner as in [Colin and Ohta 2006], and then we omit the
proof. Section 3 is devoted to the proof of Theorem 1.2 and the corollaries. In the Appendix, we show that
there is no nontrivial solution of the nonlinear elliptic equation (1-4) if w < ¢%/4, or @ = ¢?/4 and ¢ < 0.

2. Variational characterization of the solitary waves

2A. Preliminaries. We define function spaces
A = € X MOV S c() = puh, Kby =0},
Goc =1V € X0, \(0): 5, () = 0).
In this section, we prove the following proposition, which gives Theorem 1.1.
Proposition 2.1. Let (w, ¢) satisfy (1-5) and (o, B) satisfy (1-8). Then
MEE =Gy =™ T, (- —y):0€[0,27), y €R).
Indeed, Theorem 1.1 follows from Proposition 2.1 and the following properties:

X= //la‘ff — e Vixg e f%P

[ON
—(c/2)ix

WEY,, < ¢ we%,c,

where we note that §;),C(e_(c/2)ix¢) = e /Dixg! (@) holds.
To prove Proposition 2.1, we prepare some basic lemmas. We have the Gagliardo—Nirenberg-type
inequality.

Lemma 2.2. Let p > 1. We have the estimate

1A% < 21 £ 1175 5118 £ 2. 2-1)

Proof. By the Holder inequality,

Yo d
| f(x)[* = / - (fMIPP)dy
X

—0o0

_ / 201 F (PP Re(FO (05 1) () dy

—0oQ0

<2pllF PP L lde £l

2p—1
=2pl fII 219 £l 2

Taking the supremum, we obtain (2-1). U

We have the Lieb compactness lemma. See [Lieb 1983] for p = 2 and [Bellazzini et al. 2014a, Lemma
2.1] for more general setting.

Lemma 2.3. Let p>2andd eN. Let { f,,} be a bounded sequence in H! (RHNLP(R?). Assume that there
exists g € (p, 2*) such that limsup,_, .|| fullLe > 0. Then there exist {y,} and f € H'(RY)NLP(RY)\ {0}
such that { f,(- — y»)} has a subsequence that converges to [ weakly in H! (R?) N LP(RY).
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We have the Brézis—Lieb lemma [1983].

Lemma2.4. Letd eNand 1 < p < oo. Let { f,,} be a bounded sequence in LP (R?) and f, — f a.e. in RY.
Then

I fall 2o =W fu = FULs = NFUEs = O

If { £} is a bounded sequence in L*(R?) and f, converges to f weakly in L>(RY), then the statement with
p =2 holds.

A direct calculation gives us the following relation.

Lemma 2.5. We have

T =, ,3 2 ,3 ,3 2042
@20 +2)8y.(¥) = K, ﬁ(l/f)+ 5 [l 0x 1ﬁlleL(w—- ) ||¢||Lz 30 +2)||1/f||Lza++z-
(2-2)
We denote the difference o(20 + 2)§w,c(1ﬁ) — I?ff,f(w) by
Fa, _ 200+ 2 | 2200 P 2 Be 2042
JEE () = Tuaany +(w— ¢ )anan 200 1) ———— V1555

2B. Variational characterization. First we consider the case of @ =c¢?/4 and ¢ > 0. Then («, ) satisfies
20— B >0, 20+ 8 >0, B <O. (2-3)
Hereafter, we often omit the indices w, ¢, @, and g for simplicity.
Lemma 2.6. The following equality holds:
Gop.c = {ePe™ D", (- —x0) 100 € [0, 27), x0 € R}

Proof. Since e_(‘“/z)"x%),c satisfies §L’C(e_("/2)ix¢w,c) = e_("/z)"xS(’u’C(¢w,C) = 0, we have %,c )
{efPe=/Dixg (- —x0) : 6 € [0,2m), xo € R}. We prove %,C C fel%e(/ixg, (- —x0) 1 6 €
[0, 27), xo € R}. Letting ¥ € {%M and

® — | 1o *d
v = (x)exp( = +2/| W y)
then @ is a solution of
20 +1 _
—d"+ 1o d— ———|9* D @12 Im(®P )P = 0.
+ 5¢|P| (2U+2)2| [P + +1| | m(PP’)

Setting A(®) := 1c|®[** — (20 + 1)/ (20 +2))|®[* + (0/(0 4+ 1))|®|** 2 Im(P D), f :=Re P, and
g:=Imo,
f"=A@)f, g =A(D)g.

Therefore,

(fg' —ef) =fg"—gf" = fA(D)g—gA(D) f = A(DP) fg — A(®) fg =0.
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Since f, g € H'(R)N L?**2(R), we obtain fg’ — gf’ = 0. On the other hand, fg’ — gf’ =Re ® Im &’ —
Im ® Re &’ = Im(®P’). Thus, Im(®P’) = 0 for any x € R. Therefore, ® satisfies

20 +1

— —|®[* D =0. 2-4
(2a+2)2| | (2-4)

—CI)” + %C|¢|2(7q> _
Therefore, there exist 6y and xq such that ® = e"GOCDw,C( - —xp) since ®,, . is the unique solution of (2-4)
up to translation and phase (see the Appendix). This implies ¥/ (x) = e/?e /2% ¢, .(x — xo). O

Remark. According to [Colin and Ohta 2006], it looks natural to take the integral on the infinite interval
(—o00, x] in the gauge transformation as

Y(x) = @(x)exp(—ﬁ 1B (y)> dy).

However, in the massless case, it is not clear whether ¢ € %Nw,c belongs to L2’ (R). This is why we take
the integral on the finite interval [0, x] instead of (—oo, x].

Lemma 2.7. We have 9, . D //fof )

Proof. This is obvious if .# = &. We consider the case of .# # @. Let ¢ € .#. Since ¥ is a minimizer,
there exists a Lagrange multiplier n € R such that % W) = nE "(3). Then

0=K@) = (SW), :v " [izo) = n(K' W), 3,9 lh=0) = nd K WP ) =0,

where we remark that this is justified by a density argument. By a direct calculation, we obtain

o apy Qe o (R0 et B e (20 +2)a)
BAK(w)\ )|A=0 - ) ||axw||L2 2(20_ n 2) ||w”L2U+2 2—0 ) N(W)
_ —QRa—B)Roa+p) ) {2o +2)a + B}Bc 2542 ~
= 5 l0x¥ll72 + 200 12) V17252 + 2o +2)a K (¥)
<0,

where in the last inequality we use

20—B>0, 2a+B8>0, B<O, K@) =0.
Therefore, n = 0. This implies SZ)YC(I//) =0 and then ¢ € %,c. O
Lemma 2.8. We have %,C C //Z,‘ff lf//fof %+ J.

Proof. Let ¢ € 4. Then there exist 6p € [0, 2mr) and x¢ € R such that ¢ = ei9oe—(c/2)ix¢w’c(. —Xxp) by
Lemma 2.6. If .4 # &, then we can take ¢ € M. By Lemmas 2.6 and 2.7, there exist 6; € [0, 27) and
x1 € R such that ¢ = e/®¢=©/Dixg (. —x)). Thus, Sp (V) = Sp.c(Po.c) = So.c (@) = .. Moreover,
we have K (¥) = (8, .(4), 995" [1=0) = 0. O

Lemma 2.9. We have .42 + o.

To prove this lemma, we show the following proposition.
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Proposition 2.10. Let {{,},en C Xy ¢ satisfy
Swc(n) = uih and  KGL,) — 0.
Then there exist {y,} C Rand ¢ € %g:c such that {yr,(- — yn)} has a subsequence which converges to
strongly in X, ..
To prove this proposition, first, we prove the following lemma.
Lemma 2.11. We have n&” > 0.

Proof. We recall that ,ufi'f = inf{gw,c(l//) Y€ Xo.e \ {0}, ng(t/f) =0}. By (2-2), it is trivial that pu > 0.
We prove 1 > 0 by contradiction. We assume that ;4 = 0. Taking the minimizing sequence {y,,} C X, ¢,
i.e., S(¥n) — w=0and K(y,) = 0, we have [|3,¥,]12, — 0 and [, 3,73 — 0 by (2-2) and (2-3).
Then, by using (2-1) with p = (o +2)/2, we get || ¥, ||L~ — 0 as n — oco. By using

—N@) = —[10:¥1l7. — HIWI553 + 109 + il P ¥ 117

we obtain
R =22 Phoplz. + {(2"2;?;)‘_ ;’3 222 — N ()
= —LBla Yl + {(2(;(+2§>i;,s}c 1alP%22 — Ll 82 + s + Si1al2 021
> {(2“2:;?1 ;L)ﬂ 222 — Ll o2
> “ﬁ;;?j‘_ ;)’3 22 — La g P22 I 2%
> ({(2“2(25);‘::)’3 e ia||wn||i%o>||wn||i‘;:%
> 0,

for large n € N since ||, ||z~ — 0 as n — oo. However, this contradicts K (W) =0forallneN. 0O

Proof of Proposition 2.10. We take {y,} C X,, . such that ga),c(lﬂn) — ,uz)’z and I?gif(wn) — 0. Then,
{¢,} is a bounded sequence in X, . by (2-2).

Step 1. We prove limsup,,_, o, || ¥ || 40+2 > 0 by contradiction. We suppose that lim sup,,_, . ||V || p40+2 =0.

Since
{20 +2)a + Blc 2642

0« K@) = —1Blacynll, + 0032y nlis — [l ¥ 753,

we obtain [|d, ¥, |7, — 0 and ||, ||i‘§f+22 — 0as n — oo. By (2-2), we get S(y,,) — 0. This contradicts
u > 0.

Step 2. Since {1,} is bounded in X,, . = H'(R)NL>*+2(R) and limsup, , . [l 40+2 > 0, by applying
Lemma 2.3 with f, =,,d =1, and p =20 42, there exist {y,} and v € X,, . \ {0} such that {¢,,(- —y,)}
(we denote this by v,) has a subsequence that converges to v weakly in X, ..
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Step 3. We show

IA(J(vn)—IA(J(v—vn)—IA(J(v)—>O as n — oo. (2-5)
We note that
~ {2o +2)a + B}c - o . -
K@) =—3Bllocv 7.+ 113553 = el w353 + alldvy + Sily P ¥ l7.. (2-6)

220 +2)
for any ¢ € X,, .. Since v, converges to v weakly in X, ., we have v, — v a.e. in R. Therefore, by
Lemma 2.4, we have ||v,,||’£,, — v, — vlllL’,, - ||v||€,, — 0 for 20 +2 < p < co. Moreover, setting

Wy i= 0xVp + 31|Vl vy  and  w =3 v+ 3i[v|*7v,

wy, converges to w weakly in L2(R). Indeed, it is obvious that 9,v, — 9,v in L2(R) and we have, for
any f € C(R),

fR F ) (0 ()0, (x) — [0 ()| v(x)) dx

5/ f|f<x>|<|vn<x)|2"+|v(x)|2“>|vn<x)—v(x)|dx
supp

5/ v, (x) —v(x)|dx — 0,
supp f

where we use the Holder inequality, the fact that {v,} is bounded in L*°(R), and the compactness of
the embedding H' () N L2 +2(Q) — H(Q) — L?() for a bounded domain 2 C R and 1 < p < oo.
Thus, w, converges to w weakly in L>(R). Therefore, by (2-6), we get (2-5).

Step 4. We prove (20 +2)u < f(xp) if E(W) < 0. By the definition of wu,

poh = inf(J2P () : ¢ € Xo. e \ {0}, K2P () = 0). 2-7)

oa(2o +2)

If ¥ € X, . satisfies I’Z(l//) < 0, then there exists A9 € (0, 1) such that E(kow) = 0 since E(M[/) > 0 for
small A € (0, 1). Therefore, we have a (20 +2)u < f()»mﬂ) < f(W).

Step 5. We prove K (v) <0 by contradiction. We suppose K (v) > 0. Since K (v,) — 0 and (2-5) hold,
E(U—Un) — —E(v) < 0.

This implies that K (v —v,) < 0 for large n € N. Therefore, by Step 4, we get (20 +2)u < J (v—uy)
for large n € N. By the same argument as in Step 3,

j(vn)—f(v—vn)—j(v)—>0 as n — oo.

Therefore, we get f(v) = lim,Hoo(JN(vn) — j(v —v,)) < 0 since we have j(vn) — o (20 +2)u by the
definition of J and K (vy) — 0. By Step 2, we have v # 0 and then J(v) > 0. This is a contradiction.

Step 6. We prove that v belongs to .. By (2-7) and the weakly lower semicontinuity of J, we obtain
ao +2)u < j(v) < liminff(vn) =ao +2)u.
n—oo

Thus, J (v) = ¢(20 + 2)p and v, converges to v strongly in X,, .. Therefore, we get §(v) = and
K (v) =0 by Steps 4 and 5. 0
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Therefore, we obtain Proposition 2.1 when w = ¢?/4 and ¢ > 0.

The case of w > ¢?/4 is much easier. Indeed, we can obtain Proposition 2.1 by the same argument as
in the case w = ¢2 /4 and ¢ > 0 by using L*(R) instead of L?*T2(R). See also [Colin and Ohta 2006],
where the statement only for the Nehari functional K Y is obtained. Thus, we omit the proof.

3. Global existence

In this section, we show Theorem 1.2.

Proof of Theorem 1.2. Let ug belong to #2F. First, we consider the case that K2 (1) = 0. Then,
uo =0 or ug = e!%¢,, .(- — x¢) by Theorem 1.1. By the uniqueness of solution to (gDNLS), we have
u(t) =0 or u(t) = e®ei® ¢, .(x — ct — xo), respectively. This implies that K& (u(z)) = 0 for all time.
This means that u(z) € %‘f’cﬁ "+ for all time. Next, we consider the case that ng’f (uo) > 0. We suppose
that there exists a time  such that K&? (u(#)) < 0. Then there exists 7, such that K& (u(t,)) = 0 by the
continuity of the flow. By the above argument, Kgf (u(t)) =0 for all time. This is a contradiction. Thus,

u(t) belongs to .7, ¢ 2% for all time. When ug belongs to 7, ¢ B , the same argument implies that u(¢)
o,B,+

belongs to .7, ¢ A= for all time. Next, we prove that the solutlon is global if ug € %, . Then, since
200+ 8 —B Bc
€20 +2)S0.0(9) =KL (@) + = 99— 3ciplj+(@— 3¢ y20e—hb lpll,— muwni‘éﬁ
(3-1)

and Ky, f (u(t)) > 0 for all time ¢, we have that ||d,u(t) — cm(t)ll is uniformly bounded. Therefore,
0xue (D)1 12 < 1051t (r) — sciu(@) |2+ 5lcllu@)| 2 < C+ 5lellluol 22,

for some positive constant C independent of 7. This boundedness and the conservation law of the L?-norm
imply that u is global in time. (|

We give proofs of Corollaries 1.3, 1.4, and 1.5. Direct calculations imply the following lemma (see
[Colin and Ohta 2006] for the details).

Lemma 3.1. Let 0 = 1 and (w, c) satisfy (1-5). Then, we have the relations
2Jw+c
2Jo—c’
P(¢w,c) =2vV4w — C2»

E($o,c) = —3cV 40 — 2.

M(¢o.) = 8tan”'

In particular,

2
Sa),c(¢w,c) =4w tan_l 2? C\/m
— C

Remark. When o = 1, we have M (.24 ) =47, P(¢e2/4,.) =0, and E(¢2/4 ) = 0 for all ¢ > 0 by
Lemma 3.1. On the other hand, if M (¢) =4, P(¢) =0, and E(¢) <0, then ¢p(x) = e"eoqﬁcg/‘kco (x — x9)
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for some 0y € R, xg € R, and ¢y > 0. Indeed, M (¢p) =4, P(¢) =0, and E(¢) <0 imply that

2 agia+ 2P +ﬂ—||¢||L4

02/4 C(¢)

Slnce K% 2/4 (¢) < O for small ¢ > 0 and K% 2/4 (p) —> 400 as ¢ — oo, there exists ¢y > 0 such that
2 / 4o (¢) 0. Therefore, Theorem 1.1 implies that ¢ (x) = ei9°¢c(z) /4.¢0 (x — xp). Note that this means
that there is no function satisfying M (¢) = 4m, P(¢) =0, and E(¢) < 0.

First, we prove Corollary 1.3.

Proof of Corollary 1.3. Let ug satisfy ||u0||i2 < 47. The statement is trivial if vy = 0. We assume that
ug # 0. Since [|uol|7, < 47,

Se2 /4.0 (o) = E(uo) + 5> uoll?> + 1e P(uo) < 7 /2,

for sufficiently large ¢ > 0. Moreover, since ||u0||%2 # 0,

-8 —Bc —B Be
18.uoll72 + 7 —||u0||Lz 2 cP(uo) + ?Huoll}‘} — N (uo)

— 00 asc— 00, (3-2)

2/4 C(”O)

for any («, B) satisfying (1-8). Thus, K% Y 4 (up) > 0 for large ¢ > 0. Thus, there exists ¢ > 0 such that

K 2;3“(140) >0and Sp2 /4 .(uo) <c 277 /2, where we note that K24, =C 27 /2 by Lemma 3.1 when o = 1.
By Theorem 1.2, the solution u is global. |

Secondly, we give a proof of Corollary 1.4 by Theorem 1.2.

Proof of Corollary 1.4. Let ug satisfy ||uo||i2 =4 and P(up) < 0. We recall that u.2 /4 . = c>m/2 by
Lemma 3.1 when o = 1. Since P (up) < 0, we have, for large ¢ > 0,

Se2/a.c(0) = E(uo) + 2¢*m + ScP(uo) < p2ja -

On the other hand, because 2a — 8 > 0 and ||uo||i2 # 0, we obtain (3-2). Thus, K% 2/4 (up) > O for large
¢ > 0. This means that the assumption in Theorem 1.2 holds for sufficiently large c¢. This implies that u
is global. U

We give another proof. This is due to [Guo and Wu 2017].
Another proof of Corollary 1.4. We have

9’

P = tuun;(l _ ”“”U)  BYTEW)ul:

27 luelld,

applying the gauge transformation u = w exp(—%i ffoolw(y)|2 dy) to (1-15). See [Guo and Wu 2017,
Lemma 2.1] for the proof of (1-15). When ||u0||%2 =4 and P (up) < 0, we get
83/7 E (uo) |luo | .2

4
lu@®ll;. < P Gio)| . (3-3)
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Therefore, by the Holder inequality, the Gagliardo—Nirenberg inequality, and the Young inequality,
19xu (1) 172 = 2E (o) + 5 Re / ilu(r, x)Pult, x)d5u(t, x) dx
R

< 2E(uo) + 5[ u@® 6 [19:u (1) | 2
< 2E(uo) + Cllu@® 1,5 10, ®1,%
<2E(uo) + Cllu®)]3s + 3 10xu(®)]7,.
This inequality and (3-3) give an a priori estimate, and thus, the solution is global. U

At last, we prove Corollary 1.5.
Proof of Corollary 1.5. Let o > 1. Since ug . = /2™y,

Se2yac(W0.0) = Sz 4. (W)

1 2 2042
=19 N
s0x ¥l + 2(2 D) o Vs — Y (¥)

I+ "S1/4 1(@1/4,) = Se/a.c (D240
K&, (0o = K, ()

2a /8 {20 +2)a+Blc, 2512

19117 + 300 12) 1117202 —aN ()

ZO’

for large ¢ > 0. By Theorem 1.2, therefore, the solution u, with the initial data ug . is global for large
c>0. U

Appendix: Uniqueness and nonexistence

We prove the uniqueness of the massless elliptic equation.
Proposition A.1. Let 1 < p < g <o00,a > 0, and b > 0. Assume there exists a nontrivial solution in
H'(R) N LPtY(R) of the equation

—¢" +alpl” 9 —blpl" 9 =0 (A-1)
in the distribution sense. Then there exist 6y € [0, 2m) and x¢ € R such that ¢ = em‘)w( - — X0), where
is the unique positive, even, and decreasing function which satisfies (A-1).

Proof. Since alp|?~ 1o — bl 1y belongs to L?*(R), we obtain ¢ € H 2(R). A bootstrap argument gives
us that ¢ € H3(R). By the Sobolev embedding, ¢ € C2(R) and ¢ satisfies the equation in the classical
sense. Multiplying the equation by ¢’ and integrating on (—o0, x), we obtain

RPN a P+l b g+1
—1 = . —0. A2
2l (0| » 1|§0()C)| p 1|§0()C)| (A-2)

We write ¢ = pe'?, where p > 0 and p, 0 € C*(R). It is easily seen that 6 = 6y for some 6y € [0, 27).
Since p € LP*1(R), there must exist xo € R such that p’(xg) = 0. By (A-2), p(x9) = ¢, where c¢977 =
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(a(g + 1))/(b(p + 1)). Let ¢ be the real-valued solution of (A-1) such that 1/ (0) = ¢ and v'(0) = 0.
Using the uniqueness of the ordinary differential equation, we can deduce that ¢ = ¢'®y (- —xg). O

We prove the nonexistence of a nontrivial solution to the nonlinear elliptic equation (1-4) in the case
w < c? /4, or v = 2 /4 and ¢ < 0. See [Berestycki and Lions 1983, Theorem 5] for the necessary
and sufficient condition for the existence of nontrivial solutions to more general second-order ordinary
differential equations.

Proposition A.2. Let 1 < p, g < 0. If ¢ € H'(R) satisfies
" +wp+alplP Lo —ble|? Lo =0 in the distribution sense,
where a, b € R and w < 0, then we have ¢ = 0.

Proof. By a usual bootstrap argument [Cazenave 2003, §8], we have ¢ € H>(R). We get ¢ € C*(R) by
the Sobolev embedding. Therefore, ¢’'(x) — 0 and ¢(x) — 0 as |x| — oo. Multiplying the equation
by ¢ and integrating on (—oco, x), we obtain

— 1o ) * + Sole(x))| +_|¢(x),p+1 —?Iw(X)Iq“ =0. (A-3)
Since ¢(x) — 0 as |x| — oo, we get
b
lolp@)* + jwu)v’“ — ?w(x)w“ <0 for some x
or

lo(x)|=0 for some x.

In the former case, we obtain |¢’(x)| < 0 by (A-3). This is a contradiction. In the latter case, we obtain
l¢’(x)] = 0 by (A-3). By the uniqueness of the ordinary differential equation, we get ¢ = 0. 0

By the same argument as in the proof of Proposition A.2, we obtain the nonexistence of a nontrivial
solution to the nonlinear elliptic equation (1-4) when w = ¢?/4 and ¢ < 0 as follows.

Proposition A.3. Let 1 < p, g < co. If ¢ € H'(R) N LPTY(R) satisfies
—¢" —alp|” Yo —blp|? Y9 =0 in the distribution sense,

where a > 0 and b > 0, then we have ¢ = 0.
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LOCAL DENSITY APPROXIMATION FOR THE ALMOST-BOSONIC ANYON GAS

MICHELE CORREGGI, DOUGLAS LUNDHOLM AND NICOLAS ROUGERIE

We study the minimizers of an energy functional with a self-consistent magnetic field, which describes a
quantum gas of almost-bosonic anyons in the average-field approximation. For the homogeneous gas we
prove the existence of the thermodynamic limit of the energy at fixed effective statistics parameter, and
the independence of such a limit from the shape of the domain. This result is then used in a local density
approximation to derive an effective Thomas—Fermi-like model for the trapped anyon gas in the limit of a
large effective statistics parameter (i.e., “less-bosonic” anyons).
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1. Introduction

A convenient description of two-dimensional particles with exotic quantum statistics (different from
Bose-Einstein and Fermi—Dirac) is via effective magnetic interactions. We are interested in a mean-field
model for such particles, known as anyons. Indeed, in a certain scaling limit (“almost-bosonic anyons”, see
[Lundholm and Rougerie 2015]), a suitable magnetic nonlinear Schrodinger theory becomes appropriate.
The corresponding energy functional is given by

E4Mul == fRz(|(—iv+ﬂA[|u|2])u|2+V|u|2), (1-1)

acting on functions u € H'(R?). Here V : R> — R™ is a trapping potential confining the particles, and
the vector potential A[|u|?]: R> — R? is defined through

Alo] :=V%iwgxo, wo(x):=log|x], (1-2)
for 0 = |u|?> € L'(R?) and x* = (x, y)* := (—y, x). Thus, the self-consistent magnetic field, given by
curl Alo](x) = Awg * o(x) = 2mo(x),

MSC2010: 35Q40, 81V70, 81S05, 46N50.
Keywords: mean-field energy, anyons, fractional statistics, Thomas—Fermi theory, magnetic Schrodinger operator.
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is proportional to the particles’ density. The parameter 8 € R then regulates the strength of the magnetic
self-interactions and, for reasons explained below, we will call it the scaled statistics parameter. By
symmetry of (1-1) under complex conjugation u — & we may and shall assume

=0

in the following. We will study the ground-state problem for (1-1), namely the minimization under the

mass constraint

lu>=1. (1-3)
IRZ

The functional £ bears some similarity with other mean-field models such as the Gross—Pitaevskii
energy functional

ECPLu] = /2(|—iVu—|—Au|2+V|u|2—|—g|u|4), (1-4)
R

with fixed vector potential A. The above describes a gas of interacting bosons in a certain mean-field
regime [Lieb et al. 2005; Lieb and Seiringer 2006; Nam et al. 2016; Rougerie 2014; 2015]: the quartic
term originates from short-range pair interactions. The crucial difference between (1-1) and (1-4) is that,
while the interactions of £6P are scalar (with interaction strength g € R), those of £ are purely magnetic
and therefore involve mainly the phase of the function u. There is extensive literature dealing with (1-4)
(see [Aftalion 2007; Correggi et al. 2011; 2012; Correggi and Rougerie 2013]) and with the related
Ginzburg-Landau model of superconductivity [Bethuel et al. 1994; Fournais and Helffer 2010; Sandier
and Serfaty 2007; Sigal 2015]. That the interactions are via the magnetic field in (1-1) poses however
quite a few new difficulties in the asymptotic analysis of minimizers we initiate here. Note indeed (see the
variational equation in Lemma A.2) that the nonlinearity consists in a quintic nonlocal semilinear term
and a cubic quasilinear term (also nonlocal), both being critical when compared to the usual Laplacian.

The functional £ arises in a mean-field description! of a gas of particles whose many-body quantum
wave function can change under particle exchange by a phase factor ¢/ (with & € R known as the
statistics parameter). This is a generalization of the usual types of particles: bosons have o« = 0 (symmetric
wave functions) and their mean-field description is via models of the form (1-4), and fermions have o« = 1
(antisymmetric wave functions) and appropriate models for them are Hartree—Fock functionals (see [Bach
1992; Lieb and Simon 1977; Lions 1987; 1988; Fournais et al. 2015]). For general « one speaks of anyons
[Khare 2005; Myrheim 1999; Ouvry 2009; Wilczek 1990], which are believed to emerge as quasiparticle
excitations of certain condensed-matter systems [Arovas et al. 1984; Haldane 1983; Halperin 1984; Zhang
et al. 2014; Cooper and Simon 2015; Lundholm and Rougerie 2016].

Anyons can be modeled as bosons (respectively, fermions) but with a many-body magnetic interaction
of coupling strength « (respectively, @ — 1). It was shown in [Lundholm and Rougerie 2015] that the
ground-state energy per particle of such a system is correctly described by the minimum of (1-1) (and the
ground states by the corresponding minimizers) in a limit where, as the number of particles N goes to oo,
one takes @ = B/N — 0. We refer to this limit as that of almost-bosonic anyons, with 8 determining how
far we are from usual bosons.

1Usually referred to as an average-field description in this context.
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In the following we treat the anyon gas as fully described by a one-body wave function u € H'(R?)
minimizing (1-1) under the mass constraint (1-3). We shall consider asymptotic regimes for this mini-
mization problem. The limit 8 — 0 is trivial and leads to a linear theory for noninteracting bosons (see
[Lundholm and Rougerie 2015, Appendix A]). The limit 8 — oo is more interesting and more physically
relevant: in a physical situation, the statistics parameter « is fixed and finite and N large, so that taking
B — oo is the relevant regime, at least if one is allowed to exchange the two limits.

In an approximation that has been used frequently in the physics literature [Chitra and Sen 1992; Iengo
and Lechner 1992; Li et al. 1992; Trugenberger 1992a; 1992b; Wen and Zee 1990; Westerberg 1993], the
ground-state energy per particle of the N-particle anyon gas with statistics parameter « is given by

Eo(N)
N
This relies on assuming that each particle sees the others by their approximately constant average magnetic

field B(x) ~2maNo(x), with o(x) > 0 the local particle density (normalized to fRz o =1). In the ground
state of this magnetic field (the lowest Landau level) this leads to a magnetic energy |B| ~ 2 |«|N o per

@/Rz(zmawg%v@). (1-5)

particle.?

In this work we prove that, for large 8, the behavior of the functional (1-1) is captured at leading
order by a Thomas—Fermi-type [Catto et al. 1998; Lieb 1981] energy functional of a form similar to the
right-hand side of (1-5) with |@|N = 8. The coupling constant appearing in this functional is defined via
the large-volume limit of the homogeneous anyon gas energy (i.e., the infimum of (1-1) confined to a
bounded domain with V = 0). In particular we prove that this limit exists and is bounded from below by
the value 27 predicted by (1-5). We do not know the exact value, but there are good reasons to believe
that it is not equal to 2, thus refining the simple approximations leading to (1-5).

We state our main theorems in Section 2 and present their proofs in Sections 3 and 4. The Appendix
recalls a few facts concerning the minimizers of (1-1). In particular, although we do not need it for the
proof of our main results, we derive the associated variational equation.

2. Main results

We now proceed to state our main theorems. We first discuss the large-volume limit for the homogeneous
gas in Section 2A and then state our results about the trapped anyons functional (1-1) in Section 2B.

2A. Thermodynamic limit for the homogeneous gas. Let Q@ C R? be a fixed bounded domain in R?,
with the associated energy for almost-bosonic anyons confined to it:

E8Tul = £&F y[u] ;=/Qy(—iv+ﬁA[|u|2])u 2 (2-1)
with
Allu*1(x) = /Q V4w (x — y)lu(y))* dy. (2-2)

2Because of the periodicity of the exchange phase €7 it is known that such an approximation can only be valid for certain

values of « and p. See [Larson and Lundholm 2016; Lundholm 2016; Trugenberger 1992b] for further discussion.
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We define two energies, with homogeneous Dirichlet boundary conditions

Eo(Q, B. M) :=inf{€ 4lul : u € Hy(Q), [q |ul* =M}, (2-3)
and without boundary conditions,

E(Q,B, M) = inf{ggfﬁ[u] tue H(Q), [y lul?=M}. (2-4)

Of course, the last minimization leads to a magnetic Neumann boundary condition for the solutions. We
are interested in the thermodynamic limit of these quantities, i.e., the scaling limit in which the size of
the domain tends to oo with fixed density p := M /|2| and the normalization changes accordingly.

Theorem 2.1 (Thermodynamic limit for the homogeneous anyon gas).
Let Q@ C R? be a bounded simply connected domain with Lipschitz boundary, and let B > 0 and p > 0 be
fixed parameters. Then, the limits

E(LQ, B, pL?|R)) _ iy BoS2. B, pL?|S2])

= li 2-5
¢(p. p):= lim L219] P 1219 (2-3)

exist, coincide and are independent of 2. Moreover,
e(.p) = pp’e(1. 1). (2-6)

Remark 2.2 (Error estimate).

A close inspection of the proof reveals that we also have an estimate of the error appearing in (2-5), which
coincides with the error appearing in the estimate of the difference between the Neumann and Dirichlet
energies in a box (Lemma 3.8). Such a quantity is expected to be of the order of the box’s side length
L, which is subleading if compared to the total energy of order L% Our error estimate O (L'%*/77%) (see
(3-26)) is however much larger and far from being optimal. o

The above result defines the thermodynamic energy per unit area at scaled statistics parameter 5 and
density p, denoted e(f, p), and shows that it has a nice scaling property. The latter is responsible for the
occurrence of a Thomas—Fermi-type functional in the trapped anyons case. The fact that e(8, p) does not
depend on boundary conditions is a crucial technical ingredient in our study of the trapped case. This
is very different from the usual Schrédinger energy in a fixed external magnetic field, for example, a
constant one, for which the type of boundary conditions do matter (see, e.g., [Fournais and Helffer 2010,
Chapter 5]).

The constant e(1, 1) will be used to define a corresponding coupling parameter below. One may
observe that (see Lemma 3.7)

e(1,1) = 2m, (2-7)

and we conjecture that this inequality is actually strict, contrary to what might be expected when comparing
to the coupling constant of the conventional (constant-field) average-field approximation (1-5). The reason
for this is that the self-interaction encoded by the functional £ has not been fully incorporated in (1-5).
In fact, the lower bound (2-7) is based on a magnetic L*-bound (Lemma 3.2) which is saturated only for
constant functions, and hence for constant densities, which certainly is compatible with (1-5) in the case
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of homogeneous traps. On the other hand, in order to minimize the magnetic energy in (2-1) for large 8,
the function has to have a large phase circulation and therefore also a large vorticity. This suggests the
formation of an approximately homogeneous vortex lattice, in some analogy to the Abrikosov lattice that
arises in superconductivity and in rotating bosonic gases [Aftalion 2007; Correggi and Yngvason 2008;
Sandier and Serfaty 2007]. Such a picture has already been hinted at in [Chen et al. 1989, p. 1012] for
the almost-bosonic gas. However the implication that the actual coupling constant may then be larger
than the one expected from (1-5) seems not to have been observed in the literature before.

One should note here that there is a certain abuse of language in using the term “thermodynamic limit”.
Indeed, we consider the large-volume behavior of a mean-field energy functional, and there is no guarantee
that this rigorously approximates the true thermodynamic energy of the underlying many-body system.

2B. Local density approximation for the trapped gas. We now return to (1-1) and discuss the ground
state problem

EY :=min{&Tul:u € H'(R?), VIu|*> € L'®?), [p u]*=1}. (2-8)
We denote by u* any associated minimizer. We refer to the Appendix (see also [Lundholm and Rougerie

2015, Appendix A]) for a discussion of the minimization domain as well as the existence of a minimizer.
In the limit 8 — oo, the simpler Thomas—Fermi-like functional

£™lg1=&fTle)i= [ (Be(1. D>+ V) (2-9)
R
emerges, whose ground-state energy we denote by
E;" :=min{&; 0] : 0 € L’ (R*: RT), Vo e L'R?), o0 =1}, (2-10)

with associated (unique) minimizer QEF. Here e(1, 1) is the fixed, universal constant defined by Theorem 2.1.

A typical potential one could have in mind for physical relevance is a harmonic trap, V (x) = c|x|% or
an asymmetric trap, V(x, y) = x> +cy yz. We shall work under the assumption that V' is homogeneous
of degree s and smooth:

V(ax) =AV(x), VeC®R?. (2-11)

These conditions can be relaxed significantly; in particular we could extend the approach to asymptotically
homogeneous potentials as defined in [Lieb et al. 2001, Definition 1.1]. We refrain from doing so to avoid
lengthy technical discussions in the proofs. We shall always impose that V is trapping in the sense that it
grows superlinearly at infinity, i.e., s > 1 and

min V(x) > oo as R — oo. (2-12)
|x|=R

The Thomas—Fermi (TF) problem (2-10) has the merit of being exactly soluble. We obtain by scaling
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and by an explicit computation

01" () = o A = V@), (2-14)
with the chemical potential
AMF=E +e, 1)/Rz(ngF)2. (2-15)
Clearly the above considerations imply
supp(eg") C Bgiew (0), (2-16)

where Bg(x) stands for a ball (disk) of radius R centered at x, and the estimates
o Nl ey < CBYCH, IVOIF |l ooy < B/ @17

for some fixed constant C > 0. Noticing that QITF vanishes along a level curve of the smooth homogeneous
potential V, we also have the nondegeneracy

18, V| #0 a.e.on dsupp(o]), (2-18)

where n denotes the (say outward) normal vector to d supp(o]").
We have the following result showing the accuracy of TF theory to determine the leading order of the
minimization problem (2-8):

Theorem 2.3 (Local density approximation for the anyon gas).
Let V satisfy (2-11) and (2-12). In the limit B — 00 we have the energy convergence

EY
GJim BT~ 1. (2-19)

Moreover, for any function u® achieving the infimum (2-8), with o™ := |u™|?, we have for any R > 0

| B @9 g1/ ) Ly -0 asB—0, (2-20)

TF
or | W=L1(Bg(0))
where W11 (Bg(0)) is the dual space of Lipschitz functions on the ball Bg(0).
Remark 2.4 (Extension to more general potentials).
The result can be straightforwardly extended to asymptotically homogeneous potentials, i.e., functions
V (x) that satisfy the following property [Lieb et al. 2001, Definition 1.1]: there exists another function v,
nonvanishing for x # 0, such that, for some s > 0,
. ATV (Ow) = V(x)
lim =

= 0 (2-21)
hmee 14 V)

uniformly in x € R% The function Vis necessarily homogeneous of degree s > 0 and, if we denote by g,g
the TF functional (2-9) with Vin place of V, we have

E;F = (1+0(1))E§F and EgF :,BS/(HZ)E]TF as B — oo. o



LOCAL DENSITY APPROXIMATION FOR THE ALMOST-BOSONIC ANYON GAS 1175

Remark 2.5 (Density approximation on finer length scales).

We conjecture that the estimate (2-20) can be improved to show that o is close to QEF on finer scales.
Namely (2-20) implies that they are close on length scales of order 8!/*+%) which is the extent of the
support of Q};F, but we expect them to be close on scales > /6 +2) which is the smallest length
scale appearing in our proofs. We however believe that the density convergence cannot hold on scales
smaller than 8~*/C6+2) for we expect the latter to be the length scale of a vortex lattice developed by
minimizers. o

Remark 2.6 (Large 8 limit for the homogeneous gas on bounded domains).

We can think of the homogeneous gas by formally taking the limit s — oo of the homogeneous potentials
we have considered so far, which naturally leads to the restriction of the functional £ af in (1-1) to bounded
domains 2 with V = 0 and Dirichlet boundary conditions, that is, (2-1)—(2-3). In fact, we have by the
scaling laws discussed in Section 3B,

E(2,p,1 . Eo(2,B8,1 _

lim ECLAD _ lim M:m Ye(1, 1) (2-22)
B—+oo B B——+0o0 B

for any bounded and simply connected €2 with Lipschitz boundary. Convergence of the density to the TF

minimizer o]F holds true in the same form as in (2-20). In this case o]" is simply the constant function

on the domain (confirming that the gas is indeed homogeneous). The shortest length scale on which we

1/2

expect (but cannot prove) the density convergence is 8~ /4, which should be the typical length scale of

the vortex structure. <

3. Proofs for the homogeneous gas

The basic ingredient of the proof for the inhomogeneous case is the understanding of the thermodynamic
limit of the model where the trap is replaced by a finite domain with sharp walls. We discuss this here,
proving Theorem 2.1 and defining the constant e(1, 1) appearing in the TF functional (2-9). For the sake
of concreteness we first set

Eo(LQ, B, pL?|)
L2|Q|

e(B, p) = liLrninf (3-1)

for Q2 equal to a unit square and observe that such a quantity certainly exists and is nonnegative. At this
stage it might as well be infinite but we are going to prove that actually the limit exists, is finite, and
furthermore is independent of the domain shape.

We briefly outline here the plan for the proof: Section 3A contains basic technical estimates that we
are going to use throughout the paper. Section 3B contains the proof of a crucial scaling property of the
energy in the homogeneous case. In Section 3C we prove the existence of the thermodynamic limit for
the case of squares, and then extend the result to general domains.

3A. Toolbox. Let us gather a few lemmas that will be used repeatedly in the sequel. We start with a
variational a priori upper bound confirming that the energy scales like the area. The idea of the proof,
relying deeply on the magnetic nature of the interaction, will be employed again several times.
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Lemma 3.1 (Trial upper bound).
For any fixed bounded domain 2, and 8, p > 0, there exists a constant C > 0 such that
E(LQ, B, pL?|QD) _ Eo(LR, B, pL2|R))
L? N L2
Proof. Since H(} (RQ) € H'(Q), it is trivial that the Dirichlet energy is an upper bound to the Neumann

<C, forallL>1.

energy. Let us then prove the second inequality.

We fill the domain L with N ~ L? subdomains on which we use fixed trial states with Dirichlet
boundary conditions. The crucial observation is that the magnetic interactions between subdomains can
be canceled by a suitable choice of phase (local gauge transformation). For concreteness we here take
disks as our subdomains.

Let f € C°(B1(0); RT) be a radial function with fBl(O) |f|2 =1, and let

uj(x) 1= Joy f(x —x;) € C°(Bj), oy :=pL*Q|/N.
Here the points x;, j =1,..., N, are distributed in L2 in such a way that the disks B; := Bj(x;) are
contained in L2 and disjoint, with N ~ ¢|L€2| as L — oo for some ¢ > 0. Hence
lim wy =p/c.
N—o0
Take then the trial state
N

w(x) =Y uj(x)e PN Liz MEETXD € C2(LQ).
j=1

Note that its phase is smooth on each piece B; of its support and that

N 2
) > |[luj(x)|* forx € B;,
X = i (X =
|u(x)] ,§:1:Iuj( )| {0 otherwise,

and hence
f ul* = Noy = pL?|Q].
LQ
Then

N
£ plul =Z/ (=i V + BN Allug 1) e oy Xy 230, (x| dx
=175
- 2
ZZ/ [(=iV + BALIu; "1+ Xz (BAlluk |1 — Bon V arg(x — xp)) Ju;j (x)|” dx
=175

N
:Z/B|(—iV+ﬁA[|uj|2])uj|2:Nwa |(—iv+ﬂwNA[|f|2])f|2,
j=1"Pi

B1(0)

where we used that by Newton’s theorem [Lieb and Loss 2001, Theorem 9.7]

A[|uk|2]<x>=va In|x — yllux(WIPdy = VEIn|x —xi| [ |ugl*dy = oV arg(x — xy)
B By
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for x ¢ By. It then follows that
2 af 2 2 2
Eo(LS, B, pL*|2) < €3 4lu) < Non (IIV £1l2 + Bon | AL FP1f] )" < CL
for some large enough constant C > 0 independent of N or L (but possibly depending on 8, p and €2). [
The following well-known inequalities provide useful a priori bounds on the functional’s minimizers:

Lemma 3.2 (Elementary magnetic inequalities).
Diamagnetic inequality: for any B € Rand u € Hl(Q),

/Q|(V+i,3A[|u|2])u|2>/Q|V|u||2. (3-2)

Magnetic L* bound: for any B € R and u € HO1 (2),

fQ|(V+i,BA[|u|2])u|2 > 271|,8|f9 Jul. (3-3)

Proof. The diamagnetic inequality is, e.g., given in [Lieb and Loss 2001, Theorem 7.21], while the
L* bound follows immediately from the well-known inequality

/}(V-i—iA)u]z > i/ curl A |ul>, ue H(Q); (3-4)
Q Q

see, e.g., [Fournais and Helffer 2010, Lemma 1.4.1].
A proof of (3-4) is to integrate the identity
[(V+iA)ul> = (@ +iA) £i(d +iA2))u|2 +curl J{ul+A-V*ul?
with
i

Ju]:= E(MVIZ —uVu).

Thanks to the Dirichlet boundary conditions, the integral of the next-to-last term vanishes, while the last
one can be integrated by parts yielding

:F/ curl A |u|?.
Q

Again, no boundary terms are present because of the vanishing of u on 9€2. Dirichlet boundary conditions
are necessary since the bound (3-4) (resp. (3-3)) is otherwise invalid as A — 0 (resp. 8 — 0), as can be
seen by taking the trial state u = 1. g

In order to perform energy localizations we shall also need an IMS-type inequality, i.e., a suitable
generalization of the well-known localization formula [Cycon et al. 1987, Theorem 3.2]:

IVul> = [V(xw) > + Vo) > = (IVx 1>+ 1Val?) lul, (3-5)
where x2 n? form a partition of unity.

3The initials IMS may refer either to Israel Michael Sigal or to Ismagilov—-Morgan—Simon.
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Lemma 3.3 (IMS formula).
Let Q C R? be a domain with Lipschitz boundary and x* + n* = 1 be a partition of unity such that
x € C2°(82) and supp yx is simply connected. Then, for any u € H'(Q) and B € R,

eaf,,g[u]=/Q|(v+i/sA[|u|2])<xu>|2+/Q|(v+i/sA[|u|2])<nu)!2—/Q(|V><|2+|Vn|2)|u|2, (3-6)

where
/QI(VJriﬂA[IuIZ])(nu)IZ>/Q|Vlnul|2 (3-7)
and
/ IV ]ul A
Q
/Q|(V+iﬂA[lu|2])(xu)|2> 2n|ﬂ|fo2|u|4, (3-8)

(1= )8 [yl — (' 1>ﬂ2fQ|A[|nu|21K]!2|xu|2,

with & € (0, 1) arbitrary, K := supp x Nsuppn, and ¥ = eP? yu H(} (supp x) for some harmonic
function ¢ € C*(supp x).

Proof. We expand
Séf,ﬂ[ulzf |Vu|2+2ﬁ/ A[Iulz]'J[u]-l-,Bz/\A[|u|2]|2|u|2.
Q Q Q

For the first term we use the standard IMS formula (3-5), while for the term involving J we have

2 (Tl + T0pul) = wx V (xi) +unV () — ix V () — ¥ )
= (P + PV — G+ ) Vi = 2 T,

We can then recollect the terms to obtain (3-6). Equation (3-7) and the first version of (3-8) follow from
the diamagnetic inequality (3-2), while the second version of (3-8) follows from the magnetic bound (3-3)
with Dirichlet boundary conditions. For the third version we write

. 2 . . . ; 2
f |(V+iBALlul]) (xu))| =f |(V+iB ALl xu*1+iBAllnul* Lk 1+iB(Allnu* 1k 1— V) (P xu)|,
Q Q
where the last magnetic term vanishes by taking the gauge choice

¢(x):= | arg(x — y)|nu(y)l*dy, x €suppy.
K(‘

Thus, noting that |xu|?> = |¥|%

/Q!(VJriﬁA[luIZ])(xu)\z = /Q\(wiﬁA[W])w +iBAllnul? g1y |,

and we can conclude by expanding the square and bounding the cross-term using Cauchy—Schwarz. [
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3B. Scaling laws. In fact the large 8 and large volume limits are equivalent, as follows from the simple
observation:

Lemma 3.4 (Scaling laws for the homogeneous gas).
For any domain Q@ C R? and *, 1 > 0 we have

1 B
E(Q, B, M) = EEQLQ,xAZMz,AquM), (3-9)

and an identical scaling relation holds true for Eo(2, 8, M).

Proof. Given any u € H'(Q) we may set
Uy, (x) 1= Au(x /), (3-10)

and observe that u; , € H'(u),
/ il =27 /Q WP and €% ylun, ] =A2EX . lul
"
Namely, using Viwg(x)=x"+:= xL/|x|2 and

Aollus )P 1(x) = [ x =) (PP dy =22 / (x —y) " Huly/w1*dy
w2 n2

_ AZ,L/Q@/M — ) u@) P dz = 22 pAgllulP /),

we have

£, s ] = / 1900+ 1B Al I )
w
— [ Jha7 e )+ i85 Al P e b
m
=272 f (V) (e /1) + iBA2 12 AgllulP1(x /pyux /) | dx
739

— 2 / |Vu(2) +ipr2 1 AllulPl@u@)* dz =A% . lul.
[ ,

Hence, we may take as a trial state for 8;“;2 a2 the function u;_,, where u is the minimizer (or
minimizing sequence) of é'gf B> and vice versa. Moreover, if u € HO1 then so is u;, ;. O

It follows immediately from the above that the thermodynamic energy has a very simple dependence
on its parameters, which justifies (2-6) and the way it appears in (2-9).

Corollary 3.5 (Scaling laws for e(8, p)).
For any p > 0 and bounded Q2 C R with e(B, p) defined as in (3-1), we have

(82, 8. p)
— 5

.. .FEo
e(l, p) = || liminf (3-11)
B—o00

and for any B, p > 0,
e(B, p) = Bpe(1, 1). (3-12)
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Remark 3.6. At the moment each shape of the domain 2 may give rise to a different limit e(8, p) in
(3-1), and this corollary and proof apply in such a situation. However, it will be shown below in the case
of Lipschitz regular domains that the limit is independent of the shape, and one may therefore without
loss of generality take the unit square 2 = Q as a reference domain.

Proof. A first consequence of the scaling property (3-9) is that taking the thermodynamic limit as described
in (2-5) or (3-1) is equivalent to taking the limit 8§ — oo at a fixed size of the domain, i.e.,

Eo(LQ, ¢, p|QILY . . Eo(R,cL?Ql, p)
= liminf )
L2|Q] L—oo L?

e(c, p) = liminf
L—o0

where we have applied (3-9) with = L, » = |Q|'/?2 and M = p. Now if, for any ¢ > 0, we set
B = cL?*|Q2] — oo, the above expression becomes

e(c, p)zlell}Sn_l)i(ng, (3-13)
which proves the first claim, and also implies
e(c,p)=ce(l, p). (3-14)
Next we take 4 = 1 in (3-9) and obtain
Eo(2, B, M) = L2 Eo(Q, A~ A2 M).
Taking M = |Q2], dividing by |€2| and taking the limit |2| — oo, we deduce
e(B. 1) =2"2e(BA7%0%) =17 (B, 1),
where we used (3-14) in the last equality. This yields
e(B. p) = p*e(B. 1) (3-15)
for all B8, p = 0. Combining (3-14) and (3-15) yields the result (3-12). Il

3C. Proof of Theorem 2.1. We split the proof in three lemmas:

Lemma 3.7 (Thermodynamic limit for the Dirichlet energy in a square).
Let Q be a unit square, and p > 0 and B > 0 be fixed constants. The limit

Eo(LQ, B, pL?)
L2

e(B, p) = LETOO

exists, is finite, and satisfies e(B8, p) = 271,3,02.

Lemma 3.8 (Neumann—Dirichlet comparison).
Let Q be a bounded simply connected domain with Lipschitz boundary. Then for any fixed p and B
positive, as L — oo

Eo(LQ, B, pL?1Q) _ E(LQ, B, pL*|Q]) _ Eo(LLQ, B, pL?|2)

L7219 1219 L2/ ol
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Ln Ql
uj
kﬂm
N
Ln Qj Ln qum
Uo
L,0 4

Figure 1. Filling the square L,, Q with smaller squares L, Q);.

Lemma 3.9 (Thermodynamic limit for the Dirichlet energy in a general domain).
Let Q C R? be a bounded simply connected domain with Lipschitz boundary, then

i EoLQ, B, pL?2)
1m —
L—+00 L2|§2|

e(B, p). (3-16)

Theorem 2.1 immediately follows from these three results: combining Lemma 3.7 with Lemma 3.8
one obtains the existence of the thermodynamic limit for squares. In order to derive the result for general
domains, one then uses Lemma 3.9 together with Lemma 3.8. Notice that the proof of Lemma 3.9 requires
only Lemmas 3.7 and 3.8 for squares as key ingredients.

Proof of Lemma 3.7. From Lemma 3.1 we know that the sequence of energies per unit area has both an
upper and lower limit. We denote by (L,),en and (L,,)men tWo increasing sequences of positive real
numbers such that L, — oo, L,, — o© and

Eo(L,Q, B, pL2) . Eo(LQ, B, pL?

— liminf as n — 0o,
L% L—>00 L2
Eo(LwQ.B.pL%) Eo(LQ. B, pL?)
— limsup as m — 00.
L2 [N L2
m o0

For each n, there must exist a sequence of integers
qnm —> +00 asm — o0
such that, for m large enough, e.g., m > n,
Ly =qumLn +knm, O <kpym < L.

We then build a trial state for Eq(L,, Q, B, ,oL,zn) as follows (see Figure 1). The square L,, Q must contain
q,%m disjoint squares of side length L, that we denote by L,Q;, j=1,..., g2,. Then we pick u ja
minimizer of Eo(L,Q;, B, pLﬁ) and remark that by definition,

2
Dnm

> curl A[lu*1=0 inL,Q;.
k=1,k#j
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Thus there exists a gauge phase ¢; on the simply connected domain L, Q; such that
qr?m
Y. Allul’1=V¢; inL,0;.
k=1k#j
Similarly, there exists ¢y on the remaining part of the domain (which can be arranged to be simply
connected as well, as in Figure 1) such that

q}’%ﬁl qr%m
> Allw’1=Ve¢o onL,0\|JL.0;.
k=1 j=1

We define the trial state as (see the proof of Lemma 3.1)

2
qnm
TRE E uje_’ﬁd’f + uge P,
Jj=1

where ug is a function with compact support in L,, O \ Uq’“" L, Q; satisfying

/L Il = oL —a3pL
By Lemma 3.1, we can construct u#q such that
/ (7 + iBALuoPT)uo | < C(L2 — g2 L) < 2C Lk
LnQ

(where C > 0 may depend on 8 and p). The function u is an admissible trial state on L,, Q because it is
in H' on each subdomain, and continuous across boundaries due to the Dirichlet boundary conditions
satisfied by each u;. Computing the energy, we have

quWl qnm

EN o plul = Z/ |7 (V 4+ iBA[ul?] — iBVe;)u; | _Z/ (V +iBAIu;1*1)u;|”

qnlﬂ
—ZSL 0.5l /L Q|(V+iﬁA[|uo|2])uo|2=q,%mEo<LnQ,ﬁ, PL2) + O (Lynkm).

g% = ﬁ (1 — k”_’”)2
nm L,zl L’n *

Since u has by definition mass pL2, it follows from the variational principle that

EO(LmQaﬁ’pLgn)gEO(LnQa,B»/OL%) 1+0 knm +0 knm ‘
L2 L2 L, L,

m n

with
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Figure 2. Localizing on thin shells for the square LQ.

Passing to the limit m — oo first and then n — oo yields

. Eo(LQ,B,pL? . . _Eo(LQ,B, pL?)
im sup 5 < liminf 5 ,
L—00 L L—o0 L

and thus the limit exists.
Additionally, we have by the bound (3-3),

1 2 2 2
Lo =0 [ =22 (/ |u|2>
L ’ L% Jio L LQ

for any u € HO1 (LQ), proving that e(8, p) > 27 Bp>. O
Proof of Lemma 3.8. Since Hol(Q) C HY(Q), we obviously have

EO(Q7 13’ M) 2 E(Q7 13’ M)

Only the second inequality in the statement requires some work. Let u € H'(LQ) denote the minimizer
of £ 2’;2 ﬂ[u] (see Proposition A.1 of the Appendix) with mass

f lul* = pL?|Q|
LR

and no further constraint (thus satisfying Neumann boundary conditions). In the sequel we take 8 =1
and |2| =1 to simplify the notation.

We will need to make an IMS localization on a small enough region, and therefore consider a division
of L2 into a bulk region surrounded by thin shells close to the boundary, where we will be using several
different length scales L™!/3 <A« 1« L and L' « £ « h < L (see Figure 2 for the case of Q = Q a
square).

We shall use Lemma 3.3 a first time at distance A from the boundary to deduce some useful a priori
bounds. Next, using a mean-value argument we show that, within a window of thickness % further from
the boundary, there must exist one particular shell of thickness £ where we have a good control on the mass
and energy. Finally we perform a second IMS localization with the truncation located in this particular
shell. This yields a lower bound in terms of the Dirichlet energy in the bulk region, plus error terms that
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we can control using the a priori bounds and in particular the good control on mass and energy in the
second localization shell.

Step 1: a priori bounds. Let §q(x) := dist(x, d(L£2)) denote the distance function to the boundary, which
is Lipschitz and satisfies |Vég| < 1 a.e. We make a first partition of unity

it =1

such that x varies smoothly from 1 to 0 on a shell K; of width X closest to the boundary of L, i.e.,
K :={x € L2 :§q(x) < A}. One may note that it is possible to construct these functions so as to satisfy

Vil <A g1 Vil <ealgiH

for some arbitrarily small u > 0, independent of A, e.g., by taking ¥ = f% and 7 = /1— %2 in
supp x Nsupp 7 for a large and some smooth function 0 < f < 1 varying on the right length scale and
reflection symmetric. Then, by Lemmas 3.1 and 3.3,

~ ~ 2 ~ ~
CL2>52§2,1[u1>f 2r 22 ul* + |ViGul|” = (VZ I+ VilD)ul?)
LR
~ ~ 2 _ ~J_
>f 2 2 ul* + |Vidul|” — CA72 1k, ¥ 2 ul?). (3-17)
LR

We bound the unwanted negative term as follows:

1/2 1/2
ﬂ/ g, 227 ul® < rz(f 22—4") (/ xz|u|“>
LQ K K,
172
< Ck_3/2L1/2(/ ;22|u|4) <CSLA 487! / 22 ul*,
K LQ

with § a fixed, large enough, constant. Combining with (3-17) we deduce

f (27 %2 |ul* + |V|ﬁu||2) <CL*+CL A3 <CL? (3-18)

LQ

since we have chosen A > L~!/3, We note that this bound implies for the mass in a shell K, of thickness £

in LQ\ K
12
f|u|2<|K6|]/2</ ﬂul“) <o, (3-19)
K, K,

Step 2: finding a good shell. We now select a region where the bounds (3-18) and (3-19) can be improved.
Consider dividing L2\ K, into shells of thickness £ that form a layer closest to the shell K, of total
thickness & ~ L'~¢ > ¢ (again, see Figure 2). Hence, we have

Ny:=h/l>1

such shells in the layer. Denote by N, the number of such shells K, with f K. lul* > M. If Ny < N;,
there must exist a shell K, with f K lu|* < M. But, using (3-18) and the fact that all the shells are included
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in the region where ¥ = 1, we have

MNy <f lul* <CL
LQ

We can thus ensure that Ny < N; by setting
Ny=h/t~L'""5¢"' ~L?/M,

i.e., taking M ~ £L'*¢. Hence we have found a shell K, with

/ lul* < CceL'*e, (3-20)
Ky

and thus
/ |M|2<C(EL)]/Q(ELIJ’_S)]/Q:CKL]+€/2, (3_21)
K,

improving (3-19).

Step 3: IMS localization in the good shell. We now perform a new magnetic localization on this K,. We
pick a partition x2 4+ n* =1, such that x varies smoothly from 1 to O outwards on K, so that x =1
(resp. n = 1) on the inner (resp. outer) component of K. Then, using Lemma 3.3, we have

Ul > (1 =8)EMN [[W]— (' — 1)/Q|A[|nu|211<]|2|xu|2— (VX +IVaPlul?  (3-22)
L Ky

for any 8 € (0, 1), where we let = xe'®u and K = supp x Nsuppn < K. Since ¥ is compactly
supported in L2, we have for the first term

Recalling the scaling relation (3-9) (taking u = A~! = L /L) and defining

M= | x*u? L=M/p
LQ
we have

M ~ ~
Eo(LQ, 1, M) = ?EO(LQ, 1, pL?). (3-23)
1Y

We need to estimate the deviation of the mass M of x?|u|* from pL? = [, lu|*:

'pLz—/ x2|u|2=f n2|u|2=f ﬁzlu|2+f Ko ul?
LQ LQ LQ LQ
5 1/2 1/2
gcxzf |V 77ul| +(/ nziz) <f )ﬂul“)
K;. LQ LQ

< CAMLP+Ch'PL3? « L2 (3-24)

Here we have used a Poincaré inequality to control the 7%|u|?> term, making use of the fact that this
function vanishes at the inner boundary of K. It is not difficult (see the proof methods of [Evans 1998,
Theorems 1 and 2 in Section 5.8.1] and [Lieb and Loss 2001, Theorem 8.11]) to realize that the constant
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involved in this inequality applied on the set K, can be taken to be proportional to A2 Note that L — oo,
if L — oo, thanks to (3-24). Hence, inserting the above estimate in (3-23), we get

EX W] Eo(LQ. 1, M M? Eo(LQ.1,pL> Eo(IQ. 1, pL>
raalv > o(L€2, 1, ): o( - ) ):(1—1—0(1)) o( - ) )‘ (3-25)
L? L? (pL?)? 12 L2

Then, there only remains to control the error terms in (3-22): Using the Holder and generalized Young
inequalities (|| - || p,.» denotes the weak-L? norm [Lieb and Loss 2001, Theorem 4.3, Remarks]),

2 2
/ |AllnuPLe]|" [xul® < | Vwo x InuPLg |5, 1xullz, <l Vwollz, lnulk 3, Ixull,
LQ

te 201 (2g—-1)/q s 1/q
<C( Il W)) (f Il q) ,
K¢ L

where
l+1=1 and 1+i=l+l,
p q 2p 2 r
that is,
2q .
r= €(1,2) withg e (1, 00).
2g —1

We can take ¢ = 2 and insert (3-18)—(3-20) to obtain

3/2 12 12
( |nu|8/3) (f |Xu|4> <|KZ|1/2f |nu|4(f |Xu|4> 5(EL)I/ZELI-HE(L2)1/2:£3/2L5/2+8
Ky LQ Ky LQ

The last term in (3-22) is, using (3-21), bounded by
CE—Z |M|2 <Z_1L1+8/2.
Ko ~

There only remains to optimize the error terms in (3-22):
SEN(LQ, 1, v ||§2(m)) +e1 (87 = DBPLYPHE et L2 L3812 + ¢y 872 LB/5HTE/0,

where we have picked £ = L~3/°7¢/5§2/3  assuming that § < 1, as it will be. Thus, optimizing now over 8,

—2/7+¢/2

i.e., taking 6 ~ L , we have the bounds

2
Eo(L, 1, pL?)  EQQ,1,pL%)  EoLS LW Igo) o by (3-26)
L? - L? - L? '

Combining with (3-25) and passing to the liminf completes the proof. U

Proof of Lemma 3.9. The result is proven as usual by comparing suitable upper and lower bounds to the
energy.

Step 1: upper bound. We first cover L2 with squares Q;, j =1, ..., Ny, of sidelength £ =L", 0 <n < 1,
retaining only the squares Q; completely contained in L£2. One can estimate the area not covered by
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=

such squares as

Q,-)‘ < CLL = o(L?). (3-27)

iC=

Then we define the trial state

Ne¢
ux) =Y uje P, (3-28)
j=1
where
uj(x) :=uo(x —x;)1g,, (3-29)

with ¢ a minimizer of the Dirichlet problem with mass pL?|2|/N, in a square Q with side length ¢
centered at the origin, and x; the center point of Q;. The phases ¢; are chosen in such a way that (see the

proof of Lemma 3.1 again)
Ny

> Allwl’1=Ve; in Q.
k=1,ksj

The existence of such phases is indeed guaranteed by the fact that

Ny
Z curl A[jux[1=0 in Q;.
k=1,k#j
Hence

£ plul = Zeg y u,]—ZEo(eQ B, pL*|QIN, ),

which implies

N¢

2
Eo(LQ, B, pL7) _ ZEO(gQ B, pL*|QIN, )

L2|Q| L2IQ|

2

Eo(EQ B, (1+0(1))pt?) /¢* = (1+0(1))e(B, p), (3-30)
L2|sz|

where we have estimated |U | )
Q) (I'+o(1))L"|L2]
Ny=—1 = , (3-31)
101 02

and used Lemma 3.7. Notice that, thanks to the assumption on n, we have £ — oo, which is crucial in
order to apply Lemma 3.7.

Step 2: lower bound. We again cover L2 with squares Q;, j =1,..., Ng, this time keeping the full
covering but still having £2N,/|L2| — 1 as L — oo. We pick a minimizer u® = uL € H (L) of 5Lsz B
with mass pL?|Q|, and set

wh=u"ly,, pji= ][ lu® (x)|? dx. (3-32)

Qj
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The idea of the proof is reminiscent of that in the upper bound part: we gauge away the magnetic
interaction between the cells, and this leads to a lower bound in terms of the Neumann energy of the cells.
Note that uj?f € Hl(Qj) for each j, and

Ny
2 2
> pit?=pL*Q.
Jj=1
Before estimating the energy, we need to distinguish between squares with sufficient mass and squares
which will not contribute to the energy to leading order. We thus set

Qr:={0Qj,jell,...., N} : pj > L1} (3-33)
for some 0 < § < 27n. Note that the mass concentrated outside cells Q. is relatively small:
> i <CENL =o(L?). (3-34)
0;¢9L

We can now estimate, using the gauge covariance of the functional on each Q;,

N¢
Eo(LR, B, pL2|90) = £5%, ,[u™] >Z/Q (=9 + AT

N¢
=, / |(—iV + BA[[uttePoi 2] el |
=179

N 2
Z . (Q ﬁ p] )/ 3 szfzjg—z’ (3-35)

j:QjEQL J
where ¢; satisfies (observe that the left-hand side is curl-free on Q)

Ny
> AlWF1=V¢; inQj,

k=1, j

and in the last step we used the scaling law (3-9) with u = 1/A = /p;. Also,
6= ol >L"?*— oo asL— oo

uniformly in j for cells Q; € Q;, and we thus conclude by Lemmas 3.7 and 3.8 that

g i
L pywe, popr2D > (1 o)< S 22 (1 o1y <D @6

T210] 2 2
L7 LAl 6o, L7

where we consider here the step function o := ) j:0,€0; Pi 1Qj and denote by Q the union of the cells Q.
It remains then to observe that the constrained minimum

Bzmin{/ o : 0<geL2<Q>,/Q=<1—o<1>>pL2|sz|}
Q Q
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is achieved by o constant and thus
_ 24—
f 8’2 B=((1—o()pL?Q1)71QI™" = (1 —o(1)p*L?|9.
Q
Inserting this in (3-36) and using p%e(B, 1) =e(B, p) leads to the desired energy lower bound. Il

4. Proofs for the trapped gas

4A. Local density approximation: energy upper bound. Here we prove the upper bound corresponding
to (2-19):

EY <Egf(1+0(1) asp— oc. (4-1)
We start by covering the support of Q};F with squares Q;, j =1, ..., Ng, centered at points x; and of
side length L with
Lepl -5 o] (4-2)
=P Ty T s

We choose the tiling in such a way that for any j =1, ..., Ng, we have Q; N supp(QEF) # &. The upper
bound on L indicates that the length scale of the tiling is much smaller than the size of the TF support.
The lower bound ensures that it is much larger than the scale on which we expect the fine structure of the
minimizer to live.

Our trial state is defined much as in the proof of Lemma 3.9:

Ng
u'st .= Z uje_i’s‘f’f, (4-3)
j=1

where u; realizes the Dirichlet infimum

Eo(Qj. B, Mj) :=min{[u] : u € Hy(Q)), [o Iul* = M;},
where of course

EMTul = €5 4lul = /Q.|(—iv + BA[ulY)ul’

and we set

MJZ/ Juj > ;:/ 05 . P ZZMJ/LZZJ[ op'- (4-4)
Qj Qj j

J

The phase factors in (4-3) are again defined so as to gauge away the interaction between cells, i.e.,

Ng

> Allwl'1=Ve¢; inQ;.

k=1,
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test

This construction yields an admissible trial state since '**! is locally in H', continuous across cells by

being zero on the boundaries, and clearly

Ng Ng
/zluteSt|2=Z/ |MJ|Z=Z/ QEF=1
R j=1"9i j=172i

Much as in the proofs of Lemmas 3.1 and 3.9 we thus obtain
Ng Ng
Eff <™= &Tul+ / VISP =) EoQ). B. M)) + f VISP (4-5)
, R , R
j=1 j=1
Our task is then to estimate the right-hand side.
We denote, for some ¢ > 0 small enough

Se = {x e supp(og") 1 0p" (x) = p7H/0+2 7}

and split the above sum into two parts, distinguishing between cells fully included in S, and the others.
Using (2-13), it is clear that

|supp(o}F) \ Se| < CpY/E+2 . gl/is+—e

where the first factor comes from the dilation transforming o1" into ¢4 and the second one is an estimate
of the thickness of S, based on (2-16)—(2-18).
By a simple estimate of the potential V in the vicinity of S., we obtain

Z Vluj|2 < Cﬁs/(s+2) . ﬂZ/(s+2)fe . ﬂ72/(s+2)fe — CIBS/(s+2)72s < EgF’
j:Qj ,¢_Sa Q'/
where the factor 8°/¢*2 accounts for the supremum of V, the factor 8% ©+2~¢ for the volume of the
|2

integration domain and the factor 8~2/+2)=¢ for the typical value of |u i1~ on this domain. Also, using in

addition Lemmas 3.4 and 3.1, we deduce
Y. Eo(Q,B.Mp)= Y EiB"Q.B B"n) < Ef"
J:Q; LS JO;ESe

For the main part of the sum in (4-5) we use the scaling law (take A = /p; and u = ,/Bp; in Lemma 3.4)
to write

Eo(Qj, B, M;) = p; Eo(L\/Bp; Q, 1, L*Bp)),

with Q the unit square. Then

Y EoQ, B M= Y L*Bple(l,+ Y L2ﬂp,~2(

J:Q;CS;e J:Q;CS;e J:Q;CS;e

Eo(L; 0,1, L
%—e(l, 1))
j

with, provided ¢ is suitably small and in view of the lower bound in (4-2) and the fact that we sum over
squares included in S,

Lj:=L\/Bp; = /6T =¢/2 oo, uniformly with respectto j =1, ..., Ng.
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We thus obtain (recall the definition of the thermodynamic energy in (2-5))
Eo(L;Q, 1, L)
— = I S e(1,1) asL;— o0

L?
J

uniformly in j, and deduce that

3" Eo(Qj. B My = (1+o()e(l, ) Y p?L2
j:QjCSs jZQjCSs
Recalling that

pj = ][ op (x)dx,

j

we recognize a Riemann sum in the above. Using (2-17) and the upper bound in (4-2) we may approximate
QEF by a constant in each square (this is most easily seen by rescaling to QITF and observing that the size
of squares then tends to zero), and bound the part of the integral located in the complement of S, in the
same way as above to conclude that

> Eo(Qy. B, Mj) = (1+o(1)Be(l, 1)/ (05"
J:Q;CS; R?

Using (2-11) and (2-16) we obtain
[VV (@) < CpeP/et?
for any x € S;. Combining with (4-2) we deduce as above that
> / Vi > = (1 +o(1>>/ Vog"
j:0;cs. i Re

and this completes the proof of (4-1).

4B. Local density approximation: energy lower bound. Let us now complement (4-1) by proving the
lower bound

Ef > Eg'(1+o(1)), (4-6)

thus completing the proof of (2-19). We again tile the plane with squares Q;, j =1, ..., Ng, of side
length

L=p"
satisfying (4-2), and taken to cover the finite disk Bg(0) with

1
t.= _2—|—s + &

for some ¢ > 0 to be chosen small enough. We also define

Qp :=1{0Q; C Bp(0): L\/p;B > "}, “-7)
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f

where u* = u%f is a minimizer for £ gf with unit mass and

0; ::][ lu® (x)|? dx.
1)

j
Define the piecewise constant function
g x)i= Y plg (). (4-8)
0jeQp
We claim that one may find some © > 0 in (4-7) such that
M= ¥ —>1 asp— . (4-9)
R2

Indeed, using (2-11) and (2-12) we get that for any x € BI‘S', 0)

V(x) > CB* min V > Cp*
BS(0)

for B large enough. Thus, using the energy upper bound (4-1) and dropping some positive terms we
obtain

IBSI‘ |uaf|2 g/ V|uaf|2 < ng[uaf] < CﬂS/(S-‘,—Z)
BS,(0) R2

and thus
/ 1> < cpe. (4-10)
B, (0)

On the other hand, by the definition of Qg,
Z / |uaf|2 < NﬁﬁZM—l’
0;¢9s "%

where Ng is the total number of squares needed to tile Bg: (0). Clearly, we may estimate Ng < C BHL 2=
CB2"=" and then

Z / |uaf|2 < CIB21‘—217+2M—1 < 1 (4_11)
0;¢05° 9

because of (4-2), which implies —s/(s +2) — 2n < 0, and provided we take ¢ and p positive and small
enough, e.g. (recall that L = 87 is the side length of the tiling squares),

1/ s
0 <= 2n), O <e. 4-12
<e¢ 4(s+2+ 77) <u<KE ( )

Combining (4-10) and (4-11) and recalling that #* is L>-normalized proves (4-9).
With this in hand we turn to the energy lower bound per se. Let us again set

M;if — uaf]-Qj, MJ — pJLZ — L |uaf|2.
J
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Dropping some positive terms we get

Ef =& 1> Y | {|(=iV+BAl P+ V1)

0jeQy 79
= > | {[(=iV +BALuYPH Pl 4 v |2}
Q€9 Qj
= Z {E(QJ'MB’ Mj)‘i‘/ V|u;‘f|2}
0j€Qs Q;
” {ij(LMQ’I’(L/FM)Z)JFfQ Vlu?flz}, (4-13)
Q€ ;

where the local gauge phase factors are defined as in previous arguments by demanding that (this is again
possible because the left-hand side is curl-free in the simply connected domain Q;)

Np
Y. AluP1=V¢; inQ;.

k=1,ksj
The minimum (Neumann) energy E(Q;, B, M;) in the square Q; is defined as in (2-4) and we used the
scaling laws following from Lemma 3.4 as previously to obtain
E(Qj, B, Mj) = p; E(L\/Bp; Q. 1, (L\/Bp;)?),

with Q the unit square. Next, we note that (4-2) and (4-7) imply, using (4-12),

Lj=L\/p; = p" — o0

uniformly in j for all j such that Q; € Qg. Then, by Theorem 2.1,
D AE(LYBp Q.1 (LBp)?) = ) BL’p] E(L;Q. 1. L))/L]

Qj€Qp Qj€Qp

=(14+o0(1))Be(1,1) Z L2pj2 = (1+o0(1))Be(1, I)Az(éaf)%
0;eQp

On the other hand, it follows from (2-11) that, on all the squares of Qg,

IVV| < CUE—D/(HDFel=1)
and thus if
V)= ) Vxplg, (). (4-14)
Q€9
we have

[V (x)— V(x)l < CLﬁ(s—l)/(s—i—Z)-l—s(s—l) — O(EEF) for any x € Q.
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Recalling (4-8) and (4-9) we then have
Z / 74 |u;lf|2 :/ Véaf+ O(Lﬂ(S*l)/(S‘FZ)‘FE(S*l)) =/ Véaf‘i‘O(EgF). (4_15)
QjEQ/S Q,‘ R2 R2

The last assertion follows from (2-13) and (4-2), provided we take ¢ small enough; e.g., for s > 1 (recall
that the tiling squares have side length L = "),

<L (=1 (4-16)
e —| ——= . -
26— D\s+2 "
In the very same way however we can put back V in place of v, obtaining
> / Vw2 = / Vo +o(EfT) = / Vo' +o(ESF). 4-17)
Qj R2 R2

0;eQp
Combining (4-13), (4-15) and (4-17) yields
Ef > [ VET (ompet ) [ @ o]
R2 R2
> (14+0()E 18T+ o(ERY) = (1 + o) EZ (M) + o(ED), (4-18)

where the latter energy denotes the ground state energy of the TF functional (2-9) minimized under the
constraint that the L'-norm be equal to M. Inserting (4-9) and using explicit expressions as in (2-13)
and (2-14), one obtains

Eg" (M) = (1 +o(1) Eg"
in the limit 8 — oo, thus completing the proof of (4-6).

4C. Density convergence. The lower bound in (4-6) together with the energy upper bound (4-1) implies
that o, the piecewise constant approximation of ¢* on scale L = 7, is close in strong L? sense to QEF.
We will deduce (2-20) from the following.

Lemma 4.1 (Convergence of the piecewise approximation).
Let 0 be defined as in (4-8) and QEF be the minimizer of (2-9). Then

16% — 0" Il 22y = 0 (B¢ ) (4-19)
in the limit B — oo.
Proof. Combining (4-1) and (4-18) we have
£57 101 S EY + o) < EFT +o(1) /0. (4-20)

The variational equation for ¢4" takes the form

2Be(1, Doy +V = Ayt = EgF + Be(l, 1)/2((;?)2
R
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on the support of QEF (recall (2-14) and (2-15)). Thus,

/ (é—?af_QEF)Z :/ ((éaf)Z + (QEF)Z) _2/ éanEF
R2 R2 R2

_ —af\2 TF\2 1 /—af TF _
= [ @7+ [ @ - o [t v

1
< gTF5afy _ 5 TF i1 / T
ﬂe(l,n[ pr1e" =2y el ) | (0p)
1 0 - S
= Be(1. 1) [SI;FF[Qaf] _ E;F] =o(B 2/( +2))’
where we used (4-20) in the last step. ]

By the definition (4-8) of 0% we also have, for any Lipschitz function ¢ with compact support,

Ng
/ ¢~/ P0)p () dx =) / ¢80 x) g% (x) dx
R =179

Ng
= gy /Q o) dx + 0 (B g i)
=1 i

= [ 0570 gy dx 087 gl
R2
using the normalization of . Furthermore, by Cauchy—Schwarz and Lemma 4.1 we obtain

fR BBV (2" () — 0p" (1) dx = o(D[gll2(e2)-

Since the above estimates are uniform with respect to the Lipschitz norm of ¢, we can take n < 1/(s +2),
change scales in the above and recall (2-13) to deduce

L O@(BYTIN B — o () dx| = o(l), B — oo,

sup

¢€Co(Br(0))
llLip<1

for fixed R > 0, and hence (2-20).

Appendix: Properties of minimizers

In this appendix we recall a few fundamental properties of the average-field functional (1-1) in a trap V,
respectively (2-1) on a domain €2, as well as their minimizers.
As discussed in [Lundholm and Rougerie 2015, Appendix], the natural, maximal domain of £ is

7" :={ue H'(Q): [ VIu|* < o0},

and one may also use that the space C>°(R?) is dense in this form domain with respect to £, Furthermore,
[Lundholm and Rougerie 2015, Appendix: Proposition 3.7] ensures the existence of a minimizer u € 2
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of £ gf for any value of B8 € R for confining potentials V, and by a similar proof and the compactness of
the embedding H (Q) c HY(Q) — LP(Q), 1< p < oo, the same holds for 5 for any bounded €2 with
Lipschitz boundary:

Proposition A.1 (Existence of minimizers).

Let B € R be arbitrary. Given any V : R* — RY such that —A + V has compact resolvent, there exists
u®™ e 2 with Jre |u|> =1 and ng[u“f] = E¥ Moreover, if M >0 and Q C R? is bounded with Lipschitz
boundary then there exists u™ € H, (Q) with [q [u*|> = M and & 4[u™] = E(0)(RQ, B, M).

Proof. The first part is [Lundholm and Rougerie 2015, Appendix: Proposition 3.7]. For  C R? we have
by the Holder, weak Young, and Sobolev inequalities, as well as Lemma 3.2, that

3
< c|| 1| s I Vw0l 2 gy Nl @y < €[l | 31y < €M+ EGTuD)?,
and therefore

IVull ) = || Vu+iBAlullu —iBAlul*lu| g, < E1ul"? +C'|BIM + EGlu) ™2
Hence, given a minimizing sequence
(Un)n—oo C Hipy (R, Ntall oy =M. lim E§lual = Eq)(R. B, M),

by uniform boundedness and the Rellich-Kondrachov theorem (see, for example, [Lieb and Loss 2001,
Theorem 8.9]) there exists a convergent subsequence (again denoted u,,) and a limit ute H (10) (€2) such that

up, — ut in LP(Q), 1< p < oo, Vu, = Vu®  in L2(Q).
Furthermore, by estimating
| Al Pun — AL P, < | Al = 101t |, + [ AL P10 — )|
as above and using the strong convergence in L”(2) for any 1 < p < 0o, we have

Alluy |*Jun — Al 1™ in L2(R).

Hence,
|(V +iBALP)u, = sup [(Vu +iB A[Ju*Hu™, v)| = sup, 1im [(Vuy +iBA[luy *lutn, v)|
= v
< liminf sup | Vun—l—l,BA[lun| Uy, V |_11m1an(V+l/3A[|un| ])un

0 ll=1

that is, E() (2, B, M) < EYu] < liminf, o0 E[Un] = E0)(Q2, B, M), and furthermore [, [u™|* =
lim, o [, lunl* = M. O

For completeness, we finish with a derivation of the variational equation associated to the minimization
of the energy functional (1-1). Let us define

Jul = %(MVL_t —uVu)
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and for two vector functions F, G : R? — R2 their convolution
F=G(x) :=/ZF(x—y)-G(y)dy.
R

Lemma A.2 (Variational equation).
Let u = u®™ be a solution to (2-8). Then

[(=iV +BALul?1)* + V — 28V wo  (BALu|X ul? + J[u]) Ju = Au, (A-1)
where

A:Saf[u]-i-/ (2BALu*1- Tlul+ 28| Allul1) 1ul?)
IRZ
=f (1(Vul® + Viul?) +2- 28A00ulX- Jlul + 382 Allul?1|*|u)?). (A-2)
RZ

(Note that the factors 1,2, and 3 correspond to the total degree of |u|* in each term.)
Proof. Let
Flu, i, A= Eu, ] + 21— [ |uf?)

= [(9ul+ v =0 + 5% AT b + 26 AT T 42,
Elu, ] ::/IA[uﬁ]lzuﬁ:/// V4iwo(x — y) - Viwg(x — z) wit (x) uit(y) uii(z) dx dy dz,
Elu, it] ::/A[uﬁ]-i(uVﬁ—ﬁVu):f/ V4iwo(x — y) uit(y) - i uVii — @Vu)(x) dx dy.
We have

Eilu, i+ev] =& [u, i]+e / f f <VLw0(x—)’)'VLw0(X—Z)(v(x)u(x)lu(J’)|2|M(Z)|2

() Pu (90 (D) P+ ) [ () Pu(@)v(2) ) de dy dz+0 (62).
Hence at O(e),

/x v()u(x)Afjul*1* dx — fy v(y)u(y) / V5 wo(y — ) |u(x)]* - f V¥ wo(x — 2)|u(z)|* dz dx dy
—/zv(z)u(z)/xVLwo(z—x)IM(x)|2~/yVLwo(x—y)lu(y)lzdydx dz
:/vuA[|u|2]2—2/vuviwo*|u|2A[|u|2].
Also
Elu, i+ev] :52[u,ﬁ]+s//<V¢wo(x—y)u(y)v(y)-i(quz—ﬁw)(x)

+VLw0(x—y)|u(y)|2-i(u(x)Vv(x)—v(x)Vu(x))) dxdy+0(?),



1198 MICHELE CORREGGI, DOUGLAS LUNDHOLM AND NICOLAS ROUGERIE

hence at O(e) and using V-A =0,
—/v(y)u(y)fvlwo(y—x).2J[u](x)dxdy—i/v(x)Vu(x)-A[|u|2](x)dx
y X

—i—i/u(x)A[|u|2](x)-Vv(x)dx:—2/vuVLwo*J[u]—Zi/vVu-A[Iulz].

=(PI}=—i [ Vu-Av—i [u(V-A)v
Thus

Flu, it +ev, \]= Flu, ii, \] +¢ f v[(—A +V—Mu +,32|A[|u|2]|2u — 28>V wo = [ul*Al|ul*u

— 28V wo # Jlulu — 2iBA[|ul?]- w] + 0@,
and using
(=iV + BAlul) u = —Au = 2iBAlul)- Vu + B2Alul Pu,

we arrive at (A-1).
For (A-2) we use [ lu|?> = 1 by multiplying (A-1) with i and integrating:

b=~ Zﬂf PV wo = (BALuPuf> + JLul).
We then use that
/ lu|>Viwe = Alu)?]|u)? = /f () RV wo(x — 3) - VEwo(y — 2)u(@) 2 u(y) 2 dx dy dz
T /// VEwo(y —x) - V3Ewo(y — 2)[u ) ? [u (@) [u(y)* dx dzdy
= —/A[|u|2]2|u|2

and
2/ |u|2viwo*J[u]=// () PV wo(x — y) - i (u(y)Vi(y) — i (y)Vu(y)) dx dy
=~ [iwvi-avom- [ VEuoy -0 P ardy = -2 [ - Al
y x
to arrive at (A-2). O
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REGULARITY OF VELOCITY AVERAGES FOR TRANSPORT EQUATIONS
ON RANDOM DISCRETE VELOCITY GRIDS

NATHALIE AYI AND THIERRY GOUDON

We go back to the question of the regularity of the “velocity average” [ f(x, v)¥ (v) di(v) when f and
v -V, f both belong to L2 and the variable v lies in a discrete subset of RZ. First of all, we provide a rate,
depending on the number of velocities, for the defect of H!/? regularity which is reached when v ranges
over a continuous set. Second of all, we show that the H'/? regularity holds in expectation when the set
of velocities is chosen randomly. We apply this statement to investigate the consistency with the diffusion
asymptotics of a Monte Carlo-like discrete velocity model.

1. Introduction

The averaging lemma is now a classical tool for the analysis of kinetic equations. Roughly speaking it can
be explained as follows. Let ¥ C R?, endowed with a measure diu. We consider a sequence of functions
fn: RP x 7 — R. We assume that

(@) (fu)nen is bounded in LZ(RP x ¥),
(b) (v- Vi f)nen is bounded in L*(RP x ¥).

Given ¥ € C°(RP), we are interested in the velocity average

pnl¥](x) = /y Ja(x, V)Y (v) dp(v).

Of course, (a) already tells us that (o, [¥]),en is bounded in L?*(RP). We wish to obtain further regularity
or compactness properties, as a consequence of the additional assumption (b), and the fact that we
are averaging with respect to the variable v. The first result in that direction dates back to [Bardos
et al. 1988] (see also [Agoshkov 1984]); it asserts that (0,[¥]),en 1S bounded in the Sobolev space
H'72(RP) and it is thus relatively compact in LIZOC(RD ), by virtue of the standard Rellich’s theorem.
This basic result has been improved in many directions: L? can be replaced by the L? framework, at
least with 1 < p < oo, and we can relax (b) by allowing derivatives with respect to v and certain loss
of regularity with respect to x; see, among others, [DiPerna et al. 1991; Golse et al. 1988; Perthame
and Souganidis 1998]. Time-derivative or force terms can be considered as well; see, in addition to the
above-mentioned references, [Berthelin and Junca 2010]. Such an argument plays a crucial role in the
stunning theory of “renormalized solutions” of the Boltzmann equation [DiPerna and Lions 1989b], and
more generally in proving the existence of solutions to nonlinear kinetic models like in [DiPerna and

MSC2010: primary 35B65; secondary 35F05, 35Q20, 82C40.
Keywords: average lemma, discrete velocity models, random velocity grids, hydrodynamic limits.
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Lions 1989a]. It is equally a crucial ingredient for the analysis of hydrodynamic regimes, which establish
the connection between microscopic models and fluid mechanics systems, and for the asymptotic of the
Boltzmann equation to the incompressible Navier—Stokes system, which needs a suitable L' version of
the average lemma [Golse and Saint-Raymond 2002]; we refer the reader to [Golse and Saint-Raymond
2004; Saint-Raymond 2009; Villani 2002]. Finally, it is worth pointing out that the averaging lemma can
be used to investigate the regularizing effects of certain PDEs (convection-diffusion and elliptic equations,
nonlinear conservation laws, etc.) [Tadmor and Tao 2007].

In order to illustrate our purpose, let us consider the following simple model which can be motivated
from radiative transfer theory:

£8fo+ v Vifo = 10 (0) (0 — fo) (-1

where

ﬂs(t,X)=[Vfg(t,x,v)dM(v),

and o : [0, co) — [0, 00) is a given smooth function. The parameter 0 < ¢ < 1 is defined from physical
quantities. As it tends to 0, both f.(z, x, v) and p.(¢, x) converge to p(¢, x), which satisfies the nonlinear
diffusion equation

P dz
o(2)
The averaging lemma is an efficient tool to deal with the nonlinearity of such a problem, as discussed in

[Bardos et al. 1988].
However the discussion above hides the fact that we need some assumptions on the measured set

bp =V, - (AV.F(0)), A=/ v ®vdu), F<p>=/ (1-2)
v 0

of velocities (¥, du) in order to obtain the regularization property of the velocity averaging. Roughly
speaking, we need “enough” directions v when we consider the derivatives in (b). More technically, the
compactness statement holds provided for any 0 < R < oo we can find Cg > 0, 39 > 0, y > 0 such that
for 0 <& < 8p and £ € S¥~!, we have

meas({v € ¥ NB(0,R) : [v-&| <68}) < Crd”.

This assumption appears in many statements about regularity of the velocity averages; when we are only
interested in the compactness issue, it can be replaced by a more intuitive assumption (see, e.g., [Golse
2000, Theorem 1 in Lecture 3]): for any & € S¥~! we have

meas({v € ¥ NB(0, R) :v-£=0}) =0. (1-3)

Clearly these assumptions are satisfied when the measure du is absolutely continuous with respect to
the Lebesgue measure (with, for the sake of concreteness, ¥ = RP or v = SP _1). However, they fail
for models based on a discrete set of velocities. For instance let 7 = {vy, ..., vy}, with v; € RP, and
du() = % 27:1 §(v=vy;); it suffices to pick § € SN=1 orthogonal to one of the v; to contradict (1-3).
(Note that alternative proofs based on compensated compactness techniques have been proposed to justify
the asymptotic regime from (1-1) to (1-2) that apply to certain discrete velocity models; see [Degond et al.
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2000; Goudon and Poupaud 2001; Lions and Toscani 1997].) Nevertheless, when the discrete velocities
come from a discretization grid of the whole space, the averaging lemma can be recovered asymptotically
letting the mesh step go to 0, as shown in [Mischler 1997], motivated by the convergence analysis of
numerical schemes for the Boltzmann equation.

This paper aims at investigating further these issues. To be more specific, in Section 2 we revisit the
averaging lemma for discrete velocities in two directions. First of all, we make more precise the analysis
of [Mischler 1997], obtaining a rate on the defect to the H'/? regularity of the velocity average, depending
on the mesh size. Second of all, we establish a stochastic version of the averaging lemma. We are still
working with a finite number of velocities on bounded sets; however, choosing the velocities randomly,
the “compactifying” property of assumption (b) can be restored by dealing with the expectation of p,[v].
This is a natural way to involve “enough velocities”, by looking at a large set of realizations of the discrete
velocity grid. The analysis is completed in Section 3 by going back to the asymptotic problem ¢ — 0 in
(1-1), with a random discretization of the velocity variable, in the spirit of the Monte Carlo approach.

2. Discrete velocity averaging lemmas

Deterministic case: evaluation of the defect. As mentioned above, it is a well-known fact that, in the
deterministic context, the averaging lemma fails for discrete velocity models. However, as established by
S. Mischler [1997], the compactness of velocity averages is recovered asymptotically when we refine a
velocity grid in order to recover a continuous velocity model. Here, we wish to quantify the defect of
compactness when the number of velocities is finite and fixed. This is the aim of the following claim
which shows that the macroscopic density p[vy] “belongs to H'2(RP) 4+ O(l/«/ﬁ)LZ(RD)”.

Proposition 2.1. Let N € N\ {0} and define

_ (1 )\P D
AN_<NZ) N [=0.5.0.51P.

Let f, g € L*(RP x Ay) satisfy, for all k € ZP,

k- Vi f (x, o) = g(x, vg). (2-1)

We suppose that the L? norm of f and g is bounded uniformly with respect to N. Then, for all € C > (RP),
the macroscopic quantity

1
plyl(x) = NP ; S (s v Y (vie)
can be split as p[Y¥](x) = O[Y](x) + (l/«/ﬁ)Af[\/w](x), where O[Y] and A/[\/w] are bounded uniformly
with respect to N in H'2(RP) and L*(RP) respectively.

Remark 2.2. Note that in this statement N is the number of grid points per axis. Accordingly, there
are N' = (N + 1)? velocities in the set Ay. Therefore the defect of H'/? regularity decays like N/!/2?,
depending on the dimension.
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Proof. As usual, we start by applying the Fourier transform to (2-1). Then for all k € Z and £ € R”, we get

Eou f(E, ) = (—DEE, v
Let us set

1/2

. 1 ; 2 . 1 A 2 12
F(&) = (W;ws,vm) . GE) = (m;m(s,vm) :

By assumption, we have F, G € Lg. Still following the standard arguments, we pick § > 0 and we split

) o A
PVIE) = o 1p ij FE v ()

1

= NiDP > fE v .

|§-vk =88]

Y FE v+ ——

D
[§-vk | <5 (N+ )

The Cauchy—Schwarz inequality permits us to dominate the first term:

12 1/2
_||w||oo((N+l)DZ|f<s k)|) ((N+ P > ) .22

|§-vi| <51

0 Z FE vV W)

‘(N+ vk | <81

For the second term, we use the information in (2-1); it yields

‘W > FE v

1€ -vk|>518]
(=) (&, vy)
=" 11D Z e ¥ (vk)
NAHD7 e S0
1 Z ) 1/2 1 Z 1 1/2
< ||w||oo(—,) 18, o)l ) (—D —2> . (23)
AR (VD7 e Vel

From now on we assume £ #0. Let (eq, . . ., ep) stand for the canonical basis of R” so that & = Zle aje;

with ; € R. We distinguish the following two cases:

(i) & is aligned with an axis, that is, all but one the «; vanish, or

(i1) £ is generated by at least two vectors of the basis.

We start with the case (i), assuming for instance & = ae;. Then & - v, = av,l, where v,l is the first
component of the vector vg.

We refer the reader to Figure 1 to complete the discussion. On each horizontal line we find 2| §N | + 1
velocities such that |§ - vi| < §|&|, where |s] stands for the integer part of s. Thus, since there are
(N + 1)P~1 such lines on the domain Ay, we obtain

S 1= QNI+ DIV DD =2(54 )N+ 1P,
|&-vr|<8]&|
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(0.5,0.5)
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rToOo T T aIn T T T
[ B e e e S s I e A I
[ET T BN N N T B S S [
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I I
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e N e I
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I I T
[ R A N A N N I |
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[ T = R B T
R O T TN N 2SS B o R R |
(—0.5,-0.5) 8

Figure 1. The delimited area corresponds to | - vi| < §|&| for & collinear to e;.

Coming back to (2-2), we arrive at

A 1
Y. fEwvwo|<CFENs+ .

“Vk| <61§]

where C > 0 is a generic constant which does not depend on N and &.

’ 1
D
(N+1) "

Next, we cover the set of velocities such that |vy - £] > §|&| by strips of width §; see Figure 2 in
dimension D = 2. We denote by S, the p-th strip delimited by the straight lines x = pé and x = (p +1)4.
Each velocity on the strip S, satisfies pé < v,l < (p+ 1)é. Moreover, given a strip S,, we cannot find
more than [8N | + 1 abscissae in the strip and there are (N + 1)?~! lines in the domain. It follows that

1 1 1
2 & w2~ 2 1612 16/15]. vk 2

& o =0l £ 2ol
<L2(ZL)(5N+1)(N+1)D1<L2(Zi>1(1+i)(1\/+1)’3
=P\ & oy =er\ & )5\ e
prP= pP=
i (0.5,0.5)
\777\:\:\:\777\77\77\:\:\77:?
(—0.5.-05 |8

Figure 2. Splitting of the velocity space in strips of width §. Since this space is symmetric,
we only deal with the part corresponding to positive abscissae.
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A A

(0.5,0.5) 5(0.5,0.5)
N L e
RN IR
s o
L AN

Figure 3. Representation of & € R* with 6 € ]0, %] and 6 € |%, Z] with cos0]§| =& -¢).

Thus, we deduce from (2-3) that

> FE v )
[§-ve =616

1 \1/2
'(N—I—I)D <CG(S)|§-|\/_< _> ’

We conclude that

pv1®)| = C(FE©), 5+

6 ——~(1+:)" (2-4)
+ (+5%)") -
13 I«/_
holds when £ is aligned with the axis.

We turn to the general case (ii). As illustrated in Figure 3, we can assume that the angle 6 between &
and one of the axes (say e;) lies in ]0, %[ the other cases follow by a symmetry argument.

The reasoning still consists in counting velocities in strips appropriately defined. As said above, without
T [ where we have set cos8|&| =& -e;. We set £1 :=§/cos 6.
On a given strip, we can find at most (|[£;N | + 1) x (N 4+ 1)P~ I velocities; see Figure 5.

loss of generality we can assume that 6 € ]O

Figure 4. The area corresponding to |£ - vg| < §|&| is delimited as previously. The
complementary set is split into strips of width §.
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A

Figure 5. Representation of the parameter ¢.

Therefore, bearing in mind that 0 < 8 < %, we obtain

1 1 1 1 1 5
T TRz =g 2 ——N+1)(N+DP!
s-gz:ma & - vil? ,g_v%m E12 16/1€1- vl ~ [EP Z (p8)2<c059 )( :

1 1 1 b | .
Swz;(l?é)zécose(l )(N+1) <2«/_|5|2 5(1+m)(N+1)

and
> 1=(2L£1NJ+1)(N+1)D152(%N+ )(N+ 1P~ 1<2f<5+ )(N+1)D
[& v <8§|

Thus, we deduce exactly like in case (i) that (2-4) holds for any & # 0.
Therefore, we have established that for all £ # 0, we get (2-4) for all § > 0. We take

1 1
8= El{sz} + N Liv<jen
and we define
OnE) = plYIE) vy, ANE) = pIYIE) Liv<ie)y-

Then, we have

1 1 1 1 \/? 1
® <C|F —+—+4+G <1 ) )1 sien < C(F G —_
N(E) =< < é) |§|+N+ ($)|§| T +N/|§| in=1ey < C(FE)+G(8)) a

It implies that

£]1On (6)* < C(G*(§) + F2(8)),

which equally holds true for £ = 0. Then by the assumption on f and g, we deduce that ©y € H'/?(RP).
Finally, we evaluate the remainder:

2 1 1
AN(&)SC<F(§)/;+G(S)|E|W(1+(I/N)N))I{N<|g| T(F(S)-FG@))

We conclude that

C
AV®) < L (F3®) +G2().

which is also satisfied when & = 0. Thus, by the assumption on f and g, we know ||Ay||;2 is dominated
by 1/+/N, an observation which finishes the proof. O
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A stochastic discrete velocity averaging lemma. Dealing with random discrete velocities we can expect
to make the defect vanish when taking the expectation of the velocity averages. This is indeed the case as
shown in the following statement.

Theorem 2.3. Let (2, A, P) be a probability space. Let Vi, ...,V be i.i.d. random variables, dis-
tributed according to the continuous uniform distribution on [—0.5, 0.5]°. We set

N
1
dM=725(v=vk).
k=1
Let f,g € L*(RP x RP x Q, dx du(v) dP) satisfy, forallx e R, w € Q, andk € {1, ..., .4},
Vie- Vi f(x, Vi) = g(x, V). (2-5)

Then, for all y € C° (RP), the macroscopic quantity
N
plyl(x) = % k; @ VY (V) =RP £(x, )y (v) de(v)

satisfies Ep[y] € HY*(RP) (and it is bounded in this space if the L> norm of f and g is bounded
uniformly with respect to N).

Remark 2.4. We point out that this statement has a different nature from the stochastic averaging lemma
devised in [Debussche et al. 2015; 2016], where the velocity set still satisfies an assumption like (1-3) but
the equation for v - V, f,, involves a stochastic term. Our analysis is closer in spirit to the results in [Lions
et al. 2013], where the velocity variable is deterministic but is multiplied by a Brownian motion.

Proof. We apply the Fourier transform to (2-5). Then, for all k, we get

E-Vif (& Vi) = (=), Vi)

We set
1/2

A 172
F(©):= (%[EZIJC(%‘, vk)|2) . GE):= (%EZIQ(%‘, Vk>|2)
k k

Let us split

A 1 A
Ep[y1(€) =E [7 ; f, vk)ka)]

1 A 1 ;
=[E[W > f@,vk)t/f(vk)}w[y > f@,vk)l/f(vk)]

|§-Vic| <5 [ RAELIH

for 6 > 0. The Cauchy—Schwarz inequality leads to the following estimates: on the one hand,

1 5 1 3 A .
HW 3 f@,vk)w(vk)} snwuoo(y[E;If@»Vkﬂz) (W[E )3 l) |

€-Vi|<8l&] 1€-Vi|<d]€]
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and, on the other hand,

‘ [JV > fE. vkw(vk)”

|§-vk| =815

1 (—i)8(&, Vi)
‘ [7 Z §-Vk w(V)”
I€-Vi|=8¢|

| A ) 172 | 1 1/2
< ||w||oo(7 [EXk:Ig(S, Vil ) (7 i.vﬂzma € ka) '

We only detail the case where £ =ae;, o € R, the other cases being deduced by adapting the reasoning
of the proof of Proposition 2.1. We have

1 1 1 1 1
|z, )=t 2, )= (S o))
g.w%s@-vkﬁ Isw%gsvﬁ/w«vkv €P ;(mz !

where M, is the number of velocities in the p-th strip (see Figure 2). We bear in mind that M), is a
random variable: since the V; are distributed according to the uniform law, we have

P(VieS,) =3¢
and, since the variables V1, ..., V4 are independent, M), follows a binomial distribution of parameters ./
and §. Therefore, we are led to
[E[ > ! }< ! 2(2—1 )[E[M]< ! —, (2-6)
v.2 | = g2 2 pd = 2 B
e E VP T 18P T\ (o) £
which yields
<
‘ [«/V ). fE vk)ka)]‘ CGE)—— |§|f’
1&-Vi|=41€]

By the same token, we get

[E[ Z 1]:2&/ (2-7)

&-Vil<dl5]

so that
‘ [ Y. fE ka(vk)”scnsw.
&-Vi|<é]5]
Finally, we arrive at
G@é)
<C(F@EWVs+ )
[EALY1E)] ( &) BN

We apply this inequality with 6 = G(§)/(|§|F(§)), which leads to

1
Eply1(6)| < CYF(E)G(E)——.
| | 3

This concludes the proof by using the assumptions on f and g. O
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Remark 2.5. We can readily extend the result to nonuniform laws: we assume that the V; are identically
and independently distributed in R” according to a continuous and bounded density of probability ®.
The number M,, of velocities in the strip S, still follows a binomial law but now the expectation value
depends on ® and M), can be shown to be dominated by 4[| ® || 3.

For certain applications, the variable v lies on the sphere. This is the case for the kinetic models arising
in radiative transfer theory, where v represents the direction of flight of photons, which, of course, all
travel with the speed of light. We can adapt the stochastic averaging lemma to this situation.

Theorem 2.6. Let (2, A, P) be a probability space. Let Vi, ...,V be i.i.d. random variables, dis-
tributed according to the continuous uniform distribution on SP~. We set

N
1
du=— ;a(vzvk).

Let f,g € LZ(RDXRD x 2, dx du(v) dP) satisfy, for all x € RP, weQ,andk e {1,..., 4},

Vi Vi f(x, Vi) = g(x, Vi).

Then, for all € C°(SP~1), the macroscopic quantity
1 N
plyl(x) = —> ; @ VY (V) =RP £(x, )Y (v) due(v)

satisfies Ep[y] € H'/2(RP).

Proof. The proof follows the same arguments as those for Theorem 2.3; we only indicate the main changes.
The proof still relies on counting the velocities produced by the random sampling in the domain

Sp={veSP 1 oplsl <|v-&l <8(p+ D5}
for given £ € RP\{0}, § > 0 and p € Z. We define 6 € [0, 27] such that
v-ElE] =cosf € [—1, +1].

Considering the random vectors Vi, the associated variable 6; is randomly distributed on [0, 277 ]. For
symmetry reasons, P(Vj € §,) is thus proportional to

P(8]p| < cosb <8(pl+1)).

We start with the specific case of dimension D = 2, and we refer the reader to Figure 6. In this case,
6 is uniformly distributed on [0, 2r]. Therefore, for any p € N, we know P(6p <cos8 <§(p+1)) is
proportional to

I, = arccos(8(p + 1))arccos(8P) d6 = arccos(8p) — arccos(8(p + 1))
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Sp S(p+1)
Figure 6. Velocities on the sphere S!, with domain § -

and M, =#{V) € S,} is driven by the binomial law with parameters .4" and «Il; , for a certain constant
o > 0. Hence, the analog of (2-7) is dominated, up to some constant, by

1 dx
N0 =N (57 —arccos§) = N §————= < CN$§

V1 —x2
as far as 0 < 8 < §p < 1. Similarly, the analog of (2-6) involves the sum
Z in&p’
po 52172

which we split into

1<p=<1/26 1/26<p<1/$

For I, we can still use the fact that x — 1/4/1 — x2 is nonincreasing and bounded far away from x = 1
and we are led to the estimate

VN dx N 8
= Z 52 2 2 = Z 52 2 0 5 =< C?.
<petyas O P s V1 =2 0 07T 1 =82 (p+ 1)

For II, we use a summation by parts which yields

N arccos(6p) 1 1
= L 52 <<p—1>2__2>

1/25<p<1/5 p
A arccos(§ 2 44 1 N
s Y AR s g Y5O
1/256<p<1/s p(p—1) P

Having these estimates at hand, we can repeat the same arguments as in the proof of Theorem 2.3.
For higher dimensions, the situation is actually simpler since 6 is now distributed on [O, %] according
to the law with density (sin 0)P=2d6. Thus (with the simple estimate 0 < (sin 0)P~2 < sin6) we obtain

directly the analog of estimates (2-6) and (2-7). O
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The result can be extended to the L? cases for 1 < p < oo by using an interpolation argument as in
[Golse et al. 1988, Theorem 2].

Corollary 2.7. In Theorems 2.3 and 2.6, we assume that f and g belong to LP (RP x ¥ x Q, dx duu(v) dP)
for some 1 < p < oo, with ¥ either RP or SP~1. Then Ep[yr] lies in the Sobolev space W*P(RP) with
O<s<min(l/p,1—-1/p) < 1.

Proof. We readily adapt the interpolation argument in [Golse et al. 1988]. Let .7 be the operator

7 hes [E/f(x, V)Y () duv),
where

SO, Vi) + Vi - Vi f(x, Vi) = h(x, Vi).

Clearly .7 maps continuously L"(RP x ¥ x Q, dx du(v) dP) into L"(RP) for any 1 <r < co. Moreover,
Theorems 2.3 and 2.6 tell us that .7 is a continuous operator from L*>(RP? x ¥ x Q, dx du(v) dP) to
H'/2(RP). We conclude by interpreting the Sobolev space W*'? by interpolation, as being an intermediate
space between L” = W% and H'/> = W!/22 [Bergh and Lofstrom 1976, Theorem 6.4.5, relation (7)],
and L7 as being interpolated between L” and L2 0

We can equally extend the compactness statement to the L' framework by following [Golse and
Saint-Raymond 2002].

Corollary 2.8. We consider a random set of velocities defined as in Theorem 2.3 orTheorem 2.6. Let
(fdnen and (gn)nen be two sequences of functions defined on RP x ¥ x Q such that

() {f. :n e N}is a relatively weakly compact set in L'(RP x ¥ x Q, dx du(v) dP),
(i) {gn : n € N} is bounded in L'(R? x ¥ x Q, dx du(v) dP),
(iii) we have Vi -V, f(x, Vi) = gn(x, Vi).

Then Ep,[¥](x) = [Ef fo(x, V)W (v) du(v) lies in a relatively compact set of L'(B(0, R)) for any
0 < R < oo (for the strong topology).

Proof. The proof follows closely [Golse and Saint-Raymond 2002]; we sketch the arguments for the sake
of completeness. For ¢ € C2°(7'), we denote by <7 the operator

A f > [Eff(x, )Y () du(v).
For A > 0, we also introduce the operator
oo
Ry, :hr— / e Mh(x —vt, v)dr,
0

which returns the solution f =R,/ of (A4v-V,) f =h. Itis a continuous operator on L? (R? x ¥, dx du(v))

spaces and we have
Al

[RxAl[Lr <

(2-8)
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Let us temporarily assume that the compactness statement holds for <7 R) g,,, for any A > 0, when (i)—(ii)
is strengthened to

(ii") {gn : n € N} is a relatively weakly compact set in LY RP x ¥ x @, dx du(v) dP).

Therefore, writing (A + v - Vi) Ry f = fu, we deduce from (i) that (< R, f;,)nen 1S relatively compact
in L'(B(0, R)) for any A > 0 and 0 < R < oo. Next, we write f, = AR, f, + R, (v - Vi f,,) so that,
owing to (2-8), & f, = Ad Ry f,, + </ R, (v - V, f,) appears as the sum of a sequence which is compact in
L'(B(0, R)) and a sequence whose norm is dominated by 1/, uniformly with respect to n. Consequently,
(o f)pen is relatively compact in L' (B(0, R)).

We are thus left with the task of justifying the gain of compactness for 7 R, g, when (i)—(ii) is replaced
by (ii’); see [Golse et al. 1988, Proposition 3]. To this end, for A, M > 0 we set R; g, = ¥, and we split

Vi = Yo + ¥
where
A+ Vi Vv m(x, Vi) = gn(x, Vi) lg,x,vio<m,
(h 4 Ve V) y, (e, Vo = ga(x, Vg, v -
Since for any fixed M > 0, the set {g,1,, <y : n € N} is bounded in L' N L*> C L? we can apply
Theorem 2.3 or Theorem 2.6, which imply that (<7 ¥, pm)nen 1S compact in LY(B(0, R)) for any finite R.

We can conclude by showing that ¥ can be made arbitrarily small, in L' norm, uniformly with respect
to n € N, for a suitable choice of M > 0. This is indeed the case because (ii’) implies

lim isup/ |gnl1g,>pm du(v) dxle(w)} =0
M—oo| p

by virtue of the Dunford—Pettis theorem; see [Goudon 2011, §7.3.2]. Going back to (2-8) finishes the
proof. O

3. Application to the Rosseland approximation

Let us go back to the asymptotic behavior of the solutions of (1-1). The problem (1-1) is completed with
the initial condition

f£|t=0 = fgo'

It satisfies 0 >0 and f0 € L'(RP x ¥), as it is physically relevant, f; being a particle density. For the
set (7, du), in what follows we suppose at least that ¥ is a bounded subset in R” and

/ du(v) =1, / vdu(v) =0.
v 4

These assumptions are crucial for the analysis of the diffusion regime. Then, the connection to (1-2) can
be established as follows.
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Theorem 3.1. We assume that (1-3) is fulfilled. Let o be a function such that o (p) = p? X (p) with |y| <1
and 0 < o, < X(p) < o™ < 00. Let (f€0)£>0 satisfy

sup( / ) f (14900 +1In £71£7) dp(v) dx + ||f£||po<wm) = My < +00
Re Jy

e>0

for a certain weight function such that lim|x|— 4o ¢ (x) = 400. Then (up to a subsequence) the solution f,
of (1-1) and p, converge to p(t, x) in LP((0, T) x R? x ¥) and L?((0, T) x R?) respectively, for any
1<p<oo, 0<T < oo, where p is a solution to (1-2) with the initial data p|,—¢ given by the weak limit
in LP R of [, f2du(v) ase — 0.

For instance this statement holds with ¥ = SP~! endowed with the Lebesgue measure. We refer the
reader to [Bardos et al. 1988] for a detailed proof, where the velocity averaging lemma is used to manage
the passage to the limit in the nonlinearity. Assumption (1-3) can be replaced by

forany § #0, meas({ve 7 NB(O, R):v-& #0}) >0,

which allows us to deal with certain discrete velocity models. Then, the asymptotic regime can be
analyzed with a compensated compactness argument, which relies on the structure of the system satisfied
by the zeroth and first moments of f;, as pointed out in [Degond et al. 2000; Goudon and Poupaud 2001;
Lions and Toscani 1997]; see also [Marcati and Milani 1990]. The question of the relation between the
diffusion equation that corresponds to a discretization of the velocity set (discrete ordinate equation) and
the diffusion equation that corresponds to the continuous model can be addressed. For the simple collision
operator in (1-1), velocity grids, which differ from the simplest uniform mesh, can be constructed that
lead to the exact diffusion coefficient, namely

N
1 1
jgvk@)vk—/g[)_lv@vdv_ﬁ[l,

we refer the reader to [Buet et al. 2002; Golse et al. 1999; Jin and Levermore 1991] for further discussion
on this issue. However, for more general collision operators, it might happen that the equilibrium
functions that make the collision operator vanish or the diffusion coefficient are not explicitly known; see
[Bonnaillie-Noél et al. 2016; Degond et al. 2000].

We wish to revisit this question by means of a Monte Carlo approach: instead of the discrete ordinate
viewpoint where a discrete velocity grid is adopted once and for all, we deal with a random set of velocities
and we wonder whether it can provide, in expectation, a consistent approximation of the diffusion regime.
The consistency analysis we propose uses Theorem 2.3 or Theorem 2.6 to justify the following claim.

Theorem 3.2. Let (2, A, P) be a probability space. Let V1, ..., Vy bei.i.d. random variables distributed
according to the continuous uniform law on ¥. Then, we obtain a set ¥y of 2.4 velocities in V' by setting
Vyyj=—=V;forall j €{1,..., 4} Wedenote the associated discrete measure on V' by

2N
1
diy () =5 ) 8=V
k=1
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Let feli—0 = fg0 > 0 satisfy
sup ([E / / (1490 +In £21) £ duwy (v) dx + ||f£||mmdm) =My <+oo.  (3-1)
e>0, #eN RD Jy

Let f be a solution of the equation

1 1
alfé‘(t’x’ ‘/j) + g‘/j : vxfs(t,xa ‘/j) = ga(ps,ﬂ)[ps,LM(t’x) - fg([,x, ‘/j)]’ (3_2)
with

pe.x(t. X) ——Zfs(t x, Vp).

We suppose that p € [0, o00) — o (p) is a nonnegative function such that for any 0 < R < 00, there exists
0,(R) > 0 satisfying 0 < 1/0,(R) < 0(p) < 0.(R) and |o'(p)| < 0.(R) forany 0 < p < R. Then Ep. 4
converges to Ep v in L*((0, T) x RP) as € goes to O with 0 < T < oo, where Ep 4 is solution of

. 1
oy +div(Zy) =0, o(Epy) fy =—EA 4V Epy+ O (ﬁ),
with A_y the D x D matrix with random components defined by
! 2.4
Ay :=ﬁzlvj®v-,
j:
and Ep.y |i—o is the weak limit of [ Ef0du(v).

Note that the construction of the set ¥, ensures that the null flux condition f vdu y (v) =0 is fulfilled,
but the elements of ¥ are not independent. Nevertheless, the stochastic averaging lemma still applies to
this situation, with a straightforward adaptation of the proof. It is likely that the assumptions on ¢ can
be substantially weakened, but it not our aim here to seek refinements in this direction. We will make
precise in the proof in which sense the consistency error O (1/+/.#") should be understood.

Entropy estimates. In order to prove Theorem 3.2, the first step consists in establishing some a priori
estimates, uniform with respect to the parameters ¢ and .#. We will then deduce the compactness needed to
obtain the result. These estimates are quite classical; the proof that we sketch for the sake of completeness
follows directly from [Bardos et al. 1988; Goudon and Poupaud 2001; Lions and Toscani 1997].

Proposition 3.3. Let fg0 satisfy (3-1) with ¢(x) = (1 +x2)P, 0<B<1.Let 0 < T < o0o. There exists a
constant C(T) which only depends on T such that

sup { sup E/ /(1+¢(x)+|1nfe|)fadlw/(v)dx+||fe||L°°(szx(o,T)xRDw)}=C(T)<+OO
e>0,/eN0<t<T JRPJy
(3-3)

and, furthermore,

sup [E/ f /"(ps ) M)ln( fe )dw(u)dxdrgcm. (3-4)
£>0,.4eN RDP Pe, NV
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Proof. As said above we crucially use the fact that

/ duy () =1, / vduy(v) =0
v ¥

As a matter of fact, the collision operator is mass-conserving in the sense that

[yo(p)(f —p)duy()=0

Accordingly, integrating immediately leads to

4 [E/ / fedpy(v)dx =0. (3-5)
Re Jy

More generally, let G : [0, c0) — R be a convex function. We get

—[E/RD/G(fadM(v)dx———[E/ fo—(pg N er = )G (pen) = G () dpty (v) dx <0,

With G(z) = z”, p > 1, it gives an estimate on the L” norm of the solution. Similarly, with G(z) =
[z — 1 f2ll0]3., we conclude that

0
| fell oo (@x0,7)xRP x7) = 1 fe lloo-

Finally, with G(z) = z1In(z) we have

/RD/ fglnfgd;w(v)dX——— [E/ /a(ps )N pe, v — fg]ln( Je

Let us focus on the following quantity obtained by multiplying (3-2) by ¢ and integrating

d 1
d—[Ef /(P(X)fsduw(v)dx=——[E/ fw(X)vifed;w(v)dx
t Jrp Jyv e Jro Jy

Zl[E/ /fev-fop(X)de(v)dx

= /RDf V- Vx(p(x) pg/l/dM/V(v)dx-

Note that we have used ['vd 4 (v) = 0. By the Cauchy—Schwarz inequality, we know that

/b ds / ds
NG a
Thus, we get

[y | fe = pey | dpy (v) = [y e eV fe = /Per | dhay (v)
1/2
= ( //@ /P’ dfmv)) ( fy W fe = /Per)’ dm(v))

12
SC«/_,Os,JV< [y (fs—pg,w)ln(fe/pe,,m)duw(v)) ,

)d//,//(v) dx <0. (3-6)
N

2

Vb —al* =

/ ‘ = 1(b—a)In(b/a).

1/2
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and we finally obtain the bound

—[E/ /fpfeduw(v)dx

Pe..r|
<||v||Loo<st)[E/ /w —”du (v) dx

1/2
<CE / V.| |22t ( “(" et g, —paw)1H(fs/,08,,/r)duw(v)) dx
(:08 /V)

s b\ e 172
sC[E( /R Vel L ) ( fR ) / (- pg,m)ln(fe/pg,w)dum(v)dx) .

By assumption, 1/0 (p¢,_ ) is uniformly bounded. It follows that

Pe, ¥ 1/q 1/p
[E/ |vx<p|2+‘dxsc<[Ef |vx<p|2"dx) (E/ pé’.ﬂx)
RD o (P, ) RP RP
1/q 1/p
sc(rE/ |Vx<p|2f1dx) (fE/ /Ifel”duw(v)dX> <c
RD RP J¥

holds provided the Holder conjugate g of p > 1 satisfies 8 < 1/2 — D/(4q).
The Young inequality
2
a
b< —+60b*
ab < 10 +

yields

d e,
St [emnervanmascagef [ TG oo e

Let us set

D=t [ [ TG ) ) iy ) e 20
R Jy €
Coming back to (3-6), we get
[E/ / fet, x,v)In fo (2, x, v)du 4 (v) dx + [E/ / @ x) fe(t, x,v)duy (v)dx + l/ D.(s)ds
rRP Jy rP Jy 2 Jo
scivef [ rtcomteodnoatre] [ ewete o
rRP Jy r? Jy

Since z|Inz| = zInz — 2zInz 1jp<;<1}, we have

05_/ flnfdy=—/ flnfdy—/ flnfdy§f¢fdy+/e—<ﬂ/2dy.
0<r=l1 0<f<e ¥ e v<f<l
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Then, we are led to

e[ [ rampignioand [ ooasge [ ] onanoe
RO Jyv 0 RD Jv

:[E/ /\falnfadu(/V(U)dx_zE‘/‘ /fglnfgl{ofﬁfl}dut/y(v)dx
RD Jy RO Jy

t
+%f Dg(s)ds—i-%[E/ /goﬁdm(v)dx
0 RD Jyv

S[Ef /fslnfsdm(v)dxH[Ef /ffgd;w(v)dx
RP Jv RD 7/4

t
+2E / / ey (v) dx + 4 f D (s)ds + LE f / of. dity (v) dx
RD W 2 O 2 RD 1%
< (). 0

Moreover, we can deduce from above that f; behaves like its macroscopic part p, 4 for small ¢.

Corollary 3.4. We set g. v := (fe — ps..x) /€. Then, we have

T
sup [E/ /
e>0, N 0 JRP
2 T . 2
dxdt:E// (/ de(v)) dxds

0 JRP \J¥ €

T
<CE /O /R e fy ompen) 0o/ 0or) diiy (v) dx di

2
dxdt < C(T).

/ 8e,.v Ay (V)
%

Proof. We write

[ ].

/ 8e,.v dpy (v)
%

T
<CE /0 /r; Pe.t / 6 (Do) fompo ) INfo/ por) diiy (v) dx dr.
v

b O'(/Os,z/V)

Since by the assumption on o we know that z — z/0 (z) is bounded on bounded sets and since p; 4 is
bounded in L®(Q x (0, T) x RP), we can conclude by using (3-4). Il

Diffusive limit. We can now discuss how to pass to the limit & — 0.

Proof of Theorem 3.2. Applying the Dunford—Pettis theorem (see [Goudon 2011, §7.3.2]) we deduce
from Proposition 3.3 that, possibly at the price of extracting a subsequence,

fo— fy weaklyin L1'(Q x (0, T) x R? x ¥).
Consequently, we also have

pey = / frdpy@) = py = / faduy(v) weakly in L'(2 x (0, T) x RP)
V4 v

and
Epe. » — Epy weakly in L1((0, T) x RP).
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Next, we consider the equations satisfied by the moments of f,. To this end, let us set

| 2N V. | 2N
Jeor(x) 1= 52 3 folt,x, Vi), Pey(t,0) =52 3 Vi® Vifelt,x, Vo).
i=1

i=1
Integrating (3-2) with respect to the velocity variable v yields
01 pe.y +div(Je y) =0. (3-7)
Similarly, multiplying (3-2) by v and integrating leads to
20 Je, v +diV(Pe,y) = =0 (05, 4) Je,r- (3-8)

Lemma 3.5. The sequence (Je_y)e=0 is bounded in L*(Q x (0, T) x RP) and we can write Pe v =
Ay pe v+ el v with Ay = ﬁ Z?fl Vi ® V; and the components of (K¢ _y)e~0 are bounded in
L*(2 x (0, T) x RP).

Proof. The proof is based on the fact that f; = p. s + €8¢+ Since Z?ZI Vi =0, it allows us to write

Je,y = f vge, v Ay (v),

and we deduce the bound on J; 4 from Corollary 3.4 since ||v||z~@xs) < C. In addition, we have

P vy = / vOvduy (V) pe, v +€ / vV vge, v Ay (V).
We set
e, v (2, x) := / VR vge, v (t, x,v)du s (v).

We conclude by using the estimates in Corollary 3.4 again. 0

Owing to Lemma 3.5, (3-8) can be recast as
(0 Je, v +div( 1)) + Ay Ve, v = —Ve s,
with vy := 0 (pe, ) Je,.v. Passing to the limit, up to subsequences, we are led to

{31,0w +div(Jy) =0,

(3-9)
AxVoy=—uy,

where v 4 is the weak limit as ¢ — 0 of v, _4, which is a bounded sequence in L2(2 x (0, T) x RP).
It remains to establish a relation between v, p 4 and J,, or more precisely the expectation of these
quantities. To this end, we are going to use the strong compactness of Ep, 4 by using the averaging
lemma. Indeed, we know that Ep, s belongs to a bounded set in L?(0, T; H'?(RP)); the proof follows
exactly the same argument as for Theorem 2.3, taking the Fourier transform with respect to both the time
and space variables ¢, x. However, because of the ¢ in front of the time derivative, we cannot expect a
gain of regularity with respect to the time variable. Then, we need to combine this estimate with another
argument as follows:
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(i) By using the Weil-Kolmogorov—Fréchet theorem, see [Goudon 2011, Théoréeme 7.56], we deduce
from the averaging lemma that

T
lim (sup/ / |Ep8,</y(t, x+h)—Ep. 4(t, )c)|2 dx dt) =0.
|h|—0 P 0 JRP

(i1) Going back to (3-7), Lemma 3.5 tells us that 9;Ep. » = —div(EJ;_4) is bounded, uniformly with
respect to &, in L%0, T; H ' (RD)).

Then, this is enough to deduce that Ep, 4 strongly converges to Ep 4 in L%((0, T) x RP) (see, e.g.,
[Alonso et al. 2017, Appendix B] for a detailed proof).
Then, we rewrite

EJ [E( Ve, 4 ) Ever g [ ( ! ! )} (3-10)
N = = r, LN I, N = V N - . -
’ oc(per)) o(Epey) O “No(per) o Epey)

From the previous discussion, extracting further subsequences if necessary, we know that Ev, _, converges
weakly to Evy in L%((0, T) x RP), while Epe..» converges strongly in L%((0, T) x RP) and a.e. to Eoy.
Since o is continuous and bounded from below, 1/0 (Ep;,_ +) converges to 1/0(Ep.+) a.e. too, and it is
bounded in L%°((0, T) x R?). We deduce that

Eve.»  [Euy
o(Epe, )  o(Epy)

weakly in L%((0, T) x RP).

We are left with the task of proving that the last term in the right hand side of (3-10) tends to 0 as .#" — oo,
uniformly with respect to €. The Cauchy—Schwarz inequality yields

. | . 298172
E ... < E e,. E B
|Ere, v | < (E[(ve, )] ( [(G(p&’/’/) o([E,Og,,/V)) :|>

per 4T 1 2\1/2
< (E[(ve. )™ D'? ([E [( / d—[—] dz)] )
Epe, v Z U(Z)

< E[We ) D2 (EL(pev —ER2 D)

1 2 297\ 1/2
<( [(vg,,mz])”z([E [<ﬁ Zl fe(Vi) = [Eps,w> D : (3-11)
1=
We remind the reader that the 2.4 velocities are constructed by symmetry from Vi, ..., V-, which are

i.i.d. velocities in [—0.5, 0.5]?, and we write

2N 2
E [12,/2 fo (V) — [E,Oa,w]
i=1

442 &
i,j=1

1 N
= [E[ D A(fe VD) + fo(=Vi) = 2Bpe ) (fo (V) + fo(=V}) — 2[Eps,w)}]- (3-12)
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When i # j, we know V; and V; are independent, which implies

E [(fa(vz) + fe(=Vi) — ZIEIOE,JV)(fE(‘/j) + fa(_vj) - Z[Eps,./lf)]
=E[fe (Vi) + fe(=Vi) = 2Epe v | E[ fo(V}) + fe(—=V}) — 2Epe. s ].

Now, we use the fact that the V; are identically distributed so that

2. N
1 1
2Epe, v = 2E (ﬁ k; fa<vk>) =t (7 k;(fg(m + fs<—vk)))

N
2o Y EA VD +E£(= Vi) = E£ (V) +EL(=V))
k=1
for any j € {1, ..., #}. It follows that
E[£o(VD) + fo(=VD) = 2Epe ) (fo(V) + fo(=V)) —2Ep, )] =0 wheni # .

Going back to (3-12), we obtain

1 2.0 2 1 N )
E[ﬁgfs(vi)—ﬂzpe,ﬂ/} =E[m ;(fg(‘/[)'i‘fg(—‘/i)—zﬂng“/‘/) :|

Since f. and p. 4 are uniformly bounded, we conclude that the estimate

1 2 ¢
E| — Vi) —E < —
[Mi;fx ) ps,ﬂ] =—

holds. Inserting this information in (3-11), we arrive at

T C T
/ / |Ere o[> dxdt < — [E/ f v2 , dxdt,
o Jrp A Jo Jrp T

which is thus of order O(1/.4), uniformly with respect to ¢.
Therefore, we can let ¢ run to 0 in (3-10) and, for a suitable subsequence, we are led to
: 2 D . C
+ry  weakly in L7((0, T) x R™) with [[r.4 || 20,7y xrP) < —F—-

Ny

[EUJV

EJ.  —~EJ,y =
o T o (Epy)

Finally, we take the expectation in (3-9) and we get

E(A 4 Vyipy) =—kvy =—0(Ep)ELy +0o(Eps)ry.

Note that the last term is still of order O (1/+/.4) in the L?((0, T) x R?) norm. By reasoning similar to
that above, we check that, for any i, j € {1, ..., D},

\/[E[([Aw]ij - [E[AJV]U)Z] =0 («/%)
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(this is the standard result about Monte Carlo integration). It implies that we can find a constant C > 0,
which only depends on the dimension D, such that for any £ € R,

C 2
E[|A& — A, &]"] < j’ .

Then we get

E(AyVepy) =EA,ViEoy +sy, sy =E[(Ay —EA)Vipr].

The remainder term should be analyzed in a weak sense, due to a lack of a priori regularity of V,p 4 (we
only know that the product A_, V,p 4 lies in L? but the invertibility of A_s is not guaranteed). We have,
for any ¢ € C°((0, T) x RP),

T
[(Es.vlp)| = ‘—E/ f o (Ay —EA ) Vipdx dt
0 R

T ) 1/2 T ) 172 ¢
< [Ef / 0 dxdt) (/ / V0| dxdt) =
< o Jro " o Jro NN

Owing to the estimates (3-3) in Proposition 3.3, it means that s_4 is therefore of order O(1/+/.4") in the
L?*(0, T; H~"(RP))-norm. O

Remark 3.6. The random matrix A_, might be singular. However EA 4 is invertible. Indeed for any
& #0, we have

28
FA.v§ &= Y HIV; £ 20,
j=1

This quantity is actually positive since P(v - & = 0) = 0 for the continuous laws we are dealing with.

4. Comments and perspectives

The Monte Carlo procedure is widely used to numerically evaluate multidimensional integrals, precisely
because, evaluating the numerical effort by the number .4 of quadrature points, it provides a result with
an accuracy of order O (1/+/#), independently of the space dimension, in contrast to the deterministic
quadrature methods where the error is O (A —k/Dy being the order of the method; see [Caflisch 1998;
Lapeyre et al. 1998, Chapitre 1]. Application of such stochastic quadrature approaches to the numerical
treatment of kinetic models for neutron transport dates back to the Manhattan project [Metropolis and
Ulam 1949]. For applications to radiative transfer computations we refer the reader, e.g., to [Campbell
1967] and for a more recent overview to [Whitney 2011]. After the pioneering works by K. Nanbu
[1980] and G. A. Bird [1970], Monte Carlo techniques are at the basis of the simulation of the Boltzmann
equation for rarefied gases. (By the way, note that the construction of a suitable deterministic quadrature
formula for approximating the Boltzmann operator can be a bit tricky, with unexpected connections to
subtle number theory arguments [Michel and Schneider 2000].) Very comprehensive introductions can
be found in [Graham and Méléard 1999; Pareschi 2005; Pareschi and Russo 1999] and in the textbook
[Lapeyre et al. 1998]. The method can naturally be presented as a particulate method; roughly speaking,
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it works according to a splitting approach [Lapeyre et al. 1998, Chapter 3]: first, particles (which, here,
are “test” particles intended to actually represent a set of real particles) are displaced according to free
transport over the time step At, and, second, the effects of the interaction between particles during the
time step are evaluated by using a random sampling. Convergence of the method for the Boltzmann
equation as the number of particles tends to oo is analyzed in [Graham and Méléard 1997; Pulvirenti et al.
1994; Wagner 1992; 2004]. However, the performance of Monte Carlo algorithms is known to degrade in
near-continuum regimes, where the number of collision events per time unit increases; see [Caflisch 1998,
§7; Lapeyre et al. 1998, §3.7.1 and §4.5]. This observation has motivated the development of hybrid
methods [Dimarco and Pareschi 2008; Pareschi 2005].

As pointed out in the Introduction, the average lemma plays a central role in the analysis of nonlinear
kinetic models and their hydrodynamic limits, with fundamental obstructions in extending to discrete
velocity models. We expect that the stochastic average lemma established here might help in analyzing
stochastic algorithms for kinetic models. Our first attempt remains at the level of space-time continuous
models for the simplest radiative transfer equation: it is just a consistency result with the diffusion
approximation. It is remarkable that the consistency error preserves the typical feature of the Monte Carlo
error estimate in O (1/+/.#"), independently of the space dimension. A next step, likely inspired by the
“time-discretized” version of the averaging lemma in [Bouchut and Desvillettes 1999; Horsin et al. 2003],
would be to consider time-discretized models, where the random velocity grid is reconstructed at each
time step.
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PERRON’S METHOD FOR
NONLOCAL FULLY NONLINEAR EQUATIONS

CHENCHEN MoU

This paper is concerned with the existence of viscosity solutions of nonlocal fully nonlinear equations that
are not translation-invariant. We construct a discontinuous viscosity solution of such a nonlocal equation
by Perron’s method. If the equation is uniformly elliptic, we prove the discontinuous viscosity solution is
Holder continuous and thus it is a viscosity solution.

1. Introduction

We investigate the existence of a viscosity solution of

I(x,u(x),u(-))=0 ing,
. (1-1)
u=g in Q°€,
where €2 is a bounded domain in R”, / is a nonlocal operator that is not translation-invariant and g is a
bounded continuous function in R,

An important example of (1-1) is the Dirichlet problem for nonlocal Bellman-Isaacs equations, i.e.,

sUPg e infpes{—Laplx. u] +bap(x) - Vi(x) + cap(¥)u(x) + fap(x)} =0 in Q, (1-2)
Uu=g in QF,

where A, B are two index sets, byp : R" — R", c,p :R* — R, f,; :R" — R are uniformly continuous

functions and 1, is a Lévy operator. If the Lévy measures are symmetric and absolutely continuous with

respect to the Lebesgue measure, then they can be represented as

laploai= [ fute-+ 2) = u(olKap (. ) = (13
R}’l
where {K,p(x,-): x € 2, a € A, b € B} are kernels of Lévy measures satisfying

min{|z|? 1} K p(x,2)dz < +oo forall x € Q. (1-4)
Rn

In fact, we will not assume our Lévy measures to be symmetric in the following sections.

Existence of viscosity solutions has been well established for the Dirichlet problem for integro-
differential equations by Perron’s method when the equations satisfy the comparison principle. G. Barles
and C. Imbert [Barles and Imbert 2008] studied the comparison principle for degenerate second-order

MSC2010: primary 35D40, 35J60, 35R09, 47G20, 49N70; secondary 45K05.
Keywords: viscosity solution, integro-PDE, Hamilton—Jacobi—Bellman—Isaacs equation, Perron’s method, weak Harnack
inequality.

1227


http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2017.10-5
http://dx.doi.org/10.2140/apde.2017.10.1227
http://msp.org

1228 CHENCHEN MOU

integro-differential equations assuming the nonlocal operators are of Lévy—It6 type and the equations
satisfy the coercive assumption. Then G. Barles, E. Chasseigne and C. Imbert [Barles et al. 2008]
obtained the existence of viscosity solutions for such integro-differential equations by Perron’s method.
L. A. Caffarelli and L. Silvestre [2009, Section 5] proved the comparison principle for uniformly elliptic
translation-invariant integro-differential equations where the nonlocal operators are of Lévy type. Then
existence of viscosity solutions follows, if suitable barriers can be constructed, by Perron’s method. Later
H. Chang-Lara and G. Davila [2014a, Section 3; 2016b] extended the comparison and existence results
of [Caffarelli and Silvestre 2009] to parabolic equations. The existence for (1-1) when 7 is a nonlocal
operator that is not translation-invariant is much more difficult to tackle since we do not have a good
comparison principle; see [Mou and Swigch 2015], where the authors proved comparison assuming that
either a viscosity subsolution or a supersolution is more regular. To our knowledge, the only available
results for the existence of solutions for equations that are not translation-invariant are the following.
D. Kriventsov [2013, Section 5] studied the existence of viscosity solutions of some uniformly elliptic
nonlocal equations. J. Serra [2015b, Section 4] proved the existence of viscosity solutions of uniformly
elliptic nonlocal Bellman equations. H. Chang-Lara and D. Kriventsov [2017, Section 5] extended
existence results in [Kriventsov 2013] to a class of uniformly parabolic nonlocal equations. In all these
proofs, the authors used fixed-point arguments. O. Alvarez and A. Tourin [1996] obtained the existence
of viscosity solutions of degenerate parabolic nonlocal equations by Perron’s method with a restrictive
assumption that the Lévy measures are bounded. The boundedness of Lévy measures allowed them to
obtain the comparison principle. The reader can consult [Crandall et al. 1992; Ishii 1987; 1989; Koike
2005] for Perron’s method for viscosity solutions of fully nonlinear partial differential equations.

The probability literature on the existence of viscosity solutions of nonlocal Bellman-Isaacs equations
is enormous. It is well known that Bellman—Isaacs equations arise when people study differential
games, where the equations carry information about the value and strategies of the games. Probabilists
represent viscosity solutions of nonlocal Bellman—Isaacs equations as value functions of certain stochastic
differential games with jump diffusion via the dynamic programming principle. However, mostly in the
probability literature, the nonlocal terms of nonlocal Bellman—Isaacs equations are of Lévy—It6 type and
Q2 is the whole space R". We refer the reader to [Barles et al. 1997; Biswas 2012; Biswas et al. 2010;
Buckdahn et al. 2011; Ishikawa 2004; Kharroubi and Pham 2015; Koike and Swi@ch 2013; @ksendal and
Sulem 2007; Pham 1998; Soner 1986; 1988; Swigch and Zabczyk 2016] for stochastic representation
formulas for viscosity solutions of nonlocal Bellman-Isaacs equations.

In Section 3, we adapt to the nonlocal case the approach from [Ishii 1987; 1989; Koike 2005] for
obtaining existence of a discontinuous viscosity solution u of (1-1) without using the comparison principle.
For applying Perron’s method, we need to assume that there exist a continuous viscosity subsolution and
a continuous supersolution of (1-1) and both satisfy the boundary condition. Since (1-1) involves the
nonlocal term, the proof of the existence is more delicate than the PDE case.

In Section 4, we obtain a Holder estimate for the discontinuous viscosity solution of (1-1) constructed
by Perron’s method assuming the equation is uniformly elliptic. In most of the literature, the nonlocal
operator [ is assumed to be uniformly elliptic with respect to a class of linear nonlocal operators of form
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(1-3) with kernels K satisfying

200y <KD £ 2m0) (1-5)
where 0 < A < A. Various regularity results were obtained in recent years under the above uniform
ellipticity, such as [Caffarelli and Silvestre 2009; 2011a; 2011b; Chang-Lara and Davila 2014a; 2014b;
2016a; 2016b; Chang-Lara and Kriventsov 2017; Dong and Kim 2013; Jin and Xiong 2015; 2016;
Kriventsov 2013; Serra 2015a; 2015b; Silvestre 2006; 2011; Dong and Zhang 2016] for both elliptic and
parabolic integro-differential equations. In this paper, we follow [Schwab and Silvestre 2016] to assume a
much weaker uniform ellipticity. Roughly speaking, we let I be uniformly elliptic with respect to a larger
class of linear nonlocal operators where the kernels K satisfy the right-hand side of (1-5) in an integral
sense and the left-hand side of that in a symmetric subset of each annulus domain with positive measure.
The main tool we use is the weak Harnack inequality obtained in [Schwab and Silvestre 2016]. With the
weak Harnack inequality, we are able to prove the oscillation between the upper- and lower-semicontinuous
envelopes of the discontinuous viscosity solution u in the ball B, is of order r* for some o > 0 and any
small r > 0. This proves that u is Holder continuous and thus it is a viscosity solution of (1-1). Recently,
L. Silvestre [2016] applied the regularity for nonlocal equations under this weak ellipticity to obtain
the regularity for the homogeneous Boltzmann equation without cut-off. We also want to mention that
M. Kassmann, M. Rang and R. Schwab [Kassmann et al. 2014] studied Holder regularity for a class of
integro-differential operators with kernels which are positive along some given rays or cone-like sets.

To complete the existence results, we construct continuous sub/supersolutions in both uniformly elliptic
and degenerate cases in Section 5. In the uniformly elliptic case, we follow the idea of [Ros-Oton and
Serra 2016] to construct appropriate barrier functions. We then use them to construct a subsolution and a
supersolution which satisfy the boundary condition. The weak uniform ellipticity and the lower-order terms
of I make the proofs more involved. With all these ingredients in hand, we can conclude one of the main
results in this manuscript, that (1-1) admits a viscosity solution if / is uniformly elliptic; see Theorem 5.6
in Section SA. This main result generalizes nearly all the previous existence results for uniformly elliptic
integro-differential equations. In the degenerate case, it is natural to construct a sub/supersolution only
for (1-2) since we have little information about the nonlocal operator /. Moreover, we need to assume
the nonlocal Bellman—Isaacs equation in (1-2) satisfies the coercive assumption, i.e., ¢, > Y for some
y > 0. The coercive assumption is often made to study uniqueness, existence and regularity of viscosity
solutions of degenerate elliptic PDEs and integro-PDEs; see [Barles et al. 2008; Barles and Imbert 2008;
Crandall et al. 1992; Ishii 1987; 1989; Ishii and Lions 1990; Jakobsen and Karlsen 2006; Mou 2016; Mou
and Swiech 2015]. In Section 5B, we obtain a subsolution and a supersolution which satisfy the boundary
condition in the degenerate case. The difficulty here lies in giving a degenerate assumption on the kernels
which allows us to construct barrier functions. Roughly speaking, we only need to assume that the kernels
K,p(x,-) are nondegenerate in the outer-pointing normal direction of the boundary for the points x
which are sufficiently close to the boundary. That means we allow our kernels K,; to be degenerate
in the whole domain. Then we can conclude the second main result, the existence of a discontinuous



1230 CHENCHEN MOU

viscosity solution of (1-2), given in Theorem 5.13. If the comparison principle holds for (1-2), we obtain
that the discontinuous viscosity solution is a viscosity solution. Finally, we notice that our method could
be adapted to the nonlocal parabolic equations for obtaining the corresponding existence results.

2. Notation and definitions

We write Bg for the open ball centered at the origin with radius § > 0 and Bg(x) := Bs + x. We
set Qs := {x € Q : dist(x,dR2) > &} for § > 0. For each nonnegative integer » and 0 < a < 1, we
denote by C™%(2) (C™*(K2)) the subspace of C"%(Q) (C™%(Q)) consisting of functions whose r-th
partial derivatives are locally (uniformly) a-Holder continuous in 2. For any u € C™%(2), where r is a
nonnegative integer and 0 < « < 1, define

su qo 107 u(x ifa =0,
[u]r’a;Q = % prQ,|j|—r | ( )|

SUPx, yeQ,x#y,|j|=r |8]u(x) - 8]u(y)|/|x —y|* ifa>0,
and

> i—olulj0.0 ifa =0,
lullerog + lraa ifa>0.
For simplicity, we use the notation C# () (C#(£2)), where 8 > 0, to denote the space C™%(2) (C"%(Q)),
where r is the largest integer smaller than 8 and o = 8 —r. The set C llf (£2) consist of functions from
C#(Q) which are bounded. We write USC(R") for the space of upper-semicontinuous functions in [R”

”u”Cr,a(ﬁ) =

and LSC(R") for the space of lower-semicontinuous functions in R”.
We will give a definition of viscosity solutions of (1-1). We first state the general assumptions on the non-
local operator / in (1-1). Forany § >0, r,s €R, x,xx €Q, ¢, o, € C2(Bg(x)) N L>®(R"), we assume:

(A0) The function (x,7r) — I(x,r,¢(-)) is continuous in Bg(x) x R.

(A1) If x; — x in Q, ¢ — @ ae. in R", g — ¢ in C?(Bg(x)) and {gi }x is uniformly bounded in R”,
then
I(xp. ric () = 1(x, 1, 0(+)).

(A2) If r <s,then I(x,r,@(+)) <I(x,s,¢(-)).

(A3) For any constant C, we have I(x,r,¢o(-)+C) = I(x,r,¢(-)).

(A4) If ¢ touches { from above at x, then I(x,r, ¢(-)) < I(x,r,¥(-)).

Remark 2.1. If I is uniformly elliptic and satisfies (A0), (A2), then (A0)—(A4) hold for /. See Lemma 4.2.

Remark 2.2. The nonlocal operator / in [Schwab and Silvestre 2016] has only two components, i.e.,
(x,¢9) = I(x,(-)). Here we let our nonlocal operator / have three components and assume (A2)—(A3)
hold. This is because we want to let / include the left-hand side of the nonlocal Bellman—Isaacs equation
in (1-2) and, moreover, we want to describe the two properties

—lap[x. ¢ + Cl+bap(x) - V(g + C)(x) = —Iap[x. 9] + bap(x) - Vo (x),

Cap(X)r <cgap(x)s ifr<s

in abstract forms.
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Remark 2.3. The left-hand side of the nonlocal Bellman—Isaacs equation in (1-2) satisfies (AQ)—(A4) if
(1-4) holds and its coefficients K,p, b,p, cqp and f,p are uniformly continuous with respect to x in €2,
uniformly in a € A, b € B. See [Guillen and Schwab 2016] for when the nonlocal operator / has a
min-max structure.

Throughout the paper, we always assume the nonlocal operator I satisfies (AO0)—(A4).

Definition 2.4. A bounded function u € USC(R") is a viscosity subsolution of / = 0 in 2 if whenever
u — ¢ has a maximum over R” at x € Q for ¢ € Cbz([R”), then

I(x,u(x). ¢(+)) <0.

A bounded function u € LSC(R") is a viscosity supersolution of / = 0 in Q if whenever u — ¢ has a
minimum over R” at x € Q for ¢ € Cb2 (R™), then

1(x,u(x), ¢(-)) = 0.

A bounded function u is a viscosity solution of / = 0 in €2 if it is both a viscosity subsolution and
viscosity supersolution of / = 0 in 2.

Remark 2.5. In Definition 2.4, all the maximums and minimums can be replaced by strict ones.

Definition 2.6. A bounded function u is a viscosity subsolution of (1-1) if u is a viscosity subsolution of
I =0in Q and u < g in Q€. A bounded function u is a viscosity supersolution of (1-1) if u is a viscosity
supersolution of / =0 in Q and u > g in Q€. A bounded function u is a viscosity solution of (1-1) if u
is a viscosity subsolution and supersolution of (1-1).

We will use the following notations: if u is a function on €2, then, for any x € €2,
u*(x) = lim sup{u(y) cyeQand |y—x| < r},
r—0
Ux(x) = lim inf{u(y) yeQand |y—x| < r}.
r—0
One calls u™* the upper-semicontinuous envelope of u and u, the lower semicontinuous envelope of u.

We then give a definition of discontinuous viscosity solutions of (1-1).

Definition 2.7. A bounded function u is a discontinuous viscosity subsolution of (1-1) if u* is a viscosity
subsolution of (1-1). A bounded function u is a discontinuous viscosity supersolution of (1-1) if u4 is a
viscosity supersolution of (1-1). A function u is a discontinuous viscosity solution of (1-1) if it is both a
discontinuous viscosity subsolution and a discontinuous viscosity supersolution of (1-1).

Remark 2.8. If u is a discontinuous viscosity solution of (1-1) and u is continuous in R”, then u is a

viscosity solution of (1-1).

3. Perron’s method

In this section, we obtain the existence of a discontinuous viscosity solution of (1-1) by Perron’s method.
We remind you that [ satisfies (AO)—(A4).
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Lemma 3.1. Let F be a family of viscosity subsolutions of I =0 in Q. Let w(x) = sup{u(x):u € F} in
R"and assume that w* (x) < oo for all x € R". Then w is a discontinuous viscosity subsolution of I =0
in Q.

Proof. Suppose that ¢ is a Cb2 (R™) function such that w* — ¢ has a strict maximum (equal to 0) at
X0 € Q over R”. We can construct a uniformly bounded sequence of C2(R”") functions {¢@,; }m such
that ¢, = ¢ in B1(xg), ¢ < ¢, in R", SqueBg(xO){W*(x) —om(x)} < —% and ¢, — @ pointwise.
Thus, for any positive integer m, we know w* — ¢, has a strict maximum (equal to 0) at x¢ over R”.
Therefore, SUPye B¢ (xo) W (X) = Pm(x)} = €m < 0. By the definition of w*, we have, for any u € F,
supxer(xo){u(x) —@m(x)} <€y, < 0. Again, by the definition of w*, we have, for any €, < € <0, there
exist ue € F and X € B1(xg) such that uc(x¢) — ¢(x¢) > €. Since ue € USC(R") and ¢, € Cbz([R”),
there exists xe € B1(xg) such that ue(xe) — @m(Xe) = sup,epn e (x) —@(X)} > Ue(Xe) — Pm(Xe) > €.
Since w* — @y, attains a strict maximum (equal to 0) at xo over R” and u < w* for any u € F, we have
ue(xe) = w*(xp) and x¢ — xo as € — 0. Since uc is a viscosity subsolution of /7 = 0 in 2, we have

I(xe, ue(xe), pm(-)) < 0. (3-1)
Since x¢ — xg, Ue(xe) = w*(xg) as € — 07, @, =@ in B1(xg), ¢m — ¢ pointwise, {@m }m is uniformly
bounded, ¢ € Cbz([R”), (A0) and (A1) hold, we have, letting ¢ — 0~ and m — 400 in (3-1),

I(xo, w*(xo), ¢(+)) <O0.
Therefore, w is a discontinuous viscosity subsolution of / = 0. O

Theorem 3.2. Let u, u be bounded continuous functions and be respectively a viscosity subsolution and
a viscosity supersolution of I = 0 in Q. Assume moreover that u = u = g in Q° for some bounded
continuous function g and u < u in R". Then

w(x) = sup u(x),

UEF
where

F={ue COR™) :u <u < inR" and u is a viscosity subsolution of I =0 in Q).
is a discontinuous viscosity solution of (1-1).

Proof. Since u € F, we know F # &. Thus, w is well defined, u <w < in R"” and w = = u in Q€. By
Lemma 3.1, w is a discontinuous viscosity subsolution of G = 0 in £2. We claim that w is a discontinuous
viscosity supersolution of G = 0 in 2. If not, there exist a point xo € 2 and a function ¢ € C bz([R{”) such
that w4 — ¢ has a strict minimum (equal to 0) at the point x¢ over R” and

I(XO’ w*(X()), 90()) < —€p,

where € is a positive constant. Thus, we can find sufficiently small constants €; > 0 and §¢ > 0 such that
Bs,(x0) C €2 and there exists a C bz([R”) function ¢, satisfying that ¢¢; = ¢ in Bs,(X0), @e; < ¢ in R",
infxeBcao(xo){w*(x) — @eq (x)} > €1 >0and

I(XO»(pel(xO)a‘pe](')) < _%€0~ (3-2)
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Thus, by (A0), there exists §; < 8o such that, for any x € Bg, (xo),

1(x, e, (x), 9, (+)) < —%e0. (3-3)

By the definition of w, we have @¢, < wy < u in R™ If ¢¢, (x9) = wx(xo) = u(xp), then u — ¢, has a
strict minimum at the point xo over R”. Since u is a viscosity supersolution of / = 0 in 2, we have

I(X(), Peq (XO)’ 9061()) = O,

which contradicts (3-2). Thus, we have ¢¢, (xo) < #(x0). Since # and ¢¢, are continuous functions in R”,
we have ¢¢, (x) < u(x) — ez in Bg,(xo) for some 0 < §> < §; and €3 > 0. We define
Ar= sup {@e (x) —wx(x)}.
x€Bf (x0)

Since inf, ¢ By, (x0) W« (X) — @, (X)} > €1 > 0, wx — ¢, has a strict minimum (equal to 0) at the point xg
and —w4 € USC(R™), we have A, < 0 for each r > 0. For any y € Q \ B, (xp), there exists a function
vy € F such that vy, (y) — ¢e, (¥) > —%Ar. Since vy and @, are continuous in R”", there exists a positive
constant ¢, such that infxeBsy )y (X) — @, (X)) > —%Ar. Since Q \ B,(xo) is a compact set in R”,
there exists a finite set {y; }"" , C Q\ B, (xo) such that Q \ B, (xo) C |~ Bgyi (yi). Thus, we define

vr(x) = sup {vy,(x)}, xeR"
1<i<n,
By Lemma 3.1 and the definition of v,, we have v, € F and infer\Br(xO){vr(x) — e, (X)} > —%Ar.
Let oo be a constant such that 0 < a, < % and —a; A, < €5. Thus, we define

U(x) = max{ge, (x) —aA,, vr(x)}, x € Br(xo),
vr(x), x € By (xo),
where 0 < r < § and 0 < o < . By the definition of U, we obtain U € Co%R"™), u<U <u in R", and
there exists a sequence {xp}, C By (x¢) such that x, — xo as n — 400 and U(xp) > w(xy).
We claim that U is a viscosity subsolution of I = 0 in €. For any y € €2, suppose that there is a
function ¥ € C bZ(R”) such that U — i has a maximum (equal to 0) at y over R”. We then divide the

proof into two cases.

Case 1: U(y) = vr(y). Since v, < U < ¢ in R", we know v, — ¢ has a maximum (equal to 0) at y
over R”. We recall that v, is a viscosity subsolution of / = 0 in 2. Therefore, we have

1(y,U(y),¥(-)) =0.

Case 2: U(y) = ¢e, (y) —aA,. We first notice that y € B,(xg). Since ¢e;, —aA, <U < ¥ in Br(xp),
then ¢, —aA, — <0 in B,(xo). By the definition of U, we have > U = v, in Bf(xo). Thus,
Ve, =N, — Y <@, —aAp —V; < %Ar —aA, <0in Bf(xg). Therefore, we have ¢, — oA, — Y has
a maximum (equal to 0) at y € B,(xo) C Bg, (xo) over R". Since (3-3), (A0), (A3)—(A4) hold, we can
choose « independent of ¥ and sufficiently small that

I, v (), ¥ () Iy, 0, () —alr, e (+)) 0.
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Based on the two cases, we have that U is a viscosity subsolution of I = 0 in 2. Therefore, U € F,
which contradicts with the definition of w. Thus, w is a discontinuous viscosity supersolution of / =0
in Q. Therefore, w is a discontinuous viscosity solution of / = 0 in Q. Since w = g in Q°, we know w
is a discontinuous viscosity solution of (1-1). O

Remark 3.3. Under the assumptions of Theorem 3.2, if the comparison principle holds for (1-1), the
discontinuous viscosity solution w is the unique viscosity solution of (1-1). For example, if [ is a
translation-invariant nonlocal operator, (1-1) admits a unique viscosity solution.

Before applying Theorem 3.2 to (1-2), we now give the precise assumptions on its equation. For
any 0 <A < A and 0 < 0 < 2, we consider the family of kernels K : R” — R satisfying the following
assumptions:

(HO) K(z) > 0 for any z € R".
(H1) For any § > 0,
/ K(z)dz <(2—0)A§°.
Bas\Bs

(H2) For any § > 0,

/ zK(z)dz| < A|1 —0o|817°.
B2s\Bs
We define our nonlocal operator
Lap[x, u] :=/ S;u(x)Kyp(x,z)dz, (3-4)
R}’l
where
u(x +z)—u(x) ifo<l,
Sru(x) = qu(x+z)—u(x)—1p,(z)Vu(x)-z ifo=1,
u(x+z)—ulx)—Vu(x)-z ifo>1.
We consider the following nonlocal Bellman-Isaacs equation
sup gng{—lab[x, u] + bap(x) - Vu(x) + cqp(x)u(x) + fap(x)} =0 in Q. (3-5)
acADE

Corollary 3.4. Assume that 0 <o <2, by, =0in Q if 0 <1 and cyp > 0in Q. Let u, u be bounded

continuous functions and be respectively a viscosity subsolution and a viscosity supersolution of (3-5),

where {Kap(-.2)}ab.z» tPab}a,b> Cabta,p and { fab fa b are sets of uniformly continuous functions in 2,

uniformly ina € A, b € B, and {Kyp(x,-) : x € Q, a € A, b € B} are kernels satisfying (HO)-(H2).

Assume moreover that u = u = g in Q€ for some bounded continuous function g and u < u in R". Then
w(x) = sup u(x),

uer
where

F={ue CO(R™) :u <u < it in R" and u is a viscosity subsolution of (3-5)},

is a discontinuous viscosity solution of (1-2).
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Proof. We define

I(x.r.u(-)) := sup inf {—Lap[x,ul + bap (x) - Vu(x) + cap ()7 + fap(x)}-

acAbeB

It follows from (H1) and (H2) that I, satisfies (1-4); see Lemma 2.3 in [Schwab and Silvestre 2016].
Then, by (1-4) and uniform continuity of the coefficients, (AO) and (A1) hold. Since c,p > 0in 2, (A2)
holds. By (HO) and the structure of 7,5, (A3) and (A4) hold. O

4. Holder estimates

In this section we give Holder estimates of the discontinuous viscosity solution constructed by Perron’s
method in the previous section. To obtain Holder estimates, we will assume that the nonlocal operator 1
is uniformly elliptic.

We define £ := L(o, A, A) to be the class of all the nonlocal operators of form

Lu(x):= / S;u(x)K(z)dz,
Rn
where K is a kernel satisfying the assumptions (HO)—(H2) given above and the following assumption:

(H3) There exist positive constants A and p such that, for any § > 0, there is a set A satisfying

(i) As C Bas \ Bs;
(i) Asg =—A4s;
(iii) |Ag| = p|Bas \ Bsl;
(iv) K(z) > (2—0)A67"79 for any z € Ag.

We note that we will also write K € L if the corresponding nonlocal operator L € £. We then define
the extremal operators

MELu(x) :=sup Lu(x), M;u(x):= inf Lu(x).
Ler LeL
We denote by m : [0, +00) — [0, +00) a modulus of continuity. We say that the nonlocal operator / is
uniformly elliptic if for every r,s €R, x € Q, § >0, ¢, € C?(Bg(x)) N L®(R"),
My (¢ =) (x) = Col V(Y —)(X) [ —m(|r —s[) < I(x,r, () = 1(x,5.9(+))
<M (9= 9)(x) + Co V(¥ =) ()| +m(r —s)),
where Cy is a nonnegative constant such that Co = 0if o < 1.

Remark 4.1. The definition of uniform ellipticity is different from that in [Schwab and Silvestre 2016]
since the nonlocal operator I contains the second component r.

Lemma 4.2. If the nonlocal operator I is uniformly elliptic and satisfies (A0), (A2), then I satisfies
(AO0)—(A4).
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Proof. Suppose that § > 0, x; — x in Q, ¢ — ¢ ae. in R", ¢ — ¢ in C?(Bs(x)) and {gg }x is
uniformly bounded in R”. Since / is uniformly elliptic, we have, for any r € R,

My (¢ —or)(xk) — Col V(g — @) (xx)| < T (xpe, 1o (+)) — I (xge, ()
< M7F (@0 — o) (xr) + ColVipr — @) (xi). (4-1)

Since K € L, we know, by Lemma 2.3 in [Schwab and Silvestre 2016], that K satisfies (1-4). Letting
k — +o00 in (4-1), we have, by (A0),

lim I(xg,roor(+)) = 1(x,r0(-)).
k—+o00
Therefore, (A1) holds. For any constant C, we have
0= M (~C)—ColVC| < I(x.r.¢(-) + C) = [(x.r.¢(-)) < M} (~C) + Co|VC| = .
Thus, (A3) holds. If ¢ touches a C2(Bs(x)) N L (R™) function v from above at x, then
I(x.r.@) = I(x.r. ) < M (Y —@)(x) <0.
Therefore, (A4) holds. |

The following lemma is an elliptic version of Theorem 6.1 in [Schwab and Silvestre 2016].

Lemma 4.3. Assume 0 <og <0 <2, Co, C1>0, and further assume Co =0 if 0 < 1. Let u be a viscosity
supersolution of
ML_M —C0|Vu| = Cl in Bz

and u > 0 in R™ Then there exist constants C and €3 such that

1
(/ U dx) ’ < Clinfu + Cy),
B] Bl

where €3 and C depend on o¢, A, A, Cy, n and j.
The following lemma is a direct corollary of Lemma 4.3.

Corollary 4.4. Assume 0 <09 <0 <2, 0<r <1, Cy,Cy1 >0, and further assume Co =0 if 0 < 1. Let
u be a viscosity supersolution of

M u—Co|lVu|=Cy in By,
and u > 0 in R™ Then there exist constants C and €3 such that
(|[{u > 13y Br|) = Cr"(u(0) + C1r°)S3t™  foranyt >0, (4-2)
where €3 and C depend on oy, A, A, Co, n and L.
Proof. Now let v(x) = u(rx). By Lemma 2.2 in [Schwab and Silvestre 2016], we have

M;v—Cor '|Vu| <C1r® in By. (4-3)
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Now we apply Lemma 4.3 to (4-3). Thus, for any # > 0, we have

1

t|{v>1}n Bl‘% < (/B ve3 dx)€3 < C(ilgllfv +C1r%) < C(v(0) + C1r9).
Then |
r_”|{u >N Br‘ < }{v >N Bl‘ <CW(0)+ C1r?)3t™ 3 = Cu(0) + Cy1r%)3t™ 3,
Therefore, (4-2) holds. O
Then we follow the idea in [Caffarelli and Silvestre 2009] to obtain a Holder estimate.

Theorem 4.5. Assume 0 <09 <o <2, Co >0, and further assume Co = 01if 0 < 1. Forany € > 0,
let F be a class of bounded continuous functions u in R"* such that —% <uc< % in R", u is a viscosity
subsolution of M£+u +Co|Vu| = —%e in B1 and w = sup,,¢ r u is a discontinuous viscosity supersolution
of My w—Co|Vw| = %e in B1. Then there exist constants €4, @ and C such that, if € < €4,

—Cx]% < w(x) —w*(0) < w*(x) —w«(0) < C|x|%
where €4, o and C depend on og, A, A, Co, n and ji.

Proof. We claim that there exist an increasing sequence {my }; and a decreasing sequence { M} }; such
that My —my = 8%k and my, < inf By Wx =SUPg_ w* < M. We will prove this claim by induction.
For k = 0, we choose my = —% and My = % since —% <u< % for any u € F. Assume that we have

the sequences up to my and My. In Bg—«x—1, we have either

[{we = 3 My +mie} O Bg—s1| = 5| Bg-i1| (4-4)
or
[{we < 3Mic+mic} 0 Byt | = 31 Bg-s— . (4-5)

Case 1: (4-4) holds. We define
Wy (87K x) —my
T (Mg —my)

v(x) =

Thus, v > 0 in By and
[{v= 130 By | = 3[By].

1

Since w is a discontinuous viscosity supersolution of M, w — Co|Vw| = 7€ in By, we know v is a

viscosity supersolution of
M;v— Co81=9|Vy| = 8K@=D¢  in Bg.
We notice that Cp =0 if 0 < 1 and choose o < 0. Thus, for any 0 <o <2, v is a viscosity supersolution of

M v—Co|Vv| =€ in Bg.
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By the inductive assumption, we have, for any k > j > 0,

o> k—j k o Mk—j k—j k k:2(1_8°‘1) in Bgj. (4-6)

- (Mg —my) 3 (My —my)

Moreover, we have

v>2-8%F[-1 —(J—87)] =2(1-8%) in B,. (4-7)

By (4-6) and (4-7), we have
v(x) > —2(|8x|*—1) forany x € Bf.

We define
v (x) ;== max{v(x),0} and v~ (x):=—min{v(x),0}.

Since v > 0 in By, we have v~ (x) = 0 and Vv~ (x) = 0 for any x € B;. By (H1), we can choose «
independent of o and sufficiently small that, for any x € B 3 and 09 <0 <2,

MZv+(x) <M v(x) +Mﬁ+v_(x)

<M, v(x)+ sup 8, (x)K(z)dz
KeL JR"

<M v(x)+ sup

/ v (x+2)K(2)dz
Kecr /B N{v(x+2)<0}
4

<M;v(x)+ sup/ max{2(|8(x +z)|* —1),0}K(z) dz
Ker JBS

1

P

+00 , Al \—0O
<M7v(x)+22—0)A Z(%) UANe _ 1)
=0

24((1—(7()) 2—40()

< MEv(x)—|—213(2_OO)A(1_2<>¢—00 — 1_2_00) <M v(x)+e.

Therefore, we have
M[;_vJr —Co|VvT| <2¢ in B%.

Given any point x € B /g, we can apply Corollary 4.4 in Bj/4(x) to obtain
Ct(x)+26)9 = |{vF > l}ﬂBi(x)} > [{vt > 1}035\ > %\B%L
Thus, we can choose €4 sufficiently small that v > ¢4 in B, /8 if € < €4. Therefore,

8 Fx)—
v(x) = w*{( X) —mk >¢4 1in Bi.
5 (M —my) 8
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If we set mp1 = my + %64(Mk —my) and My, = My, we must have

mpi1 < inf wx < sup w* < M.
k-1 By g

Case 2: (4-5) holds. For any u € F, we obtain that u € C%(R") is a viscosity subsolution of M ZF u+
Co|Vu| = —%e in By and u < w4 in R™ Thus, we have

|{u < %(Mk —i—mk)} N Bg—k—1| > %lBS—k—l l.

We define
My —u(8 % x)
vy (x) = - -
5 (M —my)
Thus, v, > 0 in By and

[ = 13N By [ = 3|By .

1

Since u is a viscosity subsolution of M ZF u+Co|Vu|=—3

€ in By, then vy, is a viscosity supersolution of
M vy, —Cy|Vvy| =€ in Bgk.
Similar to Case 1, we have, if € < €4,

My —u(8 % x) -

Uy (x) = %(Mk—mk) =

€4 inBl,
8

which implies
u(8_kx) < M; — %E4(Mk —my) in B%.

By the definition of w, we have
w*8kx) < My — sea(My —my) in B%.
If we set my 1 = my and My = My — %64(Mk —my), we must have

mpi1 < inf wx < sup w* < M.
skl By

Therefore, in both of the cases, we have My —mp4q1 = (1 - %64)8_“". We then choose o and €4
sufficiently small that (1 — 2e4) = 87 Thus we have My —mj4q = 87K+, O

Theorem 4.6. Assume that 0 < o9 <o <2 and I(x,0,0) is bounded in Q2. Assume that I is uniformly
elliptic and satisfies (AQ), (A2). Let w be the bounded discontinuous viscosity solution of (1-1) constructed
in Theorem 3.2. Then, for any sufficiently small § > 0, there exists a constant C such that w € C*(2) and

[wllcagy < C(Ca+m(C2)+ 11(-.0.0) =),

where o is given in Theorem 4.5, Co := max{|[u||cown). || oo mn)} and C depends on oy, 8, A, A, Co,
n, L.
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Proof. It is obvious that ||u||zcogn) < C3 if u € F. Since I is uniformly elliptic, we have
1(x,0,0) — I(x,u(x),u(+)) < MFu(x) + Co|Vu(x)| + m(C2) in Q.

Since u is a viscosity subsolution of / = 0 in €2, we have

—m(Ca) — || 1(+,0,0)|| o) < MFu+ Co|Vu| in Q.
Similarly, we have

M wy — Co|Vws| <m(Cz) + [[1(-,0,0)|Lo(@) in K.
By normalization, the result follows from Theorem 4.5. |

By applying Theorem 4.6 to Bellman—Isaacs equation, we have the following corollary.

Corollary 4.7. Assume that 0 <09 <0 <2, by, =0in Q if 0 <1 and c,p > 0 in Q. Assume that
{Kap (- 2)}ab,z> tbablap> {Cabta,b> 1 fabta,b are sets of uniformly bounded and continuous functions
in Q, uniformlyina € A, be B, and {K,p(x,-): x € 2, a € A, b € B} are kernels satisfying (H0)—(H3).
Let w be the bounded discontinuous viscosity solution of (1-2) constructed in Corollary 3.4. Then, for
any sufficiently small § > 0, there exists a constant C such that w € C *(Q) and

IIwIICa@g) <C(C2+ sup | fapllLo(@))-
acA,beB

where o and Cy are given in Theorem 4.6 and C depends on oy, g, A, A, SUDge A beB 16ab |l Lo ()
SUPge A pes ICab Lo (@), 15 14-

Remark 4.8. In this section we assume our nonlocal equations satisfy the weak uniform ellipticity
introduced in [Schwab and Silvestre 2016] mainly because, to our knowledge, this is the weakest
assumption to get the weak Harnack inequality. In fact, our approach to get Holder continuity of the
discontinuous viscosity solution constructed by Perron’s method could be applied to more general nonlocal
equations as long as the weak Harnack inequality holds for such an equation.

5. Continuous sub/supersolutions

In this section we construct continuous sub/supersolutions in both uniformly elliptic and degenerate cases.

5A. Uniformly elliptic case. In the uniformly elliptic case, we follow the idea in [Ros-Oton and Serra
2016] to establish barrier functions. We define vy (x) = ((x; — 1)*)%, where 0 < @ < 1 and x =

(xl’x2’~-~’-xn)‘

Lemma 5.1. Assume that 0 < o < 2. Then there exists a sufficiently small > 0 such that
MFve((1+71)er) < —esr®©

for any r > 0, where e1 = (1,0, . ..,0) and €5 is some positive constant.
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Proof. Case 1: 0 <o < 1. By Lemma 2.2 in [Schwab and Silvestre 2016], we have, for any » >0 and o > 0,

MZLva((l +r)ey) = sup / (va((l +r)er +2z) — v ((1 + r)el))K(Z) dz
KerL JR?

= sup /[Re" ((r +z0)T)* —r*)K(z) dz

Kerl
= sup [ (420D = 1)K a2
KeL JR"?
iy
KeL JR?
§r°‘_°(sup/ (A+zD)*=1)K(z)dz - inf/ K(z)dz).
KecJzi>—1 KeLJzi<—1

By (H3), we have, for any K € £ and any § > 0, there is a set Ag satisfying Ag C Bos\ Bs, As = —As,
|As| = w|Bas\ Bs| and K(z) > (2—0)A87"7C in Ag. It is obvious that

_ | Bas\By) iz 2 |z1] < 13
’ B2\ B3|

Thus, there exists §3 > 0 such that ug < %,u if § > §3. Then

—-0 asd— +oo.

[zt |z1] = 1} N Ag, | _ 148l — |(Bas;,\ Bsy) N{z @ |z1] < 1} M
|BZ53\BS3| - |3283\B83| 2

By the symmetry of Ags,, we have

‘{ZIZl §—l}ﬂA33‘ B
|3283\B(33| 4
Therefore, we have, for any K € L,
2—0)A
/ K(z)dz > / K(z)dz > M83_”_"|B283\B53| =: 2¢5. (5-1)
z1<—1 {Z:le—l}ﬂAg3 4

By (H1) and (H2), we have, for any K € L,

/ ((1+Z1)“—1)K(z)dz=/ + /
z1>—1 {z:zl>—1}ﬂB% {z:z1>-1}NB{

2

S azl—a

/ zK(z)dz —i—/ (I+z)*—-1)K(z)dz
B {Z:Zl>—1}ﬁBi

2 2

20+2

B L AT Y (5-2)
oA ——— - . -
= o1 |—2a—0 |20

+00 1—o +00
fa2l_a(1—0)AZ( 1 ) +Q2—-0)A Z(zl—l)—a((1+2l)a_1)
1=0 I=0
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Thus, we have
lim sup / (1 4+z1)*—1)K(z)dz — inf / K(z)dz < —2¢s.
a0t Ker Jzy>—1 KeL J;,<—1

Then there exists a sufficiently small @ such that
MFva((14r)er) < —esr®™°.

Case 2: 0 = 1. Using (H2), we have, for any r > 0 and « > 0,
MF g ((141)er) = Sup[ (v ((1+7)er+2)—va (147)e1)—1p, (2)Vva ((1+r)e1)-z) K(z) dz
KeL JR"?

= sup/ ((r+z0)NH¥—r¥—1p,(z)ar*'z1)K(z)dz
KeL JR"?

=" sup / (A+20)")*=1=1p, ()az))r" K (rz) dz
KecJrn ’

— o=l sup[ (A+20)")*—1-1p, (z)az1)K(2) dz
KeL JR"? 2

Sr"‘_l(sup /Zl>_1((1+21)°‘—1—135(Z)Oézl)K(Z)dZ—Ii(féf/ K(Z)dz)-

KeL z1<—1

By (H1), we have, for any K € L,
/ (I+z)*=1-1p, (2)az1)K(z) dz
Z1 >—1 2

=/ ((1+21)“—1—o¢21)K(2)dz+/ ((1+z)D)*=DK(z2)dz
{ {z:zl>—1}ﬂBi

z:z1>—1}NB |
2

<a(l—a)2*™® /

1z|?K(2) dz+/ (I4+z)*—1)K(z)dz
B

1 {Z:Zl>—1}ﬂBcl
5 1
2

+o0 1 \! 1 \2 +oo
<a(l—a)22 ™A Z(ﬁ) (ﬁ) +AY @TH T +2) -1
=0

=0
2a—1 2—1
< 8aA +4A — .
=seh (1—2a—1 1—2—1)

Then the rest of proof is similar to Case 1.

Case 3: 1 <o < 2. Forany r > 0 and @ > 0, we have
Mzrva((l—l—r)el) = sup/ (va((l—|—r)e1—|—z)—va((1—i—r)el)—Vva((l—i—r)el)-z)K(z)dz
KecJmr

= sup/ (((r+21)+)°‘—r°‘—ar“_121)K(z)dz
KeLJR"
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=r*° sup/ (A+z1)N)¥—1—az1)K(z)dz
KecJrr

Sra—o(sup/ (A+z) N~ 1—az1)K(z)dz— inf/ (1+0621)K(Z)d2)-
z1>—1 z1=-1

KeL KeL
Using (5-1) and (H2), we have

alA(oc—1)

> 265 — 1—21-0 °

inf/ (14+az1)K(z)dz = inf/ K(z)dz —a su
KeL Jz1<—1 KeL Jz1<—1 Ke%

/BC zK(z)dz

By (H1) and (H2), we have, for any K € L,

/ ((H—Zl)“—l—azl)K(z)dZ:/ + /
z1>—1 {z:z1 >—1}ﬁB% {z:z1>—1}NBg
2

< oz(l—oz)22_“/ |z|2K(z)dz+a

B,
2

/ zK(z)dz
{z:z1>-1}NB{
2
+/ (I+z))*=1)K(z)dz
{z:zz1>—1}NB{

16a(2—0)A 2aA(c—1) 2070 279
= 302 + == +16(2—0)A a0 155 )

Then we have

lim sup ((14+z1)H¥—1—az1)K(z)dz— inf (1+az1)K(z)dz
z1>—1 ) z1<—1

a—0t Ker Ker
166(2—0)A  2aA(o—1 je=o 9o Alo—1
< fim 160C20)A  20AO=D) oo oy — s+ 22O
a0t 1-20-2 " {_pi-o 1—20=0 120 1—21—0
= —265.

Similar to Case 1, there exists a sufficiently small @ such that
Mzrva((l +r)ey) < —esr*7C. O

Lemma 5.2. Assume that 0 <o <2, Co >0 and further assume Co =0 if o < 1. Then there are o« > 0 and
0 < ro < 1 sufficiently small so that the function ug(x) 1= ((|x|—1)7)% satisfies Mg'ua +Co|Vuy| <—1
in B 1+ro \B 1-

Proof. We notice that u, and |V| are rotation invariant. By Lemma 2.2 in [Schwab and Silvestre 2016], M ZL
is also rotation invariant. Then we only need to prove that M;ua((l +r)e1)+Co|Vug((1+r)ey)| <—1
for any r € (0, rg], where ro and « are sufficiently small positive constants. Note that, for all » > 0,
ua((1+r)er) =va((1+r)er), Vua((1+r)er) = Voa((1+r)er) and

(10 +rer+z - 1) = +z)F|<Clz']> foranyz e By,
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where z = (z1, z’). Therefore, we have

Cre 2|2, ze Bz,
0 < (ug —vg)((1 +r)e; +2) <3 C|Z/|>*, z € B1\B:,
Clz|*, z € R"\ B;.

Using (H1), we have, forany 0 <o <2 and L € L,
0 < L(ug —va)((1+r)er)

= | (uag—vo)((1+r)e; +2)K(z)dz
Rn

sc(/B
5C(L

Thus, we have MZr (Ug — Vo) (1 4+71)er) < CA(r®=°+1 4 r22=9) Therefore, by Lemma 5.1, there exists
a sufficiently small & > 0 such that

r* Y2 12K(z) dz + /
B]\B%

|z/|?*K(z) dz + [

R™\B

|z|*K(z) dz)

%
r*z12K(z)dz +/ 1z|**K(z) dz) < CA(rootl 4 p2070),
BS
2

r
2

M Fug((14r)er) + Co|Vug((1+1)er)|
< M7 (g —ve) (1 +1)er) + MFvg (14 r)er) + Co| Vug (1 4 r)er)]
<CA@Y Ot 4 p2270) _e5p® 0 L g Cor® 1.
We notice thato —o+1>a—0, 20 —0 > o —0 and
(1) if 0 <o < 1, then Cy = 0;
@i1) if o =1, then «Cy — 0 as o — 0;
(i) ifl<o<2,thena—1>a—o.
Thus, there exist sufficiently small 0 < ro < 1 such that we have, for any r € (0, rg],
MFug((1+r)er) + Co|Vug (1 +r)er)| < —1. (5-3)
This completes the proof. O

In the rest of this section, we assume that 2 satisfies the uniform exterior ball condition, i.e., there is a
constant rg > 0 such that, for any x € dQ2 and 0 < r <rg, there exists y’ € Q€ satisfying B, (y%)NQ = {x}.
Without loss of generality, we can assume that ro < 1. Since Q2 is a bounded domain, there exists a
sufficiently large constant Ry > 0 such that Q C {y : |y1]| < Ro}.

Remark 5.3. At this stage, we are not sure about whether the exterior ball condition is necessary for
the construction of sub/supersolutions. In future work, we plan to construct sub/supersolutions under a
weaker assumption on €2, such as the cone condition.
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Lemma 5.4. Assume that 0 <o <2, Co > 0 and further assume Co = 0 if 0 < 1. There exists an €7 > 0
such that, for any x € 02 and 0 < r < rq, there is a continuous function @y r satisfying

Oxr =0 in B, (y),
ox,r >0 in Eﬁ(y;),
oxr>1 in BS,.(y%),

M[;’_@x,r + C0|V§0x,r| <—€7 in Q.
Proof. We define a uniformly continuous function ¢ in R” such that 1 < ¢ <2 and
p(y)=1 inyir>Ro+1, ¢(y)=2 inyi < Ro.

We pick some sufficiently large C3 > 2/r§ and we define

Ox,r(¥) = min{‘ﬂ(y)’ C3ua(y _ryx)} ;

where o and rg are defined in Lemma 5.2. It is easy to verify that ¢, = 0 in B, (YY), ¢x,r > 0in
BS(yT), and ¢y » > 1in Bgr_(y;). By Lemllla 5.2, we have Mjua + Co|Vug| < —1in Biyr,\B1. It
is obvious that, for any y € B(j1,y)r(y%)\ Br(y%), we have

(Mo (<525 )00+ Cort=e | (ua (<525

Since Cp =0if0<o < 1,and 0 < r < 1, we have

(w2 o (<525 )) 0+ o (v (525 )0

For any y € E(H(Z/Q)l/a)r(y;)\gr (¥%), we have ¢x (y) = Caug((y —y%)/r). Suppose that there
exists a test function ¢ € le (R") that touches ¢y, from below at y. Thus, ¥/C3 touches ugy ((- —y%)/r)
from below at y. Hence, My (y) + Co|Vy(y)| < —C3. Forany y € QN B
have ¢x () = ¢(y) = maxpr ¢x, = 2. Therefore, for any 0 < o < 2, we have

<—r 9 forany0<r <rgq.

<—1 forany0<r <rgq.

El+(2/c3)1/a)r(y§), we

(MF@x.r)(y) + Co|Vex,, ()| = sup / (Ox,r(y +2)—oxr(y)K(z)dz
Ker JR?
=sup | (¢xr(y+2z)—2)K(z)dz
Ker JR"

< — inf

/ K(z)dz
KeL Jizlz1>~y1+Ro+1}

<- inf/ K(z)dz.
Kel J{z|z;>2Ro+1}

By a similar estimate to (5-1), there exists a positive constant €¢ such that, for any K € £, we have

/ K(z)dz > €.
{z|z1>2Ro+1}
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Then, for any y € 2N §f1+(2/c3)1/a)r(y;), we have

Mg—(/)x,r(Y) + C0|V(Px,r(Y)| = —€6- (5-4)
Based on the above estimates, if we set €7 = min{C3, €6}, we have
Mz_wx,r+c0|v§0x,r|§_€7 in 2. |

Theorem 5.5. Assume that 0 <o <2, 1(x,0,0) is bounded in Q and g is a bounded continuous function
in R". Assume that I is uniformly elliptic and satisfies (A0), (A2). Then (1-1) admits a continuous
viscosity supersolution U and a continuous viscosity subsolution u and u = u = g in QF.

Proof. We only prove (1-1) admits a viscosity supersolution # and u = g in Q€. For a viscosity subsolution,
the construction is similar. Since / is uniformly elliptic, we have, for any x € €2,

—m(llgllzeo@n)) = I1(x, =[|glloo@n), 0) = I(x,0,0) = m(l|g]| Loowm))-

Thus, we have || 1(-,—[|gllLoo®n). 0)||Lo(@) < +o00. Since g is a continuous function, let pg be a
modulus of continuity of g in Bg. Let Ry be a sufficiently large constant such that 2 C Bg, 1. For any
x € 092, we let

” I( T _”g”LOO(R"), 0) ”LOO(Q)

.y = PRy (3r) + g(x) + max 2] gl oo any. - ¢x.rs

where ¢y » and €7 are given in Lemma 5.4. It is obvious that ux ,(x) = pr, (37) + g(x), Uy, > g in R”

and
M[_;l—ux,r + COlvux,rl = _Hl(' > _”g”L‘X’(R")vO) HLOO(Q) in €.

Now we define 1 = infyeyQ 0<r<rq itx,r ). Therefore, i = g in 02 and # > g in R". For any x € 92
and y € R", we have
g(y)—gx) =u(y)—u(x) =u(y) —g(x)
H I( © _”g”LOO(R”)v 0) HLoo(Q)
€7

< pr; (3r) + max 2| gl Loo ).

} @x,r(¥)

for any 0 < r < rq. Therefore, 1 is continuous on 2. For any y € Q, we define d), = dist(y, 92) > 0.
Ifr < %dy, then we have, for any z € By, /2(y),

[ 7. =llgllLoe @) 0| oo

Ux,r(z) = pr,3r)+g(x) + Zmax{ 2||gll o0 (mn). } , forany x € 0Q2.

€7
Thus, we have, for any z € By, /2(),

Lnf {ux,r(2) —ux,r(¥),0} <u(z) —u(y) < sup {ux,r(z) —ux,r(y),0}.
x€0Q, 3 <r<rq xe&Q,dTy<r<rQ
Since {ux,r}xedQ,d,/2<r<rq has a uniform modulus of continuity, # is continuous in €2. Therefore, u is
a bounded continuous function in Q. By Lemma 3.1, in Q we have

M+ Col Vil = = 1(-.~llgllLoe@ny. 0)llLo()-
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Now we define
_ u in €,
U= i
g in QF.
By the properties of i, we have u is a bounded continuous function in R”, # = g in Q¢ and
M+ ColVal <~ 1.~ gl L@ 0| ooy
in 2. Using (A2) and uniform ellipticity, we have, for any x € €2,

I(x, =g llLeo@ny, 0) = 1(x, u(x), u(-)) < I(x,u(x),0) — I (x,u(x), u(-))
< MFu(x) + ColVa(o)| <~ I(-. ~llgll 2@ 0| oo ery-
Thus, I(x,u(x),u(-))>0in Q. O
Now we have enough ingredients to conclude:

Theorem 5.6. Let Q2 be a bounded domain satisfying the uniform exterior ball condition. Assume that
0<o <2, I(x,0,0) is bounded in 2 and g is a bounded continuous function. Assume that I is uniformly
elliptic and satisfies (A0), (A2). Then (1-1) admits a viscosity solution u.

Proof. The result follows from Theorems 3.2, 4.6 and 5.5. O

Corollary 5.7. Let Q2 be a bounded domain satisfying the uniform exterior ball condition. Assume that
0<0<2, byp=0inQif 0 <landcyp>0in Q. Assume that g is a bounded continuous function in R”,
{Kab(-.2)}ab.z> 1babtab> {Cabtap> L Sabla,p are sets of uniformly bounded and continuous functions
in Q, uniformlyina € A, be B, and {K,p(x,-):x € Q, a € A, b € B} are kernels satisfying (H0)—(H3).
Then (1-2) admits a viscosity solution u.

5B. Degenerate case. In the degenerate case, it is natural to construct a sub/supersolution only for (1-2)
when c,p > y for some y > 0. Recall that €2 is a bounded domain satisfying the uniform exterior ball
condition with a uniform radius rq and, for any x € dQ2 and 0 < r < rq, we have y, is a point satisfying
B (y~)NQ = {x}. From now on, we will hide the dependence on x for all variables and functions to make
the notation simpler. For example, we will let y” := y7. Forany x €92, y € Q and 0 <r <rgq, we let

vt v _ . +\o
ni= yr ,ony = 4 yr , and vl(y):= ((—(y y)n —1) )
[x =y |y ="l r

(see Figure 1).
Instead of letting {K,p(x, ) : x € 2, a € A, b € B} satisfy (H3), we let the set of kernels satisfy the
following weaker assumption:

(H_S) There exist C4 >0, 0 <r; <rg, A >0 and u > 0 such that, for any x € 92, 0 <r < ry and
Yy €20 By (y"), there is a set A}, satisfying
() A} Clz:zpy <—rsy} N (Beyrsy \ Brsy), where z,r i=z-nj and 5§ := |y — y"|/r — 1
(i1) |A§;| z M|Brs§|§
(iil) K(y,z) = (2—0)A(rsy)™" "7 for any z € AJ.
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Figure 1. The exterior ball centered at y”.

Lemma 5.8. Suppose that {Kab(x, JiaeA beB, xe{yeQ: dist(y,dQ) < r1}} satisfies (H3) for
some ry € (0,rg). Then (H3) holds for the set of kernels.

Proof. Forany x €092, 0<r <ry and y € 2 N By (y"), we define

‘(BC4FS§\BC4rer,) N {Z : |Zn§,| = rs;}‘

2
Hey = . (5-5)
* |BC4rs)r, \BC4I‘S§ |
2

We notice that the right-hand side of (5-5) depends only on Cy4. It is obvious that

lim =0.
Cy—+00 HCa

By (H3), there exists a set A satisfying

AC ch;\BCL;S;, A=—A, |Al> M‘Bc4rs§\Ba4T”§ ,
and, for any z € A4,

K(y.2) > Q2=0)A(3Cars)) " =Q2=0)A(3Cs) " T (rs)) T = 2= 0)A(rs)) O
There exists a sufficiently large constant C4(> 2) such that puc, < % u. Then

|{Z zpr| > rsr}ﬂA‘ |A|— ‘(BC4rs§\BC4rs§)m{Z : |Zn§,| = rs;}|
y Y > 2

> K
-2

|BC47‘S§, \BC4rS§ }BC4I‘S§, \BC4rS§;
2 2

Let A} := AN{z:z,; <—rsy}. By the symmetry of 4, we have

1 1 . ~
|A;|EZIJ"BC4FS§\BC4rV§ ZZM|Brer,|= M|Brs§|
2

Therefore, (H3) holds for the set of kernels with Cy, r1, A and . O
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Lemma 5.9. Assume that 0 < 0 < 2 and {Kp(x,-) : x € Q,a € A, b € B} are kernels satisfying
(HO)—(H2), (H3). Then there exists a sufficiently small o > 0 such that, for any x € 902, 0 <r <ry and
se{le0,1):y"+(+1)rneQ}, we have I,p[y" + (1 +5)rn, v} ] < —egr=2s*~%, where €g is some
positive constant.

Proof. We only prove the result for the case 0 < o < 1. For the rest of cases, the proofs are similar to
those in Lemma 5.1. For any x € 92, O<r <rjands € {{ € (0,1): y" + (1 +1)rn € 2}, we have

Laply"+(+s)rnvgl= | (vg (3" +(1+s)rn+2)—vg (v +(1+5)rn)) Kap (v +(1+s)rn,z)dz
Rn

Z +\a
:[ |:((s—|-—n) ) —s“]Kab(yr—l—(l—{—s)rn,z)dz
R? r

:r_“s“_"/ [((1+Zn)+)a—1](rs)"+"Kab(y’—|—(1+s)rn,rsz)dz
Rn

=7y %s%C { / [(14+2)%=1](rs)" T K (" +(1+5)rn,rsz) dz
Zn>—1

—/ (rs)" T K, (v +(14+s)rn,rsz)dzy
Zn<—1

where Z, := z-n. Using (H3), we have

/ (rs)" T Ky (V" + (1 +s)rn,rsz)dz = (rs)° / Koy (" +(1+s)rn,z)dz
Zn<-1

Zp=<—rs

> (rs)° / Kap( + (1 +s)rn,z)dz
A;’-&-(I-H')rn
> (2—0)Au(rs)™"|Bys| 1= 2es.

We notice that the kernel (rs)" T K 5 (y" + (1 + s)rn, rs-) still satisfies (H1) and (H2). By a similar
calculation to (5-2), we have

/ [(14+Z2)% = 1rs)" T Koy (0" + (1 +s)rn, rsz)dz < e(a),
Zn>—1

where € (o) is a positive constant satisfying that € (o) — 0 as @ — 0. Then there exists a sufficiently small
o such that

Iab[yr—l-(l—I-s)rn,v;] E_ESV_GSO[_G, -

Lemma 5.10. Assume that 0 < 0 <2, and by, = 0in Q if 0 < 1. Assume that {bgp}, p are sets of
uniformly bounded functions in Q and {K,p(x,-):x € Q, a € A, b € B} are kernels satisfying (HO)—(H2),
(H3). Then there are a > 0 and 0 < so < 1 sufficiently small so that, for any x € 32 and 0 < r < ry, the

function
v +\
= ((221))
r
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satisfies, for any a € Aand b € B,
- ab[y’ugz] +bap(y) 'Vu;(Y) >1 inQN (E(l—i—so)r(yr)\gr(yr))-

Proof. Note that, for all s >0, we have ul, (y" + (1+s)rn) =v,(y" +(1+s)rn), Vul,(y"+(1+s)rn) =
Vol (»" + (1 4 s)rn) and

1 + =\t =12
‘(I( +s>rn+z|_1) _(HZ_n) 'SCM for any z € B,.
r r r

Thus, we have
Cs* Yz —Z,%/r?, z € By,
0= (ug—ve)Y" + (A +s)rn+z)<Clz—Z,**/r>*,  z€B:\Bry,
Clz|*/r%, z € R"\ B,.

Using (H1), we have, forany 0 <o <2, a€ A, beBandse{l€(0,1):y" "+ (1 +1)rn e Q},
0=<TIgp[y"+(1+s)rn ug—vy]

5[ (=) +(A+s)rn+z)Kap (v +(1+s)rn,z)dz
Rn

<C a—1 |Z_2n|2 r |Z_Zn|2a r
< s > Kap (Y +(1+s)rn,z)dz+ g Kap(y' +(1+s)rn,z)dz
Brs r Br\Brs r
2 2 2 |Z|a
+/ — ab(yr+(l+s)rn,z)dz)
R"\B, r
a—1 |Z|2 r |Z|2a r
<C s = Kap (Y +(1+s)rn, z)dz+ —a Kap (V' +(14s)rn,z)dz
B% r RH\BLZS re%

< CAFr=(s40F1 420—0),
By Lemma 5.9, we have
Ly + (A +s)yrn,ul] > —Ip[y" + (14 s)rn, vl — Lply" + (1 + s)rn,ul, — vl
> 10 [egs® 7 — CA(s2 O+ 4 52270)] (5-6)

For any y € Q N (B2, (y")\ B,(»")), we have
~laplyr) == [ 8o () Kan(r.2)d2

= —/ Szug (Y 4+ (1 +sy)rn3)Kap(y,2) dz
Rn

Z

= —[ Szug (V" 4 (1 +s3)rn)Kap (y, (— +n;, —n)|z|) dz.
Rﬂ

|z
Using (PT3) and a similar estimate to (5-6), we have

—Laply.ug] = 0 [es(s5)* 0 = CA(()* "+ 4+ (55)*7)].
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By a similar estimate to (5-3), there exists a sufficiently small constant 0 < so < 1 such that we have, for
any y € 2N (B(1+so)r(yr)\Br(yr))v

—Iaply ul] +bap(y) - Vuy(y) = 1. O

Lemma 5.11. Assume that0 <o <2, b,p, =0in Q if 0 <1 and c,p >y in Q for some y > 0. Assume that
{Kap(-.2)}ab,z> tbabtap> {Cabtab> {fabta,b are sets of uniformly bounded and continuous functions
in Q, uniformlyina € A, b e B, and {K,p(x,-):x € Q, a € A, b € B} are kernels satisfying (H0)-(H2),
(H3). Then, for any x € 02 and 0 < r < r1, there is a continuous viscosity supersolution Y, of (3-5) such
that yr =0 in B, (y"), ¥r > 0in BE(Y") and

_ SUPgeu,bes I fapllLoo() +1

Yy = , in Bfl+sO)r(yr), (5-7)

where sg is given by Lemma 5.10.
Proof. Without loss of generality, we assume that 0 < y < 1. We pick a sufficiently large C5 > 0 that

supgeapes | fabllLoo(@) +1

Cs5 >
4

(5-8)

We then define, for any x € 0Q and 0 < r < rq,

SUP, e A.beB Il fabllLoo(@) + 1
14

¥r(y) = min , Csug (y) -
It is easy to verify that ¥, = 0 in B,(y"), ¥, > 0in BS(y") and ¥, is a continuous function in R”.
Using (5-8), we know that

supgeapes | fabllLoeo@) + 1

Csuy, > Cssg > S

in Bfl+sO)r(yr).

Therefore, (5-7) holds. Since cqp >y > 01in Q, (Supge 4 pep | fan L) + 1)/ v is a viscosity superso-
lution of (3-5) in Q. By Lemma 5.10 and (5-7), we have, for any y € 2 N (B (145,)r(»")\B-(b")),

Sug ggg{_lab [y, CS“Z] + Csbgp(x) - V”(rx(y) + CSCab(x)u{x )+ fab(Y)}
ae
> sup ||fab||L°°(Q) +1+ fap(y) =0. (5-9)
acA,beB
Therefore, v, is a continuous viscosity supersolution of (3-5) in 2. O

Theorem 5.12. Assume that 0 <0 <2, by, =0in Q if 0 < 1 and cap > y in Q for some y > 0.
Assume that g is a bounded continuous function in R", {K,p(-,2)}ab.z2 tbaba.bs (Cabta.bs {Sabla.b
are sets of uniformly bounded and continuous functions in 2, uniformly ina € A, b € B, and { K p(x,-) :
x €Q, a € A, be B} are kernels satisfying (HO)—(H2), (H3). Then (1-2) admits a continuous viscosity
supersolution u and a continuous viscosity subsolution u and u = u = g in Q°.
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Proof. We only prove (1-2) admits a viscosity supersolution # such that u = g in Q€. Since g is a
continuous function, let pg be a modulus of continuity of g in Bg. Let R; be a sufficiently large constant
such that & C Bg,—;. For any x € 9$2, we let

Y
sUpgeabes I fabllLo@) + 1

= pr, (3r) + g () + (2||g||Loomn) + 1) v,

where ¥, is given in Lemma 5.11. Using Lemma 5.11, u, (x) = pg, 3r) + g(x), u, > g in R"” and u, is
a continuous viscosity supersolution of (3-5) in 2. Then the rest of the proof is similar to Theorem 5.5. O

Theorem 5.13. Let Q be a bounded domain satisfying the uniform exterior ball condition. Assume that
0<0 <2, by, =0inQif o <1landcy, >y inQ for some y > 0. Assume that g is a bounded
continuous function in R", {Kzp(+,2)}a,b,z» {babta,bs 1Cabta,b» {fab}a,p are sets of uniformly bounded
and continuous functions in Q, uniformly ina € A, b € B, and {K p(x,-) :x € Q,a € A, b € B} are
kernels satisfying (HO)—(H2), (H3). Then (1-2) admits a discontinuous viscosity solution u.

Proof. The result follows from Corollary 3.4 and Theorem 5.12. O

Acknowledgement

We would like to thank the referee for valuable comments which improved the paper.

References
[Alvarez and Tourin 1996] O. Alvarez and A. Tourin, “Viscosity solutions of nonlinear integro-differential equations”, Ann. Inst.
H. Poincaré Anal. Non Linéaire 13:3 (1996), 293-317. MR Zbl

[Barles and Imbert 2008] G. Barles and C. Imbert, “Second-order elliptic integro-differential equations: viscosity solutions’
theory revisited”, Ann. Inst. H. Poincaré Anal. Non Linéaire 25:3 (2008), 567-585. MR Zbl

[Barles et al. 1997] G. Barles, R. Buckdahn, and E. Pardoux, “Backward stochastic differential equations and integral-partial
differential equations”, Stochastics Stochastics Rep. 60:1-2 (1997), 57-83. MR Zbl

[Barles et al. 2008] G. Barles, E. Chasseigne, and C. Imbert, “On the Dirichlet problem for second-order elliptic integro-
differential equations”, Indiana Univ. Math. J. 57:1 (2008), 213-246. MR Zbl

[Biswas 2012] I. H. Biswas, “On zero-sum stochastic differential games with jump-diffusion driven state: a viscosity solution
framework”, SIAM J. Control Optim. 50:4 (2012), 1823-1858. MR Zbl

[Biswas et al. 2010] I. H. Biswas, E. R. Jakobsen, and K. H. Karlsen, “Viscosity solutions for a system of integro-PDEs and
connections to optimal switching and control of jump-diffusion processes”, Appl. Math. Optim. 62:1 (2010), 47-80. MR Zbl

[Buckdahn et al. 2011] R. Buckdahn, Y. Hu, and J. Li, “Stochastic representation for solutions of Isaacs’ type integral-partial
differential equations”, Stochastic Process. Appl. 121:12 (2011), 2715-2750. MR Zbl

[Caffarelli and Silvestre 2009] L. Caffarelli and L. Silvestre, “Regularity theory for fully nonlinear integro-differential equations”,
Comm. Pure Appl. Math. 62:5 (2009), 597-638. MR Zbl

[Caffarelli and Silvestre 2011a] L. Caffarelli and L. Silvestre, “The Evans—Krylov theorem for nonlocal fully nonlinear
equations”, Ann. of Math. (2) 174:2 (2011), 1163-1187. MR Zbl

[Caffarelli and Silvestre 2011b] L. Caffarelli and L. Silvestre, “Regularity results for nonlocal equations by approximation”,
Arch. Ration. Mech. Anal. 200:1 (2011), 59-88. MR Zbl

[Chang-Lara and Davila 2014a] H. A. Chang-Lara and G. Dévila, “Regularity for solutions of non local parabolic equations”,
Calc. Var. Partial Differential Equations 49:1-2 (2014), 139-172. MR Zbl


http://dx.doi.org/10.1016/S0294-1449(16)30106-8
http://msp.org/idx/mr/1395674
http://msp.org/idx/zbl/0870.45002
http://dx.doi.org/10.1016/j.anihpc.2007.02.007
http://dx.doi.org/10.1016/j.anihpc.2007.02.007
http://msp.org/idx/mr/2422079
http://msp.org/idx/zbl/1155.45004
http://dx.doi.org/10.1080/17442509708834099
http://dx.doi.org/10.1080/17442509708834099
http://msp.org/idx/mr/1436432
http://msp.org/idx/zbl/0878.60036
http://dx.doi.org/10.1512/iumj.2008.57.3315
http://dx.doi.org/10.1512/iumj.2008.57.3315
http://msp.org/idx/mr/2400256
http://msp.org/idx/zbl/1139.47057
http://dx.doi.org/10.1137/080720504
http://dx.doi.org/10.1137/080720504
http://msp.org/idx/mr/2974720
http://msp.org/idx/zbl/1253.91027
http://dx.doi.org/10.1007/s00245-009-9095-8
http://dx.doi.org/10.1007/s00245-009-9095-8
http://msp.org/idx/mr/2653895
http://msp.org/idx/zbl/1197.49028
http://dx.doi.org/10.1016/j.spa.2011.07.011
http://dx.doi.org/10.1016/j.spa.2011.07.011
http://msp.org/idx/mr/2844538
http://msp.org/idx/zbl/1243.91011
http://dx.doi.org/10.1002/cpa.20274
http://msp.org/idx/mr/2494809
http://msp.org/idx/zbl/1170.45006
http://dx.doi.org/10.4007/annals.2011.174.2.9
http://dx.doi.org/10.4007/annals.2011.174.2.9
http://msp.org/idx/mr/2831115
http://msp.org/idx/zbl/1232.49043
http://dx.doi.org/10.1007/s00205-010-0336-4
http://msp.org/idx/mr/2781586
http://msp.org/idx/zbl/1231.35284
http://dx.doi.org/10.1007/s00526-012-0576-2
http://msp.org/idx/mr/3148110
http://msp.org/idx/zbl/1292.35068

PERRON’S METHOD FOR NONLOCAL FULLY NONLINEAR EQUATIONS 1253

[Chang-Lara and Dévila 2014b] H. A. Chang-Lara and G. Ddvila, “Regularity for solutions of nonlocal parabolic equations, II”,
J. Differential Equations 256:1 (2014), 130-156. MR Zbl

[Chang-Lara and Ddvila 2016a] H. A. Chang-Lara and G. Dévila, “C % estimates for concave, non-local parabolic equations
with critical drift”, J. Integral Equations Appl. 28:3 (2016), 373-394. MR Zbl

[Chang-Lara and Davila 2016b] H. A. Chang-Lara and G. Davila, “Hoélder estimates for non-local parabolic equations with
critical drift”, J. Differential Equations 260:5 (2016), 4237-4284. MR Zbl

[Chang-Lara and Kriventsov 2017] H. A. Chang-Lara and D. Kriventsov, “Further time regularity for fully non-linear parabolic
equations”, Comm. Pure Appl. Math. 70:5 (2017), 950-977. MR

[Crandall et al. 1992] M. G. Crandall, H. Ishii, and P.-L. Lions, “User’s guide to viscosity solutions of second order partial
differential equations”, Bull. Amer. Math. Soc. (N.S.) 27:1 (1992), 1-67. MR Zbl

[Dong and Kim 2013] H. Dong and D. Kim, “Schauder estimates for a class of non-local elliptic equations”, Discrete Contin.
Dyn. Syst. 33:6 (2013), 2319-2347. MR Zbl

[Dong and Zhang 2016] H. Dong and H. Zhang, “On Schauder estimates for a class of nonlocal fully nonlinear parabolic
equations”, preprint, 2016. arXiv

[Guillen and Schwab 2016] N. Guillen and R. W. Schwab, “Min-max formulas for nonlocal elliptic operators”, preprint, 2016.
arXiv
[Ishii 1987] H. Ishii, “Perron’s method for Hamilton—Jacobi equations”, Duke Math. J. 55:2 (1987), 369-384. MR Zbl

[Ishii 1989] H. Ishii, “On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs”, Comm.
Pure Appl. Math. 42:1 (1989), 15-45. MR Zbl

[Ishii and Lions 1990] H. Ishii and P.-L. Lions, “Viscosity solutions of fully nonlinear second-order elliptic partial differential
equations”, J. Differential Equations 83:1 (1990), 26-78. MR Zbl

[Ishikawa 2004] Y. Ishikawa, “Optimal control problem associated with jump processes”, Appl. Math. Optim. 50:1 (2004),
21-65. MR Zbl

[Jakobsen and Karlsen 2006] E.R. Jakobsen and K. H. Karlsen, “A ‘maximum principle for semicontinuous functions’ applicable
to integro-partial differential equations”, NoDEA Nonlinear Differential Equations Appl. 13:2 (2006), 137-165. MR Zbl

[Jin and Xiong 2015] T. Jin and J. Xiong, “Schauder estimates for solutions of linear parabolic integro-differential equations”,
Discrete Contin. Dyn. Syst. 35:12 (2015), 5977-5998. MR Zbl

[Jin and Xiong 2016] T. Jin and J. Xiong, “‘Schauder estimates for nonlocal fully nonlinear equations”, Ann. Inst. H. Poincaré
Anal. Non Linéaire 33:5 (2016), 1375-1407. MR Zbl

[Kassmann et al. 2014] M. Kassmann, M. Rang, and R. W. Schwab, “Integro-differential equations with nonlinear directional
dependence”, Indiana Univ. Math. J. 63:5 (2014), 1467-1498. MR Zbl

[Kharroubi and Pham 2015] I. Kharroubi and H. Pham, “Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDE”,
Ann. Probab. 43:4 (2015), 1823-1865. MR Zbl

[Koike 2005] S. Koike, “Perron’s method for LP-viscosity solutions”, Saitama Math. J. 23 (2005), 9-28. MR Zbl

[Koike and Swiech 2013] S. Koike and A. Swiech, “Representation formulas for solutions of Isaacs integro-PDE”, Indiana Univ.
Math. J. 62:5 (2013), 1473-1502. MR Zbl

[Kriventsov 2013] D. Kriventsov, “C 1% interior regularity for nonlinear nonlocal elliptic equations with rough kernels”, Comm.
Partial Differential Equations 38:12 (2013), 2081-2106. MR Zbl

[Mou 2016] C. Mou, “Semiconcavity of viscosity solutions for a class of degenerate elliptic integro-differential equations in
R™”, Indiana Univ. Math. J. 65:6 (2016), 1891-1920. MR Zbl

[Mou and Swigch 2015] C. Mou and A. Swigch, “Uniqueness of viscosity solutions for a class of integro-differential equations”,
NoDEA Nonlinear Differential Equations Appl. 22:6 (2015), 1851-1882. MR Zbl

[@ksendal and Sulem 2007] B. @ksendal and A. Sulem, Applied stochastic control of jump diffusions, 2nd ed., Springer, 2007.
MR Zbl

[Pham 1998] H. Pham, “Optimal stopping of controlled jump diffusion processes: a viscosity solution approach”, J. Math.
Systems Estim. Control 8:1 (1998), art. id. 42281. MR Zbl


http://dx.doi.org/10.1016/j.jde.2013.08.016
http://msp.org/idx/mr/3115838
http://msp.org/idx/zbl/1320.35124
http://dx.doi.org/10.1216/JIE-2016-28-3-373
http://dx.doi.org/10.1216/JIE-2016-28-3-373
http://msp.org/idx/mr/3562356
http://msp.org/idx/zbl/1353.35083
http://dx.doi.org/10.1016/j.jde.2015.11.012
http://dx.doi.org/10.1016/j.jde.2015.11.012
http://msp.org/idx/mr/3437586
http://msp.org/idx/zbl/1336.35083
http://dx.doi.org/10.1002/cpa.21671
http://dx.doi.org/10.1002/cpa.21671
http://msp.org/idx/mr/3507260
http://dx.doi.org/10.1090/S0273-0979-1992-00266-5
http://dx.doi.org/10.1090/S0273-0979-1992-00266-5
http://msp.org/idx/mr/1118699
http://msp.org/idx/zbl/0755.35015
http://dx.doi.org/10.3934/dcds.2013.33.2319
http://msp.org/idx/mr/3007688
http://msp.org/idx/zbl/1263.45008
http://msp.org/idx/arx/1604.00101
http://msp.org/idx/arx/1606.08417
http://dx.doi.org/10.1215/S0012-7094-87-05521-9
http://msp.org/idx/mr/894587
http://msp.org/idx/zbl/0697.35030
http://dx.doi.org/10.1002/cpa.3160420103
http://msp.org/idx/mr/973743
http://msp.org/idx/zbl/0645.35025
http://dx.doi.org/10.1016/0022-0396(90)90068-Z
http://dx.doi.org/10.1016/0022-0396(90)90068-Z
http://msp.org/idx/mr/1031377
http://msp.org/idx/zbl/0708.35031
http://dx.doi.org/10.1007/s00245-004-0795-9
http://msp.org/idx/mr/2058887
http://msp.org/idx/zbl/1052.60050
http://dx.doi.org/10.1007/s00030-005-0031-6
http://dx.doi.org/10.1007/s00030-005-0031-6
http://msp.org/idx/mr/2243708
http://msp.org/idx/zbl/1105.45006
http://dx.doi.org/10.3934/dcds.2015.35.5977
http://msp.org/idx/mr/3393263
http://msp.org/idx/zbl/1334.35370
http://dx.doi.org/10.1016/j.anihpc.2015.05.004
http://msp.org/idx/mr/3542618
http://msp.org/idx/zbl/1349.35386
http://dx.doi.org/10.1512/iumj.2014.63.5394
http://dx.doi.org/10.1512/iumj.2014.63.5394
http://msp.org/idx/mr/3283558
http://msp.org/idx/zbl/1311.35047
http://dx.doi.org/10.1214/14-AOP920
http://msp.org/idx/mr/3353816
http://msp.org/idx/zbl/1333.60150
http://msp.org/idx/mr/2251850
http://msp.org/idx/zbl/1138.49025
http://dx.doi.org/10.1512/iumj.2013.62.5109
http://msp.org/idx/mr/3188552
http://msp.org/idx/zbl/1292.49030
http://dx.doi.org/10.1080/03605302.2013.831990
http://msp.org/idx/mr/3169771
http://msp.org/idx/zbl/1281.35092
http://dx.doi.org/10.1512/iumj.2016.65.5921
http://dx.doi.org/10.1512/iumj.2016.65.5921
http://msp.org/idx/mr/3595484
http://msp.org/idx/zbl/06684001
http://dx.doi.org/10.1007/s00030-015-0347-9
http://msp.org/idx/mr/3415025
http://msp.org/idx/zbl/1332.35376
http://dx.doi.org/10.1007/978-3-540-69826-5
http://msp.org/idx/mr/2322248
http://msp.org/idx/zbl/1116.93004
https://scholar.lib.vt.edu/ejournals/JMSEC/v8n1/42281.pdf
http://msp.org/idx/mr/1650147
http://msp.org/idx/zbl/0899.60039

1254 CHENCHEN MOU

[Ros-Oton and Serra 2016] X. Ros-Oton and J. Serra, “Boundary regularity for fully nonlinear integro-differential equations”,
Duke Math. J. 165:11 (2016), 2079-2154. MR Zbl

[Schwab and Silvestre 2016] R. W. Schwab and L. Silvestre, “Regularity for parabolic integro-differential equations with very
irregular kernels”, Anal. PDE 9:3 (2016), 727-772. MR Zbl

[Serra 2015a] J. Serra, “C 1 regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels”, Calc. Var.
Partial Differential Equations 54:4 (2015), 3571-3601. MR Zbl

[Serra 2015b] J. Serra, “Regularity for fully nonlinear nonlocal parabolic equations with rough kernels”, Calc. Var. Partial
Differential Equations 54:1 (2015), 615-629. MR Zbl

[Silvestre 2006] L. Silvestre, “Holder estimates for solutions of integro-differential equations like the fractional Laplace”,
Indiana Univ. Math. J. §5:3 (2006), 1155-1174. MR Zbl

[Silvestre 2011] L. Silvestre, “On the differentiability of the solution to the Hamilton—Jacobi equation with critical fractional
diffusion”, Adv. Math. 226:2 (2011), 2020-2039. MR Zbl

[Silvestre 2016] L. Silvestre, “A new regularization mechanism for the Boltzmann equation without cut-off”’, Comm. Math. Phys.
348:1 (2016), 69-100. MR Zbl

[Soner 1986] H. M. Soner, “Optimal control with state-space constraint, II”, SIAM J. Control Optim. 24:6 (1986), 1110-1122.
MR Zbl

[Soner 1988] H. M. Soner, “Optimal control of jump-Markov processes and viscosity solutions”, pp. 501-511 in Stochastic
differential systems, stochastic control theory and applications (Minneapolis, MN, 1986), IMA Vol. Math. Appl. 10, Springer,
1988. MR Zbl

[Swiech and Zabczyk 2016] A. Swigch and J. Zabczyk, “Integro-PDE in Hilbert spaces: existence of viscosity solutions™,
Potential Anal. 45:4 (2016), 703-736. MR Zbl

Received 24 Nov 2016. Revised 1 Feb 2017. Accepted 24 Apr 2017.

CHENCHEN MOU: muchenchen@math.ucla.edu
Department of Mathematics, UCLA, Los Angeles, CA 90095, United States

mathematical sciences publishers :'msp


http://dx.doi.org/10.1215/00127094-3476700
http://msp.org/idx/mr/3536990
http://msp.org/idx/zbl/1351.35245
http://dx.doi.org/10.2140/apde.2016.9.727
http://dx.doi.org/10.2140/apde.2016.9.727
http://msp.org/idx/mr/3518535
http://msp.org/idx/zbl/1349.47079
http://dx.doi.org/10.1007/s00526-015-0914-2
http://msp.org/idx/mr/3426087
http://msp.org/idx/zbl/1344.35042
http://dx.doi.org/10.1007/s00526-014-0798-6
http://msp.org/idx/mr/3385173
http://msp.org/idx/zbl/1327.35170
http://dx.doi.org/10.1512/iumj.2006.55.2706
http://msp.org/idx/mr/2244602
http://msp.org/idx/zbl/1101.45004
http://dx.doi.org/10.1016/j.aim.2010.09.007
http://dx.doi.org/10.1016/j.aim.2010.09.007
http://msp.org/idx/mr/2737806
http://msp.org/idx/zbl/1216.35165
http://dx.doi.org/10.1007/s00220-016-2757-x
http://msp.org/idx/mr/3551261
http://msp.org/idx/zbl/1352.35091
http://dx.doi.org/10.1137/0324067
http://msp.org/idx/mr/861089
http://msp.org/idx/zbl/0619.49013
http://dx.doi.org/10.1007/978-1-4613-8762-6_29
http://msp.org/idx/mr/934740
http://msp.org/idx/zbl/0850.93889
http://dx.doi.org/10.1007/s11118-016-9563-0
http://msp.org/idx/mr/3558357
http://msp.org/idx/zbl/1352.49025
mailto:muchenchen@math.ucla.edu
http://msp.org

ANALYSIS AND PDE
Vol. 10, No. 5, 2017

dx.doi.org/10.2140/apde.2017.10.1255

A SPARSE DOMINATION PRINCIPLE FOR ROUGH SINGULAR INTEGRALS

JOSE M. CONDE-ALONSO, AMALIA CULIUC, FRANCESCO DI PLINIO AND YUMENG OU

We prove that bilinear forms associated to the rough homogeneous singular integrals

Taf(x) = p.v. /R e —y)sz(ﬁ)%,

where © € L7(S9~1) has vanishing average and 1 < ¢ < 0o, and to Bochner—Riesz means at the critical
index in R? are dominated by sparse forms involving (1, p) averages. This domination is stronger than
the weak-L! estimates for T and for Bochner-Riesz means, respectively due to Seeger and Christ.
Furthermore, our domination theorems entail as a corollary new sharp quantitative 4,-weighted estimates
for Bochner—Riesz means and for homogeneous singular integrals with unbounded angular part, extending
previous results of Hytonen, Roncal and Tapiola for Tq. Our results follow from a new abstract sparse
domination principle which does not rely on weak endpoint estimates for maximal truncations.

1. Introduction and main results

Singular integral operators of Calder6n—Zygmund type, which are a priori signed and nonlocal, can
be dominated in norm [Lerner 2013], pointwise [Conde-Alonso and Rey 2016; Lacey 2017; Lerner
and Nazarov 2015], or dually [Bernicot et al. 2016; Culiuc et al. 2016a; 2016b] by sparse averaging
operators (forms), which are in contrast positive and localized. For 1 < p1, p» < oo, we define the sparse
(p1, p2)-averaging form to be the bisublinear form

PSFsip1.po (f1, £2) 1= ) 1O1{fi)pr.0 (f2)pai0s  (f)p0 = 10177 1 f 1gllp.

Qes

associated to a (countable) sparse collection S of cubes of R?. The collection S is n-sparse if there
exist 0 < n < 1 (a number which will not play a relevant role) and measurable, pairwise disjoint sets
{Er : I € 8§} such that

Ercli, |Ef|znlI|.

In this article, we prove a sparse domination principle of type

(Tf1, f2)] §SI;P PSFs;p1.p2 (/1. 12) (1-1)

Conde-Alonso was supported in part by ERC Grant 32501 and by MTM-2013-44304-P project. Di Plinio was partially supported
by the National Science Foundation under the grants NSF-DMS-1500449 and NSF-DMS-1650810.

MSC2010: primary 42B20; secondary 42B25.

Keywords: positive sparse operators, rough singular integrals, weighted norm inequalities.
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for singular integral operators 7" whose (possible) lack of kernel smoothness forbids the avenue exploited
in [Lacey 2017; Lerner 2016]. Our principle, summarized in Theorem C below, can be employed in
a rather direct fashion to recover the best known, and sharp, sparse domination results for Dini- and
Hoérmander-type Calderén—Zygmund operators [Bui et al. 2017; Hytonen et al. 2017; Lacey 2017; Volberg
and Zorin-Kranich 2016].

However, the main purpose of our work is to suitably extend (1-1) to the class of rough singular
integrals introduced in the seminal paper of Calderén and Zygmund [1956], and further studied, notably,
in [Duoandikoetxea and Rubio de Francia 1986; Christ 1988; Christ and Rubio de Francia 1988; Seeger
1996]. Prime examples from this class include the rough homogeneous singular integrals on R?

YhﬂMZPM/ ﬂx—wﬂ(l)ii, (1-2)
R4 VAN
with € L(S9~1) having zero average, as well as the critical Bochner—Riesz means in dimension d,
defined by the multiplier operator

Bif =F[fO)a-1-Pi] s=41 (1-3)
For the singular integrals (1-2) no sparse domination results were known prior to this article, although
some quantitative weighted estimates were established in the recent works [Hytonen et al. 2017; Pérez
et al. 2016]; see below for details. For the Bochner—-Riesz means (1-3), the recent results of [Benea et al.
2017] and [Carro and Domingo-Salazar 2016] are far from being optimal at the critical exponent.

The main difficulty encountered by previous approaches in this setting is the following: first, notice that
an estimate of the type (1-1) is already stronger than the weak-L?! bound for T. In particular, if p; =1
then (1-1) recovers the weak-L! endpoint bound. On the other hand, the preexisting techniques for sparse
domination [Benea et al. 2017; Bernicot et al. 2016; Hytonen et al. 2017; Lacey 2017; Lerner 2016]
essentially rely on weak-L? estimates for a grand maximal truncation of the singular integral operator 7,
but those do not seem attainable in the context, for instance, of [Seeger 1996], as observed in [Lerner
2016]. In fact, the rough singular integrals we consider below are not known to satisfy such an estimate
for p =1, and therefore a different approach is required in order to obtain the sparse bounds that we want.

As a corollary of our domination results, we obtain quantitative A,-weighted estimates for homogeneous
singular integrals (1-2) whose angular part belongs to L7 (S d=1y for some 1 < q < oo. These are novel,
and sharp, when ¢ < oo, while in the case ¢ = oo we recover the best known result recently proved in
[Hytonen et al. 2017] by other methods. Although our result for the Bochner—Riesz means (1-3) seemingly
yields the best known quantitative 4, estimates, we do not know whether our results are sharp in this case.

Main results. Our main results consist of estimates for the bilinear forms associated to T and Bs by
sparse operators involving L?-averages. The formulation of our first theorem requires the Orlicz—Lorentz
norms

* - 1 dt
||Q||Lq.1logL(Sd—1):=q/0 tlog(e+t)|{9€Sd 1:|Q(9)|>t}“17, 1 <g<oo.



A SPARSE DOMINATION PRINCIPLE FOR ROUGH SINGULAR INTEGRALS 1257

Theorem A. There exists an absolute dimensional constant C > 0 such that the following holds. Let
Q € L1(S971Y) have zero average. Then forall 1 <t < oo, fi € L'(R?), f» € L' (R?), we have

120 La110gL(sa-1), 1<g <00, p=¢q’,
||Q||Loo(sd—l), I < p<oo.

c
(Ta fi. fo)] < 25 supPSFs;1,p(fi. /o)

Remark 1.1. To avoid Lorentz norms in the statement, one may recall the continuous embeddings
Late(§d—1y s 141 og L(S971) — L4(S9 1) forall 1 <g < oo and & > 0.

Theorem B. There exists an absolute dimensional constant C > 0 such that the following holds. For all
1<t <oo, fie L'(RY), fr € L’/(Rd), the critical Bochner—Riesz means (1-3) satisfy

Cp

[(Bs f1. f2)| <
p—1

sup PSFs;1,p(f1. f2), 1< p<oo.
S

The weak-L! estimate for Tq is the main result of [Seeger 1996], while the same endpoint estimate
for (1-3) has been established in [Christ 1988]. Theorems A and B recover such results; see Appendix B
for a proof of this implication, which we include for future reference. This is not surprising as the
localized estimates for (1-2), (1-3) which are needed to apply our abstract result are a distillation and
an improvement of the microlocal techniques of [Seeger 1996] and of the previous works [Christ 1988;
Christ and Rubio de Francia 1988], and of the oscillatory integral estimates of [Christ 1988] respectively.

We reiterate that the commonly used techniques for sparse domination, which rely on the weak-L!
estimate for the maximal truncation of the singular integral operator, fail to be applicable in the context of
Theorem A as the maximal truncations of T in (1-2) are not known to satisfy such an estimate even when
Qe L>®(S d_l) [Grafakos and Stefanov 1999]. Our abstract result, Theorem C, whose statement is more
technical and is postponed until Section 2, only relies on the uniform L2-boundedness (or L"-boundedness
for any r) of the truncated operators, and thus might be considered stronger than the approaches of the
mentioned references. See Remark 2.5 for additional discussion on this point.

Theorems A and B give as corollaries a family of quantitative weighted estimates.

Corollary A.1. If Q lies in the unit ball of L9! log L(Sd_l)for some 1 < q < 0o and has zero average,
we have the weighted norm inequalities

max{l,t_IT} ’
ITQllLt w)—Lr (w) = Crglwly, . g <t<oo. (1-4)
q/
If furthermore ||| oo (ga—1y < 1,

747 max{z,2}
1Tl @y Lrwy < Celwl T, 1<t <oo. (1-5)

Corollary B.1. Referring to (1-3), we have the weighted norm inequalities

L 1,2
1Bs 12y L oy < Celwl T ™2 1 <1 < o0, (1-6)
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Proof of Corollaries A.1, B.1. To prove (1-4), applying Theorem A for p = ¢’ (strictly speaking, to the
adjoint of Tq) yields that the bilinear form associated to Tgq is dominated by
sup PSFs;4/1.
S
The proof of the weighted estimate can then be found, for instance, in [Bernicot et al. 2016, Proposi-
tion 6.4]. We prove (1-5), and (1-6) follows via the same argument: below, C denotes a positive absolute

constant which may vary between occurrences. Combining the inequality [Di Plinio and Lerner 2014,
Proposition 4.1]

(Nte,0 < (1,0 +CeMite f)1,0,

which is valid for all € > 0, with the estimate of Theorem A for p = 1 + & we obtain
C
Tq f1, f2)| = < Sup PSFs;1,1(f1. f2) + C supPSFs;1,1 M14¢ f1, f2), €>0.
S S

The above display leads via standard reasoning [Cruz-Uribe et al. 2011; Hytonen et al. 2012; Moen 2012]
to the chain of inequalities

L5 . 1
||T||Lt(w)%z(w)sct[w]jj"‘{ P g (—+||M1+8||Lz(w)%t(w))

O<e<t—1\ &
1,y e L max{z,2
< Cl [w]j:aX{ rfl} inf l + [w]; (I+2) < Ct [w];(] max{ } 0
t O<e<t—1\ € = t

Corollary A.1 is a quantification of the weighted inequalities due to Watson [1990] and Duoandikoetxea
[1993]: if 1 <¢ < oo and Q € LI(S¢~1) then

weAr, g <t<oo, t#1,
q
1
wi—t € Ay, 1 <t <gq, [7500, - ||TQ||L’(w)—>L’(w) < 00.
q/
w? € Ay, 1<t <oo

Estimate (1-5) was first established by Hytonen, Roncal and Tapiola [Hytonen et al. 2017] via a different
two-step technique involving sparse domination for Dini-type kernels, a Littlewood—Paley decomposition
along the lines of [Christ and Rubio de Francia 1988] and interpolation with change of measure. In [Pérez
et al. 2016], these ideas were extended to obtain 41 estimates for T and commutators of T and BMO
symbols. At this time, we do not know whether the power of the Muckenhoupt constant in (1-5) is sharp.

Qualitative A,-bounds for critical Bochner—Riesz means are classical [Shi and Sun 1992]; see also
[Vargas 1996]. On the other hand, Corollary B.1 seems to be the first quantitative A, estimate for Bs.
We do not know whether the power of the A, constant in (1-6) is sharp; the construction in [Luque et al.
2015, Corollary 3.1] shows that the optimal power «, must obey o, > max{1, 1/(p —1)}. The article
[Benea et al. 2017] contains sparse domination estimates and weighted inequalities for the supercritical
regime 0 < § < § which are not informative in the critical case. An extension of our methods to the
supercritical cases will appear in forthcoming work.

Finally, we mention that our argument for (1-5) and (1-6) shows that improvements of powers as those in
Corollaries A.1 and B.1 are tied to the blowup rate as p — 1™ of the main estimate of Theorems A and B.
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A remark on the proof and plan of the article. Theorems A and B fall under the scope of the same
abstract result, Theorem C, which is stated and proved in Section 2. Theorem C is obtained by means of
an iterative scheme reminiscent of the arguments used in [Culiuc et al. 2016a] by three of us to prove a
sparse domination estimate for the bilinear Hilbert transform, and later adapted to dyadic and continuous
Calderén—Zygmund singular integrals in [Culiuc et al. 2016b]. At each iteration, a decomposition of
Calderén—Zygmund type is performed, and the operator itself is decomposed into small scales (scales
falling within the exceptional set) which will be estimated at subsequent steps of the iteration, and large
scales. The action of the large scales on the good parts is controlled by means of the uniform L”-bound for
the truncations of 7. The contribution of the bad, mean zero part under the large scales of the operator is
then controlled by means of suitably localized estimates relying on the cancellation of constant-mean zero
type. We emphasize that the present work shares a perspective based on bilinear forms with other recent
papers: [Krause and Lacey 2016; Lacey and Spencer 2017]. The notable difference is that these references,
dealing with oscillatory and random discrete singular integrals, use (dilation) symmetry breaking and
T T, rather than constant-mean zero, as the principal cancellation mechanisms, in accordance with the
oscillatory nature of their objects of study.

Section 3 contains localized estimates for kernels of Dini- and Hormander-type which, besides being
of use in later arguments, allow us to reprove the optimal sparse domination results for these classes; see
its last subsection for the statements. In Sections 4 and 5 we provide the necessary localized estimates
for Theorems A and B respectively. The estimates of Section 4 are a delicate strengthening of the
microlocal arguments of [Seeger 1996]. The proof of Theorem B, a re-elaboration along the same lines
as the arguments of [Christ 1988], is carried out in Section 5. Although we find it hard to believe that
these techniques can be sharpened towards the stronger localized (1, 1) estimate, we have no explicit
counterexample for this possibility.

Notation. As is customary, ¢’ = qul denotes the Lebesgue dual exponent to g € (1, co), with the usual
extension 1’ = 0o, oo’ = 1. We denote the center of a cube Q € R4 by cg and its sidelength by £(Q).

We will also adopt the shorthand sgp = log, £(Q). We write

M, (f)(x) = sup (f)p,0lo(x)
QCR4

for the p-Hardy Littlewood maximal function. The positive constants implied by the almost inequality
sign < may depend (exponentially) on the dimension d only and may vary from line to line without
explicit mention.

2. A sparse domination principle

This section is dedicated to the statement and proof of our sparse domination principle, Theorem C.

The main structural assumptions. Our structural assumptions in Theorem C will be the following. Let
1 <r <ooand A be an L”(R9)x L™ (R?)-bounded bilinear form whose kernel K = K(x, y) coincides
with a function away from the diagonal {(x, y) € RZ xR% : x = y}. More precisely, whenever f; € L” (R%),
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f» € L™ (R?) are compactly and disjointly supported

A= [ [ K A0 A

with absolute convergence of the integral. We assume that there exists 1 < g < oo such that the kernel K
of A admits the decomposition

K(x,y)= ZKs(x,y), supp Ky C {(x,y) e RYxR? : x—y € Ay},

SEZ (SS)
Ag={zeR%:272<|z]<2%), [Klog:=sup2¥ sup (|| Ky(x,x+)llg+IKs (x4, 3)llg) <00,

s€Z x€R4

&

Further, we assume that the truncated forms associated to the above decomposition by

A,‘i(hl,hz) = / Z Ks(x, )hi(»)ha(x)dydx u,veZU{—o0, 0} (2-1)
n<s<v
satisfy
CT(r) = S'ip(“A}}L”L’(Rd)er’(Rd)—>C) < Q. (T)
w<v

Remark 2.1. Under the assumptions (SS) and (T), a standard limiting argument [Stein 1993, Paragraph
1.7.2] yields that

Afr. f2) = {mfr. fo) + lim AL, (fi. f2)

for some m € L°(R?), whenever fi € L (R?), f» € L™ (R?). It is not hard to see [Lacey and Mena
Arias 2017, Lemma 4.7] that

l{mf1, f2)| < [mlleo sup PSFs;1,1(f1. f2)

so that for the purpose of our Theorem C below we may assume that m = 0 in the above equality. For
this reason, when . = —oo or v = oo or both, we are allowed to omit the subscript or superscript in (2-1)
and simply write A” or Ay, or A. Also, when p > v, the summation in (2-1) is void, so that A}, = 0.

Localized spaces over stopping collections. A further condition in our abstract theorem will involve local
norms associated to stopping collections of (dyadic) cubes. Throughout the article, by dyadic cubes we
refer to the elements of any fixed dyadic lattice D in R4

Let Q € D be a fixed dyadic cube in R?. A collection Q C D of dyadic cubes is a stopping collection
with top Q if the elements of Q are pairwise disjoint and contained in 30,

LLeQ LNL'#2 = L=L, LeQ = LC30, (2-2)
and enjoy the further separation properties

L .L'eQ, |sp—sp|>8 = 7TLNIL =@, U 9LclJL=ssha (23)
LeQ:3LN2Q#o LeQ
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the notation sh Q for the union of the cubes in Q will also be used below. For 1 < p < oo, define ), (Q)
to be the subspace of L?(R?) of functions satisfying

supph C3Q, 00> ||hlly,(g) = %max{”thd\ShQ”“” SUPLeg infyef Mph(x)},  p < oo,

1]l 0o p =09,

where L is the (nondyadic) 2°-fold dilate of L. We also denote by Xp(Q) the subspace of V,(Q) of
functions satisfying

b= Z br, suppbr C L.
Leg

Furthermore, we write b € X p(Q)if
b e X,(9Q), /bL=0 VL € Q.
L

We will use the notation ||b|| x,(g) for [|b]|y, (o) when b € X (Q), and similar notation for b € XP(Q).
When the stopping collection Q is clear from the context or during proofs we may omit (Q) from the
subscript and simply write || - ||y, or || - || x,,-

Remark 2.2 (Calder6n—Zygmund decomposition). There is a natural Calderén—Zygmund decomposition
associated to stopping collections. Observe that if Q is a stopping collection, then

sup (h)p, <2°||h]y,(0)-
LeQ

Therefore, we may decompose i € ), (Q) as

. 1
h=g+b b= b eiQ). bL=(h——/h(x)dx)1L
Lo L] JL

such that
Il <2 Uhly,@- 18140 < 2%+ Ik, 0)-

These are nothing but the usual properties of the Calder6n-Zygmund decomposition rewritten in our
context.

The statement. Before stating our result, we introduce the notation
Agun(hy ho) = AR (1 o) = AR (19, by 130) (2-4)

for all dyadic cubes Q; the last equality in (2-4) is a consequence of the assumptions on the support of
K in (SS). Furthermore, given a stopping collection Q with top @, we define the truncated forms

Aol ha):=ANg uv(hy, ha)— Z AL juw(hi ha) =Aguw(hilg, halszp). (2-5)

LeQ
LcCQ

Again, the last equality is due to the support of K in (SS). A further consequence of assumptions (SS)
and (T) is that the forms A g 4, satisfy uniform bounds on ), (Q) x Y, (Q).
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Lemma 2.3. There exists a positive absolute constant ¥ such that

|Aguu(hi h2)| <279 Cr ()01 llh1lly, o) llh2lly, (o)

uniformly over all |1, v, all dyadic cubes Q and stopping collections Q with top Q.

Proof. We may estimate the first term in the definition (2-5) as follows:

A Q. uw(h1,ho)| = Cr(r)h gl h2130 ]l < Cr ()] Q]IA1 Iy, 1h2]ly, - (2-6)

Further, using the support condition in (2-4) with L in place of Q and the disjointness property (2-2) in
the last step, we obtain

Y Apwiih)l= Y ALl halsp)| < Cr(r) Y kALl [h2sL e

Leo:LCQ Leo:LCQ Leo:LCQ
S Cr)lhily hally, Y 1L S Cr() QA ly, 12y,
Leg
The proof of the lemma is thus completed by combining (2-6) with the last display. O

Our main theorem hinges upon estimates which are modified versions of the one occurring in Lemma 2.3,
when one of the two arguments of Ag ;. belongs to X'-type localized spaces.

Theorem C. There exists a pos