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LOCAL EXPONENTIAL STABILIZATION
FOR A CLASS OF KORTEWEG–DE VRIES EQUATIONS

BY MEANS OF TIME-VARYING FEEDBACK LAWS

JEAN-MICHEL CORON, IVONNE RIVAS AND SHENGQUAN XIANG

We study the exponential stabilization problem for a nonlinear Korteweg-de Vries equation on a bounded
interval in cases where the linearized control system is not controllable. The system has Dirichlet boundary
conditions at the end-points of the interval and a Neumann nonhomogeneous boundary condition at the
right end-point, which is the control. We build a class of time-varying feedback laws for which the
solutions of the closed-loop systems with small initial data decay exponentially to 0. We present also
results on the well-posedness of the closed-loop systems for general time-varying feedback laws.

1. Introduction

Let L ∈ (0,+∞). We consider the stabilization of the controlled Korteweg–de Vries (KdV) system
yt + yxxx + yx + yyx = 0 for (t, x) ∈ (s,+∞)× (0, L),
y(t, 0)= y(t, L)= 0 for t ∈ (s,+∞),
yx(t, L)= u(t) for t ∈ (s,+∞),

(1-1)

where s ∈ R and where, at time t ∈ [s,+∞), the state is y(t, · ) ∈ L2(0, L) and the control is u(t) ∈ R.
Boussinesq [1877] and Korteweg and de Vries [1895] introduced KdV equations for describing the

propagation of small-amplitude long water waves. For a better understanding of KdV equations, one can
see [Whitham 1974], in which different mathematical models of water waves are deduced. These equations
have turned out to be good models, not only for water waves but also to describe other physical phenomena.
For mathematical studies on these equations, let us mention [Bona and Smith 1975; Constantin and Saut
1988; Craig et al. 1992; Temam 1969], as well as the discovery of solitons and the inverse scattering
method [Gardner et al. 1967; Murray 1978] to solve these equations. We also refer here to [Bona et al.
2003; 2009; Coron and Crépeau 2004; Rivas et al. 2011; Zhang 1999] for well-posedness results of
initial-boundary-value problems of our KdV equation (1-1) or for other equations which are similar to
(1-1). Finally, let us refer to [Cerpa 2014; Rosier and Zhang 2009] for reviews on recent progresses on
the control of various KdV equations.
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The controllability research on (1-1) began when Lionel Rosier [1997] showed that the linearized KdV
control system (around 0 in L2(0, L))

yt + yxxx + yx = 0 in (0, T )× (0, L),
y(t, 0)= y(t, L)= 0 on (0, L),
yx(t, L)= u(t) on (0, T )

(1-2)

is controllable if and only if L /∈N, where N is called the set of critical lengths and is defined by

N :=
{
2π
√

1
3(l

2+ lk+ k2) : l, k ∈ N∗
}
. (1-3)

From this controllability result Lionel Rosier, in the same article, deduced that the nonlinear KdV equations
(1-1) are locally controllable (around 0 in L2(0, L)) if L /∈ N. His work also shows that the L2(0, L)
space can be decomposed as H ⊕M , where M is the “uncontrollable” part for the linearized KdV control
systems (1-2), and H is the “controllable” part. Moreover, M is of finite dimension, a dimension which
strongly depends on some number theory property of the length L . More precisely, the dimension of M
is the number of different pairs of positive integers (lj , kj ) satisfying

L = 2π
√

1
3(l

2
j + lj kj + k2

j ). (1-4)

For each such pair of (lj , kj ) with lj > kj , we can find two nonzero real-valued functions ϕ j
1 and ϕ j

2 such
that ϕ j

:= ϕ
j
1 + iϕ j

2 is a solution of
−iω(lj , kj )ϕ

j
+ (ϕ j )′+ (ϕ j )′′′ = 0,

ϕ j (0)= ϕ j (L)= 0,
(ϕ j )′(0)= (ϕ j )′(L)= 0,

(1-5)

where ϕ j
1 , ϕ

j
2 ∈ C∞([0, L]) and ω(lj , kj ) is defined by

ω(lj , kj ) :=
(2lj + kj )(lj − kj )(2kj + lj )

3
√

3(l2
j + lj kj + k2

j )
3/2

. (1-6)

When lj > kj , the functions ϕ j
1 , ϕ

j
2 are linearly independent, but when lj = kj , we have ω(lj , kj )= 0 and

ϕ
j
1 , ϕ

j
2 are linearly dependent. It is also proved in [Rosier 1997] that

M = Span{ϕ1
1, ϕ

1
2, . . . , ϕ

n
1 , ϕ

n
2 }. (1-7)

Multiplying (1-2) by ϕ j, integrating on (0, L), performing integrations by parts and combining with (1-5),
we get

d
dt

(∫ L

0
y(t, x)ϕ j (x) dx

)
= iω(lj , kj )

∫ L

0
y(t, x)ϕ j (x) dx,

which shows that M is included in the “uncontrollable” part of (1-2). Let us point out that there exists at
most one pair of (lj , kj ) such that lj = kj . Hence we can classify L ∈ R+ into five different cases and
therefore divide R+ into five disjoint subsets of (0,+∞), which are defined as follows:
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(1) C := R+\N. Then M = {0}.

(2) N1 :=
{

L ∈ N : there exists exactly one ordered pair (lj ,kj ) satisfying (1-4) and lj = kj
}
. Then the

dimension of M is 1.

(3) N2 :=
{

L ∈ N : there exists exactly one ordered pair (lj ,kj ) satisfying (1-4) and lj > kj
}
. Then the

dimension of M is 2.

(4) N3 :=
{

L∈N : there exist n>2 distinct ordered pairs (lj ,kj ) satisfying (1-4) and none satisfy lj=kj
}
.

Then the dimension of M is 2n.

(5) N4 :=
{

L∈N : there exist n>2 distinct ordered pairs (lj ,kj ) satisfying (1-4) and one satisfies lj=kj
}
.

Then the dimension of M is 2n− 1.

The five sets C, {Ni }
4
i=1 are pairwise disjoint and

R+ = C ∪N1 ∪N2 ∪N3 ∪N4,

N =N1 ∪N2 ∪N3 ∪N4.

Additionally, Eduardo Cerpa [2007, Lemma 2.5] proved that each of these five sets has infinite number of
elements; see also [Coron 2007, Proposition 8.3] for the case of N1.

Let us point out that L /∈N is equivalent to M = {0}. Hence, Lionel Rosier solved the (local) control-
lability problem of nonlinear KdV equations for L ∈ C. Later on Jean-Michel Coron and Emmanuelle
Crépeau [2004] proved the small-time local controllability of nonlinear KdV equations for the second case
L ∈N1, by a “power series expansion” method; the nonlinear term yyx gives this controllability. Later
on, Eduardo Cerpa [2007] proved the local controllability in large time for the third case L ∈N2, still by
using the “power series expansion” method. In this case, an expansion to the order 2 is sufficient but the
local controllability in small time remains open. Finally Eduardo Cerpa and Emmanuelle Crépeau [2009a]
concluded the study by proving the local controllability in large time of (1-1) for the two remaining critical
cases (for which dim M > 3). The proofs of all these results rely on the “power series expansion” method,
introduced in [Coron and Crépeau 2004]. This method has also been used to prove controllability results
for Schrödinger equations [Beauchard 2005; Beauchard and Coron 2006; Beauchard and Morancey 2014;
Morancey 2014] and for rapid asymptotic stability of a Navier-Stokes control system in [Chowdhury
and Ervedoza 2017]. In this article we use it to get exponential stabilization of (1-1). For studies on
the controllability of other KdV control systems problems, let us refer to [Capistrano-Filho et al. 2015;
Gagnon 2016; Glass and Guerrero 2010; Goubet and Shen 2007; Rosier 2004; Zhang 1999].

The asymptotic stability of 0 without control (control term equal to 0) has been studied for years; see,
in particular, [Cerpa and Coron 2013; Goubet and Shen 2007; Jia and Zhang 2012; Massarolo et al. 2007;
Pazoto 2005; Perla Menzala et al. 2002; Rosier and Zhang 2006; Russell and Zhang 1995; 1996]. For exam-
ple, the local exponential stability for our KdV equation if L /∈N was proved in [Perla Menzala et al. 2002].
Let also point out here that in [Doronin and Natali 2014], the authors give the existence of (large) stationary
solutions, which ensures that the exponential stability result in [Perla Menzala et al. 2002] is only local.

Concerning the stabilization by means of feedback laws, the locally exponential stabilization with
arbitrary decay rate (rapid stabilization) with some linear feedback law was obtained by Eduardo Cerpa
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and Emmanuelle Crépeau in [2009b] for the linear KdV equation (1-2). For the nonlinear case, the first
rapid stabilization for Korteweg–de Vries equations was obtained by Camille Laurent, Lionel Rosier and
Bing-Yu Zhang [Laurent et al. 2010] in the case of localized distributed control on a periodic domain.
In that case, the linearized control system, let us write it ẏ = Ay+ Bu, is controllable. These authors
used an approach due to Marshall Slemrod [1974] to construct linear feedback laws leading to the rapid
stabilization of ẏ= Ay+Bu and then proved that the same feedback laws give the rapid stabilization of the
nonlinear Korteweg de Vries equation. In the case of distributed control, the operator B is bounded. For
boundary control the operator B is unbounded. The Slemrod approach has been modified to handle this
case by Vilmos Komornik [1997] and by Jose Urquiza [2005], and [Cerpa and Crépeau 2009b] precisely
uses the modification presented in [Urquiza 2005]. However, in contrast with the case of distributed
control, it leads to unbounded linear feedback laws and one does not know for the moment if these linear
feedback laws lead to asymptotic stabilization for the nonlinear Korteweg de Vries equation. One does
not even know if the closed system is well posed for this nonlinear equation. The first rapid stabilization
result in the nonlinear case and with boundary controls was obtained by Eduardo Cerpa and Jean-Michel
Coron [2013]. Their approach relies on the backstepping method/transformation, a method introduced
by Miroslav Krstic and his collaborators (see [Krstic and Smyshlyaev 2008] for an excellent starting
point to this method). When L 6∈N, by using a more general transformation and the controllability of
(1-2), Jean-Michel Coron and Qi Lü [2014] proved the rapid stabilization of our KdV control system.
Their method can be applied to many other equations, like Schrödinger equations [Coron et al. 2016] and
Kuramoto–Sivashinsky equations [Coron and Lü 2015]. When L ∈N, as mentioned above, the linearized
control system (1-2) is not controllable, but the control system (1-1) is controllable. Let us recall that for
the finite-dimensional case, the controllability doesn’t imply the existence of a (continuous) stationary
feedback law which stabilizes (asymptotically, exponentially, etc.) the control system; see [Brockett 1983;
Coron 1990]. However the controllability in general implies the existence of (continuous) time-varying
feedback laws which asymptotically (and even in finite time) stabilize the control system; see [Coron
1995]. Hence it is natural to look for time-varying feedback laws u(t, y(t, · )) such that 0 is (locally)
asymptotically stable for the closed-loop system

yt + yxxx + yx + yyx = 0 for (t, x) ∈ (s,+∞)× (0, L),
y(t, 0)= y(t, L)= 0 for t ∈ (s,+∞),
yx(t, L)= u(t, y(t, · )) for t ∈ (s,+∞).

(1-8)

Let us also point out that in [Laurent et al. 2010], as in [Coron and Rosier 1994] by Jean-Michel Coron
and Lionel Rosier, which dealt with finite-dimensional control systems, time-varying feedback laws were
used in order to combine two different feedback laws to get rapid global asymptotic stability of the closed
loop system. Let us emphasize that u = 0 leads to (local) asymptotic stability when L ∈N1 [Chu et al.
2015] and L ∈N2 [Tang et al. 2016]. However, in both cases, the convergence is not exponential. It is
then natural to ask if we can get exponential convergence to 0 with the help of some suitable time-varying
feedback laws u(t, y(t, · )). The aim of this paper is to prove that it is indeed possible in the case where

L is in N2 or in N3. (1-9)
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Let us denote by

PH : L2(0, L)→ H and PM : L2(0, L)→ M

the orthogonal projections (for the L2-scalar product) on H and M respectively. Our main result is the
following one, where the precise definition of a solution of (1-10) is given in Section 2.

Theorem 1. Assume that (1-9) holds. Then there exists a periodic time-varying feedback law u, C > 0,
λ > 0 and r > 0 such that, for every s ∈ R and for every ‖y0‖L2

L
< r , the Cauchy problem

yt + yxxx + yx + yyx = 0 for (t, x) ∈ (s,+∞)× (0, L),
y(t, 0)= y(t, L)= 0 for t ∈ (s,+∞),
yx(t, L)= u(t, y(t, · )) for t ∈ (s,+∞),
y(s, · )= y0 for x ∈ (0, L)

(1-10)

has at least one solution in C0
(
[s,+∞); L2(0, L)

)
∩ L2

loc

(
[s,+∞); H 1(0, L)

)
and every solution y of

(1-10) is defined on [s,+∞) and satisfies, for every t ∈ [s,+∞),

‖PH (y(t))‖L2
L
+‖PM(y(t))‖

1/2
L2

L
6 Ce−λ(t−s)(

‖PH (y0)‖L2
L
+‖PM(y0)‖

1/2
L2

L

)
. (1-11)

In order to simplify the notations, in this paper we sometimes simply denote y(t, · ) by y(t), if there
is no misunderstanding; sometimes we also simply denote L2(0, L) by L2

L and L2(0, T ) by L2
T . Let us

explain briefly an important ingredient of our proof of Theorem 1. Taking into account the uncontrollability
of the linearized system, it is natural to split the KdV system into a coupled system for (PH (y), PM(y)).
Then the finite-dimensional analogue of our KdV control system is

ẋ = Ax + R1(x, y)+ Bu, ẏ = Ly+ Q(x, x)+ R2(x, y), (1-12)

where A, B, and L are matrices, Q is a quadratic map, R1, R2 are polynomials and u is the control. The
state variable x plays the role of PH (y), while y plays the role of PM(y). The two polynomials R1 and R2

are quadratic and R2(x, y) vanishes for y = 0. For this ODE system, in many cases the Brockett condition
[1983] and the Coron condition [2007] for the existence of continuous stationary stabilizing feedback laws
do not hold. However, as shown in [Coron and Rivas 2016], many physical systems of form (1-12) can
be exponentially stabilized by means of time-varying feedback laws. We follow the construction of these
time-varying feedback laws given in this article. However, due to the fact that H is of infinite dimension,
many parts of the proof have to be modified compared to those given in [Coron and Rivas 2016]; in
particular we do not know how to use a Lyapunov approach, in contrast to what is done in that paper.

This article is organized as follows. In Section 2, we recall some classical results and definitions about
(1-1) and (1-2). In Section 3, we study the existence and uniqueness of solutions to the closed-loop
system (1-10) with time-varying feedback laws u which are not smooth. In Section 4, we construct our
time-varying feedback laws. In Section 5, we prove two estimates for solutions to the closed-loop system
(1-10) (Propositions 15 and 16) which imply Theorem 1. The article ends with three appendices where
proofs of propositions used in the main parts of the article are given.
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2. Preliminaries

We first recall some results on KdV equations and give the definition of a solution to the Cauchy problem
(1-10). Let us start with the nonhomogeneous linear Cauchy problem

yt + yxxx + yx = h̃ in (T1, T2)× (0, L),
y(t, 0)= y(t, L)= 0 on (T1, T2),

yx(t, L)= h(t) on (T1, T2),

y(T1, x)= y0(x) on (0, L)

(2-1)

for

−∞< T1 < T2 <+∞, (2-2)

y0 ∈ L2(0, L), (2-3)

h̃ ∈ L1(T1, T2; L2(0, L)), (2-4)

h ∈ L2(T1, T2). (2-5)

Let us now give the definition of a solution to (2-1).

Definition 2. A solution to the Cauchy problem (2-1) is a function y ∈ L1(T1, T2; L2(0, L)) such that,
for almost every τ ∈ [T1, T2], the following holds: for every φ ∈ C3([T1, τ ]× [0, L]) such that

φ(t, 0)= φ(t, L)= φx(t, 0)= 0 ∀t ∈ [T1, τ ], (2-6)

one has

−

∫ τ

T1

∫ L

0
(φt +φx +φxxx)y dx dt −

∫ τ

T1

h(t)φx(t, L) dt −
∫ τ

T1

∫ L

0
φh̃ dx dt

+

∫ L

0
y(τ, x)φ(τ, x) dx −

∫ L

0
y0φ(T1, x) dx = 0. (2-7)

For T1 and T2 satisfying (2-2), let us define the linear space BT1,T2 by

BT1,T2 := C0(
[T1, T2]; L2(0, L)

)
∩ L2(T1, T2; H 1(0, L)

)
. (2-8)

This linear space BT1,T2 is equipped with the norm

‖y‖BT1,T2
:=max

{
‖y(t)‖L2

L
: t ∈ [T1, T2]

}
+

(∫ T2

T1

‖yx(t)‖2L2
L

dt
)1/2

. (2-9)

With this norm, BT1,T2 is a Banach space.
Let A : D(A)⊂ L2(0, L)→ L2(0, L) be the linear operator defined by

D(A) :=
{
φ ∈ H 3(0, L) : φ(0)= φ(L)= φx(L)= 0

}
, (2-10)

Aφ := −φx −φxxx ∀φ ∈ D(A). (2-11)

It is known that both A and A∗ are closed and dissipative (see, e.g., [Coron 2007, page 39]), and therefore
A generates a strongly continuous semigroup of contractions S(t), t ∈ [0,+∞) on L2(0, L).
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Rosier [1997], using the above properties of A together with multiplier techniques, proved the following
existence and uniqueness result for the Cauchy problem (2-1).

Lemma 3. The Cauchy problem (2-1) has one and only one solution. This solution is in BT1,T2 and there
exists a constant C2 > 0 depending only on T2− T1 such that

‖y‖BT1,T2
6 C2

(
‖y0‖L2

L
+‖h‖L2(T1,T2)+‖h̃‖L1(T1,T2;L2(0,L))

)
. (2-12)

In fact the notion of solution to the Cauchy problem (2-1) considered in [Rosier 1997] is a priori
stronger than the one we consider here (it is required to be in C0([T1, T2]; L2(0, L)). However, the
uniqueness of the solution in the sense of Definition 2 still follows from classical arguments; see, for
example, [Coron 2007, Proof of Theorem 2.37, page 53].

Let us now turn to the nonlinear KdV equation
yt + yxxx + yx + yyx = H̃ in (T1, T2)× (0, L),
y(t, 0)= y(t, L)= 0 on (T1, T2),

yx(t, L)= H(t) on (T1, T2),

y(T1, x)= y0(x) on (0, L).

(2-13)

Inspired by Lemma 3, we adopt the following definition.

Definition 4. A solution to (2-13) is a function y ∈ BT1,T2 which is a solution of (2-1) for h̃ := H̃ − yyx ∈

L1(T1, T2; L2(0, L)) and h := H.

Throughout this article we will use similar definitions without giving them precisely, as, for example,
in the case for system (3-15).

Coron and Crépeau [2004] proved the following lemma on the well-posedness of the Cauchy problem
(2-13) for small initial data.

Lemma 5. There exist η > 0 and C3 > 0 depending on L and T2− T1 such that, for every y0 ∈ L2(0, L),
every H ∈ L2(T1, T2) and every H̃ ∈ L1(T1, T2; L2(0, L)) satisfying

‖y0‖L2
L
+‖H‖L2(T1,T2)+‖H̃‖L1(T1,T2;L2(0,L)) 6 η, (2-14)

the Cauchy problem (2-13) has a unique solution and this solution satisfies

‖y‖BT1,T2
6 C3

(
‖y0‖L2

L
+‖H‖L2(T1,T2)+‖H̃‖L1(T1,T2;L2(0,L))

)
. (2-15)

3. Time-varying feedback laws and well-posedness of the associated closed-loop system

Throughout this section u denotes a time-varying feedback law; it is a map from R× L2(0, L) with values
into R. We assume that this map is a Carathéodory map, i.e., it satisfies the three properties

∀R > 0, ∃ CB(R) > 0 such that
(
‖y‖L2

L
6 R =⇒ |u(t, y)|6 CB(R) ∀t ∈ R

)
, (3-1)

∀y ∈ L2(0, L), the function t ∈ R 7→ u(t, y) ∈ R is measurable, (3-2)

for almost every t ∈ R, the function y ∈ L2(0, L) 7→ u(t, y) ∈ R is continuous. (3-3)
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In this article we always assume that

CB(R)≥ 1 ∀R ∈ [0,+∞), (3-4)

R ∈ [0,+∞) 7→ CB(R) ∈ R is a nondecreasing function. (3-5)

Let s ∈ R and let y0 ∈ L2(0, L). We start by giving the definition of a solution to
yt + yxxx + yx + yyx = 0 for t ∈ R, x ∈ (0, L),
y(t, 0)= y(t, L)= 0 for t ∈ R,

yx(t, L)= u(t, y(t, · )) for t ∈ R,

(3-6)

and to the Cauchy problem
yt + yxxx + yx + yyx = 0 for t > s, x ∈ (0, L),
y(t, 0)= y(t, L)= 0 for t > s,
yx(t, L)= u(t, y(t, · )) for t > s,
y(s, x)= y0(x) for x ∈ (0, L),

(3-7)

where y0 is a given function in L2(0, L) and s is a given real number.

Definition 6. Let I be an interval of R with a nonempty interior. A function y is a solution of (3-6) on I
if y ∈ C0(I ; L2(0, L)) is such that, for every [T1, T2] ⊂ I with −∞ < T1 < T2 < +∞, the restriction
of y to [T1, T2] × (0, L) is a solution of (2-13) with H̃ := 0, H(t) := u(t, y(t)) and y0 := y(T1). A
function y is a solution to the Cauchy problem (3-7) if there exists an interval I with a nonempty interior
satisfying I ∩ (−∞, s] = {s} such that y ∈ C0(I ; L2(0, L)) is a solution of (3-6) on I and satisfies the
initial condition y(s)= y0 in L2(0, L). The interval I is denoted by D(y). We say that a solution y to
the Cauchy problem (3-7) is maximal if, for every solution z to the Cauchy problem (3-7) such that

D(y)⊂ D(z), (3-8)

y(t)= z(t) for every t in D(y), (3-9)

one has

D(y)= D(z). (3-10)

Let us now state our theorems concerning the Cauchy problem (3-7).

Theorem 7. Assume that u is a Carathéodory function and that, for every R > 0, there exists K (R) > 0
such that(

‖y‖L2
L
6 R and ‖z‖L2

L
6 R

)
=⇒

(
|u(t, y)− u(t, z)|6 K (R)‖y− z‖L2

L
∀t ∈ R

)
. (3-11)

Then, for every s ∈ R and for every y0 ∈ L2(0, L), the Cauchy problem (3-7) has one and only one
maximal solution y. If D(y) is not equal to [s,+∞), there exists τ ∈ R such that D(y)= [s, τ ) and one
has

lim
t→τ−
‖y(t)‖L2

L
=+∞. (3-12)
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Moreover, if CB(R) satisfies ∫
+∞

0

R
(CB(R))2

d R =+∞, (3-13)

then
D(y)= [s,+∞). (3-14)

Theorem 8. Assume that u is a Carathéodory function which satisfies condition (3-13). Then, for every
s ∈ R and for every y0 ∈ L2(0, L), the Cauchy problem (3-7) has at least one maximal solution y such
that D(y)= [s,+∞).

The proofs of Theorems 7 and 8 will be given in Appendix B.
We end this section with the following proposition, which gives the expected connection between the

evolution of PM(y) and PH (y) and the fact that y is a solution to (3-6).

Proposition 9. Let u : R× L2(0, L)→ R be a Carathéodory feedback law. Let −∞< s < T <+∞, let
y ∈ Bs,T and let y0 ∈ L2(0, L). Denote PH (y) by y1 and PM(y) by y2. Then y is a solution to the Cauchy
problem (3-7) if and only if

y1t + y1x + y1xxx + PH
(
(y1+ y2)(y1+ y2)x

)
= 0,

y1(t, 0)= y1(t, L)= 0,
y1x(t, L)= u(t, y1+ y2),

y1(0, · )= PH (y0),

y2t + y2x + y2xxx + PM
(
(y1+ y2)(y1+ y2)x

)
= 0,

y2(t, 0)= y2(t, L)= 0,
y2x(t, L)= 0,
y2(0, · )= PM(y0).

(3-15)

The proof of this proposition is given in Appendix A.

4. Construction of time-varying feedback laws

In this section, we construct feedback laws which will lead to the local exponential stability stated in
Theorem 1. Let us denote by M1 the set of elements in M having an L2-norm equal to 1:

M1 :=
{

y ∈ M : ‖y‖L2
L
= 1

}
. (4-1)

Let M j be the linear space generated by ϕ j
1 and ϕ j

2 for every j ∈ {1, 2, . . . , n}:

M j
:= Span{ϕ j

1 , ϕ
j
2 }. (4-2)

The construction of our feedback laws relies on the following proposition.

Proposition 10. There exist T > 0 and v ∈ L∞([0, T ]×M1;R) such that the following properties hold:

(P1) There exists ρ1 ∈ (0, 1) such that

‖S(T )y0‖
2
L2(0,L) 6 ρ1‖y0‖

2
L2(0,L) for every y0 ∈ H.
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(P2) For every y0 ∈ M,
‖S(T )y0‖

2
L2(0,L) = ‖y0‖

2
L2(0,L).

(P3) There exists C0 > 0 such that

| v(t, y)− v(t, z) |6 C0‖y− z‖L2(0,L) ∀t ∈ [0, T ], ∀y, z ∈ M1. (4-3)

Moreover, there exists δ > 0 such that, for every z ∈ M1, the solution (y1, y2) to the equation

y1t + y1x + y1xxx = 0,
y1(t, 0)= y1(t, L)= 0,
y1x(t, L)= v(t, z),
y1(0, x)= 0,
y2t + y2x + y2xxx + PM(y1 y1x)= 0,
y2(t, 0)= y2(t, L)= 0,
y2x(t, L)= 0,
y2(0, x)= 0,

(4-4)

satisfies
y1(T )= 0 and 〈y2(T ), S(T )z〉L2(0,L) <−2δ. (4-5)

Proof of Proposition 10. Property (P2) is given in [Rosier 1997]; one can also see (4-14) and (4-44). Prop-
erty (P1) follows from the dissipativity of A and the controllability of (1-2) in H (see also [Perla Menzala
et al. 2002]). Indeed, integrations by parts (and simple density arguments) show that, in the distribution
sense in (0,+∞),

d
dt
‖S(t)y0‖

2
L2

L
=−y2

x (t, 0). (4-6)

Moreover, as Rosier [1997] proved for every T > 0, there exists c > 1 such that, for every y0 ∈ H,

‖y0‖
2
L2

L
6 c‖yx(t, 0)‖2L2(0,T ). (4-7)

Integration of identity (4-6) on (0, T ) and the use of (4-7) give

‖S(T )y0‖
2
L2

L
6 c−1

c
‖y0‖

2
L2

L
. (4-8)

Hence ρ1 := (c− 1)/c ∈ (0, 1) satisfies the required properties.
Our concern now is to deal with (P3). Let us first recall a result on the controllability of the linear

control system 
yt + yxxx + yx = 0 in (0, T )× (0, L),
y(t, 0)= y(t, L)= 0 on (0, L),
yx(t, L)= u(t) on (0, T ),

(4-9)

where, at time t ∈ [0, T ], the state is y(t, · ) ∈ L2(0, L). Our goal is to investigate the cases where
L ∈N2∪N3, but in order to explain more clearly our construction of v, we first deal with the case where

L = 2π
√

1
3(1

2+ 1× 2+ 22)= 2π
√

7
3 , (4-10)
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which corresponds to l = 1 and k = 2 in (1-3). In that case the uncontrollable subspace M is a two-
dimensional vector subspace of L2(0, L) generated by

ϕ1(x)= C
(
cos
( 5
√

21
x
)
− 3 cos

( 1
√

21
x
)
+ 2 cos

( 4
√

21
x
))
,

ϕ2(x)= C
(
− sin

( 5
√

21
x
)
− 3 sin

( 1
√

21
x
)
+ 2 sin

( 4
√

21
x
))
,

where C is a positive constant such that ‖ϕ1‖L2
L
= ‖ϕ2‖L2

L
= 1. They satisfy

ϕ′1+ϕ
′′′

1 =−2πϕ2/p,
ϕ1(0)= ϕ1(L)= 0,
ϕ′1(0)= ϕ

′

1(L)= 0
(4-11)

and 
ϕ′2+ϕ

′′′

2 = 2πϕ1/p,
ϕ2(0)= ϕ2(L)= 0,
ϕ′2(0)= ϕ

′

2(L)= 0,
(4-12)

with (see [Cerpa 2007])

p :=
441π

10
√

21
. (4-13)

For every t > 0, one has

S(t)M ⊂ M and S(t) restricted to M is the rotation of angle 2π t
p
, (4-14)

if the orientation on M is chosen so that (ϕ1, ϕ2) is a direct basis, a choice which is done from now
on. Moreover the control u has no action on M for the linear control system (1-2): for every initial
data y0 ∈ M , whatever u ∈ L2(0, T ), the solution y of (1-2) with y(0)= y0 satisfies PM(y(t))= S(t)y0

for every t ∈ [0,+∞). Let us denote by H the orthogonal in L2(0, L) of M for the L2-scalar product
H := M⊥. This linear space is left invariant by the linear control system (1-2): for every initial data
y0 ∈ H, whatever u ∈ L2(0, T ), the solution y of (1-2) satisfying y(0) = y0 is such that y(t) ∈ H for
every t ∈ [0,+∞). Moreover, as proved by Rosier [1997], the linear control system (1-2) is controllable
in H in small time. More precisely, he proved the following lemma.

Lemma 11. Let T > 0. There exists C > 0 depending only on T such that, for every y0, y1 ∈ H, there
exists a control u ∈ L2(0, T ) satisfying

‖u‖L2
T
6 C(‖y0‖L2

L
+‖y1‖L2

L
) (4-15)

such that the solution y of the Cauchy problem
yt + yxxx + yx = 0 in (0, T )× (0, L),
y(t, 0)= y(t, L)= 0 on (0, T ),
yx(t, L)= u(t) on (0, T ),
y(0, x)= y0(x) on (0, L)

satisfies y(T, · )= y1.
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A key ingredient of our construction of v is the following proposition.

Proposition 12. Let T > 0. For every L ∈N2∪N3, for every j ∈ {1, 2, . . . , n}, there exists u j
∈ H 1(0, T )

such that

α(T, · )= 0 and PM j (β(T, · )) 6= 0,

where (α, β) is the solution of 

αt +αx +αxxx = 0,
α(t, 0)= α(t, L)= 0,
αx(t, L)= u j (t),
α(0, x)= 0,
βt +βx +βxxx +ααx = 0,
β(t, 0)= β(t, L)= 0,
βx(t, L)= 0,
β(0, x)= 0.

(4-16)

Proposition 12 is due to Eduardo Cerpa and Emmanuelle Crépeau if one requires only u to be in
L2(0, T ) instead of being in H 1(0, T ): see [Cerpa 2007, Proposition 3.1] and [Cerpa and Crépeau 2009a,
Proposition 3.1]. We explain in Appendix C how to modify the proof of [Cerpa 2007, Proposition 3.1]
(as well as [Cerpa and Crépeau 2009a, Proposition 3.1]) in order to get Proposition 12.

We decompose β into β = β1 + β2, where β1 := PH (β) and β2 := PM(β). Hence, similarly to
Proposition 9, we get 

β2t +β2x +β2xxx + PM(ααx)= 0,
β2(t, 0)= β2(t, L)= 0,
β2x(t, L)= 0,
β2(0, x)= 0,

(4-17)

where β2(T, · )= PM(β(T, · )) 6= 0. In particular, PM j (β2(T, · ))= PM j (β(T, · )) 6= 0.
Combining (4-16) and (4-17), we get:

Corollary 13. For every L ∈ N2 ∪ N3, for every T0 > 0, for every j ∈ {1, 2, . . . , n}, there exists
u j

0 ∈ L∞(0, T0) such that the solution (y1, y2) to equation (4-4) with v(t, z) := u j
0(t) satisfies

y1(T0)= 0 and PM j (y2(T0)) 6= 0. (4-18)

Now we come back to the case when (4-10) holds. Let us fix T0 > 0 such that

T0 <
1
4 p. (4-19)

Let

q := 1
4 p. (4-20)

Let u0 be as in Corollary 13. We define

Y1(t) := y1(t), Y2(t) := y2(t) for t ∈ [0, T0] (4-21)
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and
ψ1 := Y2(T0) ∈ M \ {0}. (4-22)

Let
ψ2 = S(q)ψ1 ∈ M, ψ3 = S(2q)ψ1 ∈ M, ψ4 = S(3q)ψ1 ∈ M, (4-23)

T := 3q + T0, (4-24)

K1 := [3q, 3q + T0], (4-25)

K2 := [2q, 2q + T0], (4-26)

K3 := [q, q + T0], (4-27)

K4 := [0, T0]. (4-28)

Note that (4-19) implies
K1, K2, K3 and K4 are pairwise disjoint. (4-29)

Let us define four functions [0, T ] → R: u1, u2, u3 and u4 by requiring that, for every i ∈ {1, 2, 3, 4},

ui :=

{
0 on [0, T ] \ Ki ,

u0( · − τi ) on Ki ,
(4-30)

with
τ1 = 3q, τ2 = 2q, τ3 = q, τ4 = 0. (4-31)

One can easily verify that, for every i ∈ {1, 2, 3, 4}, the solution of (4-4) for v = ui is given explicitly by

yi,1(t)=
{

0 on [0, T ] \ Ki ,

Y1( · − τi ) on Ki
(4-32)

and

yi,2(t)=


0 on [0, τi ],

Y2( · − τi ) on Ki ,

S( · − τi − T0)ψ1 on [τi + T0, T ].
(4-33)

For z ∈ M1, let α1, α2, α3 and α4 in [0,+∞) be such that

−S(T )z = α1ψ1+α2ψ2+α3ψ3+α4ψ4, (4-34)

α1α3 = 0, α2α4 = 0. (4-35)

Let us define
v(t, z) := α1u1(t)+α2u2(t)+α3u3(t)+α4u4(t). (4-36)

We notice that
(α2

1 +α
2
2 +α

2
3 +α

2
4)‖ψ1‖

2
L2

L
= 1, (4-37)

which, together with (4-36), implies that

v ∈ L∞([0, T ]×M1;R). (4-38)
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Moreover, using the above construction (and in particular (4-29)), one easily checks that the solution of
(4-4) satisfies

y1(t)= α1 y1,1(t)+α2 y2,1(t)+α3 y3,1(t)+α4 y4,1(t) for t ∈ [0, T ], (4-39)

y2(t)= α2
1 y1,2(t)+α2

2 y2,2(t)+α2
3 y3,2(t)+α2

4 y4,2(t) for t ∈ [0, T ]. (4-40)

In particular

y1(T )= 0, (4-41)

y2(T )= α2
1ψ1+α

2
2ψ2+α

2
3ψ3+α

2
4ψ4. (4-42)

From (4-34), (4-37) and (4-42), we can find that (4-5) holds if δ > 0 is small enough. It is easy to check
that the Lipschitz condition (4-3) is also satisfied. This completes the construction of v(t, z) such that
(P3) holds and also the proof of Proposition 10 if (4-10) holds.

For other values of L ∈ N2, only the values of ϕ1, ϕ2 and p have to be modified. For L ∈ N3, as
mentioned in the Introduction, M is now of dimension 2n, where n is the number of ordered pairs. It is
proved in [Cerpa and Crépeau 2009a] that (compare with (4-11)–(4-14)), by a good choice of order on
{ϕ j
}, one can assume

0< p1 < p2 < · · ·< pn, (4-43)

where p j
:= 2π/ω j. For every t > 0, one has

S(t)M j
⊂ M j and S(t) restricted to M j is the rotation of angle

2π t
p j . (4-44)

From (4-43), (4-44) and Corollary 13, one can get the following corollary (see also [Cerpa and Crépeau
2009a, Proposition 3.3]):

Corollary 14. For every L ∈N3, there exists TL > 0 such that, for every j ∈ {1, 2, . . . , n}, there exists
u j

0 ∈ L∞(0, TL) such that the solution (y1, y2) to equation (4-4) with v(t, z) := u j
0(t) satisfies

y1(TL)= 0 and y2(TL)= ϕ
j
1 . (4-45)

Let us define

ψ
j

1 := ϕ
j
1 , ψ

j
2 := S(q j )ϕ

j
1 , ψ

j
3 := S(2q j )ϕ

j
1 , ψ

j
4 := S(3q j )ϕ

j
1 , (4-46)

where q j
:= p j/4.

Comparing with (4-22)–(4-33), we can find T > TL and closed interval sets {K j
i }, where i ∈ {1, 2, 3, 4}

and j ∈ {1, 2, . . . , n}, such that

K j
i ⊂ [0, T ], (4-47)

{K j
i } are pairwise disjoint. (4-48)

We can also find functions {u j
i } ∈ L∞([0, T ];R), with

u j
i (t) supports on K j

i , (4-49)
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such that when we define the control as u j
i , we get the solution of (4-4) satisfies

y j
i,1(t) supports on K j

i , (4-50)

y j
i,1(T )= 0, (4-51)

y j
i,2(T )= ψ

j
i . (4-52)

Then for z ∈ M1, let α j
i in [0,+∞) be such that

−S(T )z =
∑
i, j

α
j
i ψ

j
i , (4-53)

α
j
1α

j
3 = 0, α

j
2α

j
4 = 0,

∑
i, j

(α
j
i )

2
= 1, (4-54)

where i ∈ {1, 2, 3, 4} and j ∈ {1, 2, . . . , n}. Let us define

v(t, z) :=
∑
i, j

α
j
i u j

i (t). (4-55)

Then the solution of (4-4) with control defined as v(t, z) satisfies

y1(T )= 0, (4-56)

y2(T )=
∑
i, j

(α
j
i )

2ψ
j

i . (4-57)

One can easily verify that condition (4-5) holds when δ > 0 is small enough, and that Lipschitz condition
(4-3) also holds. This completes the construction of v(t, z) and the proof of Proposition 10. �

We are now able to define the periodic time-varying feedback laws uε : R× L2(0, L)→ R, which will
lead to the exponential stabilization of (1-1). For ε > 0, we define uε by

uε|[0,T )×L2
L
(t, y) :=


0 if ‖yM

‖L2
L
= 0,

ε
√
‖yM
‖L2

L
v
(
t, S(−t)yM/‖yM

‖L2
L

)
if 0< ‖yM

‖L2
L
6 1,

εv
(
t, S(−t)yM/‖yM

‖L2
L

)
if ‖yM

‖L2
L
> 1,

(4-58)

with yM
:= PM(y), and

uε(t, y) := uε|[0,T )×L2
L
(t − [t/T ]T, y) ∀t ∈ R, ∀y ∈ L2(0, L). (4-59)

5. Proof of Theorem 1

Let us first point out that Theorem 1 is a consequence of the following two propositions.

Proposition 15. There exist ε1 > 0, r1 > 0 and C1 such that, for every Carathéodory feedback law u
satisfying

|u(t, z)|6 ε1 min
{
1,
√
‖PM(z)‖L2

L

}
∀t ∈ R, ∀z ∈ L2(0, L), (5-1)
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for every s ∈ R and for every maximal solution y of (3-6) defined at time s and satisfying ‖y(s)‖L2
L
< r1,

y is well-defined on [s, s+ T ] and one has

‖PH (y)‖2Bs,s+T
+‖PM(y)‖Bs,s+T 6 C1

(
‖PH (y(s))‖2L2

L
+‖PM(y(s))‖L2

L

)
. (5-2)

Proposition 16. For ρ1 as in Proposition 10, let ρ2 > ρ1. There exists ε0 ∈ (0, 1) such that, for every
ε ∈ (0, ε0), there exists rε > 0 such that, for every solution y to (3-6) on [0, T ], for the feedback law
u := uε defined in (4-58) and (4-59), and satisfying ‖y(0)‖L2

L
< rε, one has

‖PH (y(T ))‖2L2
L
+ε‖PM(y(T ))‖L2

L
6 ρ2‖PH (y(0))‖2L2

L
+ε(1− δε2)‖PM(y(0))‖L2

L
. (5-3)

Indeed, it suffices to choose ρ2 ∈ (ρ1, 1), ε ∈ (0, ε0) and u := uε defined in (4-58) and (4-59). Then,
using the T -periodicity of u with respect to time, Proposition 15 and Proposition 16, one checks that
inequality (1-11) holds with

λ :=min
{
−

ln(ρ2)

2T
,−

ln(1− δε2)

2T

}
provided that C is large enough and that r is small enough. We now prove Propositions 15 and 16
successively.

Proof of Proposition 15. Performing a time translation if necessary, we may assume without loss of
generality that s = 0. The fact that the maximal solution y is at least defined on [0, T ] follows from
Theorem 8 and (5-1). We choose ε1 and r1 small enough so that

r1+ ε1T 1/2 6 η, (5-4)

where η > 0 is as in Lemma 5. From (5-1) and (5-4), we have

‖y(0)‖L2
L
+‖u(t, y(t))‖L2

T
6 η, (5-5)

which allows us to apply Lemma 5 with H(t) :=u(t, y(t)) and H̃ :=0. Then, using (5-1) once more, we get

‖y‖B 6 C3
(
‖y0‖L2

L
+‖u(t, y(t))‖L2

T

)
6 C3

(
r1+ ε1

√
T ‖PM(y)‖C0 L2

L

)
6 C3

(
r1+ ε

2
1T C3+

1
4C3
‖y‖B

)
,

which implies that
‖y‖B 6 2C3(r1+ ε

2
1T C3). (5-6)

In the above inequalities and until the end of the proof of Proposition 16, B := B0,T .
We have the following lemma; see the proof of [Rosier 1997, Proposition 4.1 and (4.14)] or [Perla Men-

zala et al. 2002, page 121].

Lemma 17. If y ∈ L2(0, T ; H 1(0, L)), then yyx ∈ L1(0, T ; L2(0, L)). Moreover, there exists c4 > 0,
which is independent of T, such that, for every T > 0 and for every y, z ∈ L2(0, T ; H 1(0, L)), we have

‖yyx − zzx‖L1
T L2

L
6 c4T 1/4(

‖y‖B+‖z‖B
)
‖y− z‖B. (5-7)
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Let us define C4 := c4T 1/4. To simplify the notation, until the end of this section, we write y1 and y2

for PH (y) and PM(y) respectively. From (5-1), (5-6), Lemma 3, Lemma 17 and Proposition 9, we get

‖y1‖B 6 C2
(
‖yH

0 ‖L2
L
+‖u(t, y1+ y2)‖L2

T
+
∥∥PH

(
(y1+ y2)(y1+ y2)x

)∥∥
L1

T L2
L

)
6 C2

(
‖yH

0 ‖L2
L
+ ε1

∥∥√‖y2‖L2
L

∥∥
L2

T
+
∥∥(y1+ y2)(y1+ y2)x

∥∥
L1

T L2
L

)
6 C2

(
‖yH

0 ‖L2
L
+ ε1‖y2‖

1/2
L1

T L2
L
+C4‖y1+ y2‖

2
L2

T H1
L

)
(5-8)

and
‖y2‖B 6 C2

(
‖yM

0 ‖L2
L
+
∥∥PM

(
(y1+ y2)(y1+ y2)x

)∥∥
L1

T L2
L

)
6 C2

(
‖yM

0 ‖L2
L
+
∥∥(y1+ y2)(y1+ y2)x

∥∥
L1

T L2
L

)
6 C2

(
‖yM

0 ‖L2
L
+C4‖y1+ y2‖

2
L2

T H1
L

)
6 2C2

(
‖yM

0 ‖L2
L
+C4‖y1‖

2
B+C4‖y2‖

2
B
)
. (5-9)

Since M is a finite-dimensional subspace of H 1(0, L), there exists C5 > 0 such that

‖ f ‖H1(0,L) 6 C5‖ f ‖L2
L

for every f ∈ M. (5-10)
Hence

‖y2‖B = ‖y2‖L∞T L2
L
+‖y2‖L2

T H1
L
6 ‖y2‖L∞T L2

L
+C5
√

T ‖y2‖L∞T L2
L
. (5-11)

Since y2(t) is the L2-orthogonal projection on M of y(t), we have

‖y2‖L∞T L2
L
6 ‖y‖L∞T L2

L
6 ‖y‖B,

which, together with (5-6) and (5-11), implies

‖y2‖B 6 (1+C5
√

T )‖y‖B 6 2(1+C5
√

T )C3(r1+ ε
2
1T C3). (5-12)

Decreasing if necessary r1 and ε1, we may assume

4C2C4(1+C5
√

T )C3(r1+ ε
2
1T C3) <

1
2 . (5-13)

From estimation (5-9) and condition (5-13), we get

‖y2‖B 6 4C2
(
‖yM

0 ‖L2
L
+C4‖y1‖

2
B
)
. (5-14)

From (5-6), (5-8), (5-12) and (5-14), we deduce that

‖y1‖
2
B6 3C2

2
(
‖yH

0 ‖
2
L2

L
+ε2

1‖y2‖L1
T L2

L
+C2

4‖y1+y2‖
4
L2

T H1
L

)
6 3C2

2
(
‖yH

0 ‖
2
L2

L
+ε2

1T ‖y2‖L∞T L2
L
+2C2

4‖y‖
2
B
(
‖y1‖

2
B+‖y2‖

2
B
))

6 3C2
2‖y

H
0 ‖

2
L2

L
+3C2

2
(
ε2

1T+16C2
4(1+C5

√
T )C3

3(r1+ε
2
1T C3)

3)
‖y2‖B

+24C2
2C2

4C2
3(r1+ε

2
1T C3)

2
‖y1‖

2
B

6 3C2
2‖y

H
0 ‖

2
L2

L
+12C3

2
(
ε2

1T+16C2
4(1+C5

√
T )C3

3(r1+ε
2
1T C3)

3)
‖yM

0 ‖L2
L

+

(
12C3

2C4
(
ε2

1T+16C2
4(1+C5

√
T )C3

3(r1+ε
2
1T C3)

3)
+24C2

2C2
4C2

3(r1+ε
2
1T C3)

2
)
‖y1‖

2
B. (5-15)
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Again, decreasing if necessary r1 and ε1, we may assume

12C3
2C4

(
ε2

1T + 16C2
4(1+C5

√
T )C3

3(r1+ ε
2
1T C3)

3)
+ 24C2

2C2
4C2

3(r1+ ε
2
1T C3)

2 < 1
2 . (5-16)

From (5-15) and (5-16), we get

‖y1‖
2
B 6 6C2

2‖y
H
0 ‖

2
L2

L
+ 24C3

2
(
ε2

1T + 16C2
4(1+C5

√
T )C3

3(r1+ ε
2
1T C3)

3)
‖yM

0 ‖L2
L

6 6C2
2‖y

H
0 ‖

2
L2

L
+C−1

4 ‖y
M
0 ‖L2

L
,

which, combined with (5-14), gives the existence of C1 > 0 independent of y such that

‖y1‖
2
B+‖y2‖B 6 C1

(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)
. (5-17)

This completes the proof of Proposition 15. �

Proof of Proposition 16. To simplify the notation, from now on we denote by C various constants which
vary from place to place but do not depend on ε and r .

By Lemma 3 applied with y := y1(t)− S(t)yH
0 , h(t) := uε(t, y(t)) and h̃ := (y1+ y2)(y1+ y2)x and

by Proposition 15, we have

‖y1(t)− S(t)yH
0 ‖B 6 C

(
‖uε‖L2

T
+
∥∥PH ((y1+ y2)(y1+ y2)x)

∥∥
L1

T L2
L

)
6 C

(
ε‖y2‖

1/2
L1

T L2
L
+‖y1+ y2‖

2
B
)

6 C
(
ε‖y2‖

1/2
B +‖y1‖

2
B+‖y2‖

2
B
)

6 C(ε+
√

r)
(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)1/2
, (5-18)

where r := ‖y0‖L2
L
< rε < 1. On rε, we impose that

rε < ε12. (5-19)

From (5-18) and (5-19), we have

‖y1(t)− S(t)yH
0 ‖B 6 Cε

(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)1/2
. (5-20)

Notice that, by Lemma 3, we have

‖S(t)yM
0 ‖B 6 C‖yM

0 ‖L2
L
, (5-21)

‖S(t)yH
0 ‖B 6 C‖yH

0 ‖L2
L
. (5-22)

Proceeding as in the proof of (5-20), we have

‖y2(t)− S(t)yM
0 ‖B 6 C

∥∥PM((y1+ y2)(y1+ y2)x)
∥∥

L1
T L2

L

6 C‖y1+ y2‖
2
B

6 C
(
‖y2‖B+‖S(t)yH

0 ‖B+ ε
(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)1/2)2

6 C
(
(r + ε2)

(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)
+‖yH

0 ‖
2
L2

L

)
6 C

(
ε2
‖yM

0 ‖L2
L
+‖yH

0 ‖
2
L2

L

)
. (5-23)
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Let us now study successively the two cases

‖yH
0 ‖L2

L
> ε2/3

√
‖yM

0 ‖L2
L
, (5-24)

‖yH
0 ‖L2

L
< ε2/3

√
‖yM

0 ‖L2
L
. (5-25)

We start with the case where (5-24) holds. From (P1), (P2), (5-20), (5-23) and (5-24), we get the
existence of ε2 ∈ (0, ε1) such that, for every ε ∈ (0, ε2),

‖y1(T )‖2L2
L
+ε‖y2(T )‖L2

L

6
(
Cε
(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)1/2
+‖S(T )yH

0 ‖L2
L

)2
+ ε

(
C
(
ε2
‖yM

0 ‖L2
L
+‖yH

0 ‖
2
L2

L

)
+‖S(T )yM

0 ‖L2
L

)
6 (ρ1ρ2)

1/2
‖yH

0 ‖
2
L2

L
+Cε2(

‖yH
0 ‖

2
L2

L
+‖yM

0 ‖L2
L

)
+Cε‖yH

0 ‖
2
L2

L
+ (ε+Cε3)‖yM

0 ‖L2
L

6 ρ2‖yH
0 ‖

2
L2

L
+ε(1− δε2)‖yM

0 ‖L2
L
. (5-26)

Let us now study the case where (5-25) holds. Let us define

b := yM
0 . (5-27)

Then, from (5-20), (5-22), (5-23) and (5-25), we get

‖y1(t)‖B6 ‖S(t)yH
0 ‖B+Cε

(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)1/2
6Cε

√
‖b‖L2

L
+C‖yH

0 ‖L2
L
6Cε2/3

√
‖b‖L2

L
(5-28)

and
‖y2(t)− S(t)yM

0 ‖B 6 ε
4/3
‖b‖L2

L
, (5-29)

which shows that y2( · ) is close to S( · )yM
0 . Let z : [0, T ] → L2(0, L) be the solution to the Cauchy

problem 
z1t + z1xxx + z1x = 0 in (0, T )× (0, L),
z1(t, 0)= z1(t, L)= 0 on (0, T ),
z1x(t, L)= v(t, b/‖b‖L2

L
) on (0, T ),

z1(0, x)= 0 on (0, L).

(5-30)

From (P3), we know that z1(T )= 0. Moreover, Lemma 3 tells us that

‖z1(t)‖B 6 C
∥∥∥∥v(t,

b
‖b‖L2

L

)∥∥∥∥
L2

T

6 C. (5-31)

Let us define w1 by
w1 := y1− S(t)yH

0 − ε‖b‖
1/2
L2

L
z1. (5-32)

Then w1 is the solution to the Cauchy problem
w1t +w1xxx +w1x + PH

(
(y1+ y2)(y1+ y2)x

)
= 0,

w1(t, 0)= w1(t, L)= 0,
w1x(t, L)= ε

(
‖y2(t)‖

1/2
L2

L
v
(
t, S(−t)y2(t)/‖y2(t)‖L2

L

)
−‖b‖1/2

L2
L
v(t, b/‖b‖L2

L
)
)
,

w1(0, x)= 0.

(5-33)
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By Lemma 3, we get

‖w1‖B 6 C
∥∥PH

(
(y1+ y2)(y1+ y2)x

)∥∥
L1

T L2
L

+εC
∥∥∥∥(‖y2(t)‖

1/2
L2

L
v

(
t,

S(−t)y2(t)
‖y2(t)‖L2

L

)
−‖b‖1/2

L2
L
v

(
t,

b
‖b‖L2

L

))∥∥∥∥
L2

T

. (5-34)

Note that (5-29) ensures that the right-hand side of (5-34) is of order ε2. Indeed, for the first term of the
right-hand side of inequality (5-34), we have, using (5-19), (5-28) and (5-29),

C
∥∥PH

(
(y1+ y2)(y1+ y2)x

)∥∥
L1

T L2
L
6 C‖y1+ y2‖

2
B

6 Cε4/3
‖b‖L2

L
+C‖b‖L2

L
6 C‖b‖1/2

L2
L
‖b‖1/2

L2
L
6 Cε6

‖b‖1/2
L2

L
. (5-35)

For the second term of the right-hand side of inequality (5-34), by (4-14), the Lipschitz condition (4-3)
on v and (5-29), we get, for every t ∈ [0, T ],∣∣∣∣‖b‖1/2L2

L

(
v

(
t,

b
‖b‖L2

L

)
− v

(
t,

S(−t)y2(t)
‖y2(t)‖L2

L

))∣∣∣∣
6 C‖b‖1/2

L2
L

∥∥∥∥( b
‖b‖L2

L

−
S(−t)y2(t)
‖y2(t)‖L2

L

)∥∥∥∥
L2

L

6 C‖b‖−1/2
L2

L
‖y2(t)‖−1

L2
L

(
‖y2(t)‖L2

L
‖b− S(−t)y2(t)‖L2

L
+‖S(−t)y2(t)‖L2

L

∣∣‖y2(t)‖L2
L
−‖b‖L2

L

∣∣)
6 Cε4/3

‖b‖1/2
L2

L
(5-36)

and ∣∣∣∣(‖y2(t)‖
1/2
L2

L
−‖b‖1/2

L2
L

)
v

(
t,

S(−t)y2(t)
‖y2(t)‖L2

L

)∣∣∣∣6 Cε4/3
‖b‖1/2

L2
L
. (5-37)

Combining (5-35)–(5-37), we obtain the following estimate on w1:

‖w1‖B 6 Cε2
‖b‖1/2

L2
L
. (5-38)

We fix

ρ3 ∈ (ρ1, ρ2). (5-39)

Then, by (5-32), (P1) and the fact that z1(T )= 0, we get

‖y1(T )‖2L2
L
6 ρ3‖yH

0 ‖
2
L2

L
+Cε4

‖b‖L2
L
. (5-40)

We then come to the estimate of y2. Let τ1(t) := S(t)yH
0 and let τ2 : [0, T ] → L2(0, L) and z2 :

[0, T ] → L2(0, L) be the solutions to the Cauchy problems
τ2t + τ2xxx + τ2x + PM(τ1 y1x + τ1x y1)− PM(τ1τ1x)= 0,
τ2(t, 0)= τ2(t, L)= 0,
τ2x(t, L)= 0,
τ2(0, x)= 0

(5-41)
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and 
z2t + z2xxx + z2x + PM(z1z1x)= 0,
z2(t, 0)= z2(t, L)= 0,
z2x(t, L)= 0,
z2(0, x)= 0.

(5-42)

Lemmas 3 and 17, (5-25) and (5-28) show us that

‖τ2‖B 6 C
∥∥PM

(
τ1 y1x + τ1x y1− τ1τ1x

)∥∥
L1

T L2
L

6 C‖τ1‖B
(
‖y1‖B+‖τ1‖B

)
6 Cε2/3

‖b‖1/2
L2

L
‖yH

0 ‖L2
L

(5-43)

and

‖z2‖B 6 ‖z1‖
2
B 6 C. (5-44)

From (P3), (5-30) and (5-42), we get

〈z2(T ), S(T )b〉(L2
L ,L

2
L )
< −2δ‖b‖L2

L
. (5-45)

Hence∥∥S(T )b+ ε2
‖b‖L2

L
z2(T )

∥∥
L2

L
=
(〈

S(T )b+ ε2
‖b‖L2

L
z2(T ), S(T )b+ ε2

‖b‖L2
L
z2(T )

〉
(L2

L ,L
2
L )

)1/2

6
(
‖b‖2L2

L
+ ε4
‖b‖2L2

L
C − 4δε2

‖b‖2L2
L

)1/2

6 ‖b‖L2
L
(1− 2δε2

+Cε4). (5-46)

Let us define w2 : [0, T ] → L2(0, L) by

w2 := y2− τ2− ε
2
‖b‖L2

L
z2− S(t)b. (5-47)

Then, from (3-15), (5-41) and (5-42), we get that

w2t = y2t−τ2t−ε
2
‖b‖L2

L
z2t−(S(t)b)t

=−w2x−w2xxx−PM((y1+y2)(y1+y2)x)+PM(τ1 y1x+τ1x y1)−PM(τ1τ1x)+ε
2
‖b‖L2

L
PM(z1z1x)

=−w2x−w2xxx−ε‖b‖
1/2
L2

L
PM(w1z1x+w1x z1)−PM(w1w1x)−PM(y1 y2x+y2 y1x+y2 y2x).

Hence, w2 is the solution to the Cauchy problem
w2t+w2xxx+w2x+ε‖b‖

1/2
L2

L
PM(w1z1x+w1x z1)+PM(w1w1x)+PM(y1 y2x+y2 y1x+y2 y2x)= 0,

w2(t,0)=w2(t, L)= 0,
w2x(t, L)= 0,
w2(0, x)= 0.

(5-48)
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From Lemmas 3 and 17, Proposition 15, (5-19), (5-25) and (5-38), we get

‖w2‖B 6 Cε‖b‖1/2
L2

L

∥∥PM(w1z1x +w1x z1)
∥∥

L1
T L2

L
+C‖PM(w1w1x)‖L1

T L2
L

+C
∥∥PM(y1 y2x + y2 y1x + y2 y2x)

∥∥
L1

T L2
L

6 Cε‖b‖1/2
L2

L
ε2
‖b‖1/2

L2
L
+Cε4

‖b‖L2
L
+C

(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)3/2

6 Cε3
‖b‖L2

L
. (5-49)

We can now estimate y2(T ) from (5-43), (5-46), (5-47) and (5-49):

‖y2(T )‖L2
L
=
∥∥w2(T )+ τ2(T )+ ε2

‖b‖L2
L
z2(T )+ S(T )b

∥∥
L2

L

6 ‖b‖L2
L

(
Cε3
+ 1− 2δε2

+Cε4)
+Cε2/3

‖b‖1/2
L2

L
‖yH

0 ‖L2
L
. (5-50)

Combining (5-27), (5-39), (5-40) and (5-50), we get the existence of ε3 > 0 such that, for every ε ∈ (0, ε3],

‖y1(T )‖2L2
L
+ε‖y2(T )‖L2

L

6 ρ3‖yH
0 ‖

2
L2

L
+Cε4

‖b‖L2
L
+ ε

(
‖b‖L2

L

(
Cε3
+ 1− 2δε2

+Cε4)
+Cε2/3

‖b‖1/2
L2

L
‖yH

0 ‖L2
L

)
6 ρ2‖yH

0 ‖
2
L2

L
+ε(1− δε2)‖yM

0 ‖L2
L
. (5-51)

This concludes the proof of Proposition 16. �

Appendix A: Proof of Proposition 9

Proof of Proposition 9. It is clear that, if (y1, y2) is a solution to (3-15), then y is solution to (3-7). Let us
assume that y is a solution to the Cauchy problem (3-7). Then, by Definition 4, for every τ ∈ [s, T ] and
for every φ ∈ C3([s, τ ]× [0, L]) satisfying

φ(t, 0)= φ(t, L)= φx(t, 0)= 0 ∀t ∈ [s, τ ], (A-1)

we have

−

∫ τ

s

∫ L

0
(φt +φx +φxxx)y dx dt −

∫ τ

s
u(t, y(t, · ))φx(t, L) dt +

∫ τ

s

∫ L

0
φyyx dx dt

+

∫ L

0
y(τ, x)φ(τ, x) dx −

∫ L

0
y0φ(s, x) dx = 0. (A-2)

Let us denote by φ1 and φ2 the projections of φ on H and M respectively: φ1 := PH (φ), φ2 := PM(φ).
Because M is spanned by ϕ j

1 and ϕ j
2 , j ∈ {1, . . . , n}, which are of class C∞ and satisfy

ϕ
j
1 (0)= ϕ

j
1 (L)= ϕ

j
1x(0)= ϕ

j
1x(L)= 0,

ϕ
j
2 (0)= ϕ

j
2 (L)= ϕ

j
2x(0)= ϕ

j
2x(L)= 0,

the functions φ1, φ2 ∈ C3([s, τ ]× [0, L]) and satisfy

φ1(t, 0)= φ1(t, L)= φ1x(t, 0)= 0 ∀t ∈ [s, τ ], (A-3)

φ2(t, 0)= φ2(t, L)= φ2x(t, 0)= φ2x(t, L)= 0 ∀t ∈ [s, τ ]. (A-4)
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Using (A-2) for φ = φ2 in (A-2) together with (A-4), we get

−

∫ τ

s

∫ L

0
(φ2t +φ2x +φ2xxx)y dx dt +

∫ τ

s

∫ L

0
φ2 yyx dx dt

+

∫ L

0
y(τ, x)φ2(τ, x) dx −

∫ L

0
y0φ2(s, x) dx = 0, (A-5)

which, combined with the fact that φ2t +φ2x +φ2xxx ∈ M, gives

−

∫ τ

s

∫ L

0
(φ2t +φ2x +φ2xxx)y2 dx dt +

∫ τ

s

∫ L

0
φ2 PM(yyx) dx dt

+

∫ L

0
y2(τ, x)φ2(τ, x) dx −

∫ L

0
PM(y0)φ2(s, x) dx = 0. (A-6)

Simple integrations by parts show that φ1x +φ1xxx ∈ M⊥ = H. Since, φ1 and φ1t are also in H, we get
from (A-6) that

−

∫ τ

s

∫ L

0
(φt +φx +φxxx)y2 dx dt +

∫ τ

s

∫ L

0
φPM(yyx) dx dt

+

∫ L

0
y2(τ, x)φ(τ, x) dx −

∫ L

0
PM(y0)φ(s, x) dx = 0, (A-7)

which is exactly the definition of a solution of the y2-part of the linear KdV system (3-15). We then
combine (A-2) and (A-7) to get

−

∫ τ

s

∫ L

0
(φt +φx +φxxx)y1 dx dt −

∫ τ

s
u(t, y(t, · ))φx(t, L) dt +

∫ τ

s

∫ L

0
φPH (yyx) dx dt

+

∫ L

0
y1(τ, x)φ(τ, x) dx −

∫ L

0
PH (y0)φ(0, x) dx = 0, (A-8)

and we get the definition of a solution to the y1-part of the linear KdV system (3-15). This concludes the
proof of Proposition 9. �

Appendix B: Proofs of Theorems 7 and 8

Our strategy to prove Theorem 7 is to prove first the existence of a solution for small times and then to
use some a priori estimates to control the L2

L -norm of the solution with which we can extend the solution
to a longer time, and to continue until the solution blows up. We start by proving the following lemma.

Lemma 18. Let C2 > 0 be as in Lemma 3 for T2− T1 = 1. Assume that u is a Carathéodory function and
that, for every R > 0, there exists K (R) > 0 such that(

‖y‖L2
L
6 R and ‖z‖L2

L
6 R

)
=⇒

(
|u(t, y)− u(t, z)|6 K (R)‖y− z‖L2

L
∀t ∈ R

)
. (B-1)

Then, for every R ∈ (0,+∞), there exists a time T (R) > 0 such that, for every s ∈ R and for every
y0∈ L2(0, L) with ‖y0‖L2

L
6 R, the Cauchy problem (3-7) has one and only one solution y on [s, s+T (R)].

Moreover, this solution satisfies
‖y‖Bs,s+T (R) 6 CR := 3C2 R. (B-2)
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Proof of Lemma 18. Let us first point out that it follows from our choice of C2 and Lemma 3 that, for
every −∞ < T1 < T2 < +∞ such that T2− T1 6 1, for every solution y of problem (2-1), estimation
(2-12) holds.

Let y0 ∈ L2(0, L) be such that

‖y0‖L2
L
6 R. (B-3)

Let us define B1 by

B1 := {y ∈ Bs,s+T (R) : ‖y‖Bs,s+T (R) 6 CR}.

The set B1 is a closed subset of Bs,s+T (R). For every y ∈ B1, we define 9(y) as the solution of (2-1) with
h̃ := −yyx , h(t) := u(t, y(t, · )) and y0 := y0. Let us prove that, for T (R) small enough, the smallness
being independent of y0 provided that it satisfies (B-3), we have

9(B1)⊂ B1. (B-4)

Indeed for y ∈ B1, by Lemmas 3 and 17, we have, if T (R)6 1,

‖9(y)‖B 6 C2
(
‖y0‖L2

L
+‖h‖L2

T
+‖h̃‖L1(0,T ;L2(0,L))

)
6 C2

(
‖y0‖L2

L
+‖u(t, y(t, · ))‖L2

T
+‖−yyx‖L1(s,s+T (R);L2(0,L))

)
6 C2

(
R+CB(CR)T (R)1/2+ c4T (R)1/4‖y‖2B

)
. (B-5)

In (B-5) and until the end of the proof of Lemma 18, for ease of notation, we simply write ‖·‖B for
‖·‖Bs,s+T (R) . From (B-5), we get that, if

T (R)6min
{(

R
CB(CR)

)2

,

(
1

9c4C2
2 R

)4

, 1
}
, (B-6)

then (B-4) holds. From now on, we assume that (B-6) holds.
Note that every y ∈ B1 such that 9(y)= y is a solution of (3-7). In order to use the Banach fixed point

theorem, it remains to estimate ‖9(y)−9(z)‖B. We know that 9(y)−9(z) is the solution of equation
(2-1) with T1 := s, T2 = s + T (R), h̃ := −yyx + zzx , h(t) := u(t, y(t, · ))− u(t, z(t, · )) and y0 := 0.
Hence, from Lemmas 3 and 17 and (B-1), we get

‖9(y)−9(z)‖B 6 C2
(
‖y0‖L2

L
+‖h‖L2

T
+‖h̃‖L1(0,T ;L2(0,L))

)
6 C2

(
0+ T (R)1/2K (CR)‖y− z‖B+ c4T (R)1/4‖y− z‖B

(
‖y‖B+‖z‖B

))
6 C2‖y− z‖B

(
T (R)1/2K (CR)+ 2c4T (R)1/4CR

)
,

which shows that, if

T (R)6min
{(

1
12c4C2

2 R

)4

,

(
1

4C2K (3C2 R)

)2}
, (B-7)

then,

‖9(y)−9(z)‖B 6 3
4‖y− z‖B.
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Hence, by the Banach fixed point theorem, there exists y ∈B1 such that 9(y)= y, which is the solution
that we are looking for. We define T (R) as

T (R) :=min
{(

R
CB(3C2 R)

)2

,

(
1

12c4C2
2 R

)4

,

(
1

4C2K (3C2 R)

)2

, 1
}
. (B-8)

It only remains to prove the uniqueness of the solution to the Cauchy problem (3-7) (the above proof
gives only the uniqueness in the set B1). Clearly it suffices to prove that two solutions to (3-6) which are
equal at a time τ are equal in a neighborhood of τ in [τ,+∞). This property follows from the above
proof and from the fact that, for every solution y : [τ, τ1] → L2(0, L) of (3-7), if T > 0 is small enough
(the smallness depending on y),

‖y‖Bτ,τ+T 6 3C2‖y(τ )‖L2
L
. (B-9)

This concludes the proof of Lemma 18. �

Proceeding similarly to the proof of Lemma 18, one can get the following lemma concerning the
Cauchy problem (2-13).

Lemma 19. Let C2 > 0 be as in Lemma 3 for T2− T1 = 1. Given R,M > 0, there exists T (R,M) > 0
such that, for every s ∈ R, for every y0 ∈ L2(0, L) with ‖y0‖L2

L
6 R, and for every measurable H :

(s, s+ T (R,M))→ R such that |H(t)|6 M for every t ∈ (s, s+ T (R,M)), the Cauchy problem
yt + yxxx + yx + yyx = 0 in (s, s+ T (R,M))× (0, L),

y(t, 0)= y(t, L)= 0 on (s, s+ T (R,M)),

yx(t, L)= H(t) on (s, s+ T (R,M)),

y(s, x)= y0(x) on (0, L)

(B-10)

has one and only one solution y on [s, s+ T (R,M)]. Moreover, this solution satisfies

‖y‖Bs,s+T (R,M) 6 3C2 R. (B-11)

We are now in position to prove Theorem 7.

Proof of Theorem 7. The uniqueness follows from the proof of the uniqueness part of Lemma 18. Let
us give the proof of the existence. Let y0 ∈ L2(0, L), let s ∈ R and let T0 := T (‖y0‖L2

L
). By Lemma 18,

there exists a solution y ∈ Bs,s+T0 to the Cauchy problem (3-7). Hence, together with the uniqueness
of the solution, we can find a maximal solution y : D(y)→ L2(0, L) with [s, s + T0] ⊂ D(y). By the
maximality of the solution y and Lemma 18, there exists τ ∈ [s+ T0,+∞) such that D(y)= [s, τ ). Let
us assume that τ <+∞ and that (3-12) does not hold. Then there exist an increasing sequence (tn)n∈N

of real numbers in (s, τ ) and R ∈ (0,+∞) such that

lim
n→+∞

tn = τ, (B-12)

‖y(tn)‖L2
L
≤ R ∀n ∈ N. (B-13)
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By (B-12), there exists n0 ∈ N such that

tn0 ≥ τ −
1
2 T (R). (B-14)

From Lemma 18, there is a solution z : [tn0, tn0 + T (R)] → L2(0, L) of (3-7) for the initial time s := tn0

and the initial data z(tn0) := y(tn0). Let us then define ỹ : [s, tn0 + T (R)] → L2(0, L) by

ỹ(t) := y(t) ∀t ∈ [s, tn0], (B-15)

ỹ(t) := z(t) ∀t ∈ [tn0, tn0 + T (R)]. (B-16)

Then ỹ is also a solution to the Cauchy problem (3-7). By the uniqueness of this solution, we have y = ỹ
on D(y)∩D(ỹ). However, from (B-14), we have that D(y)$ D(ỹ), in contradiction with the maximality
of y.

Finally, we prove that, if C(R) satisfies (3-13), then, for the maximal solution y to (3-7), we have
D(y)= [s,+∞). We argue by contradiction and therefore assume that the maximal solution y is such
that D(y)= [s, τ ) with τ <+∞. Then (3-12) holds. Let us estimate ‖y(t)‖L2

L
when t tends to τ−. We

define the energy E : [s, τ )→ [0,+∞) by

E(t) :=
∫ L

0
|y(t, x)|2 dx . (B-17)

Then E ∈ C0([s, τ )) and, in the distribution sense, it satisfies

d E
dt
6 |u(t, y(t, · ))|2 6 C2

B(
√

E). (B-18)

(We get such an estimate first in the classical sense for regular initial data and regular boundary conditions
yx(t, L)= ϕ(t) with the related compatibility conditions; the general case then follows from this special
case by smoothing the initial data and the boundary conditions, by passing to the limit, and by using the
uniqueness of the solution.) From (3-12) and (B-18), we get

1
2

∫
+∞

0

1

C2
B(
√

E)
d E <+∞. (B-19)

However the left-hand side of (B-19) is equal to the left-hand side of (3-13). Hence (3-13) and (B-19) are
in contradiction. This completes the proof of Theorem 7. �

The proof of Theorem 8 is more difficult. For this proof, we adapt a strategy introduced by Carathéodory
to solve ordinary differential equations ẏ = f (t, y) when f is not smooth. Roughly speaking it consists
in solving ẏ = f (t, y(t − h)), where h is a positive time-delay, and then letting h tend to 0. Here we do
not put the time-delay on y (it does not seem to be possible) but only on the feedback law: u(t, y(t)) is
replaced by u(t, y(t − h)).

Proof of Theorem 8. Let us define H : [0,+∞)→ [0,+∞) by

H(a) :=
∫ a

0

1

(CB(
√

E))2
d E = 2

∫ √a

0

R

(CB(R))2
d R. (B-20)
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From (3-13), we know that H is a bijection from [0,+∞) into [0,+∞). We denote by H−1
: [0,+∞)→

[0,+∞) the inverse of this map.
For a given y0 ∈ L2(0, L) and s ∈ R, let us prove that there exists a solution y defined on [s,+∞) to

the Cauchy problem (3-7), which also satisfies

‖y(t)‖2L2(0,L) 6 H−1(H(‖y(s)‖2L2
L
)+ (t − s)

)
<+∞ ∀t ∈ [s,+∞). (B-21)

Let n ∈ N∗. Let us consider the Cauchy system on [s, s+ 1/n]
yt + yxxx + yx + yyx = 0 in (s, s+ (1/n))× (0, L),
y(t, 0)= y(t, L)= 0 on (s, s+ (1/n)),
yx(t, L)= u(t, y0) on (s, s+ (1/n)),
y(s, x)= y0(x) on (0, L).

(B-22)

By Theorem 7 applied with the feedback law (t, y) 7→ u(t, y0) (a measurable bounded feedback law
which now does not depend on y and therefore satisfies (3-11)), the Cauchy problem (B-22) has one and
only one solution y. Let us now consider the Cauchy problem on [s+ (1/n), s+ (2/n)]

yt + yxxx + yx + yyx = 0 in (s+ (1/n), s+ (2/n))× (0, L),
y(t, 0)= y(t, L)= 0 on (s+ (1/n), s+ (2/n)),
yx(t, L)= u(t, y(t − (1/n))) on (s+ (1/n), s+ (2/n)),
y(s, x)= y0(x) on (0, L).

(B-23)

As for (B-22), this Cauchy problem has one and only one solution, which we still denote by y. We
keep going and, by induction on the integer i , define y ∈ C0([s,+∞); L2(0, L)) so that, on [s+ (i/n),
s+ ((i + 1)/n)], i ∈ N \ {0}, we have y is the solution to the Cauchy problem

yt + yxxx + yx + yyx = 0 in (s+ (i/n), s+ ((i + 1)/n))× (0, L),
y(t, 0)= y(t, L)= 0 on (s+ (i/n), s+ ((i + 1)/n)),
yx(t, L)= u(t, y(t − (1/n))) on (s+ (i/n), s+ ((i + 1)/n)),
y(s+ (i/n))= y(s+ (i/n)− 0) on (0, L),

(B-24)

where, in the last equation, we mean that the initial value, i.e., the value at time (s+ (i/n)), is the value
at time (s+ (i/n)) of the y defined previously on [(s+ ((i − 1)/n)), s+ (i/n)].

Again, we let, for t ∈ [s,+∞),

E(t) :=
∫ L

0
|y(t, x)|2 dx . (B-25)

Then E ∈ C0([s,+∞)) and, in the distribution sense, it satisfies (compare with (B-18))

d E
dt
6 |u(t, y0)|

2 6 C2
B(
√

E(s)), t ∈ (s, s+ (1/n)), (B-26)

d E
dt
6 |u(t, y(t − (1/n))|2 6 C2

B(
√

E(t − (1/n))), t ∈
(
s+ (i/n), s+ ((i + 1)/n)

)
, i > 0. (B-27)
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Let ϕ : [0,+∞)→ [0,+∞) be the solution of

dϕ
dt
= C2

B
(√
ϕ(t)

)
, ϕ(s)= E(s). (B-28)

Using (B-26)–(B-28) and simple comparison arguments, one gets

E(t)6 ϕ(t) ∀t ∈ [s,+∞), (B-29)

that is,

E(t)6 H−1(H(E(s))+ (t − s)
)
∀t ∈ [s,+∞). (B-30)

We now want to let n→+∞. In order to show the dependence on n, we write yn instead of y. In
particular (B-30) becomes

‖yn(t)‖2L2(0,L) 6 H−1(H(‖y0(s)‖2L2
L
)+ (t − s)

)
∀t ∈ [s,+∞). (B-31)

From Lemma 19, (B-31) and the construction of yn, we get that, for every T > s, there exists M(T ) > 0
such that

‖yn
‖Bs,T 6 M(T ) ∀n ∈ N. (B-32)

Hence, upon extracting a subsequence of (yn)n , which we still denote by (yn)n , there exists

y ∈ L∞loc
(
[s,+∞); L2(0, L)

)
∩ L2

loc
(
[s,+∞); H 1(0, L)

)
(B-33)

such that, for every T > s,

yn ⇀ y in L∞(s, T ; L2(0, L)) weak ∗ as n→+∞, (B-34)

yn ⇀ y in L2(s, T ; H 1(0, L)) weak as n→+∞. (B-35)

Let us define zn
: [s, s+∞)× (0, L)→ R and γ n

: [s,+∞)→ R by

zn(t) := y0 ∀t ∈ [s, s+ (1/n)], (B-36)

zn(t) := yn(t − (1/n)) ∀t ∈ (s+ (1/n),+∞), (B-37)

γ n(t) := u(t, zn) ∀t ∈ [s,+∞). (B-38)

Note that yn is the solution to the Cauchy problem
yn

t + yn
xxx + yn

x + yn yn
x = 0 in (s,+∞)× (0, L),

yn(t, 0)= yn(t, L)= 0 on (s,+∞),
yn

x (t, L)= γ n(t) on (s,+∞),
yn(s, x)= y0(x) on (0, L).

(B-39)

From (B-32) and the first line of (B-39), we get that

∀T > 0,
(

d
dt

yn
)

n∈N

is bounded in L2(s, s+ T ; H−2(0, L)). (B-40)
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From (B-34), (B-35), (B-40) and the Aubin-Lions lemma [Aubin 1963], we get

yn
→ y in L2(s, T ; L2(0, L)) as n→+∞ ∀T > s. (B-41)

From (B-41) we know that, upon extracting a subsequence if necessary, still denoted by (yn)n ,

lim
n→+∞

‖yn(t)− y(t)‖L2
L
= 0 for almost every t ∈ (s,+∞). (B-42)

Letting n→+∞ in inequality (B-30) for yn and using (B-42), we get

‖y(t)‖2L2(0,L) 6 H−1(H(‖y0‖
2
L2

L
)+ (t − s)

)
for almost every t ∈ (0,+∞). (B-43)

Note that, for every T > s,

‖zn
−y‖L2((s,T );L2

L )
≤ (1/

√
n)‖y0‖L2

L
+
∥∥yn( · −(1/n))−y( · −(1/n))

∥∥
L2(s+(1/n),T ;L2(0,L))

+
∥∥y( · −(1/n))−y( · )

∥∥
L2(s+(1/n),T ;L2(0,L))+‖y‖L2(s,s+(1/n);L2(0,L))

≤ (1/
√

n)‖y0‖L2
L
+‖yn

−y‖L2(s,T ;L2(0,L))

+
∥∥y( · −(1/n))−y( · )

∥∥
L2(s+(1/n),T ;L2(0,L))+‖y( · )‖L2(s,s+(1/n);L2(0,L)). (B-44)

From (B-36), (B-37), (B-41) and (B-44), we get

zn
→ y in L2(s, T ; L2(0, L)) as n→+∞ ∀T > s. (B-45)

Extracting, if necessary, from the sequence (zn)n a subsequence, still denoted by (zn)n , and using (B-45),
we have

lim
n→+∞

‖zn(t)− y(t)‖L2
L
= 0 for almost every t ∈ (s,+∞). (B-46)

From (3-1)–(3-3), (B-32), (B-36), (B-37) and (B-46), extracting a subsequence from the sequence (γ n)n

if necessary, still denoted by (γ n)n , we may assume that

γ n ⇀γ(t) := u(t, y(t)) in L∞(s, T ) weak ∗ as n→+∞ ∀T > s. (B-47)

Let us now check that

y is a solution to the Cauchy problem (3-7). (B-48)

Let τ ∈ [s,+∞) and let φ ∈ C3([s, τ ]× [0, L]) be such that

φ(t, 0)= φ(t, L)= φx(t, 0)= 0 ∀t ∈ [T1, τ ]. (B-49)

From (B-39), one has, for every n ∈ N,

−

∫ τ

T1

∫ L

0
(φt +φx +φxxx)yn dx dt −

∫ τ

T1

γ nφx(t, L) dt +
∫ τ

T1

∫ L

0
φyn yn

x dx dt

+

∫ L

0
y(τ, x)φ(τ, x) dx −

∫ L

0
y0φ(s, x) dx = 0. (B-50)
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Let τ be such that

lim
n→+∞

‖yn(τ )− y(τ )‖L2
L
= 0. (B-51)

Let us recall that, by (B-42), (B-51) holds for almost every τ ∈ [s,+∞). Using (B-35), (B-41), (B-47),
(B-51) and letting n→+∞ in (B-50), we get

−

∫ τ

T1

∫ L

0
(φt +φx +φxxx)y dx dt −

∫ τ

T1

u(t, y(t))φx(t, L) dt +
∫ τ

T1

∫ L

0
φyyx dx dt

+

∫ L

0
y(τ, x)φ(τ, x) dx −

∫ L

0
y0φ(s, x) dx = 0. (B-52)

Thus y is a solution to (2-1), with T1 := s, T2 arbitrary in (s,+∞), h̃ := −yyx ∈ L1([s, T2]; L2(0, L))
and h = u( · , y( · )) ∈ L2(s, T2). Let us emphasize that, by Lemma 3, it also implies that y ∈ Bs,T for
every T ∈ (s,+∞). This concludes the proof of (B-48) and of Theorem 8. �

Appendix C: Proof of Proposition 12

Let us first recall that Proposition 12 is due to Eduardo Cerpa if one requires only u to be in L2(0, T ) instead
of being in H 1(0, T ); see [Cerpa 2007, Proposition 3.1] and [Cerpa and Crépeau 2009a, Proposition 3.1].
In his proof, he uses Lemma 11, the controllability in H with controls u ∈ L2. Actually, the only place
in his proof where the controllability in H is used is on page 887 of [Cerpa 2007] for the construction
of α1, where, with the notations of that paper <(yλ), =(yλ) ∈ H. We notice that <(yλ), =(yλ) share more
regularity and better boundary conditions. Indeed, one has{

λyλ+ y′λ+ y′′′λ = 0,
yλ(0)= yλ(L)= 0,

which implies that

<(yλ),=(yλ) ∈H3,

where

H3
:= H ∩

{
ω ∈ H 3(0, L) : ω(0)= ω(L)= 0

}
. (C-1)

In order to adapt Cerpa’s proof in the framework of u ∈ H 1(0, T ), it is sufficient to prove the following
controllability result in H3 with control u ∈ H 1(0, T ).

Proposition 20. For every y0, y1 ∈H3 and for every T > 0, there exists a control u ∈ H 1(0, T ) such that
the solution y ∈ B to the Cauchy problem

yt + yxxx + yx = 0,
y(t, 0)= y(t, L)= 0,
yx(t, L)= u(t),
y(0, · )= y0

satisfies y(T, · )= y1.
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The proof of Proposition 12 is the same as the one of [Cerpa 2007, Proposition 3.1], with the only
difference that one uses Proposition 20 instead of Lemma 11.

Proof of Proposition 20. Let us first point out that 0 is not an eigenvalue of the operator A. Indeed
this follows from property (P2), (1-5) and (1-6). Using Lemma 11 and [Tucsnak and Weiss 2009,
Proposition 10.3.4] with β = 0, it suffices to check that

for every f ∈ H, there exists y ∈H3 such that −yxxx − yx = f . (C-2)

Let f ∈ H. We know that there exists y ∈ H 3(0, L) such that

−yxxx − yx = f, (C-3)

y(0)= y(L)= yx(L)= 0. (C-4)

Simple integrations by parts, together with (4-11), (4-12), (C-3) and (C-4), show that, with ϕ := ϕ1+ iϕ2,

0=
∫ L

0
f ϕ dx =

∫ L

0
(−yxxx − yx)ϕ dx =

∫ L

0
y(ϕxxx +ϕx) dx = i 2π

p

∫ L

0
yϕ dx, (C-5)

which, together with (C-4), implies that y ∈H3. This concludes the proof of (C-2) as well as the proof of
Proposition 20 and of Proposition 12. �
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