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This paper is concerned with the existence of viscosity solutions of nonlocal fully nonlinear equations that
are not translation-invariant. We construct a discontinuous viscosity solution of such a nonlocal equation
by Perron’s method. If the equation is uniformly elliptic, we prove the discontinuous viscosity solution is
Hölder continuous and thus it is a viscosity solution.

1. Introduction

We investigate the existence of a viscosity solution of�
I.x; u.x/; u. � //D 0 in �,
uD g in �c;

(1-1)

where � is a bounded domain in Rn, I is a nonlocal operator that is not translation-invariant and g is a
bounded continuous function in Rn.

An important example of (1-1) is the Dirichlet problem for nonlocal Bellman–Isaacs equations, i.e.,�
supa2A infb2B

˚
�IabŒx; u�C bab.x/ � ru.x/C cab.x/u.x/Cfab.x/

	
D 0 in �;

uD g in �c;
(1-2)

where A;B are two index sets, bab WRn!Rn, cab WRn!RC, fab WRn!R are uniformly continuous
functions and Iab is a Lévy operator. If the Lévy measures are symmetric and absolutely continuous with
respect to the Lebesgue measure, then they can be represented as

IabŒx; u� WD

Z
Rn
Œu.xC z/�u.x/�Kab.x; z/ dz; (1-3)

where fKab.x; � / W x 2�; a 2A; b 2 Bg are kernels of Lévy measures satisfyingZ
Rn

minfjzj2; 1gKab.x; z/ dz <C1 for all x 2�: (1-4)

In fact, we will not assume our Lévy measures to be symmetric in the following sections.
Existence of viscosity solutions has been well established for the Dirichlet problem for integro-

differential equations by Perron’s method when the equations satisfy the comparison principle. G. Barles
and C. Imbert [Barles and Imbert 2008] studied the comparison principle for degenerate second-order
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integro-differential equations assuming the nonlocal operators are of Lévy–Itô type and the equations
satisfy the coercive assumption. Then G. Barles, E. Chasseigne and C. Imbert [Barles et al. 2008]
obtained the existence of viscosity solutions for such integro-differential equations by Perron’s method.
L. A. Caffarelli and L. Silvestre [2009, Section 5] proved the comparison principle for uniformly elliptic
translation-invariant integro-differential equations where the nonlocal operators are of Lévy type. Then
existence of viscosity solutions follows, if suitable barriers can be constructed, by Perron’s method. Later
H. Chang-Lara and G. Davila [2014a, Section 3; 2016b] extended the comparison and existence results
of [Caffarelli and Silvestre 2009] to parabolic equations. The existence for (1-1) when I is a nonlocal
operator that is not translation-invariant is much more difficult to tackle since we do not have a good
comparison principle; see [Mou and Święch 2015], where the authors proved comparison assuming that
either a viscosity subsolution or a supersolution is more regular. To our knowledge, the only available
results for the existence of solutions for equations that are not translation-invariant are the following.
D. Kriventsov [2013, Section 5] studied the existence of viscosity solutions of some uniformly elliptic
nonlocal equations. J. Serra [2015b, Section 4] proved the existence of viscosity solutions of uniformly
elliptic nonlocal Bellman equations. H. Chang-Lara and D. Kriventsov [2017, Section 5] extended
existence results in [Kriventsov 2013] to a class of uniformly parabolic nonlocal equations. In all these
proofs, the authors used fixed-point arguments. O. Alvarez and A. Tourin [1996] obtained the existence
of viscosity solutions of degenerate parabolic nonlocal equations by Perron’s method with a restrictive
assumption that the Lévy measures are bounded. The boundedness of Lévy measures allowed them to
obtain the comparison principle. The reader can consult [Crandall et al. 1992; Ishii 1987; 1989; Koike
2005] for Perron’s method for viscosity solutions of fully nonlinear partial differential equations.

The probability literature on the existence of viscosity solutions of nonlocal Bellman–Isaacs equations
is enormous. It is well known that Bellman–Isaacs equations arise when people study differential
games, where the equations carry information about the value and strategies of the games. Probabilists
represent viscosity solutions of nonlocal Bellman–Isaacs equations as value functions of certain stochastic
differential games with jump diffusion via the dynamic programming principle. However, mostly in the
probability literature, the nonlocal terms of nonlocal Bellman–Isaacs equations are of Lévy–Itô type and
� is the whole space Rn. We refer the reader to [Barles et al. 1997; Biswas 2012; Biswas et al. 2010;
Buckdahn et al. 2011; Ishikawa 2004; Kharroubi and Pham 2015; Koike and Święch 2013; Øksendal and
Sulem 2007; Pham 1998; Soner 1986; 1988; Święch and Zabczyk 2016] for stochastic representation
formulas for viscosity solutions of nonlocal Bellman–Isaacs equations.

In Section 3, we adapt to the nonlocal case the approach from [Ishii 1987; 1989; Koike 2005] for
obtaining existence of a discontinuous viscosity solution u of (1-1) without using the comparison principle.
For applying Perron’s method, we need to assume that there exist a continuous viscosity subsolution and
a continuous supersolution of (1-1) and both satisfy the boundary condition. Since (1-1) involves the
nonlocal term, the proof of the existence is more delicate than the PDE case.

In Section 4, we obtain a Hölder estimate for the discontinuous viscosity solution of (1-1) constructed
by Perron’s method assuming the equation is uniformly elliptic. In most of the literature, the nonlocal
operator I is assumed to be uniformly elliptic with respect to a class of linear nonlocal operators of form
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(1-3) with kernels K satisfying

.2� �/
�

jzjnC�
�K.x; z/� .2� �/

ƒ

jzjnC�
; (1-5)

where 0 < � � ƒ. Various regularity results were obtained in recent years under the above uniform
ellipticity, such as [Caffarelli and Silvestre 2009; 2011a; 2011b; Chang-Lara and Dávila 2014a; 2014b;
2016a; 2016b; Chang-Lara and Kriventsov 2017; Dong and Kim 2013; Jin and Xiong 2015; 2016;
Kriventsov 2013; Serra 2015a; 2015b; Silvestre 2006; 2011; Dong and Zhang 2016] for both elliptic and
parabolic integro-differential equations. In this paper, we follow [Schwab and Silvestre 2016] to assume a
much weaker uniform ellipticity. Roughly speaking, we let I be uniformly elliptic with respect to a larger
class of linear nonlocal operators where the kernels K satisfy the right-hand side of (1-5) in an integral
sense and the left-hand side of that in a symmetric subset of each annulus domain with positive measure.
The main tool we use is the weak Harnack inequality obtained in [Schwab and Silvestre 2016]. With the
weak Harnack inequality, we are able to prove the oscillation between the upper- and lower-semicontinuous
envelopes of the discontinuous viscosity solution u in the ball Br is of order r˛ for some ˛ > 0 and any
small r > 0. This proves that u is Hölder continuous and thus it is a viscosity solution of (1-1). Recently,
L. Silvestre [2016] applied the regularity for nonlocal equations under this weak ellipticity to obtain
the regularity for the homogeneous Boltzmann equation without cut-off. We also want to mention that
M. Kassmann, M. Rang and R. Schwab [Kassmann et al. 2014] studied Hölder regularity for a class of
integro-differential operators with kernels which are positive along some given rays or cone-like sets.

To complete the existence results, we construct continuous sub/supersolutions in both uniformly elliptic
and degenerate cases in Section 5. In the uniformly elliptic case, we follow the idea of [Ros-Oton and
Serra 2016] to construct appropriate barrier functions. We then use them to construct a subsolution and a
supersolution which satisfy the boundary condition. The weak uniform ellipticity and the lower-order terms
of I make the proofs more involved. With all these ingredients in hand, we can conclude one of the main
results in this manuscript, that (1-1) admits a viscosity solution if I is uniformly elliptic; see Theorem 5.6
in Section 5A. This main result generalizes nearly all the previous existence results for uniformly elliptic
integro-differential equations. In the degenerate case, it is natural to construct a sub/supersolution only
for (1-2) since we have little information about the nonlocal operator I . Moreover, we need to assume
the nonlocal Bellman–Isaacs equation in (1-2) satisfies the coercive assumption, i.e., cab � 
 for some

 > 0. The coercive assumption is often made to study uniqueness, existence and regularity of viscosity
solutions of degenerate elliptic PDEs and integro-PDEs; see [Barles et al. 2008; Barles and Imbert 2008;
Crandall et al. 1992; Ishii 1987; 1989; Ishii and Lions 1990; Jakobsen and Karlsen 2006; Mou 2016; Mou
and Święch 2015]. In Section 5B, we obtain a subsolution and a supersolution which satisfy the boundary
condition in the degenerate case. The difficulty here lies in giving a degenerate assumption on the kernels
which allows us to construct barrier functions. Roughly speaking, we only need to assume that the kernels
Kab.x; � / are nondegenerate in the outer-pointing normal direction of the boundary for the points x
which are sufficiently close to the boundary. That means we allow our kernels Kab to be degenerate
in the whole domain. Then we can conclude the second main result, the existence of a discontinuous
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viscosity solution of (1-2), given in Theorem 5.13. If the comparison principle holds for (1-2), we obtain
that the discontinuous viscosity solution is a viscosity solution. Finally, we notice that our method could
be adapted to the nonlocal parabolic equations for obtaining the corresponding existence results.

2. Notation and definitions

We write Bı for the open ball centered at the origin with radius ı > 0 and Bı.x/ WD Bı C x. We
set �ı WD fx 2 � W dist.x; @�/ > ıg for ı > 0. For each nonnegative integer r and 0 < ˛ � 1, we
denote by C r;˛.�/ (C r;˛.�/) the subspace of C r;0.�/ (C r;0.�/) consisting of functions whose r-th
partial derivatives are locally (uniformly) ˛-Hölder continuous in �. For any u 2 C r;˛.�/, where r is a
nonnegative integer and 0� ˛ � 1, define

Œu�r;˛I� WD

�
supx2�;jj jDr j@

ju.x/j if ˛ D 0;
supx;y2�;x 6Dy;jj jDr j@

ju.x/� @ju.y/j=jx�yj˛ if ˛ > 0;
and

kukC r;˛.�/ WD

(Pr
jD0Œu�j;0;� if ˛ D 0;

kukC r;0.�/C Œu�r;˛I� if ˛ > 0:

For simplicity, we use the notation C ˇ .�/ (C ˇ .�/), where ˇ>0, to denote the space C r;˛.�/ (C r;˛.�/),
where r is the largest integer smaller than ˇ and ˛ D ˇ� r . The set C ˇ

b
.�/ consist of functions from

C ˇ .�/ which are bounded. We write USC.Rn/ for the space of upper-semicontinuous functions in Rn

and LSC.Rn/ for the space of lower-semicontinuous functions in Rn.
We will give a definition of viscosity solutions of (1-1). We first state the general assumptions on the non-

local operator I in (1-1). For any ı>0, r; s2R, x; xk 2�, '; 'k; 2C 2.Bı.x//\L1.Rn/, we assume:

(A0) The function .x; r/! I.x; r; '. � // is continuous in Bı.x/�R.

(A1) If xk! x in �, 'k! ' a.e. in Rn, 'k! ' in C 2.Bı.x// and f'kgk is uniformly bounded in Rn,
then

I.xk; r; 'k. � //! I.x; r; '. � //:

(A2) If r � s, then I.x; r; '. � //� I.x; s; '. � //.

(A3) For any constant C , we have I.x; r; '. � /CC/D I.x; r; '. � //.

(A4) If ' touches  from above at x, then I.x; r; '. � //� I.x; r;  . � //.

Remark 2.1. If I is uniformly elliptic and satisfies (A0), (A2), then (A0)–(A4) hold for I . See Lemma 4.2.

Remark 2.2. The nonlocal operator I in [Schwab and Silvestre 2016] has only two components, i.e.,
.x; '/! I.x; '. � //. Here we let our nonlocal operator I have three components and assume (A2)–(A3)
hold. This is because we want to let I include the left-hand side of the nonlocal Bellman–Isaacs equation
in (1-2) and, moreover, we want to describe the two properties

�IabŒx; 'CC �C bab.x/ � r.'CC/.x/D�IabŒx; '�C bab.x/ � r'.x/;

cab.x/r � cab.x/s if r � s

in abstract forms.
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Remark 2.3. The left-hand side of the nonlocal Bellman–Isaacs equation in (1-2) satisfies (A0)–(A4) if
(1-4) holds and its coefficients Kab , bab , cab and fab are uniformly continuous with respect to x in �,
uniformly in a 2 A, b 2 B. See [Guillen and Schwab 2016] for when the nonlocal operator I has a
min-max structure.

Throughout the paper, we always assume the nonlocal operator I satisfies (A0)–(A4).

Definition 2.4. A bounded function u 2 USC.Rn/ is a viscosity subsolution of I D 0 in � if whenever
u�' has a maximum over Rn at x 2� for ' 2 C 2

b
.Rn/, then

I.x; u.x/; '. � //� 0:

A bounded function u 2 LSC.Rn/ is a viscosity supersolution of I D 0 in � if whenever u� ' has a
minimum over Rn at x 2� for ' 2 C 2

b
.Rn/, then

I.x; u.x/; '. � //� 0:

A bounded function u is a viscosity solution of I D 0 in � if it is both a viscosity subsolution and
viscosity supersolution of I D 0 in �.

Remark 2.5. In Definition 2.4, all the maximums and minimums can be replaced by strict ones.

Definition 2.6. A bounded function u is a viscosity subsolution of (1-1) if u is a viscosity subsolution of
I D 0 in � and u� g in �c. A bounded function u is a viscosity supersolution of (1-1) if u is a viscosity
supersolution of I D 0 in � and u� g in �c. A bounded function u is a viscosity solution of (1-1) if u
is a viscosity subsolution and supersolution of (1-1).

We will use the following notations: if u is a function on �, then, for any x 2�,

u�.x/D lim
r!0

sup
˚
u.y/ W y 2� and jy � xj � r

	
;

u�.x/D lim
r!0

inf
˚
u.y/ W y 2� and jy � xj � r

	
:

One calls u� the upper-semicontinuous envelope of u and u� the lower semicontinuous envelope of u.
We then give a definition of discontinuous viscosity solutions of (1-1).

Definition 2.7. A bounded function u is a discontinuous viscosity subsolution of (1-1) if u� is a viscosity
subsolution of (1-1). A bounded function u is a discontinuous viscosity supersolution of (1-1) if u� is a
viscosity supersolution of (1-1). A function u is a discontinuous viscosity solution of (1-1) if it is both a
discontinuous viscosity subsolution and a discontinuous viscosity supersolution of (1-1).

Remark 2.8. If u is a discontinuous viscosity solution of (1-1) and u is continuous in Rn, then u is a
viscosity solution of (1-1).

3. Perron’s method

In this section, we obtain the existence of a discontinuous viscosity solution of (1-1) by Perron’s method.
We remind you that I satisfies (A0)–(A4).
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Lemma 3.1. Let F be a family of viscosity subsolutions of I D 0 in �. Let w.x/D supfu.x/ W u 2 Fg in
Rnand assume that w�.x/ <1 for all x 2 Rn. Then w is a discontinuous viscosity subsolution of I D 0
in �.

Proof. Suppose that ' is a C 2
b
.Rn/ function such that w� � ' has a strict maximum (equal to 0) at

x0 2 � over Rn. We can construct a uniformly bounded sequence of C 2.Rn/ functions f'mgm such
that 'm D ' in B1.x0/, ' � 'm in Rn, supx2Bc2 .x0/fw

�.x/� 'm.x/g � �
1
m

and 'm ! ' pointwise.
Thus, for any positive integer m, we know w� � 'm has a strict maximum (equal to 0) at x0 over Rn.
Therefore, supx2Bc1 .x0/fw

�.x/� 'm.x/g D �m < 0. By the definition of w�, we have, for any u 2 F ,
supx2Bc1 .x0/fu.x/�'m.x/g � �m < 0. Again, by the definition of w�, we have, for any �m < � < 0, there
exist u� 2 F and Nx� 2 B1.x0/ such that u�. Nx�/� '. Nx�/ > �. Since u� 2 USC.Rn/ and 'm 2 C 2b .R

n/,
there exists x� 2 B1.x0/ such that u�.x�/� 'm.x�/D supx2Rnfu�.x/� '.x/g � u�. Nx�/� 'm. Nx�/ > �.
Since w��'m attains a strict maximum (equal to 0) at x0 over Rn and u� w� for any u 2 F, we have
u�.x�/! w�.x0/ and x�! x0 as �! 0�. Since u� is a viscosity subsolution of I D 0 in �, we have

I.x�; u�.x�/; 'm. � //� 0: (3-1)

Since x�!x0, u�.x�/!w�.x0/ as �! 0�, 'mD' in B1.x0/, 'm!' pointwise, f'mgm is uniformly
bounded, ' 2 C 2

b
.Rn/, (A0) and (A1) hold, we have, letting �! 0� and m!C1 in (3-1),

I.x0; w
�.x0/; '. � //� 0:

Therefore, w is a discontinuous viscosity subsolution of I D 0. �

Theorem 3.2. Let u, u be bounded continuous functions and be respectively a viscosity subsolution and
a viscosity supersolution of I D 0 in �. Assume moreover that u D u D g in �c for some bounded
continuous function g and u� u in Rn. Then

w.x/D sup
u2F

u.x/;

where

F D
˚
u 2 C 0.Rn/ W u� u� u in Rn and u is a viscosity subsolution of I D 0 in �

	
;

is a discontinuous viscosity solution of (1-1).

Proof. Since u2F , we know F 6D∅. Thus, w is well defined, u�w� u in Rn and wD uD u in �c. By
Lemma 3.1, w is a discontinuous viscosity subsolution of GD 0 in �. We claim that w is a discontinuous
viscosity supersolution of G D 0 in �. If not, there exist a point x0 2� and a function ' 2 C 2

b
.Rn/ such

that w��' has a strict minimum (equal to 0) at the point x0 over Rn and

I.x0; w�.x0/; '. � // < ��0;

where �0 is a positive constant. Thus, we can find sufficiently small constants �1 > 0 and ı0 > 0 such that
Bı0.x0/�� and there exists a C 2

b
.Rn/ function '�1 satisfying that '�1 D ' in Bı0.x0/, '�1 � ' in Rn,

infx2Bc
2ı0
.x0/fw�.x/�'�1.x/g � �1 > 0 and

I.x0; '�1.x0/; '�1. � // < �
1
2
�0: (3-2)
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Thus, by (A0), there exists ı1 < ı0 such that, for any x 2 Bı1.x0/,

I.x; '�1.x/; '�1. � // < �
1
4
�0: (3-3)

By the definition of w, we have '�1 � w� � u in Rn. If '�1.x0/D w�.x0/D u.x0/, then u�'�1 has a
strict minimum at the point x0 over Rn. Since u is a viscosity supersolution of I D 0 in �, we have

I.x0; '�1.x0/; '�1. � //� 0;

which contradicts (3-2). Thus, we have '�1.x0/ < u.x0/. Since u and '�1 are continuous functions in Rn,
we have '�1.x/ < u.x/� �2 in Bı2.x0/ for some 0 < ı2 < ı1 and �2 > 0. We define

�r D sup
x2Bcr .x0/

f'�1.x/�w�.x/g:

Since infx2Bc
2ı0
.x0/fw�.x/�'�1.x/g � �1 >0, w��'�1 has a strict minimum (equal to 0) at the point x0

and �w� 2 USC.Rn/, we have �r < 0 for each r > 0. For any y 2� nBr.x0/, there exists a function
vy 2 F such that vy.y/�'�1.y/��

3
4
�r . Since vy and '�1 are continuous in Rn, there exists a positive

constant ıy such that infx2Bıy .y/fvy.x/� '�1.x/g � �
1
2
�r . Since � nBr.x0/ is a compact set in Rn,

there exists a finite set fyig
nr
iD1 �� nBr.x0/ such that � nBr.x0/�

Snr
iD1Bıyi

.yi /. Thus, we define

vr.x/D sup
1�i�nr

fvyi .x/g; x 2 Rn:

By Lemma 3.1 and the definition of vr , we have vr 2 F and infx2�nBr .x0/fvr.x/� '�1.x/g � �
1
2
�r .

Let ˛r be a constant such that 0 < ˛r < 1
2

and �˛r�r < �2. Thus, we define

U.x/D

�
maxf'�1.x/�˛�r ; vr.x/g; x 2 Br.x0/;

vr.x/; x 2 Bcr .x0/;

where 0 < r < ı2 and 0 < ˛ < ˛r . By the definition of U, we obtain U 2C 0.Rn/, u�U �u in Rn, and
there exists a sequence fxngn � Br.x0/ such that xn! x0 as n!C1 and U.xn/ > w.xn/.

We claim that U is a viscosity subsolution of I D 0 in �. For any y 2 �, suppose that there is a
function  2 C 2

b
.Rn/ such that U � has a maximum (equal to 0) at y over Rn. We then divide the

proof into two cases.

Case 1: U.y/ D vr.y/. Since vr � U �  in Rn, we know vr � has a maximum (equal to 0) at y
over Rn. We recall that vr is a viscosity subsolution of I D 0 in �. Therefore, we have

I.y; U.y/;  . � //� 0:

Case 2: U.y/D '�1.y/� ˛�r . We first notice that y 2 Br.x0/. Since '�1 � ˛�r � U �  in Br.x0/,
then '�1 � ˛�r � � 0 in Br.x0/. By the definition of U, we have  � U D vr in Bcr .x0/. Thus,
'�1 �˛�r � � '�1 �˛�r � vr �

1
2
�r �˛�r � 0 in Bcr .x0/. Therefore, we have '�1 �˛�r � has

a maximum (equal to 0) at y 2 Br.x0/� Bı1.x0/ over Rn. Since (3-3), (A0), (A3)–(A4) hold, we can
choose ˛ independent of  and sufficiently small that

I.y;  .y/;  . � //� I.y; '�1.y/�˛�r ; '�1. � //� 0:



1234 CHENCHEN MOU

Based on the two cases, we have that U is a viscosity subsolution of I D 0 in �. Therefore, U 2 F,
which contradicts with the definition of w. Thus, w is a discontinuous viscosity supersolution of I D 0
in �. Therefore, w is a discontinuous viscosity solution of I D 0 in �. Since w D g in �c, we know w

is a discontinuous viscosity solution of (1-1). �

Remark 3.3. Under the assumptions of Theorem 3.2, if the comparison principle holds for (1-1), the
discontinuous viscosity solution w is the unique viscosity solution of (1-1). For example, if I is a
translation-invariant nonlocal operator, (1-1) admits a unique viscosity solution.

Before applying Theorem 3.2 to (1-2), we now give the precise assumptions on its equation. For
any 0 < � �ƒ and 0 < � < 2, we consider the family of kernels K W Rn! R satisfying the following
assumptions:

(H0) K.z/� 0 for any z 2 Rn.

(H1) For any ı > 0, Z
B2ınBı

K.z/ dz � .2� �/ƒı��:

(H2) For any ı > 0, ˇ̌̌̌Z
B2ınBı

zK.z/ dz

ˇ̌̌̌
�ƒj1� � jı1��:

We define our nonlocal operator

IabŒx; u� WD

Z
Rn
ızu.x/Kab.x; z/ dz; (3-4)

where

ızu.x/ WD

8<:
u.xC z/�u.x/ if � < 1;
u.xC z/�u.x/�1B1.z/ru.x/ � z if � D 1;
u.xC z/�u.x/�ru.x/ � z if � > 1:

We consider the following nonlocal Bellman–Isaacs equation

sup
a2A

inf
b2B

˚
�IabŒx; u�C bab.x/ � ru.x/C cab.x/u.x/Cfab.x/

	
D 0 in �. (3-5)

Corollary 3.4. Assume that 0 < � < 2, bab � 0 in � if � < 1 and cab � 0 in �. Let u, u be bounded
continuous functions and be respectively a viscosity subsolution and a viscosity supersolution of (3-5),
where fKab. � ; z/ga;b;z , fbabga;b , fcabga;b and ffabga;b are sets of uniformly continuous functions in�,
uniformly in a 2 A, b 2 B, and fKab.x; � / W x 2 �; a 2 A; b 2 Bg are kernels satisfying (H0)–(H2).
Assume moreover that uD uD g in �c for some bounded continuous function g and u� u in Rn. Then

w.x/D sup
u2F

u.x/;

where
F D

˚
u 2 C 0.Rn/ W u� u� u in Rn and u is a viscosity subsolution of (3-5)

	
;

is a discontinuous viscosity solution of (1-2).
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Proof. We define

I.x; r; u. � // WD sup
a2A

inf
b2B

˚
�IabŒx; u�C bab.x/ � ru.x/C cab.x/r Cfab.x/

	
:

It follows from (H1) and (H2) that Iab satisfies (1-4); see Lemma 2.3 in [Schwab and Silvestre 2016].
Then, by (1-4) and uniform continuity of the coefficients, (A0) and (A1) hold. Since cab � 0 in �, (A2)
holds. By (H0) and the structure of Iab , (A3) and (A4) hold. �

4. Hölder estimates

In this section we give Hölder estimates of the discontinuous viscosity solution constructed by Perron’s
method in the previous section. To obtain Hölder estimates, we will assume that the nonlocal operator I
is uniformly elliptic.

We define L WD L.�; �;ƒ/ to be the class of all the nonlocal operators of form

Lu.x/ WD

Z
Rn
ızu.x/K.z/ dz;

where K is a kernel satisfying the assumptions (H0)–(H2) given above and the following assumption:

(H3) There exist positive constants � and � such that, for any ı > 0, there is a set Aı satisfying

(i) Aı � B2ı nBı ;
(ii) Aı D�Aı ;

(iii) jAı j � �jB2ı nBı j;
(iv) K.z/� .2� �/�ı�n�� for any z 2 Aı .

We note that we will also write K 2 L if the corresponding nonlocal operator L 2 L. We then define
the extremal operators

MCL u.x/ WD sup
L2L

Lu.x/; M�L u.x/ WD inf
L2L

Lu.x/:

We denote by m W Œ0;C1/! Œ0;C1/ a modulus of continuity. We say that the nonlocal operator I is
uniformly elliptic if for every r; s 2R, x 2�, ı > 0, '; 2C 2.Bı.x//\L1.Rn/,

M�L .' � /.x/�C0jr. �'/.x/j �m.jr � sj/� I.x; r;  . � //� I.x; s; '. � //

�MCL .' � /.x/CC0jr. �'/.x/jCm.jr � sj/;

where C0 is a nonnegative constant such that C0 D 0 if � < 1.

Remark 4.1. The definition of uniform ellipticity is different from that in [Schwab and Silvestre 2016]
since the nonlocal operator I contains the second component r .

Lemma 4.2. If the nonlocal operator I is uniformly elliptic and satisfies (A0), (A2), then I satisfies
(A0)–(A4).
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Proof. Suppose that ı > 0, xk ! x in �, 'k ! ' a.e. in Rn, 'k ! ' in C 2.Bı.x// and f'kgk is
uniformly bounded in Rn. Since I is uniformly elliptic, we have, for any r 2 R,

M�L .' �'k/.xk/�C0jr.'k �'/.xk/j � I.xk; r; 'k. � //� I.xk; r; '. � //

�MCL .' �'k/.xk/CC0jr.'k �'/.xk/j: (4-1)

Since K 2 L, we know, by Lemma 2.3 in [Schwab and Silvestre 2016], that K satisfies (1-4). Letting
k!C1 in (4-1), we have, by (A0),

lim
k!C1

I.xk; r; 'k. � //D I.x; r; '. � //:

Therefore, (A1) holds. For any constant C, we have

0DM�L .�C/�C0jrC j � I.x; r; '. � /CC/� I.x; r; '. � //�M
C
L .�C/CC0jrC j D 0:

Thus, (A3) holds. If ' touches a C 2.Bı.x//\L1.Rn/ function  from above at x, then

I.x; r; '/� I.x; r;  /�MCL . �'/.x/� 0:

Therefore, (A4) holds. �

The following lemma is an elliptic version of Theorem 6.1 in [Schwab and Silvestre 2016].

Lemma 4.3. Assume 0<�0�� <2, C0; C1�0, and further assume C0D 0 if � <1. Let u be a viscosity
supersolution of

M�L u�C0jruj D C1 in B2

and u� 0 in Rn. Then there exist constants C and �3 such that�Z
B1

u�3 dx

� 1
�3

� C.inf
B1
uCC1/;

where �3 and C depend on �0, �, ƒ, C0, n and �.

The following lemma is a direct corollary of Lemma 4.3.

Corollary 4.4. Assume 0<�0� � <2, 0< r <1, C0; C1� 0, and further assume C0 D 0 if � < 1. Let
u be a viscosity supersolution of

M�L u�C0jruj D C1 in B2r

and u� 0 in Rn. Then there exist constants C and �3 such that�ˇ̌
fu > tg\Br

ˇ̌�
� Crn.u.0/CC1r

� /�3 t��3 for any t � 0; (4-2)

where �3 and C depend on �0, �, ƒ, C0, n and �.

Proof. Now let v.x/D u.rx/. By Lemma 2.2 in [Schwab and Silvestre 2016], we have

M�L v�C0r
��1
jrvj � C1r

� in B2: (4-3)
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Now we apply Lemma 4.3 to (4-3). Thus, for any t � 0, we have

t
ˇ̌
fv > tg\B1

ˇ̌ 1
�3 �

�Z
B1

v�3 dx

� 1
�3

� C.inf
B1
vCC1r

� /� C.v.0/CC1r
� /:

Then

r�n
ˇ̌
fu > tg\Br

ˇ̌
�
ˇ̌
fv > tg\B1

ˇ̌
� C.v.0/CC1r

� /�3 t��3 D C.u.0/CC1r
� /�3 t��3:

Therefore, (4-2) holds. �

Then we follow the idea in [Caffarelli and Silvestre 2009] to obtain a Hölder estimate.

Theorem 4.5. Assume 0 < �0 � � < 2, C0 � 0, and further assume C0 D 0 if � < 1. For any � > 0,
let F be a class of bounded continuous functions u in Rn such that �1

2
� u � 1

2
in Rn, u is a viscosity

subsolution of MCL uCC0jrujD�
1
2
� in B1 andwD supu2F u is a discontinuous viscosity supersolution

of M�L w�C0jrwj D
1
2
� in B1. Then there exist constants �4, ˛ and C such that, if � < �4,

�C jxj˛ � w�.x/�w
�.0/� w�.x/�w�.0/� C jxj

˛;

where �4, ˛ and C depend on �0, �, ƒ, C0, n and �.

Proof. We claim that there exist an increasing sequence fmkgk and a decreasing sequence fMkgk such
that Mk�mk D 8

�˛k and mk � infB
8�k

w� � supB
8�k

w� �Mk . We will prove this claim by induction.

For k D 0, we choose m0 D�12 and M0 D
1
2

since �1
2
� u� 1

2
for any u 2 F. Assume that we have

the sequences up to mk and Mk . In B8�k�1 , we have eitherˇ̌˚
w� �

1
2
MkCmk

	
\B8�k�1

ˇ̌
�
1
2
jB8�k�1 j (4-4)

or ˇ̌˚
w� �

1
2
MkCmk

	
\B8�k�1

ˇ̌
�
1
2
jB8�k�1 j: (4-5)

Case 1: (4-4) holds. We define

v.x/ WD
w�.8

�kx/�mk
1
2
.Mk �mk/

:

Thus, v � 0 in B1 and ˇ̌
fv � 1g\B 1

8

ˇ̌
�
1
2

ˇ̌
B 1
8

ˇ̌
:

Since w is a discontinuous viscosity supersolution of M�L w � C0jrwj D
1
2
� in B1, we know v is a

viscosity supersolution of

M�L v�C08
k.1��/

jrvj D 8k.˛��/� in B8k :

We notice that C0D0 if � <1 and choose ˛<�0. Thus, for any 0<� <2, v is a viscosity supersolution of

M�L v�C0jrvj D � in B8k :
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By the inductive assumption, we have, for any k � j � 0,

v �
mk�j �mk
1
2
.Mk �mk/

�
mk�j �Mk�j CMk �mk

1
2
.Mk �mk/

D 2.1� 8 j̨ / in B8j : (4-6)

Moreover, we have

v � 2 � 8˛k
�
�
1
2
�
�
1
2
� 8�˛k

��
D 2.1� 8˛k/ in Bc

8k
: (4-7)

By (4-6) and (4-7), we have

v.x/� �2.j8xj˛ � 1/ for any x 2 Bc1 :

We define

vC.x/ WDmaxfv.x/; 0g and v�.x/ WD �minfv.x/; 0g:

Since v � 0 in B1, we have v�.x/ D 0 and rv�.x/ D 0 for any x 2 B1. By (H1), we can choose ˛
independent of � and sufficiently small that, for any x 2 B 3

4
and �0 � � < 2,

M�L v
C.x/�M�L v.x/CM

C
L v
�.x/

�M�L v.x/C sup
K2L

Z
Rn
ızv
�.x/K.z/ dz

�M�L v.x/C sup
K2L

Z
Bc1
4

\fv.xCz/<0g

v�.xC z/K.z/ dz

�M�L v.x/C sup
K2L

Z
Bc1
4

max
˚
2.j8.xC z/j˛ � 1/; 0

	
K.z/ dz

�M�L v.x/C 2.2� �/ƒ

C1X
lD0

�
2l

4

���
.2.lC4/˛ � 1/

�M�L v.x/C 2
13.2� �0/ƒ

�
24.˛��0/

1� 2˛��0
�

2�4�0

1� 2��0

�
�M�L v.x/C �:

Therefore, we have

M�L v
C
�C0jrv

C
j � 2� in B 3

4
:

Given any point x 2 B1=8, we can apply Corollary 4.4 in B1=4.x/ to obtain

C.vC.x/C 2�/�3 �
ˇ̌
fvC > 1g\B 1

4
.x/
ˇ̌
�
ˇ̌
fvC > 1g\B 1

8

ˇ̌
�
1
2

ˇ̌
B 1
8

ˇ̌
:

Thus, we can choose �4 sufficiently small that vC � �4 in B1=8 if � < �4. Therefore,

v.x/D
w�.8

�kx/�mk
1
2
.Mk �mk/

� �4 in B 1
8
:
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If we set mkC1 DmkC 1
2
�4.Mk �mk/ and MkC1 DMk , we must have

mkC1 � inf
B
8�k�1

w� � sup
B
8�k�1

w� �MkC1:

Case 2: (4-5) holds. For any u 2 F, we obtain that u 2 C 0.Rn/ is a viscosity subsolution of MCL uC
C0jruj D �

1
2
� in B1 and u� w� in Rn. Thus, we haveˇ̌˚

u� 1
2
.MkCmk/

	
\B8�k�1

ˇ̌
�
1
2
jB8�k�1 j:

We define

vu.x/ WD
Mk �u.8

�kx/
1
2
.Mk �mk/

:

Thus, vu � 0 in B1 and ˇ̌
fvu � 1g\B 1

8

ˇ̌
�
1
2

ˇ̌
B 1
8

ˇ̌
:

Since u is a viscosity subsolution of MCL uCC0jruj D�
1
2
� in B1, then vu is a viscosity supersolution of

M�L vu�C0jrvuj D � in B8k :

Similar to Case 1, we have, if � < �4,

vu.x/D
Mk �u.8

�kx/
1
2
.Mk �mk/

� �4 in B 1
8
;

which implies
u.8�kx/�Mk �

1
2
�4.Mk �mk/ in B 1

8
:

By the definition of w, we have

w�.8�kx/�Mk �
1
2
�4.Mk �mk/ in B 1

8
:

If we set mkC1 Dmk and MkC1 DMk �
1
2
�4.Mk �mk/, we must have

mkC1 � inf
B
8�k�1

w� � sup
B
8�k�1

w� �MkC1:

Therefore, in both of the cases, we have MkC1�mkC1 D
�
1� 1

2
�4
�
8�˛k. We then choose ˛ and �4

sufficiently small that
�
1� 1

2
�4
�
D 8�˛. Thus we have MkC1�mkC1 D 8

�˛.kC1/. �

Theorem 4.6. Assume that 0 < �0 � � < 2 and I.x; 0; 0/ is bounded in �. Assume that I is uniformly
elliptic and satisfies (A0), (A2). Letw be the bounded discontinuous viscosity solution of (1-1) constructed
in Theorem 3.2. Then, for any sufficiently small Qı > 0, there exists a constant C such that w 2 C ˛.�/ and

kwkC˛.� Qı/
� C

�
C2Cm.C2/CkI. � ; 0; 0/kL1.�/

�
;

where ˛ is given in Theorem 4.5, C2 WDmaxfkukL1.Rn/; kukL1.Rn/g and C depends on �0, Qı, �, ƒ, C0,
n, �.
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Proof. It is obvious that kukL1.Rn/ � C2 if u 2 F. Since I is uniformly elliptic, we have

I.x; 0; 0/� I.x; u.x/; u. � //�MCL u.x/CC0jru.x/jCm.C2/ in �:

Since u is a viscosity subsolution of I D 0 in �, we have

�m.C2/�kI. � ; 0; 0/kL1.�/ �M
C
L uCC0jruj in �:

Similarly, we have

M�L w��C0jrw�j �m.C2/CkI. � ; 0; 0/kL1.�/ in �:

By normalization, the result follows from Theorem 4.5. �

By applying Theorem 4.6 to Bellman–Isaacs equation, we have the following corollary.

Corollary 4.7. Assume that 0 < �0 � � < 2, bab � 0 in � if � < 1 and cab � 0 in �. Assume that
fKab. � ; z/ga;b;z , fbabga;b , fcabga;b , ffabga;b are sets of uniformly bounded and continuous functions
in �, uniformly in a2A, b 2B, and fKab.x; � / W x 2�; a 2A; b 2 Bg are kernels satisfying (H0)–(H3).
Let w be the bounded discontinuous viscosity solution of (1-2) constructed in Corollary 3.4. Then, for
any sufficiently small Qı > 0, there exists a constant C such that w 2 C ˛.�/ and

kwkC˛.� Qı/
� C

�
C2C sup

a2A;b2B
kfabkL1.�/

�
;

where ˛ and C2 are given in Theorem 4.6 and C depends on �0, Qı, �, ƒ, supa2A;b2B kbabkL1.�/,
supa2A;b2B kcabkL1.�/, n, �.

Remark 4.8. In this section we assume our nonlocal equations satisfy the weak uniform ellipticity
introduced in [Schwab and Silvestre 2016] mainly because, to our knowledge, this is the weakest
assumption to get the weak Harnack inequality. In fact, our approach to get Hölder continuity of the
discontinuous viscosity solution constructed by Perron’s method could be applied to more general nonlocal
equations as long as the weak Harnack inequality holds for such an equation.

5. Continuous sub/supersolutions

In this section we construct continuous sub/supersolutions in both uniformly elliptic and degenerate cases.

5A. Uniformly elliptic case. In the uniformly elliptic case, we follow the idea in [Ros-Oton and Serra
2016] to establish barrier functions. We define v˛.x/ D ..x1 � 1/

C/˛, where 0 < ˛ < 1 and x D
.x1; x2; : : : ; xn/.

Lemma 5.1. Assume that 0 < � < 2. Then there exists a sufficiently small ˛ > 0 such that

MCL v˛..1C r/e1/� ��5r
˛��

for any r > 0, where e1 D .1; 0; : : : ; 0/ and �5 is some positive constant.
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Proof. Case 1: 0<� <1. By Lemma 2.2 in [Schwab and Silvestre 2016], we have, for any r >0 and ˛>0,

MCL v˛..1C r/e1/D sup
K2L

Z
Rn

�
v˛..1C r/e1C z/� v˛..1C r/e1/

�
K.z/ dz

D sup
K2L

Z
Rn

�
..r C z1/

C/˛ � r˛
�
K.z/ dz

D r˛�� sup
K2L

Z
Rn

�
..1C z1/

C/˛ � 1
�
rnC�K.rz/ dz

D r˛�� sup
K2L

Z
Rn

�
..1C z1/

C/˛ � 1
�
K.z/ dz

� r˛��
�

sup
K2L

Z
z1>�1

�
.1C z1/

˛
� 1

�
K.z/ dz� inf

K2L

Z
z1��1

K.z/ dz

�
:

By (H3), we have, for any K 2 L and any ı > 0, there is a set Aı satisfying Aı � B2ı nBı , Aı D�Aı ,
jAı j � �jB2ı nBı j and K.z/� .2� �/�ı�n�� in Aı . It is obvious that

�ı WD

ˇ̌
.B2ı nBı/\fz W jz1j< 1g

ˇ̌
jB2ı nBı j

! 0 as ı!C1:

Thus, there exists ı3 > 0 such that �ı < 1
2
� if ı � ı3. Thenˇ̌

fz W jz1j � 1g\Aı3
ˇ̌

jB2ı3nBı3 j
�
jAı3 j �

ˇ̌
.B2ı3nBı3/\fz W jz1j< 1g

ˇ̌
jB2ı3nBı3 j

�
�

2
:

By the symmetry of Aı3 , we have ˇ̌
fz W z1 � �1g\Aı3

ˇ̌
jB2ı3nBı3 j

�
�

4
:

Therefore, we have, for any K 2 L,Z
z1��1

K.z/ dz �

Z
fzWz1��1g\Aı3

K.z/ dz �
.2� �/��

4
ı�n��3 jB2ı3nBı3 j DW 2�5: (5-1)

By (H1) and (H2), we have, for any K 2 L,Z
z1>�1

..1Cz1/
˛
�1/K.z/dzD

Z
fzWz1>�1g\B 1

2

C

Z
fzWz1>�1g\B

c
1
2

�˛21�˛
ˇ̌̌̌Z
B 1
2

zK.z/dz

ˇ̌̌̌
C

Z
fzWz1>�1g\B

c
1
2

..1Cz1/
˛
�1/K.z/dz

�˛21�˛.1��/ƒ

C1X
lD0

�
1

2lC2

�1��
C.2��/ƒ

C1X
lD0

.2l�1/�� ..1C2l/˛�1/

� 2˛ƒ
1��

1�2��1
C8ƒ

�
2˛��

1�2˛��
�

2��

1�2��

�
: (5-2)
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Thus, we have

lim
˛!0C

sup
K2L

Z
z1>�1

..1C z1/
˛
� 1/K.z/ dz� inf

K2L

Z
z1��1

K.z/ dz � �2�5:

Then there exists a sufficiently small ˛ such that

MCL v˛..1C r/e1/� ��5r
˛��:

Case 2: � D 1. Using (H2), we have, for any r > 0 and ˛ > 0,

MCL v˛..1Cr/e1/D sup
K2L

Z
Rn

�
v˛..1Cr/e1Cz/�v˛..1Cr/e1/�1B1.z/rv˛..1Cr/e1/�z

�
K.z/dz

D sup
K2L

Z
Rn

�
..rCz1/

C/˛�r˛�1B1.z/˛r
˛�1z1

�
K.z/dz

D r˛�1 sup
K2L

Z
Rn

�
..1Cz1/

C/˛�1�1B 1
r

.z/˛z1
�
rnC1K.rz/dz

D r˛�1 sup
K2L

Z
Rn

�
..1Cz1/

C/˛�1�1B 1
2

.z/˛z1
�
K.z/dz

� r˛�1
�

sup
K2L

Z
z1>�1

�
.1Cz1/

˛
�1�1B 1

2

.z/˛z1
�
K.z/dz� inf

K2L

Z
z1��1

K.z/dz

�
:

By (H1), we have, for any K 2 L,Z
z1>�1

�
.1C z1/

˛
� 1�1B 1

2

.z/˛z1
�
K.z/ dz

D

Z
fzWz1>�1g\B 1

2

..1C z1/
˛
� 1�˛z1/K.z/ dzC

Z
fzWz1>�1g\B

c
1
2

..1C z1/
˛
� 1/K.z/ dz

� ˛.1�˛/22�˛
Z
B 1
2

jzj2K.z/ dzC

Z
fzWz1>�1g\B

c
1
2

..1C z1/
˛
� 1/K.z/ dz

� ˛.1�˛/22�˛ƒ

C1X
lD0

�
1

2lC2

��1� 1

2lC1

�2
Cƒ

C1X
lD0

.2l�1/�1..1C 2l/˛ � 1/

� 8˛ƒC 4ƒ

�
2˛�1

1� 2˛�1
�

2�1

1� 2�1

�
:

Then the rest of proof is similar to Case 1.

Case 3: 1 < � < 2. For any r > 0 and ˛ > 0, we have

MCL v˛..1Cr/e1/D sup
K2L

Z
Rn

�
v˛..1Cr/e1Cz/�v˛..1Cr/e1/�rv˛..1Cr/e1/�z

�
K.z/dz

D sup
K2L

Z
Rn

�
..rCz1/

C/˛�r˛�˛r˛�1z1
�
K.z/dz
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D r˛�� sup
K2L

Z
Rn

�
..1Cz1/

C/˛�1�˛z1
�
K.z/dz

� r˛��
�

sup
K2L

Z
z1>�1

�
..1Cz1/

C/˛�1�˛z1
�
K.z/dz� inf

K2L

Z
z1��1

.1C˛z1/K.z/dz

�
:

Using (5-1) and (H2), we have

inf
K2L

Z
z1��1

.1C˛z1/K.z/ dz � inf
K2L

Z
z1��1

K.z/ dz�˛ sup
K2L

ˇ̌̌̌Z
Bc1

zK.z/ dz

ˇ̌̌̌
� 2�5�

˛ƒ.� � 1/

1� 21��
:

By (H1) and (H2), we have, for any K 2 L,Z
z1>�1

�
.1Cz1/

˛
�1�˛z1

�
K.z/dzD

Z
fzWz1>�1g\B 1

2

C

Z
fzWz1>�1g\B

c
1
2

�˛.1�˛/22�˛
Z
B 1
2

jzj2K.z/dzC˛

ˇ̌̌̌Z
fzWz1>�1g\B

c
1
2

zK.z/dz

ˇ̌̌̌
C

Z
fzWz1>�1g\B

c
1
2

..1Cz1/
˛
�1/K.z/dz

�
16˛.2��/ƒ

1�2��2
C
2˛ƒ.��1/

1�21��
C16.2��/ƒ

�
2˛��

1�2˛��
�

2��

1�2��

�
:

Then we have

lim
˛!0C

sup
K2L

Z
z1>�1

�
..1Cz1/

C/˛�1�˛z1
�
K.z/dz� inf

K2L

Z
z1��1

.1C˛z1/K.z/dz

� lim
˛!0C

16˛.2��/ƒ

1�2��2
C
2˛ƒ.��1/

1�21��
C16.2��/ƒ

�
2˛��

1�2˛��
�

2��

1�2��

�
�2�5C

˛ƒ.��1/

1�21��

D�2�5:

Similar to Case 1, there exists a sufficiently small ˛ such that

MCL v˛..1C r/e1/� ��5r
˛��: �

Lemma 5.2. Assume that 0<� <2, C0�0 and further assume C0D 0 if � <1. Then there are ˛ >0 and
0< r0 <1 sufficiently small so that the function u˛.x/ WD ..jxj�1/C/˛ satisfiesMCL u˛CC0jru˛j ��1
in B1Cr0nB1.

Proof. We notice that u˛ and jrj are rotation invariant. By Lemma 2.2 in [Schwab and Silvestre 2016],MCL
is also rotation invariant. Then we only need to prove that MCL u˛..1Cr/e1/CC0jru˛..1Cr/e1/j ��1
for any r 2 .0; r0�, where r0 and ˛ are sufficiently small positive constants. Note that, for all r > 0,
u˛..1C r/e1/D v˛..1C r/e1/, ru˛..1C r/e1/Drv˛..1C r/e1/ andˇ̌�

j.1C r/e1C zj � 1
�C
� .r C z1/

C
ˇ̌
� C jz0j2 for any z 2 B1;
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where z D .z1; z0/. Therefore, we have

0� .u˛ � v˛/..1C r/e1C z/�

8<:
Cr˛�1jz0j2; z 2 B r

2
;

C jz0j2˛; z 2 B1nB r
2
;

C jzj˛; z 2 RnnB1:

Using (H1), we have, for any 0 < � < 2 and L 2 L,

0� L.u˛ � v˛/..1C r/e1/

D

Z
Rn
.u˛ � v˛/..1C r/e1C z/K.z/ dz

� C

�Z
B r
2

r˛�1jz0j2K.z/ dzC

Z
B1nB r

2

jz0j2˛K.z/ dzC

Z
RnnB1

jzj˛K.z/ dz

�
� C

�Z
B r
2

r˛�1jzj2K.z/ dzC

Z
Bcr
2

jzj2˛K.z/ dz

�
� Cƒ.r˛��C1C r2˛�� /:

Thus, we have MCL .u˛�v˛/..1Cr/e1/�Cƒ.r
˛��C1Cr2˛�� /. Therefore, by Lemma 5.1, there exists

a sufficiently small ˛ > 0 such that

MCL u˛..1C r/e1/CC0jru˛..1C r/e1/j

�MCL .u˛ � v˛/..1C r/e1/CM
C
L v˛..1C r/e1/CC0jru˛..1C r/e1/j

� Cƒ.r˛��C1C r2˛�� /� �5r
˛��
C˛C0r

˛�1:

We notice that ˛� � C 1 > ˛� � , 2˛� � > ˛� � and

(i) if 0 < � < 1, then C0 D 0;

(ii) if � D 1, then ˛C0! 0 as ˛! 0;

(iii) if 1 < � < 2, then ˛� 1 > ˛� � .

Thus, there exist sufficiently small 0 < r0 < 1 such that we have, for any r 2 .0; r0�,

MCL u˛..1C r/e1/CC0jru˛..1C r/e1/j � �1: (5-3)

This completes the proof. �

In the rest of this section, we assume that � satisfies the uniform exterior ball condition, i.e., there is a
constant r�>0 such that, for any x2@� and 0<r� r�, there exists yrx 2�

c satisfyingBr.yrx/\�Dfxg.
Without loss of generality, we can assume that r� < 1. Since � is a bounded domain, there exists a
sufficiently large constant R0 > 0 such that �� fy W jy1j<R0g.

Remark 5.3. At this stage, we are not sure about whether the exterior ball condition is necessary for
the construction of sub/supersolutions. In future work, we plan to construct sub/supersolutions under a
weaker assumption on �, such as the cone condition.
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Lemma 5.4. Assume that 0<� <2, C0� 0 and further assume C0 D 0 if � < 1. There exists an �7 > 0
such that, for any x 2 @� and 0 < r < r�, there is a continuous function 'x;r satisfying8̂̂̂̂

<̂
ˆ̂̂:
'x;r � 0 in Br.yrx/;

'x;r > 0 in Bcr .y
r
x/;

'x;r � 1 in Bc2r.y
r
x/;

MCL 'x;r CC0jr'x;r j � ��7 in �:

Proof. We define a uniformly continuous function ' in Rn such that 1� ' � 2 and

'.y/D 1 in y1 >R0C 1; '.y/D 2 in y1 �R0:

We pick some sufficiently large C3 > 2=r˛0 and we define

'x;r.y/Dmin
�
'.y/; C3u˛

�
y �yrx
r

��
;

where ˛ and r0 are defined in Lemma 5.2. It is easy to verify that 'x;r � 0 in Br.yrx/, 'x;r > 0 in
Bcr .y

r
x/, and 'x;r � 1 in Bc2r.y

r
x/. By Lemma 5.2, we have MCL u˛CC0jru˛j � �1 in B1Cr0nB1. It

is obvious that, for any y 2 B.1Cr0/r.y
r
x/nBr.y

r
x/, we have�

MCL u˛

�
� �yrx
r

��
.y/CC0r

1��

ˇ̌̌̌�
ru˛

�
� �yrx
r

��
.y/

ˇ̌̌̌
� �r�� for any 0 < r < r�.

Since C0 D 0 if 0 < � < 1, and 0 < r < 1, we have�
MCL u˛

�
� �yrx
r

��
.y/CC0

ˇ̌̌̌�
ru˛

�
� �yrx
r

��
.y/

ˇ̌̌̌
� �1 for any 0 < r < r�.

For any y 2B.1C.2=C3/1=˛/r.y
r
x/nBr.y

r
x/, we have 'x;r.y/DC3u˛..y�yrx/=r/. Suppose that there

exists a test function  2C 2
b
.Rn/ that touches 'x;r from below at y. Thus,  =C3 touches u˛.. � �yrx/=r/

from below at y. Hence, MCL  .y/CC0jr .y/j � �C3. For any y 2 �\Bc
.1C.2=C3/1=˛/r

.yrx/, we
have 'x;r.y/D '.y/DmaxRn 'x;r D 2. Therefore, for any 0 < � < 2, we have

.MCL 'x;r/.y/CC0jr'x;r.y/j D sup
K2L

Z
Rn
.'x;r.yC z/�'x;r.y//K.z/ dz

D sup
K2L

Z
Rn
.'x;r.yC z/� 2/K.z/ dz

� � inf
K2L

Z
fzjz1>�y1CR0C1g

K.z/ dz

� � inf
K2L

Z
fzjz1>2R0C1g

K.z/ dz:

By a similar estimate to (5-1), there exists a positive constant �6 such that, for any K 2 L, we haveZ
fzjz1>2R0C1g

K.z/ dz � �6:
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Then, for any y 2�\Bc
.1C.2=C3/1=˛/r

.yrx/, we have

MCL 'x;r.y/CC0jr'x;r.y/j � ��6: (5-4)

Based on the above estimates, if we set �7 DminfC3; �6g, we have

MCL 'x;r CC0jr'x;r j � ��7 in �: �

Theorem 5.5. Assume that 0 < � < 2, I.x; 0; 0/ is bounded in� and g is a bounded continuous function
in Rn. Assume that I is uniformly elliptic and satisfies (A0), (A2). Then (1-1) admits a continuous
viscosity supersolution u and a continuous viscosity subsolution u and uD uD g in �c.

Proof. We only prove (1-1) admits a viscosity supersolution u and uDg in�c. For a viscosity subsolution,
the construction is similar. Since I is uniformly elliptic, we have, for any x 2�,

�m.kgkL1.Rn//� I.x;�kgkL1.Rn/; 0/� I.x; 0; 0/�m.kgkL1.Rn//:

Thus, we have kI. � ;�kgkL1.Rn/; 0/kL1.�/ < C1. Since g is a continuous function, let �R be a
modulus of continuity of g in BR. Let R1 be a sufficiently large constant such that �� BR1�1. For any
x 2 @�, we let

ux;r D �R1.3r/Cg.x/Cmax

(
2kgkL1.Rn/;



I. � ;�kgkL1.Rn/; 0/

L1.�/
�7

)
'x;r ;

where 'x;r and �7 are given in Lemma 5.4. It is obvious that ux;r.x/D �R1.3r/Cg.x/, ux;r � g in Rn

and
MCL ux;r CC0jrux;r j � �



I. � ;�kgkL1.Rn/; 0/

L1.�/ in �.

Now we define QuD infx2@�;0<r<r�fux;rg. Therefore, QuD g in @� and Qu� g in Rn. For any x 2 @�
and y 2 Rn, we have

g.y/�g.x/� Qu.y/� Qu.x/D Qu.y/�g.x/

� �R1.3r/Cmax

(
2kgkL1.Rn/;



I. � ;�kgkL1.Rn/; 0/

L1.�/
�7

)
'x;r.y/

for any 0 < r < r�. Therefore, Qu is continuous on @�. For any y 2�, we define dy D dist.y; @�/ > 0.
If r < 1

2
dy , then we have, for any z 2 Bdy=2.y/,

ux;r.z/D �R1.3r/Cg.x/C 2max

(
2kgkL1.Rn/;



I. � ;�kgkL1.Rn/; 0/

L1.�/
�7

)
; for any x 2 @�.

Thus, we have, for any z 2 Bdy=2.y/,

inf
x2@�;

dy
2
<r<r�

fux;r.z/�ux;r.y/; 0g � Qu.z/� Qu.y/� sup
x2@�;

dy
2
<r<r�

fux;r.z/�ux;r.y/; 0g:

Since fux;rgx2@�;dy=2<r<r� has a uniform modulus of continuity, Qu is continuous in �. Therefore, Qu is
a bounded continuous function in �. By Lemma 3.1, in � we have

MCL QuCC0jr Quj � �kI. � ;�kgkL1.Rn/; 0/kL1.�/:



PERRON’S METHOD FOR NONLOCAL FULLY NONLINEAR EQUATIONS 1247

Now we define

u WD

�
Qu in �;
g in �c :

By the properties of Qu, we have u is a bounded continuous function in Rn, uD g in �c and

MCL uCC0jruj � �


I. � ;�kgkL1.Rn/; 0/

L1.�/

in �. Using (A2) and uniform ellipticity, we have, for any x 2�,

I.x;�kgkL1.Rn/; 0/� I.x; u.x/; u. � //� I.x; u.x/; 0/� I.x; u.x/; u. � //

�MCL u.x/CC0jru.x/j � �


I. � ;�kgkL1.Rn/; 0/

L1.�/:

Thus, I.x; u.x/; u. � //� 0 in �. �

Now we have enough ingredients to conclude:

Theorem 5.6. Let � be a bounded domain satisfying the uniform exterior ball condition. Assume that
0 < � < 2, I.x; 0; 0/ is bounded in� and g is a bounded continuous function. Assume that I is uniformly
elliptic and satisfies (A0), (A2). Then (1-1) admits a viscosity solution u.

Proof. The result follows from Theorems 3.2, 4.6 and 5.5. �

Corollary 5.7. Let � be a bounded domain satisfying the uniform exterior ball condition. Assume that
0<� <2, bab � 0 in� if � < 1 and cab � 0 in�. Assume that g is a bounded continuous function in Rn,
fKab. � ; z/ga;b;z , fbabga;b , fcabga;b , ffabga;b are sets of uniformly bounded and continuous functions
in �, uniformly in a2A, b 2B, and fKab.x; � / W x 2�; a 2A; b 2 Bg are kernels satisfying (H0)–(H3).
Then (1-2) admits a viscosity solution u.

5B. Degenerate case. In the degenerate case, it is natural to construct a sub/supersolution only for (1-2)
when cab � 
 for some 
 > 0. Recall that � is a bounded domain satisfying the uniform exterior ball
condition with a uniform radius r� and, for any x 2 @� and 0 < r � r�, we have yrx is a point satisfying
Br.y

r
x/\�Dfxg. From now on, we will hide the dependence on x for all variables and functions to make

the notation simpler. For example, we will let yr WD yrx . For any x 2 @�, y 2� and 0< r � r�, we let

n WD
x�yr

jx�yr j
; nry WD

y �yr

jy �yr j
; and vr˛.y/ WD

��
.y �yr/ �n

r
� 1

�C �̨
(see Figure 1).

Instead of letting fKab.x; � / W x 2�; a 2A; b 2 Bg satisfy (H3), we let the set of kernels satisfy the
following weaker assumption:

(H3) There exist C4 > 0, 0 < r1 < r�, � > 0 and � > 0 such that, for any x 2 @�, 0 < r < r1 and
y 2�\B2r.y

r/, there is a set Ary satisfying

(i) Ary � fz W znry < �rs
r
yg\ .BC4rsry nBrsry /, where znry WD z �n

r
y and sry WD jy �y

r j=r � 1;
(ii) jAry j � �jBrsry j;

(iii) K.y; z/� .2� �/�.rsry/
�n�� for any z 2 Ary .
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Figure 1. The exterior ball centered at yr.

Lemma 5.8. Suppose that
˚
Kab.x; � / W a 2A; b 2 B; x 2 fy 2� W dist.y; @�/ < r1g

	
satisfies (H3) for

some r1 2 .0; r�/. Then (H3) holds for the set of kernels.

Proof. For any x 2 @�, 0< r < r1 and y 2�\B2r.yr/, we define

�C4 WD

ˇ̌
.BC4rsry nBC4rs

r
y

2

/\fz W jznry j � rs
r
yg
ˇ̌

jBC4rsry nBC4rs
r
y

2

j
: (5-5)

We notice that the right-hand side of (5-5) depends only on C4. It is obvious that

lim
C4!C1

�C4 D 0:

By (H3), there exists a set A satisfying

A� BC4rsry nBC4rs
r
y

2

; AD�A; jAj � �
ˇ̌
BC4rsry nBC4rs

r
y

2

ˇ̌
;

and, for any z 2 A,

K.y; z/� .2� �/�
�
1
2
C4rs

r
y

��n��
D .2� �/�

�
1
2
C4
��n��

.rsry/
�n��

WD .2� �/ N�.rsry/
�n�� :

There exists a sufficiently large constant C4.� 2/ such that �C4 <
1
2
�. Thenˇ̌

fz W jznry j> rs
r
yg\A

ˇ̌
jBC4rsry nBC4rs

r
y

2

ˇ̌ �

jAj �
ˇ̌
.BC4rsry nBC4rs

r
y

2

/\fz W jznry j � rs
r
yg
ˇ̌

ˇ̌
BC4rsry nBC4rs

r
y

2

ˇ̌ �
�

2
:

Let Ary WD A\fz W znry < �rs
r
yg. By the symmetry of A, we have

jAry j �
1
4
�
ˇ̌
BC4rsry nBC4rs

r
y

2

ˇ̌
�
1
4
�jBrsry j WD N�jBrsry j:

Therefore, (H3) holds for the set of kernels with C4, r1, N� and N�. �
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Lemma 5.9. Assume that 0 < � < 2 and fKab.x; � / W x 2 �; a 2 A; b 2 Bg are kernels satisfying
(H0)–(H2), (H3). Then there exists a sufficiently small ˛ > 0 such that, for any x 2 @�, 0< r < r1 and
s 2 fl 2 .0; 1/ W yr C .1C l/rn 2�g, we have IabŒyr C .1C s/rn; vr˛����8r

��s˛�� , where �8 is some
positive constant.

Proof. We only prove the result for the case 0 < � < 1. For the rest of cases, the proofs are similar to
those in Lemma 5.1. For any x 2 @�, 0< r < r1 and s 2 fl 2 .0; 1/ W yr C .1C l/rn 2�g, we have

IabŒy
r
C.1Cs/rn;vr˛�D

Z
Rn

�
vr˛.y

r
C.1Cs/rnCz/�vr˛.y

r
C.1Cs/rn/

�
Kab.y

r
C.1Cs/rn;z/dz

D

Z
Rn

���
sC
Qzn

r

�C�˛
�s˛

�
Kab.y

r
C.1Cs/rn;z/dz

D r��s˛��
Z

Rn

�
..1CQzn/

C/˛�1
�
.rs/nC�Kab.y

r
C.1Cs/rn;rsz/dz

D r��s˛��

(Z
Qzn>�1

Œ.1CQzn/
˛
�1�.rs/nC�Kab.y

r
C.1Cs/rn;rsz/dz

�

Z
Qzn��1

.rs/nC�Kab.y
r
C.1Cs/rn;rsz/dz

)
;

where Qzn WD z �n. Using (H3), we haveZ
Qzn��1

.rs/nC�Kab.y
r
C .1C s/rn; rsz/ dz D .rs/�

Z
Qzn��rs

Kab.y
r
C .1C s/rn; z/ dz

� .rs/�
Z
Ar
yrC.1Cs/rn

Kab.y
r
C .1C s/rn; z/ dz

� .2� �/��.rs/�njBrsj WD 2�8:

We notice that the kernel .rs/nC�Kab.yr C .1C s/rn; rs � / still satisfies (H1) and (H2). By a similar
calculation to (5-2), we haveZ

Qzn>�1

Œ.1C Qzn/
˛
� 1�.rs/nC�Kab.y

r
C .1C s/rn; rsz/ dz � �.˛/;

where �.˛/ is a positive constant satisfying that �.˛/! 0 as ˛! 0. Then there exists a sufficiently small
˛ such that

IabŒy
r
C .1C s/rn; vr˛�� ��8r

��s˛��: �

Lemma 5.10. Assume that 0 < � < 2, and bab � 0 in � if � < 1. Assume that fbabga;b are sets of
uniformly bounded functions in� and fKab.x; � / W x 2�; a2A; b 2Bg are kernels satisfying (H0)–(H2),
(H3). Then there are ˛ > 0 and 0 < s0 < 1 sufficiently small so that, for any x 2 @� and 0 < r < r1, the
function

ur˛.y/ WD

��
jy �yr j

r
� 1

�C �̨
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satisfies, for any a 2A and b 2 B,

�IabŒy; u
r
˛�C bab.y/ � ru

r
˛.y/� 1 in �\

�
B.1Cs0/r.y

r/nBr.y
r/
�
:

Proof. Note that, for all s >0, we have ur˛.y
rC.1Cs/rn/D vr˛.y

rC.1Cs/rn/, rur˛.y
rC.1Cs/rn/D

rvr˛.y
r C .1C s/rn/ andˇ̌̌̌�

j.1C s/rnC zj

r
� 1

�C
�

�
sC
Qzn

r

�C ˇ̌̌̌
� C
jz� Qznj

2

r2
for any z 2 Br .

Thus, we have

0� .ur˛ � v
r
˛/.y

r
C .1C s/rnC z/�

8<:
Cs˛�1jz� Qznj

2=r2; z 2 B rs
2
;

C jz� Qznj
2˛=r2˛; z 2 Br nB rs

2
;

C jzj˛=r˛; z 2 RnnBr :

Using (H1), we have, for any 0<� <2, a2A, b 2B and s 2 fl 2 .0; 1/ W yr C .1C l/rn 2�g,

0� IabŒy
r
C.1Cs/rn;ur˛�v

r
˛�

�

Z
Rn
.ur˛�v

r
˛/.y

r
C.1Cs/rnCz/Kab.y

r
C.1Cs/rn;z/dz

�C

�Z
B rs
2

s˛�1
jz�Qznj

2

r2
Kab.y

r
C.1Cs/rn;z/dzC

Z
B r
2
nB rs

2

jz�Qznj
2˛

r2˛
Kab.y

r
C.1Cs/rn;z/dz

C

Z
RnnBr

jzj˛

r˛
Kab.y

r
C.1Cs/rn;z/dz

�
�C

�Z
B rs
2

s˛�1
jzj2

r2
Kab.y

r
C.1Cs/rn;z/dzC

Z
RnnB rs

2

jzj2˛

r2˛
Kab.y

r
C.1Cs/rn;z/dz

�
�Cƒr�� .s˛��C1Cs2˛�� /:

By Lemma 5.9, we have

�IabŒy
r
C .1C s/rn; ur˛�� �IabŒy

r
C .1C s/rn; vr˛�� IabŒy

r
C .1C s/rn; ur˛ � v

r
˛�

� r�� Œ�8s
˛��
�Cƒ.s˛��C1C s2˛�� /�: (5-6)

For any y 2�\ .B2r.yr/nBr.yr//, we have

�IabŒy; u
r
˛�D�

Z
Rn
ızu

r
˛.y/Kab.y; z/ dz

D�

Z
Rn
ızu

r
˛.y

r
C .1C sry/rn

r
y/Kab.y; z/ dz

D�

Z
Rn
ızu

r
˛.y

r
C .1C sry/rn/Kab

�
y;

�
z

jzj
Cnry �n

�
jzj

�
dz:

Using (H3) and a similar estimate to (5-6), we have

�IabŒy; u
r
˛�� r

��
�
�8.s

r
y/
˛��
�Cƒ..sry/

˛��C1
C .sry/

2˛�� /
�
:
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By a similar estimate to (5-3), there exists a sufficiently small constant 0 < s0 < 1 such that we have, for
any y 2�\ .B.1Cs0/r.y

r/nBr.y
r//,

�IabŒy; u
r
˛�C bab.y/ � ru

r
˛.y/� 1: �

Lemma 5.11. Assume that 0<� <2, bab�0 in� if � <1 and cab�
 in� for some 
 >0. Assume that
fKab. � ; z/ga;b;z , fbabga;b , fcabga;b , ffabga;b are sets of uniformly bounded and continuous functions
in �, uniformly in a2A, b 2B, and fKab.x; � / W x 2�; a 2A; b 2 Bg are kernels satisfying (H0)–(H2),
(H3). Then, for any x 2 @� and 0 < r < r1, there is a continuous viscosity supersolution  r of (3-5) such
that  r � 0 in Br.yr/,  r > 0 in Bcr .y

r/ and

 r �
supa2A;b2B kfabkL1.�/C 1



in Bc.1Cs0/r.y

r/; (5-7)

where s0 is given by Lemma 5.10.

Proof. Without loss of generality, we assume that 0 < 
 < 1. We pick a sufficiently large C5 > 0 that

C5 >
supa2A;b2B kfabkL1.�/C 1

s˛0 

: (5-8)

We then define, for any x 2 @� and 0 < r < r1,

 r.y/Dmin
�

supa2A;b2B kfabkL1.�/C 1



; C5u
r
˛.y/

�
:

It is easy to verify that  r � 0 in Br.yr/,  r > 0 in Bcr .y
r/ and  r is a continuous function in Rn.

Using (5-8), we know that

C5u
r
˛ � C5s

˛
0 �

supa2A;b2B kfabkL1.�/C 1



in Bc.1Cs0/r.y
r/.

Therefore, (5-7) holds. Since cab � 
 > 0 in �, .supa2A;b2B kfabkL1.�/C 1/=
 is a viscosity superso-
lution of (3-5) in �. By Lemma 5.10 and (5-7), we have, for any y 2�\ .B.1Cs0/r.y

r/nBr.y
r//,

sup
a2A

inf
b2B

˚
�IabŒy; C5u

r
˛�CC5bab.x/ � ru

r
˛.y/CC5cab.x/u

r
˛.y/Cfab.y/

	
� sup
a2A;b2B

kfabkL1.�/C 1Cfab.y/� 0: (5-9)

Therefore,  r is a continuous viscosity supersolution of (3-5) in �. �

Theorem 5.12. Assume that 0 < � < 2, bab � 0 in � if � < 1 and cab � 
 in � for some 
 > 0.
Assume that g is a bounded continuous function in Rn, fKab. � ; z/ga;b;z , fbabga;b , fcabga;b , ffabga;b
are sets of uniformly bounded and continuous functions in �, uniformly in a2A, b 2B, and fKab.x; � / W
x 2�; a 2A; b 2 Bg are kernels satisfying (H0)–(H2), (H3). Then (1-2) admits a continuous viscosity
supersolution u and a continuous viscosity subsolution u and uD uD g in �c.
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Proof. We only prove (1-2) admits a viscosity supersolution u such that u D g in �c. Since g is a
continuous function, let �R be a modulus of continuity of g in BR. Let R1 be a sufficiently large constant
such that �� BR1�1. For any x 2 @�, we let

ur D �R1.3r/Cg.x/C

�
2kgkL1.Rn/




supa2A;b2B kfabkL1.�/C 1
C 1

�
 r ;

where  r is given in Lemma 5.11. Using Lemma 5.11, ur.x/D �R1.3r/Cg.x/, ur � g in Rn and ur is
a continuous viscosity supersolution of (3-5) in�. Then the rest of the proof is similar to Theorem 5.5. �

Theorem 5.13. Let � be a bounded domain satisfying the uniform exterior ball condition. Assume that
0 < � < 2, bab � 0 in � if � < 1 and cab � 
 in � for some 
 > 0. Assume that g is a bounded
continuous function in Rn, fKab. � ; z/ga;b;z , fbabga;b , fcabga;b , ffabga;b are sets of uniformly bounded
and continuous functions in �, uniformly in a 2A, b 2 B, and fKab.x; � / W x 2 �; a 2 A; b 2 Bg are
kernels satisfying (H0)–(H2), (H3). Then (1-2) admits a discontinuous viscosity solution u.

Proof. The result follows from Corollary 3.4 and Theorem 5.12. �
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