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HARDY-SINGULAR BOUNDARY MASS AND
SOBOLEV-CRITICAL VARIATIONAL PROBLEMS

NASSIF GHOUSSOUB AND FRÉDÉRIC ROBERT

We investigate the Hardy–Schrödinger operator Lγ =−1− γ /|x |2 on smooth domains �⊂ Rn whose
boundaries contain the singularity 0. We prove a Hopf-type result and optimal regularity for variational
solutions of corresponding linear and nonlinear Dirichlet boundary value problems, including the equation
Lγ u= u2?(s)−1/|x |s, where γ < 1

4 n2, s ∈ [0, 2) and 2?(s) := 2(n−s)/(n−2) is the critical Hardy–Sobolev
exponent. We also give a complete description of the profile of all positive solutions — variational or not —
of the corresponding linear equation on the punctured domain. The value γ = 1

4 (n
2
− 1) turns out to be a

critical threshold for the operator Lγ . When 1
4 (n

2
− 1) < γ < 1

4 n2, a notion of Hardy singular boundary
mass mγ (�) associated to the operator Lγ can be assigned to any conformally bounded domain � such
that 0 ∈ ∂�. As a byproduct, we give a complete answer to problems of existence of extremals for
Hardy–Sobolev inequalities, and consequently for those of Caffarelli, Kohn and Nirenberg. These results
extend previous contributions by the authors in the case γ = 0, and by Chern and Lin for the case
γ < 1

4 (n − 2)2. More specifically, we show that extremals exist when 0 ≤ γ ≤ 1
4 (n

2
− 1) if the mean

curvature of ∂� at 0 is negative. On the other hand, if 1
4 (n

2
−1) < γ < 1

4 n2, extremals then exist whenever
the Hardy singular boundary mass mγ (�) of the domain is positive.
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1. Introduction

The borderline Dirichlet boundary value problem
−1u− γ

u
|x |2
= u(n+2)/(n−2) on �,

u > 0 on �,

u = 0 on ∂�,

(1-1)

on a smooth bounded domain � of Rn (n ≥ 3) has no energy minimizing solutions if the singularity 0
belongs to the interior of the domain �; see the discussion after inequality (1-15). The situation changes
dramatically, however, if 0 is situated on the boundary ∂�. Indeed, Chern and Lin [2003; 2010] showed that
solutions exist in this case provided the mean curvature of ∂� at 0 is negative, n≥ 4, and 0<γ < 1

4(n−2)2.
The condition on γ ensures that the Hardy–Schrödinger operator Lγ := −1− γ /|x |2 is positive on
H 1

0 (�). This is the case as long as γ < γH (�), the latter being the best constant in the corresponding
Hardy inequality, i.e.,

γH (�) := inf
{ ∫

�
|∇u|2 dx∫

�
u2/|x |2 dx

: u ∈ D1,2(�) \ {0}
}
. (1-2)

Here D1,2(�)— or H 1
0 (�) if the domain is bounded — is the completion of C∞c (�) with respect to the

norm given by ‖u‖2 =
∫
�
|∇u|2 dx , and it is well known that for any domain � having 0 in its interior,

we have
γ (�)= γH (R

n)= 1
4(n− 2)2. (1-3)

On the other hand, γH (R
n
+
)= 1

4 n2 when Rn
+
:= {x ∈Rn

: x1 > 0} is the half-space, and if � is any domain
having 0 on its boundary, then necessarily

1
4(n− 2)2 < γH (�)≤

1
4 n2. (1-4)

The question of what happens when 1
4(n − 2)2 < γ < γH (�) provided the initial motivation for this

paper. To start with, we shall show that the negative mean curvature condition at 0 is still sufficient for
the existence of solutions for (1-1) as long as γ remains below a new (higher) threshold, namely when
n ≥ 4 and

0< γ ≤ 1
4(n

2
− 1). (1-5)

However, the situation changes dramatically for the remaining interval, i.e., when

1
4(n

2
− 1) < γ < γH (�). (1-6)

In this case, we show that local geometric conditions at 0 become irrelevant for solving (1-1) and more
global properties of the domain must come into play. This will be illustrated by the notion of Hardy
singular boundary mass of the domain � that we introduce as follows.

We first consider the Hardy–Schrödinger operator Lγ := −1−γ /|x |2 on Rn
+

, and notice that the most
basic solutions for Lγ u = 0 satisfying u = 0 on ∂Rn

+
are of the form uα(x)= x1|x |−α, and that Lγ uα = 0
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on Rn
+

if and only if α is either α−(γ ) or α+(γ ), where

α±(γ ) :=
1
2 n±

√
1
4 n2− γ . (1-7)

Actually, a byproduct of our analysis below gives that any nonnegative solution of Lγ u = 0 on Rn
+

with
u= 0 on ∂Rn

+
is a linear combination of these two solutions. Note that α−(γ )< 1

2 n<α+(γ ), which points
to the difference — in terms of behavior around 0 — between the “small” solution x 7→ x1|x |−α−(γ ), and
the “large” one x 7→ x1|x |−α+(γ ). Indeed, the small solution is “variational”, i.e., is locally in D1,2(Rn

+
),

while the large one is not.
This turns out to hold in more general settings, as we show that any variational solution of Lγ u= a(x)u

behaves like x 7→d(x, ∂�)|x |−α−(γ ) around 0, while any positive nonvariational solution is necessarily like
x 7→ d(x, ∂�)|x |−α+(γ ) around 0. The profile can be made more explicit when γ > 1

4(n
2
−1), as it is the

only situation in which one can write a solution of Lγ u = 0 as the sum of the two above described profiles
(plus lower-order terms), while if γ ≤ 1

4(n
2
− 1), there might be some intermediate terms between the

two profiles. This led us to define the following notion of mass, which is reminiscent of the positive mass
theorem of Schoen and Yau [1988] that was used to complete the solution of the Yamabe problem. This will
allow us to settle the remaining cases left by Chern and Lin, since we establish that the positivity of such
a boundary singular mass is sufficient to guarantee the existence of solutions for (1-1) in low dimensions.

Theorem 1.1. Let� be a smooth bounded domain of Rn such that 0∈∂�. Assume 1
4(n

2
−1)<γ <γH (�).

Then, up to multiplication by a positive constant, there exists a unique function H ∈C2(�\ {0}) such that
−1H −

γ

|x |2
H = 0 in �,

H > 0 in �,

H = 0 on ∂� \ {0}.

(1-8)

Moreover, there exists a constant c ∈ R and H satisfying (1-8) such that

H(x)=
d(x, ∂�)
|x |α+(γ )

+ c
d(x, ∂�)
|x |α−(γ )

+ o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0.

Due to the uniqueness of solutions to (1-8) up to multiplication by a constant, the coefficient c is uniquely
defined. It will be denoted by mγ (�) := c ∈ R, and will be referred to as the Hardy singular boundary
mass of �.

It will be shown in Section 7 that this notion of mass is conformally invariant in the following sense: if
two sets are diffeomorphic via an inversion fixing 0 (see Definition 7.3 and (7-16)), then they have the
same mass. As a consequence, we shall be able to define a notion of Hardy singular boundary mass for
unbounded domains that are conformally bounded (that is, those that are smooth and bounded up to an
inversion that fixes 0). We shall show that �→ mγ (�) is a monotone set-function and that mγ (R

n
+
)= 0.

These properties will allow us to construct in Section 9, examples of bounded domains � in Rn with
0 ∈ ∂� with either positive or negative boundary mass, while satisfying any local behavior at 0 one
wishes. In other words, the sign of the Hardy-singular boundary mass is totally independent of the local
properties of ∂� around 0.
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One motivation for considering equation (1-1) came from the problem of existence of extremals for
the Caffarelli–Kohn–Nirenberg (CKN) inequalities [1984]. These state that in dimension n ≥ 3, there is a
constant C := C(a, b, n) > 0 such that, for all u ∈ C∞c (R

n),(∫
Rn
|x |−bq

|u|q
)2/q

≤ C
∫

Rn
|x |−2a

|∇u|2 dx, (1-9)

where

−∞< a <
n− 2

2
, 0≤ b− a ≤ 1, and q =

2n
n− 2+ 2(b− a)

. (1-10)

If we let D1,2
a (�) be the completion of C∞c (�) with respect to the norm ‖u‖2a =

∫
�
|x |−2a

|∇u|2 dx , then
the best constant in (1-9) is given by

S(a, b, �)= inf

{ ∫
�
|x |−2a

|∇u|2 dx(∫
�
|x |−bq |u|q

)2/q dx
: u ∈ D1,2

a (�)\{0}

}
. (1-11)

The extremal functions for S(a, b, �)— whenever they exist — are then the least-energy solutions of the
corresponding Euler–Lagrange equations

− div(|x |−2a
∇u)= |x |−bquq−1 on �,

u > 0 on �,
u = 0 on ∂�.

(1-12)

To make the connection with the Hardy–Schrödinger operator, note that the substitution v(x) =
|x |−au(x) with a < 1

2(n − 2), gives — via the Hardy inequality — that u ∈ D1,2
a (�) if and only if

v ∈ D1,2(�) and that u is a variational solution of (1-12) if and only if v is a solution of equation
−1v− γ

v

|x |2
=
v2?(s)−1

|x |s
on �,

v > 0 on �,

v = 0 on ∂�,

(1-13)

where

γ = a(n− 2− a), s = (b− a)q and 2? =
2n

n− 2+ 2(b− a)
. (1-14)

The Caffarelli–Kohn–Nirenberg inequalities are then equivalent to the Hardy–Sobolev inequality

C
(∫

�

u2?(s)

|x |s
dx
)2/2?(s)

≤

∫
�

|∇u|2 dx − γ
∫
�

u2

|x |2
dx for all u ∈ D1,2(�), (1-15)

at least in the case when γ < 1
4(n− 2)2, which is optimal for domains � having 0 in their interior. If � is

also bounded, then the best constant in (1-15) is never attained; that is, (1-13) has no energy minimizing
solution.
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However, when 0∈ ∂�, inequality (1-15) holds for γ all the way up to 1
4 n2, and we shall work thereafter

towards solving (1-13) by finding extremals for the variational problem

µγ,s(�) := inf
{

J�γ,s(u) : u ∈ D1,2(�) \ {0}
}
, (1-16)

where J�γ,s is the functional on D1,2(�) defined by

J�γ,s(u) :=

∫
�
|∇u|2− γ

∫
�

u2/|x |2 dx(∫
�

u2?(s)/|x |s dx
)2/2?(s) . (1-17)

We shall therefore consider the more general equation (1-13). The study of this type of nonlinear singular
problems when 0∈∂�was initiated by Ghoussoub and Kang [2004] and studied extensively by Ghoussoub
and Robert [2006a; 2006b] in the case γ = 0. Chern and Lin [2003; 2010] and Lin and Wadade [2012]
dealt with the case γ < 1

4(n− 2)2. For more contributions, we refer to [Attar, Merchán and Peral 2015;
Dávila and Peral 2011; Gmira and Véron 1991].

Theorem 1.2. Let� be a smooth bounded domain in Rn (n ≥ 3) such that 0 ∈ ∂�. Assume γ ≤ 1
4(n

2
−1)

and 0≤ s < 2. If either {s > 0} or {s=0, n≥4 and γ >0}, then there are extremals for µγ,s(�) provided
the mean curvature of ∂� at 0 is negative.

As mentioned above, our main contribution here to this problem is to consider the cases when
1
4(n

2
− 1)≤ γ < 1

4 n2, as well as when n= 3, s= 0 and γ > 0, which were left open by Chern and Lin
[2010]. We now introduce the new ingredients that we bring to the discussion.

We first note that standard compactness arguments [Ghoussoub and Kang 2004; Chern and Lin 2010]
yield that for µγ,s(�) to be attained it is sufficient to have that

µγ,s(�) < µγ,s(R
n
+
), (1-18)

and in order to prove the existence of such a gap, one tries to construct test functions for µγ,s(�) that are
based on the extremals of µγ,s(Rn

+
) provided the latter exist. The cases where this is known are given by

the following standard proposition. See, for instance, [Bartsch, Peng and Zhang 2007; Chern and Lin
2010]. A complete proof is given in [Ghoussoub and Robert 2016].

Proposition 1.3. Assume γ < 1
4 n2, n≥ 3 and 0≤ s< 2. Then:

(1) µγ,s(Rn
+
) is attained provided either {s > 0} or {s= 0, n≥ 4 and γ > 0}.

(2) On the other hand, there are no extremals for µγ,s(Rn
+
) for any n ≥ 3 if {s = 0 and γ ≤ 0}.

(3) Furthermore, whenever µγ,0(Rn
+
) has no extremals, then necessarily

µγ,0(R
n
+
)= inf

u∈D1,2(Rn)\{0}

∫
Rn |∇u|2 dx(∫

Rn |u|2
? dx

)2/2? =
1

K (n, 2)2
, (1-19)

where 2? := 2n/(n− 2) and 1/K (n, 2)2 is the best constant in the Sobolev inequality.

The only unknown situation on Rn
+

is again when s = 0, n = 3 and γ > 0, which we address in
Section 10.
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Assuming first that an extremal for µγ,s(Rn
+
) exists and that one knows its profile at infinity and at 0,

this information can be used to construct test functions for µγ,s(�). This classical method has been used
by Kang and Ghoussoub [2004], by Ghoussoub and Robert [2006b; 2006a] when γ = 0, and by Chern
and Lin [2010] for 0< γ < 1

4(n− 2)2 in order to establish (1-18) under the assumption that ∂� has a
negative mean curvature at 0. Actually, the estimates of Chern and Lin [2010] extend directly to establish
Theorem 1.2 for all γ < 1

4(n
2
− 1) under the same negative mean curvature condition. However, the case

where γ = 1
4(n

2
−1) already requires estimates on the profile of variational solutions of (1-13) on Rn

+
that

are finer than those used by Chern and Lin [2010]. The following description of such a profile will allow
us to construct sharper test functions and to prove existence of solutions for (1-13) when γ = 1

4(n
2
− 1).

Theorem 1.4. Assume γ < 1
4 n2 and 0≤ s < 2, and let u ∈ D1,2(Rn

+
), u≥ 0, u 6≡ 0 be a weak solution to

−1u−
γ

|x |2
u =

u2?(s)−1

|x |s
in Rn

+
. (1-20)

Then, there exist K1, K2 > 0 such that

u(x)∼x→0 K1
x1

|x |α−(γ )
and u(x)∼|x |→+∞ K2

x1

|x |α+(γ )
.

The solution of the problem on Rn
+

also enjoys the following natural symmetry that will be crucial for
the sequel. This was carried out by Ghoussoub and Robert [2006a] when γ = 0, and their proof extends
immediately to the case 0≤ γ < 1

4 n2. Chern and Lin [2010] gave another proof which also includes the
case where γ < 0.

Theorem 1.5 [Chern and Lin 2010]. If u is a nonnegative solution to (1-20) in D1,2(Rn
+
), then u ◦ σ = u

for all isometries of Rn such that σ(Rn
+
)= Rn

+
. In particular, there exists v ∈ C∞((0,+∞)×R) such

that for all x1 > 0 and all x ′ ∈ Rn−1, we have that u(x1, x ′)= v(x1, |x ′|).

The following theorem summarizes the situation for low dimensions.

Theorem 1.6. Let � be a bounded smooth domain of Rn (n ≥ 3) such that 0 ∈ ∂�, hence 1
4(n− 2)2 <

γH (�)≤
1
4 n2. Let 0≤ s < 2.

(1) If γH (�)≤ γ <
1
4 n2, then there are extremals for µγ,s(�) for all n ≥ 3.

(2) If 1
4(n

2
− 1) < γ < γH (�) and either {s > 0} or {s= 0, n≥ 4 and γ > 0}, then there are extremals

for µγ,s(�) provided the Hardy singular boundary mass mγ (�) is positive.

(3) If {s = 0 and γ ≤ 0}, then there are no extremals for µγ,0(�) for any n ≥ 3.

Finally, we address in Section 10 the only remaining case, i.e., n= 3, s = 0 and γ ∈
(
0, 9

4

)
. In this

situation, there may or may not be extremals for µγ,0(R3
+
). If they do exist, we can then argue as before —

using the same test functions — to conclude existence of extremals under the same conditions, that is,
either γ ≤ 2 and the mean curvature of ∂� at 0 is negative, or γ > 2 and the mass mγ (�) is positive.
However, if no extremals exist for µγ,0(R3

+
), then as noted in (1-19), we have that

µγ,0(R
3
+
)= inf

u∈D1,2(R3)\{0}

∫
R3 |∇u|2 dx(∫

R3 |u|2
? dx

)2/2? =
1

K (3, 2)2
,
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Hardy term dimension geometric condition extremal

−∞<γ ≤ 1
4(n

2
−1) n≥ 3 negative mean curvature at 0 yes

1
4(n

2
−1)< γ < 1

4 n2 n≥ 3 positive boundary-mass yes

Table 1. Singular Sobolev-critical term: s> 0.

Hardy term dimension geometric condition extremal

0<γ ≤ 1
4(n

2
−1)

n= 3 negative mean curvature at 0 and positive internal mass yes
n≥ 4 negative mean curvature at 0 yes

1
4(n

2
−1)< γ < 1

4 n2 n= 3 positive boundary-mass and positive internal mass yes
n≥ 4 positive boundary mass yes

γ ≤ 0 n≥ 3 — no

Table 2. Nonsingular Sobolev-critical term: s= 0.

and we are back to the case of the Yamabe problem with no boundary singularity. This means that one
needs to resort to a more standard notion of mass Rγ (�, x0) associated to Lγ and an interior point x0 ∈�

in order to construct suitable test functions in the spirit of [Schoen 1984]. Such an interior mass will
be introduced in Section 10. We get the following (note that the boundary mass mγ (�) was defined in
Theorem 1.1).

Theorem 1.7. Let � be a bounded smooth domain of R3 such that 0 ∈ ∂�. In particular 1
4 < γH (�)≤

9
4 .

(1) If γH (�)≤ γ <
9
4 , then there are extremals for µγ,0(�).

(2) If 0< γ < γH (�) and if there exists x0 ∈� such that Rγ (�, x0) > 0, then there are extremals for
µγ,0(�) under either one of the following conditions:

(a) γ ≤ 2 and the mean curvature of ∂� at 0 is negative.
(b) γ > 2 and the boundary mass mγ (�) is positive.

More precisely, if there are extremals for µγ,0(R3), then conditions (a) and (b) are sufficient to get
extremals for µγ,0(�). If there are no extremals for µγ,0(R3), then the positivity of the internal mass
Rγ (�, x0) is sufficient to get extremals for µγ,0(�). Tables 1 and 2 summarize our findings.

Notation. In the sequel, Ci (a, b, . . . ) (i = 1, 2, . . . ) will denote constants depending on a, b, . . . . The
same notation can be used for different constants, even in the same line. We will always refer to the
monograph [Gilbarg and Trudinger 1998] for the standard results on elliptic PDEs.

2. Old and new inequalities involving singular weights

The following general form of the Hardy inequality is well known. See, for example, [Cowan 2010] or
the book [Ghoussoub and Moradifam 2013].
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Theorem 2.1. Let � be a connected open subset of Rn and consider ρ ∈ C∞(�) such that ρ > 0 and
−1ρ > 0. Then, for any u ∈ D1,2(�) we have∫

�

−1ρ

ρ
u2 dx ≤

∫
�

|∇u|2 dx . (2-1)

Moreover, the case of equality is achieved exactly on Rρ ∩ D1,2(�). In particular, if ρ 6∈ D1,2(�), there
are no nontrivial extremals for (2-1).

The above theorem applies to various weight functions ρ. See, for example, [Cowan 2010; Ghoussoub
and Moradifam 2013]. For this paper, we use it to derive the following inequality.

Corollary 2.2. Fix 1≤ k ≤ n. We then have the following inequality.(
n+ 2k− 2

2

)2

= inf
u

∫
Rk
+×Rn−k |∇u|2 dx∫

Rk
+×Rn−k u2/|x |2 dx

,

where the infimum is taken over all u in D1,2(Rk
+
×Rn−k) \ {0}. Moreover, the infimum is never achieved.

Proof. Take ρ(x) := x1 · · · xk |x |−α for all x ∈� := Rk
+
×Rn−k

\ {0}. Then

−1ρ

ρ
=
α(n+ 2k− 2−α)

|x |2
.

We then maximize the constant by taking α := 1
2(n+ 2k− 2). Since ρ 6∈ D1,2(Rk

+
×Rn−k), Theorem 2.1

applies and we obtain that(
n+ 2k− 2

2

)2 ∫
Rk
+×Rn−k

u2

|x |2
dx ≤

∫
Rk
+×Rn−k

|∇u|2 dx (2-2)

for all u ∈ D1,2(Rk
+
×Rn−k), and that the extremals are trivial.

It remains to prove that the constant in (2-2) is optimal. This will be achieved via the following
test function estimates. Construct a sequence (ρε)ε>0 ∈ D1,2(Rk

+
× Rn−k) as follows. Starting with

ρ(x)= x1 · · · xk |x |−α, we fix β > 0 and define

ρε(x) :=


|x/ε|βρ(x) if |x |< ε,
ρ(x) if ε ≤ |x | ≤ 1/ε,
|ε · x |−βρ(x) if |x |> 1/ε,

(2-3)

with α := 1
2(n+ 2k− 2). As one checks, ρε ∈ D1,2(Rk

+
×Rn−k) for all ε > 0. The changes of variables

x = εy and x = ε−1z yield∫
Bε(0)

ρ2
ε

|x |2
dx = O(1),

∫
Rn\B

ε−1 (0)

ρ2
ε

|x |2
dx = O(1),∫

Bε(0)
|∇ρε |

2 dx = O(1),
∫

Rn\B
ε−1 (0)
|∇ρε |

2 dx = O(1),
(2-4)
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when ε→ 0. By integrating by parts, we get∫
B
ε−1 (0)\Bε(0)

|∇ρε |
2 dx =

∫
B
ε−1 (0)\Bε(0)

−1ρ

ρ
ρ2 dx + O(1)

=

(
n+ 2k− 2

2

)2 ∫
B
ε−1 (0)\Bε(0)

ρ2

|x |2
dx + O(1), (2-5)

when ε→ 0. Using polar coordinates, we obtain∫
B
ε−1 (0)\Bε(0)

ρ2

|x |2
dx = C(2) ln 1

ε
, where C(2) := 2

∫
Sn−1

∣∣∣∣ k∏
i=1

xi

∣∣∣∣2 dσ. (2-6)

Therefore, by using (2-4), (2-5) and (2-6),∫
Rk
+×Rn−k |∇ρε |

2 dx∫
Rk
+×Rn−k ρ2

ε /|x |2 dx
=

(
n+ 2k− 2

2

)2

+ o(1)

as ε→ 0, and we are done. Note that the infimum is never achieved since ρ 6∈ D1,2(Rk
+
×Rn−k). �

Another approach to prove Corollary 2.2 is to see Rk
+
×Rn−k as a cone generated by a domain of the

unit sphere. Then the Hardy constant is given by the Hardy constant of Rn plus the first eigenvalue of the
Laplacian of the Dirichlet of the above domain of the unit sphere endowed with its canonical metric. This
point of view is developed in [Pinchover and Tintarev 2005] (see also [Fall and Musina 2012; Ghoussoub
and Moradifam 2013] for an exposition in book form).

We also have the following generalized Caffarelli–Kohn–Nirenberg inequality.

Proposition 2.3. Let � be an open subset of Rn. Let ρ, ρ ′ ∈ C∞(�) be such that ρ, ρ ′ > 0 and
−1ρ,−1ρ ′ > 0. Fix s ∈ [0, 2] and assume that there exists ε ∈ (0, 1) and ρε ∈ C∞(�) such that

−1ρ

ρ
≤ (1− ε)

−1ρε

ρε
in � with ρε,−1ρε > 0.

Then, for all u ∈ C∞c (�),(∫
�

(
−1ρ ′

ρ ′

)s/2

ρ2?(s)
|u|2

?(s) dx
)2/2?(s)

≤ C
∫
�

ρ2
|∇u|2 dx . (2-7)

Proof. The Sobolev inequality yields the existence of C(n) > 0 such that(∫
�

|u|2
?

dx
)2/2?

≤ C(n)
∫
�

|∇u|2 dx

for all u ∈ C∞c (�), where 2? = 2?(0) = 2n/(n − 2). A Hölder inequality interpolating between this
Sobolev inequality and the Hardy inequality (2-1) for ρ ′ yields the existence of C > 0 such that for all
u ∈ C∞c (�), (∫

�

(
−1ρ ′

ρ ′

)s/2

|u|2
?(s) dx

)2/2?(s)

≤ C
∫
�

|∇u|2 dx . (2-8)
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By applying (2-1) to ρε , we get for v ∈ C∞c (�),∫
�

ρ2
|∇v|2 dx =

∫
�

|∇(ρv)|2 dx −
∫
�

−1ρ

ρ
(ρv)2 dx

≥

∫
�

|∇(ρv)|2 dx − (1− ε)
∫
�

−1ρε

ρε
(ρv)2 dx ≥ ε

∫
�

|∇(ρv)|2.

Taking u := ρv in (2-8) and using this latest inequality yield (2-7). �

Corollary 2.4. Fix k ∈ {1, . . . , n− 1}. There exists then a constant C := C(a, b, n) > 0 such that for all
u ∈ C∞c (R

k
+
×Rn−k),(∫

Rk
+×Rn−k

|x |−bq
( k∏

i=1

xi

)q

|u|q
)2/q

≤ C
∫

Rk
+×Rn−k

( k∏
i=1

xi

)2

|x |−2a
|∇u|2 dx, (2-9)

where

−∞< a <
n− 2+ 2k

2
, 0≤ b− a ≤ 1, q =

2n
n− 2+ 2(b− a)

. (2-10)

Proof. Apply Proposition 2.3 with ρ(x)= ρ ′(x)=
(∏k

i=1 xi
)
|x |−a and ρε(x)=

(∏k
i=1 xi

)
|x |−(n−2+2k)/2

for all x ∈ Rk
+
×Rn−k. Corollary 2.4 then follows for suitable a, b, q . �

Remark. Observe that by taking k = 0, we recover the classical Caffarelli–Kohn–Nirenberg inequalities
(1-9). However, one does not see any improvement in the integrability of the weight functions since(∏k

i=1 xi
)
|x |−a is of order k − a > − 1

2(n − 2), hence as close as we wish to (n − 2)/2 with the right
choice of a. The relevance here appears when one considers the Hardy inequality of Corollary 2.2.

3. On the best constants in the Hardy and Hardy–Sobolev inequalities

As mentioned in the Introduction, the best constant in the Hardy inequality γH (�) does not depend on the
domain �⊂ Rn if the singularity 0 belongs to the interior of �, and it is always equal to 1

4(n− 2)2. We
have seen, however, in the last section that the situation changes whenever 0 ∈ ∂�, since γH (R

n
+
)= 1

4 n2.
Some properties of the best Hardy constants were studied in [Fall and Musina 2012; Fall 2012]. In this
section, we shall collect whatever information we shall need later on about γH .

Proposition 3.1. The best Hardy constant γH satisfies the following properties:

(1) γH (�)=
1
4(n− 2)2 for any smooth domain � such that 0 ∈�.

(2) If 0 ∈ ∂�, then 1
4(n− 2)2 < γH (�)≤

1
4 n2.

(3) γH (�)=
1
4 n2 for every � such that 0 ∈ ∂� and �⊂ Rn

+
.

(4) If γH (�) <
1
4 n2, then it is attained in D1,2(�).

(5) We have inf{γH (�) : 0 ∈ ∂�} = 1
4(n− 2)2.

(6) For every ε > 0, there exists a smooth domain Rn
+
( �ε ( Rn such that 0 ∈ ∂�ε and 1

4 n2
− ε ≤

γH (�ε) <
1
4 n2.
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Proof. Properties (1)–(4) are well known (see [Fall and Musina 2012; Fall 2012]). We sketch proofs since
we will make frequent use of the test functions involved. Note first that Corollary 2.2 already yields that
γH (R

n
+
)= 1

4 n2.

(2) Since �⊂ Rn, we have that γH (�)≥ γH (R
n)= 1

4(n− 2)2. Assume by contradiction that γH (�)=
1
4(n − 2)2. It then follows from Theorem 3.6 below (applied with s = 2) that γH (�) is achieved by
a function in u0 ∈ D1,2(�) \ {0} (note that µ0,γ (�) = γH (�) − γ ). Therefore, γH (R

n) is achieved
in D1,2(Rn). Up to taking |u0|, we can assume that u0 ≥ 0. Therefore, the Euler–Lagrange equation
and the maximum principle yield u0 > 0 in Rn: this is impossible since u0 ∈ D1,2(�). Therefore
γH (�) >

1
4(n− 2)2.

For the other inequality, the standard proof normally uses the fact that the domain contains an interior
sphere that is tangent to the boundary at 0. We choose here to perform another proof based on test
functions, which will be used again to prove Proposition 3.3. It goes as follows: since � is a smooth
bounded domain of Rn such that 0 ∈ ∂�, there exist U, V open subsets of Rn such that 0 ∈U and 0 ∈ V
and there exists ϕ ∈ C∞(U, V ) a diffeomorphism such that ϕ(0)= 0 and

ϕ(U ∩ {x1 > 0})= ϕ(U )∩� and ϕ(U ∩ {x1 = 0})= ϕ(U )∩ ∂�.

Moreover, we can and shall assume that dϕ0 is an isometry. Let η ∈ C∞c (U ) such that η(x) = 1 for
x ∈ Bδ(0) for some δ > 0 small enough, and consider (αε)ε>0 ∈ (0,+∞) such that αε = o(ε) as ε→ 0.
For ε > 0, define

uε(x) :=
{
η(y)α−(n−2)/2

ε ρε(y/αε) for all x ∈ ϕ(U )∩�, x = ϕ(y),
0 elsewhere.

(3-1)

Here ρε is constructed as in (2-3) with k = 1. Now fix σ ∈ [0, 2], and note that only the case σ = 2 is
needed for the above proposition. Immediate computations yield∫

�

|uε(y)|2
?(σ )

|y|σ
dy = C(σ ) ln 1

ε
+ O(1) as ε→ 0, (3-2)

where C(σ ) := 2
∫

Sn−1

∣∣∏k
i=1 xi

∣∣2?(σ ) dσ . Similar arguments yield∫
�

|∇uε |2 dy = n2

4
C(2) ln 1

ε
+ O(1) as ε→ 0. (3-3)

As a consequence, we get that ∫
�
|∇uε |2 dx∫

�
u2
ε/|x |2 dx

=
n2

4
+ o(1) as ε→ 0.

In particular, we get that γH (�)≤
1
4 n2, which proves the upper bound in item (2) of the proposition.

(3) Assume that �⊂ Rn
+

. Then D1,2(�)⊂ D1,2(Rn
+
), and therefore γH (�)≥ γH (R

n
+
)= 1

4 n2. With the
reverse inequality already given by item (2), we get that γH (�)=

1
4 n2 for all �⊂ Rn

+
such that 0 ∈ ∂�.

(4) This will be a particular case of Theorem 3.6 when s = 2.
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(5) Let �0 be a bounded domain of Rn such that 0 ∈�0 (i.e., it is not on the boundary). Given δ > 0, we
chop out a ball of radius 1

4δ with 0 on its boundary to define �δ := �0 \ Bδ/4
((
−

1
4δ, 0, . . . , 0

))
. Note

that for δ > 0 small enough, � is smooth and 0 ∈ ∂�. We now prove that

lim
δ→0

γH (�δ)=
1
4(n− 2)2. (3-4)

Define η1 ∈ C∞(Rn) such that η1(x)= 0 if |x |< 1 and η1(x)= 1 if |x |> 2. Let ηδ(x) := η1(δ
−1x) for

all δ > 0 and x ∈ Rn. Fix U ∈ C∞c (R
n) and consider, for any δ > 0, an εδ > 0 such that limδ→0 δ/εδ =

limδ→0 εδ = 0. For δ > 0, we define

uδ(x) := ηδ(x)ε
−(n−2)/2
δ U (ε−1

δ x) for all x ∈�δ.

For δ > 0 small enough, we have that uδ ∈C∞c (�δ). Since δ= o(εδ) as δ→ 0, a change of variable yields

lim
δ→0

∫
�δ

u2
δ

|x |2
dx =

∫
Rn

U 2

|x |2
dx .

We also have for δ small,∫
�δ

|∇uδ|2 dx =
∫

Rn
|∇uδ|2 dx =

∫
Rn
|∇(U · ηδ/εδ )|

2 dx

=

∫
Rn
|∇U |2η2

δ/εδ
dx +

∫
Rn
ηδ/εδ (−1ηδ/εδ )U

2 dx . (3-5)

Let R > 0 be such that U has support in BR(0). Since n ≥ 3, we have∫
Rn
ηδ/εδ (−1ηδ/εδ )U

2 dx = O
((
εδ

δ

)2

Vol
(
BR(0)∩Supp(−1ηδ/εδ )

))
= O

((
δ

εδ

)n−2)
= o(1)

as δ→ 0. This latest identity, (3-5) and the dominated convergence theorem yield

lim
δ→0

∫
�δ

|∇uδ|2 dx =
∫

Rn
|∇U |2 dx .

Therefore, for U ∈ C∞c (R
n), we have

lim sup
δ→0

γH (�δ)≤ lim
δ→0

∫
�δ
|∇uδ|2 dx∫

�δ
u2
δ/|x |2 dx

=

∫
Rn |∇U |2 dx∫

Rn U 2/|x |2 dx
.

Taking the infimum over all U ∈ C∞c (R
n), we get that

lim sup
δ→0

γH (�δ)≤ inf
U∈D1,2(Rn)\{0}

∫
Rn |∇U |2 dx∫

Rn U 2/|x |2 dx
= γH (R

n)= 1
4(n− 2)2.

Since γH (�δ)≥
1
4(n− 2)2 for all δ > 0, this completes the proof of (3-4), yielding (5).

For (6) we use the following observation.

Lemma 3.2. Let (8k)k∈N ∈ C1(Rn,Rn) be such that

lim
k→+∞

(
‖8k − IdRn‖∞+‖∇(8k − IdRn )‖∞

)
= 0 and 8k(0)= 0. (3-6)
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Let D⊂Rn be an open domain such that 0∈∂D (not necessarily bounded or regular), and set Dk :=8k(D)
for all k ∈ N. Then 0 ∈ ∂Dk for all k ∈ N and

lim
k→+∞

γH (Dk)= γH (D). (3-7)

Proof. If u ∈ C∞c (Dk), then u ◦8k ∈ C∞c (D) and∫
Dk

|∇u|2 dx =
∫

Rn
+

|∇(u ◦8k)|
2
8?kEucl |Jac8k | dx, (3-8)∫

Dk

u2

|x |2
dx =

∫
Rn
+

(u ◦8k(x))2

|8k(x)|2
|Jac8k | dx, (3-9)

where here and in the sequel 8?kEucl is the pull-back of the Euclidean metric via the diffeomorphism 8k .
Assumption (3-6) yields

lim
k→+∞

sup
x∈D

(∣∣∣∣ |8k(x)|
|x |

− 1
∣∣∣∣+ sup

i, j

∣∣(∂i8k(x), ∂j8k(x)
)
− δi j

∣∣+ |Jac8k − 1|
)
= 0,

where δi j = 1 if i = j and 0 otherwise. This limit, (3-8), (3-9) and a density argument yield (3-7). �

We now prove (6) of Proposition 3.1. Let ϕ ∈ C∞(Rn−1) such that 0≤ϕ≤ 1, ϕ(0)= 0, and ϕ(x ′)= 1
for all x ′ ∈Rn−1 be such that |x ′| ≥ 1. For t ≥ 0, define 8t(x1, x ′) := (x1− tϕ(x ′), x ′) for all (x1, x ′)∈Rn.
Set �̃t :=8t(R

n
+
) and apply Lemma 3.2 to note that limε→0 γH (�̃t)= γH (R

n
+
)= 1

4 n2. Since ϕ ≥ 0 and
ϕ 6≡ 0, we have Rn

+
( �̃t for all t > 0. To get (6) it suffices to take �ε := �̃t for t > 0 small enough. �

As in the case of γH (�), the best Hardy–Sobolev constant

µγ,s(�) := inf

{∫
�
|∇u|2 dx − γ

∫
�

u2/|x |2 dx(∫
�

u2?(s)/|x |s dx
)2/2?(s) : u ∈ D1,2(�) \ {0}

}
will depend on the geometry of � whenever 0 ∈ ∂�.

Proposition 3.3. Let � be a bounded smooth domain such that 0 ∈ ∂�.

(1) If γ < 1
4 n2, then µγ,s(�) >−∞.

(2) If γ > 1
4 n2, then µγ,s(�)=−∞.

Moreover,

(3) If γ < γH (�), then µγ,s(�) > 0.

(4) If γH (�) < γ <
1
4 n2, then 0> µγ,s(�) >−∞.

(5) If γ = γH (�) <
1
4 n2, then µγ,s(�)= 0.

Proof. Assume that γ < 1
4 n2 and let ε > 0 be such that (1+ ε)γ ≤ 1

4 n2. It follows from Proposition 3.5
that there exists Cε > 0 such that for u ∈ D1,2(�),

n2

4

∫
�

u2

|x |2
dx ≤ (1+ ε)

∫
�

|∇u|2 dx +Cε

∫
�

u2 dx .
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For any u ∈ D1,2(�) \ {0}, we have

J�γ,s(u)≥

(
1−(4γ /n2)(1+ε)

) ∫
�
|∇u|2 dx−(4γ /n2)Cε

∫
�

u2 dx(∫
�
|u|2?(s)/|x |s dx

)2/2?(s) ≥−
4γ
n2 Cε

∫
�

u2 dx(∫
�
|u|2?(s)/|x |s dx

)2/2?(s) .

It follows from Hölder’s inequality that there exists C > 0 independent of u such that∫
�

u2 dx ≤ C
(∫

�

|u|2
?(s)

|x |s
dx
)2/2?(s)

.

It then follows that J�γ,s(u)≥−(4γ /n2)CεC for all u ∈ D1,2(�)\{0}. Therefore µγ,s(�)>−∞ whenever
γ < 1

4 n2.

Assume now that γ > 1
4 n2 and define for every ε > 0 a function uε ∈ D1,2(�) as in (3-1). It then

follows from (3-2) and (3-3) that as ε→ 0,

J�γ,s(uε)=

( 1
4 n2
− γ

)
C(2) ln(1/ε)+ O(1)(

C(s) ln(1/ε)+ O(1)
)2/2?(s) =

(( 1
4 n2
− γ

) C(2)
C(s)2/2?(s)

+ o(1)
)(

ln 1
ε

)(2−s)/(n−s)

.

Since s < 2 and γ > 1
4 n2, we have limε→0 J�γ,s(uε)=−∞; therefore µγ,s(�)=−∞.

If γ < γH (�), Sobolev’s embedding theorem yields µ0,s(�) > 0; hence the result is clear for all γ ≤ 0
since then µγ,s(�)≥ µ0,s(�). If now 0≤ γ < γH (�), it follows from the definition of γH (�) that for
all u ∈ D1,2(�) \ {0},

J�γ,s(u)=

∫
�
|∇u|2−γ

∫
�

u2/|x |2 dx(∫
�

u2?(s)/|x |s dx
)2/2?(s) ≥

(
1−

γ

γH (�)

) ∫
�
|∇u|2 dx(∫

�
|u|2?(s)/|x |s dx

)2/2?(s) ≥

(
1−

γ

γH (�)

)
µ0,s(�).

Therefore µγ,s(�)≥ (1− γ /γH (�))µ0,s(�) > 0 when γ < γH (�).
If γH (�)<γ <

1
4 n2, then Proposition 3.1(4) yields that γH (�) is attained. We let u0 be such an extremal.

In particular J�γH (�),s(u)≥ 0= J�γH (�),s(u0), and therefore µγH (�),s(�)= 0. Since γH (�) < γ <
1
4 n2, we

have that J�γ,s(u0) < 0, and therefore µγ,s(�) < 0 when γH (�) < γ <
1
4 n2. �

Remark 3.4. The case γ = 1
4 n2 is unclear and anything can happen at that value of γ. For example, if

γH (�) <
1
4 n2 then µn2/4,s(�) < 0, while if γH (�)=

1
4 n2 then µn2/4,s(�)≥ 0. It is our guess that many

examples reflecting different regimes can be constructed.

We shall need the following standard result.

Proposition 3.5. Assume γ < 1
4 n2 and s ∈ [0, 2]. Then, for any ε > 0, there exists Cε > 0 such that, for

all u ∈ D1,2(�),(∫
�

|u|2
?(s)

|x |s
dx
)2/2?(s)

≤

(
1

µγ,s(R
n
+)
+ ε

)∫
�

(
|∇u|2− γ

u2

|x |2

)
dx +Cε

∫
�

u2 dx . (3-10)

This result says that, up to adding an L2-term (indeed, any subcritical term fits), the best constant in
the Hardy–Sobolev embedding can be chosen to be as close as one wishes to the best constant in the
model space Rn

+
. One can see this by noting that for functions that are supported in a small neighborhood
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of 0, the domain � looks like Rn
+

, and the distortion is determined by the radius of the neighborhood.
The case of general functions in D1,2(�) is dealt with by using a cut-off, which induces the L2-norm. A
detailed proof is given in [Ghoussoub and Robert 2016].

The following result is central for the sequel. The proof is standard, ever since T. Aubin’s proof of the
Yamabe conjecture in high dimensions, where he noted that the compactness of minimizing sequences is
restored if the infimum is strictly below the energy of a “bubble”. In our case below, this translates to
µγ,s(�) < µγ,s(R

n
+
). We omit the proof, which can be found in [Ghoussoub and Robert 2016].

Theorem 3.6. Assume that γ < 1
4 n2, 0 ≤ s ≤ 2 and µγ,s(�) < µγ,s(R

n
+
). Then there are extremals

for µγ,s(�). In particular, there exists a minimizer u in D1,2(�) \ {0} that is a positive solution to the
equation 

−1u− γ
u
|x |2
= µγ,s(�)

u2?(s)−1

|x |s
in �,

u > 0 in ∂�,

u = 0 on ∂�.

(3-11)

4. Profile at 0 of the variational solutions of Lγ u = a(x)u

Here and in the sequel, we shall assume that 0 ∈ ∂�, where � is a smooth domain. Recall from the
Introduction that two solutions for Lγ u = 0, with u = 0 on ∂Rn

+
, are of the form uα(x)= x1|x |−α, where

α ∈ {α−(γ ), α+(γ )} with

α−(γ ) :=
1
2 n−

√
1
4 n2− γ and α+(γ ) :=

1
2 n+

√
1
4 n2− γ . (4-1)

These solutions will be the building blocks for sub- and supersolutions of more general linear equations
involving Lγ on other domains. This section is devoted to the proof of the following result. To state the
theorem, we use the following terminology:

We say that u ∈ D1,2(�)loc,0 if there exists η ∈ C∞c (R
n) such that η ≡ 1 around 0 and ηu ∈ D1,2(�).

We say that u ∈ D1,2(�)loc,0 is a weak solution to the equation

−1u = F ∈ (D1,2(�)loc,0)
′

if for any ϕ ∈ D1,2(�) and η ∈ C∞c (R
n) with sufficiently small support around 0, we have∫
�

(∇u,∇(ηϕ)) dx = 〈F, ηϕ〉.

Theorem 4.1. Fix γ < 1
4 n2 and τ > 0, and let u ∈ D1,2(�)loc,0 be a weak solution of

−1u−
γ + O(|x |τ )
|x |2

u = 0 in D1,2(�)loc,0. (4-2)

Then, there exists K ∈ R such that

lim
x→0

u(x)
d(x, ∂�)|x |−α−(γ )

= K .

Moreover, if u ≥ 0 and u 6≡ 0, we have that K > 0.
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By a slight abuse of notation,

u 7→ −1u−
γ + O(|x |τ )
|x |2

u

will denote an operator

u 7→ −1u−
γ + a(x)
|x |2

u,

where a ∈C0(�) such that a(x)= O(|x |τ ) as τ→ 0. In Section 6, we will give a full description of solu-
tions to (4-2) that are not necessarily variational (we also refer to [Pinchover 1994] for related problems).

We need the following lemmas, which will be used frequently throughout the paper. The first is only the
initial step towards proving rigidity for the solutions of Lγ u = 0 on Rn

+
. Indeed, the pointwise assumption

u(x)≤ C |x |1−α will not be necessary as it will be eventually removed in Proposition 6.4, which will be a
consequence of the classification Theorem 6.1. We omit the proof as it can be inferred from the work of
Pinchover and Tintarev [2005].

Lemma 4.2 (rigidity). Let u ∈ C2(Rn
+ \ {0}) be a nonnegative solution of−1u−

γ

|x |2
u = 0 in Rn

+
,

u = 0 on ∂Rn
+
.

(4-3)

Suppose u(x)≤C |x |1−α on Rn
+

for α ∈ {α−(γ ), α+(γ )}, then there exists λ≥ 0 such that u(x)=λx1|x |−α

for all x ∈ Rn
+

.

We now construct basic sub- and supersolutions for the equation Lγ u=a(x)u, where a(x)=O(|x |τ−2)

for some τ > 0.

Proposition 4.3. Let γ < 1
4 n2 and α∈{α−(γ ), α+(γ )}. Let 0<τ ≤1 and β ∈R be such that α−τ <β<α

and β 6∈ {α−(γ ), α+(γ )}. Then, there exist r > 0, and uα,+, uα,− ∈ C∞(� \ {0}) such that

uα,+, uα,− > 0 in �∩ Br (0),

uα,+, uα,− = 0 on ∂�∩ Br (0),

−1uα,+−
γ + O(|x |τ )
|x |2

uα,+ > 0 in �∩ Br (0),

−1uα,−−
γ + O(|x |τ )
|x |2

uα,− < 0 in �∩ Br (0).

(4-4)

Moreover, we have as x→ 0, x ∈�, that

uα,+(x)=
d(x, ∂�)
|x |α

(1+ O(|x |α−β)) and uα,−(x)=
d(x, ∂�)
|x |α

(1+ O(|x |α−β)). (4-5)

Proof. We first choose an adapted chart to lift the basic solutions from Rn
+

. Since 0 ∈ ∂� and � is
smooth, there exist Ũ, Ṽ two bounded domains of Rn such that 0 ∈ Ũ and 0 ∈ Ṽ, and there exists a
C∞-diffeomorphism c ∈ C∞(Ũ, Ṽ ) such that c(0)= 0,

c(Ũ ∩ {x1 > 0})= c(Ũ )∩� and c(Ũ ∩ {x1 = 0})= c(Ũ )∩ ∂�.



HARDY-SINGULAR BOUNDARY MASS AND SOBOLEV-CRITICAL VARIATIONAL PROBLEMS 1033

The orientation of ∂� is chosen in such a way that for any x ′ ∈ Ũ ∩ {x1 = 0},{
∂1c(0, x ′), ∂2c(0, x ′), . . . , ∂nc(0, x ′)

}
is a direct basis of Rn (canonically oriented). For x ′ ∈ Ũ∩{x1= 0}, we define ν(x ′) as the unique orthonor-
mal inner vector at the tangent space Tc(0,x ′)∂� (it is chosen such that {ν(x ′), ∂2c(0, x ′), . . . , ∂nc(0, x ′)}
is a direct basis of Rn). In particular, on Rn

+
:= {x1 > 0}, we have ν(x ′) := (1, 0, . . . , 0).

Here and in the sequel, we write for any r > 0

B̃r := (−r, r)× B(n−1)
r (0), (4-6)

where B(n−1)
r (0) denotes the ball of center 0 and radius r in Rn−1. It is standard that there exists δ > 0

such that
ϕ : B̃2δ→ Rn,

(x1, x ′) ∈ R×Rn−1
7→ c(0, x ′)+ x1ν(x ′),

(4-7)

is a C∞-diffeomorphism onto its open image ϕ(B̃2δ), and

ϕ(B̃2δ ∩ {x1>0})= ϕ(B̃2δ)∩� and ϕ(B̃2δ ∩ {x1=0})= ϕ(B̃2δ)∩ ∂�. (4-8)

We also have, for all x ′ ∈ Bδ(0)(n−1),

ν(x ′) is the inner orthonormal unit vector at the tangent space Tϕ(0,x ′)∂�. (4-9)

An important remark is that

d
(
ϕ(x1, x ′), ∂�

)
= |x1| for all (x1, x ′) ∈ B̃2δ close to 0. (4-10)

Consider the metric g := ϕ?Eucl on B̃2δ, that is, the pull-back of the Euclidean metric Eucl via the
diffeomorphism ϕ. Following classical notations, we define

gi j (x) :=
(
∂iϕ(x), ∂jϕ(x)

)
Eucl for all x ∈ B̃2δ and i, j = 1, . . . , n. (4-11)

Up to a change of coordinates, we can assume that (∂2ϕ(0), . . . , ∂nϕ(0)) is an orthogonal basis of
T0∂�. In other words, we then have that

gi j (0)= δi j for all i, j = 1, . . . , n. (4-12)

As one checks,
gi1(x)= δi1 for all x ∈ B̃2δ and i = 1, . . . , n. (4-13)

Fix now α ∈ R and consider 2 ∈ C∞(B̃2δ) such that 2(0) = 0 and which will be constructed later
(independently of α) with additional needed properties. Fix η ∈ C∞c (B̃2δ) such that η(x) = 1 for all
x ∈ B̃δ. Define uα ∈ C∞(� \ {0}) as

uα ◦ϕ(x1, x ′) := η(x)x1|x |−α(1+2(x)) for all (x1, x ′) ∈ B̃2δ \ {0}. (4-14)

In particular, uα(x) > 0 for all x ∈ ϕ(B̃2δ)∩� and uα(x)= 0 on � \ϕ(B̃2δ).
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We claim that with a good choice of 2, we have that

−1uα =
α(n−α)
|x |2

uα + O
(

uα(x)
|x |

)
as x→ 0. (4-15)

Indeed, using the chart ϕ, we have that

(−1uα) ◦ϕ(x1, x ′)=−1g(uα ◦ϕ)(x1, x ′)

for all (x1, x ′) ∈ B̃δ \ {0}. Here, −1g is the Laplace operator associated to the metric g; that is,

−1g := −gi j (∂i j −0
k
i j∂k),

where
0k

i j :=
1
2 gkm(∂i g jm + ∂j gim − ∂m gi j ),

and (gi j ) is the inverse of the matrix (gi j ). Here and in the sequel, we have adopted Einstein’s convention
of summation. It follows from (4-13) that

(−1uα)◦ϕ =−1Eucl(uα◦ϕ)−
∑

i, j≥2

(gi j
−δi j )∂i j (uα◦ϕ)+gi j01

i j ∂1(uα◦ϕ)+
∑
k≥2

gi j0k
i j ∂k(uα◦ϕ). (4-16)

It follows from the definition (4-14) that there exists C > 0 such that for any i, j, k ≥ 2, we have that∣∣∂i j (uα ◦ϕ)(x1, x ′)
∣∣≤ C |x1| · |x |−α−2 and

∣∣∂k(uα ◦ϕ)(x1, x ′)
∣∣≤ C |x1| · |x |−α−1

for all (x1, x ′) ∈ B̃δ \ {0}. It follows from (4-12) that gi j
− δi j

= O(|x |) as x → 0. Therefore, (4-16)
yields that as x→ 0,

(−1uα) ◦ϕ =−1Eucl(uα ◦ϕ)+ gi j01
i j ∂1(uα ◦ϕ)+ O(x1|x |−α−1). (4-17)

The definition of gi j and the expression of ϕ(x1, x ′) then yield that as x→ 0,

gi j01
i j =−

1
2

∑
i, j≥2

gi j ∂1gi j

=−

∑
i, j≥2

gi j (x1, x ′)
((
∂iϕ(0, x ′), ∂jν(x ′)

)
+ x1

(
∂i (x ′), ∂jν(x ′)

))
=−

∑
i, j≥2

gi j (0, x ′)
(
∂iϕ(0, x ′), ∂jν(x ′)

)
+ O(|x1|)= H(x ′)+ O(|x1|),

where H(x ′) is the mean curvature of the (n−1)-manifold ∂� at ϕ(0, x ′) oriented by the outer normal
vector −ν(x ′). Using the expression (4-14) and using the smoothness of 2, (4-17) yields

(−1uα)◦ϕ = (−1Eucl(x1|x |−α)) · (1+2)+|x |−α
(
H(x ′)(1+2)−2∂12

)
+O(x1|x |−α−1) as x→ 0.

We now define
2(x1, x ′) := e−x1 H(x ′)/2

− 1 for all x = (x1, x ′) ∈ B̃2δ.

Clearly 2(0)= 0 and 2 ∈ C∞(B̃2δ). We then get that as x→ 0,

(−1uα) ◦ϕ =
α(n−α)
|x |2

x1|x |−α · (1+2)+ O(x1|x |−α−1). (4-18)
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With the choice that gi j (0)= δi j , we have that (∂iϕ(0))i=1,...,n is an orthonormal basis of Rn, and therefore
|ϕ(x)| = |x |(1+ O(|x |)) as x→ 0. It then follows from (4-18) and (4-14) that

−1uα =
α(n−α)
|x |2

uα + O(|x |−1uα) as x→ 0. (4-19)

This proves (4-15). We now proceed with the construction of the sub- and supersolutions. Let α ∈
{α−(γ ), α+(γ )} in such a way that α(n− α) = γ and consider β, λ ∈ R to be chosen later. It follows
from (4-15) that(
−1−

γ + O(|x |τ )
|x |2

)
(uα + λuβ)=

λ(β(n−β)− γ )
|x |2

uβ +
O(|x |τ )
|x |2

uα + O(|x |−1uα)+ O(|x |τ−2uβ)

=
uβ
|x |2

(
λ(β(n−β)− γ )+ O(|x |τ )+ O(|x |τ+β−α)+ O(|x |1+β−α)

)
as x→ 0. Choose β such that α−τ < β < α in such a way that β 6= α−(γ ) and β 6= α+(γ ). In particular,
β > α− 1 and β(n−β)− γ 6= 0. We then have(

−1−
γ + O(|x |τ )
|x |2

)
(uα + λuβ)=

uβ
|x |2

(
λ(β(n−β)− γ )+ O(|x |τ+β−α)

)
(4-20)

as x→ 0. Choose λ∈R such that λ(β(n−β)−γ )> 0. Finally, let uα,+ := uα+λuβ and uα,− := uα−λuβ .
They clearly satisfy (4-4) and (4-5), which completes the proof of Proposition 4.3. �

Lemma 4.4. Assume that u ∈ D1,2(�)loc,0 is a weak solution of−1u−
γ + O(|x |τ )
|x |2

u = 0 in D1,2(�)loc,0,

u = 0 on B2δ(0)∩ ∂�
(4-21)

for some τ > 0 and δ > 0. Then, there exists C1 > 0 such that

|u(x)| ≤ C1d(x, ∂�)|x |−α−(γ ) for x ∈�∩ Bδ(0). (4-22)

Moreover, if u > 0 in �, then there exists C2 > 0 such that

u(x)≥ C2d(x, ∂�)|x |−α−(γ ) for x ∈�∩ Bδ(0). (4-23)

Proof. Assume first that u ∈ D1,2(�)loc,0 and u > 0 on Bδ(0)∩�. We claim that there exists C0 > 0 such
that

1
C0

d(x, ∂�)
|x |α−(γ )

≤ u(x)≤ C0
d(x, ∂�)
|x |α−(γ )

for all x ∈�∩ Bδ(0). (4-24)

Indeed, since u is smooth outside 0, it follows from Hopf’s maximum principle that there exists C1,C2> 0
such that

C1d(x, ∂�)≤ u(x)≤ C2d(x, ∂�) for all x ∈�∩ ∂Bδ(0). (4-25)

Let uα−(γ ),+ be the supersolution constructed in Proposition 4.3. It follows from (4-25) and the asymptotics
(4-5) of uα−(γ ),+ that there exists C3 > 0 such that

u(x)≤ C3uα−(γ ),+(x) for all x ∈ ∂(Bδ(0)∩�).
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Since u is a solution and uα−(γ ),+ is a supersolution, both being in D1,2(�)loc,0, it follows from the
maximum principle (by choosing δ > 0 small enough so that −1− (γ + O(|x |τ ))|x |−2 is coercive on
Bδ(0)∩�) that u(x)≤C3uα−(γ ),+(x) for all x ∈ Bδ(0)∩�. In particular, it follows from the asymptotics
(4-5) of uα−(γ ),+ that there exists C4 > 0 such that u(x) ≤ C4d(x, ∂�)|x |−α−(γ ) for all x ∈ �∩ Bδ(0).
Arguing similarly with the lower-bound in (4-25) and the subsolution uα−(γ ),−, we get the existence of
C0 > 0 such that (4-24) holds. This yields Lemma 4.4 for u > 0.

Now we deal with the case when u is a sign-changing solution for (4-21). We then define u1, u2 :

Bδ(0)∩�→ R such that−1u1−
γ+O(|x |τ )
|x |2

u1 = 0 in Bδ(0)∩�,

u1(x)=max{u(x), 0} on ∂(Bδ(0)∩�),

−1u2−
γ+O(|x |τ )
|x |2

u2 = 0 in Bδ(0)∩�,

u2(x)=max{−u(x), 0} on ∂(Bδ(0)∩�).

The existence of such solutions is ensured by choosing δ > 0 small enough so that the operator −1−(γ +
O(|x |τ ))|x |−2 is coercive on Bδ(0)∩�. In particular, u1, u2 ∈ D1,2(�)loc,0, u1, u2≥ 0 and u= u1− u2.
It follows from the maximum principle that for all i , either ui ≡ 0 or ui > 0. The first part of the proof
yields the upper bound for u1, u2. Since u = u1− u2, we then get (4-22). �

The following lemma allows to construct sub- and supersolutions with Dirichlet boundary conditions
on any small smooth domain.

Proposition 4.5. Let � be a smooth bounded domain of Rn , and let W be a smooth domain of Rn such
that for some r > 0 small enough, we have

Br (0)∩�⊂W ⊂ B2r (0)∩� and Br (0)∩ ∂W = Br (0)∩ ∂�. (4-26)

Fix γ < 1
4 n2, 0<τ ≤ 1 and β ∈R such that α+(γ )− τ < β < α+(γ ) and β 6= α−(γ ). Then, for r small

enough, there exists u(d)α+(γ ),+, u(d)α+(γ ),− ∈ C∞(W \ {0}) such that

u(d)α+(γ ),+, u(d)α+(γ ),+ = 0 in ∂W \ {0},

−1u(d)α+(γ ),+−
γ + O(|x |τ )
|x |2

u(d)α+(γ ),+ > 0 in W,

−1u(d)α+(γ ),−−
γ + O(|x |τ )
|x |2

u(d)α+(γ ),− < 0 in W.

(4-27)

Moreover, we have as x→ 0, x ∈� that

u(d)α+(γ ),+(x)=
d(x, ∂�)
|x |α+(γ )

(1+ O(|x |α−β)), (4-28)

u(d)α+(γ ),−(x)=
d(x, ∂�)
|x |α+(γ )

(1+ O(|x |α−β)). (4-29)

Proof. Take η ∈ C∞(Rn) such that η(x)= 0 for x ∈ Bδ/4(0) and η(x)= 1 for x ∈ Rn
\ Bδ/3(0). Define

on W the function

f (x) :=
(
−1−

γ + O(|x |τ )
|x |2

)
(ηuα+(γ ),+),
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where uα+(γ ),+ is given by Proposition 4.3. Note that f vanishes around 0 and that it is in C∞(W ). Let
v ∈ D1,2(W ) be such that −1v−

γ + O(|x |τ )
|x |2

v = f in W,

v = 0 on ∂W.

Note that for r > 0 small enough, −1−(γ +O(|x |τ ))|x |−2 is coercive on W, and therefore, the existence
of v is ensured for small r . Define

u(d)α+(γ ),+ := uα+(γ ),+− ηuα+(γ ),++ v.

The properties of W and the definitions of η and v yieldu(d)α+(γ ),+ = 0 in ∂W \ {0},

−1u(d)α+(γ ),+−
γ + O(|x |τ )
|x |2

u(d)α+(γ ),+ > 0 in W.

Since −1v − (γ + O(|x |τ ))|x |−2v = 0 around 0 and v ∈ D1,2(W ), it follows from Lemma 4.4 that
there exists C > 0 such that |v(x)| ≤ Cd(x,W )|x |−α−(γ ) for all x ∈ W. Then (4-28) follows from the
asymptotics (4-5) of uα+(γ ),+ and the fact that α−(γ ) < α+(γ ). We argue similarly for u(d)α+(γ ),−. �

Lemma 4.6. Let u∈D1,2(�)loc,0 such that (4-2) holds. Assume there exists C>0 and α∈{α+(γ ), α−(γ )}
such that

|u(x)| ≤ C |x |1−α for x→ 0, x ∈�. (4-30)

(1) Then, there exists C1 > 0 such that

|∇u(x)| ≤ C1|x |−α as x→ 0, x ∈�. (4-31)

(2) If limx→0 |x |α−1u(x)= 0, then limx→0 |x |α |∇u(x)| = 0. Moreover, if u > 0, then there exists l ≥ 0
such that

lim
x→0

|x |αu(x)
d(x, ∂�)

= l and lim
x→0, x∈∂�

|x |α |∇u(x)| = l. (4-32)

Proof. Assume that (4-30) holds. Set ω(x) := |x |αu(x)/d(x, ∂�) for x ∈�. Let (xi )i ∈� be such that

lim
i→+∞

xi = 0 and lim
i→+∞

ω(xi )= l. (4-33)

Choose a chart ϕ as in (4-7) such that dϕ0 = IdRn . For any i , define X i ∈ Rn
+

such that xi = ϕ(X i ),
ri := |X i | and θi := X i/|X i |. In particular, limi→+∞ ri = 0 and |θi | = 1 for all i . Set

ũi (x) := rα−1
i u(ϕ(ri x)) for all i and x ∈ BR(0)∩Rn

+
, x 6= 0.

Equation (4-2) can then be rewritten as−1gi ũi −
γ + o(1)
|x |2

ũi = 0 in BR(0)∩Rn
+
,

ũi = 0 in BR(0)∩ ∂Rn
+
,

(4-34)
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where gi (x) := (ϕ?Eucl)(ri x) is a metric that goes to Eucl on every compact subset of Rn as i →∞.
Here, o(1)→ 0 in C0

loc(R
n
+ \ {0}). It follows from (4-30) and (4-33) that

|ũi (x)| ≤ C |x |1−α for all i and all x ∈ BR(0)∩Rn
+
, (4-35)

It follows from elliptic theory that there exists ũ ∈ C2(Rn
+ \ {0}) such that ũi → ũ in C1

loc(R
n
+ \ {0}). By

letting θ := limi→+∞ θi (|θ | = 1), we then have that ∂j ũi (θi )→ ∂j ũ(θ) as i→+∞ for any j = 1, . . . , n,
which can be rewritten as

lim
i→+∞

|xi |
α ∂j u(xi )= ∂j ũ(θ) for all j = 1, . . . , n. (4-36)

We now prove (4-31). For that, we argue by contradiction and assume that there exists a sequence
(xi )i ∈ � that goes to 0 as i →+∞ and such that |xi |

α
|∇u(xi )| → +∞ as i →+∞. It then follows

from (4-36) that |xi |
α
|∇u(xi )| = O(1) as i →+∞. This is a contradiction to our assumption, which

proves (4-31). The case when |x |αu(x)→ 0 as x→ 0 goes similarly.

Now we consider the case when u > 0, which implies that ũi ≥ 0 and ũ ≥ 0. We let l ∈ [0,+∞] and
(xi )i ∈� be such that

lim
i→+∞

xi = 0 and lim
i→+∞

ω(xi )= l. (4-37)

We claim that
0≤ l <+∞ and lim

x→0
ω(x)= l ∈ [0,+∞). (4-38)

Indeed, using the notations above, we get that

lim
i→+∞

ũi (θi )

(θi )1
= l.

The convergence of ũi in C1
loc(R

n
+ \ {0}) then yields l <+∞. Passing to the limit as i→+∞ in (4-34),

we get 
−1Euclũ−

γ

|x |2
ũ = 0 in Rn

+
,

ũ ≥ 0 in Rn
+
,

ũ = 0 in ∂Rn
+
.

The limit (4-37) can be rewritten as ũ(θ)= lθ1 if θ ∈ Rn
+

and ∂1ũ(θ)= l if θ ∈ ∂Rn
+

. The rigidity lemma,
Lemma 4.2, then yields

ũ(x)= lx1|x |−α for all x ∈ Rn
+
.

In particular, since the differential of ϕ at 0 is the identity map, it follows from the convergence of ũi to ũ
locally in C1 that

lim
i→+∞

sup
x∈�∩∂Bri (0)

u(x)
d(x, ∂�)|x |−α

= sup
x∈Rn

+∩∂B1(0)

ũ(x)
x1|x |−α

= l (4-39)

and

lim
i→+∞

inf
x∈�∩∂Bri (0)

u(x)
d(x, ∂�)|x |−α

= inf
x∈Rn

+∩∂B1(0)

ũ(x)
x1|x |−α

= l. (4-40)
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We distinguish two cases:

Case 1: α = α+(γ ). Let W and u(d)α+(γ ),− be as in Proposition 4.5, and fix ε > 0. Note that the existence
and properties of u(d)α+(γ ),− do not use the lemma that is currently being proved. It follows from (4-40)
that there exists i0 such that for i ≥ i0, we have

u(x)≥ (l − ε)u(d)α+(γ ),−(x) for all x ∈W ∩ ∂Bri (0).

Since
(
−1− (γ +O(|x |τ ))|x |−2

)(
u− (l− ε)u(d)α+(γ ),−

)
≥ 0 in W \ Bri (0) and since uα+(γ ),− vanishes on

∂W \ {0}, it follows from the comparison principle that

u(x)≥ (l − ε)u(d)α+(γ ),−(x) for all x ∈W \ ∂Bri (0).

Letting i→+∞ yields

u(x)≥ (l − ε)u(d)α+(γ ),−(x) for all x ∈W \ {0}.

It follows from this inequality and the asymptotics for u(d)α+(γ ),− that

lim inf
x→0

ω(x)≥ l.

Note that this is valid for any l ∈ R satisfying (4-37). By taking l := lim supx→0 ω(x), we then get that
limx→0 ω(x)= l.

Case 2: α=α−(γ ). Consider the super- and subsolutions uα−(γ ),+, uα−(γ ),− constructed in Proposition 4.3.
It follows from (4-39) and (4-40) that for ε > 0, there exists i0 such that, for i ≥ i0, we have

(l − ε)uα−(γ ),−(x)≤ u(x)≤ (l + ε)uα−(γ ),+(x) for all x ∈�∩ ∂Bri (0).

Since the operator −1− (γ +O(|x |τ ))|x |−2 is coercive on �∩ Bri (0) and the functions we consider are
in D1,2

loc,0(�∩ Bri (0)) (i.e., they are variational), it follows from the maximum principle that

(l − ε)uα−(γ ),−(x)≤ u(x)≤ (l + ε)uα−(γ ),+(x) for all x ∈�∩ Bri (0).

Using the asymptotics (4-5) of the sub- and supersolutions, we get that

(l − ε)≤ lim inf
x→0

u(x)
d(x, ∂�)|x |−α−(γ )

≤ lim sup
x→0

u(x)
d(x, ∂�)|x |−α−(γ )

≤ (l + ε).

Letting ε→ 0 yields limx→0 ω(x)= l ≥ 0. This ends Case 2 and completes the proof of (4-38).

The case u > 0 is a consequence of (4-38) and (4-36) (note that for the second limit, xi ∈ ∂� can be
rewritten as θi ∈ ∂Rn

+
and therefore (θi )1 = 0). This ends the proof of Lemma 4.6. �

Proof of Theorem 4.1. First, assume that u ∈ D1,2(�)loc,0 satisfies (4-2) and u > 0 on Bδ(0)∩�. It then
follows from Lemma 4.4 that there exists C0 > 0 such that

1
C0

d(x, ∂�)
|x |α−(γ )

≤ u(x)≤ C0
d(x, ∂�)
|x |α−(γ )

for all x ∈�∩ Bδ(0).

Since u > 0, this estimate coupled with Lemma 4.6 yields the theorem for u > 0.
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If now u is a sign-changing solution for (4-2), we define u1, u2 : Bδ(0)∩�→ R≥0 as in the proof of
Lemma 4.4. The first part of the proof yields that there exist l1, l2 ≥ 0 such that

lim
x→0

u1(x)
d(x, ∂�)|x |−α−(γ )

= l1 and lim
x→0

u2(x)
d(x, ∂�)|x |−α−(γ )

= l2.

Since u = u1− u2, we get Theorem 4.1 by taking l := l1− l2. �

Here is an immediate consequence.

Corollary 4.7. Suppose γ < γH (�) and consider the first eigenvalue of Lγ , i.e.,

λ1(�, γ ) := inf
u∈D1,2(�)\{0}

∫
�

(
|∇u|2− u2γ /|x |2

)
dx∫

�
u2 dx

> 0.

If u0 ∈ D1,2(�) \ {0} is a minimizer, then there exists A 6= 0 such that

u0(x)∼x→0 A
d(x, ∂�)
|x |α−(γ )

.

Proof. The existence of a minimizer u0 that doesn’t change sign is standard. The Euler–Lagrange equation
is −1u− uγ /|x |2 = ku for some k ∈ R. We then apply Theorem 4.1. �

5. Regularity of solutions for related nonlinear variational problems

This section is devoted to the proof of the following key result.

Theorem 5.1 (optimal regularity and generalized Hopf’s lemma). Fix γ < 1
4 n2 and let f :�×R→ R

be a Carathéodory function such that

| f (x, v)| ≤ C |v|
(

1+
|v|2

?(s)−2

|x |s

)
for all x ∈� and v ∈ R.

Let u ∈ D1,2(�)loc,0 be a weak solution of

−1u−
γ + O(|x |τ )
|x |2

u = f (x, u) in D1,2(�)loc,0 (5-1)

for some τ > 0. Then, there exists K ∈ R such that

lim
x→0

u(x)
d(x, ∂�)|x |−α−(γ )

= K . (5-2)

Moreover, if u ≥ 0 and u 6≡ 0, we have that K > 0.

Note that when f ≡ 0, this is nothing but Theorem 4.1. The result can be viewed as a generalization
of Hopf’s lemma in the following sense: when γ = 0 (and then α−(γ )= 0), the classical Nash–Moser
regularity scheme yields u ∈ C1

loc, and when u≥ 0, u 6≡ 0, Hopf’s comparison principle yields ∂νu(0) < 0,
which is a reformulation of (5-2) when α−(γ )= 0.

The following lemma will be of frequent use in the sequel.
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Lemma 5.2. Let f : �×R→ R be as in the statement of Theorem 5.1, and consider u ∈ D1,2(�)loc,0

such that (5-1) holds. Assume that for some C > 0,

|u(x)| ≤ C |x |1−α−(γ ) for x→ 0, x ∈�. (5-3)

Then, u satisfies the conclusion of Lemma 4.6.

Proof. Assume that (5-3) holds. We claim that we can assume that for some τ > 0,

−1u−
γ + O(|x |τ )
|x |2

u = 0 in D1,2(�)loc,0. (5-4)

Indeed, we have as x→ 0,

| f (x, u)| ≤ C |u|
(
1+|x |−s

|x |−(2
?(s)−2)(α−(γ )−1))

≤ C
|u|
|x |2

(
|x |2+|x |(2

?(s)−2)(n/2−α−(γ ))
)
= O

(
|x |τ

′ u
|x |2

)
for some τ ′> 0. Plugging this inequality into (5-1) and replacing τ by min{τ, τ ′} yields (5-4). The lemma
now follows from Lemma 4.6. �

Proof of Theorem 5.1. We let here u ∈ D1,2(�)loc,0 be a solution to (5-1); that is,

−1u−
γ + O(|x |τ )
|x |2

u = f (x, u) weakly in D1,2(�)loc,0 (5-5)

for some τ > 0. We shall first use the classical De Giorgi–Nash–Moser iterative scheme (see [Gilbarg
and Trudinger 1998; Hebey 1997] for expositions in book form). We skip most of the computations and
refer to [Ghoussoub and Robert 2006a, Proposition A.1] for the details. We fix δ0 > 0 such that

(i) there exists η̃ ∈ C∞(B4δ0(0)) such that η̃(x)= 1 for x ∈ B2δ0(0),

(ii) η̃u ∈ D1,2(�), and

(iii) u is a weak solution to (5-5) when tested on η̃ϕ with ϕ ∈ D1,2(�) (see the definition of weak solution
given in the preceding section).

The proof goes through four steps.

Step 1: Let β ≥ 1 be such that 4β/(β + 1)2 > 4γ /n2. Assume that u ∈ Lβ+1(�∩ Bδ0(0)). We claim that

u ∈ Ln/(n−2)(β+1)(�∩ Bδ0(0)). (5-6)

Indeed, fix β ≥ 1, L > 0, and define GL , HL : R→ R as

GL(t) :=


|t |β−1t if |t | ≤ L ,
βLβ−1(t − L)+ Lβ if t ≥ L ,
βLβ−1(t + L)− Lβ if t ≤−L

(5-7)

and

HL(t) :=


|t |(β−1)/2t if |t | ≤ L ,
1
2(β + 1)L(β−1)/2(t − L)+ L(β+1)/2 if t ≥ L ,
1
2(β + 1)L(β−1)/2(t + L)− L(β+1)/2 if t ≤−L .

(5-8)
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As is easily checked,

0≤ tGL(t)≤ HL(t)2 and G ′L(t)=
4β

(β + 1)2
(H ′L(t))

2 (5-9)

for all t ∈ R and all L > 0. We fix δ > 0 small, which will be chosen later. We let η ∈ C∞c (R
n) be

such that η(x) = 1 for x ∈ Bδ/2(0) and η(x) = 0 for x ∈ Rn
\ Bδ(0). Multiplying equation (5-5) with

η2GL(u) ∈ D1,2(�), we get that∫
�

(∇u,∇(η2GL(u))) dx −
∫
�

γ + O(|x |τ )
|x |2

η2uGL(u) dx =
∫
�

f (x, u)η2GL(u) dx . (5-10)

Integrating by parts, and using formulae (5-7)–(5-9) (see [Ghoussoub and Robert 2006a] for details) yields∫
�

(
∇u,∇(η2GL(u))

)
dx

=
4β

(β + 1)2

∫
�

(
|∇(ηHL(u))|2− η(−1)ηHL(u)2

)
dx +

∫
�

−1(η2)JL(u) dx, (5-11)

where JL(t) :=
∫ t

0 GL(τ ) dτ . This identity and (5-10) yield

4β
(β + 1)2

∫
�

|∇(ηHL(u))|2 dx −
∫
�

γ + O(|x |τ )
|x |2

η2uGL(u) dx

≤

∫
�

| −1(η2)| · |JL(u)| dx +C(β, δ)
∫
�∩Bδ(0)

|HL(u)|2 dx +C
∫
�

|u|2
?(s)−2

|x |s
(ηHL(u))2 dx . (5-12)

Hölder’s inequality and the Sobolev constant given in (1-16) yield∫
�

|u|2
?(s)−2

|x |s
(ηHL(u))2 dx ≤

(∫
�∩Bδ(0)

|u|2
?(s)

|x |s
dx
)(2?(s)−2)/2?(s)(∫

�

|ηHL(u)|2
?(s)

|x |s
dx
)2/2?(s)

≤

(∫
�∩Bδ(0)

|u|2
?(s)

|x |s
dx
)(2?(s)−2)/2?(s)

·
1

µ0,s(�)

∫
�

|∇(ηHL(u))|2 dx .

Plugging this estimate into (5-12) and defining γ+ :=max{γ, 0} yields

4β
(β + 1)2

∫
�

‖∇(ηHL(u))‖2 dx − (γ++Cδτ )
∫
�

(ηHL(u))2

|x |2
dx

≤ C(β, δ)
∫
�∩Bδ(0)

(
|HL(u)|2+ |JL(u)|

)
dx +α(δ)

∫
�

|∇(ηHL(u))|2 dx,

where

α(δ) := C
(∫

�∩Bδ(0)

|u|2
?(s)

|x |s
dx
)(2?(s)−2)/2?(s)

·
1

µ0,s(�)
,

so that
lim
δ→0

α(δ)= 0.

It follows from Hardy’s inequality that

n2

4

∫
�

(ηHL(u))2

|x |2
dx ≤ (1+ ε(δ))

∫
�

|∇(ηHL(u))|2 dx,
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where limδ→0 ε(δ)= 0. Therefore, we get that(
4β

(β + 1)2
−α(δ)− (γ++Cδτ )

4
n2 (1+ ε(δ))

)∫
�

|∇(ηHL(u))|2 dx

≤ C(β, δ)
∫
�∩Bδ(0)

(
|HL(u)|2+ |JL(u)|

)
dx ≤ C(β, δ)

∫
Bδ(0)∩�

|u|β+1 dx .

Let δ ∈ (0, δ0) be such that

4β
(β + 1)2

−α(δ)− (γ++Cδτ )
4
n2 (1+ ε(δ)) > 0.

This is possible since 4β/(β + 1)2 > 4γ /n2. Using Sobolev’s embedding, we then get that(∫
Bδ/2(0)∩�

|HL(u)|2
?

dx
)2/2?

≤

(∫
Rn
|ηHL(u)|2

?

dx
)2/2?

≤ µ0,0(�)
−1
∫
�

|∇(ηHL(u))|2 dx ≤ C(β, δ, γ )
∫

Bδ(0)∩�
|u|β+1 dx .

Since u∈Lβ+1(Bδ0(0)∩�), let L→+∞ and use Fatou’s lemma to obtain that u∈L(2
?/2)(β+1)(Bδ/2(0)∩�).

The standard iterative scheme then yields u ∈C1(�∩Bδ0(0)\{0}). Therefore u ∈ L(2
?/2)(β+1)(Bδ0(0)∩�).

Step 2: We now show that

if γ ≤ 0, then u ∈ L p(�∩ Bδ(0)) for all p ≥ 1, (5-13)

if γ > 0, then u ∈ L p(�∩ Bδ(0)) for all p ∈
(

1,
n

n− 2
n

α−(γ )

)
. (5-14)

The case γ ≤0 is standard, so we only consider the case where γ >0. Fix p≥2 and set β := p−1. We have

4β
(β + 1)2

>
4
n2 γ ⇐⇒

n
α+(γ )

< p <
n

α−(γ )
.

Since α+(γ ) > 1
2 n and p ≥ 2,

4β
(β + 1)2

>
4
n2 γ ⇐⇒ p <

n
α−(γ )

.

Therefore, it follows from Step 1 that if u ∈ L p(�∩Bδ0), with p< n/α−(γ ), then u ∈ L pn/(n−2)(�∩Bδ0).
Since u ∈ L2(�∩ Bδ0), (5-14) follows.

Step 3: We claim that for any λ > 0,

|x |(n−2)/2
|u(x)| = O(|x |(n−2)/n(n/2−max{α−(γ ),0}−λ)) as x→ 0. (5-15)

Indeed, take p∈
(
2?, n2/((n−2)α−(γ ))

)
if γ >0, and p>2? if γ ≤0. This is possible since 2?=2n/(n−2)

and α−(γ ) < 1
2 n. We fix a sequence (εi )i ∈ (0,+∞) such that limi→+∞ εi = 0 and we fix a chart ϕ as

in (4-7) to (4-12). For any i ∈ N, we define

ui (x) := ε
n/p
i u(ϕ(εi x)) for all x ∈ B̃δ/εi .
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Equation (5-5) then can be written as

−1gi ui −
ε2

i (γ + O(ετi |x |
τ ))

|ϕ(εi x)|2
ui = fi (x, ui ), ui = 0 on ∂Rn

+
∩ B̃δ/εi , (5-16)

where gi (x) := ϕ?Eucl(εi x) and

| fi (x, ui )| ≤ Cε2
i |ui | +Cε(2

?(s)−2)((n−2)/2−n/p)
i |x |−s

|ui |
2?(s)−1 in B̃δ/εi .

We fix R> 0 and define ωR := (B̃R \ B̃R−1)∩Rn
+

. With our choice of p above and using (5-14), we get that

‖ui‖L p(ωR) ≤ C, (5-17)

and
| fi (x, ui )| ≤ CR|ui | +CR|ui |

2?(s)−1 for all x ∈ ωR . (5-18)

Fix q ≥ p > 2?. It follows from elliptic regularity that

‖ui‖Lq (ωR) ≤ C =⇒


‖ui‖Lq′ (ωR/2)

≤ C ′ if q < 1
2 n(2?(s)− 1),

‖ui‖Lr (ωR/2) ≤ C ′ for all r ≥ 1 if q = 1
2 n(2?(s)− 1),

‖ui‖L∞(ωR/2) ≤ C ′ if q > 1
2 n(2?(s)− 1),

where
1
q ′
=

2?(s)− 1
q

−
2
n

and the constants C,C ′ are uniform with respect to i . It then follows from the standard bootstrap iterative
argument and the initial bound (5-17) that ‖ui‖L∞(ωR/4) ≤ C ′. Taking R > 0 large enough and going back
to the definition of ui , we get that for all i ∈ N,

|x |n/p
|u(x)| ≤ C for all x ∈�∩ B2εi (0)\Bεi/2(0).

Since this holds for any sequence (εi )i , we get that |x |n/p
|u(x)| ≤ C around 0 for any

2? < p <
n2

(n− 2)α−(γ )

when γ > 0. Letting p go to n2/((n− 2)α−(γ )) yields (5-15) when γ > 0. For γ ≤ 0, we let p→+∞.

To finish the proof of Theorem 5.1, we rewrite equation (5-5) as

−1u−
a(x)
|x |2

u = 0,

where for x ∈�,

a(x)= γ + O(|x |τ )+ O(|x |2)+ O(|x |2−s
|u|2

?(s)−2)

= γ + O(|x |τ )+ O(|x |2)+ O(|x |(n−2)/2
|u(x)|)2

?(s)−2.

Since α−(γ )< 1
2 n, it then follows from (5-15) that there exists τ ′>0 such that a(x)=γ+O(|x |τ

′

) as x→0.
We are therefore back to the linear case; hence we can apply Theorem 4.1 and deduce Theorem 5.1. �
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As a consequence we get the following result, which will be crucial for the sequel.

Corollary 5.3. Suppose u ∈ D1,2(Rn
+
), u≥ 0, u 6≡ 0 is a weak solution of

−1u−
γ

|x |2
u =

u2?−1

|x |s
in Rn

+
.

Then, there exist K1, K2 > 0 such that

u(x)∼x→0 K1
x1

|x |α−(γ )
and u(x)∼|x |→+∞ K2

x1

|x |α+(γ )
. (5-19)

Proof. Theorem 5.1 yields the behavior when x→ 0. The Kelvin transform û(x) := |x |2−nu(x/|x |2) is a
solution to the same equation in D1,2(Rn

+
), and its behavior at 0 is given by Theorem 5.1. Going back

to u yields the behavior at∞. �

6. Profile around 0 of positive singular solutions of Lγ u = a(x)u

In this section we describe the profile of any positive solution — variational or not — of linear equations
involving Lγ . Here is the main result of this section.

Theorem 6.1. Let u ∈ C2(Bδ(0)∩ (� \ {0})) be such that
−1u−

γ + O(|x |τ )
|x |2

u = 0 in �∩ Bδ(0),

u > 0 in �∩ Bδ(0),

u = 0 on (∂�∩ Bδ(0)) \ {0}.

(6-1)

Then, there exists K > 0 such that either

u(x)∼x→0 K
d(x, ∂�)
|x |α−(γ )

or u(x)∼x→0 K
d(x, ∂�)
|x |α+(γ )

.

In the first case, the solution u ∈ D1,2(�)loc,0 is a variational solution to (6-1).

It is worth noting that Pinchover [1994] tackled similar issues. The proof of Theorem 6.1 will require
two additional results. The first is a Harnack-type result.

Proposition 6.2. Let � be a smooth bounded domain of Rn , and let a ∈ L∞(�) be such that ‖a‖∞ ≤ M
for some M > 0. Assume U is an open subset of Rn and consider u ∈ C2(U ∩�) to be a solution of

−1gu+ au = 0 in U ∩�,
u ≥ 0 in U ∩�,
u = 0 on U ∩ ∂�.

Here g is a smooth metric on U. If U ′ b U is such that U ′ ∩� is connected, then there exists C > 0
depending only on �, U ′, M and g such that

u(x)
d(x, ∂�)

≤ C
u(y)

d(y, ∂�)
for all x, y ∈U ′ ∩�. (6-2)
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Proof. We first prove a local result. The global result will be the consequence of a covering of U ′. Fix
x0 ∈ ∂�. For δ > 0 small enough, there exists a smooth open domain W such that

Bδ(x0)∩�⊂W ⊂ B2δ(x0)∩� and Bδ(x0)∩ ∂W = Bδ(x0)∩ ∂�. (6-3)

Let G be the Green’s function of −1g+a with Dirichlet boundary condition on W, then its representation
formula reads as

u(x)=
∫
∂W

u(σ )(−∂ν,σG(x, σ )) dσ =
∫
∂W\∂�

u(σ )(−∂ν,σG(x, σ )) dσ (6-4)

for all x ∈W, where ∂ν,σG(x, σ ) is the normal derivative of y 7→ G(x, y) at σ ∈ ∂W. Estimates of the
Green’s function (see [Robert 2010; Ghoussoub and Robert 2006a]) yield the existence of C > 0 such
that for all x ∈W and σ ∈ ∂W,

1
C

d(x, ∂W )

|x − σ |n
≤−∂ν,σG(x, σ )≤ C

d(x, ∂W )

|x − σ |n
.

It follows from (6-3) that there exists C(δ) > 0 such that for all x ∈ Bδ/2(x0)∩�⊂W and σ ∈ ∂W \ ∂�,

1
C(δ)

d(x, ∂W )≤−∂ν,σG(x, σ )≤ C(δ)d(x, ∂W ).

Since u vanishes on ∂�, it then follows from (6-4) that for all x ∈ Bδ/2(x0)∩�,

1
C(δ)

d(x, ∂W )

∫
∂W

u(σ ) dσ ≤ u(x)≤ C(δ)d(x, ∂W )

∫
∂W

u(σ ) dσ.

It is easy to check that under the assumption (6-3), we have that d(x, ∂�)= d(x, ∂W ). Therefore, we
have for all x ∈ Bδ/2(x0)∩�,

1
C(δ)

∫
∂W

u(σ ) dσ ≤
u(x)

d(x, ∂�)
≤ C(δ)

∫
∂W

u(σ ) dσ.

Since these lower and upper bounds are independent of x , we get inequality (6-2) for any x, y∈Bδ/2(x0)∩�.

The general case is a consequence of a covering of U ′ ∩� by finitely many balls. Note that for balls
intersecting ∂�, we apply the preceding result, while for balls not intersecting ∂�, we apply the classical
Harnack inequality. This completes the proof of Proposition 6.2. �

Proof of Theorem 6.1. Let u be a solution of (6-1) as in the statement of Theorem 6.1. We claim that

u(x)= O(d(x, ∂�)|x |−α+(γ )) for x→ 0, x ∈�. (6-5)

Indeed, otherwise we can assume that

lim sup
x→0

u(x)
d(x, ∂�)|x |−α+(γ )

=+∞. (6-6)

In particular, there exists (xk)k ∈� such that for all k ∈ N,

lim
k→+∞

xk = 0 and
u(xk)

d(xk, ∂�)|xk |
−α+(γ )

≥ k. (6-7)
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We claim that there exists C > 0 such that

u(x)
d(x, ∂�)|x |−α+(γ )

≥ Ck for all x ∈�∩ ∂Brk (0),with rk := |xk | → 0. (6-8)

We prove the claim by using the Harnack inequality (6-2): first take the chart ϕ at 0 as in (4-7), and define

uk(x) := u ◦ϕ(rk x) for x ∈ Rn
+
∩ B3(0) \ {0}.

Equation (6-1) can be written as

−1gk uk + akuk = 0 in Rn
+
∩ B3(0) \ {0}, (6-9)

with

ak(x) := −r2
k
γ + O(r τk |x |

τ )

|ϕ(rk x)|2
.

In particular, there exists M > 0 such that |ak(x)| ≤ M for all x ∈ Rn
+
∩ B3(0) \ B1/3(0). Since uk ≥ 0,

the Harnack inequality (6-2) yields the existence of C > 0 such that

uk(y)
y1
≥ C

uk(x)
x1

for all x, y ∈ Rn
+
∩ B2(0) \ B1/2(0). (6-10)

Let x̃k ∈ Rn
+

be such that xk = ϕ(rk x̃k). In particular, |x̃k | = 1+ o(1) as k→+∞. It then follows from
(6-7), (6-9) and (6-10) that

u ◦ϕ(rk y)
d(ϕ(rk y), ∂�)

≥ C · k for all y ∈ Rn
+
∩ B2(0) \ B1/2(0).

In particular, (6-8) holds.

We let now W be a smooth domain such that (4-26) holds for r >0 small enough. Take the supersolution
u(d)α+(γ ),− defined in Proposition 4.5. We have that

u(x)≥
C · k

2
u(d)α+(γ ),−(x) for all x ∈W ∩ ∂Brk (0).

Since u(d)α+(γ ),− vanishes on ∂W, we have u(x)≥ 1
2(C ·k)u

(d)
α+(γ ),−

(x) for all x ∈ ∂(W ∩ Brk (0)). Moreover,
we have that

−1u(d)α+(γ ),−−
γ + O(|x |τ )
|x |2

u(d)α+(γ ),− < 0=−1u−
γ + O(|x |τ )
|x |2

u on W.

Up to taking r even smaller, it follows from the coercivity of the operator and the maximum principle
that

u(x)≥
C · k

2
u(d)α+(γ ),−(x) for all x ∈W ∩ Brk (0). (6-11)

For any x ∈ W, we let k0 ∈ N such that rk < |x | for all k ≥ k0. It then follows from (6-11) that
u(x)≥ 1

2(C · k)u
(d)
α+(γ ),−

(x) for all k ≥ k0. Letting k→+∞ yields that u(d)α+(γ ),−(x) goes to zero for all
x ∈W. This is in contradiction with (4-29). Hence (6-6) does not hold, and therefore (6-5) holds.
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A straightforward consequence of (6-5) and Lemma 5.2 is that there exists l ∈ R such that

lim
x→0

u(x)
d(x, ∂�)|x |−α+(γ )

= l. (6-12)

We now show the following lemma:

Lemma 6.3. If

lim
x→0

u(x)
d(x, ∂�)|x |−α+(γ )

= 0,

then u ∈ D1,2(�)loc,0 and there exists K > 0 such that u(x)∼x→0 K d(x, ∂�)/|x |α−(γ ).

Proof. We shall use Theorem 4.1. Take W as in (4-26) and let η ∈ C∞(Rn) be such that η(x) = 0 for
x ∈ Bδ/4(0) and η(x)= 1 for x ∈ Rn

\ Bδ/3(0). Define

f (x) :=
(
−1−

γ + O(|x |τ )
|x |2

)
(ηu) for x ∈W.

The function f ∈ C∞(W ) vanishes around 0. Let v ∈ D1,2(�) be such that−1v−
γ + O(|x |τ )
|x |2

v = f in W,

v = 0 on ∂W.

Note again that for r > 0 small enough, −1− (γ + O(|x |τ ))|x |−2 is coercive on W, and therefore, the
existence of v is ensured for small r . Define

ũ := u− ηu+ v.

The properties of W and the definition of η and v yield−1ũ−
γ + O(|x |τ )
|x |2

ũ = 0 in W,

ũ = 0 in ∂W \ {0}.

Moreover, since −1v−(γ +O(|x |τ ))|x |−2v= 0 around 0 and v ∈ D1,2(W ), it follows from Theorem 4.1
that there exists C > 0 such that |v(x)| ≤ Cd(x,W )|x |−α−(γ ) for all x ∈W. Therefore, we have that

lim
x→0

ũ(x)
d(x, ∂�)|x |−α+(γ )

= 0. (6-13)

It then follows from Lemma 5.2 that

lim
x→0
|x |α+(γ )|∇ũ(x)| = 0. (6-14)

Let ψ ∈ C∞c (W ) and w ∈ D1,2(W ) be such that−1w−
γ + O(|x |τ )
|x |2

w = ψ in W,

w = 0 on ∂W.
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Since ψ vanishes around 0, it follows from Theorem 4.1 and Lemma 5.2 that

w(x)= O(d(x, ∂W )|x |−α−(γ )) and |∇w(x)| = O(|x |−α−(γ )) as x→ 0. (6-15)

Fix ε > 0 small and integrate by parts, using that both ũ and w vanish on ∂W, to get

0=
∫

W\Bε(0)

(
−1ũ−

γ + O(|x |τ )
|x |2

ũ
)
w dx

=

∫
W\Bε(0)

(
−1w−

γ + O(|x |τ )
|x |2

w

)
ũ dx +

∫
∂(W\Bε(0))

(−w∂ν ũ+ ũ∂νw) dσ

=

∫
W\Bε(0)

ψ ũ dx −
∫
�∩∂Bε(0)

(−w∂ν ũ+ ũ∂νw) dσ.

Using the limits and estimates (6-13), (6-14) and (6-15), and that ψ vanishes around 0, we get

0=
∫

W\Bε(0)
ψ ũ dx+o

(
εn−1(ε1−α−(γ )ε−α+(γ )+ε1−α+(γ )ε−α−(γ ))

)
=

∫
W\Bε(0)

ψ ũ dx+o(1), as ε→ 0.

Therefore, we have
∫

W ψ ũ dx = 0 for all ψ ∈ C∞c (W ). Since ũ ∈ L p is smooth outside 0, we then get
that ũ ≡ 0, and therefore u = ηu+v. In particular, u ∈ D1,2(�)loc,0 is a distributional positive solution to

−1u−
γ + O(|x |τ )
|x |2

u = 0

on W. It then follows from Theorem 4.1 that there exists K > 0 such that u(x)∼x→0 K d(x, ∂�)/|x |α−(γ ).
This proves Lemma 6.3. �

Combining Lemma 6.3 with (6-12) completes the proof of Theorem 6.1. �

As a consequence of Theorem 6.1, we improve Lemma 4.2 as follows.

Proposition 6.4. Let u ∈ C2(Rn
+ \ {0}) be a nonnegative function such that−1u−

γ

|x |2
u = 0 in Rn

+
,

u = 0 on ∂Rn
+
.

(6-16)

Then there exist λ−, λ+ ≥ 0 such that

u(x)= λ−x1|x |−α−(γ )+ λ+x1|x |−α+(γ ) for all x ∈ Rn
+
.

Proof. Without loss of generality, we assume that u 6≡ 0, so that u > 0. We consider the Kelvin transform
of u defined by û(x) := |x |2−nu(x/|x |2) for all x ∈ Rn

+
. Both u and û are then nonnegative solutions

of (6-16). It follows from Theorem 6.1 that, after performing back the Kelvin transform, there exist
α1, α2 ∈ {α+(γ ), α−(γ )} such that

lim
x→0

u(x)
x1|x |−α1

= l1 > 0 and lim
|x |→∞

u(x)
x1|x |−α2

= l2 > 0.
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If α1 ≤ α2, then u(x)≤ Cx1|x |−α1 for all x ∈ Rn
+

. The result then follows from Lemma 4.2. If α1 > α2,
then α1 = α+(γ ) and α2 = α−(γ ). We define

ũ(x) := u(x)− l1x1|x |−α+(γ ) for all x ∈ Rn
+
.

to obtain that −1ũ− ũγ /|x |2 = 0 in Rn
+

, ũ = 0 on ∂Rn
+

, and ũ(x)= o(x1|x |−α+(γ )) as x→ 0. Arguing
as in the proof of Lemma 6.3, we get that ũ ∈ D1,2(Rn

+
)loc,0 and ũ(x) = O(x1|x |−α−(γ )) as x → 0.

Moreover, we have that ũ(x) = (l2 + o(1))x1|x |−α−(γ ) as |x | → +∞; therefore ũ(x) > 0 for |x | � 1.
Since ũ ∈ D1,2(Rn

+
)loc,0, the comparison principle then yields ũ > 0 everywhere. We also have that

ũ(x)≤ Cx1|x |−α−(γ ) for all x ∈ Rn
+

. It then follows from Lemma 4.2 that there exists λ− ≥ 0 such that
ũ(x)= λ−x1|x |−α−(γ ) for all x ∈ Rn

+
, from which Proposition 6.4 follows. �

7. The Hardy singular boundary mass of a domain � when 0 ∈ ∂�

We shall proceed in the following theorem to define the mass of a smooth bounded domain � of Rn such
as 0 ∈ ∂�. It will involve the expansion of positive singular solutions of the Dirichlet boundary problem
Lγ u = 0.

Theorem 7.1. Let � be a smooth bounded domain � of Rn such as 0 ∈ ∂�, and assume that 1
4(n

2
−1) <

γ <γH (�). Then, up to multiplication by a positive constant, there exists a unique function H ∈C2(�\{0})
such that 

−1H −
γ

|x |2
H = 0 in �,

H > 0 in �,

H = 0 on ∂� \ {0}.

(7-1)

Moreover, there exists c1 > 0 and c2 ∈ R such that

H(x)= c1
d(x, ∂�)
|x |α+(γ )

+ c2
d(x, ∂�)
|x |α−(γ )

+ o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0. (7-2)

The quantity mγ (�) := c2/c1 ∈ R, which is independent of the choice of H satisfying (7-1), will be called
the Hardy b-mass of � associated to Lγ .

Proof. First, we start by constructing a singular solution H0 for (7-1). For that, consider uα+(γ ) as in
(4-14) and let η ∈ C∞c (R

n) be such that η(x)= 1 for x ∈ Bδ/2(0) and η(x)= 0 for x ∈ Rn
\ Bδ(0). Set

f := −1(ηuα+(γ ))−
γ

|x |2
(ηuα+(γ )) in � \ {0}.

It follows from (4-19) and (4-5) that f is smooth outside 0 and that

f (x)= O
(
d(x, ∂�)|x |−α+(γ )−1)

= O(|x |−α+(γ )) in �∩ Bδ/2(0).

Since γ > 1
4(n

2
− 1), we have that α+(γ ) < 1

2(n + 1), and therefore f ∈ L2n/(n+2)(�) = (L2?(�))′ ⊂

(D1,2(�))′. It then follows from the coercivity assumption γ < γH (�) that there exists v ∈ D1,2(�)

such that
−1v−

γ

|x |2
v = f in (D1,2(�))′.
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Let v1, v2 ∈ D1,2(�) be such that

−1v1−
γ

|x |2
v1 = f+ and −1v2−

γ

|x |2
v2 = f− in (D1,2(�))′. (7-3)

In particular, v = v1− v2 and v1, v2 ∈ C1(� \ {0}), and they vanish on ∂� \ {0}.

Assume that f+ 6≡ 0. Since f+ ≥ 0, the comparison principle yields v1 > 0 on � \ {0} and ∂νv1 < 0 on
∂� \ {0}. Therefore, for any δ > 0 small enough, there exists C(δ) > 0 such that v1(x)≥ C(δ)d(x, ∂�)
for all x ∈ ∂Bδ(0)∩�. Let uα−(γ ),− be the subsolution defined in (4-4). It follows from the asymptotic
(4-5) that there exists C ′(δ) > 0 such that v1 ≥ C ′(δ)uα−(γ ),− in ∂Bδ(0)∩�. Since this inequality also
holds on ∂(Bδ(0)∩�) and(

−1−
γ

|x |2

)
(v1−C ′(δ)uα−(γ ),−)≥ 0 in Bδ(0)∩�,

coercivity and the maximum principle yield v1 ≥ C ′(δ)uα−(γ ),− in Bδ(0)∩�. It then follows from (4-5)
that there exists c > 0 such that

v1(x)≥ c · d(x, ∂�)|x |−α−(γ ) in Bδ(0)∩�.

Therefore, we have for x ∈ Bδ(0)∩�,

f+(x)≤ Cd(x, ∂�)|x |−α+(γ )−1
≤

C
c
|x |α−(γ )−α+(γ )−1v1(x)≤

C
c
|x |α−(γ )−α+(γ )+1 v1(x)

|x |2
.

Therefore, (7-3) yields

−1v1+
γ + O(|x |α−(γ )−α+(γ )+1)

|x |2
v1 = 0 in Bδ(0)∩�.

Since γ > 1
4(n

2
− 1), we have that α−(γ )− α+(γ )+ 1 > 0. Since v1 ∈ D1,2(�), v1 ≥ 0 and v1 6≡ 0, it

follows from Theorem 4.1 that there exists K1 > 0 such that

v1(x)= K1
d(x, ∂�)
|x |α−(γ )

+ o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0. (7-4)

If f+ ≡ 0, then v1 ≡ 0 and (7-4) holds with K1 = 0. Arguing similarly for f−, and using that v = v1−v2,
we then get that there exists K ∈ R such that

v(x)=−K
d(x, ∂�)
|x |α−(γ )

+ o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0. (7-5)

Set

H0(x) := η(x)uα+(γ )(x)− v(x) for all x ∈� \ {0}. (7-6)

It follows from the definition of v and the regularity outside 0 that

−1H0−
γ

|x |2
H0 = 0 in �, H0(x)= 0 in ∂� \ {0}.
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Moreover, the asymptotics (4-5) and (7-5) yield H0(x) > 0 on �∩ Bδ′(0) for some δ′ > 0 small enough.
It follows from the comparison principle that H0 > 0 in �.

We now perform an expansion of H0. First note that from the definition (4-14) of uα+(γ ), the asymptotic
(7-5) of v and the fact that α+(γ )−α−(γ ) < 1, we have

H0(x)=
d(x, ∂�)
|x |α+(γ )

(1+O(|x |))+K
d(x, ∂�)
|x |α−(γ )

+o
(

d(x, ∂�)
|x |α−(γ )

)
=

d(x, ∂�)
|x |α+(γ )

+K
d(x, ∂�)
|x |α−(γ )

+o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0. In particular, since in addition H0 > 0 in �, there exists c > 1 such that

1
c

d(x, ∂�)
|x |α+(γ )

≤ H0(x)≤ c
d(x, ∂�)
|x |α+(γ )

for all x ∈�. (7-7)

Finally, we establish the uniqueness. For that, we let H ∈ C2(� \ {0}) be as in (7-1) and set

λ0 :=max{λ≥ 0 : H ≥ λH0}.

The number λ0 is clearly defined, and so we set H̃ := H − λ0 H0 ≥ 0. Assume that H̃ 6≡ 0. Since
−1H̃ − γ |x |−2 H̃ = 0, it follows from Theorem 6.1 that there exists α ∈ {α+(γ ), α−(γ )} and K > 0
such that

H(x)∼x→0 K
d(x, ∂�)
|x |α

. (7-8)

If α = α−(γ ), then H̃ ∈ D1,2(�) is a variational solution to −1H̃ − H̃γ /|x |2 = 0 in �. The coercivity
then yields that H̃ ≡ 0, contradicting the initial hypothesis.

Therefore α = α+(γ ). Since H̃ > 0 vanishes on ∂� \ {0}, we have that for any δ > 0, there exists
c(δ) > 0 such that

H̃(x)≥ c(δ)d(x, ∂�) for x ∈� \ Bδ(0). (7-9)

Therefore, (7-8), (7-9) and (7-7) yield the existence of c> 0 such that H̃ ≥ cH0, and then H ≥ (λ0+c)H0,
contradicting the definition of λ0. It follows that H̃ ≡ 0, which means that H = λ0 H0 for some λ0 > 0.
This proves uniqueness and completes the proof of Theorem 7.1. �

Now we establish the monotonicity of the mass with respect to set inclusion.

Proposition 7.2. The mass mγ is a strictly increasing set-function in the following sense: Assume �1, �2

are two smooth bounded domains such that 0 ∈ ∂�1 ∩ ∂�2, and 1
4(n

2
− 1) < γ <min{γH (�1), γH (�2)}.

Then
�1 (�2 =⇒ mγ (�1) < mγ (�2). (7-10)

Moreover, if �( Rn
+

and 1
4(n

2
− 1) < γ < 1

4 n2, then mγ (�) < 0.

Proof. It follows from the definition of the mass that for i = 1, 2, there exists Hi ∈C2(�i \ {0}) such that
−1Hi −

γ

|x |2
Hi = 0 in �i ,

Hi > 0 in �i ,

Hi = 0 on ∂�i ,

(7-11)



HARDY-SINGULAR BOUNDARY MASS AND SOBOLEV-CRITICAL VARIATIONAL PROBLEMS 1053

with

Hi (x)=
d(x, ∂�i )

|x |α+(γ )
+mγ (�i )

d(x, ∂�i )

|x |α−(γ )
+ o

(
d(x, ∂�i )

|x |α−(γ )

)
(7-12)

as x→ 0, x ∈�i . Set h := H2− H1 on �1. Since �1 (�2, we have that−1h−
γ

|x |2
h = 0 in �1,

h ≥ 0, h 6≡ 0 on ∂�1.
(7-13)

First, we claim that h ∈ H 1,2(�1). Indeed, it follows from the construction of the singular function in
(7-6) that there exists w ∈ H 1,2(�1) such that

h(x)=
d(x, ∂�2)− d(x, ∂�1)

|x |α+(γ )
+w(x) for all x ∈�1. (7-14)

Since �1 ⊂�2 and 0 is on the boundary of both domains, the tangent spaces at 0 of �1 and �2 are equal,
and one gets that d(x, ∂�1)−d(x, ∂�2)= O(|x |2) as x→ 0. Since α+(γ )−α−(γ ) < 1, we then get that

h̃(x) :=
d(x, ∂�2)− d(x, ∂�1)

|x |α+(γ )
= O(|x |1−α−(γ )) as x→ 0.

Similarly, |∇h̃(x)| = O(|x |−α−(γ )) as x→ 0. Therefore, we deduce that h̃ ∈ H 1,2(�1). It then follows
from (7-14) that h ∈ H 1,2(�1).

To prove the monotonicity, note first that since γ < γH (�1) and h ∈ H 1,2(�1), it follows from
(7-13) and the comparison principle that h ≥ 0 in �1 (indeed, this is obtained by multiplying (7-13) by
h− ∈ D2

1(�) and integrating; therefore, coercivity yields h− ≡ 0). Since h 6≡ 0, it follows from Hopf’s
maximum principle that for any δ > 0 small, there exists C(δ) > 0 such that h(x)≥ C(δ)d(x, ∂�1) for
all x ∈ ∂Bδ(0)∩�1. We define the subsolution uα−(γ ),− as in Proposition 4.3. It then follows from the
inequality above and the asymptotics in (4-5) that there exists ε0 > 0 such that h(x) ≥ 2ε0uα−(γ ),−(x)
for all x ∈ ∂Bδ(0)∩�1. This inequality also holds on Bδ(0)∩ ∂�1 since uα−(γ ),− vanishes on ∂�1. It
then follows from the maximum principle that h(x) ≥ 2ε0uα−(γ ),−(x) for all x ∈ Bδ(0)∩�1. With the
definition of h and the asymptotic (4-5), we then have that for δ′ > 0 small enough

H2(x)− H1(x)≥ ε0
d(x, ∂�1)

|x |α−(γ )
for all x ∈ Bδ′(0)∩�1. (7-15)

We let Eν be the inner unit normal vector of ∂�1 at 0. This is also the inner unit normal vector of ∂�2 at 0.
Therefore, for any t > 0 small enough, we have that d(tEν, ∂�i )= t for i = 1, 2. It then follows from the
expressions (7-12) and (7-15) that

(mγ (�2)−mγ (�1))
t

tα−(γ )
+ o

(
t

tα−(γ )

)
≥ ε0

t
tα−(γ )

as t ↓ 0.

We then get that mγ (�2)−mγ (�1)≥ ε0, and therefore mγ (�2) >mγ (�1). This proves (7-10) and ends
the first part of Proposition 7.2.

The proof of the second part is similar. Indeed, we take �2 := Rn
+

and we define H2(x) := x1/|x |α+(γ ).
Arguing as above, we get that 0> mγ (�), which completes the proof of Proposition 7.2. �
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Note that we have used above that the mass mγ (R
n
+
) is 0 even though we had only defined the mass

for bounded sets. In the rest of the section, we shall extend the notion of mass to certain unbounded sets
that include Rn

+
. For that, we shall use the Kelvin transformation, defined as follows: for any x0 ∈ Rn, let

ix0(x) := x0+ |x0|
2 x − x0

|x − x0|2
for all x ∈ Rn

\ {x0}. (7-16)

The inversion ix0 is clearly the identity map on ∂B|x0|(x0) (the ball of center x0 and of radius |x0|), and in
particular ix0(0)= 0.

Definition 7.3. We say that a domain � ⊂ Rn (0 ∈ ∂�) is conformally bounded if there exists x0 6∈ �

such that ix0(�) is a smooth bounded domain of Rn having both 0 and x0 on its boundary ∂(ix0(�)).

One can easily check that Rn
+

is a smooth domain at infinity. For instance, take x0 := (−1, 0, . . . , 0). The
following proposition shows that the notion of mass extends to unbounded domains that are conformally
bounded.

Proposition 7.4. Let � be a conformally bounded domain in Rn such that 0 ∈ ∂�. Assume that γH (�) >
1
4(n

2
− 1) and that γ ∈

( 1
4(n

2
− 1), γH (�)

)
. Then, up to a multiplicative constant, there exists a unique

function H ∈ C2(� \ {0}) such that
−1H −

γ

|x |2
H = 0 in �,

H > 0 in �,

H = 0 on ∂� \ {0},

H(x)≤ C |x |1−α+(γ ) for x ∈�.

(7-17)

Moreover, there exists c1 > 0 and c2 ∈ R such that

H(x)= c1
d(x, ∂�)
|x |α+(γ )

+ c2
d(x, ∂�)
|x |α−(γ )

+ o
(

d(x, ∂�)
|x |α−(γ )

)
as x→ 0.

We define the mass bγ (�) := c2/c1, which is independent of the choice of H in (7-17).

Proof. For convenience, up to a rotation and a dilation, we can assume that x0 := (−1, 0, . . . , 0) ∈ Rn so
that the inversion becomes

i(x) := x0+
x − x0

|x − x0|2
for all x ∈ Rn

\ {x0}.

For any u ∈ C2(U ), with U ⊂ Rn, we define its Kelvin transform û : Û → R by

û(x) := |x − x0|
2−nu(i(x)) for all x ∈ Û := i−1(U \ {x0}).

This transform leaves the Laplacian invariant in the following sense:

−1û(x)= |x − x0|
−(n+2)(−1u)(i(x)) for all x ∈ Û. (7-18)
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Define �̃ := i(�) and suppose u ∈ C2(� \ {0}) is such that
−1u−

γ

|x |2
u = 0 in �,

u > 0 in �,

u = 0 on ∂�.

The Kelvin transform ũ of u then satisfies

−1ũ− V ũ = 0 in �̃,

where
V (x) :=

γ

|x |2 |x − x0|2
for x ∈ Rn

\ {0, x0}. (7-19)

It is easy to check that

V (x)=
γ + O(|x |)
|x |2

as x→ 0 and V (x)=
γ + O(|x − x0|)

|x − x0|2
as x→ x0.

In other words, the Kelvin transform allows us to reduce the study of the Hardy-singular boundary mass of a
conformally bounded domain � into defining a notion of mass for the Schrödinger operator −1+V on �̃.

Note that the coercivity of −1− γ |x |−2 on � (since γ < γH (�)) yields the coercivity of −1− V
on �̃; that is, there exists c0 > 0 such that∫

�̃

(|∇u|2− V (x)u2) dx ≥ c0

∫
�̃

|∇u|2 dx for all u ∈ D1,2(�̃).

Arguing as is Section 4, we get for δ > 0 small enough, a function uα+ satisfying
(−1− V )uα+ = O(d(x, ∂�̃)|x |−α+(γ )−1) in �̃∩ B̃δ,
uα+ > 0 in �̃∩ B̃δ,
uα+ = 0 on ∂�̃ \ {0},

and

uα+(x)=
d(x, ∂�̃)
|x |α+(γ )

(1+ O(|x |) as x→ 0.

The function f0 := −1uα+ − V uα+ then satisfies for all x ∈ �̃∩ B̃δ,

| f0(x)| ≤ Cd(x, ∂�̃)|x |−α+(γ )−1
≤ C |x |−α+(γ ),

where C is a positive constant. Since γ > 1
4(n

2
− 1), it follows that f0 ∈ L2n/(n+2)(�̃). Let now

v0 ∈ D1,2(�̃) be such that

−1v0− V v0 = f0 weakly in D1,2(�̃). (7-20)

The existence follows from the coercivity of−1−V on �̃, and the proof of Theorem 7.1 yields that |v0(x)|
is bounded by |x |1−α−(γ ) around 0. Note that around x0, we have −1v0− V v0 = 0 and the regularity
theorem, Theorem 5.1, yields a control by |x − x0|

1−α−(γ ), which means that there exists C > 0 such that

|v0(x)| ≤ Cd(x, ∂�̃)
(
|x |−α−(γ )+ |x − x0|

−α−(γ )
)

for all x ∈ �̃.
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The construction of the mass, Theorem 7.1, and the regularity theorem, Theorem 5.1, then yield that
there exists K0 ∈ R such that

v0(x)= K0
d(x, ∂�̃)
|x |α−(γ )

+ o
(

d(x, ∂�̃)
|x |α−(γ )

)
. (7-21)

Define now H̃0(x) := uα+(γ )(x)− v0(x) for all x ∈ �̃ \ {0, x0}, and consider its Kelvin transform

H0(x) := |x − x0|
2−n H̃0(i(x))= |x − x0|

2−n(uα+(γ )− v0)(i(x)), x ∈�. (7-22)

It follows from (7-18) and the definitions of uα+(γ ) and v0 that H0 satisfies the properties
−1H0−

γ

|x |2
H0 = 0 in �,

H0 > 0 in �,

H0 = 0 in ∂� \ {0}.

(7-23)

Concerning the pointwise behavior, we have that

H0(x)=
d(x, ∂�)
|x |α+

− K0
d(x, ∂�)
|x |α−

+ o
(

d(x, ∂�)
|x |α−

)
as x→ 0, x ∈�, (7-24)

and

H0(x)≤ C |x |1−α+ for all x ∈�, |x |> 1. (7-25)

This proves the existence part in Proposition 7.4. In order to show uniqueness, we let H ∈ C2(�\ {0}) be
as in Proposition 7.4, and consider its Kelvin transform H̃(x) := |x−x0|

2−n H(i(x)) for all x ∈ �̃\{0, x0}.
The transformation law (7-18) yields

−1H̃ − V H̃ = 0 in �̃,
H̃ > 0 in �̃,
H̃ = 0 in ∂�̃ \ {0, x0}.

(7-26)

Moreover, we have that H̃(x) ≤ C |x |1−α+(γ ) + C |x − x0|
1−α−(γ ) for all x ∈ �̃. It then follows from

Theorem 6.1 that there exist C1,C2 > 0 such that

H̃(x)∼x→0 C1
d(x, ∂�̃)
|x |α

and H̃(x)∼x→x0 C2
d(x, ∂�̃)
|x − x0|α−(γ )

, (7-27)

where α ∈ {α−(γ ), α+(γ )}. We claim that α = α+(γ ). Indeed, otherwise, we would have H̃ ∈ D1,2(�̃)

(see Theorem 6.1) and then (7-26) and coercivity would yield H̃ ≡ 0, which is a contradiction. Therefore
α = α+(γ ). By the same reasoning, the estimates (7-27) hold for H̃0 (with different constants C1,C2).
Arguing as in the proof of Theorem 7.1, we get that there exists λ > 0 such that H̃ = λH̃0, and therefore
H = λH0. This proves uniqueness and completes the proof of Proposition 7.4. �

Note that as a consequence of (7-24), the mass mγ (�) is well-defined and is equal to −K0.
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8. Test functions and the existence of extremals

Let � be a domain of Rn such that 0 ∈ ∂�. For γ ∈ R and s ∈ [0, 2), recall that

µγ,s(�) := inf
u∈D1,2(�)\{0}

J�γ,s(u), (8-1)

where

J�γ,s(u) :=

∫
�
(|∇u|2− u2γ /|x |2) dx(∫
�
|u|2?/|x |s dx

)2/2? .

Note that critical points u ∈ D1,2(�) of J�γ,s are weak solutions to the PDE

−1u−
γ

|x |2
= λ
|u|2

?
−2u
|x |s

for some λ ∈ R, (8-2)

which can be rescaled to be equal to 1 if λ > 0 and to be −1 if λ < 0. In this section, we investigate the
existence of minimizers for J�γ,s . We start with the following easy case, where we do not have extremals.

Proposition 8.1. Let �⊂ Rn be a smooth domain such that 0 ∈ ∂� (no boundedness is assumed). When
s = 0 and γ ≤ 0, we have that µγ,0(�)= 1/K (n, 2)2 (where 1/K (n, 2)2 = µ0,0(R

n) is the best constant
in the Sobolev inequality (1-19)) and there is no extremal.

Proof. Note that 2?(s)= 2?(0)= 2?. Since γ ≤ 0, we have for any u ∈ C∞c (�) \ {0},∫
�
(|∇u|2− u2γ /|x |2) dx(∫

�
|u|2? dx

)2/2? ≥

∫
�
|∇u|2 dx(∫

�
|u|2? dx

)2/2? ≥
1

K (n, 2)2
, (8-3)

and therefore µγ,0(�)≥ 1/K (n, 2)2. Fix now x0 ∈� and let η ∈C∞c (�) be such that η(x)= 1 around x0.
Set

uε(x) := η(x)
(

ε

ε2+ |x − x0|2

)(n−2)/2

for all x ∈� and ε >0. Since x0 6=0, it is classical (see, for example, [Aubin 1976]) that limε→0 J�0,0(uε)=
1/K (n, 2)2. It follows that µγ,0(�)≤ 1/K (n, 2)2. This proves that µγ,0(�)= 1/K (n, 2)2.

Assume now that there exists an extremal u0 for µγ,0(�) in D1,2(�) \ {0}. It then follows from
(8-3) that u0 ∈ D1,2(�)⊂ D1,2(Rn) is an extremal for the classical Sobolev inequality on Rn. But these
extremals are known (see [Aubin 1976]) and their support is the whole of Rn , which is a contradiction
since u0 has bounded support in �. It follows that there is no extremal for µγ,0(�). �

The remainder of the section is devoted to the proof of the following.

Theorem 8.2. Let � be a smooth bounded domain in Rn (n ≥ 3) such that 0 ∈ ∂� and let 0≤ s < 2 and
γ < 1

4 n2. Assume that either s > 0, or that {s= 0, n≥ 4 and γ > 0}. There are then extremals for µγ,s(�)
under one of the following two conditions:

(1) γ ≤ 1
4(n

2
− 1) and the mean curvature of ∂� at 0 is negative.

(2) γ > 1
4(n

2
− 1) and the mass mγ (�) of � is positive.
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Moreover, if γ < γH (�) (resp., γ ≥ γH (�)), then such extremals are positive solutions for (8-2) with
λ > 0 (resp., λ≤ 0).

The remaining case n= 3, s= 0 and γ > 0 will be dealt with in Section 10.

According to Theorem 3.6, in order to establish existence of extremals, it suffices to show that
µγ,s(�) < µγ,s(R

n
+
). The rest of the section consists in showing that the above-mentioned geometric

conditions lead to such a gap. The existence of extremals on Rn
+

as described in Proposition 1.3 is essential
here.

In the sequel, h�(0) will denote the mean curvature of ∂� at 0. The orientation is chosen such that the
mean curvature of the canonical sphere (as the boundary of the ball) is positive. Since {s > 0}, or {s= 0,
n≥ 4 and γ > 0}, it follows from Proposition 1.3 that there are extremals for µγ,s(Rn

+
). The following

proposition combined with Theorem 3.6 clearly yield the claims in Theorem 8.2.

Proposition 8.3. We fix γ < 1
4 n2. Assume that there are extremals for µγ,s(Rn

+
). There exist then two

families (u1
ε)ε>0 and (u2

ε)ε>0 in D1,2(�), and two positive constants c1
γ,s and c2

γ,s such that:

(1) For γ < 1
4(n

2
− 1), we have that

J (u1
ε)= µγ,s(R

n
+
)
(
1+ c1

γ,s · h�(0) · ε+ o(ε)
)

when ε→ 0. (8-4)

(2) For γ = 1
4(n

2
− 1), we have that

J (u1
ε)= µγ,s(R

n
+
)
(

1+ c1
γ,s · h�(0) · ε ln 1

ε
+ o

(
ε ln 1

ε

))
when ε→ 0. (8-5)

(3) For γ > 1
4(n

2
− 1), we have as ε→ 0, that

J (u2
ε)= µγ,s(R

n
+
)
(
1− c2

γ,s ·mγ (�) · ε
α+(γ )−α−(γ )+ o(εα+(γ )−α−(γ ))

)
. (8-6)

Remark. When γ < 1
4(n

2
−1), this result is due to Chern and Lin [2010]. Actually, they stated the result

for γ < 1
4(n− 2)2, but their proof works for γ < 1

4(n
2
− 1). However, when γ ≥ 1

4(n
2
− 1), we need the

exact asymptotic profile of U that was described by Corollary 5.3.

Proof. By assumption, there exists U ∈ D1,2(Rn
+
) \ {0}, U ≥ 0, that is a minimizer for µγ,s(Rn

+
). In other

words,

J
Rn
+

γ,s (U )=

∫
Rn
+

(|∇U |2−U 2γ /|x |2) dx(∫
Rn
+

|U |2?(s)/|x |s dx
)2/2?(s) = µγ,s(R

n
+
).

Therefore, there exists λ > 0 such that
−1U −

γ

|x |2
U = λ

U 2?(s)−1

|x |s
in Rn

+
,

U > 0 in Rn
+
,

U = 0 in ∂Rn
+
,

(8-7)

and there exist K1, K2 > 0 such that

U (x)∼x→0 K1
x1

|x |α−
and U (x)∼|x |→+∞ K2

x1

|x |α+
, (8-8)
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where here and in the sequel, we write for convenience

α+ := α+(γ ) and α− := α−(γ ).

In particular, it follows from Lemma 5.2 (after reducing all limits to happen at 0 via the Kelvin transform)
that there exists C > 0 such that

U (x)≤ Cx1|x |−α+ and |∇U (x)| ≤ C |x |−α+ for all x ∈ Rn
+
. (8-9)

We shall now construct a suitable test function for each range of γ . First note that

γ < 1
4(n

2
− 1) ⇐⇒ α+−α− > 1,

γ = 1
4(n

2
− 1) ⇐⇒ α+−α− = 1.

Concerning terminology, here and in the sequel, we define as in (4-6)

B̃r := (−r, r)× B(n−1)
r (0)⊂ R×Rn−1

for all r > 0 and
V+ := V ∩Rn

+

for all V ⊂ Rn. Since � is smooth, up to a rotation, there exist δ > 0 and ϕ0 : B
(n−1)
δ (0)→ R such that

ϕ0(0)= |∇ϕ0(0)| = 0 and
ϕ : B̃3δ→ Rn,

(x1, x ′) 7→ (x1+ϕ0(x ′), x ′),
(8-10)

that realizes a diffeomorphism onto its image and such that

ϕ(B̃3δ ∩Rn
+
)= ϕ(B̃3δ)∩� and ϕ(B̃3δ ∩ ∂Rn

+
)= ϕ(B̃3δ)∩ ∂�.

Let η ∈ C∞c (R
n) be such that η(x)= 1 for all x ∈ B̃δ and η(x)= 0 for all x 6∈ B̃2δ.

Case 1: γ ≤ 1
4(n

2
− 1). As in [Chern and Lin 2010], for any ε > 0, we define

uε(x) :=
(
ηε−(n−2)/2U (ε−1x)

)
◦ϕ−1(x) for x ∈ ϕ(B̃2δ)∩� and 0 elsewhere.

This case is devoted to giving a Taylor expansion of J�γ,s(uε) as ε → 0. In the sequel, we adopt the
following notation: given (aε)ε>0 ∈ R, let 2γ (aε) denote a quantity such that, as ε→ 0,

2γ (aε) :=
{

o(aε) if γ < 1
4(n

2
− 1),

O(aε) if γ = 1
4(n

2
− 1).

A. Estimate of
∫
�
|∇uε |2 dx . It follows from (8-9) that

|∇uε(x)| ≤ Cεα+−n/2
|x |−α+ for all x ∈� and ε > 0. (8-11)

Therefore,
∫
ϕ((B̃3δ\B̃δ)∩Rn

+)
|∇uε |2 dx =2γ (ε) as ε→ 0. It follows that∫

�

|∇uε |2 dx =
∫

B̃δ,+
|∇(uε ◦ϕ)|2ϕ?Eucl|Jacϕ| dx +2γ (ε) as ε→ 0,
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where B̃δ,+ := B̃δ ∩Rn
+

. The definition (8-10) of ϕ yields Jacϕ = 1. Moreover, for any θ ∈ (0, 1), we
have as x→ 0,

ϕ?Eucl :=
(

1 ∂jϕ0

∂iϕ0 δi j+∂iϕ0 ∂jϕ0

)
= Id+ H + O(|x |1+θ ),

where

H :=
(

0 ∂jϕ0

∂iϕ0 0

)
.

It follows that∫
�

|∇uε |2 dx =
∫

B̃δ,+
|∇(uε ◦ϕ)|2Eucl dx −

∫
B̃δ,+

H i j∂i (uε ◦ϕ)∂j (uε ◦ϕ) dx

+O
(∫

B̃δ,+
|x |1+θ |∇(uε ◦ϕ)|2 dx

)
+2γ (ε) as ε→ 0. (8-12)

We have that∫
B̃δ,+

H i j∂i (uε◦ϕ)∂j (uε◦ϕ)dx

= 2
∑
i≥2

∫
B̃δ,+

H 1i∂1(uε◦ϕ)∂i (uε◦ϕ)dx = 2
∑
i≥2

∫
B̃δ,+
∂iϕ0(x ′)∂1(uε◦ϕ)∂i (uε◦ϕ)dx

= 2
∑

i, j≥2

∫
B̃δ,+
∂i jϕ0(0)(x ′) j∂1(uε◦ϕ)∂i (uε◦ϕ)dx+O

(∫
B̃δ,+
|x |2|∇(uε◦ϕ)|2 dx

)
as ε→ 0. (8-13)

We let II be the second fundamental form at 0 of the oriented boundary ∂�. By definition, for any
X, Y ∈ T0∂�, we have that

II(X, Y ) := (dEν0(X), Y )Eucl,

where Eν : ∂�→Rn is the outer unit normal vector of ∂�. In particular, we have that Eν(0)= (−1, 0, · , 0).
For any i, j ≥ 2, we have that

IIi j := II(∂iϕ(0), ∂jϕ(0))=
(
∂i (Eν ◦ϕ)(0), ∂jϕ(0)

)
=−(Eν(0), ∂i jϕ(0))= ∂i jϕ0(0).

Plugging (8-13) in (8-12), and using a change of variables, we get that∫
�

|∇uε |2 dx =
∫

B̃
ε−1δ,+

|∇U |2 dx − 2IIi j

∑
i, j≥2

∫
B̃
ε−1δ,+

(x ′) j∂1U∂iU dx

+O
(∫

B̃δ,+
|x |1+θ |∇(uε ◦ϕ)|2 dx

)
+2γ (ε) as ε→ 0. (8-14)

We now choose θ in the following way:

(i) If γ < 1
4(n

2
− 1), then take θ in (0, α+−α−− 1).

(ii) If γ = 1
4(n

2
− 1), take θ ∈ (0, 1).
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In both cases, we get by using (8-11), that∫
B̃δ,+
|x |1+θ |∇(uε ◦ϕ)|2 dx =2γ (ε) as ε→ 0. (8-15)

Moreover, using (8-9), we have that∫
B̃
ε−1δ,+

|∇U |2 dx =
∫

Rn
+

|∇U |2 dx +2γ (ε) as ε→ 0. (8-16)

Plugging together (8-14)–(8-16) yields∫
�

|∇uε |2 dx =
∫

Rn
+

|∇U |2 dx − 2I Ii j

∑
i, j≥2

∫
B̃
ε−1δ,+

(x ′) j∂1U∂iU dx +2γ (ε). (8-17)

B. Estimate for
∫
�
|uε |2

?(s)/|x |s dx. Fix σ ∈ [0, 2]. We will apply the estimates below to σ = s ∈ [0, 2)
or to σ := 2. The first estimate in (8-9) yields

|uε(x)| ≤ Cεα+−n/2d(x, ∂�)|x |−α+ ≤ Cεα+−n/2
|x |1−α+ (8-18)

for all ε > 0 and all x ∈�. Since Jacϕ = 1, this estimate then yields∫
�

|uε |2
?(σ )

|x |σ
dx =

∫
ϕ(B̃δ,+)

|uε |2
?(σ )

|x |σ
dx +2γ (ε)

=

∫
B̃δ,+

|uε ◦ϕ|2
?(σ )

|ϕ(x)|σ
dx +2γ (ε) as ε→ 0. (8-19)

If γ < 1
4(n

2
− 1) or if γ = 1

4(n
2
− 1) and σ < 2, we choose θ ∈

(
0, (α+− α−)2?(σ )/2− 1

)
∩ (0, 1). If

γ = 1
4(n

2
−1) and σ = 2, we choose any θ ∈ (0, 1). Using the expression of ϕ(x1, x ′), a Taylor expansion

yields

|ϕ(x)|−σ = |x |−σ
(

1−
σ

2
x1

|x |2
∑

i, j≥2

∂i jϕ0(0)(x ′)i (x ′) j
+ O(|x |1+θ )

)
as ε→ 0. (8-20)

The choice of θ yields ∫
B̃δ,+

|uε ◦ϕ|2
?(σ )

|ϕ(x)|σ
|x |1+θ dx =2γ (ε) as ε→ 0. (8-21)

Putting together (8-19)–(8-21), using a change of variable and (8-9), we get as ε→ 0 that∫
�

|uε |2
?(σ )

|x |σ
dx =

∫
Rn
+

|U |2
?(σ )

|x |σ
dx −

σ

2

∑
i, j≥2

ε IIi j

∫
B̃
ε−1δ,+

|U |2
?(σ )

|x |σ
x1

|x |2
(x ′)i (x ′) j dx +2γ (ε). (8-22)

We now compute the terms in U by using its symmetry property established in [Chern and Lin 2010].
Indeed, there exists Ũ : (0,+∞)×R such that U (x1, x ′)= Ũ (x1, |x ′|) for all (x1, x ′) ∈ Rn

+
. Therefore,
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for any i, j ≥ 2, we get that∫
B̃
ε−1δ,+

|U |2
?(σ )

|x |σ
x1

|x |2
(x ′)i (x ′) j dx =

δi j

n− 1

∫
B̃
ε−1δ,+

|U |2
?(σ )

|x |σ
x1

|x |2
|x ′|2 dx

and that ∫
B̃
ε−1δ,+

(x ′) j ∂1U ∂iU dx =
δi j

n− 1

∫
B̃
ε−1δ,+

∂1U (x ′,∇U ) dx,

where x = (x1, x ′) ∈ Rn
+

. Therefore, the identities (8-17) and (8-22) can be rewritten as∫
�

|∇uε |2 dx =
∫

Rn
+

|∇U |2 dx −
2h�(0)
n− 1

ε

∫
B̃
ε−1δ,+

∂1U (x ′,∇U ) dx +2γ (ε) (8-23)

and ∫
�

|uε |2
?(σ )

|x |σ
dx =

∫
Rn
+

|U |2
?(σ )

|x |σ
dx −

σh�(0)
2(n− 1)

ε

∫
B̃
ε−1δ,+

|U |2
?(σ )

|x |σ
x1

|x |2
|x ′|2 dx +2γ (ε) (8-24)

as ε→ 0, where h�(0)=
∑

i IIi i is the mean curvature at 0.

C. An intermediate identity. We now claim that as ε→ 0,∫
B̃
ε−1δ,+

∂1U (x ′,∇U ) dx

=

∫
B̃
ε−1δ,+

|x ′|2x1

2|x |2

(
λ

s
2?(s)

U 2?(s)

|x |s
+ γ

U 2

|x |2

)
dx −

∫
∂Rn
+∩B̃

ε−1δ

|x ′|2(∂1U )2

4
dx +2γ (1), (8-25)

where λ > 0 is as in (8-7). This was shown by Chern and Lin [2010], and we include it for the sake of
completeness. Here and in the sequel, νi denotes the i-th coordinate of the direct outward normal vector
on the boundary of the relevant domain (for instance, on ∂Rn

+
, we have that νi =−δ1i ). We write∫

B̃
ε−1δ,+

∂1U (x ′,∇U )dx =
∑
j≥2

∫
B̃
ε−1δ,+

∂1U (x ′) j ∂jU dx

=

∑
j≥2

∫
B̃
ε−1δ,+

∂1U ∂j

(
|x ′|2

2

)
∂jU dx

=

∑
j≥2

∫
∂(B̃

ε−1δ,+)

∂1U
|x ′|2

2
∂jUν j dσ−

∑
j≥2

∫
B̃
ε−1δ,+

|x ′|2

2
∂j (∂1U ∂jU )dx

=

∑
j≥2

∫
∂Rn
+∩B̃

ε−1δ

∂1U
|x ′|2

2
∂jUν j dσ+O

(∫
Rn
+∩∂ B̃

ε−1δ

|x ′|2 |∇U |2(x)dσ
)

−

∑
j≥2

∫
B̃
ε−1δ,+

|x ′|2

2
(∂1 jU ∂jU+∂1U ∂j jU )dx . (8-26)
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Since U (0, x ′)= 0 for all x ′ ∈Rn−1, using the upper-bound (8-9) and writing ∇ ′= (∂2, . . . , ∂n), we get that∫
B̃
ε−1δ,+

∂1U (x ′,∇U ) dx =−
∑
j≥2

∫
B̃
ε−1δ,+

|x ′|2

2
(∂1 jU ∂jU + ∂1U ∂j jU ) dx+2γ (1)

=−

∫
B̃
ε−1δ,+

|x ′|2

4
∂1(|∇

′U |2) dx +
∫

B̃
ε−1δ,+

|x ′|2

2
∂1U (−1U + ∂11U ) dx+2γ (1)

=−

∫
∂(B̃

ε−1δ,+)

|x ′|2 |∇ ′U |2

4
ν1 dx +

∫
B̃
ε−1δ,+

|x ′|2

2
∂1U (−1U ) dx

+

∫
B̃
ε−1δ,+

∂1

(
|x ′|2(∂1U )2

4

)
dx+2γ (1). (8-27)

Using again that U vanishes on ∂Rn
+

and the bound (8-9), we get as ε→ 0,∫
B̃
ε−1δ,+

∂1U (x ′,∇U )dx

=

∫
B̃
ε−1δ,+

|x ′|2

2
∂1U (−1U )dx+

∫
∂Rn
+∩B̃

ε−1δ

|x ′|2(∂1U )2

4
ν1 dx+O

(∫
∂(B̃

ε−1δ)∩Rn
+

|x ′|2 |∇U |2 dx
)
+2γ (1)

=

∫
B̃
ε−1δ,+

|x ′|2

2
∂1U (−1U )dx−

∫
∂Rn
+∩B̃

ε−1δ

|x ′|2(∂1U )2

4
dx+2γ (1). (8-28)

Now use equation (8-7) to get that∫
B̃
ε−1δ,+

|x ′|2

2
∂1U (−1U ) dx =

∫
B̃
ε−1δ,+

|x ′|2

2
∂1U

(
λ

U 2?(s)−1

|x |s
+ γ

U
|x |2

)
dx . (8-29)

Integrating by parts, using that U vanishes on ∂Rn
+

and the upper-bound (8-9), for σ ∈ [0, 2], we get that∫
B̃
ε−1δ,+

|x ′|2 ∂1U
U 2?(σ )−1

|x |σ
dx =

∫
B̃
ε−1δ,+

|x ′|2 |x |−σ ∂1

(
U 2?(σ )

2?(σ )

)
dx

=

∫
∂(B̃

ε−1δ,+)

|x ′|2 |x |−σ
U 2?(σ )

2?(σ )
ν1 dx −

∫
B̃
ε−1δ,+

∂1(|x ′|2 |x |−σ )
(

U 2?(σ )

2?(σ )

)
dx

= O
(∫

Rn
+∩∂ B̃

ε−1δ,+

|x |2−σU 2?(σ ) dσ
)
+

σ

2?(s)

∫
B̃
ε−1δ,+

|x ′|2x1

|x |σ+2 U 2?(σ ) dx

=
σ

2?(s)

∫
B̃
ε−1δ,+

|x ′|2x1

|x |σ+2 U 2?(σ ) dx +2γ (1) as ε→ 0. (8-30)

Putting together (8-28)–(8-30) yields (8-25).

D. Estimate for J�γ,s(uε). Since U ∈ D1,2(Rn), it follows from (8-7) that∫
Rn
+

(
|∇U |2−

γ

|x |2
U 2
)

dx = λ
∫

Rn
+

U 2?(s)

|x |s
dx . (8-31)
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This equality, combined with (8-23) and (8-24) gives

J�γ,s(uε)=

∫
�

(
|∇uε |2− u2

εγ /|x |
2
)

dx(∫
�
|uε |2

?(s)/|x |s dx
)2/2?(s)

=

∫
Rn
+

(
|∇U |2−U 2γ /|x |2

)
dx(∫

Rn
+

|U |2?(s)/|x |s dx
)2/2?(s)

(
1+ ε

h�(0)
(n− 1)λ

∫
Rn
+

|U |2?(s)/|x |s dx
Cε +2γ (ε)

)
, (8-32)

where for all ε > 0,

Cε := −2
∫

B̃
ε−1δ,+

∂1U (x ′,∇U ) dx + γ
∫

B̃
ε−1δ,+

|x ′|2x1

|x |2
U 2

|x |2
dx + λ

s
2?(s)

∫
B̃
ε−1δ,+

|x ′|2x1

|x |2
U 2?(s)

|x |s
dx .

The identity (8-25) then yields as ε→ 0,

Cε =
∫
∂Rn
+∩B̃

ε−1δ

|x ′|2(∂1U )2

2
dx +2γ (1).

Therefore, (8-32) yields that as ε→ 0,

J�γ,s(uε)= µγ,s(R
n
+
)

(
1+ ε

h�(0)
∫
∂Rn
+∩B̃

ε−1δ
|x ′|2(∂1U )2 dx ′

2(n− 1)λ
∫

Rn
+

|U |2?(s)/|x |s dx
+2γ (ε)

)
. (8-33)

We now distinguish two cases:

(i) γ < 1
4(n

2
− 1). The bound (8-9) then yields x ′ 7→ |x ′|2 |∂1U (x ′)|2 is in L1(∂Rn

+
) and so we get from

(8-33) that
J�γ,s(uε)= µγ,s(R

n
+
)
(
1+C0 · h�(0) · ε+ o(ε)

)
as ε→ 0, (8-34)

with

C0 :=

∫
∂Rn
+

|x ′|2(∂1U )2 dx ′

2(n− 1)λ
∫

Rn
+

|U |2?(s)/|x |s dx
> 0.

(ii) γ = 1
4(n

2
− 1). From (8-8), Lemma 5.2 and the Kelvin transform, we have that

lim
|x ′|→+∞

|x ′|α+ |∂1U (0, x ′)| = K2 > 0.

Since 2α+− 2= n− 1, we get that∫
∂Rn
+∩B̃

ε−1δ

|x ′|2(∂1U )2 dx ′ = ωn−1K 2
2 ln 1

ε
+ o

(
ln 1
ε

)
as ε→ 0. Therefore, (8-33) yields

J�γ,s(uε)= µγ,s(R
n
+
)
(

1+C ′0h�(0)ε ln 1
ε
+ o

(
ln 1
ε

))
as ε→ 0, (8-35)

where

C ′0 :=
ωn−1K 2

2

2(n− 1)λ
∫

Rn
+

|U |2?(s)/|x |s dx
> 0.

Cases (i) and (ii) prove Proposition 8.3 when γ ≤ 1
4(n

2
− 1).
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Case 2: γ > 1
4(n

2
−1). In this case, the construction of test functions is more subtle. First, use Theorem 7.1

to obtain H ∈ C2(� \ {0}) such that (7-1) holds and

H(x)=
d(x, ∂�)
|x |α+

+mγ (�)
d(x, ∂�)
|x |α−

+ o
(

d(x, ∂�)
|x |α−

)
when x→ 0. (8-36)

As above, we fix η ∈ C∞c (R
n) such that η(x)= 1 for all x ∈ B̃δ and η(x)= 0 for all x 6∈ B̃2δ. We then

define β such that

H(x)=
(
η

x1

|x |α+

)
◦ϕ−1(x)+β(x) for all x ∈�.

Here ϕ is as in (4-7)–(4-12). Note that β ∈ D1,2(�) and

β(x)= mγ (�)
d(x, ∂�)
|x |α−

+ o
(

d(x, ∂�)
|x |α−

)
as x→ 0. (8-37)

Indeed, since α+−α− < 1, an essential point underlying all of this case is that

|x | = o(|x |α+−α−) as x→ 0.

We choose U as in (8-7). By multiplying by a constant if necessary, we assume that K2 = 1; that is,

U (x)∼x→0 K1
x1

|x |α−
and U (x)∼|x |→+∞

x1

|x |α+
. (8-38)

Now define

uε(x) := (ηε−(n−2)/2U (ε−1
· )) ◦ϕ−1(x)+ ε(α+−α−)/2β(x) for x ∈� and ε > 0. (8-39)

We start by showing that for any k ≥ 0,

lim
ε→0

uε
ε(α+−α−)/2

= H in Ck
loc(� \ {0}). (8-40)

Indeed, the convergence in C0
loc(� \ {0}) is a consequence of the definition of uε , the choice K2 = 1 and

the asymptotic behavior (8-38). For convergence in Ck, we need in addition that ∇ i (U − x1|x |−α+) =
o(|x |1−α+−i ) as x→+∞ for all i ≥ 0. This estimate follows from (8-38) and Lemma 5.2.

In the sequel, we adopt the following notation: θ εc will denote any quantity such that there exists
θ : R→ R such that limc→0 limε→0 θ

ε
c = 0.

We first claim that for any c > 0, we have that∫
�\ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx

= εα+−α−
(
(α+− 1)cn−2α+ ωn−1

2n
+mγ (�)

(n− 2)ωn−1

2n

)
+ θ εc ε

α+−α−. (8-41)

Indeed, it follows from (8-40) that

lim
ε→0

∫
�\ϕ(Bc(0)+)

(
|∇uε |2− u2

εγ /|x |
2
)

dx

εα+−α−
=

∫
�\ϕ(Bc(0)+)

(
|∇H |2−

γ

|x |2
H 2
)

dx . (8-42)
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Since H vanishes on ∂� \ {0} and satisfies −1H − Hγ /|x |2 = 0, integrating by parts yields∫
�\ϕ(Bc(0)+)

(
|∇H |2−

γ

|x |2
H 2
)

dx =−
∫
ϕ(Rn

+∩∂Bc(0))
H ∂νH dσ

=−

∫
Rn
+∩∂Bc(0)

H ◦ϕ ∂ϕ?ν(H ◦ϕ) d(ϕ?σ), (8-43)

where in the two last equalities, ν(x) is the outer normal vector of Bc(0) at x ∈ ∂Bc(0).

We now estimate H ◦ϕ ∂ϕ?νH ◦ϕ. Since ϕ?ν(x)= x/|x |+O(|x |) as x→ 0, it follows from (8-36) that

H ◦ϕ ∂ϕ?ν(H ◦ϕ)=
(α+− 1)x2

1

|x |2α++1 + (n− 2)mγ (�)
x2

1

|x |n+1 + o(|x |1−n) as x→ 0.

Integrating this expression on Bc(0)+ = Rn
+
∩ ∂Bc(0) and plugging into (8-43) yields∫

�\ϕ(Bc(0)+)

(
|∇H |2−

γ

|x |2
H 2
)

dx =
(α+− 1)cn−2α+ωn−1

2n
+ (n− 2)mγ (�)

ωn−1

2n
+ θc,

where limc→0 θc = 0. Here, we have used that∫
Sn−1
+

x2
1 dσ =

1
2

∫
Sn−1

x2
1 dσ =

1
2n

∫
Sn−1
|x |2 dσ =

ωn−1

2n
, ωn−1 :=

∫
Sn−1

dσ.

This equality and (8-42) prove (8-41).

We now claim that∫
�

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx=λ

∫
Rn
+

U 2?(s)

|x |s
dx+mγ (�)

(n−2)ωn−1

2n
εα+−α−+o(εα+−α−) as ε→0. (8-44)

Indeed, define Uε(x) := ε−(n−2)/2U (ε−1x) for all x ∈ Rn
+

. The definition (8-39) of uε can be rewritten as

uε ◦ϕ(x)=Uε(x)+ ε(α+−α−)/2β ◦ϕ(x) for all x ∈ Rn
+
∩ B̃δ.

Fix c ∈ (0, δ), which we will eventually let go to 0. Since dϕ0 is an isometry, we get that∫
ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx

=

∫
Bc(0)+

(
|∇(uε ◦ϕ)|2ϕ?Eucl−

γ

|ϕ(x)|2
(uε ◦ϕ)2

)
|Jacϕ| dx

=

∫
Bc(0)+

(
|∇Uε |

2
ϕ?Eucl−

γ

|ϕ(x)|2
U 2
ε

)
|Jacϕ| dx

+ 2ε(α+−α−)/2
∫

Bc(0)+

(
(∇Uε,∇(β ◦ϕ))ϕ?Eucl−

γ

|ϕ(x)|2
Uε(uε ◦ϕ)

)
|Jacϕ| dx

+ εα+−α−
∫

Bc(0)+

(
|∇(β ◦ϕ)|2ϕ?Eucl−

γ

|ϕ(x)|2
(β ◦ϕ)2

)
|Jacϕ| dx . (8-45)
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Since ϕ?Eucl=Eucl+O(|x |), |ϕ(x)| = |x | + O(|x |2) and β ∈ D1,2(�), we get that∫
ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx

=

∫
Bc(0)+

(
|∇Uε |

2
Eucl−

γ

|x |2
U 2
ε

)
dx + O

(∫
Bc(0)+

|x |
(
|∇Uε |

2
Eucl+

U 2
ε

|x |2

)
dx
)

+ 2ε(α+−α−)/2
∫

Bc(0)+

(
(∇Uε,∇(β ◦ϕ))Eucl−

γ

|x |2
Uε(β ◦ϕ)

)
dx

+ O
(
ε(α+−α−)/2

∫
Bc(0)+

|x |
(
|∇Uε | · |∇(β ◦ϕ)| +

Uε |β ◦ϕ|

|x |2

)
dx
)
+ εα+−α−θ εc (8-46)

as ε→ 0. The pointwise estimates (8-38) yield∫
ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx =

∫
Bc(0)+

(
|∇Uε |

2
Eucl−

γ

|x |2
U 2
ε

)
dx

+2ε(α+−α−)/2
∫

Bc(0)+

(
(∇Uε,∇(β◦ϕ))Eucl−

γ

|x |2
Uε(β◦ϕ)

)
dx+εα+−α−θ εc

as ε→ 0. Integrating by parts yields∫
ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx

=

∫
Bc(0)+

(
−1Uε −

γ

|x |2
Uε

)
Uε dx +

∫
∂(Bc(0)+)

Uε ∂νUε dσ

+ 2ε(α+−α−)/2
(∫

Bc(0)+

(
−1Uε −

γ

|x |2
Uε

)
β ◦ϕ dx +

∫
∂(Bc(0)+)

β ◦ϕ ∂νUε dσ
)
+ εα+−α−θ εc

as ε→ 0. Since both U and β ◦ϕ vanish on ∂Rn
+
\ {0}, we get that∫

ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx

=

∫
Bc(0)+

(
−1Uε −

γ

|x |2
Uε

)
Uε dx +

∫
Rn
+∩∂Bc(0)

Uε ∂νUε dσ

+ 2ε(α+−α−)/2
(∫

Bc(0)+

(
−1Uε −

γ

|x |2
Uε

)
β ◦ϕ dx +

∫
Rn
+∩∂Bc(0)

β ◦ϕ ∂νUε dσ
)
+ εα+−α−θ εc

(8-47)
as ε→ 0. The asymptotic estimate (8-38) of U and Lemma 5.2 yield (after a Kelvin transform)

∂νUε =−(α+− 1)ε(α+−α−)/2x1|x |−α+−1
+ o(ε(α+−α−)/2|x |−α+)

as ε→ 0 uniformly on compact subsets of Rn
+ \ {0}. We then get that

β ◦ϕ ∂νUε = ε
(α+−α−)/2

(
−mγ (�)(α+− 1)x2

1 |x |
−n−1
+ o(|x |1−n)

)
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and

Uε ∂νUε = ε
α+−α−

(
−(α+− 1)x2

1 |x |
−2α+−1

+ o(|x |1−2α+)
)

as ε → 0 uniformly on compact subsets of Rn
+ \ {0}. Plugging these identities into (8-47) and using

equation (8-7) yields, as ε→ 0,∫
ϕ(Bc(0)+)

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx =

∫
Bc(0)+

λ
U 2?(s)
ε

|x |s
dx − (α+− 1)

ωn−1

2n
cn−2α+εα+−α−

+ 2ε(α+−α−)/2
∫

Bc(0)+
λ
U 2?(s)−1
ε

|x |s
β ◦ϕ dx

− (α+− 1)
ωn−1

n
mγ (�)ε

α+−α− + εα+−α−θ εc . (8-48)

As ε→ 0, we have that ∫
Bc(0)+

λ
U 2?(s)
ε

|x |s
dx =

∫
Rn
+

λ
U 2?(s)
ε

|x |s
dx + o(εα+−α−). (8-49)

The expansion (8-37) and the change of variable x := εy yield as ε→ 0,∫
Bc(0)+

λ
U 2?(s)−1
ε

|x |s
β ◦ϕ dx = λmγ (�)ε

(α+−α−)/2
∫

Rn
+

U 2?(s)−1

|y|s
y1

|y|α−
dy+ ε(α+−α−)/2θ c

ε . (8-50)

Integrating by parts, and using the asymptotics (8-38) for U, we have

λ

∫
Rn
+

U 2?(s)−1

|y|s
y1

|y|α−
dy

= lim
R→+∞

∫
BR(0)+

λ
U 2?(s)−1

|y|s
y1

|y|α−
dy = lim

R→+∞

∫
BR(0)+

(
−1U −

γ

|y|2
U
)

y1

|y|α−
dy

= lim
R→+∞

∫
BR(0)+

U
(
−1−

γ

|y|2

)(
y1

|y|α−

)
dy−

∫
∂BR(0)+

∂νU
y1

|y|α−
dσ = (α+− 1)

ωn−1

2n
. (8-51)

Putting together (8-49)–(8-51) gives∫
�

(
|∇uε |2−

γ

|x |2
u2
ε

)
dx = λ

∫
Rn
+

U 2?(s)

|x |s
dx +mγ (�)

(n− 2)ωn−1

2n
εα+−α− + o(εα+−α−)

as ε→ 0. This finally yields (8-44).
We finally claim that∫
�

u2?(s)
ε

|x |s
dx =

∫
Rn
+

U 2?(s)

|x |s
dx +

2?(s)
λ

mγ (�)
(α+− 1)ωn−1

2n
εα+−α− + o(εα+−α−) as ε→ 0. (8-52)
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Indeed, fix c > 0. Due to estimates (8-37) and (8-38), we have that∫
�

u2?(s)
ε

|x |s
dx =

∫
ϕ(Bc(0)+)

u2?(s)
ε

|x |s
dx + o(εα+−α−)

=

∫
Bc(0)+

|Uε + ε
(α+−α−)/2β ◦ϕ|2

?(s)

|ϕ(x)|s
|Jacϕ| dx + o(εα+−α−)

=

∫
Bc(0)+

|Uε + ε
(α+−α−)/2β ◦ϕ|2

?(s)

|x |s
(1+ O(|x |)) dx + o(εα+−α−)

as ε→ 0. As one checks, there exists C > 0 such that for all X, Y ∈ R,∣∣|X + Y |2
?(s)
− |X |2

?(s)
− 2?(s)|X |2

?(s)−2 XY
∣∣≤ C(|X |2

?(s)−2
|Y |2+ |Y |2

?(s)). (8-53)

Therefore, using the asymptotics (8-37) and (8-38) of U and β, we get that∫
�

u2?(s)
ε

|x |s
dx =

∫
Bc(0)+

U 2?(s)
ε

|x |s
|(1+O(|x |))dx

+2?(s)ε(α+−α−)/2
∫

Bc(0)+

U 2?(s)−1
ε

|x |s
β◦ϕ(1+O(|x |))dx+ε(α+−α−)/2θ c

ε

=

∫
Bc(0)+

U 2?(s)
ε

|x |s
dx+2?(s)ε(α+−α−)/2

∫
Bc(0)+

U 2?(s)−1
ε

|x |s
β◦ϕ dx+ε(α+−α−)/2θ c

ε as ε→ 0.

Then (8-52) follows from this latest identity, combined with (8-49)–(8-51).

We finally use (8-31), (8-44) and (8-52) to get

J�γ,s(uε)= J
Rn
+

γ,s (U )
(

1−

(
α+−

1
2 n
)
ωn−1

nλ
∫

Rn
+

U 2?(s)/|x |s dx
mγ (�)ε

α+−α− + o(εα+−α−)
)

as ε→ 0,

which proves (8-6). This completes Proposition 8.3 and therefore Theorem 8.2. �

9. Domains with positive mass and an arbitrary geometry at 0

In this section, we construct smooth bounded domains in Rn with positive or negative mass, regardless of
the local geometry of ∂� at 0. This is illustrated by the following result.

Theorem 9.1. Let ω be a smooth open set of Rn. Then, there exist r0 > 0 and two smooth bounded
domains �+, �− of Rn such that

�+ ∩ Br0(0)=�− ∩ Br0(0)= ω∩ Br0(0), (9-1)

min{γH (�+), γH (�−)}>
1
4(n

2
− 1), (9-2)

mγ (�+) > 0> mγ (�−), (9-3)

whenever 1
4(n

2
− 1) < γ <min{γH (�+), γH (�−)}.

We shall need the following stability result for the mass under continuous deformations and truncations.
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Proposition 9.2. Let �⊂ Rn be a conformally bounded domain such that 0 ∈ ∂�. Assume that γH (�) >
1
4(n

2
− 1) and fix γ ∈

( 1
4(n

2
− 1), γH (�)

)
. For any R > 0, let DR be a smooth domain of Rn such that

• BR(x0)⊂ DR ⊂ B2R(x0),

• �∩ DR is a smooth domain of Rn.

Let 8 ∈ C∞(R×Rn,Rn) be such that

• 8t :=8(t, · ) is a smooth diffeomorphism of Rn,

• 8t(x)= x for all |x |> 1
2 and all t ∈ R,

• 8t(0)= 0 for all t ∈ R,

• 80 = IdRn .

Set �t,R :=8t(�)∩ DR . Then as t→ 0, R→+∞, we have that γH (�t,R) >
1
4(n

2
− 1) and mγ (�t,R)

is well defined. In addition,

lim
t→0, R→+∞

mγ (�t,R)= mγ (�).

As a preliminary remark, we claim that if � is a conformally bounded domain of Rn such that 0 ∈ ∂�,
then

lim inf
t→0,R→∞

γH (�t,R)≥ γH (�), (9-4)

where �t,R are defined as in Proposition 9.2. Indeed, by definition, γH (�t,R)≥ γH (�t)= γH (8t(�)).
Inequality (9-4) then follows from (3-7) of Lemma 3.2.

We shall use the same approach as in the proof of Proposition 7.4. Assuming x0 := (−1, 0, . . . , 0)∈Rn,
and denoting the corresponding Kelvin inversion by i , this transformation allows us to map the operator
−1−γ /|x |2 on a conformally bounded domain � into the Schrödinger operator −1+V on the bounded
domain �̃, where V is the potential defined in (7-19).

Set now �̃ := i(�), 8̃(t, x) := i ◦8(t, i(x)) for (t, x)∈R×Rn, and D̃r :=Rn
\ i(Dr−1) in Rn. Observe

that R→+∞ in Proposition 9.2 is equivalent to r→ 0 in here. Note that 8̃∈C∞(R×Rn,Rn) is such that:

• For any t ∈ (−2, 2), the map 8̃t := 8̃(t, · ) is a C∞-diffeomorphism onto its open image 8̃t(R
n).

• 8̃0 = Id.

• 8̃t(0)= 0 for all t ∈ (−2, 2).

• 8̃t(x)= x for all t ∈ (−2, 2) and all x ∈ B2δ(x0) with δ < 1
4 .

Set �̃t := 8̃t(�̃) and note that the sets D̃r satisfy the following properties:

• Br/2(x0)⊂ D̃r ⊂ Br (x0).

• �̃t,r := �̃t \ D̃r is a smooth domain of Rn.
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In particular, we have that �̃t,r = i(�t,r−1). Let u ∈ C2(�t,r \ {0}) be such that
−1u−

γ

|x |2
u = 0 in �t,r ,

u > 0 in �t,r ,

u = 0 on ∂�t,r .

We shall need the following.

Lemma 9.3. For any t ∈ (−1, 1), there exists ut ∈ C2(�̃t \ {0, x0}) such that
−1ut − V ut = 0 in �̃t ,

ut > 0 in �̃t ,

ut = 0 on ∂�̃t \ {0, x0},

ut(x)≤ C |x |1−α+(γ )+C |x − x0|
1−α−(γ ) for x ∈ �̃t .

(9-5)

Moreover, we have that

ut(x)=
d(x, ∂�̃t)

|x |α+(γ )
(1+ O(|x |α+(γ )−α−(γ ))) (9-6)

as x→ 0, uniformly with respect to t ∈ (−1, 1).

Proof. We construct approximate singular solutions as in Section 4. For all t ∈ (−2, 2), there exists
a chart ϕt that satisfies (4-7)–(4-12) for �̃t . Without restriction, we assume that limt→0 ϕt = ϕ0 in
Ck(B̃2δ,Rn). We define a cut-off function ηδ such that ηδ(x)= 1 for x ∈ B̃δ and ηδ(x)= 0 for x 6∈ B̃2δ.
As in (4-14), we define uα+(γ ),t ∈ C2(�̃t \ {0}) with compact support in ϕt(B̃2δ) such that

uα+,t ◦ϕt(x1, x ′) := ηδ(x1, x ′)x1|x |−α+(1+2t(x)) for all (x1, x ′) ∈ B̃2δ \ {0}, (9-7)

where 2t(x1, x ′) := e−x1 Ht (x ′)/2−1 for all x = (x1, x ′)∈ B̃2δ and all t ∈ (−2, 2). Here, Ht(x ′) is the mean
curvature of ∂�̃t at the point ϕt(0, x ′). Note that limt→02t =20 in Ck(U ). Arguing as in Section 4, we
get that 

(−1− V )uα+,t = O(d(x, ∂�̃t)|x |−α+(γ )−1) in �̃t ∩ B̃δ,
uα+,t > 0 in �̃t ∩ B̃δ,
uα+,t = 0 on ∂�̃t \ {0},

and

uα+,t(x)=
d(x, ∂�̃t)

|x |α+(γ )
(1+ O(|x |) as x→ 0.

The construction in Section 4 also yields

lim
t→0

uα+,t ◦8t = uα+,0 in C2
loc(�̃ \ {0}). (9-8)

Note also that all these estimates are uniform in t ∈ (−1, 1). In particular, defining

ft := −1uα+,t − V uα+,t , (9-9)
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there exists C > 0 such that

| ft(x)| ≤ Cd(x, ∂�̃t)|x |−α+(γ )−1
≤ C |x |−α+(γ ) (9-10)

for all t ∈ (−1, 1) and all x ∈ �̃t ∩ B̃δ. Therefore, since γ > 1
4(n

2
− 1), it follows from (9-8) and this

pointwise control that ft ∈ L2n/(n+2)(�̃t) for all t ∈ (−1, 1) and that

lim
t→0
‖ ft ◦8t − f0‖L2n/(n+2)(�̃) = 0. (9-11)

For any t ∈ (−1, 1), we let vt ∈ D1,2(�̃t) be such that

−1vt − V vt = ft weakly in D1,2(�̃t).

The existence follows from the coercivity of −1− V on �̃t , which follows itself from the coercivity on
�̃= �̃0. We then get from (9-11) and the uniform coercivity on �̃t that

lim
t→0

vt ◦8t = v0 in D1,2(�̃) and C1
loc(�̃ \ {0, x0}).

It follows from the construction of the mass in Section 7 (see the proof of Theorem 7.1) that around
0, |vt(x)| is bounded by |x |1−α−(γ ). Around x0, we know −1vt − V vt = 0 and the regularity theorem,
Theorem 4.1, yields a control by |x − x0|

1−α−(γ ). These controls are uniform with respect to t ∈ (−1, 1).
Therefore, there exists C > 0 such that

|vt(x)| ≤ Cd(x, ∂�̃t)
(
|x |−α−(γ )+ |x − x0|

−α−(γ )
)

for all t ∈ (−1, 1) and all x ∈ �̃t . Now define ut(x) := uα+,t(x)− vt(x) for all t ∈ (−1, 1) and x ∈ �̃t .
This function satisfies all the requirements of Lemma 9.3. �

Proof of Proposition 9.2. Let �̃t,r = �̃t\D̃r , and note that for r ∈
(
0, 1

2δ
)
, we have �̃t,r∩Bδ(0)= �̃∩Bδ(0).

We shall define a mass associated to the potential V as in Proposition 7.4 and prove its continuity.

Step 1: The function ft : �̃t → R defined in (9-9) has compact support in B2δ(0); therefore, it is well
defined also on �̃t,r . Let vt,r ∈ D1,2(�̃t,r ) be such that

−1vt,r − V vt,r = ft weakly in D1,2(�̃t,r ). (9-12)

Since the operator −1−V is uniformly coercive on �̃t , it is also uniformly coercive on �̃t,r with respect
to (t, r), so that the definition of vt,r via (9-12) makes sense. The uniform coercivity and (9-9)–(9-10)
yield the existence of C > 0 such that ‖vt,r‖D1,2(�̃t,r )

≤ C for all t, r . Since x0 6∈ �̃t,r , (9-9)–(9-10) and

regularity theory yield vt,r ∈ C1(�̃t,r \ {0}) and for all ρ > 0, there exists C(ρ) > 0 independent of t
and r such that

‖vt,r‖C1(�̃t,r\(Bρ(0)∪Bρ(x0)))
≤ C(ρ). (9-13)

Step 2: There exists C > 0 such that for all t ∈ (−1, 1) and all x ∈ �̃t,r ,

|vt,r (x)| ≤ Cd(x, ∂�t)(|x |−α−(γ )+ |x − x0|
−α−(γ )). (9-14)
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Indeed, around 0, we know �̃t,r coincides with �̃t , and the proof of the control goes as in the construction
of the mass in Section 7 (see the proof of Theorem 7.1). The argument is different around x0. We let
r0 > 0 be such that �̃t ∩ B2r0(x0)= �̃∩ B2r0(x0). Therefore, for r ∈ (0, r0), we have that

�̃t,r ∩ B2r0(x0)= (�̃ \ D̃r )∩ B2r0(x0).

Arguing as in the proof of Proposition 4.3, there exists ũα− ∈ C∞(�̃ \ {0}) and τ ′ > 0 such that
ũα− > 0 in �̃∩ B2r0(x0),

ũα− = 0 in (∂�̃)∩ B2r0(x0),

−1ũα− − V ũα− > 0 in �̃∩ B2r0(x0).

Moreover, we have that

ũα−(x)=
d(x, ∂�̃)
|x − x0|α−

(1+ O(|x − x0|)) as x→ x0, x ∈ �̃. (9-15)

Therefore, since vt,r vanishes on B2r0(x0)∩ ∂(�̃ \ D̃r ), it follows from (9-13) and the properties of ũα−
that there exists C > 0 such that vt,r ≤ Cũα− on the boundary of (�̃∩ D̃r )∩ B2r0(x0). Since in addition
(−1− V )vt,r = 0 < (−1− V )(Cũα−), it follows from the comparison principle that vt,r ≤ Cũα− in
(�̃ \ D̃r )∩ B2r0(x0). Arguing similarly with −vt,r and using the asymptotic (9-15), we get (9-14).

Step 3: We have
lim

t,r→0
vt,r ◦8t = v0 in D1,2(�̃)loc,{x0}c ∩C1

loc(�̃ \ {0, x0}), (9-16)

where v0 was defined in (7-20), and the convergence in D1,2(�̃)loc,{x0}c means that limt,r→0 ηvt,r◦8t =ηv0

in D1,2(�̃) for all η ∈ C∞(Rn) vanishing around x0. Indeed, vt,r ◦ 8t ∈ D1,2(�̃ \ D̃r ) ⊂ D1,2(�̃).
Uniform coercivity yields weak convergence in D1,2(�̃) to ṽ ∈ D1,2(�̃). Passing to the limit, one gets
(−1−V )ṽ = f0, so that ṽ = v0. Uniqueness then yields convergence in C1

loc(�̃\ {0, x0}). With a change
of variable, (9-12) yields an elliptic equation for vt,r ◦8t . Multiplying this equation by η2

· (vt,r ◦8t−v0)

for η ∈ C∞(Rn) vanishing around x0, one gets convergence of ηvt,r ◦8t to ηv0 in D1,2(�̃). This proves
the claim.

It follows from the construction of the mass (see Theorem 7.1) and the regularity theorem, Theorem 4.1,
that there exists K0 ∈ R and for all (t, r) small, there exists Kt,r ∈ R such that

vt,r (x)= Kt,r
d(x, ∂�̃t)

|x |α−(γ )
+ o

(
d(x, ∂�̃t)

|x |α−(γ )

)
and v0(x)= K0

d(x, ∂�̃)
|x |α−(γ )

+ o
(

d(x, ∂�̃)
|x |α−(γ )

)
(9-17)

as x ∈ �̃ goes to 0. Note that around 0, we know �̃t,r coincides with �̃t .

Step 4: We claim that
lim

t,r→0
Kt,r = K0. (9-18)

We only give a sketch. Noting ṽt,r := vt,r ◦8t , the proof relies on (9-16) and the fact that

−18?t Euclṽt,r − V ◦8t ṽt,r = ft ◦8t in �̃∩ Bδ(0).

The comparison principle and the definitions (9-17) then yield (9-18).
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Note that

mγ (�)=−K0, (9-19)

where the mass of a conformally bounded � is defined as in Proposition 7.4.

Step 5: convergence of the mass. We claim that

lim
t→0,R→∞

mγ (�t,R)= mγ (�). (9-20)

We define H̃t,r := uα+,t − vt,r so that

−1H̃t,r − V H̃t,r = 0 in �̃t,r .

It follows from (9-6) and (9-17) that H̃t,r > 0 around 0. From the maximum principle, we deduce that
H̃t,r > 0 on �̃t,r and that it vanishes on ∂�̃t,r \ {0, x0}.

It follows from (9-6) and (9-17) that

H̃t,r (x)=
d(x, ∂�̃t,r )

|x |α+
− Kt,r

d(x, ∂�̃t,r )

|x |α−
+ o

(
d(x, ∂�̃t,r )

|x |α−

)
as x→ 0, x ∈ �̃t,r . Coming back to �t,R with R = r−1 via the inversion i with

Ht,R(x) := |x − x0|
2−n H̃t,r (i(x))

for all x ∈�t,R , we get that 
−1Ht,R −

γ

|x |2
Ht,R = 0 in �t,R,

Ht,R > 0 in �t,R,

Ht,R = 0 in ∂�t,R \ {0}

and

Ht,R(x)=
d(x, ∂�t,R)

|x |α+
− Kt,r

d(x, ∂�t,R)

|x |α−
+ o

(
d(x, ∂�t,R)

|x |α−

)
as x → 0, x ∈ �t,R . Therefore, it follows from the definition of the mass (see Theorem 7.1) that
mγ (�t,R)=−Kt,r for all t , r , R = r−1. Claim (9-20) then follows from (9-18) and (9-19). �

In order to prove Theorem 9.1, we need to exhibit prototypes of unbounded domains with either
positive or negative mass.

Proposition 9.4. Let � be a domain such that 0 ∈ ∂� and � is conformally bounded. Assume that
γH (�) >

1
4(n

2
− 1) and fix γ ∈

(1
4(n

2
− 1), γH (�)

)
. Then mγ (�) > 0 if Rn

+
( �, and mγ (�) < 0 if

�( Rn
+

.

Proof. With H0 defined as in (7-22), we set

U(x) := H0(x)− x1|x |−α+ for all x ∈�.
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We first assume that Rn
+
(�. We then have that−1U−

γ

|x |2
U= 0 in Rn

+
,

U	 0 in ∂Rn
+
\ {0}.

(9-21)

We claim that ∫
Rn
+

|∇U|2 dx <+∞. (9-22)

Indeed, at infinity, this is the consequence of the fact that |∇U|(x)≤ C |x |−α+ for all x ∈ Rn
+

large, this
latest bound being a consequence of (7-25) combined with elliptic regularity theory. At 0, the argument
is different. Indeed, one first notes that d(x, ∂�′)= x1+ O(|x |2) for x ∈ Rn

+
close to 0, and therefore,

U(x) = O(|x |1−α−) for x → 0. The control on the gradient |∇U|(x) ≤ C |x |−α− at 0 follows from the
construction of H̃0. This yields integrability at 0 and proves (9-22).

We claim that U> 0 in Rn
+

. Indeed, it follows from (9-21) and (9-22) that U− ∈ D1,2(Rn
+
). Multiplying

equation (7-23) by U−, integrating by parts on (BR(0) \ Bε(0))∩Rn
+

, and letting ε→ 0 and R→+∞
by using (9-22), one gets U− ≡ 0, and then U≥ 0. The result follows from Hopf’s maximum principle.

We now claim that

mγ (�) > 0. (9-23)

Indeed, since U> 0 in Rn
+

, there exists c0 > 0 such that U(x)≥ c0x1|x |−α− for all x ∈ ∂(B1(0)+). It then
follows from (9-22), (9-21) and the comparison principle that U(x)≥ c0x1|x |−α− for all x ∈ B1(0)+. The
expansion (7-24) then yields −K0 ≥ c0 > 0. This combined with (9-19) proves the claim.

When �⊂ Rn
+

, the argument is similar except that one works on � (and not Rn
+

) and that U� 0 in
∂� \ {0}. This ends the proof of Proposition 9.4. �

Proof of Theorem 9.1. Let ω be a smooth domain of Rn such that 0 ∈ ∂�. Up to a rotation, there exists
ϕ ∈C∞(Rn−1) such that ϕ(0)= 0, ∇ϕ(0)= 0 and there exists δ0> 0 such that

ω∩ Bδ0(0)= {x1 > ϕ(x ′) : (x1, x ′) ∈ Bδ0(0)}.

Let η ∈ C∞c (Bδ0(0)) be such that η(x)= 1 for all x ∈ Bδ0/2(0), and define

8t(x) :=
(

x1+ η(x)
ϕ(t x ′)

t
, x ′
)

for all t > 0 and x ∈ Rn,

and 80 := IdRn . It is easy to see that 8t satisfies the hypotheses of Proposition 9.2. Moreover, for
0< t < 1, we have that

ω

t
∩8t(Bδ0/2(0))=8t(R

n
+
∩ Bδ0/2(0)).

We let � be a smooth domain at infinity such that

�∩ B1(0)= Rn
+
∩ B1(0) and γH (�) >

1
4(n

2
− 1), (9-24)
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(for example, Rn
+

), and let �t,R be as in Proposition 9.2. It is easy to see that

ω∩ t8t(Bδ0/2(0))= t�t,R ∩ t8t(Bδ0/2(0)).

Therefore, for t > 0 small enough, we have that

ω∩ Btδ0/3(0)= t�t,R ∩ Btδ0/3(0).

Moreover, γH (t�t,R)= γH (�t,R) >
1
4(n

2
− 1) as t→ 0 and R→+∞; see (9-4). Concerning the mass,

we have

tα+(γ )−α−(γ )mγ (t�t,R)= mγ (�t,R)→ mγ (�) as t→ 0, R→+∞.

We now choose � appropriately.
To get a negative mass, we choose � smooth at infinity such that �∩ B1(0)=Rn

+
∩ B1(0) and �(Rn

+
.

Then γH (�)=
1
4 n2, (9-24) holds and Proposition 9.4 yields mγ (�) < 0. With this choice of �, we take

�− :=�t,R for t small and R large.
To get a positive mass, we choose Rn

+
( � such that (9-24) holds (this is possible for any value of

γH (�) arbitrarily close to 1
4 n2, see point (5) of Proposition 3.1). Then Proposition 9.4 yields mγ (�) > 0.

With this choice of �, we take �+ :=�t,R for t small and R large. This proves Theorem 9.1. �

10. The Hardy singular interior mass and the remaining cases

The remaining situation not covered by Proposition 8.1 and Theorem 8.2 is s= 0, n= 3 and γ ∈
(
0, 1

4 n2
)
.

If γ ≥ γH (�), then Proposition 3.3 and Theorem 3.6 yield µγ,0(�)≤ 0<µγ,0(Rn
+
) and the existence of

extremals is guaranteed. When µγ,0(Rn
+
) does have an extremal U, then Proposition 8.3 and Theorem 3.6

provide sufficient conditions for the existence of extremals. The rest of this section addresses the
remaining case, that is, when γ ∈ (0, γH (�)) and when µγ,0(Rn

+
) has no extremal, and therefore

µγ,0(R
3
+
)= 1/K (3, 2)2 according to Proposition 1.3.

We first define the “interior” mass in the spirit of Schoen and Yau [1988].

Proposition 10.1. Let � ⊂ R3 be an open smooth bounded domain such that 0 ∈ ∂�. Fix x0 ∈ �. If
γ ∈ (0, γH (�)), then the equation

−1G−
γ

|x |2
G = 0 in � \ {x0},

G > 0 in � \ {x0},

G = 0 on ∂� \ {0}

has a solution G ∈ C2(� \ {0, x0})∩ D2
1(� \ {x0})loc,0 that is unique up to multiplication by a constant.

Moreover, for any x0 ∈�, there exists a unique Rγ (x0) ∈ R independent of the choice of G and cG > 0
such that

G(x)= cG

(
1

|x − x0|
+ Rγ (x0)

)
+ o(1) as x→ x0.



HARDY-SINGULAR BOUNDARY MASS AND SOBOLEV-CRITICAL VARIATIONAL PROBLEMS 1077

Proof. Since γ < γH (�), the operator −1− γ |x |−2 is coercive and we can consider G to be its Green’s
function at x0 on � with Dirichlet boundary condition. In particular, for any ϕ ∈ C∞c (�), we have that

ϕ(x)=
∫
�

Gx(y)
(
−1ϕ(y)− γ

ϕ(y)
|y|2

)
dy for x ∈�,

where Gx := G(x, · ). Fix x0 ∈ � and let η ∈ C∞c (�) be such that η(x) = 1 around x0. Define the
distribution βx0 :�→ R as

Gx0(x)=
1
ω2

(
η(x)
|x − x0|

+βx0(x)
)

for all x ∈�,

where ω2 := 4π is the volume of the canonical 2-sphere. As one checks,(
−1−

γ

|x |2

)
βx0 =−

(
−1−

γ

|x |2

)(
η(x)
|x − x0|

)
:= f = O(|x − x0|

−1)

in the distributional sense. Since f ∈ L2(�) and, by uniqueness of the Green’s function (since the operator
is coercive), we have that βx0 ∈ D1,2(�). It follows from standard elliptic theory that

βx0 ∈ C∞(� \ {0, x0})∩C0,θ (� \ Bδ(0))

for all θ ∈ (0, 1) and δ > 0. Since f vanishes around 0, it follows from Theorem 4.1 and Lemma 5.2 that

βx0(x)= O(|x |1−α−(γ )) and |∇βx0(x)| = O(|x |−α−(γ )) when x→ 0. (10-1)

We can therefore define the mass of � at x0 associated to the operator Lγ by Rγ (�, x0) := βx0(x0). As
one checks, βx0(x0) is independent of the choice of η.

The uniqueness is proved as in Theorem 7.1. The behavior on the boundary is given by Theorem 4.1
and the interior behavior around x0 is classical. �

Lemma 10.2. Let �⊂R3 be an open smooth bounded domain such that 0 ∈ ∂� and x0 ∈�. Assume that
γ ∈ (0, γH (�)) and that µγ,0(R3

+
)= 1/K (3, 2)2. Then, there exists a family (uε)ε in D1,2(�) such that

J�γ,0(uε)=
1

K (n, 2)2

(
1−

ω2 Rγ (x0)

3
∫

R3 U 2? dx
ε+ o(ε)

)
as ε→ 0, (10-2)

where U (x) := (1+ |x |2)−1/2 for all x ∈ R3 and 2? = 2?(0)= 2n/(n− 2).

Proof. The proof is very similar to what was performed by Schoen [1984] (see [Druet 2002a; 2002b;
Jaber 2014]). For ε > 0, define the functions

uε(x) := η(x)
(

ε

ε2+ |x − x0|2

)1/2

+ ε1/2βx0(x) for all x ∈�.

As one checks, uε ∈ D1,2(�). Proceeding as in the case γ > 1
4(n

2
− 1) of Section 8, we get (10-2). We

omit the details that are standard. This proves Lemma 10.2. �

We finally get the following.
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Theorem 10.3. Let � be a bounded smooth domain of R3 such that 0 ∈ ∂�.

(1) If γ ≥ γH (�), then there are extremals for µγ,0(�).

(2) If γ ≤ 0, then there are no extremals for µγ,0(�).

(3) If 0< γ < γH (�) and there are extremals for µγ,0(Rn
+
), then there are extremals for µγ,0(�) under

either one of the following conditions:
• γ ≤ 1

4(n
2
− 1) and the mean curvature of ∂� at 0 is negative.

• γ > 1
4(n

2
− 1) and the mass mγ (�) is positive.

(4) If 0< γ < γH (�) and there are no extremals for µγ,0(Rn
+
), then there are extremals for µγ,0(�) if

there exists x0 ∈� such that Rγ (�, x0) > 0.

Proof. The two first points of the theorem follow from Proposition 8.1 and Theorem 3.6. The third point
follows from Proposition 8.3. For the fourth point, in this situation, it follows from Proposition 1.3 that
µγ,0(R

n
+
)= 1/K (n, 2)2, and then Lemma 10.2 gives µγ,0(�) < µγ,0(Rn

+
), which yields the existence of

extremals by Theorem 3.6. This proves Theorem 10.3. �
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CONICAL MAXIMAL REGULARITY
FOR ELLIPTIC OPERATORS VIA HARDY SPACES
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We give a technically simple approach to the maximal regularity problem in parabolic tent spaces for
second-order, divergence-form, complex-valued elliptic operators. By using the associated Hardy space
theory combined with certain L2-L2 off-diagonal estimates, we reduce the tent space boundedness in
the upper half-space to the reverse Riesz inequalities in the boundary space. This way, we also improve
recent results obtained by P. Auscher et al.
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1. Introduction

Let R1+n
+ be the upper half-space R+×Rn with R+ = (0,∞) and n ∈ N+ = {1, 2, . . . }. Define the tent

space T p
par, n/(n+ 1) < p <∞, as the space of all locally square-integrable functions on R1+n

+ such that

‖F‖T p
par
:=

(∫
Rn

(∫∫
R1+n
+

1B(x, t1/2)(y)
tn/2 |F(t, y)|2 dt dy

)p/2

dx
)1/p

<∞. (1)

The scale T p
par, n/(n+1)< p<∞, is a parabolic analogue of the tent spaces introduced by R. R. Coifman,

Y. Meyer and E. M. Stein [Coifman et al. 1985].
Let A = A(x) be an n × n matrix of complex L∞ coefficients, defined on Rn , and satisfying the

ellipticity (or “accretivity”) condition

λ|ξ |2 ≤ Re Aξ · ξ and |Aξ · ζ | ≤3|ξ ||ζ | (2)

for ξ, ζ ∈ Cn and for some λ and 3 such that 0< λ≤3<∞. Let

L := − div A∇
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Keywords: maximal regularity operators, tent spaces, elliptic operators, Hardy spaces, off-diagonal decay, maximal

L p-regularity.
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(its precise definition will be recalled in next section). Consider the associated forward maximal regularity
operator M+L given by

M+L (F)t :=
∫ t

0
Le−(t−s)L Fs ds, (3)

originally defined on F ∈ L2(R+; D(L)). Here D(L) is the domain of L in L2(Rn) and Fs = F(s, · ).
By a classical result of L. de Simon [1964], M+L extends to a bounded operator on L2(R+; L2(Rn)). By
Fubini’s theorem,

T 2
par(R

1+n
+
)' L2(Rn

; L2(R+)). (4)

For p different from 2, the analogous equivalence of (4) between T p
par(R

1+n
+ ) and L p(Rn

; L2(R+)) breaks
down. We shall refer to the maximal regularity (namely, the boundedness of M+L ) in T p

par as conical
maximal regularity for the reason that (parabolic) cones are involved in defining tent spaces in (1).

The maximal regularity operator M+L is a typical example of singular integral operators with operator-
valued kernels. Let 1≤ p ≤ 2. Let

dist(E, E ′) := inf{|x − y| : x ∈ E, y ∈ E ′}.

We shall say that a class of uniformly L2
= L2(Rn) bounded kernels {T (t)}t>0 satisfies the L p-L2

off-diagonal decay with some order M ∈ N+ if we have

‖1E ′T (t)1E f ‖L2 . t−(n/2)(1/p−1/2)
(

1+
dist(E, E ′)2

t

)−M

‖1E f ‖L p (5)

for all Borel sets E, E ′ ⊂ Rn , all t > 0 and all f ∈ L p
∩ L2. We shall say {T (t)}t>0 satisfies the L p-L2

off-diagonal decay if it satisfies the L p-L2 off-diagonal decay with any order M ∈ N+. Denote by
p− = p−(L) the infimum of p for which the heat semigroup {e−t L

}t>0 satisfies the L p-L2 off-diagonal
decay. Define the index

(p−)∗ :=
np−

n+ p−
. (6)

For L =−1=− div∇, one has p− = 1 and 1∗ = n/(n+ 1).
Our main result in this letter reads as follows.

Theorem 1.1. Let L =− div A∇ with A satisfying (2) and p− defined as in (6). Then for p ∈ ((p−)∗, 2],
the maximal regularity operator M+L defined as in (3) extends to a bounded operator on T p

par.

We end the introduction with several remarks.

Remark 1.2. Under the assumption (p−)∗ < 1, Theorem 1.1 was first proved by Auscher et al. [2012a,
Theorem 3.1] (with m = 2, β = 0 and q close to p− in their statement). Indeed, we note that (p−)∗ < 1
is equivalent to (p−)′ > n, where (p−)′ is the dual exponent of p−. A threshold condition essentially the
same as (p−)′ > n is used in [Auscher et al. 2012a].

A general framework of singular integral operators on tent spaces is also presented by Auscher et al.
[2012a]. Their method is heavily based on the L p-L2 off-diagonal decay of the family {t Le−t L

}t>0
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for p ∈ (p−, 2). Note that they already improved the previous result in [Auscher et al. 2012b], the
T p

par-boundedness of M+L for p ∈ (2∗, 2], which assumes L2-L2 off-diagonal decay only.
Here we shall give a technically simple approach to Theorem 1.1 by using the well-established

L-associated Hardy space theory combined (mainly) with L2-L2 off-diagonal decay of {t Le−t L
}t>0.

Remark 1.3. The motivation of the reduction scheme

(operator theory on tent spaces)→ (Hardy space theory),

which is involved in our proof of Theorem 1.1, comes from the study of conical maximal regularity (in
elliptic tent spaces) for first-order perturbed Dirac operators [Huang 2015, Chapter 5]. Furthermore,
the motivation of considering such conical (elliptic) maximal regularity estimates is suggested by their
applications to boundary-value elliptic problems (see [Auscher and Axelsson 2011] for example). In the
parabolic case, the conical maximal regularity results have already proven to be useful in various settings
(see for example [Auscher et al. 2014; Auscher and Frey 2015]).

Remark 1.4. Though the singularity of the integral operator M+L is at s = t , the most involved part
turns out to be the estimation of tent space norms when s→ 0. For more explanations concerning the
“singularity” pertaining to singular integral operators and maximal regularity operators on tent spaces, see
[Auscher et al. 2012a, Remark 3.6; Auscher and Frey 2015, Remark 5.23].

Remark 1.5. Theorem 1.1 also extends to higher order elliptic operators. Then one changes correspond-
ingly the homogeneity of tent spaces and off-diagonal decay in (5). We leave this issue to the interested
reader.

2. Elliptic operators and Hardy spaces

We give some preliminary materials needed in the proof of Theorem 1.1.
Let A satisfy (2). We define the divergence-form elliptic operator

L f := − div(A∇ f ),

which we interpret in the sense of maximal-accretive operators via a sesquilinear form. That is, D(L) is
the largest subspace contained in W 1,2 for which∣∣∣∣∫

Rn
A∇ f · ∇g

∣∣∣∣≤ C‖g‖2

for all g ∈W 1,2, and we set L f by

〈L f, g〉 =
∫

Rn
A∇ f · ∇g

for f ∈ D(L) and g ∈W 1,2. Thus defined, L is a maximal-accretive operator on L2 and D(L) is dense
in W 1,2. Furthermore, L has a square root, denoted by L1/2 and defined as the unique maximal-accretive
operator such that

L1/2L1/2
= L (7)

as unbounded operators [Kato 1976, p. 281].
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For L as formulated above, the development of an L-associated Hardy space theory was taken in
[Hofmann and Mayboroda 2009] (and independently in [Auscher et al. 2008] in a different geometric
setting), in which the authors considered the model case H 1

L(R
n). In presence of pointwise heat kernel

bounds, see [Duong and Yan 2005]. The definition of H 1
L given in [Hofmann and Mayboroda 2009;

Auscher et al. 2008] can be extended immediately to n/(n+ 1) < p ≤ 2 [Hofmann et al. 2011]. To this
end, consider the (conical) square function associated with the heat semigroup generated by L

SL( f )(x) :=
(∫∫

0(x)
|t2Le−t2 L f (y)|2

dt dy
t1+n

)1/2

, x ∈ Rn,

where, as usual,
0(x)= {(t, y) ∈ R1+n

+
: |x − y|< t}

is a nontangential cone with vertex at x ∈ Rn . As in [Hofmann and Mayboroda 2009; Hofmann et al.
2011], we define H p

L (R
n) for n/(n+ 1) < p ≤ 2 as the completion of

{ f ∈ L2(Rn) : SL( f ) ∈ L p(Rn)}

in the quasinorm
‖ f ‖H p

L (R
n) := ‖SL( f )‖L p(Rn).

We will not get into the dual side (p > 2) of the Hardy space theory.
For L2-L2 off-diagonal decay related to {e−sL , sLe−sL ,

√
s∇e−sL

}s>0, and other holomorphic func-
tions of L (for example (I − e−sL)σ with σ > 0), we refer to Chapter 2 of the memoir [Auscher 2007].

3. Proof of Theorem 1.1

Note that the extension of M+L will be divided into two steps: first from F ∈ L2(R+; D(L)) to T 2
par and

then for n/(n+ 1) < p < 2 from T 2
par ∩ T p

par to T p
par.

First we split the operator M+L : for ` ∈ N+ large, set

R`L := M+L − V `
L , (8)

where for F ∈ L2(R+; D(L)) the singular part R`L is given formally by

R`L(F)t =
∫ t

0
Le−(t−s)L(I − e−2sL)`Fs ds (9)

and the regular part is defined by

V `
L =

∑̀
k=1

(
`

k

)
VL ,k

with

VL ,k(F)t :=
∫ t

0
Le−(t+(2k−1)s)L Fs ds, t ∈ R+.

For the above binomial sum V `
L , it suffices to consider VL := VL ,1.

Let 2N+ = {2, 4, . . . }. We make the following observation.
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Lemma 3.1. For ` ∈ 2N+ and 1
2` >

1
2 +

1
4 n, the operator R`L , as given in (9) through (8), extends to a

bounded operator on T p
par for any n/(n+ 1) < p ≤ 2.

Proof. The T 2
par-boundedness is de Simon’s theorem plus the uniform L2-boundedness of {(I−e−2sL)`}s>0.

By interpolation it suffices to consider n/(n+ 1) < p ≤ 1, and this follows from Lemmata 3.4 and 3.5 of
[Auscher et al. 2012a] in the particular case m = 2, β = 0 and q = 2.1 Indeed, first we can decompose
the operator R`L as in [Auscher et al. 2012a] in the way

R`L(F)t =
∫ t

t/2
Le−(t−s)L(I − e−2sL)`Fs ds+

∫ t/2

0
Le−(t−s)L(I − e−2sL)`Fs ds =: I+ II.

Here we view T1 = {(I − e−2sL)`}s>0 as an operator on T p
par given by

T1 : F 7→ T1(F)s := (I − e−2sL)`Fs,

with the similar interpretation for T2 = {(I − e−2sL)`/(sL)`/2}s>0 in

Le−(t−s)L(I − e−2sL)` =
( s

t−s

)`/2
L((t − s)L)`/2e−(t−s)L (I − e−2sL)`

(sL)`/2
.

Note that t− s ∼ t when s < t/2. Therefore, to obtain the T p
par-boundedness of R`L for n/(n+1) < p ≤ 1,

we can use Lemma 3.4 of [Auscher et al. 2012a] together with the T p
par-boundedness of T1 to estimate I

and use Lemma 3.5 of [Auscher et al. 2012a] together with the T p
par-boundedness of T2 to estimate II.

The latter tent space boundedness results on Ti , i = 1, 2, are implied by their L2-L2 off-diagonal decay
with order at least 1

2`, which satisfies the condition

`

2
>

1
2
+

n
4
=

n
2

(
1

n/(n+ 1)
−

1
2

)
.

This implication can be easily verified via the extrapolation method on tent spaces through atomic
decompositions. Note that we also need the condition 1

2` >
1
2 +

1
4 n in (s/(t − s))`/2 ∼ (s/t)`/2 when

applying Lemma 3.5 of [Auscher et al. 2012a]. �

Next we rewrite the operator VL in the following way:

VL(F)t =−ṼL(F)t + IL(F)t , t ∈ R+, (10)

where for F ∈ L2(R+; D(L)) the backward part ṼL is defined by

ṼL(F)t :=
∫
∞

t
Le−(t+s)L Fs ds, t ∈ R+, (11)

and the trace part IL is defined by

IL(F)t :=
∫
∞

0
Le−(t+s)L Fs ds =

√
Le−t L

∫
∞

0

√
Le−sL Fs ds.

We used the square root property
√

L
√

L = L recalled in (7).

1We point out that one can also prove this lemma by adapting directly the arguments for Lemma 3.4 of [Auscher et al. 2012a]
(see [Huang 2015] for details).



1086 YI HUANG

Lemma 3.2. The integral operator ṼL as given in (11) extends to a bounded operator on T p
par for any

n/(n+ 1) < p ≤ 2.2

Proof. This is a consequence of a more general claim by Auscher et al. [2012a, Proposition 3.7], again
corresponding to the case m = 2, β = 0 and q = 2. Indeed, [Auscher et al. 2012a, Proposition 3.7] deals
with a counterpart to M+L , namely the backward maximal regularity operator

M−L (F)t :=
∫
∞

t
Le−(s−t)L Fs ds,

where F ∈ L2(R+; D(L)), and they use the splitting

M−L (F)t =
∫ 2t

t
Le−(s−t)L Fs ds+

∫
∞

2t
Le−(s−t)L Fs ds =: III+ IV.

We only need to use those arguments in proving [Auscher et al. 2012a, Proposition 3.7] with IV involved
since s − t ∼ s when s > 2t , which is equivalent to s + t ∼ s when s > t in our setting. We omit the
details. �

Now we use the L-associated Hardy spaces, which we recalled in Section 2, to treat the trace part IL .
First, from the conical square function estimates [Hofmann et al. 2011, Proposition 4.9], one has, for
n/(n+ 1) < p ≤ 2, ∥∥∥∥√Le−t L

∫
∞

0

√
Le−sL Fs ds

∥∥∥∥
T p

par

.

∥∥∥∥∫ ∞
0

√
Le−sL Fs ds

∥∥∥∥
H p

L

for F ∈ L2(R+; D(L)). Next, from the reverse Riesz inequalities [Hofmann et al. 2011, Proposition 5.17],
one has, for p ∈ ((p−)∗, 2],

‖
√

L f ‖H p
L
. ‖∇ f ‖H p

for f ∈ L2; hence, one further has, for p ∈ ((p−)∗, 2],∥∥∥∥∫ ∞
0

√
Le−sL Fs ds

∥∥∥∥
H p

L

.

∥∥∥∥∫ ∞
0
∇e−sL Fs ds

∥∥∥∥
H p
.

Here, as usual, we use the convention H p
= L p for p > 1.3

For F ∈ T 2
par, consider the sweeping operator

πL(F) :=
∫
∞

0
∇e−sL Fs ds.

An equivalent formulation of the Kato square root estimate for L∗ [Auscher et al. 2002] is the square
function estimate ∫∫

R1+n
+

|e−t L∗ div EF(y)|2 dt dy . ‖ EF‖22

2As we will see in the proof, the lemma also holds for any 0< p ≤ 2. But that does not help in proving Theorem 1.1.
3We remark that in [Auscher and Frey 2015, Lemma 5.21] a variant of IL is treated in a similar way, with informative

connections to the Hardy space theory associated with the first-order perturbed Dirac operators as alluded to in Remark 1.3.
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for all EF ∈ L2(Rn
;Cn); hence, the mapping given by

QL∗ : EF 7→QL∗( EF)(t, y) := (e−t L∗ div EF)(y)

is bounded from L2(Rn
;Cn) to T 2

par. Thereby, we see that πL : T 2
par→ L2 is a bounded operator by duality

with QL∗ .
Recall that a T p

par-atom A supported in the parabolic Carleson cylinder

Cyl(B) := (0, r2
B)× B

for some ball B ⊂ Rn (with radius rB) satisfies the size estimate

‖A‖T 2
par
≤ |B|−(1/p−1/2). (12)

We have the following result on πL .

Lemma 3.3. For any n/(n+1)< p≤ 1 and any T p
par-atom A with supp A⊂Cyl(B) for some ball B⊂Rn

(with radius rB),

m := πL(A)=
∫ r2

B

0
∇e−sL As ds

satisfies the uniform estimate

‖m‖H p . 1. (13)

Hence, πL extends to a bounded operator from T p
par to H p for n/(n+ 1) < p ≤ 2.

Proof. For m = πL(A) with A being T p
par-atoms, n/(n+1) < p≤ 1, and by adapting [Coifman et al. 1983,

Théorème 3; 1985, Theorem 6], (13) follows from the L2-L2 off-diagonal decay for the heat semigroup
{e−sL

}s>0 and the gradient family {
√

s∇e−sL
}s>0, the size estimate (12) and the Coifman–Weiss molecular

theory for H p. Then for n/(n+ 1) < p ≤ 1, πL extends to a bounded operator from T p
par to H p, and by

interpolation, πL extends to a bounded operator from T p
par to H p for n/(n+ 1) < p ≤ 2. �

With the splittings (8) and (10), together with the conditions ` ∈ 2N+ and 1
2` >

1
2 +

1
4 n, and using

Lemmata 3.1, 3.2 and 3.3 in order, the proof of Theorem 1.1 (with p ∈ ((p−)∗, 2]) is then concluded.
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LOCAL EXPONENTIAL STABILIZATION
FOR A CLASS OF KORTEWEG–DE VRIES EQUATIONS

BY MEANS OF TIME-VARYING FEEDBACK LAWS

JEAN-MICHEL CORON, IVONNE RIVAS AND SHENGQUAN XIANG

We study the exponential stabilization problem for a nonlinear Korteweg-de Vries equation on a bounded
interval in cases where the linearized control system is not controllable. The system has Dirichlet boundary
conditions at the end-points of the interval and a Neumann nonhomogeneous boundary condition at the
right end-point, which is the control. We build a class of time-varying feedback laws for which the
solutions of the closed-loop systems with small initial data decay exponentially to 0. We present also
results on the well-posedness of the closed-loop systems for general time-varying feedback laws.

1. Introduction

Let L ∈ (0,+∞). We consider the stabilization of the controlled Korteweg–de Vries (KdV) system
yt + yxxx + yx + yyx = 0 for (t, x) ∈ (s,+∞)× (0, L),
y(t, 0)= y(t, L)= 0 for t ∈ (s,+∞),
yx(t, L)= u(t) for t ∈ (s,+∞),

(1-1)

where s ∈ R and where, at time t ∈ [s,+∞), the state is y(t, · ) ∈ L2(0, L) and the control is u(t) ∈ R.
Boussinesq [1877] and Korteweg and de Vries [1895] introduced KdV equations for describing the

propagation of small-amplitude long water waves. For a better understanding of KdV equations, one can
see [Whitham 1974], in which different mathematical models of water waves are deduced. These equations
have turned out to be good models, not only for water waves but also to describe other physical phenomena.
For mathematical studies on these equations, let us mention [Bona and Smith 1975; Constantin and Saut
1988; Craig et al. 1992; Temam 1969], as well as the discovery of solitons and the inverse scattering
method [Gardner et al. 1967; Murray 1978] to solve these equations. We also refer here to [Bona et al.
2003; 2009; Coron and Crépeau 2004; Rivas et al. 2011; Zhang 1999] for well-posedness results of
initial-boundary-value problems of our KdV equation (1-1) or for other equations which are similar to
(1-1). Finally, let us refer to [Cerpa 2014; Rosier and Zhang 2009] for reviews on recent progresses on
the control of various KdV equations.

Coron and Rivas were supported by ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7).
Coron and Xiang were supported by ANR Project Finite4SoS (ANR 15-CE23-0007) and by LIASFMA.
MSC2010: 93D15, 93D20, 35Q53.
Keywords: Korteweg–de Vries, time-varying feedback laws, stabilization, controllability.
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The controllability research on (1-1) began when Lionel Rosier [1997] showed that the linearized KdV
control system (around 0 in L2(0, L))

yt + yxxx + yx = 0 in (0, T )× (0, L),
y(t, 0)= y(t, L)= 0 on (0, L),
yx(t, L)= u(t) on (0, T )

(1-2)

is controllable if and only if L /∈N, where N is called the set of critical lengths and is defined by

N :=
{
2π
√

1
3(l

2+ lk+ k2) : l, k ∈ N∗
}
. (1-3)

From this controllability result Lionel Rosier, in the same article, deduced that the nonlinear KdV equations
(1-1) are locally controllable (around 0 in L2(0, L)) if L /∈ N. His work also shows that the L2(0, L)
space can be decomposed as H ⊕M , where M is the “uncontrollable” part for the linearized KdV control
systems (1-2), and H is the “controllable” part. Moreover, M is of finite dimension, a dimension which
strongly depends on some number theory property of the length L . More precisely, the dimension of M
is the number of different pairs of positive integers (lj , kj ) satisfying

L = 2π
√

1
3(l

2
j + lj kj + k2

j ). (1-4)

For each such pair of (lj , kj ) with lj > kj , we can find two nonzero real-valued functions ϕ j
1 and ϕ j

2 such
that ϕ j

:= ϕ
j
1 + iϕ j

2 is a solution of
−iω(lj , kj )ϕ

j
+ (ϕ j )′+ (ϕ j )′′′ = 0,

ϕ j (0)= ϕ j (L)= 0,
(ϕ j )′(0)= (ϕ j )′(L)= 0,

(1-5)

where ϕ j
1 , ϕ

j
2 ∈ C∞([0, L]) and ω(lj , kj ) is defined by

ω(lj , kj ) :=
(2lj + kj )(lj − kj )(2kj + lj )

3
√

3(l2
j + lj kj + k2

j )
3/2

. (1-6)

When lj > kj , the functions ϕ j
1 , ϕ

j
2 are linearly independent, but when lj = kj , we have ω(lj , kj )= 0 and

ϕ
j
1 , ϕ

j
2 are linearly dependent. It is also proved in [Rosier 1997] that

M = Span{ϕ1
1, ϕ

1
2, . . . , ϕ

n
1 , ϕ

n
2 }. (1-7)

Multiplying (1-2) by ϕ j, integrating on (0, L), performing integrations by parts and combining with (1-5),
we get

d
dt

(∫ L

0
y(t, x)ϕ j (x) dx

)
= iω(lj , kj )

∫ L

0
y(t, x)ϕ j (x) dx,

which shows that M is included in the “uncontrollable” part of (1-2). Let us point out that there exists at
most one pair of (lj , kj ) such that lj = kj . Hence we can classify L ∈ R+ into five different cases and
therefore divide R+ into five disjoint subsets of (0,+∞), which are defined as follows:
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(1) C := R+\N. Then M = {0}.

(2) N1 :=
{

L ∈ N : there exists exactly one ordered pair (lj ,kj ) satisfying (1-4) and lj = kj
}
. Then the

dimension of M is 1.

(3) N2 :=
{

L ∈ N : there exists exactly one ordered pair (lj ,kj ) satisfying (1-4) and lj > kj
}
. Then the

dimension of M is 2.

(4) N3 :=
{

L∈N : there exist n>2 distinct ordered pairs (lj ,kj ) satisfying (1-4) and none satisfy lj=kj
}
.

Then the dimension of M is 2n.

(5) N4 :=
{

L∈N : there exist n>2 distinct ordered pairs (lj ,kj ) satisfying (1-4) and one satisfies lj=kj
}
.

Then the dimension of M is 2n− 1.

The five sets C, {Ni }
4
i=1 are pairwise disjoint and

R+ = C ∪N1 ∪N2 ∪N3 ∪N4,

N =N1 ∪N2 ∪N3 ∪N4.

Additionally, Eduardo Cerpa [2007, Lemma 2.5] proved that each of these five sets has infinite number of
elements; see also [Coron 2007, Proposition 8.3] for the case of N1.

Let us point out that L /∈N is equivalent to M = {0}. Hence, Lionel Rosier solved the (local) control-
lability problem of nonlinear KdV equations for L ∈ C. Later on Jean-Michel Coron and Emmanuelle
Crépeau [2004] proved the small-time local controllability of nonlinear KdV equations for the second case
L ∈N1, by a “power series expansion” method; the nonlinear term yyx gives this controllability. Later
on, Eduardo Cerpa [2007] proved the local controllability in large time for the third case L ∈N2, still by
using the “power series expansion” method. In this case, an expansion to the order 2 is sufficient but the
local controllability in small time remains open. Finally Eduardo Cerpa and Emmanuelle Crépeau [2009a]
concluded the study by proving the local controllability in large time of (1-1) for the two remaining critical
cases (for which dim M > 3). The proofs of all these results rely on the “power series expansion” method,
introduced in [Coron and Crépeau 2004]. This method has also been used to prove controllability results
for Schrödinger equations [Beauchard 2005; Beauchard and Coron 2006; Beauchard and Morancey 2014;
Morancey 2014] and for rapid asymptotic stability of a Navier-Stokes control system in [Chowdhury
and Ervedoza 2017]. In this article we use it to get exponential stabilization of (1-1). For studies on
the controllability of other KdV control systems problems, let us refer to [Capistrano-Filho et al. 2015;
Gagnon 2016; Glass and Guerrero 2010; Goubet and Shen 2007; Rosier 2004; Zhang 1999].

The asymptotic stability of 0 without control (control term equal to 0) has been studied for years; see,
in particular, [Cerpa and Coron 2013; Goubet and Shen 2007; Jia and Zhang 2012; Massarolo et al. 2007;
Pazoto 2005; Perla Menzala et al. 2002; Rosier and Zhang 2006; Russell and Zhang 1995; 1996]. For exam-
ple, the local exponential stability for our KdV equation if L /∈N was proved in [Perla Menzala et al. 2002].
Let also point out here that in [Doronin and Natali 2014], the authors give the existence of (large) stationary
solutions, which ensures that the exponential stability result in [Perla Menzala et al. 2002] is only local.

Concerning the stabilization by means of feedback laws, the locally exponential stabilization with
arbitrary decay rate (rapid stabilization) with some linear feedback law was obtained by Eduardo Cerpa
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and Emmanuelle Crépeau in [2009b] for the linear KdV equation (1-2). For the nonlinear case, the first
rapid stabilization for Korteweg–de Vries equations was obtained by Camille Laurent, Lionel Rosier and
Bing-Yu Zhang [Laurent et al. 2010] in the case of localized distributed control on a periodic domain.
In that case, the linearized control system, let us write it ẏ = Ay+ Bu, is controllable. These authors
used an approach due to Marshall Slemrod [1974] to construct linear feedback laws leading to the rapid
stabilization of ẏ= Ay+Bu and then proved that the same feedback laws give the rapid stabilization of the
nonlinear Korteweg de Vries equation. In the case of distributed control, the operator B is bounded. For
boundary control the operator B is unbounded. The Slemrod approach has been modified to handle this
case by Vilmos Komornik [1997] and by Jose Urquiza [2005], and [Cerpa and Crépeau 2009b] precisely
uses the modification presented in [Urquiza 2005]. However, in contrast with the case of distributed
control, it leads to unbounded linear feedback laws and one does not know for the moment if these linear
feedback laws lead to asymptotic stabilization for the nonlinear Korteweg de Vries equation. One does
not even know if the closed system is well posed for this nonlinear equation. The first rapid stabilization
result in the nonlinear case and with boundary controls was obtained by Eduardo Cerpa and Jean-Michel
Coron [2013]. Their approach relies on the backstepping method/transformation, a method introduced
by Miroslav Krstic and his collaborators (see [Krstic and Smyshlyaev 2008] for an excellent starting
point to this method). When L 6∈N, by using a more general transformation and the controllability of
(1-2), Jean-Michel Coron and Qi Lü [2014] proved the rapid stabilization of our KdV control system.
Their method can be applied to many other equations, like Schrödinger equations [Coron et al. 2016] and
Kuramoto–Sivashinsky equations [Coron and Lü 2015]. When L ∈N, as mentioned above, the linearized
control system (1-2) is not controllable, but the control system (1-1) is controllable. Let us recall that for
the finite-dimensional case, the controllability doesn’t imply the existence of a (continuous) stationary
feedback law which stabilizes (asymptotically, exponentially, etc.) the control system; see [Brockett 1983;
Coron 1990]. However the controllability in general implies the existence of (continuous) time-varying
feedback laws which asymptotically (and even in finite time) stabilize the control system; see [Coron
1995]. Hence it is natural to look for time-varying feedback laws u(t, y(t, · )) such that 0 is (locally)
asymptotically stable for the closed-loop system

yt + yxxx + yx + yyx = 0 for (t, x) ∈ (s,+∞)× (0, L),
y(t, 0)= y(t, L)= 0 for t ∈ (s,+∞),
yx(t, L)= u(t, y(t, · )) for t ∈ (s,+∞).

(1-8)

Let us also point out that in [Laurent et al. 2010], as in [Coron and Rosier 1994] by Jean-Michel Coron
and Lionel Rosier, which dealt with finite-dimensional control systems, time-varying feedback laws were
used in order to combine two different feedback laws to get rapid global asymptotic stability of the closed
loop system. Let us emphasize that u = 0 leads to (local) asymptotic stability when L ∈N1 [Chu et al.
2015] and L ∈N2 [Tang et al. 2016]. However, in both cases, the convergence is not exponential. It is
then natural to ask if we can get exponential convergence to 0 with the help of some suitable time-varying
feedback laws u(t, y(t, · )). The aim of this paper is to prove that it is indeed possible in the case where

L is in N2 or in N3. (1-9)
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Let us denote by

PH : L2(0, L)→ H and PM : L2(0, L)→ M

the orthogonal projections (for the L2-scalar product) on H and M respectively. Our main result is the
following one, where the precise definition of a solution of (1-10) is given in Section 2.

Theorem 1. Assume that (1-9) holds. Then there exists a periodic time-varying feedback law u, C > 0,
λ > 0 and r > 0 such that, for every s ∈ R and for every ‖y0‖L2

L
< r , the Cauchy problem

yt + yxxx + yx + yyx = 0 for (t, x) ∈ (s,+∞)× (0, L),
y(t, 0)= y(t, L)= 0 for t ∈ (s,+∞),
yx(t, L)= u(t, y(t, · )) for t ∈ (s,+∞),
y(s, · )= y0 for x ∈ (0, L)

(1-10)

has at least one solution in C0
(
[s,+∞); L2(0, L)

)
∩ L2

loc

(
[s,+∞); H 1(0, L)

)
and every solution y of

(1-10) is defined on [s,+∞) and satisfies, for every t ∈ [s,+∞),

‖PH (y(t))‖L2
L
+‖PM(y(t))‖

1/2
L2

L
6 Ce−λ(t−s)(

‖PH (y0)‖L2
L
+‖PM(y0)‖

1/2
L2

L

)
. (1-11)

In order to simplify the notations, in this paper we sometimes simply denote y(t, · ) by y(t), if there
is no misunderstanding; sometimes we also simply denote L2(0, L) by L2

L and L2(0, T ) by L2
T . Let us

explain briefly an important ingredient of our proof of Theorem 1. Taking into account the uncontrollability
of the linearized system, it is natural to split the KdV system into a coupled system for (PH (y), PM(y)).
Then the finite-dimensional analogue of our KdV control system is

ẋ = Ax + R1(x, y)+ Bu, ẏ = Ly+ Q(x, x)+ R2(x, y), (1-12)

where A, B, and L are matrices, Q is a quadratic map, R1, R2 are polynomials and u is the control. The
state variable x plays the role of PH (y), while y plays the role of PM(y). The two polynomials R1 and R2

are quadratic and R2(x, y) vanishes for y = 0. For this ODE system, in many cases the Brockett condition
[1983] and the Coron condition [2007] for the existence of continuous stationary stabilizing feedback laws
do not hold. However, as shown in [Coron and Rivas 2016], many physical systems of form (1-12) can
be exponentially stabilized by means of time-varying feedback laws. We follow the construction of these
time-varying feedback laws given in this article. However, due to the fact that H is of infinite dimension,
many parts of the proof have to be modified compared to those given in [Coron and Rivas 2016]; in
particular we do not know how to use a Lyapunov approach, in contrast to what is done in that paper.

This article is organized as follows. In Section 2, we recall some classical results and definitions about
(1-1) and (1-2). In Section 3, we study the existence and uniqueness of solutions to the closed-loop
system (1-10) with time-varying feedback laws u which are not smooth. In Section 4, we construct our
time-varying feedback laws. In Section 5, we prove two estimates for solutions to the closed-loop system
(1-10) (Propositions 15 and 16) which imply Theorem 1. The article ends with three appendices where
proofs of propositions used in the main parts of the article are given.
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2. Preliminaries

We first recall some results on KdV equations and give the definition of a solution to the Cauchy problem
(1-10). Let us start with the nonhomogeneous linear Cauchy problem

yt + yxxx + yx = h̃ in (T1, T2)× (0, L),
y(t, 0)= y(t, L)= 0 on (T1, T2),

yx(t, L)= h(t) on (T1, T2),

y(T1, x)= y0(x) on (0, L)

(2-1)

for

−∞< T1 < T2 <+∞, (2-2)

y0 ∈ L2(0, L), (2-3)

h̃ ∈ L1(T1, T2; L2(0, L)), (2-4)

h ∈ L2(T1, T2). (2-5)

Let us now give the definition of a solution to (2-1).

Definition 2. A solution to the Cauchy problem (2-1) is a function y ∈ L1(T1, T2; L2(0, L)) such that,
for almost every τ ∈ [T1, T2], the following holds: for every φ ∈ C3([T1, τ ]× [0, L]) such that

φ(t, 0)= φ(t, L)= φx(t, 0)= 0 ∀t ∈ [T1, τ ], (2-6)

one has

−

∫ τ

T1

∫ L

0
(φt +φx +φxxx)y dx dt −

∫ τ

T1

h(t)φx(t, L) dt −
∫ τ

T1

∫ L

0
φh̃ dx dt

+

∫ L

0
y(τ, x)φ(τ, x) dx −

∫ L

0
y0φ(T1, x) dx = 0. (2-7)

For T1 and T2 satisfying (2-2), let us define the linear space BT1,T2 by

BT1,T2 := C0(
[T1, T2]; L2(0, L)

)
∩ L2(T1, T2; H 1(0, L)

)
. (2-8)

This linear space BT1,T2 is equipped with the norm

‖y‖BT1,T2
:=max

{
‖y(t)‖L2

L
: t ∈ [T1, T2]

}
+

(∫ T2

T1

‖yx(t)‖2L2
L

dt
)1/2

. (2-9)

With this norm, BT1,T2 is a Banach space.
Let A : D(A)⊂ L2(0, L)→ L2(0, L) be the linear operator defined by

D(A) :=
{
φ ∈ H 3(0, L) : φ(0)= φ(L)= φx(L)= 0

}
, (2-10)

Aφ := −φx −φxxx ∀φ ∈ D(A). (2-11)

It is known that both A and A∗ are closed and dissipative (see, e.g., [Coron 2007, page 39]), and therefore
A generates a strongly continuous semigroup of contractions S(t), t ∈ [0,+∞) on L2(0, L).



LOCAL EXPONENTIAL STABILIZATION FOR A CLASS OF KORTEWEG–DE VRIES EQUATIONS 1095

Rosier [1997], using the above properties of A together with multiplier techniques, proved the following
existence and uniqueness result for the Cauchy problem (2-1).

Lemma 3. The Cauchy problem (2-1) has one and only one solution. This solution is in BT1,T2 and there
exists a constant C2 > 0 depending only on T2− T1 such that

‖y‖BT1,T2
6 C2

(
‖y0‖L2

L
+‖h‖L2(T1,T2)+‖h̃‖L1(T1,T2;L2(0,L))

)
. (2-12)

In fact the notion of solution to the Cauchy problem (2-1) considered in [Rosier 1997] is a priori
stronger than the one we consider here (it is required to be in C0([T1, T2]; L2(0, L)). However, the
uniqueness of the solution in the sense of Definition 2 still follows from classical arguments; see, for
example, [Coron 2007, Proof of Theorem 2.37, page 53].

Let us now turn to the nonlinear KdV equation
yt + yxxx + yx + yyx = H̃ in (T1, T2)× (0, L),
y(t, 0)= y(t, L)= 0 on (T1, T2),

yx(t, L)= H(t) on (T1, T2),

y(T1, x)= y0(x) on (0, L).

(2-13)

Inspired by Lemma 3, we adopt the following definition.

Definition 4. A solution to (2-13) is a function y ∈ BT1,T2 which is a solution of (2-1) for h̃ := H̃ − yyx ∈

L1(T1, T2; L2(0, L)) and h := H.

Throughout this article we will use similar definitions without giving them precisely, as, for example,
in the case for system (3-15).

Coron and Crépeau [2004] proved the following lemma on the well-posedness of the Cauchy problem
(2-13) for small initial data.

Lemma 5. There exist η > 0 and C3 > 0 depending on L and T2− T1 such that, for every y0 ∈ L2(0, L),
every H ∈ L2(T1, T2) and every H̃ ∈ L1(T1, T2; L2(0, L)) satisfying

‖y0‖L2
L
+‖H‖L2(T1,T2)+‖H̃‖L1(T1,T2;L2(0,L)) 6 η, (2-14)

the Cauchy problem (2-13) has a unique solution and this solution satisfies

‖y‖BT1,T2
6 C3

(
‖y0‖L2

L
+‖H‖L2(T1,T2)+‖H̃‖L1(T1,T2;L2(0,L))

)
. (2-15)

3. Time-varying feedback laws and well-posedness of the associated closed-loop system

Throughout this section u denotes a time-varying feedback law; it is a map from R× L2(0, L) with values
into R. We assume that this map is a Carathéodory map, i.e., it satisfies the three properties

∀R > 0, ∃ CB(R) > 0 such that
(
‖y‖L2

L
6 R =⇒ |u(t, y)|6 CB(R) ∀t ∈ R

)
, (3-1)

∀y ∈ L2(0, L), the function t ∈ R 7→ u(t, y) ∈ R is measurable, (3-2)

for almost every t ∈ R, the function y ∈ L2(0, L) 7→ u(t, y) ∈ R is continuous. (3-3)
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In this article we always assume that

CB(R)≥ 1 ∀R ∈ [0,+∞), (3-4)

R ∈ [0,+∞) 7→ CB(R) ∈ R is a nondecreasing function. (3-5)

Let s ∈ R and let y0 ∈ L2(0, L). We start by giving the definition of a solution to
yt + yxxx + yx + yyx = 0 for t ∈ R, x ∈ (0, L),
y(t, 0)= y(t, L)= 0 for t ∈ R,

yx(t, L)= u(t, y(t, · )) for t ∈ R,

(3-6)

and to the Cauchy problem
yt + yxxx + yx + yyx = 0 for t > s, x ∈ (0, L),
y(t, 0)= y(t, L)= 0 for t > s,
yx(t, L)= u(t, y(t, · )) for t > s,
y(s, x)= y0(x) for x ∈ (0, L),

(3-7)

where y0 is a given function in L2(0, L) and s is a given real number.

Definition 6. Let I be an interval of R with a nonempty interior. A function y is a solution of (3-6) on I
if y ∈ C0(I ; L2(0, L)) is such that, for every [T1, T2] ⊂ I with −∞ < T1 < T2 < +∞, the restriction
of y to [T1, T2] × (0, L) is a solution of (2-13) with H̃ := 0, H(t) := u(t, y(t)) and y0 := y(T1). A
function y is a solution to the Cauchy problem (3-7) if there exists an interval I with a nonempty interior
satisfying I ∩ (−∞, s] = {s} such that y ∈ C0(I ; L2(0, L)) is a solution of (3-6) on I and satisfies the
initial condition y(s)= y0 in L2(0, L). The interval I is denoted by D(y). We say that a solution y to
the Cauchy problem (3-7) is maximal if, for every solution z to the Cauchy problem (3-7) such that

D(y)⊂ D(z), (3-8)

y(t)= z(t) for every t in D(y), (3-9)

one has

D(y)= D(z). (3-10)

Let us now state our theorems concerning the Cauchy problem (3-7).

Theorem 7. Assume that u is a Carathéodory function and that, for every R > 0, there exists K (R) > 0
such that(

‖y‖L2
L
6 R and ‖z‖L2

L
6 R

)
=⇒

(
|u(t, y)− u(t, z)|6 K (R)‖y− z‖L2

L
∀t ∈ R

)
. (3-11)

Then, for every s ∈ R and for every y0 ∈ L2(0, L), the Cauchy problem (3-7) has one and only one
maximal solution y. If D(y) is not equal to [s,+∞), there exists τ ∈ R such that D(y)= [s, τ ) and one
has

lim
t→τ−
‖y(t)‖L2

L
=+∞. (3-12)
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Moreover, if CB(R) satisfies ∫
+∞

0

R
(CB(R))2

d R =+∞, (3-13)

then
D(y)= [s,+∞). (3-14)

Theorem 8. Assume that u is a Carathéodory function which satisfies condition (3-13). Then, for every
s ∈ R and for every y0 ∈ L2(0, L), the Cauchy problem (3-7) has at least one maximal solution y such
that D(y)= [s,+∞).

The proofs of Theorems 7 and 8 will be given in Appendix B.
We end this section with the following proposition, which gives the expected connection between the

evolution of PM(y) and PH (y) and the fact that y is a solution to (3-6).

Proposition 9. Let u : R× L2(0, L)→ R be a Carathéodory feedback law. Let −∞< s < T <+∞, let
y ∈ Bs,T and let y0 ∈ L2(0, L). Denote PH (y) by y1 and PM(y) by y2. Then y is a solution to the Cauchy
problem (3-7) if and only if

y1t + y1x + y1xxx + PH
(
(y1+ y2)(y1+ y2)x

)
= 0,

y1(t, 0)= y1(t, L)= 0,
y1x(t, L)= u(t, y1+ y2),

y1(0, · )= PH (y0),

y2t + y2x + y2xxx + PM
(
(y1+ y2)(y1+ y2)x

)
= 0,

y2(t, 0)= y2(t, L)= 0,
y2x(t, L)= 0,
y2(0, · )= PM(y0).

(3-15)

The proof of this proposition is given in Appendix A.

4. Construction of time-varying feedback laws

In this section, we construct feedback laws which will lead to the local exponential stability stated in
Theorem 1. Let us denote by M1 the set of elements in M having an L2-norm equal to 1:

M1 :=
{

y ∈ M : ‖y‖L2
L
= 1

}
. (4-1)

Let M j be the linear space generated by ϕ j
1 and ϕ j

2 for every j ∈ {1, 2, . . . , n}:

M j
:= Span{ϕ j

1 , ϕ
j
2 }. (4-2)

The construction of our feedback laws relies on the following proposition.

Proposition 10. There exist T > 0 and v ∈ L∞([0, T ]×M1;R) such that the following properties hold:

(P1) There exists ρ1 ∈ (0, 1) such that

‖S(T )y0‖
2
L2(0,L) 6 ρ1‖y0‖

2
L2(0,L) for every y0 ∈ H.
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(P2) For every y0 ∈ M,
‖S(T )y0‖

2
L2(0,L) = ‖y0‖

2
L2(0,L).

(P3) There exists C0 > 0 such that

| v(t, y)− v(t, z) |6 C0‖y− z‖L2(0,L) ∀t ∈ [0, T ], ∀y, z ∈ M1. (4-3)

Moreover, there exists δ > 0 such that, for every z ∈ M1, the solution (y1, y2) to the equation

y1t + y1x + y1xxx = 0,
y1(t, 0)= y1(t, L)= 0,
y1x(t, L)= v(t, z),
y1(0, x)= 0,
y2t + y2x + y2xxx + PM(y1 y1x)= 0,
y2(t, 0)= y2(t, L)= 0,
y2x(t, L)= 0,
y2(0, x)= 0,

(4-4)

satisfies
y1(T )= 0 and 〈y2(T ), S(T )z〉L2(0,L) <−2δ. (4-5)

Proof of Proposition 10. Property (P2) is given in [Rosier 1997]; one can also see (4-14) and (4-44). Prop-
erty (P1) follows from the dissipativity of A and the controllability of (1-2) in H (see also [Perla Menzala
et al. 2002]). Indeed, integrations by parts (and simple density arguments) show that, in the distribution
sense in (0,+∞),

d
dt
‖S(t)y0‖

2
L2

L
=−y2

x (t, 0). (4-6)

Moreover, as Rosier [1997] proved for every T > 0, there exists c > 1 such that, for every y0 ∈ H,

‖y0‖
2
L2

L
6 c‖yx(t, 0)‖2L2(0,T ). (4-7)

Integration of identity (4-6) on (0, T ) and the use of (4-7) give

‖S(T )y0‖
2
L2

L
6 c−1

c
‖y0‖

2
L2

L
. (4-8)

Hence ρ1 := (c− 1)/c ∈ (0, 1) satisfies the required properties.
Our concern now is to deal with (P3). Let us first recall a result on the controllability of the linear

control system 
yt + yxxx + yx = 0 in (0, T )× (0, L),
y(t, 0)= y(t, L)= 0 on (0, L),
yx(t, L)= u(t) on (0, T ),

(4-9)

where, at time t ∈ [0, T ], the state is y(t, · ) ∈ L2(0, L). Our goal is to investigate the cases where
L ∈N2∪N3, but in order to explain more clearly our construction of v, we first deal with the case where

L = 2π
√

1
3(1

2+ 1× 2+ 22)= 2π
√

7
3 , (4-10)
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which corresponds to l = 1 and k = 2 in (1-3). In that case the uncontrollable subspace M is a two-
dimensional vector subspace of L2(0, L) generated by

ϕ1(x)= C
(
cos
( 5
√

21
x
)
− 3 cos

( 1
√

21
x
)
+ 2 cos

( 4
√

21
x
))
,

ϕ2(x)= C
(
− sin

( 5
√

21
x
)
− 3 sin

( 1
√

21
x
)
+ 2 sin

( 4
√

21
x
))
,

where C is a positive constant such that ‖ϕ1‖L2
L
= ‖ϕ2‖L2

L
= 1. They satisfy

ϕ′1+ϕ
′′′

1 =−2πϕ2/p,
ϕ1(0)= ϕ1(L)= 0,
ϕ′1(0)= ϕ

′

1(L)= 0
(4-11)

and 
ϕ′2+ϕ

′′′

2 = 2πϕ1/p,
ϕ2(0)= ϕ2(L)= 0,
ϕ′2(0)= ϕ

′

2(L)= 0,
(4-12)

with (see [Cerpa 2007])

p :=
441π

10
√

21
. (4-13)

For every t > 0, one has

S(t)M ⊂ M and S(t) restricted to M is the rotation of angle 2π t
p
, (4-14)

if the orientation on M is chosen so that (ϕ1, ϕ2) is a direct basis, a choice which is done from now
on. Moreover the control u has no action on M for the linear control system (1-2): for every initial
data y0 ∈ M , whatever u ∈ L2(0, T ), the solution y of (1-2) with y(0)= y0 satisfies PM(y(t))= S(t)y0

for every t ∈ [0,+∞). Let us denote by H the orthogonal in L2(0, L) of M for the L2-scalar product
H := M⊥. This linear space is left invariant by the linear control system (1-2): for every initial data
y0 ∈ H, whatever u ∈ L2(0, T ), the solution y of (1-2) satisfying y(0) = y0 is such that y(t) ∈ H for
every t ∈ [0,+∞). Moreover, as proved by Rosier [1997], the linear control system (1-2) is controllable
in H in small time. More precisely, he proved the following lemma.

Lemma 11. Let T > 0. There exists C > 0 depending only on T such that, for every y0, y1 ∈ H, there
exists a control u ∈ L2(0, T ) satisfying

‖u‖L2
T
6 C(‖y0‖L2

L
+‖y1‖L2

L
) (4-15)

such that the solution y of the Cauchy problem
yt + yxxx + yx = 0 in (0, T )× (0, L),
y(t, 0)= y(t, L)= 0 on (0, T ),
yx(t, L)= u(t) on (0, T ),
y(0, x)= y0(x) on (0, L)

satisfies y(T, · )= y1.
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A key ingredient of our construction of v is the following proposition.

Proposition 12. Let T > 0. For every L ∈N2∪N3, for every j ∈ {1, 2, . . . , n}, there exists u j
∈ H 1(0, T )

such that

α(T, · )= 0 and PM j (β(T, · )) 6= 0,

where (α, β) is the solution of 

αt +αx +αxxx = 0,
α(t, 0)= α(t, L)= 0,
αx(t, L)= u j (t),
α(0, x)= 0,
βt +βx +βxxx +ααx = 0,
β(t, 0)= β(t, L)= 0,
βx(t, L)= 0,
β(0, x)= 0.

(4-16)

Proposition 12 is due to Eduardo Cerpa and Emmanuelle Crépeau if one requires only u to be in
L2(0, T ) instead of being in H 1(0, T ): see [Cerpa 2007, Proposition 3.1] and [Cerpa and Crépeau 2009a,
Proposition 3.1]. We explain in Appendix C how to modify the proof of [Cerpa 2007, Proposition 3.1]
(as well as [Cerpa and Crépeau 2009a, Proposition 3.1]) in order to get Proposition 12.

We decompose β into β = β1 + β2, where β1 := PH (β) and β2 := PM(β). Hence, similarly to
Proposition 9, we get 

β2t +β2x +β2xxx + PM(ααx)= 0,
β2(t, 0)= β2(t, L)= 0,
β2x(t, L)= 0,
β2(0, x)= 0,

(4-17)

where β2(T, · )= PM(β(T, · )) 6= 0. In particular, PM j (β2(T, · ))= PM j (β(T, · )) 6= 0.
Combining (4-16) and (4-17), we get:

Corollary 13. For every L ∈ N2 ∪ N3, for every T0 > 0, for every j ∈ {1, 2, . . . , n}, there exists
u j

0 ∈ L∞(0, T0) such that the solution (y1, y2) to equation (4-4) with v(t, z) := u j
0(t) satisfies

y1(T0)= 0 and PM j (y2(T0)) 6= 0. (4-18)

Now we come back to the case when (4-10) holds. Let us fix T0 > 0 such that

T0 <
1
4 p. (4-19)

Let

q := 1
4 p. (4-20)

Let u0 be as in Corollary 13. We define

Y1(t) := y1(t), Y2(t) := y2(t) for t ∈ [0, T0] (4-21)
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and
ψ1 := Y2(T0) ∈ M \ {0}. (4-22)

Let
ψ2 = S(q)ψ1 ∈ M, ψ3 = S(2q)ψ1 ∈ M, ψ4 = S(3q)ψ1 ∈ M, (4-23)

T := 3q + T0, (4-24)

K1 := [3q, 3q + T0], (4-25)

K2 := [2q, 2q + T0], (4-26)

K3 := [q, q + T0], (4-27)

K4 := [0, T0]. (4-28)

Note that (4-19) implies
K1, K2, K3 and K4 are pairwise disjoint. (4-29)

Let us define four functions [0, T ] → R: u1, u2, u3 and u4 by requiring that, for every i ∈ {1, 2, 3, 4},

ui :=

{
0 on [0, T ] \ Ki ,

u0( · − τi ) on Ki ,
(4-30)

with
τ1 = 3q, τ2 = 2q, τ3 = q, τ4 = 0. (4-31)

One can easily verify that, for every i ∈ {1, 2, 3, 4}, the solution of (4-4) for v = ui is given explicitly by

yi,1(t)=
{

0 on [0, T ] \ Ki ,

Y1( · − τi ) on Ki
(4-32)

and

yi,2(t)=


0 on [0, τi ],

Y2( · − τi ) on Ki ,

S( · − τi − T0)ψ1 on [τi + T0, T ].
(4-33)

For z ∈ M1, let α1, α2, α3 and α4 in [0,+∞) be such that

−S(T )z = α1ψ1+α2ψ2+α3ψ3+α4ψ4, (4-34)

α1α3 = 0, α2α4 = 0. (4-35)

Let us define
v(t, z) := α1u1(t)+α2u2(t)+α3u3(t)+α4u4(t). (4-36)

We notice that
(α2

1 +α
2
2 +α

2
3 +α

2
4)‖ψ1‖

2
L2

L
= 1, (4-37)

which, together with (4-36), implies that

v ∈ L∞([0, T ]×M1;R). (4-38)
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Moreover, using the above construction (and in particular (4-29)), one easily checks that the solution of
(4-4) satisfies

y1(t)= α1 y1,1(t)+α2 y2,1(t)+α3 y3,1(t)+α4 y4,1(t) for t ∈ [0, T ], (4-39)

y2(t)= α2
1 y1,2(t)+α2

2 y2,2(t)+α2
3 y3,2(t)+α2

4 y4,2(t) for t ∈ [0, T ]. (4-40)

In particular

y1(T )= 0, (4-41)

y2(T )= α2
1ψ1+α

2
2ψ2+α

2
3ψ3+α

2
4ψ4. (4-42)

From (4-34), (4-37) and (4-42), we can find that (4-5) holds if δ > 0 is small enough. It is easy to check
that the Lipschitz condition (4-3) is also satisfied. This completes the construction of v(t, z) such that
(P3) holds and also the proof of Proposition 10 if (4-10) holds.

For other values of L ∈ N2, only the values of ϕ1, ϕ2 and p have to be modified. For L ∈ N3, as
mentioned in the Introduction, M is now of dimension 2n, where n is the number of ordered pairs. It is
proved in [Cerpa and Crépeau 2009a] that (compare with (4-11)–(4-14)), by a good choice of order on
{ϕ j
}, one can assume

0< p1 < p2 < · · ·< pn, (4-43)

where p j
:= 2π/ω j. For every t > 0, one has

S(t)M j
⊂ M j and S(t) restricted to M j is the rotation of angle

2π t
p j . (4-44)

From (4-43), (4-44) and Corollary 13, one can get the following corollary (see also [Cerpa and Crépeau
2009a, Proposition 3.3]):

Corollary 14. For every L ∈N3, there exists TL > 0 such that, for every j ∈ {1, 2, . . . , n}, there exists
u j

0 ∈ L∞(0, TL) such that the solution (y1, y2) to equation (4-4) with v(t, z) := u j
0(t) satisfies

y1(TL)= 0 and y2(TL)= ϕ
j
1 . (4-45)

Let us define

ψ
j

1 := ϕ
j
1 , ψ

j
2 := S(q j )ϕ

j
1 , ψ

j
3 := S(2q j )ϕ

j
1 , ψ

j
4 := S(3q j )ϕ

j
1 , (4-46)

where q j
:= p j/4.

Comparing with (4-22)–(4-33), we can find T > TL and closed interval sets {K j
i }, where i ∈ {1, 2, 3, 4}

and j ∈ {1, 2, . . . , n}, such that

K j
i ⊂ [0, T ], (4-47)

{K j
i } are pairwise disjoint. (4-48)

We can also find functions {u j
i } ∈ L∞([0, T ];R), with

u j
i (t) supports on K j

i , (4-49)
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such that when we define the control as u j
i , we get the solution of (4-4) satisfies

y j
i,1(t) supports on K j

i , (4-50)

y j
i,1(T )= 0, (4-51)

y j
i,2(T )= ψ

j
i . (4-52)

Then for z ∈ M1, let α j
i in [0,+∞) be such that

−S(T )z =
∑
i, j

α
j
i ψ

j
i , (4-53)

α
j
1α

j
3 = 0, α

j
2α

j
4 = 0,

∑
i, j

(α
j
i )

2
= 1, (4-54)

where i ∈ {1, 2, 3, 4} and j ∈ {1, 2, . . . , n}. Let us define

v(t, z) :=
∑
i, j

α
j
i u j

i (t). (4-55)

Then the solution of (4-4) with control defined as v(t, z) satisfies

y1(T )= 0, (4-56)

y2(T )=
∑
i, j

(α
j
i )

2ψ
j

i . (4-57)

One can easily verify that condition (4-5) holds when δ > 0 is small enough, and that Lipschitz condition
(4-3) also holds. This completes the construction of v(t, z) and the proof of Proposition 10. �

We are now able to define the periodic time-varying feedback laws uε : R× L2(0, L)→ R, which will
lead to the exponential stabilization of (1-1). For ε > 0, we define uε by

uε|[0,T )×L2
L
(t, y) :=


0 if ‖yM

‖L2
L
= 0,

ε
√
‖yM
‖L2

L
v
(
t, S(−t)yM/‖yM

‖L2
L

)
if 0< ‖yM

‖L2
L
6 1,

εv
(
t, S(−t)yM/‖yM

‖L2
L

)
if ‖yM

‖L2
L
> 1,

(4-58)

with yM
:= PM(y), and

uε(t, y) := uε|[0,T )×L2
L
(t − [t/T ]T, y) ∀t ∈ R, ∀y ∈ L2(0, L). (4-59)

5. Proof of Theorem 1

Let us first point out that Theorem 1 is a consequence of the following two propositions.

Proposition 15. There exist ε1 > 0, r1 > 0 and C1 such that, for every Carathéodory feedback law u
satisfying

|u(t, z)|6 ε1 min
{
1,
√
‖PM(z)‖L2

L

}
∀t ∈ R, ∀z ∈ L2(0, L), (5-1)
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for every s ∈ R and for every maximal solution y of (3-6) defined at time s and satisfying ‖y(s)‖L2
L
< r1,

y is well-defined on [s, s+ T ] and one has

‖PH (y)‖2Bs,s+T
+‖PM(y)‖Bs,s+T 6 C1

(
‖PH (y(s))‖2L2

L
+‖PM(y(s))‖L2

L

)
. (5-2)

Proposition 16. For ρ1 as in Proposition 10, let ρ2 > ρ1. There exists ε0 ∈ (0, 1) such that, for every
ε ∈ (0, ε0), there exists rε > 0 such that, for every solution y to (3-6) on [0, T ], for the feedback law
u := uε defined in (4-58) and (4-59), and satisfying ‖y(0)‖L2

L
< rε, one has

‖PH (y(T ))‖2L2
L
+ε‖PM(y(T ))‖L2

L
6 ρ2‖PH (y(0))‖2L2

L
+ε(1− δε2)‖PM(y(0))‖L2

L
. (5-3)

Indeed, it suffices to choose ρ2 ∈ (ρ1, 1), ε ∈ (0, ε0) and u := uε defined in (4-58) and (4-59). Then,
using the T -periodicity of u with respect to time, Proposition 15 and Proposition 16, one checks that
inequality (1-11) holds with

λ :=min
{
−

ln(ρ2)

2T
,−

ln(1− δε2)

2T

}
provided that C is large enough and that r is small enough. We now prove Propositions 15 and 16
successively.

Proof of Proposition 15. Performing a time translation if necessary, we may assume without loss of
generality that s = 0. The fact that the maximal solution y is at least defined on [0, T ] follows from
Theorem 8 and (5-1). We choose ε1 and r1 small enough so that

r1+ ε1T 1/2 6 η, (5-4)

where η > 0 is as in Lemma 5. From (5-1) and (5-4), we have

‖y(0)‖L2
L
+‖u(t, y(t))‖L2

T
6 η, (5-5)

which allows us to apply Lemma 5 with H(t) :=u(t, y(t)) and H̃ :=0. Then, using (5-1) once more, we get

‖y‖B 6 C3
(
‖y0‖L2

L
+‖u(t, y(t))‖L2

T

)
6 C3

(
r1+ ε1

√
T ‖PM(y)‖C0 L2

L

)
6 C3

(
r1+ ε

2
1T C3+

1
4C3
‖y‖B

)
,

which implies that
‖y‖B 6 2C3(r1+ ε

2
1T C3). (5-6)

In the above inequalities and until the end of the proof of Proposition 16, B := B0,T .
We have the following lemma; see the proof of [Rosier 1997, Proposition 4.1 and (4.14)] or [Perla Men-

zala et al. 2002, page 121].

Lemma 17. If y ∈ L2(0, T ; H 1(0, L)), then yyx ∈ L1(0, T ; L2(0, L)). Moreover, there exists c4 > 0,
which is independent of T, such that, for every T > 0 and for every y, z ∈ L2(0, T ; H 1(0, L)), we have

‖yyx − zzx‖L1
T L2

L
6 c4T 1/4(

‖y‖B+‖z‖B
)
‖y− z‖B. (5-7)
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Let us define C4 := c4T 1/4. To simplify the notation, until the end of this section, we write y1 and y2

for PH (y) and PM(y) respectively. From (5-1), (5-6), Lemma 3, Lemma 17 and Proposition 9, we get

‖y1‖B 6 C2
(
‖yH

0 ‖L2
L
+‖u(t, y1+ y2)‖L2

T
+
∥∥PH

(
(y1+ y2)(y1+ y2)x

)∥∥
L1

T L2
L

)
6 C2

(
‖yH

0 ‖L2
L
+ ε1

∥∥√‖y2‖L2
L

∥∥
L2

T
+
∥∥(y1+ y2)(y1+ y2)x

∥∥
L1

T L2
L

)
6 C2

(
‖yH

0 ‖L2
L
+ ε1‖y2‖

1/2
L1

T L2
L
+C4‖y1+ y2‖

2
L2

T H1
L

)
(5-8)

and
‖y2‖B 6 C2

(
‖yM

0 ‖L2
L
+
∥∥PM

(
(y1+ y2)(y1+ y2)x

)∥∥
L1

T L2
L

)
6 C2

(
‖yM

0 ‖L2
L
+
∥∥(y1+ y2)(y1+ y2)x

∥∥
L1

T L2
L

)
6 C2

(
‖yM

0 ‖L2
L
+C4‖y1+ y2‖

2
L2

T H1
L

)
6 2C2

(
‖yM

0 ‖L2
L
+C4‖y1‖

2
B+C4‖y2‖

2
B
)
. (5-9)

Since M is a finite-dimensional subspace of H 1(0, L), there exists C5 > 0 such that

‖ f ‖H1(0,L) 6 C5‖ f ‖L2
L

for every f ∈ M. (5-10)
Hence

‖y2‖B = ‖y2‖L∞T L2
L
+‖y2‖L2

T H1
L
6 ‖y2‖L∞T L2

L
+C5
√

T ‖y2‖L∞T L2
L
. (5-11)

Since y2(t) is the L2-orthogonal projection on M of y(t), we have

‖y2‖L∞T L2
L
6 ‖y‖L∞T L2

L
6 ‖y‖B,

which, together with (5-6) and (5-11), implies

‖y2‖B 6 (1+C5
√

T )‖y‖B 6 2(1+C5
√

T )C3(r1+ ε
2
1T C3). (5-12)

Decreasing if necessary r1 and ε1, we may assume

4C2C4(1+C5
√

T )C3(r1+ ε
2
1T C3) <

1
2 . (5-13)

From estimation (5-9) and condition (5-13), we get

‖y2‖B 6 4C2
(
‖yM

0 ‖L2
L
+C4‖y1‖

2
B
)
. (5-14)

From (5-6), (5-8), (5-12) and (5-14), we deduce that

‖y1‖
2
B6 3C2

2
(
‖yH

0 ‖
2
L2

L
+ε2

1‖y2‖L1
T L2

L
+C2

4‖y1+y2‖
4
L2

T H1
L

)
6 3C2

2
(
‖yH

0 ‖
2
L2

L
+ε2

1T ‖y2‖L∞T L2
L
+2C2

4‖y‖
2
B
(
‖y1‖

2
B+‖y2‖

2
B
))

6 3C2
2‖y

H
0 ‖

2
L2

L
+3C2

2
(
ε2

1T+16C2
4(1+C5

√
T )C3

3(r1+ε
2
1T C3)

3)
‖y2‖B

+24C2
2C2

4C2
3(r1+ε

2
1T C3)

2
‖y1‖

2
B

6 3C2
2‖y

H
0 ‖

2
L2

L
+12C3

2
(
ε2

1T+16C2
4(1+C5

√
T )C3

3(r1+ε
2
1T C3)

3)
‖yM

0 ‖L2
L

+

(
12C3

2C4
(
ε2

1T+16C2
4(1+C5

√
T )C3

3(r1+ε
2
1T C3)

3)
+24C2

2C2
4C2

3(r1+ε
2
1T C3)

2
)
‖y1‖

2
B. (5-15)
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Again, decreasing if necessary r1 and ε1, we may assume

12C3
2C4

(
ε2

1T + 16C2
4(1+C5

√
T )C3

3(r1+ ε
2
1T C3)

3)
+ 24C2

2C2
4C2

3(r1+ ε
2
1T C3)

2 < 1
2 . (5-16)

From (5-15) and (5-16), we get

‖y1‖
2
B 6 6C2

2‖y
H
0 ‖

2
L2

L
+ 24C3

2
(
ε2

1T + 16C2
4(1+C5

√
T )C3

3(r1+ ε
2
1T C3)

3)
‖yM

0 ‖L2
L

6 6C2
2‖y

H
0 ‖

2
L2

L
+C−1

4 ‖y
M
0 ‖L2

L
,

which, combined with (5-14), gives the existence of C1 > 0 independent of y such that

‖y1‖
2
B+‖y2‖B 6 C1

(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)
. (5-17)

This completes the proof of Proposition 15. �

Proof of Proposition 16. To simplify the notation, from now on we denote by C various constants which
vary from place to place but do not depend on ε and r .

By Lemma 3 applied with y := y1(t)− S(t)yH
0 , h(t) := uε(t, y(t)) and h̃ := (y1+ y2)(y1+ y2)x and

by Proposition 15, we have

‖y1(t)− S(t)yH
0 ‖B 6 C

(
‖uε‖L2

T
+
∥∥PH ((y1+ y2)(y1+ y2)x)

∥∥
L1

T L2
L

)
6 C

(
ε‖y2‖

1/2
L1

T L2
L
+‖y1+ y2‖

2
B
)

6 C
(
ε‖y2‖

1/2
B +‖y1‖

2
B+‖y2‖

2
B
)

6 C(ε+
√

r)
(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)1/2
, (5-18)

where r := ‖y0‖L2
L
< rε < 1. On rε, we impose that

rε < ε12. (5-19)

From (5-18) and (5-19), we have

‖y1(t)− S(t)yH
0 ‖B 6 Cε

(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)1/2
. (5-20)

Notice that, by Lemma 3, we have

‖S(t)yM
0 ‖B 6 C‖yM

0 ‖L2
L
, (5-21)

‖S(t)yH
0 ‖B 6 C‖yH

0 ‖L2
L
. (5-22)

Proceeding as in the proof of (5-20), we have

‖y2(t)− S(t)yM
0 ‖B 6 C

∥∥PM((y1+ y2)(y1+ y2)x)
∥∥

L1
T L2

L

6 C‖y1+ y2‖
2
B

6 C
(
‖y2‖B+‖S(t)yH

0 ‖B+ ε
(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)1/2)2

6 C
(
(r + ε2)

(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)
+‖yH

0 ‖
2
L2

L

)
6 C

(
ε2
‖yM

0 ‖L2
L
+‖yH

0 ‖
2
L2

L

)
. (5-23)
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Let us now study successively the two cases

‖yH
0 ‖L2

L
> ε2/3

√
‖yM

0 ‖L2
L
, (5-24)

‖yH
0 ‖L2

L
< ε2/3

√
‖yM

0 ‖L2
L
. (5-25)

We start with the case where (5-24) holds. From (P1), (P2), (5-20), (5-23) and (5-24), we get the
existence of ε2 ∈ (0, ε1) such that, for every ε ∈ (0, ε2),

‖y1(T )‖2L2
L
+ε‖y2(T )‖L2

L

6
(
Cε
(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)1/2
+‖S(T )yH

0 ‖L2
L

)2
+ ε

(
C
(
ε2
‖yM

0 ‖L2
L
+‖yH

0 ‖
2
L2

L

)
+‖S(T )yM

0 ‖L2
L

)
6 (ρ1ρ2)

1/2
‖yH

0 ‖
2
L2

L
+Cε2(

‖yH
0 ‖

2
L2

L
+‖yM

0 ‖L2
L

)
+Cε‖yH

0 ‖
2
L2

L
+ (ε+Cε3)‖yM

0 ‖L2
L

6 ρ2‖yH
0 ‖

2
L2

L
+ε(1− δε2)‖yM

0 ‖L2
L
. (5-26)

Let us now study the case where (5-25) holds. Let us define

b := yM
0 . (5-27)

Then, from (5-20), (5-22), (5-23) and (5-25), we get

‖y1(t)‖B6 ‖S(t)yH
0 ‖B+Cε

(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)1/2
6Cε

√
‖b‖L2

L
+C‖yH

0 ‖L2
L
6Cε2/3

√
‖b‖L2

L
(5-28)

and
‖y2(t)− S(t)yM

0 ‖B 6 ε
4/3
‖b‖L2

L
, (5-29)

which shows that y2( · ) is close to S( · )yM
0 . Let z : [0, T ] → L2(0, L) be the solution to the Cauchy

problem 
z1t + z1xxx + z1x = 0 in (0, T )× (0, L),
z1(t, 0)= z1(t, L)= 0 on (0, T ),
z1x(t, L)= v(t, b/‖b‖L2

L
) on (0, T ),

z1(0, x)= 0 on (0, L).

(5-30)

From (P3), we know that z1(T )= 0. Moreover, Lemma 3 tells us that

‖z1(t)‖B 6 C
∥∥∥∥v(t,

b
‖b‖L2

L

)∥∥∥∥
L2

T

6 C. (5-31)

Let us define w1 by
w1 := y1− S(t)yH

0 − ε‖b‖
1/2
L2

L
z1. (5-32)

Then w1 is the solution to the Cauchy problem
w1t +w1xxx +w1x + PH

(
(y1+ y2)(y1+ y2)x

)
= 0,

w1(t, 0)= w1(t, L)= 0,
w1x(t, L)= ε

(
‖y2(t)‖

1/2
L2

L
v
(
t, S(−t)y2(t)/‖y2(t)‖L2

L

)
−‖b‖1/2

L2
L
v(t, b/‖b‖L2

L
)
)
,

w1(0, x)= 0.

(5-33)
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By Lemma 3, we get

‖w1‖B 6 C
∥∥PH

(
(y1+ y2)(y1+ y2)x

)∥∥
L1

T L2
L

+εC
∥∥∥∥(‖y2(t)‖

1/2
L2

L
v

(
t,

S(−t)y2(t)
‖y2(t)‖L2

L

)
−‖b‖1/2

L2
L
v

(
t,

b
‖b‖L2

L

))∥∥∥∥
L2

T

. (5-34)

Note that (5-29) ensures that the right-hand side of (5-34) is of order ε2. Indeed, for the first term of the
right-hand side of inequality (5-34), we have, using (5-19), (5-28) and (5-29),

C
∥∥PH

(
(y1+ y2)(y1+ y2)x

)∥∥
L1

T L2
L
6 C‖y1+ y2‖

2
B

6 Cε4/3
‖b‖L2

L
+C‖b‖L2

L
6 C‖b‖1/2

L2
L
‖b‖1/2

L2
L
6 Cε6

‖b‖1/2
L2

L
. (5-35)

For the second term of the right-hand side of inequality (5-34), by (4-14), the Lipschitz condition (4-3)
on v and (5-29), we get, for every t ∈ [0, T ],∣∣∣∣‖b‖1/2L2

L

(
v

(
t,

b
‖b‖L2

L

)
− v

(
t,

S(−t)y2(t)
‖y2(t)‖L2

L

))∣∣∣∣
6 C‖b‖1/2

L2
L

∥∥∥∥( b
‖b‖L2

L

−
S(−t)y2(t)
‖y2(t)‖L2

L

)∥∥∥∥
L2

L

6 C‖b‖−1/2
L2

L
‖y2(t)‖−1

L2
L

(
‖y2(t)‖L2

L
‖b− S(−t)y2(t)‖L2

L
+‖S(−t)y2(t)‖L2

L

∣∣‖y2(t)‖L2
L
−‖b‖L2

L

∣∣)
6 Cε4/3

‖b‖1/2
L2

L
(5-36)

and ∣∣∣∣(‖y2(t)‖
1/2
L2

L
−‖b‖1/2

L2
L

)
v

(
t,

S(−t)y2(t)
‖y2(t)‖L2

L

)∣∣∣∣6 Cε4/3
‖b‖1/2

L2
L
. (5-37)

Combining (5-35)–(5-37), we obtain the following estimate on w1:

‖w1‖B 6 Cε2
‖b‖1/2

L2
L
. (5-38)

We fix

ρ3 ∈ (ρ1, ρ2). (5-39)

Then, by (5-32), (P1) and the fact that z1(T )= 0, we get

‖y1(T )‖2L2
L
6 ρ3‖yH

0 ‖
2
L2

L
+Cε4

‖b‖L2
L
. (5-40)

We then come to the estimate of y2. Let τ1(t) := S(t)yH
0 and let τ2 : [0, T ] → L2(0, L) and z2 :

[0, T ] → L2(0, L) be the solutions to the Cauchy problems
τ2t + τ2xxx + τ2x + PM(τ1 y1x + τ1x y1)− PM(τ1τ1x)= 0,
τ2(t, 0)= τ2(t, L)= 0,
τ2x(t, L)= 0,
τ2(0, x)= 0

(5-41)
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and 
z2t + z2xxx + z2x + PM(z1z1x)= 0,
z2(t, 0)= z2(t, L)= 0,
z2x(t, L)= 0,
z2(0, x)= 0.

(5-42)

Lemmas 3 and 17, (5-25) and (5-28) show us that

‖τ2‖B 6 C
∥∥PM

(
τ1 y1x + τ1x y1− τ1τ1x

)∥∥
L1

T L2
L

6 C‖τ1‖B
(
‖y1‖B+‖τ1‖B

)
6 Cε2/3

‖b‖1/2
L2

L
‖yH

0 ‖L2
L

(5-43)

and

‖z2‖B 6 ‖z1‖
2
B 6 C. (5-44)

From (P3), (5-30) and (5-42), we get

〈z2(T ), S(T )b〉(L2
L ,L

2
L )
< −2δ‖b‖L2

L
. (5-45)

Hence∥∥S(T )b+ ε2
‖b‖L2

L
z2(T )

∥∥
L2

L
=
(〈

S(T )b+ ε2
‖b‖L2

L
z2(T ), S(T )b+ ε2

‖b‖L2
L
z2(T )

〉
(L2

L ,L
2
L )

)1/2

6
(
‖b‖2L2

L
+ ε4
‖b‖2L2

L
C − 4δε2

‖b‖2L2
L

)1/2

6 ‖b‖L2
L
(1− 2δε2

+Cε4). (5-46)

Let us define w2 : [0, T ] → L2(0, L) by

w2 := y2− τ2− ε
2
‖b‖L2

L
z2− S(t)b. (5-47)

Then, from (3-15), (5-41) and (5-42), we get that

w2t = y2t−τ2t−ε
2
‖b‖L2

L
z2t−(S(t)b)t

=−w2x−w2xxx−PM((y1+y2)(y1+y2)x)+PM(τ1 y1x+τ1x y1)−PM(τ1τ1x)+ε
2
‖b‖L2

L
PM(z1z1x)

=−w2x−w2xxx−ε‖b‖
1/2
L2

L
PM(w1z1x+w1x z1)−PM(w1w1x)−PM(y1 y2x+y2 y1x+y2 y2x).

Hence, w2 is the solution to the Cauchy problem
w2t+w2xxx+w2x+ε‖b‖

1/2
L2

L
PM(w1z1x+w1x z1)+PM(w1w1x)+PM(y1 y2x+y2 y1x+y2 y2x)= 0,

w2(t,0)=w2(t, L)= 0,
w2x(t, L)= 0,
w2(0, x)= 0.

(5-48)
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From Lemmas 3 and 17, Proposition 15, (5-19), (5-25) and (5-38), we get

‖w2‖B 6 Cε‖b‖1/2
L2

L

∥∥PM(w1z1x +w1x z1)
∥∥

L1
T L2

L
+C‖PM(w1w1x)‖L1

T L2
L

+C
∥∥PM(y1 y2x + y2 y1x + y2 y2x)

∥∥
L1

T L2
L

6 Cε‖b‖1/2
L2

L
ε2
‖b‖1/2

L2
L
+Cε4

‖b‖L2
L
+C

(
‖yH

0 ‖
2
L2

L
+‖yM

0 ‖L2
L

)3/2

6 Cε3
‖b‖L2

L
. (5-49)

We can now estimate y2(T ) from (5-43), (5-46), (5-47) and (5-49):

‖y2(T )‖L2
L
=
∥∥w2(T )+ τ2(T )+ ε2

‖b‖L2
L
z2(T )+ S(T )b

∥∥
L2

L

6 ‖b‖L2
L

(
Cε3
+ 1− 2δε2

+Cε4)
+Cε2/3

‖b‖1/2
L2

L
‖yH

0 ‖L2
L
. (5-50)

Combining (5-27), (5-39), (5-40) and (5-50), we get the existence of ε3 > 0 such that, for every ε ∈ (0, ε3],

‖y1(T )‖2L2
L
+ε‖y2(T )‖L2

L

6 ρ3‖yH
0 ‖

2
L2

L
+Cε4

‖b‖L2
L
+ ε

(
‖b‖L2

L

(
Cε3
+ 1− 2δε2

+Cε4)
+Cε2/3

‖b‖1/2
L2

L
‖yH

0 ‖L2
L

)
6 ρ2‖yH

0 ‖
2
L2

L
+ε(1− δε2)‖yM

0 ‖L2
L
. (5-51)

This concludes the proof of Proposition 16. �

Appendix A: Proof of Proposition 9

Proof of Proposition 9. It is clear that, if (y1, y2) is a solution to (3-15), then y is solution to (3-7). Let us
assume that y is a solution to the Cauchy problem (3-7). Then, by Definition 4, for every τ ∈ [s, T ] and
for every φ ∈ C3([s, τ ]× [0, L]) satisfying

φ(t, 0)= φ(t, L)= φx(t, 0)= 0 ∀t ∈ [s, τ ], (A-1)

we have

−

∫ τ

s

∫ L

0
(φt +φx +φxxx)y dx dt −

∫ τ

s
u(t, y(t, · ))φx(t, L) dt +

∫ τ

s

∫ L

0
φyyx dx dt

+

∫ L

0
y(τ, x)φ(τ, x) dx −

∫ L

0
y0φ(s, x) dx = 0. (A-2)

Let us denote by φ1 and φ2 the projections of φ on H and M respectively: φ1 := PH (φ), φ2 := PM(φ).
Because M is spanned by ϕ j

1 and ϕ j
2 , j ∈ {1, . . . , n}, which are of class C∞ and satisfy

ϕ
j
1 (0)= ϕ

j
1 (L)= ϕ

j
1x(0)= ϕ

j
1x(L)= 0,

ϕ
j
2 (0)= ϕ

j
2 (L)= ϕ

j
2x(0)= ϕ

j
2x(L)= 0,

the functions φ1, φ2 ∈ C3([s, τ ]× [0, L]) and satisfy

φ1(t, 0)= φ1(t, L)= φ1x(t, 0)= 0 ∀t ∈ [s, τ ], (A-3)

φ2(t, 0)= φ2(t, L)= φ2x(t, 0)= φ2x(t, L)= 0 ∀t ∈ [s, τ ]. (A-4)
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Using (A-2) for φ = φ2 in (A-2) together with (A-4), we get

−

∫ τ

s

∫ L

0
(φ2t +φ2x +φ2xxx)y dx dt +

∫ τ

s

∫ L

0
φ2 yyx dx dt

+

∫ L

0
y(τ, x)φ2(τ, x) dx −

∫ L

0
y0φ2(s, x) dx = 0, (A-5)

which, combined with the fact that φ2t +φ2x +φ2xxx ∈ M, gives

−

∫ τ

s

∫ L

0
(φ2t +φ2x +φ2xxx)y2 dx dt +

∫ τ

s

∫ L

0
φ2 PM(yyx) dx dt

+

∫ L

0
y2(τ, x)φ2(τ, x) dx −

∫ L

0
PM(y0)φ2(s, x) dx = 0. (A-6)

Simple integrations by parts show that φ1x +φ1xxx ∈ M⊥ = H. Since, φ1 and φ1t are also in H, we get
from (A-6) that

−

∫ τ

s

∫ L

0
(φt +φx +φxxx)y2 dx dt +

∫ τ

s

∫ L

0
φPM(yyx) dx dt

+

∫ L

0
y2(τ, x)φ(τ, x) dx −

∫ L

0
PM(y0)φ(s, x) dx = 0, (A-7)

which is exactly the definition of a solution of the y2-part of the linear KdV system (3-15). We then
combine (A-2) and (A-7) to get

−

∫ τ

s

∫ L

0
(φt +φx +φxxx)y1 dx dt −

∫ τ

s
u(t, y(t, · ))φx(t, L) dt +

∫ τ

s

∫ L

0
φPH (yyx) dx dt

+

∫ L

0
y1(τ, x)φ(τ, x) dx −

∫ L

0
PH (y0)φ(0, x) dx = 0, (A-8)

and we get the definition of a solution to the y1-part of the linear KdV system (3-15). This concludes the
proof of Proposition 9. �

Appendix B: Proofs of Theorems 7 and 8

Our strategy to prove Theorem 7 is to prove first the existence of a solution for small times and then to
use some a priori estimates to control the L2

L -norm of the solution with which we can extend the solution
to a longer time, and to continue until the solution blows up. We start by proving the following lemma.

Lemma 18. Let C2 > 0 be as in Lemma 3 for T2− T1 = 1. Assume that u is a Carathéodory function and
that, for every R > 0, there exists K (R) > 0 such that(

‖y‖L2
L
6 R and ‖z‖L2

L
6 R

)
=⇒

(
|u(t, y)− u(t, z)|6 K (R)‖y− z‖L2

L
∀t ∈ R

)
. (B-1)

Then, for every R ∈ (0,+∞), there exists a time T (R) > 0 such that, for every s ∈ R and for every
y0∈ L2(0, L) with ‖y0‖L2

L
6 R, the Cauchy problem (3-7) has one and only one solution y on [s, s+T (R)].

Moreover, this solution satisfies
‖y‖Bs,s+T (R) 6 CR := 3C2 R. (B-2)
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Proof of Lemma 18. Let us first point out that it follows from our choice of C2 and Lemma 3 that, for
every −∞ < T1 < T2 < +∞ such that T2− T1 6 1, for every solution y of problem (2-1), estimation
(2-12) holds.

Let y0 ∈ L2(0, L) be such that

‖y0‖L2
L
6 R. (B-3)

Let us define B1 by

B1 := {y ∈ Bs,s+T (R) : ‖y‖Bs,s+T (R) 6 CR}.

The set B1 is a closed subset of Bs,s+T (R). For every y ∈ B1, we define 9(y) as the solution of (2-1) with
h̃ := −yyx , h(t) := u(t, y(t, · )) and y0 := y0. Let us prove that, for T (R) small enough, the smallness
being independent of y0 provided that it satisfies (B-3), we have

9(B1)⊂ B1. (B-4)

Indeed for y ∈ B1, by Lemmas 3 and 17, we have, if T (R)6 1,

‖9(y)‖B 6 C2
(
‖y0‖L2

L
+‖h‖L2

T
+‖h̃‖L1(0,T ;L2(0,L))

)
6 C2

(
‖y0‖L2

L
+‖u(t, y(t, · ))‖L2

T
+‖−yyx‖L1(s,s+T (R);L2(0,L))

)
6 C2

(
R+CB(CR)T (R)1/2+ c4T (R)1/4‖y‖2B

)
. (B-5)

In (B-5) and until the end of the proof of Lemma 18, for ease of notation, we simply write ‖·‖B for
‖·‖Bs,s+T (R) . From (B-5), we get that, if

T (R)6min
{(

R
CB(CR)

)2

,

(
1

9c4C2
2 R

)4

, 1
}
, (B-6)

then (B-4) holds. From now on, we assume that (B-6) holds.
Note that every y ∈ B1 such that 9(y)= y is a solution of (3-7). In order to use the Banach fixed point

theorem, it remains to estimate ‖9(y)−9(z)‖B. We know that 9(y)−9(z) is the solution of equation
(2-1) with T1 := s, T2 = s + T (R), h̃ := −yyx + zzx , h(t) := u(t, y(t, · ))− u(t, z(t, · )) and y0 := 0.
Hence, from Lemmas 3 and 17 and (B-1), we get

‖9(y)−9(z)‖B 6 C2
(
‖y0‖L2

L
+‖h‖L2

T
+‖h̃‖L1(0,T ;L2(0,L))

)
6 C2

(
0+ T (R)1/2K (CR)‖y− z‖B+ c4T (R)1/4‖y− z‖B

(
‖y‖B+‖z‖B

))
6 C2‖y− z‖B

(
T (R)1/2K (CR)+ 2c4T (R)1/4CR

)
,

which shows that, if

T (R)6min
{(

1
12c4C2

2 R

)4

,

(
1

4C2K (3C2 R)

)2}
, (B-7)

then,

‖9(y)−9(z)‖B 6 3
4‖y− z‖B.
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Hence, by the Banach fixed point theorem, there exists y ∈B1 such that 9(y)= y, which is the solution
that we are looking for. We define T (R) as

T (R) :=min
{(

R
CB(3C2 R)

)2

,

(
1

12c4C2
2 R

)4

,

(
1

4C2K (3C2 R)

)2

, 1
}
. (B-8)

It only remains to prove the uniqueness of the solution to the Cauchy problem (3-7) (the above proof
gives only the uniqueness in the set B1). Clearly it suffices to prove that two solutions to (3-6) which are
equal at a time τ are equal in a neighborhood of τ in [τ,+∞). This property follows from the above
proof and from the fact that, for every solution y : [τ, τ1] → L2(0, L) of (3-7), if T > 0 is small enough
(the smallness depending on y),

‖y‖Bτ,τ+T 6 3C2‖y(τ )‖L2
L
. (B-9)

This concludes the proof of Lemma 18. �

Proceeding similarly to the proof of Lemma 18, one can get the following lemma concerning the
Cauchy problem (2-13).

Lemma 19. Let C2 > 0 be as in Lemma 3 for T2− T1 = 1. Given R,M > 0, there exists T (R,M) > 0
such that, for every s ∈ R, for every y0 ∈ L2(0, L) with ‖y0‖L2

L
6 R, and for every measurable H :

(s, s+ T (R,M))→ R such that |H(t)|6 M for every t ∈ (s, s+ T (R,M)), the Cauchy problem
yt + yxxx + yx + yyx = 0 in (s, s+ T (R,M))× (0, L),

y(t, 0)= y(t, L)= 0 on (s, s+ T (R,M)),

yx(t, L)= H(t) on (s, s+ T (R,M)),

y(s, x)= y0(x) on (0, L)

(B-10)

has one and only one solution y on [s, s+ T (R,M)]. Moreover, this solution satisfies

‖y‖Bs,s+T (R,M) 6 3C2 R. (B-11)

We are now in position to prove Theorem 7.

Proof of Theorem 7. The uniqueness follows from the proof of the uniqueness part of Lemma 18. Let
us give the proof of the existence. Let y0 ∈ L2(0, L), let s ∈ R and let T0 := T (‖y0‖L2

L
). By Lemma 18,

there exists a solution y ∈ Bs,s+T0 to the Cauchy problem (3-7). Hence, together with the uniqueness
of the solution, we can find a maximal solution y : D(y)→ L2(0, L) with [s, s + T0] ⊂ D(y). By the
maximality of the solution y and Lemma 18, there exists τ ∈ [s+ T0,+∞) such that D(y)= [s, τ ). Let
us assume that τ <+∞ and that (3-12) does not hold. Then there exist an increasing sequence (tn)n∈N

of real numbers in (s, τ ) and R ∈ (0,+∞) such that

lim
n→+∞

tn = τ, (B-12)

‖y(tn)‖L2
L
≤ R ∀n ∈ N. (B-13)



1114 JEAN-MICHEL CORON, IVONNE RIVAS AND SHENGQUAN XIANG

By (B-12), there exists n0 ∈ N such that

tn0 ≥ τ −
1
2 T (R). (B-14)

From Lemma 18, there is a solution z : [tn0, tn0 + T (R)] → L2(0, L) of (3-7) for the initial time s := tn0

and the initial data z(tn0) := y(tn0). Let us then define ỹ : [s, tn0 + T (R)] → L2(0, L) by

ỹ(t) := y(t) ∀t ∈ [s, tn0], (B-15)

ỹ(t) := z(t) ∀t ∈ [tn0, tn0 + T (R)]. (B-16)

Then ỹ is also a solution to the Cauchy problem (3-7). By the uniqueness of this solution, we have y = ỹ
on D(y)∩D(ỹ). However, from (B-14), we have that D(y)$ D(ỹ), in contradiction with the maximality
of y.

Finally, we prove that, if C(R) satisfies (3-13), then, for the maximal solution y to (3-7), we have
D(y)= [s,+∞). We argue by contradiction and therefore assume that the maximal solution y is such
that D(y)= [s, τ ) with τ <+∞. Then (3-12) holds. Let us estimate ‖y(t)‖L2

L
when t tends to τ−. We

define the energy E : [s, τ )→ [0,+∞) by

E(t) :=
∫ L

0
|y(t, x)|2 dx . (B-17)

Then E ∈ C0([s, τ )) and, in the distribution sense, it satisfies

d E
dt
6 |u(t, y(t, · ))|2 6 C2

B(
√

E). (B-18)

(We get such an estimate first in the classical sense for regular initial data and regular boundary conditions
yx(t, L)= ϕ(t) with the related compatibility conditions; the general case then follows from this special
case by smoothing the initial data and the boundary conditions, by passing to the limit, and by using the
uniqueness of the solution.) From (3-12) and (B-18), we get

1
2

∫
+∞

0

1

C2
B(
√

E)
d E <+∞. (B-19)

However the left-hand side of (B-19) is equal to the left-hand side of (3-13). Hence (3-13) and (B-19) are
in contradiction. This completes the proof of Theorem 7. �

The proof of Theorem 8 is more difficult. For this proof, we adapt a strategy introduced by Carathéodory
to solve ordinary differential equations ẏ = f (t, y) when f is not smooth. Roughly speaking it consists
in solving ẏ = f (t, y(t − h)), where h is a positive time-delay, and then letting h tend to 0. Here we do
not put the time-delay on y (it does not seem to be possible) but only on the feedback law: u(t, y(t)) is
replaced by u(t, y(t − h)).

Proof of Theorem 8. Let us define H : [0,+∞)→ [0,+∞) by

H(a) :=
∫ a

0

1

(CB(
√

E))2
d E = 2

∫ √a

0

R

(CB(R))2
d R. (B-20)
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From (3-13), we know that H is a bijection from [0,+∞) into [0,+∞). We denote by H−1
: [0,+∞)→

[0,+∞) the inverse of this map.
For a given y0 ∈ L2(0, L) and s ∈ R, let us prove that there exists a solution y defined on [s,+∞) to

the Cauchy problem (3-7), which also satisfies

‖y(t)‖2L2(0,L) 6 H−1(H(‖y(s)‖2L2
L
)+ (t − s)

)
<+∞ ∀t ∈ [s,+∞). (B-21)

Let n ∈ N∗. Let us consider the Cauchy system on [s, s+ 1/n]
yt + yxxx + yx + yyx = 0 in (s, s+ (1/n))× (0, L),
y(t, 0)= y(t, L)= 0 on (s, s+ (1/n)),
yx(t, L)= u(t, y0) on (s, s+ (1/n)),
y(s, x)= y0(x) on (0, L).

(B-22)

By Theorem 7 applied with the feedback law (t, y) 7→ u(t, y0) (a measurable bounded feedback law
which now does not depend on y and therefore satisfies (3-11)), the Cauchy problem (B-22) has one and
only one solution y. Let us now consider the Cauchy problem on [s+ (1/n), s+ (2/n)]

yt + yxxx + yx + yyx = 0 in (s+ (1/n), s+ (2/n))× (0, L),
y(t, 0)= y(t, L)= 0 on (s+ (1/n), s+ (2/n)),
yx(t, L)= u(t, y(t − (1/n))) on (s+ (1/n), s+ (2/n)),
y(s, x)= y0(x) on (0, L).

(B-23)

As for (B-22), this Cauchy problem has one and only one solution, which we still denote by y. We
keep going and, by induction on the integer i , define y ∈ C0([s,+∞); L2(0, L)) so that, on [s+ (i/n),
s+ ((i + 1)/n)], i ∈ N \ {0}, we have y is the solution to the Cauchy problem

yt + yxxx + yx + yyx = 0 in (s+ (i/n), s+ ((i + 1)/n))× (0, L),
y(t, 0)= y(t, L)= 0 on (s+ (i/n), s+ ((i + 1)/n)),
yx(t, L)= u(t, y(t − (1/n))) on (s+ (i/n), s+ ((i + 1)/n)),
y(s+ (i/n))= y(s+ (i/n)− 0) on (0, L),

(B-24)

where, in the last equation, we mean that the initial value, i.e., the value at time (s+ (i/n)), is the value
at time (s+ (i/n)) of the y defined previously on [(s+ ((i − 1)/n)), s+ (i/n)].

Again, we let, for t ∈ [s,+∞),

E(t) :=
∫ L

0
|y(t, x)|2 dx . (B-25)

Then E ∈ C0([s,+∞)) and, in the distribution sense, it satisfies (compare with (B-18))

d E
dt
6 |u(t, y0)|

2 6 C2
B(
√

E(s)), t ∈ (s, s+ (1/n)), (B-26)

d E
dt
6 |u(t, y(t − (1/n))|2 6 C2

B(
√

E(t − (1/n))), t ∈
(
s+ (i/n), s+ ((i + 1)/n)

)
, i > 0. (B-27)
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Let ϕ : [0,+∞)→ [0,+∞) be the solution of

dϕ
dt
= C2

B
(√
ϕ(t)

)
, ϕ(s)= E(s). (B-28)

Using (B-26)–(B-28) and simple comparison arguments, one gets

E(t)6 ϕ(t) ∀t ∈ [s,+∞), (B-29)

that is,

E(t)6 H−1(H(E(s))+ (t − s)
)
∀t ∈ [s,+∞). (B-30)

We now want to let n→+∞. In order to show the dependence on n, we write yn instead of y. In
particular (B-30) becomes

‖yn(t)‖2L2(0,L) 6 H−1(H(‖y0(s)‖2L2
L
)+ (t − s)

)
∀t ∈ [s,+∞). (B-31)

From Lemma 19, (B-31) and the construction of yn, we get that, for every T > s, there exists M(T ) > 0
such that

‖yn
‖Bs,T 6 M(T ) ∀n ∈ N. (B-32)

Hence, upon extracting a subsequence of (yn)n , which we still denote by (yn)n , there exists

y ∈ L∞loc
(
[s,+∞); L2(0, L)

)
∩ L2

loc
(
[s,+∞); H 1(0, L)

)
(B-33)

such that, for every T > s,

yn ⇀ y in L∞(s, T ; L2(0, L)) weak ∗ as n→+∞, (B-34)

yn ⇀ y in L2(s, T ; H 1(0, L)) weak as n→+∞. (B-35)

Let us define zn
: [s, s+∞)× (0, L)→ R and γ n

: [s,+∞)→ R by

zn(t) := y0 ∀t ∈ [s, s+ (1/n)], (B-36)

zn(t) := yn(t − (1/n)) ∀t ∈ (s+ (1/n),+∞), (B-37)

γ n(t) := u(t, zn) ∀t ∈ [s,+∞). (B-38)

Note that yn is the solution to the Cauchy problem
yn

t + yn
xxx + yn

x + yn yn
x = 0 in (s,+∞)× (0, L),

yn(t, 0)= yn(t, L)= 0 on (s,+∞),
yn

x (t, L)= γ n(t) on (s,+∞),
yn(s, x)= y0(x) on (0, L).

(B-39)

From (B-32) and the first line of (B-39), we get that

∀T > 0,
(

d
dt

yn
)

n∈N

is bounded in L2(s, s+ T ; H−2(0, L)). (B-40)
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From (B-34), (B-35), (B-40) and the Aubin-Lions lemma [Aubin 1963], we get

yn
→ y in L2(s, T ; L2(0, L)) as n→+∞ ∀T > s. (B-41)

From (B-41) we know that, upon extracting a subsequence if necessary, still denoted by (yn)n ,

lim
n→+∞

‖yn(t)− y(t)‖L2
L
= 0 for almost every t ∈ (s,+∞). (B-42)

Letting n→+∞ in inequality (B-30) for yn and using (B-42), we get

‖y(t)‖2L2(0,L) 6 H−1(H(‖y0‖
2
L2

L
)+ (t − s)

)
for almost every t ∈ (0,+∞). (B-43)

Note that, for every T > s,

‖zn
−y‖L2((s,T );L2

L )
≤ (1/

√
n)‖y0‖L2

L
+
∥∥yn( · −(1/n))−y( · −(1/n))

∥∥
L2(s+(1/n),T ;L2(0,L))

+
∥∥y( · −(1/n))−y( · )

∥∥
L2(s+(1/n),T ;L2(0,L))+‖y‖L2(s,s+(1/n);L2(0,L))

≤ (1/
√

n)‖y0‖L2
L
+‖yn

−y‖L2(s,T ;L2(0,L))

+
∥∥y( · −(1/n))−y( · )

∥∥
L2(s+(1/n),T ;L2(0,L))+‖y( · )‖L2(s,s+(1/n);L2(0,L)). (B-44)

From (B-36), (B-37), (B-41) and (B-44), we get

zn
→ y in L2(s, T ; L2(0, L)) as n→+∞ ∀T > s. (B-45)

Extracting, if necessary, from the sequence (zn)n a subsequence, still denoted by (zn)n , and using (B-45),
we have

lim
n→+∞

‖zn(t)− y(t)‖L2
L
= 0 for almost every t ∈ (s,+∞). (B-46)

From (3-1)–(3-3), (B-32), (B-36), (B-37) and (B-46), extracting a subsequence from the sequence (γ n)n

if necessary, still denoted by (γ n)n , we may assume that

γ n ⇀γ(t) := u(t, y(t)) in L∞(s, T ) weak ∗ as n→+∞ ∀T > s. (B-47)

Let us now check that

y is a solution to the Cauchy problem (3-7). (B-48)

Let τ ∈ [s,+∞) and let φ ∈ C3([s, τ ]× [0, L]) be such that

φ(t, 0)= φ(t, L)= φx(t, 0)= 0 ∀t ∈ [T1, τ ]. (B-49)

From (B-39), one has, for every n ∈ N,

−

∫ τ

T1

∫ L

0
(φt +φx +φxxx)yn dx dt −

∫ τ

T1

γ nφx(t, L) dt +
∫ τ

T1

∫ L

0
φyn yn

x dx dt

+

∫ L

0
y(τ, x)φ(τ, x) dx −

∫ L

0
y0φ(s, x) dx = 0. (B-50)
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Let τ be such that

lim
n→+∞

‖yn(τ )− y(τ )‖L2
L
= 0. (B-51)

Let us recall that, by (B-42), (B-51) holds for almost every τ ∈ [s,+∞). Using (B-35), (B-41), (B-47),
(B-51) and letting n→+∞ in (B-50), we get

−

∫ τ

T1

∫ L

0
(φt +φx +φxxx)y dx dt −

∫ τ

T1

u(t, y(t))φx(t, L) dt +
∫ τ

T1

∫ L

0
φyyx dx dt

+

∫ L

0
y(τ, x)φ(τ, x) dx −

∫ L

0
y0φ(s, x) dx = 0. (B-52)

Thus y is a solution to (2-1), with T1 := s, T2 arbitrary in (s,+∞), h̃ := −yyx ∈ L1([s, T2]; L2(0, L))
and h = u( · , y( · )) ∈ L2(s, T2). Let us emphasize that, by Lemma 3, it also implies that y ∈ Bs,T for
every T ∈ (s,+∞). This concludes the proof of (B-48) and of Theorem 8. �

Appendix C: Proof of Proposition 12

Let us first recall that Proposition 12 is due to Eduardo Cerpa if one requires only u to be in L2(0, T ) instead
of being in H 1(0, T ); see [Cerpa 2007, Proposition 3.1] and [Cerpa and Crépeau 2009a, Proposition 3.1].
In his proof, he uses Lemma 11, the controllability in H with controls u ∈ L2. Actually, the only place
in his proof where the controllability in H is used is on page 887 of [Cerpa 2007] for the construction
of α1, where, with the notations of that paper <(yλ), =(yλ) ∈ H. We notice that <(yλ), =(yλ) share more
regularity and better boundary conditions. Indeed, one has{

λyλ+ y′λ+ y′′′λ = 0,
yλ(0)= yλ(L)= 0,

which implies that

<(yλ),=(yλ) ∈H3,

where

H3
:= H ∩

{
ω ∈ H 3(0, L) : ω(0)= ω(L)= 0

}
. (C-1)

In order to adapt Cerpa’s proof in the framework of u ∈ H 1(0, T ), it is sufficient to prove the following
controllability result in H3 with control u ∈ H 1(0, T ).

Proposition 20. For every y0, y1 ∈H3 and for every T > 0, there exists a control u ∈ H 1(0, T ) such that
the solution y ∈ B to the Cauchy problem

yt + yxxx + yx = 0,
y(t, 0)= y(t, L)= 0,
yx(t, L)= u(t),
y(0, · )= y0

satisfies y(T, · )= y1.
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The proof of Proposition 12 is the same as the one of [Cerpa 2007, Proposition 3.1], with the only
difference that one uses Proposition 20 instead of Lemma 11.

Proof of Proposition 20. Let us first point out that 0 is not an eigenvalue of the operator A. Indeed
this follows from property (P2), (1-5) and (1-6). Using Lemma 11 and [Tucsnak and Weiss 2009,
Proposition 10.3.4] with β = 0, it suffices to check that

for every f ∈ H, there exists y ∈H3 such that −yxxx − yx = f . (C-2)

Let f ∈ H. We know that there exists y ∈ H 3(0, L) such that

−yxxx − yx = f, (C-3)

y(0)= y(L)= yx(L)= 0. (C-4)

Simple integrations by parts, together with (4-11), (4-12), (C-3) and (C-4), show that, with ϕ := ϕ1+ iϕ2,

0=
∫ L

0
f ϕ dx =

∫ L

0
(−yxxx − yx)ϕ dx =

∫ L

0
y(ϕxxx +ϕx) dx = i 2π

p

∫ L

0
yϕ dx, (C-5)

which, together with (C-4), implies that y ∈H3. This concludes the proof of (C-2) as well as the proof of
Proposition 20 and of Proposition 12. �
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ON THE GROWTH OF SOBOLEV NORMS FOR NLS
ON 2- AND 3-DIMENSIONAL MANIFOLDS

FABRICE PLANCHON, NIKOLAY TZVETKOV AND NICOLA VISCIGLIA

Using suitable modified energies, we study higher-order Sobolev norms’ growth in time for the nonlinear
Schrödinger equation (NLS) on a generic 2- or 3-dimensional compact manifold. In two dimensions, we
extend earlier results that dealt only with cubic nonlinearities, and get polynomial-in-time bounds for any
higher-order nonlinearities. In three dimensions, we prove that solutions to the cubic NLS grow at most
exponentially, while for the subcubic NLS we get polynomial bounds on the growth of the H 2 norm.

1. Introduction

We are interested in long-time qualitative properties of solutions to the family of nonlinear Schrödinger
equations �

i @tuC�guD jujp�1u; .t;x/ 2 R�Md;

u.0;x/D ' 2H m.Md /;
(1)

where �g is the Laplace–Beltrami operator associated with a d-dimensional compact Riemannian
manifold .Md;g/ and H m.M d /, the standard Sobolev space associated to �g, where m 2N with m� 2.
More specifically we are interested in the analysis of the possible growth of higher-order Sobolev norms
for large times, namely the behavior of the quantity ku.t;x/kH m.Md / for m� 2 and t � 1.

This issue of growth of higher-order Sobolev norms has garnered a lot of attention in recent years,
mainly because of its connection with the so-called weak wave turbulence, e.g., a cascade of energy from
low to high frequencies. In fact two main issues have been extensively studied in the literature: the first
one concerns a priori bounds on how fast higher-order Sobolev norms can grow along the flow associated
with Hamiltonian PDEs (see [Bourgain 1993; 1996; 1999a; 1999b; Colliander et al. 2012; Delort 2014;
Sohinger 2011a; 2011b; 2012; Staffilani 1997; Thirouin 2017; Zhong 2008]); the second one concerns
the existence of global solutions whose higher-order Sobolev norms are unbounded (see [Colliander et al.
2010; Gérard and Grellier 2016; 2015; Guardia 2014; Guardia et al. 2016; Guardia and Kaloshin 2015;
Hani 2014; Hani et al. 2015; Haus and Procesi 2015; Xu 2015]).

Here, we aim at dealing with the first problem, namely to provide a priori bounds on the growth
of higher-order Sobolev norms, or equivalently to understand how fast the dynamical system under
consideration can move energy from the low frequencies to the high frequencies.

Planchon was partially supported by ANR grant GEODISP, ERC grant SCAPDE and ERC grant BLOWDISOL, Tzvetkov was
partially supported by the ERC grant DISPEQ, and Visciglia was supported by the grant PRA 2016 Problemi di Evoluzione:
Studio Qualitativo e Comportamento Asintotico.
MSC2010: 35Q55.
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First of all we point out that solutions to (1) enjoy so-called mass and energy conservation laws:Z
Md

ju.t;x/j2 dvolg D
Z

Md

j'.x/j2 dvolg;Z
Md

�
jrgu.t;x/j2gC

1

pC1
ju.t;x/jpC1

�
dvolg D

Z
Md

�
jrg'.x/j

2
gC

1

pC1
j'.x/jpC1

�
dvolg;

where rg and j � jg are respectively the gradient and the norm associated with the metric g, and j � j denotes
the modulus of any complex number. These conservation laws immediately imply that

supR ku.t;x/kH 1.Md / <1; (2)

and therefore the growth in time of H m norms is only of interest for m� 2.
In the sequel, with notation as above, we shall be interested in the following cases:

.d;p/D .2; 2nC 1/ with n 2 N; n� 1 (2-dimensional manifold and odd integer nonlinearity);

.d;p/D .3; 3/ (3-dimensional manifold and cubic nonlinearity);

.d;p/D .3;p/ with 2< p < 3 (3-dimensional manifold and subcubic nonlinearity):

In those settings, existence of local solutions follows by classical arguments, provided one assumes the
initial datum to be H 2. On the other hand, following [Burq et al. 2004], one can establish local (and
hence global) Cauchy theory in H 1 for generic nonlinear potentials in the 2-dimensional case, as well as
local (and global) Cauchy theory in H 1C� for the cubic and subcubic NLS in the 3-dimensional case
(see [Burq et al. 2003; 2004]). From now on and for the sake of simplicity, we shall assume existence
and uniqueness of a global solution, and focus on estimating the growth of higher-order Sobolev norms.
However, we point out that our argument not only provides polynomial bounds of such growth, but also
yields an alternative proof of global existence in three dimensions.

We will use as a basic tool (in fact, as a black box) available Strichartz estimates on manifolds (see
[Burq et al. 2004; Staffilani and Tataru 2002]) together with the introduction of suitable modified energies,
which is the main new ingredient in this context. For this reason we will not discuss further the issue of
global existence, which is indeed guaranteed by aforementioned previous results.

We first start with the 2-dimensional case. It is worth mentioning that, to the authors’ knowledge, no
results were available in the literature about growth of higher-order Sobolev norms for NLS with higher
than cubic nonlinearities, although one may reasonably believe that this problem could be addressed, at
least in two dimensions, by adapting the strategy pioneered by Bourgain (see for instance [Zhong 2008]).
Nevertheless as a warm up we show how this problem can be handled by a completely different strategy,
based on the introduction of suitable modified energies: its benefit relies on a clear decoupling between
higher-order energy estimates relying on clever integration by parts and the (deep) input provided by
dispersive estimates of Strichartz type. Moreover by using modified energies, one can deal as well with
generic nonlinear potential V .juj2/ rather than jujp�1, where V may not necessarily be a pure power
(see also Remark 1.7 below).

We emphasize that modified energies have proved useful in different contexts (see, for instance, [Chiron
and Rousset 2009; Hunter et al. 2015; Koch and Tataru 2016; Kwon 2008; Ozawa and Visciglia 2016;
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Raphaël and Szeftel 2009; Tsutsumi 1989]), but the present work seems to provide the first example
where they are combined with dispersive bounds in order to get results on the growth of higher-order
Sobolev norms.

We underline that our argument, being essentially based on integration by parts, relies on the time
derivative of suitable higher-order energies Em, whose leading term is essentially the norm ku.t;x/k2

H m .
In fact, for mD 2k an even integer, one should think of k@k

t u.t;x/k2
L2 as a good prototype of modified

energy, up to lower-order terms. In other words, one should think of replacing �g by @t rather than the
other way around when using the equation satisfied by u.

A direct consequence of this privileged use of @t is that in our approach the geometry of the manifold
is not directly involved in the computation, and integration by parts in the space variables, when required,
is performed thanks to the following elementary identity, available on any generic manifold:

�g.f h/D h�gf C 2.rgf;rgh/gCf�gh:

We also underline that the aforementioned energy Em is not preserved along the flow; however, by
computing its time derivative along solutions, we may estimate the resulting space-time integral taking
advantage of dispersive bounds, namely Strichartz estimates with loss, which are available on a generic
manifold (or better ones when available).

In order to state our result in two dimensions, we recall Strichartz estimates with loss:

keit�g'kL4..0;1/�M2/ . k'kH s0 .M2/: (3)

It is well known that estimate (3) holds on T2 for any s0 > 0 (see [Bourgain 1993; 1999a]) and on the
sphere S2 for any s0 >

1
8

(see [Burq et al. 2004]). We can now state our first result, where we assume (3)
to be satisfied for some s0 in the range

�
0; 1

4

�
. We recall that the existence of such an s0 is guaranteed on

every compact manifold M2 by [Burq et al. 2004].

Theorem 1.1. For every � > 0, m2N with m� 2 and for every solution u.t;x/ 2 Ct .H
m.M2// to (1),

where d D 2 and p D 2nC 1 for n� 1, we get

sup.0;T / ku.t;x/kH m.M2/ � C.maxf1;T g/
m�1

1�2s0
C�
; (4)

where C D C.�;m; k'kH m/ > 0 and s0 2
�
0; 1

4

�
is given in (3).

Notice that bounds from Theorem 1.1 also apply to solutions of NLS on T. In fact the dynamics of
NLS on T is a subset of the dynamics on T2, and this framework is covered by Theorem 1.1, where we
can choose s0 D 0. In particular, Theorem 1.1 recovers results from [Colliander et al. 2012] for solutions
to NLS on T with p > 5. Notice that paper obtains a better T

m�1
2
C� growth for pD 5 by implementing a

normal-form method. We will address this better growth for all p > 5 with a suitable modification of our
argument in a later work.

Remark 1.2. We underline that the main point in order to establish Theorem 1.1 is the following bound:
for all � 2 .0; 1/, � > 0,

ku.�/k2
H m.M2/

�ku.0/k2
H m.M2/

.
p
� kuk

2m�3C2s0
m�1

C�

L1..0;�/IH m.M2//
Ckuk

2m�4
m�1

C�

L1..0;�/IH m.M2//
: (5)
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Once this bound is established, a classical argument (which in turn requires the local well-posedness of
the Cauchy problem in the energy space H 1) leads to the polynomial growth. More specifically notice
that the exponent .m� 1/=.1� 2s0/C � (which appears in the right-hand side of (4)) can be computed
as the quantity 1

2

, where 2� 2
 D .2m� 3C 2s0/=.m� 1/C � is the power of the first term in the

right-hand side of (5). Next we choose � D �.ku.0/kH 1/ to be the time of existence provided by the
H 1 local Cauchy theory. Then (5) gives

ku.t C �/k2
H m.M2/

� ku.t/k2
H m.M2/

CC
�
kuk

2�2


L1..t;tC�/IH m.M2//
C 1

�
:

As a byproduct of the local existence theory in H 1, and conservation of the energy, we get

ku.t C �/k2
H m.M2/

� ku.t/k2
H m.M2/

CC
�
ku.t/k

2�2


H m.M2/
C 1

�
:

Therefore the sequence ˛n D 1Cku.n�/k2
H m.M2/

satisfies ˛nC1 � ˛nCC˛
1�

n , which in turn implies

˛n . n1=
, leading to (4) by induction on n.

Next we present our result on the growth of higher-order Sobolev norms for the cubic NLS on a
generic 3-dimensional compact manifold M3. We recall that, following [Burq et al. 2004], the Cauchy
problem is globally well-posed for every initial data ' 2H 1C�0.M3/, and that, following the crucial use
of logarithmic Sobolev type inequalities, one can get the following double exponential bound,

sup.0;T / ku.t;x/kH m.M3/ � C exp.exp.C T //:

Our main contribution is an improvement on the bound above; indeed, we will replace the double
exponential with a single one. It should be emphasized that, in the 3-dimensional case, it is at best unclear
to us how Bourgain’s original argument and derivatives thereof could be used in order to get Theorem 1.3.
More specifically, in three dimensions our use of modified energies appears to be a key tool in order to
eliminate one of the two exponentials.

Theorem 1.3. For every m 2 N with m� 2 and for every solution u.t;x/ 2 Ct .H
m.M3// to (1), where

.d;p/D .3; 3/, we have
sup.0;T / ku.t;x/kH m.M3/ � C exp.C T /;

where C D C.m; k'kH m/ > 0.

Remark 1.4. The proof of Theorem 1.3 follows by a straightforward iteration once the following bound
is established: for all � 2 .0; 1/,

ku.�/k2
H m.M3/

�ku.0/k2
H m.M3/

. �kuk2
L1..0;�/IH m.M3//

Ckuk



L1..0;�/IH m.M3//
; (6)

where 
 2 .0; 2/ is a suitable number and the implicit constant depends only on the energy of u. Indeed,
using (6) for � small enough and the fact that 
 < 2, we get the bound

kuk2
L1..0;�/IH m.M3//

� 2ku.0/k2
H m.M3/

CC:

Therefore the sequence ˛n D ku.n�/k
2
H m.M3/

satisfies ˛nC1 � 2˛n C C , which implies the claimed
exponential bound.
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Remark 1.5. Notice that in Theorems 1.1 and 1.3 we provide bounds on the growth of the H m Sobolev
norm for initial data of regularity H m, for a given, odd or even, integer m. We point out that most of the
paper will be devoted to the case of even integers. In the last section we sketch how to adapt the argument
to odd integers. Of course, if we assume the initial datum ' to be H mC1, then the growth of H m, with
m odd, can be obtained by interpolation between the growth of the two norms H mC1 and H m�1, with
m� 1 and mC 1 even. Hence if the initial datum is smooth enough, it is not necessary to deal separately
with the case m odd. However the situation is more delicate since we assume only the regularity H m

(with m odd) on the initial datum.

Finally, we end our presentation with a result dealing with NLS on a 3-dimensional compact manifold
M3 with subcubic nonlinearity, establishing polynomial growth for the H 2 Sobolev norm. It makes
no sense to consider higher-order Sobolev norms, given that the nonlinearity is not smooth enough to
guarantee that regularity H m, with m> 2, is preserved along the evolution.

Nevertheless we emphasize that the next result appears to be the first one available in the literature about
polynomial growth of any Sobolev norms above the energy, on a generic 3-dimensional compact manifold.

Theorem 1.6. For every solution u.t;x/ 2 Ct .H
2.M3// to (1) with d D 3 and p 2 .2; 3/ we have

sup.0;T / ku.t;x/kH 2.M3/ � C.maxf1;T g/
4

3�p ;

where C D C.k'kH 2/ > 0.

Remark 1.7. The proof of Theorem 1.6 follows once the following local bound is established: for all
� 2 .0; 1/,

ku.�/k2
H 2.M3/

�ku.0/k2
H 2.M3/

. �kuk
pC5

4

L1..0;�/IH 2.M3//
Ckuk




L1..0;�/IH 2.M3//
(7)

for some 
 2
�
0; pC5

4

�
. In order to conclude the polynomial growth from (7), we can combine Remarks 1.2

and 1.4. In fact arguing as in Remark 1.4 we get

kuk2
L1..0;�/IH m.M3//

� 2ku.0/k2
H m.M3/

CC:

Once this bound is established, the polynomial growth follows by using (7) and arguing exactly as in
Remark 1.2.

Remark 1.8. Following our approach to proving (7), there is no need to restrict oneself to pure power
nonlinearities. In particular, polynomial growth for solutions to NLS on generic 3-dimensional compact
manifolds could be established for general higher-order Sobolev norms (namely H m with m�2), provided
the subcubic nonlinearity is suitably regularized in order to guarantee that H m regularity is preserved along
the flow. Nevertheless, for the sake of simplicity we elected not to deal with the full generality in this work.

2. Linear Strichartz estimates

Strichartz estimates on M2. In the sequel we shall make use without any further comment of the
following Strichartz estimate, which was already recalled in the Introduction:

keit�g'kL4..0;1/�M2/ . k'kH s0 .M2/: (8)
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By using Duhamel formula we also have at our disposal an inhomogeneous estimate that we state as an
independent proposition.

Proposition 2.1. Let v.t;x/ be solution to�
i @tvC�gv D F; .t;x/ 2 R�M2;

u.0;x/D ' 2H s0.M2/:

Then we have, for T 2 .0; 1/,

kvkL4..0;T /�M2/ . k'kH s0 .M2/CT kFkL1..0;T /IH s0 .M2//: (9)

Strichartz estimates on M3. In the proofs of Theorems 1.3 and 1.6 we shall make use of the following
suitable version of the endpoint Strichartz estimate:

Proposition 2.2. Let v.t;x/ be solution to

i @tvC�gv D F; .t;x/ 2 R�M3:

Then we have, for � 2 .0; 1/,

kvkL2..0;�/IL6.M3// .� kvkL1..0;�/IH �.M3//CkvkL2..0;�/IH 1=2.M3//CkFkL2..0;�/IL6=5.M3//: (10)

Notice that the above estimate may look somewhat unusual compared with the classical version of
Strichartz estimates, where on the right-hand side one expects a norm involving the initial datum v.0;x/

and another norm involving the forcing term F.t;x/.
Nevertheless we underline that in the case F D 0, the estimate above reduces to the usual Strichartz

estimate with loss of half of a derivative (see [Burq et al. 2004; Staffilani and Tataru 2002]). On the
other hand, the main point of (10) is that no derivative losses occur on the forcing term F.t;x/ when this
term is not identically zero, and the loss of derivative indeed occurs only for the solution v.t;x/ on the
right-hand side. Estimates in this spirit are also of crucial importance in the low regularity well-posedness
theory for quasilinear dispersive PDEs (see, e.g., [Koch and Tzvetkov 2003]). We emphasize that the
estimate (10) comes from the following spectrally localized version (see [Burq et al. 2004; Staffilani and
Tataru 2002] and for more details Proposition 5.4 in [Bouclet and Tzvetkov 2007]):

k�N vkL2..0;1/IL6.M3//

. k�N vkL1..0;1/IL2.M3//Ck�N vkL2..0;1/IH 1=2.M3//Ck�N FkL2..0;1/IL6=5.M3//;

where .�N / is the usual Littlewood–Paley spectral projector and N ranges over dyadic numbers. In fact
by taking squares and summing over N we get (10), provided that we make use of the boundX

N

k�N vk
2
L1..0;1/IL2.M3//

�

X
N

1

N �
kvk2

L1..0;1/IH �.M3//

together with the equivalence of the Lr norm of v with the Lr (1< r <1) norm of its squared function�P
N j�N vj

2
� 1

2.
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3. Modified energies associated with even Sobolev norms

Modified energies. In this subsection we consider the general Cauchy problem�
i @tuC�guD jujp�1u; .t;x/ 2 R�Md;

u.0;x/D ' 2H 2k.Md /;
(11)

where .Md;g/ is a compact d -dimensional Riemannian manifold.
In the sequel we shall extensively make use of the following bound without further notice:

kukL1.RIH 1.Md // .p;k'k
H 1

1: (12)

For every solution u.t;x/ to the Cauchy problem (11) we introduce the following energy, to be used in
connection with growth of the Sobolev norm H 2k :

E2k.u/D k@
k
t uk2

L2.Md /
�

p� 1

4

Z
Md

ˇ̌
@k�1

t rg.juj
2/
ˇ̌2
g
jujp�3 dvolg �

Z
Md

ˇ̌
@k�1

t .jujp�1u/
ˇ̌2 dvolg:

We have the following key identity.

Proposition 3.1. Let u.t;x/ be a solution to (11), where pD 2nC1� 3, with initial data ' 2H 2k.Md /.
Then we have

d

dt
E2k.u.t;x//D�

p�1

4

Z
Md

ˇ̌
@k�1

t rg.juj
2/
ˇ̌2
g
@t .juj

p�3/dvolgC2

Z
Md

@k
t .juj

p�1/@k�1
t .jrguj2g/dvolg

C

k�1X
jD0

cj

Z
Md

@
j
t rg.juj

2/@k�1
t rg.juj

2/g @
k�j
t .jujp�3/dvolg

CRe
k�1X
jD0

cj

Z
Md

@
j
t .juj

p�1/@
k�j
t u@k�1

t .jujp�1
Nu/dvolg

CRe
k�2X
jD0

cj

Z
Md

@k
t .juj

p�1/@
j
t .�g Nu/@

k�1�j
t udvolg

CIm
k�1X
jD1

cj

Z
Md

@
j
t .juj

p�1/@
k�j
t u@k

t Nudvolg; (13)

where cj denote explicit constants that may change from line to line.

Proof. We start with the following computation:

d

dt
k@k

t uk2
L2.Md /

D 2 Re.@kC1
t u; @k

t u/D 2 Re
�
@k

t .��guCjujp�1u/; i @k
t u
�

D 2 Im
Z

Md

.@k
t rgu; @k

t rgu/g dvolgC 2 Re
�
@k

t .juj
p�1u/; i @k

t u
�
;
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where .f;g/ denotes the usual L2.M d / scalar product
R

Md f � Ng dvolg. Since the first term on the
right-hand side vanishes identically we get

d

dt
k@k

t uk2
L2.Md/

D2Re
�
@k

t .juj
p�1u/; i @k

t u
�

D2Re
�
@k

t .juj
p�1/u; i @k

t u
�
C2Re

�
jujp�1 @k

t u; i @k
t u
�
CRe

k�1X
jD1

cj

�
@

j
t .juj

p�1/@
k�j
t u; i @k

t u
�
;

where cj are suitable integers. Notice that the second term on the right-hand side vanishes identically and
if we substitute for the equation again then we get

d

dt
k@k

t uk2
L2.Md /

D 2 Re
�
@k

t .juj
p�1/u;��g.@

k�1
t u/

�
C 2 Re

�
@k

t .juj
p�1/u; @k�1

t .jujp�1u/
�

CRe
k�1X
jD1

cj

�
@

j
t juj

p�1 @
k�j
t u; i @k

t u
�

D 2 Re
�
@k

t .juj
p�1/u;��g.@

k�1
t u/

�
C 2 Re

�
@k

t .juj
p�1u/; @k�1

t .jujp�1u/
�

CRe
k�1X
jD0

cj

�
@

j
t .juj

p�1/ @
k�j
t u; @k�1

t .jujp�1u/
�
CRe

k�1X
jD1

cj

�
@

j
t juj

p�1 @
k�j
t u; i @k

t u
�

D 2 Re
�
@k

t .juj
p�1/u;��g.@

k�1
t u/

�
C

Z
Md

@t j@
k�1
t .jujp�1u/j2 dvolg

CRe
k�1X
jD0

cj

�
@

j
t .juj

p�1/ @
k�j
t u; @k�1

t .jujp�1u/
�
CRe

k�1X
jD1

cj

�
@

j
t .juj

p�1/ @
k�j
t u; i @k

t u
�
: (14)

Next we focus on the first term on the right-hand side

2 Re
�
@k

t .juj
p�1/u;��g.@

k�1
t u/

�
D

Z
Md

@k
t .juj

p�1/
�
�Nu @k�1

t .�gu/�u @k�1
t .�g Nu/

�
dvolg

and we notice

�Nu�g.@
k�1
t u/�u�g.@

k�1
t Nu/D @k�1

t .�Nu�gu�u�g Nu/CRe
k�2X
jD0

cj @
j
t .�gu/ @

k�1�j
t Nu:

Moreover we have the identity

�g.juj
2/D u�g NuC Nu�guC 2jrguj2g:

Hence,

2 Re
�
@k

t .juj
p�1/u;��g @

k�1
t u

�
D�

Z
Md

@k
t .juj

p�1/ @k�1
t �g.juj

2/ dvolgC 2

Z
Md

@k
t .juj

p�1/ @k�1
t .jrguj2g/ dvolg

CRe
k�2X
jD0

cj

Z
Md

@k
t .juj

p�1/ @
j
t .�gu/ @

k�1�j
t Nu dvolg
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D

Z
Md

�
@k

t rg.juj
p�1/; @k�1

t rg.juj
2/
�
g

dvolgC 2

Z
Md

@k
t .juj

p�1/ @k�1
t .jrguj2g/ dvolg

CRe
k�2X
jD0

cj

Z
Md

@k
t .juj

p�1/ @
j
t .�gu/ @

k�1�j
t Nu dvolg;

and by elementary computations we get

� � � D
p� 1

2

Z
Md

�
@k

t .rg.juj
2/jujp�3/; @k�1

t rg.juj
2/
�
g

dvolgC 2

Z
Md

@k
t .juj

p�1/ @k�1
t .jrguj2g/ dvolg

CRe
k�2X
jD0

cj

Z
Md

@k
t .juj

p�1/ @
j
t .�gu/ @

k�1�j
t Nu dvolg:

Using the Leibniz rule to develop @k
t we get

� � � D
p�1

2

Z
Md

.@k
t rg.juj

2/jujp�3;@k�1
t rg.juj

2//g dvolg

C

k�1X
jD0

cj

Z
Md

.@
j
t rg.juj

2/;@k�1
t rg.juj

2//g @
k�j
t .jujp�3/dvolg

C2

Z
Md

@k
t .juj

p�1/@k�1
t .jrguj2g/dvolgCRe

k�2X
jD0

cj

Z
Md

@k
t .juj

p�1/@
j
t .�gu/@

k�1�j
t Nudvolg

D
p�1

4

Z
Md

@t j@
k�1
t rg.juj

2/j2gjuj
p�3 dvolg

C

k�1X
jD0

cj

Z
Md

.@
j
t rg.juj

2/;@k�1
t rg.juj

2//g @
k�j
t .jujp�3/dvolg

C2

Z
Md

@k
t .juj

p�1/@k�1
t .jrguj2g/dvolgCRe

k�2X
jD0

cj

Z
Md

@k
t .juj

p�1/@
j
t .�gu/@

k�1�j
t Nudvolg;

and we conclude by combining this identity with (14). �

Remark 3.2. In the specific case of the cubic NLS (i.e., (11) with p D 3) we have some simplifications;
more precisely we get

E2k.u/D k@
k
t uk2

L2.Md /
�

1

2

Z
Md

ˇ̌
@k�1

t rg.juj
2/
ˇ̌2
g

dvolg �
Z

Md

ˇ̌
@k�1

t .juj2u/
ˇ̌2 dvolg

and also

d

dt
E2k.u.t;x//

D 2

Z
Md

@k
t .juj

2/@k�1
t .jrguj2g/dvolgCRe

k�2X
jD0

cj

Z
Md

@k
t .juj

2/@
j
t .�gu/@

k�1�j
t Nudvolg

CRe
k�1X
jD0

cj

Z
Md

@
j
t .juj

2/@
k�j
t u@k�1

t .juj2 Nu/dvolgCIm
k�1X
jD1

cj

Z
Md

@
j
t .juj

2/@
k�j
t u@k

t Nudvolg: (15)
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The norms k@k
t ukL2 and kukH 2k are comparable. The aim of this subsection is indeed to prove that

the leading term in our modified energy E2k.u/ is equivalent to the Sobolev norm kukH 2k , provided that
u.t;x/ is a solution to (11) with d D 2 and p � 3 or d D 3 and p D 3.

Proposition 3.3. Let u.t;x/ be solution to (11), where either d D 2 and p � 3 is an integer, or d D 3

and p D 3. Then for every k; s 2 N we have

k@k
t u� ik�k

gukH s.Md / .k'kH 1
kukH sC2k�1.Md /: (16)

Proof. We shall use the following identity (satisfied by every solution to (11) in any dimension d ):

@h
t uD ih�h

guC

h�1X
jD0

cj @
j
t �

h�j�1
g .ujujp�1/; (17)

where cj 2 C are suitable coefficients. The elementary proof follows by induction on h and by using the
equation solved by u.t;x/.

First case: d D 2, p � 3. We argue by induction on k, and hence we shall prove k) kC 1. By (17) we
aim at proving

k@
j
t .ujuj

p�1/kH 2k�2jCs.M2/ . kukH sC2kC1.M2/; j D 0; : : : ; k; (18)

by assuming the property (16) is true for k. By expanding the time and space derivatives on the left-hand
side above, we deduce (18) by the chain of inequalitiesY

j1C���CjpDj
s1C���CspD2k�2jCs

k@
jl

t ukW sl ;2p.M2/ .
Y

j1C���CjpDj
s1C���CspD2k�2jCs

k@
jl

t ukH slC1.M2/

.
Y

j1C���CjpDj
s1C���CspD2k�2jCs

kukH 2jlCslC1.M2/;

where we used the Sobolev embedding H 1.M2/�L2p.M2/ and we have used the induction hypothesis
at the last step. We can continue the estimate by a trivial interpolation argument as follows:

� � �.
� Y

lD1;:::;p

kuk
�l

H sC2kC1.M2/
kuk

.1��l /

H 1.M2/

�
;

where

�l.sC 2kC 1/C .1� �l/D 2jl C sl C 1:

We conclude using (12), since
Pp

lD1
�l D 1 for j D 0; : : : ; k.

Second case: d D 3, p D 3. Arguing as above, and by assuming the result true for k, we are reduced to
proving

k@
j
t .ujuj

2/kH 2k�2jCs.M3/ . kukH sC2kC1.M3/; j D 0; : : : ; k: (19)
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Expanding again the time and space derivatives on the left-hand side, we are reduced to the estimate

k@
j1

t ukW k1;6.M3/ �k@
j2

t ukW k2;6.M3/ �k@
j3

t ukW k3;6.M3/

. k@j1

t ukH k1C1.M3/ �k@
j2

t ukH k2C1.M3/ �k@
j3

t ukH k3C1.M3/

. kukH 2j1Ck1C1.M3/kukH 2j2Ck2C1.M3/kukH 2j3Ck3C1.M3/;

where
j1C j2C j3 D j ; k1C k2C k3 D 2k � 2j C s:

Notice that we have used the Sobolev embedding H 1.M3/�L6.M3/ and the induction hypothesis at
the last step. By interpolation we have

kukH 2jlCklC1.M3/ . kuk
�l

H sC2kC1.M3/
kuk

1��l

H 1.M3/
; l D 1; 2; 3;

where
�l.sC 2kC 1/C .1� �l/D 2jl C kl C 1;

and we conclude as above since
P3

lD1 �l D 1 for j D 0; : : : ; k. �

Strichartz estimates for nonlinear solutions. In this subsection we get a priori bounds for the Strichartz
norms of solutions to (11) in dimension d D 2, with a general nonlinearity, and in dimension d D 3, with
cubic nonlinearity. In the sequel we denote by L

p
� X the space Lp..0; �/IX /, where X is a Banach space

and p 2 Œ1;1�.

Proposition 3.4. We have the following estimate for every solution u.t;x/ to (11) for d D 2 and p D

2nC 1� 3 is an integer: for any � > 0 and � 2 .0; 1/,

k@
j
t ukL4

�W s;4.M2/ .�;k'k
H 1
kuk

1�s0

L1� H 2jCs.M2/
kuk

s0

L1� H 2jCsC1.M2/
kuk�

L1� H 2jC2.M2/
: (20)

Proof. We use (9), together with the equation solved by @j
t u, and we get

k@
j
t ukL4

�W s;4.M2/

. k@j
t u.0/kH sCs0 .M2/C �k@

j
t .ujuj

p�1/kL1� H sCs0 .M2/

. k@j
t u.0/k

1�s0

H s k@
j
t u.0/k

s0

H sC1.M2/
CT k@

j
t .ujuj

p�1/k
1�s0

L1� H s.M2/
k@

j
t .ujuj

p�1/k
s0

L1� H sC1.M2/
:

Notice that the first term on the right-hand side can be estimated by Proposition 3.3. Hence we shall
complete the proof provided that for every � > 0,

k@
j
t .ujuj

p�1/kH s.M2/ .�;k'k
H 1
kukH 2jCs.M2/kuk

�
H 2jC2.M2/

for all j ; s D 1; 2; : : : :

Expanding the time derivative @j
t and using

kfgkH r .M2/ . kf kH r .M2/kgkL1.M2/CkgkH r .M2/kf kL1.M2/;

we are reduced to estimating

k@
j1

t ukH s.M2/ �k@
j2

t ukL1.M2/ � � � � � k@
jp

t ukL1.M2/;
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where j1C � � �C jp D j . Notice that from

kvkL1.M2/ .� kvk1��H 1.M2/
kvk�

H 2.M2/
(21)

we get

k@
j1

t ukH s.M2/ �k@
j2

t ukL1.M2/ � � � � � k@
jp

t ukL1.M2/

.� k@j1

t ukH s.M2/ �k@
j2

t uk1��
H 1.M2/

�k@
j2

t uk�
H 2 � � � � � k@

jp

t uk1��
H 1.M2/

�k@
jp

t uk�
H 2.M2/

;

and hence by (16)

� � � . kukH 2j1Cs.M2/ �kuk
1��
H 2j2C1.M2/

�kuk�
H 2j2C2.M2/

� � � � � kuk1��
H 2jpC1.M2/

�kuk�
H 2jpC2.M2/

. kuk�1

H 2jCs.M2/
kuk

1��1

H 1.M2/
�kuk

�2.1��/

H 2jCs kuk
.1��2/.1��/

H 1.M2/

� � � � � kuk
�p.1��/

H 2jCs.M2/
kuk

.1��p/.1��/

H 1.M2/
�kuk

�.p�1/

H 2jC2.M2/
;

where at the last step we have used an interpolation argument with

�1.2j C s/C .1� �1/D 2j1C s; �l.2j C s/C .1� �l/D 2jl C 1; l D 2; : : : ;p:

Notice that we get
Pp

lD1
�l D 1 and we conclude by (12). �

Proposition 3.5. We have the following estimate for every solution u.t;x/ to (11) for .p; l/D .3; 3/ and
for every � > 0, � 2 .0; 1/:

k@
j
t ukL2

�L6.M3/.�;k'kH 1
k@

j
t uk1��

L1� L2.M3/
k@

j
t uk�

L1� H 1.M3/
C
p
�kuk

1=2

L1� H 2j .M3/
kuk

1=2

L1� H 2jC1.M3/

C
p
�

X
j1Cj2Cj3Dj

j1Dmaxfj1;j2;j3g

kukL1� H 2j1 .M3/kukL1� H 2j2C1.M3/kukL1� H 2j3C1.M3/; (22)

and

k@
j
t ukL2

�W 1;6.M3/.�;k'kH 1
k@

j
t uk1��

L1� H 1.M3/
k@

j
t uk�

L1� H 2.M3/
C
p
� kuk

1=2

L1� H 2jC1.M3/
kuk

1=2

L1� H 2jC2.M3/

C
p
�

X
j1Cj2Cj3Dj

kukL1� H 2j1C1.M3/kukL1� H 2j2C1.M3/kukL1� H 2j3C1.M3/: (23)

Proof. We prove (23), the proof of (22) being similar. By using Strichartz estimates and the equation
solved by @j

t u we get

k@
j
t ukL2

�W 1;6.M3/ . k@
j
t ukL1� H 1C�.M3/C

p
T k@

j
t ukL1� H 3=2.M3/Ck@

j
t .ujuj

2/kL2
�W 1;6=5.M3/

. k@j
t uk1��

L1� H 1.M3/
k@

j
t uk�

L1� H 2.M3/

Ck@
j
t uk

1=2

L1� H 1.M3/
k@

j
t uk

1=2

L1� H 2.M3/
Ck@

j
t .ujuj

2/kL2
�W 1;6=5.M3/:
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Notice that by expanding the time derivative, and by using Hölder we get

k@
j
t .ujuj

2/kW 1;6=5.M3/ .
X

j1Cj2Cj3Dj
j1Dmaxfj1;j2;j3g

k@
j1

t ukH 1.M3/ k@
j2

t ukL6.M3/ k@
j3

t ukL6.M3/

.
X

j1Cj2Cj3Dj
j1Dmaxfj1;j2;j3g

k@
j1

t ukH 1.M3/ k@
j2

t ukH 1.M3/ k@
j3

t ukH 1.M3/:

We then conclude by using Proposition 3.3 in the special case of the cubic NLS on M3. �

4. Polynomial growth of H 2k for pure power NLS on M2

This section is devoted to the proof of Theorem 1.1 in the case mD 2k. We shall need the following
estimate.

Proposition 4.1. Let us assume that u.t;x/ solves (11) with d D 2 and p D 2nC 1� 3. Then we have
the following bound for every � 2 .0; 1/:Z �

0

jright-hand side of (13)j ds .
p
�kuk

4k�3C2s0
2k�1

C�

L1� H 2k.M2/
Ckuk

4k�4
2k�1

C�

L1� H 2k.M2/
:

Proof. Since we work on a 2-dimensional compact manifold we simplify notation as follows: Lq, W s;q, H s

denote the spaces Lq.M2/, W s;q.M2/, H s.M2/. Moreover in the sequel we shall denote by � > 0

any arbitrary small constant whose value can change from line to line. We shall also make use of the
inequality

kukL1
T

H s .
k'k

H 1
kuk

s�1
2k�1

L1� H 2k ; s 2 Œ1; 2k�; (24)

which in turn follows by combining an elementary interpolation inequality with (12).
Let I, II, III, IV, V, VI be the successive terms on each line of the right-hand side in (13). Estimating I

can be reduced to controlling the termsZ T

0

k@
k1

t uk2
W 1;4 k@

k2

t uk2L1 k@tukL2 kuk
p�4
L1

ds; k1C k2 D k � 1; (25)

and we have, by combining (21), Proposition 3.3, Proposition 3.4 and the Hölder inequality,

(25).
p

T kuk
2.1��/

L1� H 2k2C1 kuk
2�
L1H 2k2C2 kukL1� H 2 k@

k1

t uk2
L4

T
W 1;4

.
p

T kuk
2.1��/

L1� H 2k2C1 kukL1H 2 kuk
2.1�s0/

L1� H 2k1C1 kuk
2s0

L1� H 2k1C2 kuk
�
L1� H 2k .

p
� kuk

4k�3C2s0
2k�1

C�

L1� H 2k ;

where at the last step we have used (24). Notice that the value of � > 0 changes at each line, but can be
chosen arbitrarily small. Concerning II, we are reduced to controllingZ T

0

k@
j1

t ukL2

� Y
hD2;:::;p�1

k@
jh

t ukL1

�
k@

k1

t ukW 1;4 k@
k2

t ukW 1;4 ; (26)
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where we assume j1 Dmaxfj1; j2; : : : ; jp�1g and

j1C � � �C jp�1 D k; k1C k2 D k � 1:

By using the interpolation estimate (21) together with Proposition 3.3, Proposition 3.4 and the Hölder
inequality, we get

(26).
p

T kuk�
L1

T
H 2k kukL1

T
H 2j1

� Y
hD2;:::;p�1

kuk1��
L1

T
H 2jhC1

�
�kuk

1�s0

L1
T

H 2k1C1 kuk
s0

L1
T

H 2k1C2 kuk
1�s0

L1
T

H 2k2C1 kuk
s0

L1
T

H 2k2C2

.
p
� kuk

4k�3C2s0
2k�1

C�

L1� H 2k ;

where we used (24) at the last step. Next we deal with III, and it is sufficient to controlZ �

0

k@
h1

t ukL1 k@
h2

t ukW 1;4 k@
m1

t ukL2

� Y
iD2;:::;p�3

k@
mi

t ukL1

�
k@

l1

t ukL1 k@
l2

t ukW 1;4 ; (27)

where we assume m1 Dmaxfm1;m2; : : : ;mp�3g and

h1C h2 D j 2 Œ0; k � 1�; m1C � � �Cmp�3 D k � j ; l1C l2 D k � 1:

Arguing as above, it can be estimated by

(27).
p
�kuk�

L1� H 2k kukL1� H 2h1C1 kuk
1�s0

L1� H 2h2C1 kuk
s0

L1� H 2h2C2 kukL1� H 2m1

�

� Y
iD2;:::;p�3

kuk1��
L1H 2miC1

�
kuk1��

L1� H 2l1C1 kuk
1�s0

L1� H 2l2C1 kuk
s0

L1� H 2l2C2

.
p
�kuk

4k�3C2s0
2k�1

C�

L1� H 2k :

In order to treat IV we are reduced to controllingZ T

0

k@
j1

t ukL2

� Y
hD2;:::;p�1

k@
jh

t ukL1

�
k@

j
t .�gu/kL4 k@

k�1�j
t NukL4 ; (28)

where we assume j1 Dmaxfj1; j2; : : : ; jp�1g and

j1C � � �C jp�1 D k;

and by an argument similar to those above we have

(28).
p
�kuk�

L1� H 2k kukL1
T

H 2j1

� Y
hD2;:::;p�1

kuk1��
L1� H 2jhC1

�
�kuk

1�s0

L1� H 2jC2 kuk
s0

L1� H 2jC3 kuk
1�s0

L1� H 2k�2�2j kuk
s0

L1� H 2k�2j�1

.
p
�kuk

4k�3C2s0
2k�1

C�

L1� H 2k :
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In order to estimate V it is sufficient to control the termsZ T

0

k@
m1

t ukL4

� Y
iD2;:::;p�1

k@
mi

t ukL1

�
k@

k�j
t ukL4 k@k

t ukL2 ; (29)

where we assume m1 Dmaxfm1;m2; : : : ;mp�1g and

m1C � � �Cmp�1 D j ;

and as usual we get

(29).
p
�kuk1C�

L1� H 2k kuk
1�s0

L1� H 2m1
kuk

s0

L1� H 2m1C1

� Y
iD2;:::;p�1

kuk1��
L1� H 2miC1

�
�kuk

1�s0

L1� H 2k�2j kuk
s0

L1� H 2k�2jC1

.
p
�kuk

4k�3C2s0
2k�1

C�

L1� H 2k :

We conclude with the estimate of VI, which in turn can be reduced to controllingZ T

0

k@
m1

t ukL2

� Y
iD2;:::;p�1

k@
mi

t ukL1

�
k@

k�j
t ukL1 k@

l1

t ukL2

� Y
iD2;:::;p

k@
li

t ukL1

�
; (30)

where we assume m1 Dmaxfm1;m2; : : : ;mp�1g and

m1C � � �Cmp�1 D j ; l1C � � �C lp D k � 1;

and we get

(30). �kuk�
L1� H 2k kukL1� H 2m1

� Y
iD2;:::;p�1

kuk1��
L1� H 2miC1

�
�kuk1��

L1� H 2k�2jC1 kukL1� H 2l1

� Y
iD2;:::;p�1

kuk1��
L1� H 2liC1

�
. �kuk

4k�4
2k�1

C�

L1� H 2k: �

The key estimate to deduce Theorem 1.1 is the following one (see Remark 1.2).

Proposition 4.2. Let us assume that u.t;x/ solves (11) with d D 2 and p� 3. Then we have the following
bound for every � 2 .0; 1/ and for every � > 0:

ku.�/k2
H 2k �ku.0/k

2
H 2k .

p
� kuk

4k�3C2s0
2k�1

C�

L1� H 2k Ckuk
4k�4
2k�1

C�

L1� H 2k :

Proof. We write E2k.u/D k@
k
t uk2

L2 CR2k.u/, where

R2k.u/D�
p� 1

4

Z ˇ̌
@k�1

t rg.juj
2/
ˇ̌2
g
jujp�3 dvolg �

Z ˇ̌
@k�1

t .jujp�1u/
ˇ̌2 dvolg:

We claim that
jR2k.u/j.� kuk

4k�4
2k�1

C�

H 2k Ckuk
4k�6
2k�1

C�

H 2k : (31)



1138 FABRICE PLANCHON, NIKOLAY TZVETKOV AND NICOLA VISCIGLIA

In fact notice that arguing as in the proof of Proposition 4.1 we getZ ˇ̌
@k�1

t rg.juj
2/
ˇ̌2
g
jujp�3 dvolg .

X
k1Ck2Dk�1

k@
k1

t uk2
W 1;2 k@

k2

t uk2L1 kuk
p�3
L1

.
X

k1Ck2Dk�1

kuk2
H 2k1C1 kuk

2
H 2k2C1 kuk

�
H 2k . kuk

4k�4
2k�1

C�

H 2k

and alsoZ ˇ̌
@k�1

t .jujp�1u/
ˇ̌2 dvolg .

X
j1C���CjpDk�1

k@
j1

t uk2
L2

� Y
hD1;:::;p

k@
jh

t uk2L1

�

.
X

j1C���CjpDk�1

kuk2
H 2j1

� Y
hD1;:::;p

kuk2
H 2jhC1.M2/

�
kuk�

L1H 2k . kuk
4k�6
2k�1

C�

L1H 2k :

Next notice that if we integrate the identity (13) and we use Proposition 4.1 then

k@k
t u.�/k2

L2 �k@
k
t u.0/k2

L2 . sup.0;�/ jR2k.u/jC
p
�kuk

4k�3C2s0
2k�1

C�

L1� H 2k Ckuk
4k�4
2k�1

C�

L1� H 2k :

We conclude by using (31) and Proposition 3.3. �

5. Exponential growth for H 2k norms of solutions to the cubic NLS on M3

The aim of this section is the proof of Theorem 1.3 in the case mD 2k.
The following is the 3-dimensional version of Proposition 4.1 for the cubic NLS.

Proposition 5.1. Let us assume that u.t;x/ solves (11) with d D 3 and pD 3. Then we have the following
bound for every � 2 .0; 1/Z �

0

jright-hand side of (13)j ds . �kuk2
L1� H 2k Ckuk




L1� H 2k

for some 
 2 .0; 2/.

Proof. Since we work on a 3-dimensional compact manifold we simplify the notation as follows:
Lq, W s;q , H s denote the spaces Lq.M3/, W s;q.M3/, H s.M3/. In the sequel we shall also make use
of the following inequalities, which in turn follow by combining an elementary interpolation inequality
with (12). We also notice that by combining Proposition 3.3 and Proposition 3.5 with (24) we get

k@
j
t ukL2

�L6 .� kuk1��L1� H 2j kuk
�
L1� H 2jC1 C

p
� kuk

1=2

L1� H 2j kuk
1=2

L1� H 2jC1

C
p
�

X
j1Cj2Cj3Dj

j1Dmaxfj1;j2;j3g

kukL1� H 2j1 kukL1� H 2j2C1 kukL1� H 2j3C1

. kuk
2j�1C�

2k�1

L1� H 2k C
p
�kuk

4j�1
4k�2

L1� H 2k C
p
�kuk

2j�1
2k�1

L1� H 2k ; (32)
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provided that j � 1, and

k@
j
t ukL2

�W 1;6 .�kuk1��L1� H 2jC1 kuk
�
L1� H 2jC2 C

p
� kuk

1=2

L1� H 2jC1 kuk
1=2

L1� H 2jC2

C
p
�

X
j1Cj2Cj3Dj

kukL1� H 2j1C1 kukL1� H 2j2C1 kukL1� H 2j3C1

. kuk
2jC�
2k�1

L1� H 2k C
p
� kuk

4jC1
4k�2

L1� H 2k C
p
� kuk

2j
2k�1

L1� H 2k : (33)

We denote by I, II, III, IV the four terms on each line of the right-hand side in (15). We first estimate
the term I. By developing the time derivatives @k

t and @k�1
t , and by using the Hölder inequality, we are

reduced to estimating Z T

0

k@
k1

t ukL2 k@
k2

t ukL6 k@
j1

t ukW 1;6 k@
j2

t ukW 1;6 ds; (34)

where we can assume k1 � k2 and

j1C j2 D k � 1; k1C k2 D k:

Notice that by combining the Sobolev embedding H 1.M3/�L6.M3/ with Proposition 3.3 for d D 3

and p D 3, and (24) we have

(34). kukL1� H 2k1 kukL1� H 2k2C1 k@
j1

t ukL2
�W 1;6 k@

j2

t ukL2
�W 1;6

. kukL1� H 2k k@
j1

t ukL2
�W 1;6 k@

j2

t ukL2
�W 1;6 ;

and we can continue the estimate by using (33). Indeed we should estimate k@j
t ukL2

�W 1;6 by three terms
on the right-hand side in (33). However, we can consider only the term that gives the worst growth with
respect to the power of kukL1� H 2k (i.e., only the second term on the right-hand side of (33), as all the
other terms give a smaller power of kukL1� H 2k ). Summarizing we get

(34). �kuk2
L1� H 2k Ckuk




L1� H 2k

for a suitable 
 2 .0; 2/. Next we estimate the term II, which can be reduced to estimating the termsZ T

0

k@
k1

t ukL2 k@
k2

t ukL6 k@
j
t �gukL6 k@

k�1�j
t ukL6 ; (35)

where we can assume k1 � k2 and

j D 0; : : : ; k � 2; k1C k2 D k:

By using the Sobolev embedding H 1.M3/�L6.M3/ in conjunction with Proposition 3.3 we get

(35). kukL1� H 2k1 k@
k2

t ukL2
�L6 kukL1� H 2jC3 k@

k�1�j
t ukL2

�L6 :

By using (32) and (24) we get

(35). kukL1� H 2k1 kuk
4k2�1

4k�2

L1� H 2k kukL1� H 2jC3 kuk
4.k�1�j/�1

4k�2

L1� H 2k . �kuk2
L1� H 2k Ckuk




L1� H 2k ;
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where 
 2 .0; 2/. Concerning the term III we are reduced toZ T

0

k@
j1

t ukL1 k@
j2

t ukL1 k@
k�j
t ukL2 k@

k1

t ukL6 k@
k2

t ukL6 k@
k3

t ukL6 ;

j1C j2 D j ; 0� j � k � 1; k1C k2C k3 D k � 1: (36)

By the Sobolev embeddings H 1.M3/�L6.M3/ and H 2.M3/�L1.M3/ and Proposition 3.3 we get

(36). kukL1� H 2j1C2 kukL1� H 2j2C2 kukL1� H 2k�2j k@
k1

t ukL2
�L6 k@

k2

t ukL2
�L6 kukL1� H 2k3C1 :

By combining (32) with (24) we get

(36). �kuk2
L1� H 2k Ckuk




L1� H 2k

for 
 2 .0; 2/. Concerning IV, it is sufficient to estimateZ T

0

k@k
t ukL2 k@

k�j
t ukL6 k@

j1

t ukL6 k@
j2

t ukL6 ;

j1C j2 D j ; 1� j � k � 1: (37)

We can control it by using H 1.M3/�L6.M3/ and Proposition 3.3:

(37). kukL1� H 2k kukL1� H 2k�2jC1 k@
j1

t ukL2
�L6 k@

j1

t ukL2
�L6 :

Again by (32) and (24) we get

(37). �kuk2
L1� H 2k Ckuk




L1� H 2k

for some 
 2 .0; 2/. �

In order to conclude the proof of Theorem 1.3, following the same argument as in the proof of
Theorem 1.1, we have to split E2k.u/ as E2k.u/D k@

k
t uk2

L2 CR2k.u/, where

R2k.u/D�
1

2

Z ˇ̌
@k�1

t rg.juj
2/
ˇ̌2
g

dvolg �
Z ˇ̌
@k�1

t .juj2u/
ˇ̌2 dvolg;

and we need to estimate the term R2k.u/, namely

jR2k.u/j. kuk
4k�3
2k�1

C�

H 2k Ckuk
4k�5
2k�1

C�

H 2k ;

which is a version of (31) in three dimensions. Once we prove this estimate, the conclusion is similar to
Theorem 1.1. Notice thatZ ˇ̌

@k�1
t rg.juj

2/
ˇ̌2
g

dvolg .
X

k1Ck2Dk�1

k@
k1

t uk2
W 1;2 k@

k2

t uk2L1

.
X

k1Ck2Dk�1

kuk2
H 2k1C1 kuk

1��
H 2k2C1 kuk

1C�

H 2k2C2 . kuk
4k�3
2k�1

C�

H 2k ;
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where we used the estimate

kvkL1 . kvk
1��

2

H 1 kvk
1C�

2

H 2 ; (38)

which in turn follows by combining interpolation with Sobolev embedding, Proposition 3.3 and (24).
Moreover we haveZ ˇ̌

@k�1
t .juj2u/

ˇ̌2 dvolg

.
X

j1Cj2Cj3Dk�1

k@
j1

t uk2
L2 k@

j2

t uk2L1 k@
j3

t uk2L1

.
X

j1Cj2Cj3Dk�1

kuk2
H 2j1

kuk1��
H 2j2C1 kuk

1��
H 2j3C1 kuk

1C�

H 2j2C2 kuk
1C�

H 2j3C2 . kuk
4k�5
2k�1

C�

H 2k ;

where we used (38), Proposition 3.3 and (24).

6. Polynomial growth of H 2 for the subcubic NLS on M3

Next we prove Theorem 1.6. We introduce the energy

F2.v.t;x//D

Z
M3

j@tvj
2 dvolg � .p� 1/

Z
M3

jvjp�1
ˇ̌
rgjvj

ˇ̌2 dvolg �
p� 1

p

Z
M3

jvj2p dvolg:

Proposition 6.1. Let u.t;x/ be solution to (11) for d D 3 and 2< p < 3. Then we have

d

dt
F2u.t;x/

D .p� 1/.p� 3/

Z
M3

jujp�2 @t juj
ˇ̌
rgjuj

ˇ̌2 dvolgC 2.p� 1/

Z
M3

jujp�2 @t jujjrguj2g dvolg: (39)

Proof. We start with the following computation:

d

dt
k@tuk

2
L2 D 2 Re.@2

t u; @tu/

D 2 Re
�
@t .��guCjujp�1u/; i @tu

�
D 2 Im

Z
M3

.@trgu; @trgu/g dvolgC 2 Re
�
@t .juj

p�1u/; i @tu
�
;

where .f;g/D
R

M3 f Ng dvolg. Since the first term vanishes, we get

d

dt
k@tuk

2
L2 D 2 Re

�
@t .juj

p�1/u; i @tu
�
C 2 Re

�
jujp�1 @tu; i @tu

�
D 2 Re

�
@t .juj

p�1/u;��gu
�
C 2 Re

�
@t .juj

p�1/u; jujp�1u
�

D 2 Re
�
@t .juj

p�1/u;��gu
�
C

p� 1

p

d

dt

Z
M3

juj2p dvolg:

By using the identity
�g.juj

2/D u�g NuC Nu�guC 2jrguj2g;
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we get

2 Re
�
@t .juj

p�1/u;��gu
�

D�.@t juj
p�1; �gjuj

2/C 2.@t juj
p�1; jrguj2g/

D .@trgjuj
p�1;rgjuj

2/C 2.@t juj
p�1; jrguj2g/

D 2.p� 1/
�
@t .juj

p�2
rgjuj/; jujrgjuj

�
C 2.@t juj

p�1; jrguj2g/

D 2.p� 1/
d

dt
.jujp�2

rgjuj; jujrgjuj/� 2.p� 1/.jujp�2
rgjuj; @t jujrgjuj/

� 2.p� 1/.jujp�2
rgjuj; jujrg @t juj/C 2.@t juj

p�1; jrguj2g/

D 2.p� 1/
d

dt
.jujp�2

rgjuj; jujrgjuj/� 2.p� 1/.jujp�2
rgjuj; @t jujrgjuj/

� .p� 1/
d

dt

�
jujp�1;

ˇ̌
rgjuj

ˇ̌2�
C .p� 1/

�
@t juj

p�1;
ˇ̌
rgjuj

ˇ̌2�
C 2.@t juj

p�1; jrguj2g/: �

The following proposition is a substitute for Proposition 5.1 in the subcubic case.

Proposition 6.2. We have for every � 2 .0; 1/Z �

0

jright-hand side of (39)j ds . �kuk
pC5

4

L1� H 2 Ckuk



L1� H 2

for some 
 2
�
0; pC5

4

�
.

Proof. We can write the terms on the right-hand side of (39) as I and II. We estimate I and the estimate of
II is similar. We estimate I as follows (we shall use the diamagnetic inequality in order to remove j � j
inside the derivatives rg and @t ) by the Hölder inequality:

jI j. k@tukL1� L2 kuk2

L2
�W

1; 12
5�p

kuk
p�2

L6 . �
6�2p

8 k@t ukL1� L2 kuk2

L
8

pC1
� W

1; 12
5�p

;

where the pair
�

8
pC1

; 12
5�p

�
is Strichartz admissible. Notice that by using the equation solved by u.t;x/,

we are allowed to replace k@tukL1� L2 with kukL1� H 2 and hence

jI j. �
6�2p

8 kukL1� H 2 kuk2

L
8

pC1
� W

1; 12
5�p

:

Next notice that we have the bound

kuk
L

8
pC1
� W

1; 12
5�p

. kuk
3�p

4

L1� H 1 kuk
pC1

4

L2
�W 1;6

;

and hence due to the conservation of the energy, we can continue the estimate above as

jI j. �
6�2p

8 kukL1� H 2 kuk
pC1

2

L2
�W 1;6

:

We can continue the estimate by using the Strichartz estimates (33) for j D 0 (which are still available
for solutions to the subcubic NLS):

jI j. �kukL1� H 2 kuk
pC1

4

L1� H 2 Ckuk



L1� H 2
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for some 
 2
�
0; pC5

4

�
(indeed we have estimated the term kukL2

�W 1;6 with the middle term on the
right-hand side in (33) since it is the one that involves the larger power of kukL1� H 2 , and the lower
powers are absorbed in the term kuk


L1� H 2). �

Integrating (39) on Œ0; � � and arguing exactly as in the proofs of Theorems 1.1 and 1.3, we get the bound

ku.�/k2
H 2.M3/

�ku.0/k2
H 2.M3/

. �kuk
pC5

4

L1..0;�/IH 2.M3//
Ckuk




L1..0;�/IH 2.M3//

for some 
 2
�
0; pC5

4

�
. This is sufficient to conclude Remark 1.7.

7. Growth of odd Sobolev norms H 2kC1

We point out that if we assume the initial datum ' to be H 2kC2, then the estimate

sup.0;T / ku.t;x/kH 2kC1.M2/ � C.maxf1;T g/
2k

1�2s0
C�
;

stated in Theorem 1.1, follows by interpolation between the following bounds, which have been already
proved by looking at growth of even Sobolev norms:

sup.0;T / ku.t;x/kH 2kC2.M2/ � C.maxf1;T g/
2kC1
1�2s0

C�
;

sup.0;T / ku.t;x/kH 2k.M2/ � C.maxf1;T g/
2k�1
1�2s0

C�
:

A similar argument follows in order to prove Theorem 1.3 for mD 2kC 1.
However, the main point in this section is that we assume the initial datum ' to be only in H 2kC1, and

hence the argument above cannot be applied.
The proofs of Theorems 1.1 and 1.3 (which have been proved in the case mD 2k) can be adapted to

the case mD 2kC 1 by using the modified energies

E2kC1.u/D
1

2
k@k

t rguk2
L2 C

1

2

Z
jujp�1

j@k
t uj2 dvolgC

p� 1

8

Z
jujp�3

ˇ̌
@k

t .juj
2/
ˇ̌2 dvolg

�Re
k�1X
jD1

cj

Z
@

j
t u @

k�j
t .jujp�1/ @k

t Nu dvolg

�

k�1X
jD1

cj

Z
@

k�j
t .jujp�3/ @

j
t .juj

2/ @k
t .juj

2/ dvolg: (40)

Indeed we have the following proposition, from which one may conclude the proof of Theorems 1.1
and 1.3 in the case mD 2kC 1, exactly as we did in the case mD 2k. We leave details to the reader.

Proposition 7.1. Let u.t;x/ be a solution to (1) with initial datum ' in H 2kC1. Then we have the identity
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d

dt
E2kC1.u.t;x//D

1

2

Z
@t .juj

p�1/j@k
t uj2 dvolg�Re

k�1X
jD1

cj

Z
@

jC1
t u@

k�j
t .jujp�1/@k

t Nudvolg

�Re
k�1X
jD1

cj

Z
@

j
t u@

k�jC1
t .jujp�1/@k

t NudvolgC
p�1

8

Z
M2

@t .juj
p�3/

ˇ̌
@k

t .juj
2/
ˇ̌2 dvolg

C

k�1X
jD1

cj

Z
@

k�jC1
t .jujp�3/@

j
t .juj

2/@k
t .juj

2/dvolg

C

k�1X
jD1

cj

Z
@

k�j
t .jujp�3/@

jC1
t .juj2/@k

t .juj
2/dvolg

C

kX
jD1

cj

Z
@k

t .juj
p�1/@

j
t u@

kC1�j
t Nudvolg;

where cj 2 R are explicit real numbers that can change in different lines.

Proof. First of all notice that we have

Re.i @kC1
t u; @k

t u/D Re.@k
t .��gu/; @k

t u/CRe.@k
t .ujuj

p�1/; @k
t u/

D k@k
t rguk2

L2 CRe.@k
t .ujuj

p�1/; @k
t u/:

Due to the identity above and by taking the time derivative, we get

d

dt

�
k@k

t rguk2
L2 CRe.@k

t .ujuj
p�1/; @k

t u/
�
D

d

dt
Re.i @kC1

t u; @k
t u/D Re.i @kC2

t u; @k
t u/

DRe.@kC1
t .��gu/; @k

t u/CRe.@kC1
t .jujp�1u/; @k

t u/

D
1

2

d

dt
k@k

t rguk2
L2 CRe.@kC1

t .jujp�1u/; @k
t u/:

Next we focus on the second term on the right-hand side:

Re.@kC1
t .jujp�1u/; @k

t u/

D
d

dt
Re.@k

t .juj
p�1u/; @k

t u/�Re.@k
t .juj

p�1u/; @kC1
t u/

D
d

dt
Re.@k

t .juj
p�1u/; @k

t u/�Re.@k
t .juj

p�1/u; @kC1
t u/�Re.jujp�1@k

t u; @kC1
t u/

CRe
k�1X
jD1

cj .@
j
t u @

k�j
t .jujp�1/; @kC1

t u/

D
d

dt
Re.@k

t .juj
p�1u/; @k

t u/�Re.@k
t .juj

p�1/u; @kC1
t u/�

1

2

d

dt

Z
jujp�1

j@k
t uj2 dvolg

C
1

2

Z
@t .juj

p�1/j@k
t uj2 dvolgCRe

k�1X
jD1

cj .@
j
t u @

k�j
t .jujp�1/; @kC1

t u/



ON THE GROWTH OF SOBOLEV NORMS FOR NLS ON 2- AND 3-DIMENSIONAL MANIFOLDS 1145

D
d

dt
Re.@k

t .juj
p�1u/; @k

t u/�Re.@k
t .juj

p�1/u; @kC1
t u/�

1

2

d

dt

Z
jujp�1

j@k
t uj2 dvolg

C
1

2

Z
@t .juj

p�1/j@k
t uj2 dvolgC

d

dt
Re

k�1X
jD1

cj .@
j
t u @

k�j
t .jujp�1/; @k

t u/

�Re
k�1X
jD1

cj .@
jC1
t u @

k�j
t .jujp�1/; @k

t u/�Re
k�1X
jD1

cj .@
j
t u @

k�jC1
t .jujp�1/; @k

t u/:

Next we deal with the third term on the right-hand side:

�Re.@k
t .juj

p�1/u; @kC1
t u/

D�
1

2

Z
@k

t .juj
p�1/ @kC1

t .juj2/ dvolgC
kX

jD1

cj

Z
@k

t .juj
p�1/ @

j
t u @

kC1�j
t Nu dvolg;

and we notice that @k
t .juj

p�1/ D 1
2
.p � 1/ @k�1

t .@t .juj
2/jujp�3/. Hence we can continue the identity

above as follows:

� � � D �
p� 1

4

Z
jujp�3 @k

t .juj
2/ @kC1

t .juj2/ dvolgC
k�1X
jD1

cj

Z
@

k�j
t .jujp�3/ @

j
t .juj

2/ @kC1
t .juj2/ dvolg

C

kX
jD1

cj

Z
@k

t .juj
p�1/ @

j
t u @

kC1�j
t Nu dvolg

D�
p� 1

8

d

dt

Z
jujp�3

ˇ̌
@k

t .juj
2/
ˇ̌2 dvolgC

p� 1

8

Z
@t .juj

p�3/
ˇ̌
@k

t .juj
2/
ˇ̌2 dvolg

C

k�1X
jD1

cj

Z
@

k�j
t .jujp�3/ @

j
t .juj

2/ @kC1
t .juj2/ dvolgC

kX
jD1

cj

Z
@k

t .juj
p�1/ @

j
t u @

kC1�j
t Nu dvolg:

Then by elementary considerations

� � � D�
p�1

8

d

dt

Z
jujp�3

ˇ̌
@k

t .juj
2/
ˇ̌2 dvolgC

p�1

8

Z
@t .juj

p�3/
ˇ̌
@k

t .juj
2/
ˇ̌2 dvolg

C
d

dt

k�1X
jD1

cj

Z
@

k�j
t .jujp�3/@

j
t.juj

2/@k
t .juj

2/dvolgC
k�1X
jD1

cj

Z
@

k�jC1
t .jujp�3/@

j
t .juj

2/@k
t .juj

2/dvolg

C

k�1X
jD1

cj

Z
@

k�j
t .jujp�3/@

jC1
t .juj2/@k

t .juj
2/dvolgC

kX
jD1

cj

Z
@k

t .juj
p�1/@

j
t u@

kC1�j
t Nudvolg: �

Acknowledgement

The authors are grateful to the referee for interesting remarks and suggestions to improve this paper.



1146 FABRICE PLANCHON, NIKOLAY TZVETKOV AND NICOLA VISCIGLIA

References

[Bouclet and Tzvetkov 2007] J.-M. Bouclet and N. Tzvetkov, “Strichartz estimates for long range perturbations”, Amer. J. Math.
129:6 (2007), 1565–1609. MR Zbl

[Bourgain 1993] J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear
evolution equations, II: The KdV-equation”, Geom. Funct. Anal. 3:3 (1993), 209–262. MR Zbl

[Bourgain 1996] J. Bourgain, “On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE”,
Internat. Math. Res. Notices 6 (1996), 277–304. MR Zbl

[Bourgain 1999a] J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium
Publications 46, Amer. Math. Soc., Providence, RI, 1999. MR Zbl

[Bourgain 1999b] J. Bourgain, “On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent
potential”, J. Anal. Math. 77 (1999), 315–348. MR Zbl

[Burq et al. 2003] N. Burq, P. Gérard, and N. Tzvetkov, “The Cauchy problem for the nonlinear Schrödinger equation on a
compact manifold”, J. Nonlinear Math. Phys. 10:suppl. 1 (2003), 12–27. MR

[Burq et al. 2004] N. Burq, P. Gérard, and N. Tzvetkov, “Strichartz inequalities and the nonlinear Schrödinger equation on
compact manifolds”, Amer. J. Math. 126:3 (2004), 569–605. MR Zbl

[Chiron and Rousset 2009] D. Chiron and F. Rousset, “Geometric optics and boundary layers for nonlinear-Schrödinger
equations”, Comm. Math. Phys. 288:2 (2009), 503–546. MR Zbl

[Colliander et al. 2010] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, “Transfer of energy to high frequencies in
the cubic defocusing nonlinear Schrödinger equation”, Invent. Math. 181:1 (2010), 39–113. MR Zbl

[Colliander et al. 2012] J. Colliander, S. Kwon, and T. Oh, “A remark on normal forms and the ‘upside-down’ I -method for
periodic NLS: growth of higher Sobolev norms”, J. Anal. Math. 118:1 (2012), 55–82. MR Zbl

[Delort 2014] J.-M. Delort, “Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic
oscillator potential”, Comm. Partial Differential Equations 39:1 (2014), 1–33. MR Zbl

[Gérard and Grellier 2016] P. Gérard and S. Grellier, “On the growth of Sobolev norms for the cubic Szegő equation”, exposé 11,
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A SUFFICIENT CONDITION FOR GLOBAL EXISTENCE OF SOLUTIONS
TO A GENERALIZED DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION

NORIYOSHI FUKAYA, MASAYUKI HAYASHI AND TAKAHISA INUI

We give a sufficient condition for global existence of the solutions to a generalized derivative nonlinear
Schrödinger equation (gDNLS) by a variational argument. The variational argument is applicable to
a cubic derivative nonlinear Schrödinger equation (DNLS). For (DNLS), Wu (2015) proved that the
solution with the initial data u0 is global if ‖u0‖

2
L2 < 4π by the sharp Gagliardo–Nirenberg inequality.

The variational argument gives us another proof of the global existence for (DNLS). Moreover, by the
variational argument, we can show that the solution to (DNLS) is global if the initial data u0 satisfies
‖u0‖

2
L2 = 4π and the momentum P(u0) is negative.
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1. Introduction

1A. Background. The following equation is known as a derivative nonlinear Schrödinger equation:

i∂tv+ ∂
2
x v+ i∂x(|v|

2v)= 0, (t, x) ∈ R×R. (1-1)

This equation appears in plasma physics [Mio et al. 1976; Mjølhus 1976] and as a model for ultrashort
optical pulses [Moses et al. 2007]. Using the gauge transformation

u(t, x)= v(t, x) exp
(

i
2

∫ x

−∞

|v(t, x)|2 dx
)
,

we get a Hamiltonian form of (1-1):

i∂t u+ ∂2
x u+ i |u|2∂x u = 0, (t, x) ∈ R×R. (DNLS)

Namely, this equation can be written as i∂t u = E ′(u) (see below for the definition of the Hamiltonian E).
The Cauchy problem for (DNLS) (or equivalently (1-1)) has been studied by many researchers. It is known
that (DNLS) is locally well-posed in the energy space H 1(R). See [Tsutsumi and Fukuda 1980; Hayashi

MSC2010: 35Q55.
Keywords: variational structure, generalized derivative nonlinear Schrödinger equation, global existence.
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and Ozawa 1992; Hayashi 1993; Hayashi and Ozawa 1994a; 1994b]. Hayashi and Ozawa [1994a] proved
that the solution is global if ‖u0‖

2
L2 < 2π . See also [Ozawa 1996]. Wu [2013; 2015] proved that it holds if

‖u0‖
2
L2 < 4π . Recently, Miao, Tang, and Xu obtained the global well-posedness by a variational argument

(see the remark on page 1156). For the initial data with low regularity, there are also many references.
Takaoka [1999] proved that (DNLS) is locally well-posed in H s(R) when s ≥ 1

2 by the Fourier restricted
method. Biagioni and Linares [2001] proved that the solution map from H s(R) to C([−T, T ] : H s(R)),
where T > 0, for (DNLS) is not locally uniformly continuous when s < 1

2 . Colliander, Keel, Staffilani,
Takaoka, and Tao [Colliander et al. 2002] proved that the H s-solution is global if ‖u0‖

2
L2 < 2π when s> 1

2
by the I -method (see also [Colliander et al. 2001; Takaoka 2001]). Recently, Miao, Wu, and Xu [Miao
et al. 2011] showed that H 1/2-solution is global if ‖u0‖

2
L2 < 2π . Guo and Wu [2017] improved their

result; that is, they proved that H 1/2-solution is global if ‖u0‖
2
L2 < 4π . The orbital stability of solitary

waves has been also studied. It is known that (DNLS) has a two-parameter family of the solitary waves
uω,c(t, x)= eiωtφω,c(x − ct), where (ω, c) satisfies ω > c2/4, or ω = c2/4 and c > 0 (see below for the
explicit formula of φω,c). Guo and Wu [1995] proved that the solitary waves uω,c are orbitally stable when
ω> c2/4 and c< 0 by the abstract theory of Grillakis, Shatah, and Strauss [Grillakis et al. 1987; 1990] and
the spectral analysis of the linearized operators. Colin and Ohta [2006] proved that the solitary waves uω,c
are orbitally stable when ω> c2/4 by characterizing the solitary waves from the viewpoint of a variational
structure. The case of ω = c2/4 and c > 0 was treated by Kwon and Wu [2016]. Recently, the stability
of the multisolitons was studied by Miao, Tang, and Xu [Miao et al. 2017b] and Le Coz and Wu [2016].

To understand the structural properties of (DNLS), Liu, Simpson, and Sulem [Liu et al. 2013] introduced
an extension of (DNLS) with general power nonlinearity. The generalized derivative nonlinear Schrödinger
equation is {

i∂t u+ ∂2
x u+ i |u|2σ ∂x u = 0, (t, x) ∈ R×R,

u(0, x)= u0(x), x ∈ R,
(gDNLS)

where σ > 0. Equation (gDNLS) is invariant under the scaling transformation

uγ (t, x) := γ 1/(2σ)u(γ 2t, γ x), γ > 0.

This implies that its critical Sobolev exponent is sc =
1
2 − 1/(2σ). In particular, (DNLS) is L2-critical.

Liu et al. [2013] investigated the orbital stability of a two-parameter family of solitary waves

uω,c(t, x)= eiωtφω,c(x − ct),

where (ω, c) satisfies ω > c2/4, or ω = c2/4 and c > 0, and

φω,c(x)=8ω,c(x) exp
(

i
c
2

x −
i

2σ + 2

∫ x

0
8ω,c(y)2σ dy

)
, (1-2)

8ω,c(x)=


{

(σ + 1)(4ω− c2)

2
√
ω cosh(σ

√
4ω− c2x)− c

}1/(2σ)

if ω > c2/4,{
2(σ + 1)c
σ 2(cx)2+ 1

}1/(2σ)

if ω = c2/4 and c > 0.
(1-3)
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We note that 8ω,c is the positive even solution of

−8′′+ (ω− 1
4 c2)8+ 1

2 c|8|2σ8−
2σ + 1
(2σ + 2)2

|8|4σ8= 0, x ∈ R, (1-4)

and then the complex-valued function φω,c satisfies

−φ′′+ωφ+ icφ′− i |φ|2σφ′ = 0, x ∈ R.

Liu et al. [2013] proved that the solitary waves are orbitally stable if −2
√
ω < c < 2z0

√
ω, and orbitally

unstable if 2z0
√
ω< c< 2

√
ω when 1<σ < 2, where the constant z0= z0(σ )∈ (−1, 1) is the solution of

Fσ (z) := (σ − 1)2
{∫
∞

0
(cosh y− z)−1/σ dy

}2

−

{∫
∞

0
(cosh y− z)−1/σ−1(z cosh y− 1) dy

}2

= 0.

Moreover, they also proved that the solitary waves for all ω > c2/4 are orbitally unstable when σ ≥ 2 and
orbitally stable when 0 < σ < 1. Recently, Fukaya [2016] proved that the solitary waves are orbitally
unstable if c = 2z0

√
ω when 7

6 < σ < 2. More recently, Tang and Xu investigated stability of the sum of
two solitary waves for (gDNLS) (see [Tang and Xu 2017] for more details). Before Liu et al. [2013],
Hao [2007] considered (gDNLS) and proved the local well-posedness in H 1/2(R) when σ ≥ 5

2 . Santos
[2015] proved the existence and uniqueness of a solution u ∈ C([0, T ]; H 1/2(R)) for sufficiently small
initial data when σ > 1. Recently, Hayashi and Ozawa [2016] proved local well-posedness in H 1(R)

when σ ≥ 1 and that the following quantities are conserved:

E(u) := 1
2‖∂x u‖2L2 −

1
2σ + 2

Re
∫

R

i |u|2σu∂x u dx, (Energy)

M(u) := ‖u‖2L2, (Mass)

P(u) := Re
∫

R

i∂x uu dx . (Momentum)

Moreover, they proved global well-posedness for small initial data. They also constructed global solutions
for any initial data in H 1(R) in the case 0 < σ < 1 (L2-subcritical case). However, in the case σ ≥ 1
(L2-critical or supercritical case), there has been no global existence result for large data. In the present
paper, we investigate global well-posedness for (gDNLS) in the case σ ≥ 1 by a variational argument.
More precisely, we give a variational characterization of solitary waves and a sufficient condition for
global existence of solutions to (gDNLS) by using the characterization. Such an argument was done for
nonlinear hyperbolic partial differential equations by Sattinger [1968] (see also [Tsutsumi 1972; Payne
and Sattinger 1975]). Our argument is also applicable to (DNLS). Indeed, the variational argument gives
another proof of the result by Wu [2015]. Moreover, we prove that the solution of (DNLS) is global if the
initial data u0 satisfies ‖u0‖

2
L2 = 4π and P(u0) < 0.

1B. Main results. To state our main results, we introduce some notations. Let (ω, c) satisfy

ω > c2/4 or ω = c2/4 and c > 0. (1-5)
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For (ω, c) satisfying (1-5), we define

Sω,c(ϕ) := E(ϕ)+ 1
2ωM(ϕ)+ 1

2 cP(ϕ).

We denote the nonlinear term by

N (ϕ) := Re
∫

R

i |ϕ|2σϕ∂xϕ dx .

We define

S̃ω,c(ψ) := 1
2‖∂xψ‖

2
L2 +

1
2(ω−

1
4 c2)‖ψ‖2L2 +

c
2(2σ + 2)

‖ψ‖2σ+2
L2σ+2 −

1
2σ + 2

N (ψ).

Then, we have Sω,c(ϕ)= S̃ω,c(e−(c/2)i xϕ) by using the identities

cP(ϕ)=−‖∂xϕ‖
2
L2 −

1
4 c2
‖ϕ‖2L2 +‖∂x(e−(c/2)i xϕ)‖2L2, (1-6)

N (ϕ)=− 1
2 c‖ϕ‖2σ+2

L2σ+2 + N (e−(c/2)i xϕ). (1-7)

We denote the scaling transformation by f α,βλ (x) := eαλ f (e−βλx) for (α, β) ∈ R2 and any function f .
For (α, β) ∈ R2, we define

K̃ α,β
ω,c (ψ) := ∂λ S̃ω,c(ψ

α,β
λ )|λ=0,

K α,β
ω,c (ϕ) := K̃ α,β

ω,c (e
−(c/2)i xϕ).

By a direct calculation, we have the explicit formulae

K̃ α,β
ω,c (ψ)= 〈S̃

′

ω,c(ψ), αψ−βx∂xψ〉

=
2α−β

2
‖∂xψ‖

2
L2+

2α+β
2

(
ω−

c2

4

)
‖ψ‖2L2+

{(2σ+2)α+β}c
2(2σ+2)

‖ψ‖2σ+2
L2σ+2−αN (ψ),

K α,β
ω,c (ϕ)= 〈S̃

′

ω,c(e
−(c/2)i xϕ), αe−(c/2)i xϕ−βx∂x(e−(c/2)i xϕ)〉

= 〈S′ω,c(ϕ), αϕ+
1
2 ciβxϕ−βx∂xϕ〉

=
2α−β

2
‖∂xϕ‖

2
L2+

(
2α+β

2
ω−

c2

4
β

)
‖ϕ‖2L2+

2α−β
2

cP(ϕ)+
βc

2(2σ+2)
‖ϕ‖2σ+2

L2σ+2−αN (ϕ),

where we have used (1-6) and (1-7).

Remark. (1) If β 6= 0, then K α,β
ω,c is different from I α,βω,c (ϕ) := ∂λSω,c(ϕ

α,β
λ )|λ=0. Indeed, the explicit

formula of I α,βω,c is

I α,βω,c (ϕ)=
2α−β

2
‖∂xϕ‖

2
L2 +

2α+β
2

ω‖ϕ‖2L2 + cαP(ϕ)−αN (ϕ).

We note that K α,0
ω,c coincides with I α,0ω,c , and especially K 1,0

ω,c= I 1,0
ω,c is nothing but the Nehari functional.

(2) It is not clear whether the momentum P is positive or not. That is why we introduce S̃ω,c by using
(1-6). Such an argument can be seen in [Bellazzini et al. 2014b] (see (14) therein for the details).

(3) The functional K α,β
ω,c is more useful to obtain the characterization of the solitary waves when ω= c2/4

and c > 0 than I α,βω,c since K α,β
ω,c contains the L2σ+2-norm (see the proof in Section 2B).
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(4) S̃ω,c and K̃ α,β
ω,c are relevant to the elliptic equation

−ψ ′′+ (ω− 1
4 c2)ψ + 1

2 c|ψ |2σψ − i |ψ |2σψ ′ = 0, x ∈ R.

We define the following function space for (ω, c) satisfying (1-5):

Xω,c :=
{

H 1(R) if ω > c2/4,
Ḣ 1(R)∩ L2σ+2(R) if ω = c2/4 and c > 0.

We consider the following minimization problem:

µα,βω,c := inf{Sω,c(ϕ) : e−(c/2)i xϕ ∈ Xω,c \ {0}, K α,β
ω,c (ϕ)= 0}

= inf{S̃ω,c(ψ) : ψ ∈ Xω,c \ {0}, K̃ α,β
ω,c (ψ)= 0}.

Remark. (1) We note that the solitary waves φc2/4,c do not belong to L2(R) when σ ≥ 2. Therefore,
we define Xc2/4,c := Ḣ 1(R)∩ L2σ+2(R) to characterize the solitary waves φc2/4,c (cf. [Kwon and
Wu 2016]).

(2) Sc2/4,c seems meaningless on the function space {ϕ : e−(c/2)i xϕ ∈ Xc2/4,c} since Sc2/4,c contains
L2-norm. However, in fact, Sc2/4,c is well-defined on the function space since S̃c2/4,c is defined
on Ḣ 1(R)∩ L2σ+2(R) and the equality Sc2/4,c(ϕ) = S̃c2/4,c(e−(c/2)i xϕ) holds. Similarly, K α,β

c2/4,c is
well-defined on this function space.

(3) Since ϕ ∈ H 1(R) if and only if e−(c/2)i xϕ ∈ H 1(R), when ω > c2/4, we have

µα,βω,c = inf{Sω,c(ϕ) : ϕ ∈ H 1(R) \ {0}, K α,β
ω,c (ϕ)= 0}.

However, when ω = c2/4 and c > 0, the above equality does not hold.

We assume that (α, β) ∈ R2 satisfies{
2α−β > 0, 2α+β > 0, and βc ≤ 0 when ω > c2/4,
2α−β > 0, 2α+β > 0, and β < 0 when ω = c2/4 and c > 0.

(1-8)

We define some function spaces:

M α,β
ω,c := {ϕ : e

−(c/2)i xϕ ∈ Xω,c \ {0}, Sω,c(ϕ)= µα,βω,c, K α,β
ω,c (ϕ)= 0},

Gω,c := {ϕ : e−(c/2)i xϕ ∈ Xω,c \ {0}, S′ω,c(ϕ)= 0}.

We give the following characterization of the solitary waves.

Theorem 1.1. Let σ ≥ 1, (ω, c) satisfy (1-5), and (α, β) satisfy (1-8). Then,

M α,β
ω,c = Gω,c = {eiθ0φω,c( · − x0) : θ0 ∈ [0, 2π), x0 ∈ R}.

Theorem 1.1 also means that µα,βω,c and M
α,β
ω,c are independent of (α, β) and M

α,β
ω,c is not empty. Thus,

we denote µα,βω,c by µω,c.
We define

K α,β,+
ω,c := {ϕ ∈ H 1(R) : Sω,c(ϕ)≤ µω,c, K α,β

ω,c (ϕ)≥ 0},

K α,β,−
ω,c := {ϕ ∈ H 1(R) : Sω,c(ϕ)≤ µω,c, K α,β

ω,c (ϕ) < 0}.

The characterization by Theorem 1.1 gives us the following sufficient condition for global existence.
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Theorem 1.2. Let σ ≥ 1, (ω, c) satisfy (1-5), and (α, β) satisfy (1-8). Then, K
α,β,±
ω,c are invariant under

the flow of (gDNLS). Namely, if the initial data u0 belongs to K
α,β,±
ω,c , then the solution u(t) of (gDNLS)

also belongs to K
α,β,±
ω,c for all t ∈ Imax, where Imax denotes the maximal existence time.

Moreover, if the initial data u0 belongs to K
α,β,+
ω,c for some (ω, c) satisfying (1-5) and (α, β) satisfying

(1-8), then the corresponding solution u of (gDNLS) exists globally in time and

‖u‖L∞(R:H1(R)) ≤ C(‖u0‖H1),

where C : [0,∞)→ R is continuous.

Recently, Miao et al. [2017a] independently obtained the results similar to Theorems 1.1 and 1.2 when
σ = 1. We will compare their method with our argument in the remark on page 1156.

We show that Theorem 1.2 gives us some interesting corollaries for (DNLS).

Corollary 1.3. Let σ = 1. If the initial data u0 ∈ H 1(R) satisfies ‖u0‖
2
L2 < 4π , then the solution of

(DNLS) is global.

Two proofs have been known for Corollary 1.3. One was obtained by Wu [2015] and another one by
Guo and Wu [2017]. We give another proof by Theorem 1.2. We compare the methods of [Wu 2015;
Guo and Wu 2017], which depend on the sharp Gagliardo–Nirenberg-type inequality, with our variational
argument. Using the gauge transformation to the solution of (DNLS)

u(t, x)= w(t, x) exp
(
−

i
4

∫ x

−∞

|w(t, x)|2 dx
)
, (1-9)

then w satisfies the equation{
i∂tw+ ∂

2
xw+

1
2 i |w|2∂xw−

1
2 iw2∂xw+

3
16 |w|

4w = 0, (t, x) ∈ R×R,

w(0, x)= w0(x), x ∈ R.
(1-10)

The energy and the momentum are transformed as

E(w)= 1
2‖∂xw‖

2
L2 −

1
32‖w‖

6
L6,

P(w)= Re
∫

R

i∂xww dx + 1
4‖w‖

4
L4 .

Hayashi and Ozawa [1992] used the sharp Gagliardo–Nirenberg inequality

‖ f ‖6L6 ≤
4
π2 ‖ f ‖4L2‖∂x f ‖2L2 (1-11)

in order to obtain an a priori estimate in Ḣ 1(R). We note that the optimizer for the inequality (1-11) is
given by Q :=81,0 and Q satisfies the elliptic equation

−Q′′+ Q− 3
16 Q5

= 0. (1-12)

Hayashi and Ozawa [1992] proved the H 1-solution of (DNLS) is global if the initial data u0 satisfies
‖u0‖

2
L2 = ‖w0‖

2
L2 < ‖Q‖2L2 = 2π (see also [Weinstein 1982]). Wu [2015] used not only the energy but
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also the momentum and the sharp Gagliardo–Nirenberg inequality

‖ f ‖6L6 ≤ 3(2π)−2/3
‖ f ‖16/3

L4 ‖∂x f ‖2/3L2 . (1-13)

We note that the optimizer for the inequality (1-13) is given by W :=81/4,1 and W satisfies the elliptic
equation

−W ′′+ 1
2 W 3
−

3
16 W 5

= 0. (1-14)

Wu [2015] proved that the H 1-solution of (DNLS) is global if the initial data u0 satisfies ‖u0‖
2
L2 =

‖w0‖
2
L2 < ‖W‖2L2 = 4π . His proof depends on a contradiction argument. Supposing that there exists

a time sequence {tn}n∈N with tn → Tmax or −Tmin such that ‖∂xw(tn)‖L2 → ∞ as n → ∞, where
(−Tmin, Tmax) is the maximal time interval, he mainly proved that X = ‖w(tn)‖8L4/‖w(tn)‖6L6 satisfies
X3
−‖w‖2L2 X2

+ 16{3(2π)−2/3
}
−3
‖w‖2L2 < 0, but this does not hold when ‖w‖2L2 < 4π . On the other

hand, Guo and Wu [2017] gave an a priori estimate directly for (1-10) by the sharp Gagliardo–Nirenberg
inequality (1-13). More precisely, they showed in [Guo and Wu 2017, Lemma 2.1] the inequality

P(w)≥ 1
4‖w‖

4
L4

(
1−
‖w‖L2

2
√
π

)
−

8
√
πE(w)‖w‖L2

‖w‖4L4

, (1-15)

and thus, ‖∂xw‖
2
L2 is bounded by P and E if ‖w‖2L2 < 4π [Guo and Wu 2017, Lemma 2.2]. In our

variational argument, we do not use a contradiction argument, the gauge transformation like (1-9), or any
sharp Gagliardo–Nirenberg inequality.

We give the global existence result in the threshold case by Theorem 1.2.

Corollary 1.4. Let σ = 1. We assume that the initial data u0 ∈ H 1(R) satisfies ‖u0‖
2
L2 = 4π . If P(u0)< 0,

then the solution of (DNLS) is global.

After submitting the present paper, Guo pointed out that Corollary 1.4 can be obtained by (1-15). We
also give the proof by (1-15) for the reader’s convenience.

The following corollary means that there exist global solutions with any large mass.

Corollary 1.5. Let σ ≥ 1. Given ψ ∈ H 1(R), set the initial data as u0,c = e(c/2)i xψ . Then there exists
c0 > 0 such that, if c ≥ c0, then the corresponding solution uc of (gDNLS) is global.

Remark. The existence of blow-up solutions in finite time is still an open problem. It might be a very
interesting problem whether finite-time blow-up occurs when the initial data u0 satisfies ‖u0‖

2
L2 = 4π

and P(u0) > 0.

1C. Compare DNLS with mass-critical NLS. Equation (DNLS) is L2-critical in the sense that the
equation and L2-norm are invariant under the scaling transformation

uγ (t, x) := γ 1/2u(γ 2t, γ x), γ > 0.

The same invariance holds for the quintic nonlinear Schrödinger equation in one-dimensional space:

i∂t u+ ∂2
x u+ 3

16 |u|
4u = 0, (t, x) ∈ R×R. (1-16)
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This equation has the same energy as (1-10). It is known that (1-16) is locally well-posed in the energy
space H 1(R) and the solution is global if the initial data u0 satisfies ‖u0‖

2
L2 < ‖Q‖2L2 , where Q is the

ground state of the same elliptic equation (1-12). The condition ‖u0‖
2
L2 < ‖Q‖2L2 is equivalent to the

condition obtained by the variational argument. In this argument, the momentum is not essential since
(1-16) is invariant under the Galilean transformation, and thus, we may assume that the momentum is zero.
On the other hand, (DNLS) is not invariant under the Galilean transformation. Therefore, the condition
by the variational argument is better than the assumption ‖u0‖

2
L2 < ‖W‖2L2 = 4π . Indeed, the momentum

and the parameter c play important roles in Corollaries 1.4 and 1.5.

1D. Idea of proofs. The proof of Theorem 1.1 is based on the method of Colin and Ohta [2006] (con-
centration compactness method). They characterized the solitary waves for ω > c2/4 when σ = 1 by the
Nehari functional I 1,0

ω,c. However, in the case ω= c2/4 and c> 0, we cannot apply their argument directly
since the L2-norm in I 1,0

ω,c disappears by (1-6). Therefore, we introduce the new functional K α,β
ω,c for (α, β)

satisfying (1-8). We can use the L2σ+2-norm instead of the L2-norm by using K α,β
ω,c . That is why we

introduce the function space Xω,c as Ḣ 1
∩ L2σ+2 in the massless case (i.e., ω = c2/4 and c > 0). Noting

that the solitary waves φc2/4,c do not belong to L2(R) when σ ≥ 2, the function space Xω,c is essential to
obtain the characterization of the solitary waves φc2/4,c. Based on the argument of Colin and Ohta [2006],
we characterize the solitary waves φc2/4,c by K α,β

ω,c . By the conservation laws and the characterization
of the solitary waves, we get an a priori estimate and thus obtain Theorem 1.2. The corollaries follow
from Theorem 1.2. In their proofs, the parameter c plays an important role. More precisely, taking c > 0
large, we get the corollaries. At last, we emphasize that we do not use the sharp Gagliardo–Nirenberg
inequality and we do not apply the gauge transformation to (gDNLS) since the equation after applying
the transformation is complicated unlike (DNLS).

Remark. Miao et al. [2017a] treated the case of σ = 1. They considered (1-10) by using the gauge
transformation and defined the action by Sω,c := E + ωM/2+ cP/2. They applied a concentration
compactness argument to give the variational characterization of the solitary waves. Then, they use the
Nehari functional Kω,c derived from the action Sω,c. The explicit formula of Kω,c is

Kω,c(w) := ‖∂xw‖
2
L2 −

3
16‖w‖

6
L6 +ω‖w‖

2
L2 + c Re

∫
R

i∂xww dx + 1
2 c‖w‖4L4 .

They defined
A ±ω,c := {ϕ ∈ H 1(R) : Sω,c(ϕ)≤ Sω,c(φω,c), Kω,c(ϕ)R 0},

and they also showed that A ±ω,c are invariant under the flow of (1-10) and the solution to (1-10) is global
if w0 ∈A +ω,c for some (ω, c). The functional Kω,c is useful to characterize the solitary waves φc2/4,c since
it contains L4-norm. Namely, one can use the Nehari functional by the gauge transformation. On the
other hand, we cannot use the Nehari functional when we do not apply the gauge transformation, and
thus, we introduce the new functionals K α,β

ω,c .

The rest of the present paper is as follows. In Section 2A, we prepare some lemmas to obtain the
characterization of the solitary waves and prove the a priori estimate (see (2-2)). In Section 2B, we give
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the characterization of the solitary waves φc2/4,c. We remark that the characterization of the solitary waves
φω,c for ω > c2/4 can be obtained in the same manner as in [Colin and Ohta 2006], and then we omit the
proof. Section 3 is devoted to the proof of Theorem 1.2 and the corollaries. In the Appendix, we show that
there is no nontrivial solution of the nonlinear elliptic equation (1-4) if ω < c2/4, or ω = c2/4 and c ≤ 0.

2. Variational characterization of the solitary waves

2A. Preliminaries. We define function spaces

M̃ α,β
ω,c := {ψ ∈ Xω,c \ {0} : S̃ω,c(ψ)= µα,βω,c, K̃ α,β

ω,c (ψ)= 0},

G̃ω,c := {ψ ∈ Xω,c \ {0} : S̃′ω,c(ψ)= 0}.

In this section, we prove the following proposition, which gives Theorem 1.1.

Proposition 2.1. Let (ω, c) satisfy (1-5) and (α, β) satisfy (1-8). Then

M̃ α,β
ω,c = G̃ω,c = {eiθe−(c/2)i xφω,c( · − y) : θ ∈ [0, 2π), y ∈ R}.

Indeed, Theorem 1.1 follows from Proposition 2.1 and the following properties:

ϕ ∈M α,β
ω,c ⇐⇒ e−(c/2)i xϕ ∈ M̃ α,β

ω,c ,

ϕ ∈ Gω,c ⇐⇒ e−(c/2)i xϕ ∈ G̃ω,c,

where we note that S̃′ω,c(e
−(c/2)i xϕ)= e−(c/2)i x S′ω,c(ϕ) holds.

To prove Proposition 2.1, we prepare some basic lemmas. We have the Gagliardo–Nirenberg-type
inequality.

Lemma 2.2. Let p ≥ 1. We have the estimate

‖ f ‖2p
L∞ ≤ 2p‖ f ‖2p−1

L4p−2‖∂x f ‖L2 . (2-1)

Proof. By the Hölder inequality,

| f (x)|2p
=

∫ x

−∞

d
dx
(| f (y)|2p) dy

=

∫ x

−∞

2p| f (y)|2p−2 Re( f (y)(∂x f )(y)) dy

≤ 2p‖| f |2p−1
‖L2‖∂x f ‖L2

= 2p‖ f ‖2p−1
L4p−2‖∂x f ‖L2 .

Taking the supremum, we obtain (2-1). �

We have the Lieb compactness lemma. See [Lieb 1983] for p = 2 and [Bellazzini et al. 2014a, Lemma
2.1] for more general setting.

Lemma 2.3. Let p≥2 and d ∈N. Let { fn} be a bounded sequence in Ḣ 1(Rd)∩L p(Rd). Assume that there
exists q ∈ (p, 2∗) such that lim supn→∞‖ fn‖Lq > 0. Then there exist {yn} and f ∈ Ḣ 1(Rd)∩ L p(Rd)\{0}
such that { fn( · − yn)} has a subsequence that converges to f weakly in Ḣ 1(Rd)∩ L p(Rd).
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We have the Brézis–Lieb lemma [1983].

Lemma 2.4. Let d ∈N and 1< p<∞. Let { fn} be a bounded sequence in L p(Rd) and fn→ f a.e. in Rd .
Then

‖ fn‖
p
L p −‖ fn − f ‖p

L p −‖ f ‖p
L p → 0.

If { fn} is a bounded sequence in L2(Rd) and fn converges to f weakly in L2(Rd), then the statement with
p = 2 holds.

A direct calculation gives us the following relation.

Lemma 2.5. We have

α(2σ + 2)S̃ω,c(ψ)= K̃ α,β
ω,c (ψ)+

2σα+β
2
‖∂xψ‖

2
L2 + (ω−

1
4 c2)

2σα−β
2
‖ψ‖2L2 −

βc
2(2σ + 2)

‖ψ‖2σ+2
L2σ+2 .

(2-2)

We denote the difference α(2σ + 2)S̃ω,c(ψ)− K̃ α,β
ω,c (ψ) by

J̃α,βω,c (ψ) :=
2σα+β

2
‖∂xψ‖

2
L2 + (ω−

1
4 c2)

2σα−β
2
‖ψ‖2L2 −

βc
2(2σ + 2)

‖ψ‖2σ+2
L2σ+2 .

2B. Variational characterization. First we consider the case of ω= c2/4 and c> 0. Then (α, β) satisfies

2α−β > 0, 2α+β > 0, β < 0. (2-3)

Hereafter, we often omit the indices ω, c, α, and β for simplicity.

Lemma 2.6. The following equality holds:

G̃ω,c = {eiθ0e−(c/2)i xφω,c( · − x0) : θ0 ∈ [0, 2π), x0 ∈ R}.

Proof. Since e−(c/2)i xφω,c satisfies S̃′ω,c(e
−(c/2)i xφω,c) = e−(c/2)i x S′ω,c(φω,c) = 0, we have G̃ω,c ⊃

{eiθ0e−(c/2)i xφω,c( · − x0) : θ0 ∈ [0, 2π), x0 ∈ R}. We prove G̃ω,c ⊂ {eiθ0e−(c/2)i xφω,c( · − x0) : θ0 ∈

[0, 2π), x0 ∈ R}. Letting ψ ∈ G̃ω,c and

ψ(x)=8(x) exp
(
−

i
2σ + 2

∫ x

0
|8(y)|2σ dy

)
,

then 8 is a solution of

−8′′+ 1
2 c|8|2σ8−

2σ + 1
(2σ + 2)2

|8|4σ8+
σ

σ + 1
|8|2σ−2 Im(88′)8= 0.

Setting A(8) := 1
2 c|8|2σ − ((2σ + 1)/(2σ + 2)2)|8|4σ + (σ/(σ + 1))|8|2σ−2 Im(88′), f := Re8, and

g := Im8,
f ′′ = A(8) f, g′′ = A(8)g.

Therefore,

( f g′− g f ′)′ = f g′′− g f ′′ = f A(8)g− g A(8) f = A(8) f g− A(8) f g = 0.
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Since f, g ∈ Ḣ 1(R)∩ L2σ+2(R), we obtain f g′− g f ′ = 0. On the other hand, f g′− g f ′ = Re8 Im8′−

Im8Re8′ = Im(88′). Thus, Im(88′)= 0 for any x ∈ R. Therefore, 8 satisfies

−8′′+ 1
2 c|8|2σ8−

2σ + 1
(2σ + 2)2

|8|4σ8= 0. (2-4)

Therefore, there exist θ0 and x0 such that 8= eiθ08ω,c( · − x0) since 8ω,c is the unique solution of (2-4)
up to translation and phase (see the Appendix). This implies ψ(x)= eiθe−(c/2)i xφω,c(x − x0). �

Remark. According to [Colin and Ohta 2006], it looks natural to take the integral on the infinite interval
(−∞, x] in the gauge transformation as

ψ(x)=8(x) exp
(
−

i
2σ + 2

∫ x

−∞

|8(y)|2σ dy
)
.

However, in the massless case, it is not clear whether ψ ∈ G̃ω,c belongs to L2σ (R). This is why we take
the integral on the finite interval [0, x] instead of (−∞, x].

Lemma 2.7. We have G̃ω,c ⊃ M̃
α,β
ω,c .

Proof. This is obvious if M̃ =∅. We consider the case of M̃ 6=∅. Let ψ ∈ M̃ . Since ψ is a minimizer,
there exists a Lagrange multiplier η ∈ R such that S̃′(ψ)= ηK̃ ′(ψ). Then

0= K̃ (ψ)= 〈S̃′(ψ), ∂λψ
α,β
λ |λ=0〉 = η〈K̃ ′(ψ), ∂λψ

α,β
λ |λ=0〉 = η∂λ K̃ (ψα,βλ )|λ=0,

where we remark that this is justified by a density argument. By a direct calculation, we obtain

∂λ K̃ (ψα,βλ )|λ=0 =
(2α−β)2

2
‖∂xψ‖

2
L2 −
{(2σ + 2)α+β}2

2(2σ + 2)
‖ψ‖2σ+2

L2σ+2 −
{(2σ + 2)α}2

2σ + 2
N (ψ)

=
−(2α−β)(2σα+β)

2
‖∂xψ‖

2
L2 +
{(2σ + 2)α+β}βc

2(2σ + 2)
‖ψ‖2σ+2

L2σ+2 + (2σ + 2)α K̃ (ψ)

< 0,

where in the last inequality we use

2α−β > 0, 2α+β > 0, β < 0, K̃ (ψ)= 0.

Therefore, η = 0. This implies S̃′ω,c(ψ)= 0 and then ψ ∈ G̃ω,c. �

Lemma 2.8. We have G̃ω,c ⊂ M̃
α,β
ω,c if M̃

α,β
ω,c 6=∅.

Proof. Let ψ ∈ G̃ . Then there exist θ0 ∈ [0, 2π) and x0 ∈ R such that ψ = eiθ0e−(c/2)i xφω,c( · − x0) by
Lemma 2.6. If M̃ 6=∅, then we can take ϕ ∈ M̃ . By Lemmas 2.6 and 2.7, there exist θ1 ∈ [0, 2π) and
x1 ∈R such that ϕ = eiθ1e−(c/2)i xφω,c( · − x1). Thus, S̃ω,c(ψ)= S̃ω,c(φω,c)= S̃ω,c(ϕ)=µω,c. Moreover,
we have K̃ (ψ)= 〈S̃′ω,c(ψ), ∂λψ

α,β
λ |λ=0〉 = 0. �

Lemma 2.9. We have M̃
α,β
ω,c 6=∅.

To prove this lemma, we show the following proposition.
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Proposition 2.10. Let {ψn}n∈N ⊂ Xω,c satisfy

S̃ω,c(ψn)→ µα,βω,c and K̃ α,β
ω,c (ψn)→ 0.

Then there exist {yn} ⊂ R and ψ ∈ M̃
α,β
ω,c such that {ψn( · − yn)} has a subsequence which converges to ψ

strongly in Xω,c.

To prove this proposition, first, we prove the following lemma.

Lemma 2.11. We have µα,βω,c > 0.

Proof. We recall that µα,βω,c = inf{S̃ω,c(ψ) :ψ ∈ Xω,c \ {0}, K̃ α,β
ω,c (ψ)= 0}. By (2-2), it is trivial that µ≥ 0.

We prove µ > 0 by contradiction. We assume that µ= 0. Taking the minimizing sequence {ψn} ⊂ Xω,c,
i.e., S̃(ψn)→ µ = 0 and K̃ (ψn) = 0, we have ‖∂xψn‖

2
L2 → 0 and ‖ψn‖

2σ+2
L2σ+2 → 0 by (2-2) and (2-3).

Then, by using (2-1) with p = (σ + 2)/2, we get ‖ψn‖L∞→ 0 as n→∞. By using

−N (ψ)=−‖∂xψ‖
2
L2 −

1
4‖ψ‖

4σ+2
L4σ+2 +‖∂xψ +

1
2 i |ψ |2σψ‖2L2,

we obtain

K̃ (ψn)=
2α−β

2
‖∂xψn‖

2
L2 +
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψn‖

2σ+2
L2σ+2 −αN (ψn)

=−
1
2β‖∂xψn‖

2
L2 +
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψn‖

2σ+2
L2σ+2 −

1
4α‖ψn‖

4σ+2
L4σ+2 +α‖∂xψn +

1
2 i |ψn|

2σψn‖
2
L2

≥
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψn‖

2σ+2
L2σ+2 −

1
4α‖ψn‖

4σ+2
L4σ+2

≥
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψn‖

2σ+2
L2σ+2 −

1
4α‖ψn‖

2σ+2
L2σ+2‖ψn‖

2σ
L∞

≥

(
{(2σ + 2)α+β}c

2(2σ + 2)
−

1
4α‖ψn‖

2σ
L∞

)
‖ψn‖

2σ+2
L2σ+2

> 0,

for large n ∈ N since ‖ψn‖L∞→ 0 as n→∞. However, this contradicts K̃ (ψn)= 0 for all n ∈ N. �

Proof of Proposition 2.10. We take {ψn} ⊂ Xω,c such that S̃ω,c(ψn)→ µ
α,β
ω,c and K̃ α,β

ω,c (ψn)→ 0. Then,
{ψn} is a bounded sequence in Xω,c by (2-2).

Step 1. We prove lim supn→∞‖ψn‖L4σ+2>0 by contradiction. We suppose that lim supn→∞‖ψn‖L4σ+2=0.
Since

0← K̃ (ψn)≥−
1
2β‖∂xψn‖

2
L2 +
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψn‖

2σ+2
L2σ+2 −

1
4α‖ψn‖

4σ+2
L4σ+2,

we obtain ‖∂xψn‖
2
L2 → 0 and ‖ψn‖

2σ+2
L2σ+2 → 0 as n→∞. By (2-2), we get S̃(ψn)→ 0. This contradicts

µ > 0.

Step 2. Since {ψn} is bounded in Xω,c = Ḣ 1(R)∩L2σ+2(R) and lim supn→∞‖ψn‖L4σ+2 > 0, by applying
Lemma 2.3 with fn =ψn , d = 1, and p= 2σ+2, there exist {yn} and v ∈ Xω,c\{0} such that {ψn( · − yn)}

(we denote this by vn) has a subsequence that converges to v weakly in Xω,c.
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Step 3. We show
K̃ (vn)− K̃ (v− vn)− K̃ (v)→ 0 as n→∞. (2-5)

We note that

K̃ (ψ)=− 1
2β‖∂xψ‖

2
L2 +
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψ‖2σ+2

L2σ+2 −
1
4α‖ψ‖

4σ+2
L4σ+2 +α‖∂xψ +

1
2 i |ψ |2σψ‖2L2, (2-6)

for any ψ ∈ Xω,c. Since vn converges to v weakly in Xω,c, we have vn → v a.e. in R. Therefore, by
Lemma 2.4, we have ‖vn‖

p
L p −‖vn − v‖

p
L p −‖v‖

p
L p → 0 for 2σ + 2≤ p <∞. Moreover, setting

wn := ∂xvn +
1
2 i |vn|

2σvn and w = ∂xv+
1
2 i |v|2σv,

wn converges to w weakly in L2(R). Indeed, it is obvious that ∂xvn ⇀ ∂xv in L2(R) and we have, for
any f ∈ C∞0 (R),∣∣∣∣∫

R

f (x)(|vn(x)|2σvn(x)− |v(x)|2σv(x)) dx
∣∣∣∣. ∫

supp f
| f (x)|(|vn(x)|2σ + |v(x)|2σ )|vn(x)− v(x)| dx

.
∫

supp f
|vn(x)− v(x)| dx→ 0,

where we use the Hölder inequality, the fact that {vn} is bounded in L∞(R), and the compactness of
the embedding Ḣ 1(�)∩ L2σ+2(�) ↪→ H 1(�) ↪→ L p(�) for a bounded domain �⊂ R and 1≤ p ≤∞.
Thus, wn converges to w weakly in L2(R). Therefore, by (2-6), we get (2-5).

Step 4. We prove α(2σ + 2)µ < J̃ (ψ) if K̃ (ψ) < 0. By the definition of µ,

µα,βω,c =
1

α(2σ + 2)
inf{ J̃α,βω,c (ψ) : ψ ∈ Xω,c \ {0}, K̃ α,β

ω,c (ψ)= 0}. (2-7)

If ψ ∈ Xω,c satisfies K̃ (ψ) < 0, then there exists λ0 ∈ (0, 1) such that K̃ (λ0ψ)= 0 since K̃ (λψ) > 0 for
small λ ∈ (0, 1). Therefore, we have α(2σ + 2)µ≤ J̃ (λ0ψ) < J̃ (ψ).

Step 5. We prove K̃ (v)≤ 0 by contradiction. We suppose K̃ (v) > 0. Since K̃ (vn)→ 0 and (2-5) hold,

K̃ (v− vn)→−K̃ (v) < 0.

This implies that K̃ (v− vn) < 0 for large n ∈ N. Therefore, by Step 4, we get α(2σ + 2)µ < J̃ (v− vn)

for large n ∈ N. By the same argument as in Step 3,

J̃ (vn)− J̃ (v− vn)− J̃ (v)→ 0 as n→∞.

Therefore, we get J̃ (v)= limn→∞( J̃ (vn)− J̃ (v− vn))≤ 0 since we have J̃ (vn)→ α(2σ + 2)µ by the
definition of J̃ and K̃ (vn)→ 0. By Step 2, we have v 6= 0 and then J̃ (v) > 0. This is a contradiction.

Step 6. We prove that v belongs to M̃ . By (2-7) and the weakly lower semicontinuity of J̃ , we obtain

α(2σ + 2)µ≤ J̃ (v)≤ lim inf
n→∞

J̃ (vn)= α(2σ + 2)µ.

Thus, J̃ (v) = α(2σ + 2)µ and vn converges to v strongly in Xω,c. Therefore, we get S̃(v) = µ and
K̃ (v)= 0 by Steps 4 and 5. �
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Therefore, we obtain Proposition 2.1 when ω = c2/4 and c > 0.
The case of ω > c2/4 is much easier. Indeed, we can obtain Proposition 2.1 by the same argument as

in the case ω = c2/4 and c > 0 by using L2(R) instead of L2σ+2(R). See also [Colin and Ohta 2006],
where the statement only for the Nehari functional K 1,0

ω,c is obtained. Thus, we omit the proof.

3. Global existence

In this section, we show Theorem 1.2.

Proof of Theorem 1.2. Let u0 belong to K
α,β,+
ω,c . First, we consider the case that K α,β

ω,c (u0) = 0. Then,
u0 = 0 or u0 = eiθ0φω,c( · − x0) by Theorem 1.1. By the uniqueness of solution to (gDNLS), we have
u(t)= 0 or u(t)= eiθ0eiωtφω,c(x − ct − x0), respectively. This implies that K α,β

ω,c (u(t))= 0 for all time.
This means that u(t) ∈K

α,β,+
ω,c for all time. Next, we consider the case that K α,β

ω,c (u0) > 0. We suppose
that there exists a time t such that K α,β

ω,c (u(t))≤ 0. Then there exists t∗ such that K α,β
ω,c (u(t∗))= 0 by the

continuity of the flow. By the above argument, K α,β
ω,c (u(t))= 0 for all time. This is a contradiction. Thus,

u(t) belongs to K
α,β,+
ω,c for all time. When u0 belongs to K

α,β,−
ω,c , the same argument implies that u(t)

belongs to K
α,β,−
ω,c for all time. Next, we prove that the solution is global if u0 ∈K

α,β,+
ω,c . Then, since

α(2σ+2)Sω,c(ϕ)=K α,β
ω,c (ϕ)+

2σα+β
2
‖∂xϕ−

1
2 ciϕ‖2L2+(ω−

1
4 c2)

2σα−β
2
‖ϕ‖2L2−

βc
2(2σ + 2)

‖ϕ‖2σ+2
L2σ+2

(3-1)
and K α,β

ω,c (u(t)) > 0 for all time t , we have that ‖∂x u(t)− 1
2 ciu(t)‖2L2 is uniformly bounded. Therefore,

‖∂x u(t)‖L2 ≤ ‖∂x u(t)− 1
2 ciu(t)‖L2 +

1
2 |c|‖u(t)‖L2 < C + 1

2 |c|‖u0‖L2,

for some positive constant C independent of t . This boundedness and the conservation law of the L2-norm
imply that u is global in time. �

We give proofs of Corollaries 1.3, 1.4, and 1.5. Direct calculations imply the following lemma (see
[Colin and Ohta 2006] for the details).

Lemma 3.1. Let σ = 1 and (ω, c) satisfy (1-5). Then, we have the relations

M(φω,c)= 8 tan−1

√
2
√
ω+ c

2
√
ω− c

,

P(φω,c)= 2
√

4ω− c2,

E(φω,c)=− 1
2 c
√

4ω− c2.

In particular,

Sω,c(φω,c)= 4ω tan−1

√
2
√
ω+ c

2
√
ω− c

+
1
2 c
√

4ω− c2.

Remark. When σ = 1, we have M(φc2/4,c) = 4π , P(φc2/4,c) = 0, and E(φc2/4,c) = 0 for all c > 0 by
Lemma 3.1. On the other hand, if M(φ)= 4π , P(φ)= 0, and E(φ)≤ 0, then φ(x)= eiθ0φc2

0/4,c0
(x− x0)
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for some θ0 ∈ R, x0 ∈ R, and c0 > 0. Indeed, M(φ)= 4π , P(φ)= 0, and E(φ)≤ 0 imply that

K α,β

c2/4,c(φ)≤−
2α+β

2
‖∂xφ‖

2
L2 +

2α−β
2

c2π +
βc
8
‖φ‖4L4 .

Since K α,β

c2/4,c(φ) < 0 for small c > 0 and K α,β

c2/4,c(φ)→+∞ as c→∞, there exists c0 > 0 such that
K α,β

c2
0/4,c0

(φ)= 0. Therefore, Theorem 1.1 implies that φ(x)= eiθ0φc2
0/4,c0

(x − x0). Note that this means
that there is no function satisfying M(φ)= 4π , P(φ)= 0, and E(φ) < 0.

First, we prove Corollary 1.3.

Proof of Corollary 1.3. Let u0 satisfy ‖u0‖
2
L2 < 4π . The statement is trivial if u0 = 0. We assume that

u0 6= 0. Since ‖u0‖
2
L2 < 4π ,

Sc2/4,c(u0)= E(u0)+
1
8 c2
‖u0‖

2
L2 +

1
2 cP(u0) < c2π/2,

for sufficiently large c > 0. Moreover, since ‖u0‖
2
L2 6= 0,

K α,β

c2/4,c(u0)=
2α−β

2
‖∂x u0‖

2
L2 +

2α−β
2

c2

4
‖u0‖

2
L2 +

2α−β
2

cP(u0)+
βc
8
‖u0‖

4
L4 −αN (u0)

→∞ as c→∞, (3-2)

for any (α, β) satisfying (1-8). Thus, K α,β

c2/4,c(u0) > 0 for large c > 0. Thus, there exists c > 0 such that
K α,β

c2/4,c(u0) > 0 and Sc2/4,c(u0) < c2π/2, where we note that µc2/4,c = c2π/2 by Lemma 3.1 when σ = 1.
By Theorem 1.2, the solution u is global. �

Secondly, we give a proof of Corollary 1.4 by Theorem 1.2.

Proof of Corollary 1.4. Let u0 satisfy ‖u0‖
2
L2 = 4π and P(u0) < 0. We recall that µc2/4,c = c2π/2 by

Lemma 3.1 when σ = 1. Since P(u0) < 0, we have, for large c > 0,

Sc2/4,c(u0)= E(u0)+
1
2 c2π + 1

2 cP(u0)≤ µc2/4,c.

On the other hand, because 2α−β > 0 and ‖u0‖
2
L2 6= 0, we obtain (3-2). Thus, K α,β

c2/4,c(u0) > 0 for large
c > 0. This means that the assumption in Theorem 1.2 holds for sufficiently large c. This implies that u
is global. �

We give another proof. This is due to [Guo and Wu 2017].

Another proof of Corollary 1.4. We have

P(u)≥ 1
4‖u‖

4
L4

(
1−
‖u‖L2

2
√
π

)
−

8
√
πE(u)‖u‖L2

‖u‖4L4

,

applying the gauge transformation u = w exp(− 1
4 i
∫ x
−∞
|w(y)|2 dy) to (1-15). See [Guo and Wu 2017,

Lemma 2.1] for the proof of (1-15). When ‖u0‖
2
L2 = 4π and P(u0) < 0, we get

‖u(t)‖4L4 ≤
8
√
πE(u0)‖u0‖L2

|P(u0)|
. (3-3)
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Therefore, by the Hölder inequality, the Gagliardo–Nirenberg inequality, and the Young inequality,

‖∂x u(t)‖2L2 = 2E(u0)+
1
2 Re

∫
R

i |u(t, x)|2u(t, x)∂x u(t, x) dx

≤ 2E(u0)+
1
2‖u(t)‖

3
L6‖∂x u(t)‖L2

≤ 2E(u0)+C‖u(t)‖8/3L4 ‖∂x u(t)‖4/3L2

≤ 2E(u0)+C‖u(t)‖8L4 +
1
2‖∂x u(t)‖2L2 .

This inequality and (3-3) give an a priori estimate, and thus, the solution is global. �

At last, we prove Corollary 1.5.

Proof of Corollary 1.5. Let σ ≥ 1. Since u0,c = e(c/2)i xψ ,

Sc2/4,c(u0,c)= S̃c2/4,c(ψ)

=
1
2‖∂xψ‖

2
L2 +

c
2(2σ + 2)

‖ψ‖2σ+2
L2σ+2 −

1
2σ + 2

N (ψ)

≤ c1+1/σ S1/4,1(φ1/4,1)= Sc2/4,c(φc2/4,c),

K α,β

c2/4,c(u0,c)= K̃ α,β

c2/4,c(ψ)

=
2α−β

2
‖∂xψ‖

2
L2 +
{(2σ + 2)α+β}c

2(2σ + 2)
‖ψ‖2σ+2

L2σ+2 −αN (ψ)

≥ 0,

for large c > 0. By Theorem 1.2, therefore, the solution uc with the initial data u0,c is global for large
c > 0. �

Appendix: Uniqueness and nonexistence

We prove the uniqueness of the massless elliptic equation.

Proposition A.1. Let 1 < p < q <∞, a > 0, and b > 0. Assume there exists a nontrivial solution in
Ḣ 1(R)∩ L p+1(R) of the equation

−ϕ′′+ a|ϕ|p−1ϕ− b|ϕ|q−1ϕ = 0 (A-1)

in the distribution sense. Then there exist θ0 ∈ [0, 2π) and x0 ∈ R such that ϕ = eiθ0ψ( · − x0), where ψ
is the unique positive, even, and decreasing function which satisfies (A-1).

Proof. Since a|ϕ|p−1ϕ− b|ϕ|q−1ϕ belongs to L2(R), we obtain ϕ ∈ Ḣ 2(R). A bootstrap argument gives
us that ϕ ∈ Ḣ 3(R). By the Sobolev embedding, ϕ ∈ C2(R) and ϕ satisfies the equation in the classical
sense. Multiplying the equation by ϕ′ and integrating on (−∞, x), we obtain

−
1
2 |ϕ
′(x)|2+

a
p+ 1

|ϕ(x)|p+1
−

b
q + 1

|ϕ(x)|q+1
= 0. (A-2)

We write ϕ = ρeiθ , where ρ > 0 and ρ, θ ∈ C2(R). It is easily seen that θ ≡ θ0 for some θ0 ∈ [0, 2π).
Since ρ ∈ L p+1(R), there must exist x0 ∈ R such that ρ ′(x0) = 0. By (A-2), ρ(x0) = c, where cq−p

=
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(a(q + 1))/(b(p+ 1)). Let ψ be the real-valued solution of (A-1) such that ψ(0) = c and ψ ′(0) = 0.
Using the uniqueness of the ordinary differential equation, we can deduce that ϕ = eiθ0ψ( · − x0). �

We prove the nonexistence of a nontrivial solution to the nonlinear elliptic equation (1-4) in the case
ω < c2/4, or ω = c2/4 and c ≤ 0. See [Berestycki and Lions 1983, Theorem 5] for the necessary
and sufficient condition for the existence of nontrivial solutions to more general second-order ordinary
differential equations.

Proposition A.2. Let 1< p, q <∞. If ϕ ∈ H 1(R) satisfies

−ϕ′′+ωϕ+ a|ϕ|p−1ϕ− b|ϕ|q−1ϕ = 0 in the distribution sense,

where a, b ∈ R and ω < 0, then we have ϕ = 0.

Proof. By a usual bootstrap argument [Cazenave 2003, §8], we have ϕ ∈ H 3(R). We get ϕ ∈ C2(R) by
the Sobolev embedding. Therefore, ϕ′(x)→ 0 and ϕ(x)→ 0 as |x | → ∞. Multiplying the equation
by ϕ′ and integrating on (−∞, x), we obtain

−
1
2 |ϕ
′(x)|2+ 1

2ω|ϕ(x)|
2
+

a
p+ 1

|ϕ(x)|p+1
−

b
q + 1

|ϕ(x)|q+1
= 0. (A-3)

Since ϕ(x)→ 0 as |x | →∞, we get

1
2ω|ϕ(x)|

2
+

a
p+ 1

|ϕ(x)|p+1
−

b
q + 1

|ϕ(x)|q+1 < 0 for some x

or

|ϕ(x)| = 0 for some x .

In the former case, we obtain |ϕ′(x)|< 0 by (A-3). This is a contradiction. In the latter case, we obtain
|ϕ′(x)| = 0 by (A-3). By the uniqueness of the ordinary differential equation, we get ϕ = 0. �

By the same argument as in the proof of Proposition A.2, we obtain the nonexistence of a nontrivial
solution to the nonlinear elliptic equation (1-4) when ω = c2/4 and c ≤ 0 as follows.

Proposition A.3. Let 1< p, q <∞. If ϕ ∈ Ḣ 1(R)∩ L p+1(R) satisfies

−ϕ′′− a|ϕ|p−1ϕ− b|ϕ|q−1ϕ = 0 in the distribution sense,

where a ≥ 0 and b > 0, then we have ϕ = 0.
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LOCAL DENSITY APPROXIMATION FOR THE ALMOST-BOSONIC ANYON GAS
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We study the minimizers of an energy functional with a self-consistent magnetic field, which describes a
quantum gas of almost-bosonic anyons in the average-field approximation. For the homogeneous gas we
prove the existence of the thermodynamic limit of the energy at fixed effective statistics parameter, and
the independence of such a limit from the shape of the domain. This result is then used in a local density
approximation to derive an effective Thomas–Fermi-like model for the trapped anyon gas in the limit of a
large effective statistics parameter (i.e., “less-bosonic” anyons).
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1. Introduction

A convenient description of two-dimensional particles with exotic quantum statistics (different from
Bose–Einstein and Fermi–Dirac) is via effective magnetic interactions. We are interested in a mean-field
model for such particles, known as anyons. Indeed, in a certain scaling limit (“almost-bosonic anyons”, see
[Lundholm and Rougerie 2015]), a suitable magnetic nonlinear Schrödinger theory becomes appropriate.
The corresponding energy functional is given by

E af
β [u] :=

∫
R2

(∣∣(−i∇ +βA[|u|2]
)
u
∣∣2+ V |u|2

)
, (1-1)

acting on functions u ∈ H 1(R2). Here V : R2
→ R+ is a trapping potential confining the particles, and

the vector potential A[|u|2] : R2
→ R2 is defined through

A[%] := ∇⊥w0 ∗ %, w0(x) := log |x|, (1-2)

for % = |u|2 ∈ L1(R2) and x⊥ = (x, y)⊥ := (−y, x). Thus, the self-consistent magnetic field, given by

curl A[%](x)=1w0 ∗ %(x)= 2π%(x),
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is proportional to the particles’ density. The parameter β ∈ R then regulates the strength of the magnetic
self-interactions and, for reasons explained below, we will call it the scaled statistics parameter. By
symmetry of (1-1) under complex conjugation u 7→ ū we may and shall assume

β > 0

in the following. We will study the ground-state problem for (1-1), namely the minimization under the
mass constraint ∫

R2
|u|2 = 1. (1-3)

The functional E af bears some similarity with other mean-field models such as the Gross–Pitaevskii
energy functional

EGP
[u] :=

∫
R2

(
|−i∇u+ Au|2+ V |u|2+ g|u|4

)
, (1-4)

with fixed vector potential A. The above describes a gas of interacting bosons in a certain mean-field
regime [Lieb et al. 2005; Lieb and Seiringer 2006; Nam et al. 2016; Rougerie 2014; 2015]: the quartic
term originates from short-range pair interactions. The crucial difference between (1-1) and (1-4) is that,
while the interactions of EGP are scalar (with interaction strength g ∈R), those of E af are purely magnetic
and therefore involve mainly the phase of the function u. There is extensive literature dealing with (1-4)
(see [Aftalion 2007; Correggi et al. 2011; 2012; Correggi and Rougerie 2013]) and with the related
Ginzburg–Landau model of superconductivity [Bethuel et al. 1994; Fournais and Helffer 2010; Sandier
and Serfaty 2007; Sigal 2015]. That the interactions are via the magnetic field in (1-1) poses however
quite a few new difficulties in the asymptotic analysis of minimizers we initiate here. Note indeed (see the
variational equation in Lemma A.2) that the nonlinearity consists in a quintic nonlocal semilinear term
and a cubic quasilinear term (also nonlocal), both being critical when compared to the usual Laplacian.

The functional E af arises in a mean-field description1 of a gas of particles whose many-body quantum
wave function can change under particle exchange by a phase factor eiαπ (with α ∈ R known as the
statistics parameter). This is a generalization of the usual types of particles: bosons have α= 0 (symmetric
wave functions) and their mean-field description is via models of the form (1-4), and fermions have α = 1
(antisymmetric wave functions) and appropriate models for them are Hartree–Fock functionals (see [Bach
1992; Lieb and Simon 1977; Lions 1987; 1988; Fournais et al. 2015]). For general α one speaks of anyons
[Khare 2005; Myrheim 1999; Ouvry 2009; Wilczek 1990], which are believed to emerge as quasiparticle
excitations of certain condensed-matter systems [Arovas et al. 1984; Haldane 1983; Halperin 1984; Zhang
et al. 2014; Cooper and Simon 2015; Lundholm and Rougerie 2016].

Anyons can be modeled as bosons (respectively, fermions) but with a many-body magnetic interaction
of coupling strength α (respectively, α− 1). It was shown in [Lundholm and Rougerie 2015] that the
ground-state energy per particle of such a system is correctly described by the minimum of (1-1) (and the
ground states by the corresponding minimizers) in a limit where, as the number of particles N goes to∞,
one takes α = β/N→ 0. We refer to this limit as that of almost-bosonic anyons, with β determining how
far we are from usual bosons.

1Usually referred to as an average-field description in this context.



LOCAL DENSITY APPROXIMATION FOR THE ALMOST-BOSONIC ANYON GAS 1171

In the following we treat the anyon gas as fully described by a one-body wave function u ∈ H 1(R2)

minimizing (1-1) under the mass constraint (1-3). We shall consider asymptotic regimes for this mini-
mization problem. The limit β→ 0 is trivial and leads to a linear theory for noninteracting bosons (see
[Lundholm and Rougerie 2015, Appendix A]). The limit β→∞ is more interesting and more physically
relevant: in a physical situation, the statistics parameter α is fixed and finite and N large, so that taking
β→∞ is the relevant regime, at least if one is allowed to exchange the two limits.

In an approximation that has been used frequently in the physics literature [Chitra and Sen 1992; Iengo
and Lechner 1992; Li et al. 1992; Trugenberger 1992a; 1992b; Wen and Zee 1990; Westerberg 1993], the
ground-state energy per particle of the N -particle anyon gas with statistics parameter α is given by

E0(N )
N
≈

∫
R2
(2π |α|N%2

+ V%). (1-5)

This relies on assuming that each particle sees the others by their approximately constant average magnetic
field B(x)≈ 2παN%(x), with %(x)> 0 the local particle density (normalized to

∫
R2 %= 1). In the ground

state of this magnetic field (the lowest Landau level) this leads to a magnetic energy |B| ≈ 2π |α|N% per
particle.2

In this work we prove that, for large β, the behavior of the functional (1-1) is captured at leading
order by a Thomas–Fermi-type [Catto et al. 1998; Lieb 1981] energy functional of a form similar to the
right-hand side of (1-5) with |α|N = β. The coupling constant appearing in this functional is defined via
the large-volume limit of the homogeneous anyon gas energy (i.e., the infimum of (1-1) confined to a
bounded domain with V = 0). In particular we prove that this limit exists and is bounded from below by
the value 2π predicted by (1-5). We do not know the exact value, but there are good reasons to believe
that it is not equal to 2π , thus refining the simple approximations leading to (1-5).

We state our main theorems in Section 2 and present their proofs in Sections 3 and 4. The Appendix
recalls a few facts concerning the minimizers of (1-1). In particular, although we do not need it for the
proof of our main results, we derive the associated variational equation.

2. Main results

We now proceed to state our main theorems. We first discuss the large-volume limit for the homogeneous
gas in Section 2A and then state our results about the trapped anyons functional (1-1) in Section 2B.

2A. Thermodynamic limit for the homogeneous gas. Let � ⊂ R2 be a fixed bounded domain in R2,
with the associated energy for almost-bosonic anyons confined to it:

E af
� [u] = E af

�,β[u] :=
∫
�

∣∣(−i∇ +βA[|u|2]
)
u
∣∣2, (2-1)

with
A[|u|2](x)=

∫
�

∇
⊥w0(x− y)|u( y)|2 d y. (2-2)

2Because of the periodicity of the exchange phase eiαπ, it is known that such an approximation can only be valid for certain
values of α and %. See [Larson and Lundholm 2016; Lundholm 2016; Trugenberger 1992b] for further discussion.
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We define two energies, with homogeneous Dirichlet boundary conditions

E0(�, β,M) := inf
{
E af
�,β[u] : u ∈ H 1

0 (�),
∫
�
|u|2 = M

}
, (2-3)

and without boundary conditions,

E(�, β,M) := inf
{
E af
�,β[u] : u ∈ H 1(�),

∫
�
|u|2 = M

}
. (2-4)

Of course, the last minimization leads to a magnetic Neumann boundary condition for the solutions. We
are interested in the thermodynamic limit of these quantities, i.e., the scaling limit in which the size of
the domain tends to∞ with fixed density ρ := M/|�| and the normalization changes accordingly.

Theorem 2.1 (Thermodynamic limit for the homogeneous anyon gas).
Let �⊂ R2 be a bounded simply connected domain with Lipschitz boundary, and let β > 0 and ρ > 0 be
fixed parameters. Then, the limits

e(β, ρ) := lim
L→∞

E(L�,β, ρL2
|�|)

L2|�|
= lim

L→∞

E0(L�,β, ρL2
|�|)

L2|�|
(2-5)

exist, coincide and are independent of �. Moreover,

e(β, ρ)= βρ2e(1, 1). (2-6)

Remark 2.2 (Error estimate).
A close inspection of the proof reveals that we also have an estimate of the error appearing in (2-5), which
coincides with the error appearing in the estimate of the difference between the Neumann and Dirichlet
energies in a box (Lemma 3.8). Such a quantity is expected to be of the order of the box’s side length
L , which is subleading if compared to the total energy of order L2. Our error estimate O(L12/7+ε) (see
(3-26)) is however much larger and far from being optimal. �

The above result defines the thermodynamic energy per unit area at scaled statistics parameter β and
density ρ, denoted e(β, ρ), and shows that it has a nice scaling property. The latter is responsible for the
occurrence of a Thomas–Fermi-type functional in the trapped anyons case. The fact that e(β, ρ) does not
depend on boundary conditions is a crucial technical ingredient in our study of the trapped case. This
is very different from the usual Schrödinger energy in a fixed external magnetic field, for example, a
constant one, for which the type of boundary conditions do matter (see, e.g., [Fournais and Helffer 2010,
Chapter 5]).

The constant e(1, 1) will be used to define a corresponding coupling parameter below. One may
observe that (see Lemma 3.7)

e(1, 1)> 2π, (2-7)

and we conjecture that this inequality is actually strict, contrary to what might be expected when comparing
to the coupling constant of the conventional (constant-field) average-field approximation (1-5). The reason
for this is that the self-interaction encoded by the functional E af has not been fully incorporated in (1-5).
In fact, the lower bound (2-7) is based on a magnetic L4-bound (Lemma 3.2) which is saturated only for
constant functions, and hence for constant densities, which certainly is compatible with (1-5) in the case
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of homogeneous traps. On the other hand, in order to minimize the magnetic energy in (2-1) for large β,
the function has to have a large phase circulation and therefore also a large vorticity. This suggests the
formation of an approximately homogeneous vortex lattice, in some analogy to the Abrikosov lattice that
arises in superconductivity and in rotating bosonic gases [Aftalion 2007; Correggi and Yngvason 2008;
Sandier and Serfaty 2007]. Such a picture has already been hinted at in [Chen et al. 1989, p. 1012] for
the almost-bosonic gas. However the implication that the actual coupling constant may then be larger
than the one expected from (1-5) seems not to have been observed in the literature before.

One should note here that there is a certain abuse of language in using the term “thermodynamic limit”.
Indeed, we consider the large-volume behavior of a mean-field energy functional, and there is no guarantee
that this rigorously approximates the true thermodynamic energy of the underlying many-body system.

2B. Local density approximation for the trapped gas. We now return to (1-1) and discuss the ground
state problem

Eaf
β :=min

{
E af
β [u] : u ∈ H 1(R2), V |u|2 ∈ L1(R2),

∫
R2 |u|2 = 1

}
. (2-8)

We denote by uaf any associated minimizer. We refer to the Appendix (see also [Lundholm and Rougerie
2015, Appendix A]) for a discussion of the minimization domain as well as the existence of a minimizer.
In the limit β→∞, the simpler Thomas–Fermi-like functional

E TF
[%] = E TF

β [%] :=

∫
R2
(βe(1, 1)%2

+ V%) (2-9)

emerges, whose ground-state energy we denote by

ETF
β :=min

{
E TF
β [%] : % ∈ L2(R2

;R+), V% ∈ L1(R2),
∫

R2 % = 1
}
, (2-10)

with associated (unique) minimizer %TF
β . Here e(1, 1) is the fixed, universal constant defined by Theorem 2.1.

A typical potential one could have in mind for physical relevance is a harmonic trap, V (x)= c|x|2, or
an asymmetric trap, V (x, y)= c1x2

+ c2 y2. We shall work under the assumption that V is homogeneous
of degree s and smooth:

V (λx)= λs V (x), V ∈ C∞(R2). (2-11)

These conditions can be relaxed significantly; in particular we could extend the approach to asymptotically
homogeneous potentials as defined in [Lieb et al. 2001, Definition 1.1]. We refrain from doing so to avoid
lengthy technical discussions in the proofs. We shall always impose that V is trapping in the sense that it
grows superlinearly at infinity, i.e., s > 1 and

min
|x|>R

V (x)→∞ as R→∞. (2-12)

The Thomas–Fermi (TF) problem (2-10) has the merit of being exactly soluble. We obtain by scaling

ETF
β = β

s/(s+2)ETF
1 , %TF

β (x)= β
−2/(2+s)%TF

1 (β
−1/(s+2)x), (2-13)
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and by an explicit computation

%TF
1 (x)=

1
2e(1, 1)

(λTF
1 − V (x))+, (2-14)

with the chemical potential

λTF
1 = ETF

1 + e(1, 1)
∫

R2
(%TF

1 )
2. (2-15)

Clearly the above considerations imply

supp(%TF
β )⊂ BCβ1/(2+s)(0), (2-16)

where BR(x) stands for a ball (disk) of radius R centered at x, and the estimates

‖%TF
β ‖L∞(R2) 6 Cβ−2/(2+s), ‖∇%TF

β ‖L∞(R2) 6 Cβ−3/(2+s) (2-17)

for some fixed constant C > 0. Noticing that %TF
1 vanishes along a level curve of the smooth homogeneous

potential V, we also have the nondegeneracy

|∂nV | 6= 0 a.e. on ∂ supp(%TF
1 ), (2-18)

where n denotes the (say outward) normal vector to ∂ supp(%TF
1 ).

We have the following result showing the accuracy of TF theory to determine the leading order of the
minimization problem (2-8):

Theorem 2.3 (Local density approximation for the anyon gas).
Let V satisfy (2-11) and (2-12). In the limit β→∞ we have the energy convergence

lim
β→+∞

Eaf
β

ETF
β

= 1. (2-19)

Moreover, for any function uaf achieving the infimum (2-8), with %af
:= |uaf

|
2, we have for any R > 0∥∥β2/(2+s)%af(β1/(2+s)

· )− %TF
1

∥∥
W−1,1(BR(0))

→ 0 as β→ 0, (2-20)

where W−1,1(BR(0)) is the dual space of Lipschitz functions on the ball BR(0).

Remark 2.4 (Extension to more general potentials).
The result can be straightforwardly extended to asymptotically homogeneous potentials, i.e., functions
V (x) that satisfy the following property [Lieb et al. 2001, Definition 1.1]: there exists another function Ṽ,
nonvanishing for x 6= 0, such that, for some s > 0,

lim
λ→∞

λ−s V (λx)− Ṽ (x)

1+ |Ṽ (x)|
= 0 (2-21)

uniformly in x ∈ R2. The function Ṽ is necessarily homogeneous of degree s > 0 and, if we denote by Ẽβ
the TF functional (2-9) with Ṽ in place of V, we have

ETF
β = (1+o(1))Ẽ TF

β and Ẽ TF
β =β

s/(s+2) Ẽ TF
1 as β→∞. �
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Remark 2.5 (Density approximation on finer length scales).
We conjecture that the estimate (2-20) can be improved to show that %af is close to %TF

β on finer scales.
Namely (2-20) implies that they are close on length scales of order β1/(2+s), which is the extent of the
support of %TF

β , but we expect them to be close on scales � β−s/(2(s+2)), which is the smallest length
scale appearing in our proofs. We however believe that the density convergence cannot hold on scales
smaller than β−s/(2(s+2)), for we expect the latter to be the length scale of a vortex lattice developed by
minimizers. �

Remark 2.6 (Large β limit for the homogeneous gas on bounded domains).
We can think of the homogeneous gas by formally taking the limit s→∞ of the homogeneous potentials
we have considered so far, which naturally leads to the restriction of the functional E af in (1-1) to bounded
domains � with V = 0 and Dirichlet boundary conditions, that is, (2-1)–(2-3). In fact, we have by the
scaling laws discussed in Section 3B,

lim
β→+∞

E(�, β, 1)
β

= lim
β→+∞

E0(�, β, 1)
β

= |�|−1e(1, 1) (2-22)

for any bounded and simply connected � with Lipschitz boundary. Convergence of the density to the TF
minimizer %TF

1 holds true in the same form as in (2-20). In this case %TF
1 is simply the constant function

on the domain (confirming that the gas is indeed homogeneous). The shortest length scale on which we
expect (but cannot prove) the density convergence is β−1/2, which should be the typical length scale of
the vortex structure. �

3. Proofs for the homogeneous gas

The basic ingredient of the proof for the inhomogeneous case is the understanding of the thermodynamic
limit of the model where the trap is replaced by a finite domain with sharp walls. We discuss this here,
proving Theorem 2.1 and defining the constant e(1, 1) appearing in the TF functional (2-9). For the sake
of concreteness we first set

e(β, ρ) := lim inf
L→∞

E0(L�,β, ρL2
|�|)

L2|�|
(3-1)

for � equal to a unit square and observe that such a quantity certainly exists and is nonnegative. At this
stage it might as well be infinite but we are going to prove that actually the limit exists, is finite, and
furthermore is independent of the domain shape.

We briefly outline here the plan for the proof: Section 3A contains basic technical estimates that we
are going to use throughout the paper. Section 3B contains the proof of a crucial scaling property of the
energy in the homogeneous case. In Section 3C we prove the existence of the thermodynamic limit for
the case of squares, and then extend the result to general domains.

3A. Toolbox. Let us gather a few lemmas that will be used repeatedly in the sequel. We start with a
variational a priori upper bound confirming that the energy scales like the area. The idea of the proof,
relying deeply on the magnetic nature of the interaction, will be employed again several times.
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Lemma 3.1 (Trial upper bound).
For any fixed bounded domain �, and β, ρ > 0, there exists a constant C > 0 such that

E(L�,β, ρL2
|�|)

L2 6
E0(L�,β, ρL2

|�|)

L2 6 C, for all L > 1.

Proof. Since H 1
0 (�)⊆ H 1(�), it is trivial that the Dirichlet energy is an upper bound to the Neumann

energy. Let us then prove the second inequality.
We fill the domain L� with N ∼ L2 subdomains on which we use fixed trial states with Dirichlet

boundary conditions. The crucial observation is that the magnetic interactions between subdomains can
be canceled by a suitable choice of phase (local gauge transformation). For concreteness we here take
disks as our subdomains.

Let f ∈ C∞c (B1(0);R+) be a radial function with
∫

B1(0)
| f |2 = 1, and let

u j (x) :=
√
ωN f (x− xj ) ∈ C∞c (Bj ), ωN := ρL2

|�|/N.

Here the points xj , j = 1, . . . ,N, are distributed in L� in such a way that the disks Bj := B1(xj ) are
contained in L� and disjoint, with N ∼ c|L�| as L→∞ for some c > 0. Hence

lim
N→∞

ωN = ρ/c.

Take then the trial state

u(x) :=
N∑

j=1

u j (x)e−iβωN
∑

k 6= j arg(x−xk) ∈ C∞c (L�).

Note that its phase is smooth on each piece Bj of its support and that

|u(x)|2 =
N∑

j=1

|u j (x)|2 =
{
|u j (x)|2 for x ∈ Bj ,

0 otherwise,

and hence ∫
L�
|u|2 = NωN = ρL2

|�|.

Then

E af
�,β[u] =

N∑
j=1

∫
Bj

∣∣(−i∇ +β
∑N

k=1 A[|uk |
2
]
)
e−iβωN

∑
k 6= j arg(x−xk)u j (x)

∣∣2 dx

=

N∑
j=1

∫
Bj

∣∣(−i∇ +βA[|u j |
2
] +

∑
k 6= j

(
βA[|uk |

2
] −βωN∇ arg(x− xk)

))
u j (x)

∣∣2 dx

=

N∑
j=1

∫
Bj

∣∣(−i∇ +βA[|u j |
2
]
)
u j
∣∣2 = NωN

∫
B1(0)

∣∣(−i∇ +βωN A[| f |2]
)

f
∣∣2,

where we used that by Newton’s theorem [Lieb and Loss 2001, Theorem 9.7]

A[|uk |
2
](x)=∇⊥

∫
Bk

ln |x− y||uk( y)|2 d y =∇⊥ ln |x− xk |

∫
Bk

|uk |
2 d y = ωN∇ arg(x− xk)
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for x /∈ Bk . It then follows that

E0(L�,β, ρL2
|�|)6 E af

�,β[u]6 NωN
(
‖∇ f ‖L2 +βωN

∥∥A[| f |2] f
∥∥

L2

)2
6 C L2

for some large enough constant C > 0 independent of N or L (but possibly depending on β, ρ and �). �

The following well-known inequalities provide useful a priori bounds on the functional’s minimizers:

Lemma 3.2 (Elementary magnetic inequalities).
Diamagnetic inequality: for any β ∈ R and u ∈ H 1(�),∫

�

∣∣(∇ + iβA[|u|2]
)
u
∣∣2 > ∫

�

∣∣∇|u|∣∣2. (3-2)

Magnetic L4 bound: for any β ∈ R and u ∈ H 1
0 (�),∫

�

∣∣(∇ + iβA[|u|2]
)
u
∣∣2 > 2π |β|

∫
�

|u|4. (3-3)

Proof. The diamagnetic inequality is, e.g., given in [Lieb and Loss 2001, Theorem 7.21], while the
L4 bound follows immediately from the well-known inequality∫

�

∣∣(∇ + i A)u
∣∣2 >± ∫

�

curl A |u|2, u ∈ H 1
0 (�); (3-4)

see, e.g., [Fournais and Helffer 2010, Lemma 1.4.1].
A proof of (3-4) is to integrate the identity

|(∇ + i A)u|2 =
∣∣((∂1+ i A1)± i(∂2+ i A2))u

∣∣2± curl J[u] ± A · ∇⊥|u|2,

with
J[u] := i

2
(u∇ū− ū∇u).

Thanks to the Dirichlet boundary conditions, the integral of the next-to-last term vanishes, while the last
one can be integrated by parts yielding

∓

∫
�

curl A |u|2.

Again, no boundary terms are present because of the vanishing of u on ∂�. Dirichlet boundary conditions
are necessary since the bound (3-4) (resp. (3-3)) is otherwise invalid as A→ 0 (resp. β→ 0), as can be
seen by taking the trial state u ≡ 1. �

In order to perform energy localizations we shall also need an IMS-type inequality,3 i.e., a suitable
generalization of the well-known localization formula [Cycon et al. 1987, Theorem 3.2]:

|∇u|2 = |∇(χu)|2+ |∇(ηu)|2−
(
|∇χ |2+ |∇η|2

)
|u|2, (3-5)

where χ2, η2 form a partition of unity.

3The initials IMS may refer either to Israel Michael Sigal or to Ismagilov–Morgan–Simon.
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Lemma 3.3 (IMS formula).
Let � ⊆ R2 be a domain with Lipschitz boundary and χ2

+ η2
= 1 be a partition of unity such that

χ ∈ C∞c (�) and suppχ is simply connected. Then, for any u ∈ H 1(�) and β ∈ R,

E af
�,β[u] =

∫
�

∣∣(∇ + iβA[|u|2]
)
(χu)

∣∣2+ ∫
�

∣∣(∇ + iβA[|u|2]
)
(ηu)

∣∣2− ∫
�

(
|∇χ |2+ |∇η|2

)
|u|2, (3-6)

where ∫
�

∣∣(∇ + iβA[|u|2]
)
(ηu)

∣∣2 > ∫
�

∣∣∇|ηu|
∣∣2 (3-7)

and

∫
�

∣∣(∇ + iβA[|u|2]
)
(χu)

∣∣2 >


∫
�

∣∣∇|χu|
∣∣2,

2π |β|
∫
�

χ2
|u|4,

(1− ε)E af
�,β[ψ] − (ε

−1
− 1)β2

∫
�

∣∣A[|ηu|21K
]∣∣2 |χu|2,

(3-8)

with ε ∈ (0, 1) arbitrary, K := suppχ ∩ supp η, and ψ = eiβφχu ∈ H 1
0 (suppχ) for some harmonic

function φ ∈ C2(suppχ).

Proof. We expand

E af
�,β[u] =

∫
�

|∇u|2+ 2β
∫
�

A[|u|2] · J[u] +β2
∫
�

∣∣A[|u|2]∣∣2 |u|2.
For the first term we use the standard IMS formula (3-5), while for the term involving J we have

2
i
(

J[χu] + J[ηu]
)
= uχ∇(χ ū)+ uη∇(ηū)− ūχ∇(χu)− ūη∇(ηu)

= u(χ2
+ η2)∇ū− ū(χ2

+ η2)∇u = 2
i

J[u].

We can then recollect the terms to obtain (3-6). Equation (3-7) and the first version of (3-8) follow from
the diamagnetic inequality (3-2), while the second version of (3-8) follows from the magnetic bound (3-3)
with Dirichlet boundary conditions. For the third version we write∫
�

∣∣(∇+iβA[|u|2]
)
(χu)

∣∣2=∫
�

∣∣(∇+iβA[|χu|2]+iβA[|ηu|2 1K ]+iβ
(

A[|ηu|2 1K c ]−∇φ
))
(eiβφχu)

∣∣2,
where the last magnetic term vanishes by taking the gauge choice

φ(x) :=
∫

K c
arg(x− y)|ηu( y)|2 d y, x ∈ suppχ.

Thus, noting that |χu|2 = |ψ |2,∫
�

∣∣(∇ + iβA[|u|2]
)
(χu)

∣∣2 = ∫
�

∣∣(∇ + iβA[|ψ |2]
)
ψ + iβA[|ηu|2 1K ]ψ

∣∣2,
and we can conclude by expanding the square and bounding the cross-term using Cauchy–Schwarz. �
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3B. Scaling laws. In fact the large β and large volume limits are equivalent, as follows from the simple
observation:

Lemma 3.4 (Scaling laws for the homogeneous gas).
For any domain �⊂ R2 and λ,µ > 0 we have

E(�, β,M)=
1
λ2 E

(
µ�, x

β

λ2µ2 , λ
2µ2 M

)
, (3-9)

and an identical scaling relation holds true for E0(�, β,M).

Proof. Given any u ∈ H 1(�) we may set

uλ,µ(x) := λu(x/µ), (3-10)

and observe that uλ,µ ∈ H 1(µ�),∫
µ�

|uλ,µ|2 = λ2µ2
∫
�

|u|2 and E af
µ�,β[uλ,µ] = λ

2E af
�,βλ2µ2[u].

Namely, using ∇⊥w0(x)= x−⊥ := x⊥/|x|2 and

Aµ�[|uλ,µ|2](x)=
∫
µ�

(x− y)−⊥|uλ,µ( y)|2 d y = λ2
∫
µ�

(x− y)−⊥|u( y/µ)|2 d y

= λ2µ

∫
�

(x/µ− z)−⊥|u(z)|2 dz = λ2µA�[|u|2](x/µ),

we have

E af
µ�,β[uλ,µ] =

∫
µ�

∣∣∇uλ,µ(x)+ iβAµ�[|uλ,µ|2](x)uλ,µ(x)
∣∣2 dx

=

∫
µ�

∣∣λµ−1(∇u)(x/µ)+ iβλ3µA�[|u|2](x/µ)u(x/µ)
∣∣2 dx

= λ2µ−2
∫
µ�

∣∣(∇u)(x/µ)+ iβλ2µ2 A�[|u|2](x/µ)u(x/µ)
∣∣2 dx

= λ2
∫
�

∣∣∇u(z)+ iβλ2µ2 A�[|u|2](z)u(z)
∣∣2 dz = λ2E af

�,βλ2µ2[u].

Hence, we may take as a trial state for E af
µ�,βλ−2µ−2 the function uλ,µ, where u is the minimizer (or

minimizing sequence) of E af
�,β , and vice versa. Moreover, if u ∈ H 1

0 then so is uλ,µ. �

It follows immediately from the above that the thermodynamic energy has a very simple dependence
on its parameters, which justifies (2-6) and the way it appears in (2-9).

Corollary 3.5 (Scaling laws for e(β, ρ)).
For any ρ > 0 and bounded �⊂ R2, with e(β, ρ) defined as in (3-1), we have

e(1, ρ)= |�| lim inf
β→∞

E0(�, β, ρ)

β
, (3-11)

and for any β, ρ > 0,
e(β, ρ)= βρ2e(1, 1). (3-12)
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Remark 3.6. At the moment each shape of the domain � may give rise to a different limit e(β, ρ) in
(3-1), and this corollary and proof apply in such a situation. However, it will be shown below in the case
of Lipschitz regular domains that the limit is independent of the shape, and one may therefore without
loss of generality take the unit square �= Q as a reference domain.

Proof. A first consequence of the scaling property (3-9) is that taking the thermodynamic limit as described
in (2-5) or (3-1) is equivalent to taking the limit β→∞ at a fixed size of the domain, i.e.,

e(c, ρ)= lim inf
L→∞

E0(L�, c, ρ|�|L2)

L2|�|
= lim inf

L→∞

E0(�, cL2
|�|, ρ)

L2 ,

where we have applied (3-9) with µ = L , λ = |�|1/2 and M = ρ. Now if, for any c > 0, we set
β = cL2

|�| →∞, the above expression becomes

e(c, ρ)= c|�| lim inf
β→∞

E0(�, β, ρ)

β
, (3-13)

which proves the first claim, and also implies

e(c, ρ)= c e(1, ρ). (3-14)

Next we take µ= 1 in (3-9) and obtain

E0(�, β,M)= λ−2 E0(�, βλ
−2, λ2 M).

Taking M = |�|, dividing by |�| and taking the limit |�| →∞, we deduce

e(β, 1)= λ−2e(βλ−2, λ2)= λ−4e(β, λ2),

where we used (3-14) in the last equality. This yields

e(β, ρ)= ρ2e(β, 1) (3-15)

for all β, ρ > 0. Combining (3-14) and (3-15) yields the result (3-12). �

3C. Proof of Theorem 2.1. We split the proof in three lemmas:

Lemma 3.7 (Thermodynamic limit for the Dirichlet energy in a square).
Let Q be a unit square, and ρ > 0 and β > 0 be fixed constants. The limit

e(β, ρ)= lim
L→+∞

E0(L Q, β, ρL2)

L2

exists, is finite, and satisfies e(β, ρ)> 2πβρ2.

Lemma 3.8 (Neumann–Dirichlet comparison).
Let � be a bounded simply connected domain with Lipschitz boundary. Then for any fixed ρ and β
positive, as L→∞

E0(L�,β, ρL2
|�|)

L2|�|
>

E(L�,β, ρL2
|�|)

L2|�|
>

E0(L�,β, ρL2
|�|)

L2|�|
− o(1).
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Lm Q

Ln Q1 · · ·

Ln Q j Ln Qq2
nm

u0

u j knm

Figure 1. Filling the square Lm Q with smaller squares Ln Q j .

Lemma 3.9 (Thermodynamic limit for the Dirichlet energy in a general domain).
Let �⊂ R2 be a bounded simply connected domain with Lipschitz boundary, then

lim
L→+∞

E0(L�,β, ρL2
|�|)

L2|�|
= e(β, ρ). (3-16)

Theorem 2.1 immediately follows from these three results: combining Lemma 3.7 with Lemma 3.8
one obtains the existence of the thermodynamic limit for squares. In order to derive the result for general
domains, one then uses Lemma 3.9 together with Lemma 3.8. Notice that the proof of Lemma 3.9 requires
only Lemmas 3.7 and 3.8 for squares as key ingredients.

Proof of Lemma 3.7. From Lemma 3.1 we know that the sequence of energies per unit area has both an
upper and lower limit. We denote by (Ln)n∈N and (Lm)m∈N two increasing sequences of positive real
numbers such that Ln→∞, Lm→∞ and

E0(Ln Q, β, ρL2
n)

L2
n

→ lim inf
L→∞

E0(L Q, β, ρL2)

L2 as n→∞,

E0(Lm Q, β, ρL2
m)

L2
m

→ lim sup
L→∞

E0(L Q, β, ρL2)

L2 as m→∞.

For each n, there must exist a sequence of integers

qnm→+∞ as m→∞

such that, for m large enough, e.g., m� n,

Lm = qnm Ln + knm, 06 knm < Ln.

We then build a trial state for E0(Lm Q, β, ρL2
m) as follows (see Figure 1). The square Lm Q must contain

q2
nm disjoint squares of side length Ln that we denote by Ln Q j , j = 1, . . . , q2

nm . Then we pick u j a
minimizer of E0(Ln Q j , β, ρL2

n) and remark that by definition,

q2
nm∑

k=1,k 6= j

curl A[|uk |
2
] = 0 in Ln Q j .
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Thus there exists a gauge phase φj on the simply connected domain Ln Q j such that

q2
nm∑

k=1,k 6= j

A[|uk |
2
] = ∇φj in Ln Q j .

Similarly, there exists φ0 on the remaining part of the domain (which can be arranged to be simply
connected as well, as in Figure 1) such that

q2
nm∑

k=1

A[|uk |
2
] = ∇φ0 on Lm Q \

q2
nm⋃

j=1

Ln Q j .

We define the trial state as (see the proof of Lemma 3.1)

u :=
q2

nm∑
j=1

u j e−iβφj + u0e−iβφ0,

where u0 is a function with compact support in Lm Q \
⋃q2

nm
j=1 Ln Q j satisfying∫

Lm Q
|u0|

2
= ρL2

m − q2
nmρL2

n.

By Lemma 3.1, we can construct u0 such that∫
Lm Q

∣∣(∇ + iβA[|u0|
2
]
)
u0
∣∣2 6 C(L2

m − q2
nm L2

n)6 2C Lmknm

(where C > 0 may depend on β and ρ). The function u is an admissible trial state on Lm Q because it is
in H 1 on each subdomain, and continuous across boundaries due to the Dirichlet boundary conditions
satisfied by each u j . Computing the energy, we have

E af
Lm Q,β[u] =

q2
nm∑

j=0

∫
Lm Q

∣∣e−iφj
(
∇ + iβA[|u|2] − iβ∇φj

)
u j
∣∣2 = q2

nm∑
j=0

∫
Lm Q

∣∣(∇ + iβA[|u j |
2
]
)
u j
∣∣2

=

q2
nm∑

j=1

E af
Ln Q,β[u j ] +

∫
Lm Q

∣∣(∇ + iβA[|u0|
2
]
)
u0
∣∣2 = q2

nm E0(Ln Q, β, ρL2
n)+ O(Lmknm),

with

q2
nm =

L2
m

L2
n

(
1−

knm

Lm

)2

.

Since u has by definition mass ρL2
m , it follows from the variational principle that

E0(Lm Q, β, ρL2
m)

L2
m

6
E0(Ln Q, β, ρL2

n)

L2
n

(
1+ O

(
knm

Lm

))
+ O

(
knm

Lm

)
.
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λ

h

`

χ=1

Figure 2. Localizing on thin shells for the square LQ.

Passing to the limit m→∞ first and then n→∞ yields

lim sup
L→∞

E0(L Q, β, ρL2)

L2 6 lim inf
L→∞

E0(L Q, β, ρL2)

L2 ,

and thus the limit exists.
Additionally, we have by the bound (3-3),

1
L2 E

af
LQ,β[u]>

2πβ
L2

∫
LQ
|u|4 >

2πβ
L4

(∫
LQ
|u|2

)2

for any u ∈ H 1
0 (LQ), proving that e(β, ρ)> 2πβρ2. �

Proof of Lemma 3.8. Since H 1
0 (�)⊆ H 1(�), we obviously have

E0(�, β,M)> E(�, β,M).

Only the second inequality in the statement requires some work. Let u ∈ H 1(L�) denote the minimizer
of E af

L�,β[u] (see Proposition A.1 of the Appendix) with mass∫
L�
|u|2 = ρL2

|�|

and no further constraint (thus satisfying Neumann boundary conditions). In the sequel we take β = 1
and |�| = 1 to simplify the notation.

We will need to make an IMS localization on a small enough region, and therefore consider a division
of L� into a bulk region surrounded by thin shells close to the boundary, where we will be using several
different length scales L−1/3 . λ� 1� L and L−1

� `� h� L (see Figure 2 for the case of �= Q a
square).

We shall use Lemma 3.3 a first time at distance λ from the boundary to deduce some useful a priori
bounds. Next, using a mean-value argument we show that, within a window of thickness h further from
the boundary, there must exist one particular shell of thickness ` where we have a good control on the mass
and energy. Finally we perform a second IMS localization with the truncation located in this particular
shell. This yields a lower bound in terms of the Dirichlet energy in the bulk region, plus error terms that
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we can control using the a priori bounds and in particular the good control on mass and energy in the
second localization shell.

Step 1: a priori bounds. Let δ�(x) := dist(x, ∂(L�)) denote the distance function to the boundary, which
is Lipschitz and satisfies |∇δ�|6 1 a.e. We make a first partition of unity

χ̃2
+ η̃2
= 1

such that χ̃ varies smoothly from 1 to 0 on a shell Kλ of width λ closest to the boundary of L�, i.e.,
Kλ := {x ∈ L� : δ�(x) < λ}. One may note that it is possible to construct these functions so as to satisfy

|∇χ̃ |6 cλ−1χ̃1−µ, |∇η̃|6 cλ−1χ̃1−µ

for some arbitrarily small µ > 0, independent of λ, e.g., by taking χ̃ = f a and η̃ =
√

1− χ̃2 in
supp χ̃ ∩ supp η̃ for a large and some smooth function 06 f 6 1 varying on the right length scale and
reflection symmetric. Then, by Lemmas 3.1 and 3.3,

C L2 > E af
L�,1[u]>

∫
L�

(
2πχ̃2

|u|4+
∣∣∇|η̃u|

∣∣2− (|∇χ̃ |2+ |∇η̃|2)|u|2)
>
∫

L�

(
2πχ̃2

|u|4+
∣∣∇|η̃u|

∣∣2−Cλ−21Kλ
χ̃2−2µ

|u|2
)
. (3-17)

We bound the unwanted negative term as follows:

λ−2
∫

L�
1Kλ

χ̃2−2µ
|u|2 6 λ−2

(∫
Kλ

χ̃2−4µ
)1/2(∫

Kλ

χ̃2
|u|4

)1/2

6 Cλ−3/2L1/2
(∫

Kλ

χ̃2
|u|4

)1/2

6 CδLλ−3
+Cδ−1

∫
L�
χ̃2
|u|4,

with δ a fixed, large enough, constant. Combining with (3-17) we deduce∫
L�

(
2πχ̃2

|u|4+
∣∣∇|η̃u|

∣∣2)6 C L2
+C Lλ−3 6 C L2 (3-18)

since we have chosen λ& L−1/3. We note that this bound implies for the mass in a shell K` of thickness `
in L� \ Kλ ∫

K`

|u|2 6 |K`|
1/2
(∫

K`

χ̃2
|u|4

)1/2

. `1/2L3/2. (3-19)

Step 2: finding a good shell. We now select a region where the bounds (3-18) and (3-19) can be improved.
Consider dividing L� \ Kλ into shells of thickness ` that form a layer closest to the shell Kλ of total
thickness h ∼ L1−ε

� ` (again, see Figure 2). Hence, we have

Ns := h/`� 1

such shells in the layer. Denote by NM the number of such shells K` with
∫

K`
|u|4 > M. If NM < Ns ,

there must exist a shell K` with
∫

K`
|u|46M. But, using (3-18) and the fact that all the shells are included
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in the region where χ̃ = 1, we have

M NM 6
∫

L�
χ̃2
|u|4 6 C L2.

We can thus ensure that NM < Ns by setting

Ns = h/`∼ L1−ε`−1
∼ L2/M,

i.e., taking M ∼ `L1+ε. Hence we have found a shell K` with∫
K`

|u|4 6 C`L1+ε, (3-20)

and thus ∫
K`

|u|2 6 C(`L)1/2(`L1+ε)1/2 = C`L1+ε/2, (3-21)

improving (3-19).

Step 3: IMS localization in the good shell. We now perform a new magnetic localization on this K`. We
pick a partition χ2

+ η2
= 1, such that χ varies smoothly from 1 to 0 outwards on K`, so that χ = 1

(resp. η = 1) on the inner (resp. outer) component of K c
` . Then, using Lemma 3.3, we have

E af
L�,1[u]> (1− δ)E

af
L�,1[ψ] − (δ

−1
− 1)

∫
L�

∣∣A[|ηu|21K ]
∣∣2 |χu|2−

∫
K`

(|∇χ |2+ |∇η|2)|u|2 (3-22)

for any δ ∈ (0, 1), where we let ψ = χeiφu and K = suppχ ∩ supp η ⊆ K`. Since ψ is compactly
supported in L�, we have for the first term

E af
L�,1[ψ]> E0(L�, 1, ‖ψ‖2L2(L�))= E0(L�, 1, ‖χu‖2L2(L�)).

Recalling the scaling relation (3-9) (taking µ= λ−1
= L̃/L) and defining

M =
∫

L�
χ2
|u|2, L̃ =

√
M/ρ,

we have
E0(L�, 1,M)=

M
ρL2 E0(L̃�, 1, ρ L̃2). (3-23)

We need to estimate the deviation of the mass M of χ2
|u|2 from ρL2

=
∫

L� |u|
2:∣∣∣∣ρL2

−

∫
L�
χ2
|u|2

∣∣∣∣= ∫
L�
η2
|u|2 =

∫
L�
η̃2
|u|2+

∫
L�
χ̃2η2
|u|2

6 Cλ2
∫

Kλ

∣∣∇|η̃u|
∣∣2+(∫

L�
η2χ̃2

)1/2(∫
L�
χ̃2
|u|4

)1/2

6 Cλ2L2
+Ch1/2L3/2

� L2. (3-24)

Here we have used a Poincaré inequality to control the η̃2
|u|2 term, making use of the fact that this

function vanishes at the inner boundary of Kλ. It is not difficult (see the proof methods of [Evans 1998,
Theorems 1 and 2 in Section 5.8.1] and [Lieb and Loss 2001, Theorem 8.11]) to realize that the constant



1186 MICHELE CORREGGI, DOUGLAS LUNDHOLM AND NICOLAS ROUGERIE

involved in this inequality applied on the set Kλ can be taken to be proportional to λ2. Note that L̃→∞,
if L→∞, thanks to (3-24). Hence, inserting the above estimate in (3-23), we get

E af
L�,1[ψ]

L2 >
E0(L�, 1,M)

L2 =
M2

(ρL2)2

E0(L̃�, 1, ρ L̃2)

L̃2
= (1+ o(1))

E0(L̃�, 1, ρ L̃2)

L̃2
. (3-25)

Then, there only remains to control the error terms in (3-22): Using the Hölder and generalized Young
inequalities (‖ · ‖p,w denotes the weak-L p norm [Lieb and Loss 2001, Theorem 4.3, Remarks]),∫

L�

∣∣A[|ηu|21K ]
∣∣2 |χu|2 6

∥∥∇w0 ∗ |ηu|21K
∥∥2

2p ‖χu‖22q 6 c‖∇w0‖
2
2,w ‖ηu1K‖

4
2r ‖χu‖22q

6 C
(∫

K`

|ηu|4q/(2q−1)
)(2q−1)/q(∫

L�
|χu|2q

)1/q

,

where
1
p
+

1
q
= 1 and 1+ 1

2p
=

1
2
+

1
r
,

that is,

r =
2q

2q − 1
∈ (1, 2) with q ∈ (1,∞).

We can take q = 2 and insert (3-18)–(3-20) to obtain(∫
K`

|ηu|8/3
)3/2(∫

L�
|χu|4

)1/2

6|K`|
1/2
∫

K`

|ηu|4
(∫

L�
|χu|4

)1/2

.(`L)1/2`L1+ε(L2)1/2=`3/2L5/2+ε.

The last term in (3-22) is, using (3-21), bounded by

c`−2
∫

K`

|u|2 . `−1L1+ε/2.

There only remains to optimize the error terms in (3-22):

δE0(L�, 1, ‖ψ‖2L2(L�))+ c1(δ
−1
− 1)`3/2L5/2+ε

+ c2`
−1L1+ε/2 6 c3δL2

+ c4δ
−2/5L8/5+7ε/10,

where we have picked `= L−3/5−ε/5δ2/5, assuming that δ� 1, as it will be. Thus, optimizing now over δ,
i.e., taking δ ∼ L−2/7+ε/2, we have the bounds

E0(L�, 1, ρL2)

L2 >
E(L�, 1, ρL2)

L2 >
E0(L�, 1, ‖ψ‖2L2(L�))

L2 − cL−2/7+ε/2. (3-26)

Combining with (3-25) and passing to the liminf completes the proof. �

Proof of Lemma 3.9. The result is proven as usual by comparing suitable upper and lower bounds to the
energy.

Step 1: upper bound. We first cover L� with squares Q j , j = 1, . . . , N`, of side length `= Lη, 0<η< 1,
retaining only the squares Q j completely contained in L�. One can estimate the area not covered by
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such squares as ∣∣∣∣� \( N⋃̀
j=1

Q j

)∣∣∣∣6 C`L = o(L2). (3-27)

Then we define the trial state

u(x) :=
N∑̀
j=1

u j e−iβφj , (3-28)

where
u j (x) := u0(x− xj )1Q j , (3-29)

with u0 a minimizer of the Dirichlet problem with mass ρL2
|�|/N` in a square Q with side length `

centered at the origin, and xj the center point of Q j . The phases φj are chosen in such a way that (see the
proof of Lemma 3.1 again)

N∑̀
k=1,k 6= j

A[|uk |
2
] = ∇φj in Q j .

The existence of such phases is indeed guaranteed by the fact that

N∑̀
k=1,k 6= j

curl A[|uk |
2
] = 0 in Q j .

Hence

E af
L�,β[u] =

N∑̀
j=1

E af
Q j ,β
[u j ] =

N∑̀
j=1

E0(`Q, β, ρL2
|�|N−1

` ),

which implies

E0(L�,β, ρL2)

L2|�|
6

1
L2|�|

N∑̀
j=1

E0(`Q, β, ρL2
|�|N−1

` )

=
`2

L2|�|

N∑̀
j=1

E0(`Q, β, (1+ o(1))ρ`2)/`2
= (1+ o(1))e(β, ρ), (3-30)

where we have estimated

N` =

∣∣⋃
j Q j

∣∣
|Q j |

=
(1+ o(1))L2

|�|

`2 , (3-31)

and used Lemma 3.7. Notice that, thanks to the assumption on η, we have `→∞, which is crucial in
order to apply Lemma 3.7.

Step 2: lower bound. We again cover L� with squares Q j , j = 1, . . . , N`, this time keeping the full
covering but still having `2 N`/|L�|→ 1 as L→∞. We pick a minimizer uaf

= uaf
L ∈ H 1

0 (L�) of E af
L�,β ,

with mass ρL2
|�|, and set

uaf
j := uaf1Q j , ρj := −

∫
Q j

|uaf(x)|2 dx. (3-32)
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The idea of the proof is reminiscent of that in the upper bound part: we gauge away the magnetic
interaction between the cells, and this leads to a lower bound in terms of the Neumann energy of the cells.

Note that uaf
j ∈ H 1(Q j ) for each j , and

N∑̀
j=1

ρj`
2
= ρL2

|�|.

Before estimating the energy, we need to distinguish between squares with sufficient mass and squares
which will not contribute to the energy to leading order. We thus set

QL :=
{

Q j , j ∈ {1, . . . , N`} : ρj > L−2η+δ} (3-33)

for some 0< δ < 2η. Note that the mass concentrated outside cells QL is relatively small:∑
Q j /∈QL

ρj`
2 6 C`2 N`L−2η+δ

= o(L2). (3-34)

We can now estimate, using the gauge covariance of the functional on each Q j ,

E0(L�,β, ρL2
|�|)= E af

L�,β[u
af
]>

N∑̀
j=1

∫
Q j

∣∣(−i∇ +βA[|uaf
|
2
]
)
uaf∣∣2

=

N∑̀
j=1

∫
Q j

∣∣(−i∇ +βA[|uaf
j eiβφj |

2
]
)
uaf

j eiβφj
∣∣2

>
N∑̀
j=1

ρj`
2 E(`Q, β, ρj`

2)

ρj`2 >
∑

j :Q j∈QL

ρ2
j `

2
E(`j Q, β, `2

j )

`2
j

, (3-35)

where φj satisfies (observe that the left-hand side is curl-free on Q j )

N∑̀
k=1,k 6= j

A[|uaf
k |

2
] = ∇φj in Q j ,

and in the last step we used the scaling law (3-9) with µ= 1/λ=√ρj . Also,

`j :=
√
ρj`> Lδ/2→+∞ as L→∞

uniformly in j for cells Q j ∈QL , and we thus conclude by Lemmas 3.7 and 3.8 that

1
L2|�|

E0(L�,β, ρL2
|�|)> (1− o(1))

e(β, 1)
L2|�|

∑
j :Q j∈QL

ρ2
j `

2
= (1− o(1))

e(β, 1)
L2|�|

∫
Q
%̄2, (3-36)

where we consider here the step function %̄ :=
∑

j :Q j∈QL
ρj 1Q j and denote by Q the union of the cells QL .

It remains then to observe that the constrained minimum

B =min
{∫

Q
%2
: 06 % ∈ L2(Q),

∫
Q
% = (1− o(1))ρL2

|�|

}
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is achieved by % constant and thus∫
Q
%̄2 > B =

(
(1− o(1))ρL2

|�|
)2
|Q|−1 > (1− o(1))ρ2L2

|�|.

Inserting this in (3-36) and using ρ2e(β, 1)= e(β, ρ) leads to the desired energy lower bound. �

4. Proofs for the trapped gas

4A. Local density approximation: energy upper bound. Here we prove the upper bound corresponding
to (2-19):

Eaf
β 6 ETF

β (1+ o(1)) as β→∞. (4-1)

We start by covering the support of %TF
β with squares Q j , j = 1, . . . , Nβ , centered at points xj and of

side length L with

L = βη, −
s

2(s+ 2)
< η <

1
s+ 2

. (4-2)

We choose the tiling in such a way that for any j = 1, . . . , Nβ , we have Q j ∩ supp(%TF
β ) 6=∅. The upper

bound on L indicates that the length scale of the tiling is much smaller than the size of the TF support.
The lower bound ensures that it is much larger than the scale on which we expect the fine structure of the
minimizer to live.

Our trial state is defined much as in the proof of Lemma 3.9:

utest
:=

Nβ∑
j=1

u j e−iβφj, (4-3)

where u j realizes the Dirichlet infimum

E0(Q j , β,Mj ) :=min
{
E af

j [u] : u ∈ H 1
0 (Q j ),

∫
Q j
|u|2 = Mj

}
,

where of course

E af
j [u] = E af

Q j ,β
[u] =

∫
Q j

∣∣(−i∇ +βA[|u|2]
)
u
∣∣2

and we set

Mj =

∫
Q j

|u j |
2
:=

∫
Q j

%TF
β , ρj := Mj/L2

=−

∫
Q j

%TF
β . (4-4)

The phase factors in (4-3) are again defined so as to gauge away the interaction between cells, i.e.,

Nβ∑
k=1,k 6= j

A[|uk |
2
] = ∇φj in Q j .
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This construction yields an admissible trial state since utest is locally in H 1, continuous across cells by
being zero on the boundaries, and clearly∫

R2
|utest
|
2
=

Nβ∑
j=1

∫
Q j

|u j |
2
=

Nβ∑
j=1

∫
Q j

%TF
β = 1.

Much as in the proofs of Lemmas 3.1 and 3.9 we thus obtain

Eaf
β 6 E af

β [u
test
] =

Nβ∑
j=1

E af
j [u j ] +

∫
R2

V |utest
|
2
=

Nβ∑
j=1

E0(Q j , β,Mj )+

∫
R2

V |utest
|
2. (4-5)

Our task is then to estimate the right-hand side.
We denote, for some ε > 0 small enough

Sε =
{

x ∈ supp(%TF
β ) : %

TF
β (x)> β

−2/(s+2)−ε}
and split the above sum into two parts, distinguishing between cells fully included in Sε and the others.
Using (2-13), it is clear that ∣∣supp(%TF

β ) \ Sε
∣∣6 Cβ1/(s+2)

·β1/(s+2)−ε,

where the first factor comes from the dilation transforming %TF
1 into %TF

β and the second one is an estimate
of the thickness of Sε based on (2-16)–(2-18).

By a simple estimate of the potential V in the vicinity of Sε, we obtain∑
j :Q j*Sε

∫
Q j

V |u j |
2 6 Cβs/(s+2)

·β2/(s+2)−ε
·β−2/(s+2)−ε

= Cβs/(s+2)−2ε
� ETF

β ,

where the factor βs/(s+2) accounts for the supremum of V, the factor β2/(s+2)−ε for the volume of the
integration domain and the factor β−2/(s+2)−ε for the typical value of |u j |

2 on this domain. Also, using in
addition Lemmas 3.4 and 3.1, we deduce∑

j :Q j*Sε

E0(Q j , β,Mj )=
∑

j :Q j*Sε

E0(β
ηQ, β, β2ηρj )� ETF

β .

For the main part of the sum in (4-5) we use the scaling law (take λ=√ρj and µ=
√
βρj in Lemma 3.4)

to write
E0(Q j , β,Mj )= ρj E0(L

√
βρj Q, 1, L2βρj ),

with Q the unit square. Then∑
j :Q j⊆Sε

E0(Q j , β,Mj )=
∑

j :Q j⊆Sε

L2βρ2
j e(1, 1)+

∑
j :Q j⊆Sε

L2βρ2
j

(E0(L j Q, 1, L2
j )

L2
j

− e(1, 1)
)

with, provided ε is suitably small and in view of the lower bound in (4-2) and the fact that we sum over
squares included in Sε,

L j := L
√
βρj > β

η+s/(2(s+2))−ε/2
→+∞, uniformly with respect to j = 1, . . . , Nβ .
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We thus obtain (recall the definition of the thermodynamic energy in (2-5))

E0(L j Q, 1, L2
j )

L2
j

→ e(1, 1) as L j →∞

uniformly in j , and deduce that∑
j :Q j⊂Sε

E0(Q j , β,Mj )= (1+ o(1))βe(1, 1)
∑

j :Q j⊂Sε

ρ2
j L2.

Recalling that

ρj =−

∫
Q j

%TF
β (x) dx,

we recognize a Riemann sum in the above. Using (2-17) and the upper bound in (4-2) we may approximate
%TF
β by a constant in each square (this is most easily seen by rescaling to %TF

1 and observing that the size
of squares then tends to zero), and bound the part of the integral located in the complement of Sε in the
same way as above to conclude that∑

j :Q j⊂Sε

E0(Q j , β,Mj )= (1+ o(1))βe(1, 1)
∫

R2
(%TF
β )

2.

Using (2-11) and (2-16) we obtain

|∇V (x)|6 Cβ(s−1)/(s+2)

for any x ∈ Sε. Combining with (4-2) we deduce as above that∑
j :Q j⊂Sε

∫
Q j

V |u j |
2
= (1+ o(1))

∫
R2

V%TF
β

and this completes the proof of (4-1).

4B. Local density approximation: energy lower bound. Let us now complement (4-1) by proving the
lower bound

Eaf
β > ETF

β (1+ o(1)), (4-6)

thus completing the proof of (2-19). We again tile the plane with squares Q j , j = 1, . . . , Nβ , of side
length

L = βη

satisfying (4-2), and taken to cover the finite disk Bβ t (0) with

t := 1
2+s
+ ε

for some ε > 0 to be chosen small enough. We also define

Qβ :=
{

Q j ⊂ Bβ t (0) : L
√
ρjβ > β

µ
}
, (4-7)
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where uaf
= uaf

β is a minimizer for E af
β with unit mass and

ρj := −

∫
Q j

|uaf(x)|2 dx.

Define the piecewise constant function

%̄af(x) :=
∑

Q j∈Qβ

ρj 1Q j (x). (4-8)

We claim that one may find some µ > 0 in (4-7) such that

M :=
∫

R2
%̄af
→ 1 as β→∞. (4-9)

Indeed, using (2-11) and (2-12) we get that for any x ∈ Bc
β t (0)

V (x)> Cβst min
Bc

1(0)
V > Cβst

for β large enough. Thus, using the energy upper bound (4-1) and dropping some positive terms we
obtain

βst
∫

Bc
βt (0)
|uaf
|
2 6

∫
R2

V |uaf
|
2 6 E af

β [u
af
]6 Cβs/(s+2)

and thus ∫
Bc
βt (0)
|uaf
|
2 6 Cβ−sε. (4-10)

On the other hand, by the definition of Qβ ,∑
Q j /∈Qβ

∫
Q j

|uaf
|
2 6 Nββ2µ−1,

where Nβ is the total number of squares needed to tile Bβ t (0). Clearly, we may estimate Nβ 6Cβ2t L−2
=

Cβ2(t−η) and then ∑
Q j /∈Qβ

∫
Q j

|uaf
|
2 6 Cβ2t−2η+2µ−1

� 1 (4-11)

because of (4-2), which implies −s/(s+ 2)− 2η < 0, and provided we take ε and µ positive and small
enough, e.g. (recall that L = βη is the side length of the tiling squares),

0< ε 6
1
4

(
s

s+ 2
+ 2η

)
, 0< µ6 ε. (4-12)

Combining (4-10) and (4-11) and recalling that uaf is L2-normalized proves (4-9).
With this in hand we turn to the energy lower bound per se. Let us again set

uaf
j = uaf1Q j , Mj = ρj L2

=

∫
Q j

|uaf
|
2.
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Dropping some positive terms we get

Eaf
β = E af

β [u
af
]>

∑
Q j∈Qβ

∫
Q j

{∣∣(−i∇ +βA[|uaf
|
2
]
)
uaf∣∣2+ V |uaf

|
2}

=

∑
Q j∈Qβ

∫
Q j

{∣∣(−i∇ +βA[|uaf
j eiβφj |

2
]
)
uaf

j eiβφj
∣∣2+ V |uaf

j |
2}

>
∑

Q j∈Qβ

{
E(Q j , β,Mj )+

∫
Q j

V |uaf
j |

2
}

>
∑

Q j∈Qβ

{
ρj E

(
L
√
βρj Q, 1, (L

√
βρj )

2)
+

∫
Q j

V |uaf
j |

2
}
, (4-13)

where the local gauge phase factors are defined as in previous arguments by demanding that (this is again
possible because the left-hand side is curl-free in the simply connected domain Q j )

Nβ∑
k=1,k 6= j

A[|uaf
k |

2
] = ∇φj in Q j .

The minimum (Neumann) energy E(Q j , β,Mj ) in the square Q j is defined as in (2-4) and we used the
scaling laws following from Lemma 3.4 as previously to obtain

E(Q j , β,Mj )= ρj E
(
L
√
βρj Q, 1, (L

√
βρj )

2),
with Q the unit square. Next, we note that (4-2) and (4-7) imply, using (4-12),

L j = L
√
βρj > β

µ
→∞

uniformly in j for all j such that Q j ∈Qβ . Then, by Theorem 2.1,∑
Q j∈Qβ

ρj E
(
L
√
βρj Q, 1, (L

√
βρj )

2)
=

∑
Q j∈Qβ

βL2ρ2
j E(L j Q, 1, L2

j )/L2
j

= (1+ o(1))βe(1, 1)
∑

Q j∈Qβ

L2ρ2
j = (1+ o(1))βe(1, 1)

∫
R2
(%̄af)2.

On the other hand, it follows from (2-11) that, on all the squares of Qβ ,

|∇V |6 Cβ(s−1)/(s+2)+ε(s−1),

and thus if

Ṽ (x) :=
∑

Q j∈Qβ

V (xj )1Q j (x), (4-14)

we have

|V (x)− Ṽ (x)|6 C Lβ(s−1)/(s+2)+ε(s−1)
= o(ETF

β ) for any x ∈Qβ .
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Recalling (4-8) and (4-9) we then have∑
Q j∈Qβ

∫
Q j

V |uaf
j |

2
=

∫
R2

Ṽ %̄af
+ O(Lβ(s−1)/(s+2)+ε(s−1))=

∫
R2

Ṽ %̄af
+ o(ETF

β ). (4-15)

The last assertion follows from (2-13) and (4-2), provided we take ε small enough; e.g., for s > 1 (recall
that the tiling squares have side length L = βη),

ε 6
1

2(s− 1)

(
s− 1
s+ 2

+ η

)
. (4-16)

In the very same way however we can put back V in place of Ṽ, obtaining∑
Q j∈Qβ

∫
Q j

V |uaf
j |

2
=

∫
R2

Ṽ %̄af
+ o(ETF

β )=

∫
R2

V %̄af
+ o(ETF

β ). (4-17)

Combining (4-13), (4-15) and (4-17) yields

Eaf
β >

∫
R2

V %̄af
+ (1+ o(1))βe(1, 1)

∫
R2
(%̄af)2+ o(ETF

β )

> (1+ o(1))E TF
β [%̄

af
] + o(ETF

β )> (1+ o(1))ETF
β (M)+ o(ETF

β ), (4-18)

where the latter energy denotes the ground state energy of the TF functional (2-9) minimized under the
constraint that the L1-norm be equal to M. Inserting (4-9) and using explicit expressions as in (2-13)
and (2-14), one obtains

ETF
β (M)= (1+ o(1))ETF

β

in the limit β→∞, thus completing the proof of (4-6).

4C. Density convergence. The lower bound in (4-6) together with the energy upper bound (4-1) implies
that %̄af, the piecewise constant approximation of %af on scale L = βη, is close in strong L2 sense to %TF

β .
We will deduce (2-20) from the following.

Lemma 4.1 (Convergence of the piecewise approximation).
Let %̄af be defined as in (4-8) and %TF

β be the minimizer of (2-9). Then

‖%̄af
− %TF

β ‖L2(R2) = o(β−1/(s+2)) (4-19)

in the limit β→∞.

Proof. Combining (4-1) and (4-18) we have

E TF
β [%̄

af
]6 Eaf

β + o(1)βs/(s+2) 6 ETF
β + o(1)βs/(s+2). (4-20)

The variational equation for %TF
β takes the form

2βe(1, 1)%TF
β + V = λTF

β = ETF
β +βe(1, 1)

∫
R2
(%TF
β )

2
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on the support of %TF
β (recall (2-14) and (2-15)). Thus,∫

R2
(%̄af
− %TF

β )
2
=

∫
R2

(
(%̄af)2+ (%TF

β )
2)
− 2

∫
R2
%̄af%TF

β

=

∫
R2
(%̄af)2+

∫
R2
(%TF
β )

2
−

1
βe(1, 1)

∫
R2
%̄af(λTF

β − V )+

6
1

βe(1, 1)

[
E TF
β [%̄

af
] − λTF

β +βe(1, 1)
∫

R2
(%TF
β )

2
]

=
1

βe(1, 1)
[E TF
β [%̄

af
] − ETF

β ] = o(β−2/(s+2)),

where we used (4-20) in the last step. �

By the definition (4-8) of %̄af we also have, for any Lipschitz function φ with compact support,∫
R2
φ(β−1/(s+2)x)%̄af(x) dx =

Nβ∑
j=1

∫
Q j

φ(β−1/(s+2)x) %̄af(x) dx

=

Nβ∑
j=1

φ(β−1/(s+2)xj )

∫
Q j

%af(x) dx+ O(βη−1/(s+2)
‖φ‖Lip)

=

∫
R2
φ(β−1/(s+2)x) %af(x) dx+ O(βη−1/(s+2)

‖φ‖Lip),

using the normalization of %af. Furthermore, by Cauchy–Schwarz and Lemma 4.1 we obtain∫
R2
φ(β−1/(s+2)x)

(
%̄af(x)− %TF

β (x)
)

dx = o(1)‖φ‖L2(R2).

Since the above estimates are uniform with respect to the Lipschitz norm of φ, we can take η < 1/(s+2),
change scales in the above and recall (2-13) to deduce

sup
φ∈C0(BR(0))
‖φ‖Lip61

∣∣∣∣∫
R2
φ(x)

(
β2/(s+2)%af(β1/(s+2)x)− %TF

1 (x)
)

dx
∣∣∣∣= o(1), β→∞,

for fixed R > 0, and hence (2-20).

Appendix: Properties of minimizers

In this appendix we recall a few fundamental properties of the average-field functional (1-1) in a trap V,
respectively (2-1) on a domain �, as well as their minimizers.

As discussed in [Lundholm and Rougerie 2015, Appendix], the natural, maximal domain of E af is

Daf
:=
{
u ∈ H 1(�) :

∫
R2 V |u|2 <∞

}
,

and one may also use that the space C∞c (R
2) is dense in this form domain with respect to E af. Furthermore,

[Lundholm and Rougerie 2015, Appendix: Proposition 3.7] ensures the existence of a minimizer uaf
∈Daf
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of E af
β for any value of β ∈ R for confining potentials V, and by a similar proof and the compactness of

the embedding H 1
0 (�)⊂ H 1(�) ↪→ L p(�), 16 p<∞, the same holds for E af

� for any bounded � with
Lipschitz boundary:

Proposition A.1 (Existence of minimizers).
Let β ∈ R be arbitrary. Given any V : R2

→ R+ such that −1+ V has compact resolvent, there exists
uaf
∈Daf with

∫
R2 |uaf

|
2
= 1 and E af

β [u
af
]= Eaf. Moreover, if M > 0 and�⊂R2 is bounded with Lipschitz

boundary then there exists uaf
∈ H 1

(0)(�) with
∫
�
|uaf
|
2
= M and E af

�,β[u
af
] = E(0)(�, β,M).

Proof. The first part is [Lundholm and Rougerie 2015, Appendix: Proposition 3.7]. For �⊂ R2 we have
by the Hölder, weak Young, and Sobolev inequalities, as well as Lemma 3.2, that∥∥A[|u|2]u

∥∥
L2(�)

6
∥∥A[|u|2]

∥∥
L4(�)
‖u‖L4(�)

6 C
∥∥|u|2∥∥L4/3(�)

‖∇w0‖L2,w(R2)‖u‖L4(�) 6 C ′
∥∥|u|∥∥3

H1(�)
6 C ′(M + E af

� [u])
3/2,

and therefore

‖∇u‖L2(�) =
∥∥∇u+ iβA[|u|2]u− iβA[|u|2]u

∥∥
L2(�)

6 E af
[u]1/2+C ′|β|(M + E af

� [u])
3/2.

Hence, given a minimizing sequence

(un)n→∞ ⊂ H 1
(0)(�), ‖un‖

2
L2(�)
= M, lim

n→∞
E af
� [un] = E(0)(�, β,M),

by uniform boundedness and the Rellich–Kondrachov theorem (see, for example, [Lieb and Loss 2001,
Theorem 8.9]) there exists a convergent subsequence (again denoted un) and a limit uaf

∈ H 1
(0)(�) such that

un→ uaf in L p(�), 16 p <∞, ∇un ⇀ ∇uaf in L2(�).

Furthermore, by estimating∥∥A[|un|
2
]un − A[|uaf

|
2
]uaf∥∥

2 6
∥∥A[|un|

2
− |uaf

|
2
]un
∥∥

2+
∥∥A[|uaf

|
2
](un − u)

∥∥
2

as above and using the strong convergence in L p(�) for any 16 p <∞, we have

A[|un|
2
]un→ A[|uaf

|
2
]uaf in L2(�).

Hence,∥∥(∇ + iβA[|uaf
|
2
]
)
uaf∥∥

2 = sup
‖v‖=1

∣∣〈∇uaf
+ iβA[|uaf

|
2
]uaf, v〉

∣∣= sup
‖v‖=1

lim
n→∞

∣∣〈∇un + iβA[|un|
2
]un, v〉

∣∣
6 lim inf

n→∞
sup
‖v‖=1

∣∣〈∇un + iβA[|un|
2
]un, v〉

∣∣= lim inf
n→∞

∥∥(∇ + iβA[|un|
2
]
)
un
∥∥

2,

that is, E(0)(�, β,M) 6 E af
� [u

af
] 6 lim infn→∞ E af

� [un] = E(0)(�, β,M), and furthermore
∫
�
|uaf
|
2
=

limn→∞
∫
�
|un|

2
= M. �

For completeness, we finish with a derivation of the variational equation associated to the minimization
of the energy functional (1-1). Let us define

J[u] := i
2
(u∇ū− ū∇u)
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and for two vector functions F, G : R2
→ R2, their convolution

F * G(x) :=
∫

R2
F(x− y) · G( y) d y.

Lemma A.2 (Variational equation).
Let u = uaf be a solution to (2-8). Then[(

−i∇ +βA[|u|2]
)2
+ V − 2β∇⊥w0 *

(
βA[|u|2]|u|2+ J[u]

)]
u = λu, (A-1)

where

λ= E af
[u] +

∫
R2

(
2βA[|u|2] · J[u] + 2β2∣∣A[|u|2]∣∣2 |u|2)

=

∫
R2

(
1(|∇u|2+ V |u|2)+ 2 · 2βA[|u|2] · J[u] + 3β2∣∣A[|u|2]∣∣2|u|2). (A-2)

(Note that the factors 1, 2, and 3 correspond to the total degree of |u|2 in each term.)

Proof. Let

F[u, ū, λ] := E af
[u, ū] + λ(1−

∫
|u|2)

=

∫ (
|∇u|2+ (V − λ)|u|2+β2∣∣A[|u|2]∣∣2 |u|2+ 2βA[|u|2] · J[u]

)
+ λ,

E1[u, ū] :=
∫
|A[uū]|2uū =

∫∫∫
∇
⊥w0(x− y) · ∇⊥w0(x− z) uū(x) uū( y) uū(z) dx d y dz,

E2[u, ū] :=
∫

A[uū] · i(u∇ū− ū∇u)=
∫∫
∇
⊥w0(x− y) uū( y) · i(u∇ū− ū∇u)(x) dx d y.

We have

E1[u, ū+εv] = E1[u, ū]+ε
∫∫∫ (

∇
⊥w0(x− y)·∇⊥w0(x−z)

(
v(x)u(x)|u( y)|2 |u(z)|2

+|u(x)|2u( y)v( y)|u(z)|2+|u(x)|2 |u( y)|2u(z)v(z)
))

dx d y dz+O(ε2).

Hence at O(ε),∫
x
v(x)u(x)A[|u|2]2 dx−

∫
y
v( y)u( y)

∫
x
∇
⊥w0( y− x)|u(x)|2 ·

∫
z
∇
⊥w0(x− z)|u(z)|2 dz dx d y

−

∫
z
v(z)u(z)

∫
x
∇
⊥w0(z− x)|u(x)|2 ·

∫
y
∇
⊥w0(x− y)|u( y)|2 d y dx dz

=

∫
vu A[|u|2]2− 2

∫
vu∇⊥w0 * |u|2 A[|u|2].

Also

E2[u, ū+εv] = E2[u, ū]+ε
∫∫ (
∇
⊥w0(x− y)u( y)v( y)·i(u∇ū−ū∇u)(x)

+∇
⊥w0(x− y)|u( y)|2 ·i

(
u(x)∇v(x)−v(x)∇u(x)

))
dx d y+O(ε2),
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hence at O(ε) and using ∇ · A= 0,

−

∫
y
v( y)u( y)

∫
x
∇
⊥w0( y− x) · 2 J[u](x) dx d y− i

∫
v(x)∇u(x) · A[|u|2](x) dx

+ i
∫

u(x)A[|u|2](x) · ∇v(x) dx︸ ︷︷ ︸
={P I }=−i

∫
∇u·Av−i

∫
u(∇·A)v

=−2
∫
vu∇⊥w0 * J[u] − 2i

∫
v∇u · A[|u|2].

Thus

F[u, ū+ εv, λ] = F[u, ū, λ] + ε
∫
v
[
(−1+ V − λ)u+β2∣∣A[|u|2]∣∣2u− 2β2

∇
⊥w0 * |u|2 A[|u|2]u

− 2β∇⊥w0 * J[u]u− 2iβA[|u|2] · ∇u
]
+ O(ε2),

and using (
−i∇ +βA[|u|2]

)2u =−1u− 2iβA[|u|2] · ∇u+β2 A[|u|2]2u,

we arrive at (A-1).
For (A-2) we use

∫
|u|2 = 1 by multiplying (A-1) with ū and integrating:

λ= E af
[u] − 2β

∫
|u|2∇⊥w0 *

(
βA[|u|2]|u|2+ J[u]

)
.

We then use that∫
|u|2∇⊥w0 * A[|u|2]|u|2 =

∫∫∫
|u(x)|2∇⊥w0(x− y) · ∇⊥w0( y− z)|u(z)|2 |u( y)|2 dx d y dz

=−

∫∫∫
∇
⊥w0( y− x) · ∇⊥w0( y− z)|u(x)|2 |u(z)|2 |u( y)|2 dx dz d y

=−

∫
A[|u|2]2 |u|2

and

2
∫
|u|2∇⊥w0 * J[u] =

∫∫
|u(x)|2∇⊥w0(x− y) · i

(
u( y)∇ū( y)− ū( y)∇u( y)

)
dx d y

=−

∫
y

i(u∇ū− ū∇u)( y) ·
∫

x
∇
⊥w0( y− x)|u(x)|2 dx d y =−2

∫
J[u] · A[|u|2]

to arrive at (A-2). �
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REGULARITY OF VELOCITY AVERAGES FOR TRANSPORT EQUATIONS
ON RANDOM DISCRETE VELOCITY GRIDS

NATHALIE AYI AND THIERRY GOUDON

We go back to the question of the regularity of the “velocity average”
∫

f (x, v)ψ(v) dµ(v) when f and
v · ∇x f both belong to L2, and the variable v lies in a discrete subset of RD. First of all, we provide a rate,
depending on the number of velocities, for the defect of H 1/2 regularity which is reached when v ranges
over a continuous set. Second of all, we show that the H 1/2 regularity holds in expectation when the set
of velocities is chosen randomly. We apply this statement to investigate the consistency with the diffusion
asymptotics of a Monte Carlo-like discrete velocity model.

1. Introduction

The averaging lemma is now a classical tool for the analysis of kinetic equations. Roughly speaking it can
be explained as follows. Let V ⊂ RD, endowed with a measure dµ. We consider a sequence of functions
fn : R

D
×V → R. We assume that

(a) ( fn)n∈N is bounded in L2(RD
×V ),

(b) (v · ∇x fn)n∈N is bounded in L2(RD
×V ).

Given ψ ∈ C∞c (R
D), we are interested in the velocity average

ρn[ψ](x)=
∫

V

fn(x, v)ψ(v) dµ(v).

Of course, (a) already tells us that (ρn[ψ])n∈N is bounded in L2(RD). We wish to obtain further regularity
or compactness properties, as a consequence of the additional assumption (b), and the fact that we
are averaging with respect to the variable v. The first result in that direction dates back to [Bardos
et al. 1988] (see also [Agoshkov 1984]); it asserts that (ρn[ψ])n∈N is bounded in the Sobolev space
H 1/2(RD) and it is thus relatively compact in L2

loc(R
D), by virtue of the standard Rellich’s theorem.

This basic result has been improved in many directions: L2 can be replaced by the L p framework, at
least with 1 < p <∞, and we can relax (b) by allowing derivatives with respect to v and certain loss
of regularity with respect to x ; see, among others, [DiPerna et al. 1991; Golse et al. 1988; Perthame
and Souganidis 1998]. Time-derivative or force terms can be considered as well; see, in addition to the
above-mentioned references, [Berthelin and Junca 2010]. Such an argument plays a crucial role in the
stunning theory of “renormalized solutions” of the Boltzmann equation [DiPerna and Lions 1989b], and
more generally in proving the existence of solutions to nonlinear kinetic models like in [DiPerna and

MSC2010: primary 35B65; secondary 35F05, 35Q20, 82C40.
Keywords: average lemma, discrete velocity models, random velocity grids, hydrodynamic limits.
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Lions 1989a]. It is equally a crucial ingredient for the analysis of hydrodynamic regimes, which establish
the connection between microscopic models and fluid mechanics systems, and for the asymptotic of the
Boltzmann equation to the incompressible Navier–Stokes system, which needs a suitable L1 version of
the average lemma [Golse and Saint-Raymond 2002]; we refer the reader to [Golse and Saint-Raymond
2004; Saint-Raymond 2009; Villani 2002]. Finally, it is worth pointing out that the averaging lemma can
be used to investigate the regularizing effects of certain PDEs (convection-diffusion and elliptic equations,
nonlinear conservation laws, etc.) [Tadmor and Tao 2007].

In order to illustrate our purpose, let us consider the following simple model which can be motivated
from radiative transfer theory:

ε ∂t fε + v · ∇x fε =
1
ε
σ (ρε)(ρε − fε), (1-1)

where

ρε(t, x)=
∫

V

fε(t, x, v) dµ(v),

and σ : [0,∞)→ [0,∞) is a given smooth function. The parameter 0< ε� 1 is defined from physical
quantities. As it tends to 0, both fε(t, x, v) and ρε(t, x) converge to ρ(t, x), which satisfies the nonlinear
diffusion equation

∂tρ =∇x · (A∇x F(ρ)), A =
∫

V

v⊗ v dµ(v), F(ρ)=
∫ ρ

0

dz
σ(z)

. (1-2)

The averaging lemma is an efficient tool to deal with the nonlinearity of such a problem, as discussed in
[Bardos et al. 1988].

However the discussion above hides the fact that we need some assumptions on the measured set
of velocities (V, dµ) in order to obtain the regularization property of the velocity averaging. Roughly
speaking, we need “enough” directions v when we consider the derivatives in (b). More technically, the
compactness statement holds provided for any 0< R <∞ we can find CR > 0, δ0> 0, γ > 0 such that
for 0< δ < δ0 and ξ ∈ SN−1, we have

meas
(
{v ∈ V ∩ B(0, R) : |v · ξ | ≤ δ}

)
≤ CRδ

γ.

This assumption appears in many statements about regularity of the velocity averages; when we are only
interested in the compactness issue, it can be replaced by a more intuitive assumption (see, e.g., [Golse
2000, Theorem 1 in Lecture 3]): for any ξ ∈ SN−1 we have

meas
(
{v ∈ V ∩ B(0, R) : v · ξ= 0}

)
= 0. (1-3)

Clearly these assumptions are satisfied when the measure dµ is absolutely continuous with respect to
the Lebesgue measure (with, for the sake of concreteness, V = RD or V = SD−1). However, they fail
for models based on a discrete set of velocities. For instance let V = {v1, . . . , vN }, with vj ∈ RD, and
dµ(v)= 1

N

∑N
j=1 δ(v=vj ); it suffices to pick ξ ∈ SN−1 orthogonal to one of the vj to contradict (1-3).

(Note that alternative proofs based on compensated compactness techniques have been proposed to justify
the asymptotic regime from (1-1) to (1-2) that apply to certain discrete velocity models; see [Degond et al.
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2000; Goudon and Poupaud 2001; Lions and Toscani 1997].) Nevertheless, when the discrete velocities
come from a discretization grid of the whole space, the averaging lemma can be recovered asymptotically
letting the mesh step go to 0, as shown in [Mischler 1997], motivated by the convergence analysis of
numerical schemes for the Boltzmann equation.

This paper aims at investigating further these issues. To be more specific, in Section 2 we revisit the
averaging lemma for discrete velocities in two directions. First of all, we make more precise the analysis
of [Mischler 1997], obtaining a rate on the defect to the H 1/2 regularity of the velocity average, depending
on the mesh size. Second of all, we establish a stochastic version of the averaging lemma. We are still
working with a finite number of velocities on bounded sets; however, choosing the velocities randomly,
the “compactifying” property of assumption (b) can be restored by dealing with the expectation of ρn[ψ].
This is a natural way to involve “enough velocities”, by looking at a large set of realizations of the discrete
velocity grid. The analysis is completed in Section 3 by going back to the asymptotic problem ε→ 0 in
(1-1), with a random discretization of the velocity variable, in the spirit of the Monte Carlo approach.

2. Discrete velocity averaging lemmas

Deterministic case: evaluation of the defect. As mentioned above, it is a well-known fact that, in the
deterministic context, the averaging lemma fails for discrete velocity models. However, as established by
S. Mischler [1997], the compactness of velocity averages is recovered asymptotically when we refine a
velocity grid in order to recover a continuous velocity model. Here, we wish to quantify the defect of
compactness when the number of velocities is finite and fixed. This is the aim of the following claim
which shows that the macroscopic density ρ[ψ] “belongs to H 1/2(RD)+ O(1/

√
N )L2(RD)”.

Proposition 2.1. Let N ∈ N \ {0} and define

AN =

( 1
N

Z
)D
∩ [−0.5, 0.5]D.

Let f, g ∈ L2(RD
× AN ) satisfy, for all k ∈ ZD,

vk · ∇x f (x, vk)= g(x, vk). (2-1)

We suppose that the L2 norm of f and g is bounded uniformly with respect to N. Then, for allψ ∈C∞c (R
D),

the macroscopic quantity

ρ[ψ](x)=
1

(N + 1)D

∑
k

f (x, vk)ψ(vk)

can be split as ρ[ψ](x)=2[ψ](x)+ (1/
√

N )1̃[ψ](x), where 2[ψ] and 1̃[ψ] are bounded uniformly
with respect to N in H 1/2(RD) and L2(RD) respectively.

Remark 2.2. Note that in this statement N is the number of grid points per axis. Accordingly, there
are N = (N + 1)D velocities in the set AN . Therefore the defect of H 1/2 regularity decays like N 1/2D ,
depending on the dimension.
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Proof. As usual, we start by applying the Fourier transform to (2-1). Then for all k ∈Z and ξ ∈RD, we get

ξ · vk f̂ (ξ, vk)= (−i)ĝ(ξ, vk).

Let us set

F(ξ) :=
(

1
(N + 1)D

∑
k

| f̂ (ξ, vk)|
2
)1/2

, G(ξ) :=
(

1
(N + 1)D

∑
k

|ĝ(ξ, vk)|
2
)1/2

.

By assumption, we have F,G ∈ L2
ξ . Still following the standard arguments, we pick δ > 0 and we split

ρ̂[ψ](ξ)=
1

(N + 1)D

∑
k

f̂ (ξ, vk)ψ(vk)

=
1

(N + 1)D

∑
|ξ ·vk |<δ|ξ |

f̂ (ξ, vk)ψ(vk)+
1

(N + 1)D

∑
|ξ ·vk |≥δ|ξ |

f̂ (ξ, vk)ψ(vk).

The Cauchy–Schwarz inequality permits us to dominate the first term:∣∣∣∣ 1
(N+1)D

∑
|ξ ·vk |<δ|ξ |

f̂ (ξ,vk)ψ(vk)

∣∣∣∣≤‖ψ‖∞( 1
(N+1)D

∑
k

| f̂ (ξ,vk)|
2
)1/2( 1

(N+1)D

∑
|ξ ·vk |<δ|ξ |

1
)1/2

. (2-2)

For the second term, we use the information in (2-1); it yields∣∣∣∣ 1
(N + 1)D

∑
|ξ ·vk |≥δ|ξ |

f̂ (ξ, vk)ψ(vk)

∣∣∣∣
=

∣∣∣∣ 1
(N + 1)D

∑
|ξ ·vk |≥δ|ξ |

(−i)ĝ(ξ, vk)

ξ · vk
ψ(vk)

∣∣∣∣
≤ ‖ψ‖∞

(
1

(N + 1)D

∑
k

|ĝ(ξ, vk)|
2
)1/2( 1

(N + 1)D

∑
|ξ ·vk |≥δ|ξ |

1
|ξ · vk |

2

)1/2

. (2-3)

From now on we assume ξ 6=0. Let (e1, . . . , eD) stand for the canonical basis of RD so that ξ =
∑D

j=1 αj ej

with αj ∈ R. We distinguish the following two cases:

(i) ξ is aligned with an axis, that is, all but one the αj vanish, or

(ii) ξ is generated by at least two vectors of the basis.

We start with the case (i), assuming for instance ξ = αe1. Then ξ · vk = αv
1
k , where v1

k is the first
component of the vector vk .

We refer the reader to Figure 1 to complete the discussion. On each horizontal line we find 2bδNc+ 1
velocities such that |ξ · vk | < δ|ξ |, where bsc stands for the integer part of s. Thus, since there are
(N + 1)D−1 such lines on the domain AN , we obtain∑

|ξ ·vk |<δ|ξ |

1= (2bδNc+ 1)(N + 1)D−1
= 2

(
δ+

1
N

)
(N + 1)D.
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(−0.5,−0.5)
•

(0.5, 0.5)
•

δ

Figure 1. The delimited area corresponds to |ξ · vk |< δ|ξ | for ξ collinear to e1.

Coming back to (2-2), we arrive at∣∣∣∣ 1
(N + 1)D

∑
|ξ ·vk |<δ|ξ |

f̂ (ξ, vk)ψ(vk)

∣∣∣∣≤ C F(ξ)

√
δ+

1
N
,

where C > 0 is a generic constant which does not depend on N and ξ .
Next, we cover the set of velocities such that |vk · ξ | ≥ δ|ξ | by strips of width δ; see Figure 2 in

dimension D = 2. We denote by Sp the p-th strip delimited by the straight lines x = pδ and x = (p+1)δ.
Each velocity on the strip Sp satisfies pδ ≤ v1

k ≤ (p+ 1)δ. Moreover, given a strip Sp, we cannot find
more than bδNc+ 1 abscissae in the strip and there are (N + 1)D−1 lines in the domain. It follows that∑
|ξ ·vk |≥δ|ξ |

1
|ξ · vk |

2 =
∑

|ξ ·vk |≥δ|ξ |

1
|ξ |2

1
|ξ/|ξ |.vk |

2

≤
1
|ξ |2

2
(∑

p≥1

1
(pδ)2

)
(δN + 1)(N + 1)D−1

≤
1
|ξ |2

2
(∑

p≥1

1
p2

)
1
δ

(
1+ 1

δN

)
(N + 1)D.

(−0.5,−0.5)
•

(0.5, 0.5)
•

δ

Figure 2. Splitting of the velocity space in strips of width δ. Since this space is symmetric,
we only deal with the part corresponding to positive abscissae.
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(0.5, 0.5)
•

5ξ
5θ

5(0.5, 0.5)
•

5θ

5ξ

Figure 3. Representation of ξ ∈ R2 with θ ∈
]
0, π4

]
and θ ∈

]
π
4 ,

π
2

]
with cos θ |ξ | = ξ · e1.

Thus, we deduce from (2-3) that∣∣∣∣ 1
(N + 1)D

∑
|ξ ·vk |≥δ|ξ |

f̂ (ξ, vk)ψ(vk)

∣∣∣∣≤ CG(ξ)
1

|ξ |
√
δ

(
1+ 1

δN

)1/2
.

We conclude that

∣∣ρ̂[ψ](ξ)∣∣≤ C
(

F(ξ)

√
δ+

1
N
+G(ξ)

1

|ξ |
√
δ

(
1+ 1

δN

)1/2)
(2-4)

holds when ξ is aligned with the axis.
We turn to the general case (ii). As illustrated in Figure 3, we can assume that the angle θ between ξ

and one of the axes (say e1) lies in
]
0, π4

[
, the other cases follow by a symmetry argument.

The reasoning still consists in counting velocities in strips appropriately defined. As said above, without
loss of generality we can assume that θ ∈

]
0, π4

[
, where we have set cos θ |ξ | = ξ ·e1. We set `1 := δ/cos θ .

On a given strip, we can find at most (b`1 Nc+ 1)× (N + 1)D−1 velocities; see Figure 5.

(−0.5,−0.5)
•

(0.5, 0.5)
•

ξ

Figure 4. The area corresponding to |ξ · vk | ≤ δ|ξ | is delimited as previously. The
complementary set is split into strips of width δ.
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(0.5, 0.5)
•

`1

δ

ξ

Figure 5. Representation of the parameter `1.

Therefore, bearing in mind that 0< θ < π
4 , we obtain∑

|ξ ·vk |≥δ|ξ |

1
|ξ · vk |

2 =
∑

|ξ ·vk |≥δ|ξ |

1
|ξ |2

1
|ξ/|ξ | · vk |

2 ≤
1
|ξ |2

2
∑
p≥1

1
(pδ)2

(
δ

cos θ
N + 1

)
(N + 1)D−1

≤
1
|ξ |2

2
∑
p≥1

1
(pδ)2

1
δ cos θ

(
1+ 1

δN

)
(N + 1)D

≤ 2
√

2
1
|ξ |2

1
δ

(
1+ 1

δN

)
(N + 1)D

and ∑
|ξ ·vk |<δ|ξ |

1= (2b`1 Nc+ 1)(N + 1)D−1
≤ 2

(
δ

cos θ
N + 1

)
(N + 1)D−1

≤ 2
√

2
(
δ+

1
N

)
(N + 1)D.

Thus, we deduce exactly like in case (i) that (2-4) holds for any ξ 6= 0.
Therefore, we have established that for all ξ 6= 0, we get (2-4) for all δ > 0. We take

δ =
1
|ξ |

1{N≥|ξ |}+
1
N

1{N<|ξ |}
and we define

2N (ξ) := ρ̂[ψ](ξ)1{N≥|ξ |}, 1N (ξ) := ρ̂[ψ](ξ)1{N<|ξ |}.
Then, we have

2N (ξ)≤ C
(

F(ξ)

√
1
|ξ |
+

1
N
+G(ξ)

1

|ξ |
√

1/|ξ |

(
1+

1
N/|ξ |

)1/2)
1{N≥|ξ |} ≤ C(F(ξ)+G(ξ))

1
√
|ξ |
.

It implies that
|ξ |2N (ξ)

2
≤ C(G2(ξ)+ F2(ξ)),

which equally holds true for ξ = 0. Then by the assumption on f and g, we deduce that 2N ∈ H 1/2(RD).
Finally, we evaluate the remainder:

1N (ξ)≤ C
(

F(ξ)

√
2
N
+G(ξ)

1

|ξ |
√

1/N

(
1+

1
(1/N )N

))
1{N<|ξ |} ≤

C
√

N
(F(ξ)+G(ξ)).

We conclude that
12

N (ξ)≤
C
N
(F2(ξ)+G2(ξ)),

which is also satisfied when ξ = 0. Thus, by the assumption on f and g, we know ‖1N‖L2 is dominated
by 1/

√
N , an observation which finishes the proof. �
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A stochastic discrete velocity averaging lemma. Dealing with random discrete velocities we can expect
to make the defect vanish when taking the expectation of the velocity averages. This is indeed the case as
shown in the following statement.

Theorem 2.3. Let (�,A,P) be a probability space. Let V1, . . . , VN be i.i.d. random variables, dis-
tributed according to the continuous uniform distribution on [−0.5, 0.5]D. We set

dµ= 1
N

N∑
k=1

δ(v=Vk).

Let f, g ∈ L2(RD
×RD

×�, dx dµ(v) dP) satisfy, for all x ∈ RD, ω ∈�, and k ∈ {1, . . . ,N },

Vk · ∇x f (x, Vk)= g(x, Vk). (2-5)

Then, for all ψ ∈ C∞c (R
D), the macroscopic quantity

ρ[ψ](x) := 1
N

N∑
k=1

f (x, Vk)ψ(Vk)= RD f (x, v)ψ(v) dµ(v)

satisfies Eρ[ψ] ∈ H 1/2(RD) (and it is bounded in this space if the L2 norm of f and g is bounded
uniformly with respect to N ).

Remark 2.4. We point out that this statement has a different nature from the stochastic averaging lemma
devised in [Debussche et al. 2015; 2016], where the velocity set still satisfies an assumption like (1-3) but
the equation for v · ∇x fn involves a stochastic term. Our analysis is closer in spirit to the results in [Lions
et al. 2013], where the velocity variable is deterministic but is multiplied by a Brownian motion.

Proof. We apply the Fourier transform to (2-5). Then, for all k, we get

ξ · Vk f̂ (ξ, Vk)= (−i)ĝ(ξ, Vk).

We set

F(ξ) :=
(

1
N

E
∑

k

| f̂ (ξ, Vk)|
2
)1/2

, G(ξ) :=
(

1
N

E
∑

k

|ĝ(ξ, Vk)|
2
)1/2

.

Let us split

Eρ̂[ψ](ξ)= E

[
1

N

∑
k

f̂ (ξ, Vk)ψ(Vk)

]
= E

[
1

N

∑
|ξ ·Vk |<δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]
+ E

[
1

N

∑
|ξ ·Vk |≥δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]
for δ > 0. The Cauchy–Schwarz inequality leads to the following estimates: on the one hand,∣∣∣∣ E

[
1

N

∑
|ξ ·Vk |<δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]∣∣∣∣≤ ‖ψ‖∞( 1
N

E
∑

k

| f̂ (ξ, Vk)|
2
)1/2(

1
N

E
∑

|ξ ·Vk |<δ|ξ |

1
)1/2

,
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and, on the other hand,∣∣∣∣ E

[
1

N

∑
|ξ ·vk |≥δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]∣∣∣∣= ∣∣∣∣ E

[
1

N

∑
|ξ ·Vk |≥δ|ξ |

(−i)ĝ(ξ, Vk)

ξ · Vk
ψ(Vk)

]∣∣∣∣
≤ ‖ψ‖∞

(
1

N
E
∑

k

|ĝ(ξ, Vk)|
2
)1/2( 1

N
E
∑

|ξ ·vk |≥δ|ξ |

1
|ξ · Vk |

2

)1/2

.

We only detail the case where ξ =αe1, α ∈R, the other cases being deduced by adapting the reasoning
of the proof of Proposition 2.1. We have

E

[ ∑
|ξ ·Vk |≥δ|ξ |

1
|ξ · Vk |

2

]
= E

[ ∑
|ξ ·Vk |≥δ|ξ |

1
|ξ |2

1
|ξ/|ξ | · Vk |

2

]
≤ E

[
1
|ξ |2

2
(∑

p≥1

1
(pδ)2

)
Mp

]
,

where Mp is the number of velocities in the p-th strip (see Figure 2). We bear in mind that Mp is a
random variable: since the Vi are distributed according to the uniform law, we have

P(Vi ∈ Sp)= δ

and, since the variables V1, . . . , VN are independent, Mp follows a binomial distribution of parameters N

and δ. Therefore, we are led to

E

[ ∑
|ξ ·Vk |≥δ|ξ |

1
|ξ · Vk |

2

]
≤

1
|ξ |2

2
(∑

p≥1

1
(pδ)2

)
E[Mp] ≤ C

1
|ξ |2δ

N , (2-6)

which yields ∣∣∣∣ E

[
1

N

∑
|ξ ·Vk |≥δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]∣∣∣∣≤ CG(ξ)
1

|ξ |
√
δ
.

By the same token, we get

E

[ ∑
|ξ ·Vk |<δ|ξ |

1
]
= 2δN (2-7)

so that ∣∣∣∣ E

[
1

N

∑
|ξ ·Vk |<δ|ξ |

f̂ (ξ, Vk)ψ(Vk)

]∣∣∣∣≤ C F(ξ)
√
δ.

Finally, we arrive at ∣∣Eρ̂[ψ](ξ)∣∣≤ C
(

F(ξ)
√
δ+

G(ξ)

|ξ |
√
δ

)
.

We apply this inequality with δ = G(ξ)/(|ξ |F(ξ)), which leads to∣∣Eρ̂[ψ](ξ)∣∣≤ C
√

F(ξ)G(ξ)
1
√
|ξ |
.

This concludes the proof by using the assumptions on f and g. �
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Remark 2.5. We can readily extend the result to nonuniform laws: we assume that the Vi are identically
and independently distributed in RD according to a continuous and bounded density of probability 8.
The number Mp of velocities in the strip Sp still follows a binomial law but now the expectation value
depends on 8 and Mp can be shown to be dominated by N ‖8‖∞δ.

For certain applications, the variable v lies on the sphere. This is the case for the kinetic models arising
in radiative transfer theory, where v represents the direction of flight of photons, which, of course, all
travel with the speed of light. We can adapt the stochastic averaging lemma to this situation.

Theorem 2.6. Let (�,A,P) be a probability space. Let V1, . . . , VN be i.i.d. random variables, dis-
tributed according to the continuous uniform distribution on SD−1. We set

dµ= 1
N

N∑
k=1

δ(v=Vk).

Let f, g ∈ L2(RD
×RD

×�, dx dµ(v) dP) satisfy, for all x ∈RD, ω∈�, and k ∈ {1, . . . ,N },

Vk · ∇x f (x, Vk)= g(x, Vk).

Then, for all ψ ∈ C∞c (S
D−1), the macroscopic quantity

ρ[ψ](x) := 1
N

N∑
k=1

f (x, Vk)ψ(Vk)= RD f (x, v)ψ(v) dµ(v)

satisfies Eρ[ψ] ∈ H 1/2(RD).

Proof. The proof follows the same arguments as those for Theorem 2.3; we only indicate the main changes.
The proof still relies on counting the velocities produced by the random sampling in the domain

Sp =
{
v ∈ SD−1

: δp|ξ | ≤ |v · ξ | ≤ δ(p+ 1)|ξ |
}

for given ξ ∈RD
\{0}, δ > 0 and p ∈Z. We define θ ∈ [0, 2π ] such that

v · ξ |ξ | = cos θ ∈ [−1,+1].

Considering the random vectors Vk , the associated variable θk is randomly distributed on [0, 2π ]. For
symmetry reasons, P(Vk ∈ Sp) is thus proportional to

P
(
δ|p| ≤ cos θk ≤ δ(|p| + 1)

)
.

We start with the specific case of dimension D = 2, and we refer the reader to Figure 6. In this case,
θ is uniformly distributed on [0, 2π ]. Therefore, for any p ∈ N, we know P(δp ≤ cos θ ≤ δ(p+ 1)) is
proportional to

5δ,p = arccos(δ(p+ 1))arccos(δp) dθ = arccos(δp)− arccos(δ(p+ 1))
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δp δ(p+1)

Sp

Figure 6. Velocities on the sphere S1, with domain Sp.

and Mp = #{Vk ∈ Sp} is driven by the binomial law with parameters N and α5δ,p for a certain constant
α > 0. Hence, the analog of (2-7) is dominated, up to some constant, by

N 5δ,0 =N
( 1

2π − arccos δ
)
=N δ

dx
√

1− x2
≤ CN δ

as far as 0< δ ≤ δ0 < 1. Similarly, the analog of (2-6) involves the sum∑
p≥1

N

δ2 p25δ,p,

which we split into

I=
∑

1≤p≤1/2δ

N

δ2 p25δ,p, II=
∑

1/2δ<p≤1/δ

N

δ2 p25δ,p.

For I, we can still use the fact that x 7→ 1/
√

1− x2 is nonincreasing and bounded far away from x = 1
and we are led to the estimate

I=
∑

1≤p≤1/2δ

N

δ2 p2

∫ δp

δ(p+1)

dx
√

1− x2
≤

∑
1≤p≤1/2δ

N

δ2 p2

δ√
1− δ2(p+ 1)2

≤ C
N

δ
.

For II, we use a summation by parts which yields

II=
∑

1/2δ<p≤1/δ

N arccos(δp)
δ2

(
1

(p− 1)2
−

1
p2

)

≤

∑
1/2δ<p≤1/δ

N arccos(δp)
δ2

2
p(p− 1)2

≤
4δ
δ2 πN

∑
p≥1

1
p2 ≤ C

N

δ
.

Having these estimates at hand, we can repeat the same arguments as in the proof of Theorem 2.3.
For higher dimensions, the situation is actually simpler since θ is now distributed on

[
0, π2

]
according

to the law with density (sin θ)D−2 dθ . Thus (with the simple estimate 0≤ (sin θ)D−2
≤ sin θ ) we obtain

directly the analog of estimates (2-6) and (2-7). �



1212 NATHALIE AYI AND THIERRY GOUDON

The result can be extended to the L p cases for 1< p <∞ by using an interpolation argument as in
[Golse et al. 1988, Theorem 2].

Corollary 2.7. In Theorems 2.3 and 2.6, we assume that f and g belong to L p(RD
×V ×�, dx dµ(v) dP)

for some 1< p <∞, with V either RD or SD−1. Then Eρ[ψ] lies in the Sobolev space W s,p(RD) with
0< s <min(1/p, 1− 1/p) < 1.

Proof. We readily adapt the interpolation argument in [Golse et al. 1988]. Let T be the operator

T : h 7→ E

∫
f (x, v)ψ(v) dµ(v),

where
f (x, Vk)+ Vk · ∇x f (x, Vk)= h(x, Vk).

Clearly T maps continuously Lr (RD
×V ×�, dx dµ(v) dP) into Lr (RD) for any 1< r <∞. Moreover,

Theorems 2.3 and 2.6 tell us that T is a continuous operator from L2(RD
×V ×�, dx dµ(v) dP) to

H 1/2(RD). We conclude by interpreting the Sobolev space W s,p by interpolation, as being an intermediate
space between Lr

=W 0,r and H 1/2
=W 1/2,2 [Bergh and Löfström 1976, Theorem 6.4.5, relation (7)],

and L p as being interpolated between Lr and L2. �

We can equally extend the compactness statement to the L1 framework by following [Golse and
Saint-Raymond 2002].

Corollary 2.8. We consider a random set of velocities defined as in Theorem 2.3 orTheorem 2.6. Let
( fn)n∈N and (gn)n∈N be two sequences of functions defined on RD

×V ×� such that

(i) { fn : n ∈ N} is a relatively weakly compact set in L1(RD
×V ×�, dx dµ(v) dP),

(ii) {gn : n ∈ N} is bounded in L1(RD
×V ×�, dx dµ(v) dP),

(iii) we have Vk · ∇x fn(x, Vk)= gn(x, Vk).

Then Eρn[ψ](x) = E
∫

fn(x, v)ψ(v) dµ(v) lies in a relatively compact set of L1(B(0, R)) for any
0< R <∞ (for the strong topology).

Proof. The proof follows closely [Golse and Saint-Raymond 2002]; we sketch the arguments for the sake
of completeness. For ψ ∈ C∞c (V ), we denote by A the operator

A : f 7→ E

∫
f (x, v)ψ(v) dµ(v).

For λ > 0, we also introduce the operator

Rλ : h 7→
∫
∞

0
e−λt h(x − vt, v) dt,

which returns the solution f =Rλh of (λ+v·∇x) f =h. It is a continuous operator on L p(RD
×V, dx dµ(v))

spaces and we have

‖Rλh‖L p ≤
‖h‖L p

λ
. (2-8)
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Let us temporarily assume that the compactness statement holds for A Rλgn , for any λ > 0, when (i)–(ii)
is strengthened to

(ii′) {gn : n ∈ N} is a relatively weakly compact set in L1(RD
×V ×�, dx dµ(v) dP).

Therefore, writing (λ+ v · ∇x)Rλ fn = fn , we deduce from (i) that (A Rλ fn)n∈N is relatively compact
in L1(B(0, R)) for any λ > 0 and 0 < R <∞. Next, we write fn = λRλ fn + Rλ(v · ∇x fn) so that,
owing to (2-8), A fn = λA Rλ fn+A Rλ(v · ∇x fn) appears as the sum of a sequence which is compact in
L1(B(0, R)) and a sequence whose norm is dominated by 1/λ, uniformly with respect to n. Consequently,
(A fn)b∈N is relatively compact in L1(B(0, R)).

We are thus left with the task of justifying the gain of compactness for A Rλgn when (i)–(ii) is replaced
by (ii′); see [Golse et al. 1988, Proposition 3]. To this end, for λ,M > 0 we set Rλgn = γn and we split

γn = γn,M + γ
M

n ,

where
(λ+ Vk · ∇x)γn,M(x, Vk)= gn(x, Vk)1gn(x,Vk)≤M ,

(λ+ Vk · ∇x)γ
M

n (x, Vk)= gn(x, Vk)1gn(x,Vk)>M .

Since for any fixed M > 0, the set {gn1hn≤M : n ∈ N} is bounded in L1
∩ L∞ ⊂ L2, we can apply

Theorem 2.3 or Theorem 2.6, which imply that (A γn,M)n∈N is compact in L1(B(0, R)) for any finite R.
We can conclude by showing that γ M

n can be made arbitrarily small, in L1 norm, uniformly with respect
to n ∈ N, for a suitable choice of M > 0. This is indeed the case because (ii′) implies

lim
M→∞

{
sup

n

∫
|gn|1gn>M dµ(v) dx dP(ω)

}
= 0

by virtue of the Dunford–Pettis theorem; see [Goudon 2011, §7.3.2]. Going back to (2-8) finishes the
proof. �

3. Application to the Rosseland approximation

Let us go back to the asymptotic behavior of the solutions of (1-1). The problem (1-1) is completed with
the initial condition

fε|t=0 = f 0
ε .

It satisfies f 0
ε ≥ 0 and f 0

ε ∈ L1(RD
×V ), as it is physically relevant, fε being a particle density. For the

set (V, dµ), in what follows we suppose at least that V is a bounded subset in RD and∫
V

dµ(v)= 1,
∫

V

v dµ(v)= 0.

These assumptions are crucial for the analysis of the diffusion regime. Then, the connection to (1-2) can
be established as follows.
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Theorem 3.1. We assume that (1-3) is fulfilled. Let σ be a function such that σ(ρ)= ργ6(ρ) with |γ |< 1
and 0< σ∗ ≤6(ρ)≤ σ ∗ <∞. Let ( f 0

ε )ε>0 satisfy

sup
ε>0

(∫
Rd

∫
V

(
1+ϕ(x)+ | ln f 0

ε | f
0
ε

)
dµ(v) dx +‖ f 0

ε ‖L∞(Rd×V )

)
= M0 <+∞

for a certain weight function such that lim|x |→+∞ ϕ(x)=+∞. Then (up to a subsequence) the solution fε
of (1-1) and ρε converge to ρ(t, x) in L p((0, T )×Rd

× V ) and L p((0, T )×Rd) respectively, for any
1≤ p<∞, 0< T <∞, where ρ is a solution to (1-2) with the initial data ρ|t=0 given by the weak limit
in L p(Rd) of

∫
V f 0

ε dµ(v) as ε→ 0.

For instance this statement holds with V = SD−1 endowed with the Lebesgue measure. We refer the
reader to [Bardos et al. 1988] for a detailed proof, where the velocity averaging lemma is used to manage
the passage to the limit in the nonlinearity. Assumption (1-3) can be replaced by

for any ξ 6= 0, meas
(
{v ∈ V ∩ B(0, R) : v · ξ 6= 0}

)
> 0,

which allows us to deal with certain discrete velocity models. Then, the asymptotic regime can be
analyzed with a compensated compactness argument, which relies on the structure of the system satisfied
by the zeroth and first moments of fε, as pointed out in [Degond et al. 2000; Goudon and Poupaud 2001;
Lions and Toscani 1997]; see also [Marcati and Milani 1990]. The question of the relation between the
diffusion equation that corresponds to a discretization of the velocity set (discrete ordinate equation) and
the diffusion equation that corresponds to the continuous model can be addressed. For the simple collision
operator in (1-1), velocity grids, which differ from the simplest uniform mesh, can be constructed that
lead to the exact diffusion coefficient, namely

1
N

N∑
k=1

vk ⊗ vk =

∫
SD−1

v⊗ v dv = 1
D

I;

we refer the reader to [Buet et al. 2002; Golse et al. 1999; Jin and Levermore 1991] for further discussion
on this issue. However, for more general collision operators, it might happen that the equilibrium
functions that make the collision operator vanish or the diffusion coefficient are not explicitly known; see
[Bonnaillie-Noël et al. 2016; Degond et al. 2000].

We wish to revisit this question by means of a Monte Carlo approach: instead of the discrete ordinate
viewpoint where a discrete velocity grid is adopted once and for all, we deal with a random set of velocities
and we wonder whether it can provide, in expectation, a consistent approximation of the diffusion regime.
The consistency analysis we propose uses Theorem 2.3 or Theorem 2.6 to justify the following claim.

Theorem 3.2. Let (�,A,P) be a probability space. Let V1, . . . , VN be i.i.d. random variables distributed
according to the continuous uniform law on V . Then, we obtain a set VN of 2N velocities in V by setting
VN + j =−Vj for all j ∈ {1, . . . ,N }. We denote the associated discrete measure on V by

dµN (v)=
1

2N

2N∑
k=1

δ(v=Vk).
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Let fε|t=0 = f 0
ε ≥ 0 satisfy

sup
ε>0, N ∈N

(
E

∫
RD

∫
V

(
1+ϕ(x)+ | ln f 0

ε |
)

f 0
ε dµN (v) dx +‖ f 0

ε ‖L∞(�×Rd×V )

)
= M0 <+∞. (3-1)

Let fε be a solution of the equation

∂t fε(t, x, Vj )+
1
ε

Vj · ∇x fε(t, x, Vj )=
1
ε2σ(ρε,N )[ρε,N (t, x)− fε(t, x, Vj )], (3-2)

with

ρε,N (t, x) :=
1

2N

2N∑
i=1

fε(t, x, Vj ).

We suppose that ρ ∈ [0,∞) 7→ σ(ρ) is a nonnegative function such that for any 0< R <∞, there exists
σ?(R) > 0 satisfying 0< 1/σ?(R)≤ σ(ρ)≤ σ?(R) and |σ ′(ρ)| ≤ σ?(R) for any 0≤ ρ ≤ R. Then Eρε,N

converges to EρN in L2((0, T )×RD) as ε goes to 0 with 0< T <∞, where EρN is solution of

∂t EρN + div(JN )= 0, σ (EρN )JN =−EAN ∇x EρN + O
(

1
√

N

)
,

with AN the D× D matrix with random components defined by

AN :=
1

2N

2N∑
j=1

Vj ⊗ Vj ,

and EρN |t=0 is the weak limit of
∫

E f 0
ε dµ(v).

Note that the construction of the set VN ensures that the null flux condition
∫
v dµN (v)= 0 is fulfilled,

but the elements of VN are not independent. Nevertheless, the stochastic averaging lemma still applies to
this situation, with a straightforward adaptation of the proof. It is likely that the assumptions on σ can
be substantially weakened, but it not our aim here to seek refinements in this direction. We will make
precise in the proof in which sense the consistency error O(1/

√
N ) should be understood.

Entropy estimates. In order to prove Theorem 3.2, the first step consists in establishing some a priori
estimates, uniform with respect to the parameters ε and N . We will then deduce the compactness needed to
obtain the result. These estimates are quite classical; the proof that we sketch for the sake of completeness
follows directly from [Bardos et al. 1988; Goudon and Poupaud 2001; Lions and Toscani 1997].

Proposition 3.3. Let f 0
ε satisfy (3-1) with ϕ(x)= (1+ x2)β, 0<β < 1. Let 0< T <∞. There exists a

constant C(T ) which only depends on T such that

sup
ε>0,N ∈N

{
sup

0≤t≤T
E

∫
RD

∫
V

(
1+ϕ(x)+| ln fε|

)
fε dµN (v)dx+‖ fε‖L∞(�×(0,T )×RD×V )

}
=C(T )<+∞

(3-3)
and, furthermore,

sup
ε>0,N ∈N

E

∫ T

0

∫
RD

∫
V

σ(ρε,N )

ε2 ( fε − ρε,N ) ln
(

fε
ρε,N

)
dµN (v) dx dt ≤ C(T ). (3-4)
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Proof. As said above we crucially use the fact that∫
V

dµN (v)= 1,
∫

V

v dµN (v)= 0.

As a matter of fact, the collision operator is mass-conserving in the sense that∫
V

σ(ρ)( f − ρ) dµN (v)= 0.

Accordingly, integrating immediately leads to

d
dt

E

∫
RD

∫
V

fε dµN (v) dx = 0. (3-5)

More generally, let G : [0,∞)→ R be a convex function. We get

d
dt

E

∫
RD

∫
V

G( fε) dµN (v) dx =−
1
ε2 E

∫
RD

∫
V

σ(ρε,N )(ρε,N − fε)(G ′(ρε,N )−G ′( fε)) dµN (v) dx ≤ 0.

With G(z) = z p, p ≥ 1, it gives an estimate on the L p norm of the solution. Similarly, with G(z) =
[z−‖ f 0

ε ‖∞]
2
+

, we conclude that

‖ fε‖L∞(�×(0,T )×RD×V ) ≤ ‖ f 0
ε ‖∞.

Finally, with G(z)= z ln(z) we have

d
dt

E

∫
RD

∫
V

fε ln fε dµN (v) dx =−
1
ε2 E

∫
RD

∫
V

σ(ρε,N )[ρε,N − fε] ln
(

fε
ρε,N

)
dµN (v) dx ≤ 0. (3-6)

Let us focus on the following quantity obtained by multiplying (3-2) by ϕ and integrating

d
dt

E

∫
RD

∫
V

ϕ(x) fε dµN (v) dx =−
1
ε

E

∫
RD

∫
V

ϕ(x)v · ∇x fε dµN (v) dx

=
1
ε

E

∫
RD

∫
V

fεv · ∇xϕ(x) dµN (v) dx

= E

∫
RD

∫
V

v · ∇xϕ(x)
fε − ρε,N

ε
dµN (v) dx .

Note that we have used
∫
v dN (v)= 0. By the Cauchy–Schwarz inequality, we know that

|
√

b−
√

a|2 =
∣∣∣∣∫ b

a

ds
2
√

s

∣∣∣∣2 ≤ ∣∣∣∣∫ b

a

ds
4s

∣∣∣∣∣∣∣∣∫ b

a
ds
∣∣∣∣= 1

4(b− a) ln(b/a).

Thus, we get∫
V

| fε − ρε,N | dµN (v)=

∫
V

(
√

fε +
√
ρε,N )

∣∣√ fε −
√
ρε,N

∣∣ dµN (v)

≤

(∫
V

(
√

fε +
√
ρε,N )2 dµN (v)

)1/2(∫
V

(
√

fε −
√
ρε,N )2 dµN (v)

)1/2

≤ C
√
ρε,N

(∫
V

( fε − ρε,N ) ln( fε/ρε,N ) dµN (v)

)1/2

,
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and we finally obtain the bound

d
dt

E

∫
RD

∫
V

ϕ fε dµN (v) dx

≤ ‖v‖L∞(�×S) E

∫
RD

∫
V

|∇xϕ
| fε − ρε,N |

ε
dµN (v) dx

≤ C E

∫
RD
|∇xϕ|

√
ρε,N

σ(ρε,N )

(∫
V

σ(ρε,N )

ε2 ( fε − ρε,N ) ln( fε/ρε,N ) dµN (v)

)1/2

dx

≤ C E

(∫
RD
|∇xϕ|

2 ρε,N

σ(ρε,N )
dx
)1/2(

E

∫
RD

∫
V

σ(ρε,N )

ε2 ( fε − ρε,N ) ln( fε/ρε,N ) dµN (v) dx
)1/2

.

By assumption, 1/σ(ρε,N ) is uniformly bounded. It follows that

E

∫
RD
|∇xϕ|

2 ρε,N

σ(ρε,N )
dx ≤ C

(
E

∫
RD
|∇xϕ|

2q dx
)1/q(

E

∫
RD
ρ

p
ε,N dx

)1/p

≤ C
(

E

∫
RD
|∇xϕ|

2q dx
)1/q(

E

∫
RD

∫
V

| fε|p dµN (v) dx
)1/p

≤ C

holds provided the Hölder conjugate q of p ≥ 1 satisfies β ≤ 1/2− D/(4q).
The Young inequality

ab ≤
a2

4θ
+ θb2

yields

d
dt

E

∫
RD

∫
V

ϕ(x) fε(t, x, v) dµN (v) dx ≤ C + 1
2

E

∫
RD

∫
V

σ(ρε,N )

ε2 ( fε − ρε,N ) ln( fε/ρε,N ) dµN (v) dx .

Let us set

Dε := E

∫
RD

∫
V

σ(ρε,N )

ε2 ( fε − ρε,N ) ln( fε/ρε,N ) dµN (v) dx ≥ 0.

Coming back to (3-6), we get

E

∫
RD

∫
V

fε(t, x, v) ln fε(t, x, v) dµN (v) dx + E

∫
RD

∫
V

ϕ(x) fε(t, x, v) dµN (v) dx + 1
2

∫ t

0
Dε(s) ds

≤ Ct + E

∫
RD

∫
V

f ω,0ε (x, v) ln f ω,0ε (x, v) dµN (v) dx + E

∫
RD

∫
V

ϕ(x) f ω,0ε (x, v) dµN (v) dx .

Since z| ln z| = z ln z− 2z ln z 1{0≤z≤1}, we have

0≤−
∫

0≤ f≤1
f ln f dy =−

∫
0≤ f≤e−ϕ

f ln f dy−
∫

e−ϕ≤ f≤1
f ln f dy ≤

∫
ϕ f dy+

∫
e−ϕ/2 dy.
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Then, we are led to

E

∫
RD

∫
V

fε| ln fε| dµN (v) dx + 1
2

∫ t

0
Dε(s) ds+ 1

2
E

∫
RD

∫
V

ϕ fε dµN (v) dx

= E

∫
RD

∫
V

fε ln fε dµN (v) dx − 2E

∫
RD

∫
V

fε ln fε1{0≤ fε≤1} dµN (v) dx

+
1
2

∫ t

0
Dε(s) ds+ 1

2
E

∫
RD

∫
V

ϕ fε dµN (v) dx

≤ E

∫
RD

∫
V

fε ln fε dµN (v) dx + 2E

∫
RD

∫
V

ϕ

4
fε dµN (v) dx

+ 2E

∫
RD

∫
V

e−ϕ/8 dµN (v) dx + 1
2

∫ t

0
Dε(s) ds+ 1

2
E

∫
RD

∫
V

ϕ fε dµN (v) dx

≤ C(T ). �

Moreover, we can deduce from above that fε behaves like its macroscopic part ρε,N for small ε.

Corollary 3.4. We set gε,N := ( fε − ρε,N )/ε. Then, we have

sup
ε>0, N

E

∫ T

0

∫
RD

∣∣∣∣∫
V

gε,N dµN (v)

∣∣∣∣2 dx dt ≤ C(T ).

Proof. We write

E

∫ T

0

∫
RD

∣∣∣∣∫
V

gε,N dµN (v)

∣∣∣∣2dx dt = E

∫ T

0

∫
RD

(∫
V

| fε−ρε,N |
ε

dµN (v)

)2

dx dt

≤C E

∫ T

0

∫
RD
ρε,N

∫
V

( fε−ρε,N ) ln( fε/ρε,N )dµN (v)dx dt

≤C E

∫ T

0

∫
RD

ρε,N

σ(ρε,N )

∫
V

σ(ρε,N )( fε−ρε,N ) ln( fε/ρε,N )dµN (v)dx dt.

Since by the assumption on σ we know that z 7→ z/σ(z) is bounded on bounded sets and since ρε,N is
bounded in L∞(�× (0, T )×RD), we can conclude by using (3-4). �

Diffusive limit. We can now discuss how to pass to the limit ε→ 0.

Proof of Theorem 3.2. Applying the Dunford–Pettis theorem (see [Goudon 2011, §7.3.2]) we deduce
from Proposition 3.3 that, possibly at the price of extracting a subsequence,

fε⇀ fN weakly in L1(�× (0, T )×RD
×VN ).

Consequently, we also have

ρε,N =

∫
V

fε dµN (v) ⇀ ρN =

∫
V

fN dµN (v) weakly in L1(�× (0, T )×RD)

and
Eρε,N ⇀ EρN weakly in L1((0, T )×RD).
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Next, we consider the equations satisfied by the moments of fε. To this end, let us set

Jε,N (t, x) := 1
2N

2N∑
i=1

Vi

ε
fε(t, x, Vi ), Pε,N (t, x) := 1

2N

2N∑
i=1

Vi ⊗ Vi fε(t, x, Vi ).

Integrating (3-2) with respect to the velocity variable v yields

∂tρε,N + div(Jε,N )= 0. (3-7)

Similarly, multiplying (3-2) by v and integrating leads to

ε2∂t Jε,N + div(Pε,N )=−σ(ρε,N )Jε,N . (3-8)

Lemma 3.5. The sequence (Jε,N )ε>0 is bounded in L2(�× (0, T )× RD) and we can write Pε,N =

AN ρε,N + εKε,N with AN =
1

2N

∑2N
j=1 Vj ⊗ Vj and the components of (Kε,N )ε>0 are bounded in

L2(�× (0, T )×RD).

Proof. The proof is based on the fact that fε = ρε,N + εgε,N . Since
∑2N

j=1 Vj = 0, it allows us to write

Jε,N =
∫
vgε,N dµN (v),

and we deduce the bound on Jε,N from Corollary 3.4 since ‖v‖L∞(�×S) ≤ C . In addition, we have

Pε,N =

∫
v⊗ v dµN (v)ρε,N + ε

∫
v⊗ vgε,N dµN (v).

We set

Kε,N (t, x) :=
∫
v⊗ vgε,N (t, x, v) dµN (v).

We conclude by using the estimates in Corollary 3.4 again. �

Owing to Lemma 3.5, (3-8) can be recast as

ε
(
ε∂t Jε,N + div(Kε,N )

)
+ AN ∇xρε,N =−νε,N ,

with νε,N := σ(ρε,N )Jε,N . Passing to the limit, up to subsequences, we are led to{
∂tρN + div(JN )= 0,
AN ∇ρN =−νN ,

(3-9)

where νN is the weak limit as ε→ 0 of νε,N , which is a bounded sequence in L2(�× (0, T )×RD).
It remains to establish a relation between νN , ρN and JN , or more precisely the expectation of these
quantities. To this end, we are going to use the strong compactness of Eρε,N by using the averaging
lemma. Indeed, we know that Eρε,N belongs to a bounded set in L2(0, T ; H 1/2(RD)); the proof follows
exactly the same argument as for Theorem 2.3, taking the Fourier transform with respect to both the time
and space variables t, x . However, because of the ε in front of the time derivative, we cannot expect a
gain of regularity with respect to the time variable. Then, we need to combine this estimate with another
argument as follows:
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(i) By using the Weil–Kolmogorov–Fréchet theorem, see [Goudon 2011, Théorème 7.56], we deduce
from the averaging lemma that

lim
|h|→0

(
sup
ε

∫ T

0

∫
RD

∣∣Eρε,N (t, x + h)− Eρε,N (t, x)
∣∣2 dx dt

)
= 0.

(ii) Going back to (3-7), Lemma 3.5 tells us that ∂t Eρε,N =−div(EJε,N ) is bounded, uniformly with
respect to ε, in L2(0, T ; H−1(RD)).

Then, this is enough to deduce that Eρε,N strongly converges to EρN in L2((0, T )× RD) (see, e.g.,
[Alonso et al. 2017, Appendix B] for a detailed proof).

Then, we rewrite

EJε,N = E

(
νε,N

σ(ρε,N )

)
=

Eνε,N

σ(Eρε,N )
+ Erε,N , rε,N =

[
νε,N

(
1

σ(ρε,N )
−

1
σ(Eρε,N )

)]
. (3-10)

From the previous discussion, extracting further subsequences if necessary, we know that Eνε,N converges
weakly to EνN in L2((0, T )×RD), while Eρε,N converges strongly in L2((0, T )×RD) and a.e. to EρN .
Since σ is continuous and bounded from below, 1/σ(Eρε,N ) converges to 1/σ(EρN ) a.e. too, and it is
bounded in L∞((0, T )×RD). We deduce that

Eνε,N

σ(Eρε,N )
⇀

EνN

σ(EρN )
weakly in L2((0, T )×RD).

We are left with the task of proving that the last term in the right hand side of (3-10) tends to 0 as N →∞,
uniformly with respect to ε. The Cauchy–Schwarz inequality yields

|E rε,N | ≤ (E[(νε,N )2])1/2
(

E

[(
1

σ(ρε,N )
−

1
σ(Eρε,N )

)2])1/2

≤ (E [(νε,N )
2
])1/2

(
E

[(∫ ρε,N

Eρε,N

d
dz

[
1
σ(z)

]
dz
)]2)1/2

≤ (E [(νε,N )
2
])1/2

(
E [(ρε,N − Eρ2

ε,N ])
)1/2

≤ (E [(νε,N )
2
])1/2

(
E

[(
1

2N

2N∑
i=1

fε(Vi )− Eρε,N

)2])1/2

. (3-11)

We remind the reader that the 2N velocities are constructed by symmetry from V1, . . . , VN , which are
i.i.d. velocities in [−0.5, 0.5]D , and we write

E

[
12N

2N∑
i=1

fε(Vi )− Eρε,N

]2

= E

[
1

4N 2

N∑
i, j=1

{(
fε(Vi )+ fε(−Vi )− 2Eρε,N

)(
fε(Vj )+ fε(−Vj )− 2Eρε,N

)}]
. (3-12)
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When i 6= j , we know Vi and Vj are independent, which implies

E
[
( fε(Vi )+ fε(−Vi )− 2Eρε,N )( fε(Vj )+ fε(−Vj )− 2Eρε,N )

]
= E

[
fε(Vi )+ fε(−Vi )− 2Eρε,N

]
E
[

fε(Vj )+ fε(−Vj )− 2Eρε,N
]
.

Now, we use the fact that the Vi are identically distributed so that

2Eρε,N = 2E

(
1

2N

2N∑
k=1

fε(Vk)

)
= E

(
1

N

N∑
k=1

(
fε(Vk)+ fε(−Vk)

))

=
1

N

N∑
k=1

(
E fε(Vk)+ E fε(−Vk)

)
= E fε(Vj )+ E fε(−Vj )

for any j ∈ {1, . . . ,N }. It follows that

E
[

fε(Vi )+ fε(−Vi )− 2Eρε,N )( fε(Vj )+ fε(−Vj )− 2Eρε,N )
]
= 0 when i 6= j .

Going back to (3-12), we obtain

E

[
1

2N

2N∑
i=1

fε(Vi )− Eρε,N

]2

= E

[
1

4N 2

N∑
i=1

(
fε(Vi )+ fε(−Vi )− 2Eρε,N

)2
]
.

Since fε and ρε,N are uniformly bounded, we conclude that the estimate

E

[
1

2N

2N∑
i=1

fε(Vi )− Eρε,N

]2

≤
C
N

holds. Inserting this information in (3-11), we arrive at∫ T

0

∫
RD
|Erε,N |2 dx dt ≤

C
N

E

∫ T

0

∫
RD
ν2
ε,N dx dt,

which is thus of order O(1/N ), uniformly with respect to ε.
Therefore, we can let ε run to 0 in (3-10) and, for a suitable subsequence, we are led to

EJε,N ⇀ EJN =
EνN

σ(EρN )
+ rN weakly in L2((0, T )×RD) with ‖rN ‖L2((0,T )×RD) ≤

C
√

N
.

Finally, we take the expectation in (3-9) and we get

E(AN ∇xρN )=−EνN =−σ(EρN )EJN + σ(EρN )rN .

Note that the last term is still of order O(1/
√

N ) in the L2((0, T )×RD) norm. By reasoning similar to
that above, we check that, for any i, j ∈ {1, . . . , D},√

E
[(
[AN ]i j − E[AN ]i j

)2]
= O

(
1
√

N

)
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(this is the standard result about Monte Carlo integration). It implies that we can find a constant C > 0,
which only depends on the dimension D, such that for any ξ ∈ RD,

E
[∣∣AN ξ − E[AN ξ ]

∣∣2]≤ C |ξ |2

N
.

Then we get

E(AN ∇xρN )= EAN ∇x EρN + sN , sN = E
[
(AN − EAN )∇xρN

]
.

The remainder term should be analyzed in a weak sense, due to a lack of a priori regularity of ∇xρN (we
only know that the product AN ∇xρN lies in L2, but the invertibility of AN is not guaranteed). We have,
for any ϕ ∈ C∞c ((0, T )×RD),∣∣〈EsN |ϕ〉

∣∣= ∣∣∣∣−E

∫ T

0

∫
RD
ρN (AN − EAN )∇xϕ dx dt

∣∣∣∣
≤

(
E

∫ T

0

∫
RD
ρ2

N dx dt
)1/2(∫ T

0

∫
RD
|∇xϕ|

2 dx dt
)1/2 C
√

N
.

Owing to the estimates (3-3) in Proposition 3.3, it means that sN is therefore of order O(1/
√

N ) in the
L2(0, T ; H−1(RD))-norm. �

Remark 3.6. The random matrix AN might be singular. However EAN is invertible. Indeed for any
ξ 6= 0, we have

EAN ξ · ξ =
1

2N

2N∑
j=1

E[|Vj · ξ |
2
] ≥ 0.

This quantity is actually positive since P(v · ξ = 0)= 0 for the continuous laws we are dealing with.

4. Comments and perspectives

The Monte Carlo procedure is widely used to numerically evaluate multidimensional integrals, precisely
because, evaluating the numerical effort by the number N of quadrature points, it provides a result with
an accuracy of order O(1/

√
N ), independently of the space dimension, in contrast to the deterministic

quadrature methods where the error is O(N −k/D), k being the order of the method; see [Caflisch 1998;
Lapeyre et al. 1998, Chapitre 1]. Application of such stochastic quadrature approaches to the numerical
treatment of kinetic models for neutron transport dates back to the Manhattan project [Metropolis and
Ulam 1949]. For applications to radiative transfer computations we refer the reader, e.g., to [Campbell
1967] and for a more recent overview to [Whitney 2011]. After the pioneering works by K. Nanbu
[1980] and G. A. Bird [1970], Monte Carlo techniques are at the basis of the simulation of the Boltzmann
equation for rarefied gases. (By the way, note that the construction of a suitable deterministic quadrature
formula for approximating the Boltzmann operator can be a bit tricky, with unexpected connections to
subtle number theory arguments [Michel and Schneider 2000].) Very comprehensive introductions can
be found in [Graham and Méléard 1999; Pareschi 2005; Pareschi and Russo 1999] and in the textbook
[Lapeyre et al. 1998]. The method can naturally be presented as a particulate method; roughly speaking,



REGULARITY OF VELOCITY AVERAGES FOR TRANSPORT EQUATIONS 1223

it works according to a splitting approach [Lapeyre et al. 1998, Chapter 3]: first, particles (which, here,
are “test” particles intended to actually represent a set of real particles) are displaced according to free
transport over the time step 1t , and, second, the effects of the interaction between particles during the
time step are evaluated by using a random sampling. Convergence of the method for the Boltzmann
equation as the number of particles tends to∞ is analyzed in [Graham and Méléard 1997; Pulvirenti et al.
1994; Wagner 1992; 2004]. However, the performance of Monte Carlo algorithms is known to degrade in
near-continuum regimes, where the number of collision events per time unit increases; see [Caflisch 1998,
§7; Lapeyre et al. 1998, §3.7.1 and §4.5]. This observation has motivated the development of hybrid
methods [Dimarco and Pareschi 2008; Pareschi 2005].

As pointed out in the Introduction, the average lemma plays a central role in the analysis of nonlinear
kinetic models and their hydrodynamic limits, with fundamental obstructions in extending to discrete
velocity models. We expect that the stochastic average lemma established here might help in analyzing
stochastic algorithms for kinetic models. Our first attempt remains at the level of space-time continuous
models for the simplest radiative transfer equation: it is just a consistency result with the diffusion
approximation. It is remarkable that the consistency error preserves the typical feature of the Monte Carlo
error estimate in O(1/

√
N ), independently of the space dimension. A next step, likely inspired by the

“time-discretized” version of the averaging lemma in [Bouchut and Desvillettes 1999; Horsin et al. 2003],
would be to consider time-discretized models, where the random velocity grid is reconstructed at each
time step.
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PERRON’S METHOD FOR
NONLOCAL FULLY NONLINEAR EQUATIONS

CHENCHEN MOU

This paper is concerned with the existence of viscosity solutions of nonlocal fully nonlinear equations that
are not translation-invariant. We construct a discontinuous viscosity solution of such a nonlocal equation
by Perron’s method. If the equation is uniformly elliptic, we prove the discontinuous viscosity solution is
Hölder continuous and thus it is a viscosity solution.

1. Introduction

We investigate the existence of a viscosity solution of�
I.x; u.x/; u. � //D 0 in �,
uD g in �c;

(1-1)

where � is a bounded domain in Rn, I is a nonlocal operator that is not translation-invariant and g is a
bounded continuous function in Rn.

An important example of (1-1) is the Dirichlet problem for nonlocal Bellman–Isaacs equations, i.e.,�
supa2A infb2B

˚
�IabŒx; u�C bab.x/ � ru.x/C cab.x/u.x/Cfab.x/

	
D 0 in �;

uD g in �c;
(1-2)

where A;B are two index sets, bab WRn!Rn, cab WRn!RC, fab WRn!R are uniformly continuous
functions and Iab is a Lévy operator. If the Lévy measures are symmetric and absolutely continuous with
respect to the Lebesgue measure, then they can be represented as

IabŒx; u� WD

Z
Rn
Œu.xC z/�u.x/�Kab.x; z/ dz; (1-3)

where fKab.x; � / W x 2�; a 2A; b 2 Bg are kernels of Lévy measures satisfyingZ
Rn

minfjzj2; 1gKab.x; z/ dz <C1 for all x 2�: (1-4)

In fact, we will not assume our Lévy measures to be symmetric in the following sections.
Existence of viscosity solutions has been well established for the Dirichlet problem for integro-

differential equations by Perron’s method when the equations satisfy the comparison principle. G. Barles
and C. Imbert [Barles and Imbert 2008] studied the comparison principle for degenerate second-order

MSC2010: primary 35D40, 35J60, 35R09, 47G20, 49N70; secondary 45K05.
Keywords: viscosity solution, integro-PDE, Hamilton–Jacobi–Bellman–Isaacs equation, Perron’s method, weak Harnack

inequality.
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integro-differential equations assuming the nonlocal operators are of Lévy–Itô type and the equations
satisfy the coercive assumption. Then G. Barles, E. Chasseigne and C. Imbert [Barles et al. 2008]
obtained the existence of viscosity solutions for such integro-differential equations by Perron’s method.
L. A. Caffarelli and L. Silvestre [2009, Section 5] proved the comparison principle for uniformly elliptic
translation-invariant integro-differential equations where the nonlocal operators are of Lévy type. Then
existence of viscosity solutions follows, if suitable barriers can be constructed, by Perron’s method. Later
H. Chang-Lara and G. Davila [2014a, Section 3; 2016b] extended the comparison and existence results
of [Caffarelli and Silvestre 2009] to parabolic equations. The existence for (1-1) when I is a nonlocal
operator that is not translation-invariant is much more difficult to tackle since we do not have a good
comparison principle; see [Mou and Święch 2015], where the authors proved comparison assuming that
either a viscosity subsolution or a supersolution is more regular. To our knowledge, the only available
results for the existence of solutions for equations that are not translation-invariant are the following.
D. Kriventsov [2013, Section 5] studied the existence of viscosity solutions of some uniformly elliptic
nonlocal equations. J. Serra [2015b, Section 4] proved the existence of viscosity solutions of uniformly
elliptic nonlocal Bellman equations. H. Chang-Lara and D. Kriventsov [2017, Section 5] extended
existence results in [Kriventsov 2013] to a class of uniformly parabolic nonlocal equations. In all these
proofs, the authors used fixed-point arguments. O. Alvarez and A. Tourin [1996] obtained the existence
of viscosity solutions of degenerate parabolic nonlocal equations by Perron’s method with a restrictive
assumption that the Lévy measures are bounded. The boundedness of Lévy measures allowed them to
obtain the comparison principle. The reader can consult [Crandall et al. 1992; Ishii 1987; 1989; Koike
2005] for Perron’s method for viscosity solutions of fully nonlinear partial differential equations.

The probability literature on the existence of viscosity solutions of nonlocal Bellman–Isaacs equations
is enormous. It is well known that Bellman–Isaacs equations arise when people study differential
games, where the equations carry information about the value and strategies of the games. Probabilists
represent viscosity solutions of nonlocal Bellman–Isaacs equations as value functions of certain stochastic
differential games with jump diffusion via the dynamic programming principle. However, mostly in the
probability literature, the nonlocal terms of nonlocal Bellman–Isaacs equations are of Lévy–Itô type and
� is the whole space Rn. We refer the reader to [Barles et al. 1997; Biswas 2012; Biswas et al. 2010;
Buckdahn et al. 2011; Ishikawa 2004; Kharroubi and Pham 2015; Koike and Święch 2013; Øksendal and
Sulem 2007; Pham 1998; Soner 1986; 1988; Święch and Zabczyk 2016] for stochastic representation
formulas for viscosity solutions of nonlocal Bellman–Isaacs equations.

In Section 3, we adapt to the nonlocal case the approach from [Ishii 1987; 1989; Koike 2005] for
obtaining existence of a discontinuous viscosity solution u of (1-1) without using the comparison principle.
For applying Perron’s method, we need to assume that there exist a continuous viscosity subsolution and
a continuous supersolution of (1-1) and both satisfy the boundary condition. Since (1-1) involves the
nonlocal term, the proof of the existence is more delicate than the PDE case.

In Section 4, we obtain a Hölder estimate for the discontinuous viscosity solution of (1-1) constructed
by Perron’s method assuming the equation is uniformly elliptic. In most of the literature, the nonlocal
operator I is assumed to be uniformly elliptic with respect to a class of linear nonlocal operators of form
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(1-3) with kernels K satisfying

.2� �/
�

jzjnC�
�K.x; z/� .2� �/

ƒ

jzjnC�
; (1-5)

where 0 < � � ƒ. Various regularity results were obtained in recent years under the above uniform
ellipticity, such as [Caffarelli and Silvestre 2009; 2011a; 2011b; Chang-Lara and Dávila 2014a; 2014b;
2016a; 2016b; Chang-Lara and Kriventsov 2017; Dong and Kim 2013; Jin and Xiong 2015; 2016;
Kriventsov 2013; Serra 2015a; 2015b; Silvestre 2006; 2011; Dong and Zhang 2016] for both elliptic and
parabolic integro-differential equations. In this paper, we follow [Schwab and Silvestre 2016] to assume a
much weaker uniform ellipticity. Roughly speaking, we let I be uniformly elliptic with respect to a larger
class of linear nonlocal operators where the kernels K satisfy the right-hand side of (1-5) in an integral
sense and the left-hand side of that in a symmetric subset of each annulus domain with positive measure.
The main tool we use is the weak Harnack inequality obtained in [Schwab and Silvestre 2016]. With the
weak Harnack inequality, we are able to prove the oscillation between the upper- and lower-semicontinuous
envelopes of the discontinuous viscosity solution u in the ball Br is of order r˛ for some ˛ > 0 and any
small r > 0. This proves that u is Hölder continuous and thus it is a viscosity solution of (1-1). Recently,
L. Silvestre [2016] applied the regularity for nonlocal equations under this weak ellipticity to obtain
the regularity for the homogeneous Boltzmann equation without cut-off. We also want to mention that
M. Kassmann, M. Rang and R. Schwab [Kassmann et al. 2014] studied Hölder regularity for a class of
integro-differential operators with kernels which are positive along some given rays or cone-like sets.

To complete the existence results, we construct continuous sub/supersolutions in both uniformly elliptic
and degenerate cases in Section 5. In the uniformly elliptic case, we follow the idea of [Ros-Oton and
Serra 2016] to construct appropriate barrier functions. We then use them to construct a subsolution and a
supersolution which satisfy the boundary condition. The weak uniform ellipticity and the lower-order terms
of I make the proofs more involved. With all these ingredients in hand, we can conclude one of the main
results in this manuscript, that (1-1) admits a viscosity solution if I is uniformly elliptic; see Theorem 5.6
in Section 5A. This main result generalizes nearly all the previous existence results for uniformly elliptic
integro-differential equations. In the degenerate case, it is natural to construct a sub/supersolution only
for (1-2) since we have little information about the nonlocal operator I . Moreover, we need to assume
the nonlocal Bellman–Isaacs equation in (1-2) satisfies the coercive assumption, i.e., cab � 
 for some

 > 0. The coercive assumption is often made to study uniqueness, existence and regularity of viscosity
solutions of degenerate elliptic PDEs and integro-PDEs; see [Barles et al. 2008; Barles and Imbert 2008;
Crandall et al. 1992; Ishii 1987; 1989; Ishii and Lions 1990; Jakobsen and Karlsen 2006; Mou 2016; Mou
and Święch 2015]. In Section 5B, we obtain a subsolution and a supersolution which satisfy the boundary
condition in the degenerate case. The difficulty here lies in giving a degenerate assumption on the kernels
which allows us to construct barrier functions. Roughly speaking, we only need to assume that the kernels
Kab.x; � / are nondegenerate in the outer-pointing normal direction of the boundary for the points x
which are sufficiently close to the boundary. That means we allow our kernels Kab to be degenerate
in the whole domain. Then we can conclude the second main result, the existence of a discontinuous
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viscosity solution of (1-2), given in Theorem 5.13. If the comparison principle holds for (1-2), we obtain
that the discontinuous viscosity solution is a viscosity solution. Finally, we notice that our method could
be adapted to the nonlocal parabolic equations for obtaining the corresponding existence results.

2. Notation and definitions

We write Bı for the open ball centered at the origin with radius ı > 0 and Bı.x/ WD Bı C x. We
set �ı WD fx 2 � W dist.x; @�/ > ıg for ı > 0. For each nonnegative integer r and 0 < ˛ � 1, we
denote by C r;˛.�/ (C r;˛.�/) the subspace of C r;0.�/ (C r;0.�/) consisting of functions whose r-th
partial derivatives are locally (uniformly) ˛-Hölder continuous in �. For any u 2 C r;˛.�/, where r is a
nonnegative integer and 0� ˛ � 1, define

Œu�r;˛I� WD

�
supx2�;jj jDr j@

ju.x/j if ˛ D 0;
supx;y2�;x 6Dy;jj jDr j@

ju.x/� @ju.y/j=jx�yj˛ if ˛ > 0;
and

kukC r;˛.�/ WD

(Pr
jD0Œu�j;0;� if ˛ D 0;

kukC r;0.�/C Œu�r;˛I� if ˛ > 0:

For simplicity, we use the notation C ˇ .�/ (C ˇ .�/), where ˇ>0, to denote the space C r;˛.�/ (C r;˛.�/),
where r is the largest integer smaller than ˇ and ˛ D ˇ� r . The set C ˇ

b
.�/ consist of functions from

C ˇ .�/ which are bounded. We write USC.Rn/ for the space of upper-semicontinuous functions in Rn

and LSC.Rn/ for the space of lower-semicontinuous functions in Rn.
We will give a definition of viscosity solutions of (1-1). We first state the general assumptions on the non-

local operator I in (1-1). For any ı>0, r; s2R, x; xk 2�, '; 'k; 2C 2.Bı.x//\L1.Rn/, we assume:

(A0) The function .x; r/! I.x; r; '. � // is continuous in Bı.x/�R.

(A1) If xk! x in �, 'k! ' a.e. in Rn, 'k! ' in C 2.Bı.x// and f'kgk is uniformly bounded in Rn,
then

I.xk; r; 'k. � //! I.x; r; '. � //:

(A2) If r � s, then I.x; r; '. � //� I.x; s; '. � //.

(A3) For any constant C , we have I.x; r; '. � /CC/D I.x; r; '. � //.

(A4) If ' touches  from above at x, then I.x; r; '. � //� I.x; r;  . � //.

Remark 2.1. If I is uniformly elliptic and satisfies (A0), (A2), then (A0)–(A4) hold for I . See Lemma 4.2.

Remark 2.2. The nonlocal operator I in [Schwab and Silvestre 2016] has only two components, i.e.,
.x; '/! I.x; '. � //. Here we let our nonlocal operator I have three components and assume (A2)–(A3)
hold. This is because we want to let I include the left-hand side of the nonlocal Bellman–Isaacs equation
in (1-2) and, moreover, we want to describe the two properties

�IabŒx; 'CC �C bab.x/ � r.'CC/.x/D�IabŒx; '�C bab.x/ � r'.x/;

cab.x/r � cab.x/s if r � s

in abstract forms.
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Remark 2.3. The left-hand side of the nonlocal Bellman–Isaacs equation in (1-2) satisfies (A0)–(A4) if
(1-4) holds and its coefficients Kab , bab , cab and fab are uniformly continuous with respect to x in �,
uniformly in a 2 A, b 2 B. See [Guillen and Schwab 2016] for when the nonlocal operator I has a
min-max structure.

Throughout the paper, we always assume the nonlocal operator I satisfies (A0)–(A4).

Definition 2.4. A bounded function u 2 USC.Rn/ is a viscosity subsolution of I D 0 in � if whenever
u�' has a maximum over Rn at x 2� for ' 2 C 2

b
.Rn/, then

I.x; u.x/; '. � //� 0:

A bounded function u 2 LSC.Rn/ is a viscosity supersolution of I D 0 in � if whenever u� ' has a
minimum over Rn at x 2� for ' 2 C 2

b
.Rn/, then

I.x; u.x/; '. � //� 0:

A bounded function u is a viscosity solution of I D 0 in � if it is both a viscosity subsolution and
viscosity supersolution of I D 0 in �.

Remark 2.5. In Definition 2.4, all the maximums and minimums can be replaced by strict ones.

Definition 2.6. A bounded function u is a viscosity subsolution of (1-1) if u is a viscosity subsolution of
I D 0 in � and u� g in �c. A bounded function u is a viscosity supersolution of (1-1) if u is a viscosity
supersolution of I D 0 in � and u� g in �c. A bounded function u is a viscosity solution of (1-1) if u
is a viscosity subsolution and supersolution of (1-1).

We will use the following notations: if u is a function on �, then, for any x 2�,

u�.x/D lim
r!0

sup
˚
u.y/ W y 2� and jy � xj � r

	
;

u�.x/D lim
r!0

inf
˚
u.y/ W y 2� and jy � xj � r

	
:

One calls u� the upper-semicontinuous envelope of u and u� the lower semicontinuous envelope of u.
We then give a definition of discontinuous viscosity solutions of (1-1).

Definition 2.7. A bounded function u is a discontinuous viscosity subsolution of (1-1) if u� is a viscosity
subsolution of (1-1). A bounded function u is a discontinuous viscosity supersolution of (1-1) if u� is a
viscosity supersolution of (1-1). A function u is a discontinuous viscosity solution of (1-1) if it is both a
discontinuous viscosity subsolution and a discontinuous viscosity supersolution of (1-1).

Remark 2.8. If u is a discontinuous viscosity solution of (1-1) and u is continuous in Rn, then u is a
viscosity solution of (1-1).

3. Perron’s method

In this section, we obtain the existence of a discontinuous viscosity solution of (1-1) by Perron’s method.
We remind you that I satisfies (A0)–(A4).
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Lemma 3.1. Let F be a family of viscosity subsolutions of I D 0 in �. Let w.x/D supfu.x/ W u 2 Fg in
Rnand assume that w�.x/ <1 for all x 2 Rn. Then w is a discontinuous viscosity subsolution of I D 0
in �.

Proof. Suppose that ' is a C 2
b
.Rn/ function such that w� � ' has a strict maximum (equal to 0) at

x0 2 � over Rn. We can construct a uniformly bounded sequence of C 2.Rn/ functions f'mgm such
that 'm D ' in B1.x0/, ' � 'm in Rn, supx2Bc2 .x0/fw

�.x/� 'm.x/g � �
1
m

and 'm ! ' pointwise.
Thus, for any positive integer m, we know w� � 'm has a strict maximum (equal to 0) at x0 over Rn.
Therefore, supx2Bc1 .x0/fw

�.x/� 'm.x/g D �m < 0. By the definition of w�, we have, for any u 2 F ,
supx2Bc1 .x0/fu.x/�'m.x/g � �m < 0. Again, by the definition of w�, we have, for any �m < � < 0, there
exist u� 2 F and Nx� 2 B1.x0/ such that u�. Nx�/� '. Nx�/ > �. Since u� 2 USC.Rn/ and 'm 2 C 2b .R

n/,
there exists x� 2 B1.x0/ such that u�.x�/� 'm.x�/D supx2Rnfu�.x/� '.x/g � u�. Nx�/� 'm. Nx�/ > �.
Since w��'m attains a strict maximum (equal to 0) at x0 over Rn and u� w� for any u 2 F, we have
u�.x�/! w�.x0/ and x�! x0 as �! 0�. Since u� is a viscosity subsolution of I D 0 in �, we have

I.x�; u�.x�/; 'm. � //� 0: (3-1)

Since x�!x0, u�.x�/!w�.x0/ as �! 0�, 'mD' in B1.x0/, 'm!' pointwise, f'mgm is uniformly
bounded, ' 2 C 2

b
.Rn/, (A0) and (A1) hold, we have, letting �! 0� and m!C1 in (3-1),

I.x0; w
�.x0/; '. � //� 0:

Therefore, w is a discontinuous viscosity subsolution of I D 0. �

Theorem 3.2. Let u, u be bounded continuous functions and be respectively a viscosity subsolution and
a viscosity supersolution of I D 0 in �. Assume moreover that u D u D g in �c for some bounded
continuous function g and u� u in Rn. Then

w.x/D sup
u2F

u.x/;

where

F D
˚
u 2 C 0.Rn/ W u� u� u in Rn and u is a viscosity subsolution of I D 0 in �

	
;

is a discontinuous viscosity solution of (1-1).

Proof. Since u2F , we know F 6D∅. Thus, w is well defined, u�w� u in Rn and wD uD u in �c. By
Lemma 3.1, w is a discontinuous viscosity subsolution of GD 0 in �. We claim that w is a discontinuous
viscosity supersolution of G D 0 in �. If not, there exist a point x0 2� and a function ' 2 C 2

b
.Rn/ such

that w��' has a strict minimum (equal to 0) at the point x0 over Rn and

I.x0; w�.x0/; '. � // < ��0;

where �0 is a positive constant. Thus, we can find sufficiently small constants �1 > 0 and ı0 > 0 such that
Bı0.x0/�� and there exists a C 2

b
.Rn/ function '�1 satisfying that '�1 D ' in Bı0.x0/, '�1 � ' in Rn,

infx2Bc
2ı0
.x0/fw�.x/�'�1.x/g � �1 > 0 and

I.x0; '�1.x0/; '�1. � // < �
1
2
�0: (3-2)
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Thus, by (A0), there exists ı1 < ı0 such that, for any x 2 Bı1.x0/,

I.x; '�1.x/; '�1. � // < �
1
4
�0: (3-3)

By the definition of w, we have '�1 � w� � u in Rn. If '�1.x0/D w�.x0/D u.x0/, then u�'�1 has a
strict minimum at the point x0 over Rn. Since u is a viscosity supersolution of I D 0 in �, we have

I.x0; '�1.x0/; '�1. � //� 0;

which contradicts (3-2). Thus, we have '�1.x0/ < u.x0/. Since u and '�1 are continuous functions in Rn,
we have '�1.x/ < u.x/� �2 in Bı2.x0/ for some 0 < ı2 < ı1 and �2 > 0. We define

�r D sup
x2Bcr .x0/

f'�1.x/�w�.x/g:

Since infx2Bc
2ı0
.x0/fw�.x/�'�1.x/g � �1 >0, w��'�1 has a strict minimum (equal to 0) at the point x0

and �w� 2 USC.Rn/, we have �r < 0 for each r > 0. For any y 2� nBr.x0/, there exists a function
vy 2 F such that vy.y/�'�1.y/��

3
4
�r . Since vy and '�1 are continuous in Rn, there exists a positive

constant ıy such that infx2Bıy .y/fvy.x/� '�1.x/g � �
1
2
�r . Since � nBr.x0/ is a compact set in Rn,

there exists a finite set fyig
nr
iD1 �� nBr.x0/ such that � nBr.x0/�

Snr
iD1Bıyi

.yi /. Thus, we define

vr.x/D sup
1�i�nr

fvyi .x/g; x 2 Rn:

By Lemma 3.1 and the definition of vr , we have vr 2 F and infx2�nBr .x0/fvr.x/� '�1.x/g � �
1
2
�r .

Let ˛r be a constant such that 0 < ˛r < 1
2

and �˛r�r < �2. Thus, we define

U.x/D

�
maxf'�1.x/�˛�r ; vr.x/g; x 2 Br.x0/;

vr.x/; x 2 Bcr .x0/;

where 0 < r < ı2 and 0 < ˛ < ˛r . By the definition of U, we obtain U 2C 0.Rn/, u�U �u in Rn, and
there exists a sequence fxngn � Br.x0/ such that xn! x0 as n!C1 and U.xn/ > w.xn/.

We claim that U is a viscosity subsolution of I D 0 in �. For any y 2 �, suppose that there is a
function  2 C 2

b
.Rn/ such that U � has a maximum (equal to 0) at y over Rn. We then divide the

proof into two cases.

Case 1: U.y/ D vr.y/. Since vr � U �  in Rn, we know vr � has a maximum (equal to 0) at y
over Rn. We recall that vr is a viscosity subsolution of I D 0 in �. Therefore, we have

I.y; U.y/;  . � //� 0:

Case 2: U.y/D '�1.y/� ˛�r . We first notice that y 2 Br.x0/. Since '�1 � ˛�r � U �  in Br.x0/,
then '�1 � ˛�r � � 0 in Br.x0/. By the definition of U, we have  � U D vr in Bcr .x0/. Thus,
'�1 �˛�r � � '�1 �˛�r � vr �

1
2
�r �˛�r � 0 in Bcr .x0/. Therefore, we have '�1 �˛�r � has

a maximum (equal to 0) at y 2 Br.x0/� Bı1.x0/ over Rn. Since (3-3), (A0), (A3)–(A4) hold, we can
choose ˛ independent of  and sufficiently small that

I.y;  .y/;  . � //� I.y; '�1.y/�˛�r ; '�1. � //� 0:
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Based on the two cases, we have that U is a viscosity subsolution of I D 0 in �. Therefore, U 2 F,
which contradicts with the definition of w. Thus, w is a discontinuous viscosity supersolution of I D 0
in �. Therefore, w is a discontinuous viscosity solution of I D 0 in �. Since w D g in �c, we know w

is a discontinuous viscosity solution of (1-1). �

Remark 3.3. Under the assumptions of Theorem 3.2, if the comparison principle holds for (1-1), the
discontinuous viscosity solution w is the unique viscosity solution of (1-1). For example, if I is a
translation-invariant nonlocal operator, (1-1) admits a unique viscosity solution.

Before applying Theorem 3.2 to (1-2), we now give the precise assumptions on its equation. For
any 0 < � �ƒ and 0 < � < 2, we consider the family of kernels K W Rn! R satisfying the following
assumptions:

(H0) K.z/� 0 for any z 2 Rn.

(H1) For any ı > 0, Z
B2ınBı

K.z/ dz � .2� �/ƒı��:

(H2) For any ı > 0, ˇ̌̌̌Z
B2ınBı

zK.z/ dz

ˇ̌̌̌
�ƒj1� � jı1��:

We define our nonlocal operator

IabŒx; u� WD

Z
Rn
ızu.x/Kab.x; z/ dz; (3-4)

where

ızu.x/ WD

8<:
u.xC z/�u.x/ if � < 1;
u.xC z/�u.x/�1B1.z/ru.x/ � z if � D 1;
u.xC z/�u.x/�ru.x/ � z if � > 1:

We consider the following nonlocal Bellman–Isaacs equation

sup
a2A

inf
b2B

˚
�IabŒx; u�C bab.x/ � ru.x/C cab.x/u.x/Cfab.x/

	
D 0 in �. (3-5)

Corollary 3.4. Assume that 0 < � < 2, bab � 0 in � if � < 1 and cab � 0 in �. Let u, u be bounded
continuous functions and be respectively a viscosity subsolution and a viscosity supersolution of (3-5),
where fKab. � ; z/ga;b;z , fbabga;b , fcabga;b and ffabga;b are sets of uniformly continuous functions in�,
uniformly in a 2 A, b 2 B, and fKab.x; � / W x 2 �; a 2 A; b 2 Bg are kernels satisfying (H0)–(H2).
Assume moreover that uD uD g in �c for some bounded continuous function g and u� u in Rn. Then

w.x/D sup
u2F

u.x/;

where
F D

˚
u 2 C 0.Rn/ W u� u� u in Rn and u is a viscosity subsolution of (3-5)

	
;

is a discontinuous viscosity solution of (1-2).
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Proof. We define

I.x; r; u. � // WD sup
a2A

inf
b2B

˚
�IabŒx; u�C bab.x/ � ru.x/C cab.x/r Cfab.x/

	
:

It follows from (H1) and (H2) that Iab satisfies (1-4); see Lemma 2.3 in [Schwab and Silvestre 2016].
Then, by (1-4) and uniform continuity of the coefficients, (A0) and (A1) hold. Since cab � 0 in �, (A2)
holds. By (H0) and the structure of Iab , (A3) and (A4) hold. �

4. Hölder estimates

In this section we give Hölder estimates of the discontinuous viscosity solution constructed by Perron’s
method in the previous section. To obtain Hölder estimates, we will assume that the nonlocal operator I
is uniformly elliptic.

We define L WD L.�; �;ƒ/ to be the class of all the nonlocal operators of form

Lu.x/ WD

Z
Rn
ızu.x/K.z/ dz;

where K is a kernel satisfying the assumptions (H0)–(H2) given above and the following assumption:

(H3) There exist positive constants � and � such that, for any ı > 0, there is a set Aı satisfying

(i) Aı � B2ı nBı ;
(ii) Aı D�Aı ;

(iii) jAı j � �jB2ı nBı j;
(iv) K.z/� .2� �/�ı�n�� for any z 2 Aı .

We note that we will also write K 2 L if the corresponding nonlocal operator L 2 L. We then define
the extremal operators

MCL u.x/ WD sup
L2L

Lu.x/; M�L u.x/ WD inf
L2L

Lu.x/:

We denote by m W Œ0;C1/! Œ0;C1/ a modulus of continuity. We say that the nonlocal operator I is
uniformly elliptic if for every r; s 2R, x 2�, ı > 0, '; 2C 2.Bı.x//\L1.Rn/,

M�L .' � /.x/�C0jr. �'/.x/j �m.jr � sj/� I.x; r;  . � //� I.x; s; '. � //

�MCL .' � /.x/CC0jr. �'/.x/jCm.jr � sj/;

where C0 is a nonnegative constant such that C0 D 0 if � < 1.

Remark 4.1. The definition of uniform ellipticity is different from that in [Schwab and Silvestre 2016]
since the nonlocal operator I contains the second component r .

Lemma 4.2. If the nonlocal operator I is uniformly elliptic and satisfies (A0), (A2), then I satisfies
(A0)–(A4).
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Proof. Suppose that ı > 0, xk ! x in �, 'k ! ' a.e. in Rn, 'k ! ' in C 2.Bı.x// and f'kgk is
uniformly bounded in Rn. Since I is uniformly elliptic, we have, for any r 2 R,

M�L .' �'k/.xk/�C0jr.'k �'/.xk/j � I.xk; r; 'k. � //� I.xk; r; '. � //

�MCL .' �'k/.xk/CC0jr.'k �'/.xk/j: (4-1)

Since K 2 L, we know, by Lemma 2.3 in [Schwab and Silvestre 2016], that K satisfies (1-4). Letting
k!C1 in (4-1), we have, by (A0),

lim
k!C1

I.xk; r; 'k. � //D I.x; r; '. � //:

Therefore, (A1) holds. For any constant C, we have

0DM�L .�C/�C0jrC j � I.x; r; '. � /CC/� I.x; r; '. � //�M
C
L .�C/CC0jrC j D 0:

Thus, (A3) holds. If ' touches a C 2.Bı.x//\L1.Rn/ function  from above at x, then

I.x; r; '/� I.x; r;  /�MCL . �'/.x/� 0:

Therefore, (A4) holds. �

The following lemma is an elliptic version of Theorem 6.1 in [Schwab and Silvestre 2016].

Lemma 4.3. Assume 0<�0�� <2, C0; C1�0, and further assume C0D 0 if � <1. Let u be a viscosity
supersolution of

M�L u�C0jruj D C1 in B2

and u� 0 in Rn. Then there exist constants C and �3 such that�Z
B1

u�3 dx

� 1
�3

� C.inf
B1
uCC1/;

where �3 and C depend on �0, �, ƒ, C0, n and �.

The following lemma is a direct corollary of Lemma 4.3.

Corollary 4.4. Assume 0<�0� � <2, 0< r <1, C0; C1� 0, and further assume C0 D 0 if � < 1. Let
u be a viscosity supersolution of

M�L u�C0jruj D C1 in B2r

and u� 0 in Rn. Then there exist constants C and �3 such that�ˇ̌
fu > tg\Br

ˇ̌�
� Crn.u.0/CC1r

� /�3 t��3 for any t � 0; (4-2)

where �3 and C depend on �0, �, ƒ, C0, n and �.

Proof. Now let v.x/D u.rx/. By Lemma 2.2 in [Schwab and Silvestre 2016], we have

M�L v�C0r
��1
jrvj � C1r

� in B2: (4-3)
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Now we apply Lemma 4.3 to (4-3). Thus, for any t � 0, we have

t
ˇ̌
fv > tg\B1

ˇ̌ 1
�3 �

�Z
B1

v�3 dx

� 1
�3

� C.inf
B1
vCC1r

� /� C.v.0/CC1r
� /:

Then

r�n
ˇ̌
fu > tg\Br

ˇ̌
�
ˇ̌
fv > tg\B1

ˇ̌
� C.v.0/CC1r

� /�3 t��3 D C.u.0/CC1r
� /�3 t��3:

Therefore, (4-2) holds. �

Then we follow the idea in [Caffarelli and Silvestre 2009] to obtain a Hölder estimate.

Theorem 4.5. Assume 0 < �0 � � < 2, C0 � 0, and further assume C0 D 0 if � < 1. For any � > 0,
let F be a class of bounded continuous functions u in Rn such that �1

2
� u � 1

2
in Rn, u is a viscosity

subsolution of MCL uCC0jrujD�
1
2
� in B1 andwD supu2F u is a discontinuous viscosity supersolution

of M�L w�C0jrwj D
1
2
� in B1. Then there exist constants �4, ˛ and C such that, if � < �4,

�C jxj˛ � w�.x/�w
�.0/� w�.x/�w�.0/� C jxj

˛;

where �4, ˛ and C depend on �0, �, ƒ, C0, n and �.

Proof. We claim that there exist an increasing sequence fmkgk and a decreasing sequence fMkgk such
that Mk�mk D 8

�˛k and mk � infB
8�k

w� � supB
8�k

w� �Mk . We will prove this claim by induction.

For k D 0, we choose m0 D�12 and M0 D
1
2

since �1
2
� u� 1

2
for any u 2 F. Assume that we have

the sequences up to mk and Mk . In B8�k�1 , we have eitherˇ̌˚
w� �

1
2
MkCmk

	
\B8�k�1

ˇ̌
�
1
2
jB8�k�1 j (4-4)

or ˇ̌˚
w� �

1
2
MkCmk

	
\B8�k�1

ˇ̌
�
1
2
jB8�k�1 j: (4-5)

Case 1: (4-4) holds. We define

v.x/ WD
w�.8

�kx/�mk
1
2
.Mk �mk/

:

Thus, v � 0 in B1 and ˇ̌
fv � 1g\B 1

8

ˇ̌
�
1
2

ˇ̌
B 1
8

ˇ̌
:

Since w is a discontinuous viscosity supersolution of M�L w � C0jrwj D
1
2
� in B1, we know v is a

viscosity supersolution of

M�L v�C08
k.1��/

jrvj D 8k.˛��/� in B8k :

We notice that C0D0 if � <1 and choose ˛<�0. Thus, for any 0<� <2, v is a viscosity supersolution of

M�L v�C0jrvj D � in B8k :
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By the inductive assumption, we have, for any k � j � 0,

v �
mk�j �mk
1
2
.Mk �mk/

�
mk�j �Mk�j CMk �mk

1
2
.Mk �mk/

D 2.1� 8 j̨ / in B8j : (4-6)

Moreover, we have

v � 2 � 8˛k
�
�
1
2
�
�
1
2
� 8�˛k

��
D 2.1� 8˛k/ in Bc

8k
: (4-7)

By (4-6) and (4-7), we have

v.x/� �2.j8xj˛ � 1/ for any x 2 Bc1 :

We define

vC.x/ WDmaxfv.x/; 0g and v�.x/ WD �minfv.x/; 0g:

Since v � 0 in B1, we have v�.x/ D 0 and rv�.x/ D 0 for any x 2 B1. By (H1), we can choose ˛
independent of � and sufficiently small that, for any x 2 B 3

4
and �0 � � < 2,

M�L v
C.x/�M�L v.x/CM

C
L v
�.x/

�M�L v.x/C sup
K2L

Z
Rn
ızv
�.x/K.z/ dz

�M�L v.x/C sup
K2L

Z
Bc1
4

\fv.xCz/<0g

v�.xC z/K.z/ dz

�M�L v.x/C sup
K2L

Z
Bc1
4

max
˚
2.j8.xC z/j˛ � 1/; 0

	
K.z/ dz

�M�L v.x/C 2.2� �/ƒ

C1X
lD0

�
2l

4

���
.2.lC4/˛ � 1/

�M�L v.x/C 2
13.2� �0/ƒ

�
24.˛��0/

1� 2˛��0
�

2�4�0

1� 2��0

�
�M�L v.x/C �:

Therefore, we have

M�L v
C
�C0jrv

C
j � 2� in B 3

4
:

Given any point x 2 B1=8, we can apply Corollary 4.4 in B1=4.x/ to obtain

C.vC.x/C 2�/�3 �
ˇ̌
fvC > 1g\B 1

4
.x/
ˇ̌
�
ˇ̌
fvC > 1g\B 1

8

ˇ̌
�
1
2

ˇ̌
B 1
8

ˇ̌
:

Thus, we can choose �4 sufficiently small that vC � �4 in B1=8 if � < �4. Therefore,

v.x/D
w�.8

�kx/�mk
1
2
.Mk �mk/

� �4 in B 1
8
:
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If we set mkC1 DmkC 1
2
�4.Mk �mk/ and MkC1 DMk , we must have

mkC1 � inf
B
8�k�1

w� � sup
B
8�k�1

w� �MkC1:

Case 2: (4-5) holds. For any u 2 F, we obtain that u 2 C 0.Rn/ is a viscosity subsolution of MCL uC
C0jruj D �

1
2
� in B1 and u� w� in Rn. Thus, we haveˇ̌˚

u� 1
2
.MkCmk/

	
\B8�k�1

ˇ̌
�
1
2
jB8�k�1 j:

We define

vu.x/ WD
Mk �u.8

�kx/
1
2
.Mk �mk/

:

Thus, vu � 0 in B1 and ˇ̌
fvu � 1g\B 1

8

ˇ̌
�
1
2

ˇ̌
B 1
8

ˇ̌
:

Since u is a viscosity subsolution of MCL uCC0jruj D�
1
2
� in B1, then vu is a viscosity supersolution of

M�L vu�C0jrvuj D � in B8k :

Similar to Case 1, we have, if � < �4,

vu.x/D
Mk �u.8

�kx/
1
2
.Mk �mk/

� �4 in B 1
8
;

which implies
u.8�kx/�Mk �

1
2
�4.Mk �mk/ in B 1

8
:

By the definition of w, we have

w�.8�kx/�Mk �
1
2
�4.Mk �mk/ in B 1

8
:

If we set mkC1 Dmk and MkC1 DMk �
1
2
�4.Mk �mk/, we must have

mkC1 � inf
B
8�k�1

w� � sup
B
8�k�1

w� �MkC1:

Therefore, in both of the cases, we have MkC1�mkC1 D
�
1� 1

2
�4
�
8�˛k. We then choose ˛ and �4

sufficiently small that
�
1� 1

2
�4
�
D 8�˛. Thus we have MkC1�mkC1 D 8

�˛.kC1/. �

Theorem 4.6. Assume that 0 < �0 � � < 2 and I.x; 0; 0/ is bounded in �. Assume that I is uniformly
elliptic and satisfies (A0), (A2). Letw be the bounded discontinuous viscosity solution of (1-1) constructed
in Theorem 3.2. Then, for any sufficiently small Qı > 0, there exists a constant C such that w 2 C ˛.�/ and

kwkC˛.� Qı/
� C

�
C2Cm.C2/CkI. � ; 0; 0/kL1.�/

�
;

where ˛ is given in Theorem 4.5, C2 WDmaxfkukL1.Rn/; kukL1.Rn/g and C depends on �0, Qı, �, ƒ, C0,
n, �.
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Proof. It is obvious that kukL1.Rn/ � C2 if u 2 F. Since I is uniformly elliptic, we have

I.x; 0; 0/� I.x; u.x/; u. � //�MCL u.x/CC0jru.x/jCm.C2/ in �:

Since u is a viscosity subsolution of I D 0 in �, we have

�m.C2/�kI. � ; 0; 0/kL1.�/ �M
C
L uCC0jruj in �:

Similarly, we have

M�L w��C0jrw�j �m.C2/CkI. � ; 0; 0/kL1.�/ in �:

By normalization, the result follows from Theorem 4.5. �

By applying Theorem 4.6 to Bellman–Isaacs equation, we have the following corollary.

Corollary 4.7. Assume that 0 < �0 � � < 2, bab � 0 in � if � < 1 and cab � 0 in �. Assume that
fKab. � ; z/ga;b;z , fbabga;b , fcabga;b , ffabga;b are sets of uniformly bounded and continuous functions
in �, uniformly in a2A, b 2B, and fKab.x; � / W x 2�; a 2A; b 2 Bg are kernels satisfying (H0)–(H3).
Let w be the bounded discontinuous viscosity solution of (1-2) constructed in Corollary 3.4. Then, for
any sufficiently small Qı > 0, there exists a constant C such that w 2 C ˛.�/ and

kwkC˛.� Qı/
� C

�
C2C sup

a2A;b2B
kfabkL1.�/

�
;

where ˛ and C2 are given in Theorem 4.6 and C depends on �0, Qı, �, ƒ, supa2A;b2B kbabkL1.�/,
supa2A;b2B kcabkL1.�/, n, �.

Remark 4.8. In this section we assume our nonlocal equations satisfy the weak uniform ellipticity
introduced in [Schwab and Silvestre 2016] mainly because, to our knowledge, this is the weakest
assumption to get the weak Harnack inequality. In fact, our approach to get Hölder continuity of the
discontinuous viscosity solution constructed by Perron’s method could be applied to more general nonlocal
equations as long as the weak Harnack inequality holds for such an equation.

5. Continuous sub/supersolutions

In this section we construct continuous sub/supersolutions in both uniformly elliptic and degenerate cases.

5A. Uniformly elliptic case. In the uniformly elliptic case, we follow the idea in [Ros-Oton and Serra
2016] to establish barrier functions. We define v˛.x/ D ..x1 � 1/

C/˛, where 0 < ˛ < 1 and x D
.x1; x2; : : : ; xn/.

Lemma 5.1. Assume that 0 < � < 2. Then there exists a sufficiently small ˛ > 0 such that

MCL v˛..1C r/e1/� ��5r
˛��

for any r > 0, where e1 D .1; 0; : : : ; 0/ and �5 is some positive constant.
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Proof. Case 1: 0<� <1. By Lemma 2.2 in [Schwab and Silvestre 2016], we have, for any r >0 and ˛>0,

MCL v˛..1C r/e1/D sup
K2L

Z
Rn

�
v˛..1C r/e1C z/� v˛..1C r/e1/

�
K.z/ dz

D sup
K2L

Z
Rn

�
..r C z1/

C/˛ � r˛
�
K.z/ dz

D r˛�� sup
K2L

Z
Rn

�
..1C z1/

C/˛ � 1
�
rnC�K.rz/ dz

D r˛�� sup
K2L

Z
Rn

�
..1C z1/

C/˛ � 1
�
K.z/ dz

� r˛��
�

sup
K2L

Z
z1>�1

�
.1C z1/

˛
� 1

�
K.z/ dz� inf

K2L

Z
z1��1

K.z/ dz

�
:

By (H3), we have, for any K 2 L and any ı > 0, there is a set Aı satisfying Aı � B2ı nBı , Aı D�Aı ,
jAı j � �jB2ı nBı j and K.z/� .2� �/�ı�n�� in Aı . It is obvious that

�ı WD

ˇ̌
.B2ı nBı/\fz W jz1j< 1g

ˇ̌
jB2ı nBı j

! 0 as ı!C1:

Thus, there exists ı3 > 0 such that �ı < 1
2
� if ı � ı3. Thenˇ̌

fz W jz1j � 1g\Aı3
ˇ̌

jB2ı3nBı3 j
�
jAı3 j �

ˇ̌
.B2ı3nBı3/\fz W jz1j< 1g

ˇ̌
jB2ı3nBı3 j

�
�

2
:

By the symmetry of Aı3 , we have ˇ̌
fz W z1 � �1g\Aı3

ˇ̌
jB2ı3nBı3 j

�
�

4
:

Therefore, we have, for any K 2 L,Z
z1��1

K.z/ dz �

Z
fzWz1��1g\Aı3

K.z/ dz �
.2� �/��

4
ı�n��3 jB2ı3nBı3 j DW 2�5: (5-1)

By (H1) and (H2), we have, for any K 2 L,Z
z1>�1

..1Cz1/
˛
�1/K.z/dzD

Z
fzWz1>�1g\B 1

2

C

Z
fzWz1>�1g\B

c
1
2

�˛21�˛
ˇ̌̌̌Z
B 1
2

zK.z/dz

ˇ̌̌̌
C

Z
fzWz1>�1g\B

c
1
2

..1Cz1/
˛
�1/K.z/dz

�˛21�˛.1��/ƒ

C1X
lD0

�
1

2lC2

�1��
C.2��/ƒ

C1X
lD0

.2l�1/�� ..1C2l/˛�1/

� 2˛ƒ
1��

1�2��1
C8ƒ

�
2˛��

1�2˛��
�

2��

1�2��

�
: (5-2)
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Thus, we have

lim
˛!0C

sup
K2L

Z
z1>�1

..1C z1/
˛
� 1/K.z/ dz� inf

K2L

Z
z1��1

K.z/ dz � �2�5:

Then there exists a sufficiently small ˛ such that

MCL v˛..1C r/e1/� ��5r
˛��:

Case 2: � D 1. Using (H2), we have, for any r > 0 and ˛ > 0,

MCL v˛..1Cr/e1/D sup
K2L

Z
Rn

�
v˛..1Cr/e1Cz/�v˛..1Cr/e1/�1B1.z/rv˛..1Cr/e1/�z

�
K.z/dz

D sup
K2L

Z
Rn

�
..rCz1/

C/˛�r˛�1B1.z/˛r
˛�1z1

�
K.z/dz

D r˛�1 sup
K2L

Z
Rn

�
..1Cz1/

C/˛�1�1B 1
r

.z/˛z1
�
rnC1K.rz/dz

D r˛�1 sup
K2L

Z
Rn

�
..1Cz1/

C/˛�1�1B 1
2

.z/˛z1
�
K.z/dz

� r˛�1
�

sup
K2L

Z
z1>�1

�
.1Cz1/

˛
�1�1B 1

2

.z/˛z1
�
K.z/dz� inf

K2L

Z
z1��1

K.z/dz

�
:

By (H1), we have, for any K 2 L,Z
z1>�1

�
.1C z1/

˛
� 1�1B 1

2

.z/˛z1
�
K.z/ dz

D

Z
fzWz1>�1g\B 1

2

..1C z1/
˛
� 1�˛z1/K.z/ dzC

Z
fzWz1>�1g\B

c
1
2

..1C z1/
˛
� 1/K.z/ dz

� ˛.1�˛/22�˛
Z
B 1
2

jzj2K.z/ dzC

Z
fzWz1>�1g\B

c
1
2

..1C z1/
˛
� 1/K.z/ dz

� ˛.1�˛/22�˛ƒ

C1X
lD0

�
1

2lC2

��1� 1

2lC1

�2
Cƒ

C1X
lD0

.2l�1/�1..1C 2l/˛ � 1/

� 8˛ƒC 4ƒ

�
2˛�1

1� 2˛�1
�

2�1

1� 2�1

�
:

Then the rest of proof is similar to Case 1.

Case 3: 1 < � < 2. For any r > 0 and ˛ > 0, we have

MCL v˛..1Cr/e1/D sup
K2L

Z
Rn

�
v˛..1Cr/e1Cz/�v˛..1Cr/e1/�rv˛..1Cr/e1/�z

�
K.z/dz

D sup
K2L

Z
Rn

�
..rCz1/

C/˛�r˛�˛r˛�1z1
�
K.z/dz
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D r˛�� sup
K2L

Z
Rn

�
..1Cz1/

C/˛�1�˛z1
�
K.z/dz

� r˛��
�

sup
K2L

Z
z1>�1

�
..1Cz1/

C/˛�1�˛z1
�
K.z/dz� inf

K2L

Z
z1��1

.1C˛z1/K.z/dz

�
:

Using (5-1) and (H2), we have

inf
K2L

Z
z1��1

.1C˛z1/K.z/ dz � inf
K2L

Z
z1��1

K.z/ dz�˛ sup
K2L

ˇ̌̌̌Z
Bc1

zK.z/ dz

ˇ̌̌̌
� 2�5�

˛ƒ.� � 1/

1� 21��
:

By (H1) and (H2), we have, for any K 2 L,Z
z1>�1

�
.1Cz1/

˛
�1�˛z1

�
K.z/dzD

Z
fzWz1>�1g\B 1

2

C

Z
fzWz1>�1g\B

c
1
2

�˛.1�˛/22�˛
Z
B 1
2

jzj2K.z/dzC˛

ˇ̌̌̌Z
fzWz1>�1g\B

c
1
2

zK.z/dz

ˇ̌̌̌
C

Z
fzWz1>�1g\B

c
1
2

..1Cz1/
˛
�1/K.z/dz

�
16˛.2��/ƒ

1�2��2
C
2˛ƒ.��1/

1�21��
C16.2��/ƒ

�
2˛��

1�2˛��
�

2��

1�2��

�
:

Then we have

lim
˛!0C

sup
K2L

Z
z1>�1

�
..1Cz1/

C/˛�1�˛z1
�
K.z/dz� inf

K2L

Z
z1��1

.1C˛z1/K.z/dz

� lim
˛!0C

16˛.2��/ƒ

1�2��2
C
2˛ƒ.��1/

1�21��
C16.2��/ƒ

�
2˛��

1�2˛��
�

2��

1�2��

�
�2�5C

˛ƒ.��1/

1�21��

D�2�5:

Similar to Case 1, there exists a sufficiently small ˛ such that

MCL v˛..1C r/e1/� ��5r
˛��: �

Lemma 5.2. Assume that 0<� <2, C0�0 and further assume C0D 0 if � <1. Then there are ˛ >0 and
0< r0 <1 sufficiently small so that the function u˛.x/ WD ..jxj�1/C/˛ satisfiesMCL u˛CC0jru˛j ��1
in B1Cr0nB1.

Proof. We notice that u˛ and jrj are rotation invariant. By Lemma 2.2 in [Schwab and Silvestre 2016],MCL
is also rotation invariant. Then we only need to prove that MCL u˛..1Cr/e1/CC0jru˛..1Cr/e1/j ��1
for any r 2 .0; r0�, where r0 and ˛ are sufficiently small positive constants. Note that, for all r > 0,
u˛..1C r/e1/D v˛..1C r/e1/, ru˛..1C r/e1/Drv˛..1C r/e1/ andˇ̌�

j.1C r/e1C zj � 1
�C
� .r C z1/

C
ˇ̌
� C jz0j2 for any z 2 B1;
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where z D .z1; z0/. Therefore, we have

0� .u˛ � v˛/..1C r/e1C z/�

8<:
Cr˛�1jz0j2; z 2 B r

2
;

C jz0j2˛; z 2 B1nB r
2
;

C jzj˛; z 2 RnnB1:

Using (H1), we have, for any 0 < � < 2 and L 2 L,

0� L.u˛ � v˛/..1C r/e1/

D

Z
Rn
.u˛ � v˛/..1C r/e1C z/K.z/ dz

� C

�Z
B r
2

r˛�1jz0j2K.z/ dzC

Z
B1nB r

2

jz0j2˛K.z/ dzC

Z
RnnB1

jzj˛K.z/ dz

�
� C

�Z
B r
2

r˛�1jzj2K.z/ dzC

Z
Bcr
2

jzj2˛K.z/ dz

�
� Cƒ.r˛��C1C r2˛�� /:

Thus, we have MCL .u˛�v˛/..1Cr/e1/�Cƒ.r
˛��C1Cr2˛�� /. Therefore, by Lemma 5.1, there exists

a sufficiently small ˛ > 0 such that

MCL u˛..1C r/e1/CC0jru˛..1C r/e1/j

�MCL .u˛ � v˛/..1C r/e1/CM
C
L v˛..1C r/e1/CC0jru˛..1C r/e1/j

� Cƒ.r˛��C1C r2˛�� /� �5r
˛��
C˛C0r

˛�1:

We notice that ˛� � C 1 > ˛� � , 2˛� � > ˛� � and

(i) if 0 < � < 1, then C0 D 0;

(ii) if � D 1, then ˛C0! 0 as ˛! 0;

(iii) if 1 < � < 2, then ˛� 1 > ˛� � .

Thus, there exist sufficiently small 0 < r0 < 1 such that we have, for any r 2 .0; r0�,

MCL u˛..1C r/e1/CC0jru˛..1C r/e1/j � �1: (5-3)

This completes the proof. �

In the rest of this section, we assume that � satisfies the uniform exterior ball condition, i.e., there is a
constant r�>0 such that, for any x2@� and 0<r� r�, there exists yrx 2�

c satisfyingBr.yrx/\�Dfxg.
Without loss of generality, we can assume that r� < 1. Since � is a bounded domain, there exists a
sufficiently large constant R0 > 0 such that �� fy W jy1j<R0g.

Remark 5.3. At this stage, we are not sure about whether the exterior ball condition is necessary for
the construction of sub/supersolutions. In future work, we plan to construct sub/supersolutions under a
weaker assumption on �, such as the cone condition.
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Lemma 5.4. Assume that 0<� <2, C0� 0 and further assume C0 D 0 if � < 1. There exists an �7 > 0
such that, for any x 2 @� and 0 < r < r�, there is a continuous function 'x;r satisfying8̂̂̂̂

<̂
ˆ̂̂:
'x;r � 0 in Br.yrx/;

'x;r > 0 in Bcr .y
r
x/;

'x;r � 1 in Bc2r.y
r
x/;

MCL 'x;r CC0jr'x;r j � ��7 in �:

Proof. We define a uniformly continuous function ' in Rn such that 1� ' � 2 and

'.y/D 1 in y1 >R0C 1; '.y/D 2 in y1 �R0:

We pick some sufficiently large C3 > 2=r˛0 and we define

'x;r.y/Dmin
�
'.y/; C3u˛

�
y �yrx
r

��
;

where ˛ and r0 are defined in Lemma 5.2. It is easy to verify that 'x;r � 0 in Br.yrx/, 'x;r > 0 in
Bcr .y

r
x/, and 'x;r � 1 in Bc2r.y

r
x/. By Lemma 5.2, we have MCL u˛CC0jru˛j � �1 in B1Cr0nB1. It

is obvious that, for any y 2 B.1Cr0/r.y
r
x/nBr.y

r
x/, we have�

MCL u˛

�
� �yrx
r

��
.y/CC0r

1��

ˇ̌̌̌�
ru˛

�
� �yrx
r

��
.y/

ˇ̌̌̌
� �r�� for any 0 < r < r�.

Since C0 D 0 if 0 < � < 1, and 0 < r < 1, we have�
MCL u˛

�
� �yrx
r

��
.y/CC0

ˇ̌̌̌�
ru˛

�
� �yrx
r

��
.y/

ˇ̌̌̌
� �1 for any 0 < r < r�.

For any y 2B.1C.2=C3/1=˛/r.y
r
x/nBr.y

r
x/, we have 'x;r.y/DC3u˛..y�yrx/=r/. Suppose that there

exists a test function  2C 2
b
.Rn/ that touches 'x;r from below at y. Thus,  =C3 touches u˛.. � �yrx/=r/

from below at y. Hence, MCL  .y/CC0jr .y/j � �C3. For any y 2 �\Bc
.1C.2=C3/1=˛/r

.yrx/, we
have 'x;r.y/D '.y/DmaxRn 'x;r D 2. Therefore, for any 0 < � < 2, we have

.MCL 'x;r/.y/CC0jr'x;r.y/j D sup
K2L

Z
Rn
.'x;r.yC z/�'x;r.y//K.z/ dz

D sup
K2L

Z
Rn
.'x;r.yC z/� 2/K.z/ dz

� � inf
K2L

Z
fzjz1>�y1CR0C1g

K.z/ dz

� � inf
K2L

Z
fzjz1>2R0C1g

K.z/ dz:

By a similar estimate to (5-1), there exists a positive constant �6 such that, for any K 2 L, we haveZ
fzjz1>2R0C1g

K.z/ dz � �6:
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Then, for any y 2�\Bc
.1C.2=C3/1=˛/r

.yrx/, we have

MCL 'x;r.y/CC0jr'x;r.y/j � ��6: (5-4)

Based on the above estimates, if we set �7 DminfC3; �6g, we have

MCL 'x;r CC0jr'x;r j � ��7 in �: �

Theorem 5.5. Assume that 0 < � < 2, I.x; 0; 0/ is bounded in� and g is a bounded continuous function
in Rn. Assume that I is uniformly elliptic and satisfies (A0), (A2). Then (1-1) admits a continuous
viscosity supersolution u and a continuous viscosity subsolution u and uD uD g in �c.

Proof. We only prove (1-1) admits a viscosity supersolution u and uDg in�c. For a viscosity subsolution,
the construction is similar. Since I is uniformly elliptic, we have, for any x 2�,

�m.kgkL1.Rn//� I.x;�kgkL1.Rn/; 0/� I.x; 0; 0/�m.kgkL1.Rn//:

Thus, we have kI. � ;�kgkL1.Rn/; 0/kL1.�/ < C1. Since g is a continuous function, let �R be a
modulus of continuity of g in BR. Let R1 be a sufficiently large constant such that �� BR1�1. For any
x 2 @�, we let

ux;r D �R1.3r/Cg.x/Cmax

(
2kgkL1.Rn/;



I. � ;�kgkL1.Rn/; 0/

L1.�/
�7

)
'x;r ;

where 'x;r and �7 are given in Lemma 5.4. It is obvious that ux;r.x/D �R1.3r/Cg.x/, ux;r � g in Rn

and
MCL ux;r CC0jrux;r j � �



I. � ;�kgkL1.Rn/; 0/

L1.�/ in �.

Now we define QuD infx2@�;0<r<r�fux;rg. Therefore, QuD g in @� and Qu� g in Rn. For any x 2 @�
and y 2 Rn, we have

g.y/�g.x/� Qu.y/� Qu.x/D Qu.y/�g.x/

� �R1.3r/Cmax

(
2kgkL1.Rn/;



I. � ;�kgkL1.Rn/; 0/

L1.�/
�7

)
'x;r.y/

for any 0 < r < r�. Therefore, Qu is continuous on @�. For any y 2�, we define dy D dist.y; @�/ > 0.
If r < 1

2
dy , then we have, for any z 2 Bdy=2.y/,

ux;r.z/D �R1.3r/Cg.x/C 2max

(
2kgkL1.Rn/;



I. � ;�kgkL1.Rn/; 0/

L1.�/
�7

)
; for any x 2 @�.

Thus, we have, for any z 2 Bdy=2.y/,

inf
x2@�;

dy
2
<r<r�

fux;r.z/�ux;r.y/; 0g � Qu.z/� Qu.y/� sup
x2@�;

dy
2
<r<r�

fux;r.z/�ux;r.y/; 0g:

Since fux;rgx2@�;dy=2<r<r� has a uniform modulus of continuity, Qu is continuous in �. Therefore, Qu is
a bounded continuous function in �. By Lemma 3.1, in � we have

MCL QuCC0jr Quj � �kI. � ;�kgkL1.Rn/; 0/kL1.�/:
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Now we define

u WD

�
Qu in �;
g in �c :

By the properties of Qu, we have u is a bounded continuous function in Rn, uD g in �c and

MCL uCC0jruj � �


I. � ;�kgkL1.Rn/; 0/

L1.�/

in �. Using (A2) and uniform ellipticity, we have, for any x 2�,

I.x;�kgkL1.Rn/; 0/� I.x; u.x/; u. � //� I.x; u.x/; 0/� I.x; u.x/; u. � //

�MCL u.x/CC0jru.x/j � �


I. � ;�kgkL1.Rn/; 0/

L1.�/:

Thus, I.x; u.x/; u. � //� 0 in �. �

Now we have enough ingredients to conclude:

Theorem 5.6. Let � be a bounded domain satisfying the uniform exterior ball condition. Assume that
0 < � < 2, I.x; 0; 0/ is bounded in� and g is a bounded continuous function. Assume that I is uniformly
elliptic and satisfies (A0), (A2). Then (1-1) admits a viscosity solution u.

Proof. The result follows from Theorems 3.2, 4.6 and 5.5. �

Corollary 5.7. Let � be a bounded domain satisfying the uniform exterior ball condition. Assume that
0<� <2, bab � 0 in� if � < 1 and cab � 0 in�. Assume that g is a bounded continuous function in Rn,
fKab. � ; z/ga;b;z , fbabga;b , fcabga;b , ffabga;b are sets of uniformly bounded and continuous functions
in �, uniformly in a2A, b 2B, and fKab.x; � / W x 2�; a 2A; b 2 Bg are kernels satisfying (H0)–(H3).
Then (1-2) admits a viscosity solution u.

5B. Degenerate case. In the degenerate case, it is natural to construct a sub/supersolution only for (1-2)
when cab � 
 for some 
 > 0. Recall that � is a bounded domain satisfying the uniform exterior ball
condition with a uniform radius r� and, for any x 2 @� and 0 < r � r�, we have yrx is a point satisfying
Br.y

r
x/\�Dfxg. From now on, we will hide the dependence on x for all variables and functions to make

the notation simpler. For example, we will let yr WD yrx . For any x 2 @�, y 2� and 0< r � r�, we let

n WD
x�yr

jx�yr j
; nry WD

y �yr

jy �yr j
; and vr˛.y/ WD

��
.y �yr/ �n

r
� 1

�C �̨
(see Figure 1).

Instead of letting fKab.x; � / W x 2�; a 2A; b 2 Bg satisfy (H3), we let the set of kernels satisfy the
following weaker assumption:

(H3) There exist C4 > 0, 0 < r1 < r�, � > 0 and � > 0 such that, for any x 2 @�, 0 < r < r1 and
y 2�\B2r.y

r/, there is a set Ary satisfying

(i) Ary � fz W znry < �rs
r
yg\ .BC4rsry nBrsry /, where znry WD z �n

r
y and sry WD jy �y

r j=r � 1;
(ii) jAry j � �jBrsry j;

(iii) K.y; z/� .2� �/�.rsry/
�n�� for any z 2 Ary .
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Figure 1. The exterior ball centered at yr.

Lemma 5.8. Suppose that
˚
Kab.x; � / W a 2A; b 2 B; x 2 fy 2� W dist.y; @�/ < r1g

	
satisfies (H3) for

some r1 2 .0; r�/. Then (H3) holds for the set of kernels.

Proof. For any x 2 @�, 0< r < r1 and y 2�\B2r.yr/, we define

�C4 WD

ˇ̌
.BC4rsry nBC4rs

r
y

2

/\fz W jznry j � rs
r
yg
ˇ̌

jBC4rsry nBC4rs
r
y

2

j
: (5-5)

We notice that the right-hand side of (5-5) depends only on C4. It is obvious that

lim
C4!C1

�C4 D 0:

By (H3), there exists a set A satisfying

A� BC4rsry nBC4rs
r
y

2

; AD�A; jAj � �
ˇ̌
BC4rsry nBC4rs

r
y

2

ˇ̌
;

and, for any z 2 A,

K.y; z/� .2� �/�
�
1
2
C4rs

r
y

��n��
D .2� �/�

�
1
2
C4
��n��

.rsry/
�n��

WD .2� �/ N�.rsry/
�n�� :

There exists a sufficiently large constant C4.� 2/ such that �C4 <
1
2
�. Thenˇ̌

fz W jznry j> rs
r
yg\A

ˇ̌
jBC4rsry nBC4rs

r
y

2

ˇ̌ �

jAj �
ˇ̌
.BC4rsry nBC4rs

r
y

2

/\fz W jznry j � rs
r
yg
ˇ̌

ˇ̌
BC4rsry nBC4rs

r
y

2

ˇ̌ �
�

2
:

Let Ary WD A\fz W znry < �rs
r
yg. By the symmetry of A, we have

jAry j �
1
4
�
ˇ̌
BC4rsry nBC4rs

r
y

2

ˇ̌
�
1
4
�jBrsry j WD N�jBrsry j:

Therefore, (H3) holds for the set of kernels with C4, r1, N� and N�. �



PERRON’S METHOD FOR NONLOCAL FULLY NONLINEAR EQUATIONS 1249

Lemma 5.9. Assume that 0 < � < 2 and fKab.x; � / W x 2 �; a 2 A; b 2 Bg are kernels satisfying
(H0)–(H2), (H3). Then there exists a sufficiently small ˛ > 0 such that, for any x 2 @�, 0< r < r1 and
s 2 fl 2 .0; 1/ W yr C .1C l/rn 2�g, we have IabŒyr C .1C s/rn; vr˛����8r

��s˛�� , where �8 is some
positive constant.

Proof. We only prove the result for the case 0 < � < 1. For the rest of cases, the proofs are similar to
those in Lemma 5.1. For any x 2 @�, 0< r < r1 and s 2 fl 2 .0; 1/ W yr C .1C l/rn 2�g, we have

IabŒy
r
C.1Cs/rn;vr˛�D

Z
Rn

�
vr˛.y

r
C.1Cs/rnCz/�vr˛.y

r
C.1Cs/rn/

�
Kab.y

r
C.1Cs/rn;z/dz

D

Z
Rn

���
sC
Qzn

r

�C�˛
�s˛

�
Kab.y

r
C.1Cs/rn;z/dz

D r��s˛��
Z

Rn

�
..1CQzn/

C/˛�1
�
.rs/nC�Kab.y

r
C.1Cs/rn;rsz/dz

D r��s˛��

(Z
Qzn>�1

Œ.1CQzn/
˛
�1�.rs/nC�Kab.y

r
C.1Cs/rn;rsz/dz

�

Z
Qzn��1

.rs/nC�Kab.y
r
C.1Cs/rn;rsz/dz

)
;

where Qzn WD z �n. Using (H3), we haveZ
Qzn��1

.rs/nC�Kab.y
r
C .1C s/rn; rsz/ dz D .rs/�

Z
Qzn��rs

Kab.y
r
C .1C s/rn; z/ dz

� .rs/�
Z
Ar
yrC.1Cs/rn

Kab.y
r
C .1C s/rn; z/ dz

� .2� �/��.rs/�njBrsj WD 2�8:

We notice that the kernel .rs/nC�Kab.yr C .1C s/rn; rs � / still satisfies (H1) and (H2). By a similar
calculation to (5-2), we haveZ

Qzn>�1

Œ.1C Qzn/
˛
� 1�.rs/nC�Kab.y

r
C .1C s/rn; rsz/ dz � �.˛/;

where �.˛/ is a positive constant satisfying that �.˛/! 0 as ˛! 0. Then there exists a sufficiently small
˛ such that

IabŒy
r
C .1C s/rn; vr˛�� ��8r

��s˛��: �

Lemma 5.10. Assume that 0 < � < 2, and bab � 0 in � if � < 1. Assume that fbabga;b are sets of
uniformly bounded functions in� and fKab.x; � / W x 2�; a2A; b 2Bg are kernels satisfying (H0)–(H2),
(H3). Then there are ˛ > 0 and 0 < s0 < 1 sufficiently small so that, for any x 2 @� and 0 < r < r1, the
function

ur˛.y/ WD

��
jy �yr j

r
� 1

�C �̨



1250 CHENCHEN MOU

satisfies, for any a 2A and b 2 B,

�IabŒy; u
r
˛�C bab.y/ � ru

r
˛.y/� 1 in �\

�
B.1Cs0/r.y

r/nBr.y
r/
�
:

Proof. Note that, for all s >0, we have ur˛.y
rC.1Cs/rn/D vr˛.y

rC.1Cs/rn/, rur˛.y
rC.1Cs/rn/D

rvr˛.y
r C .1C s/rn/ andˇ̌̌̌�

j.1C s/rnC zj

r
� 1

�C
�

�
sC
Qzn

r

�C ˇ̌̌̌
� C
jz� Qznj

2

r2
for any z 2 Br .

Thus, we have

0� .ur˛ � v
r
˛/.y

r
C .1C s/rnC z/�

8<:
Cs˛�1jz� Qznj

2=r2; z 2 B rs
2
;

C jz� Qznj
2˛=r2˛; z 2 Br nB rs

2
;

C jzj˛=r˛; z 2 RnnBr :

Using (H1), we have, for any 0<� <2, a2A, b 2B and s 2 fl 2 .0; 1/ W yr C .1C l/rn 2�g,

0� IabŒy
r
C.1Cs/rn;ur˛�v

r
˛�

�

Z
Rn
.ur˛�v

r
˛/.y

r
C.1Cs/rnCz/Kab.y

r
C.1Cs/rn;z/dz

�C

�Z
B rs
2

s˛�1
jz�Qznj

2

r2
Kab.y

r
C.1Cs/rn;z/dzC

Z
B r
2
nB rs

2

jz�Qznj
2˛

r2˛
Kab.y

r
C.1Cs/rn;z/dz

C

Z
RnnBr

jzj˛

r˛
Kab.y

r
C.1Cs/rn;z/dz

�
�C

�Z
B rs
2

s˛�1
jzj2

r2
Kab.y

r
C.1Cs/rn;z/dzC

Z
RnnB rs

2

jzj2˛

r2˛
Kab.y

r
C.1Cs/rn;z/dz

�
�Cƒr�� .s˛��C1Cs2˛�� /:

By Lemma 5.9, we have

�IabŒy
r
C .1C s/rn; ur˛�� �IabŒy

r
C .1C s/rn; vr˛�� IabŒy

r
C .1C s/rn; ur˛ � v

r
˛�

� r�� Œ�8s
˛��
�Cƒ.s˛��C1C s2˛�� /�: (5-6)

For any y 2�\ .B2r.yr/nBr.yr//, we have

�IabŒy; u
r
˛�D�

Z
Rn
ızu

r
˛.y/Kab.y; z/ dz

D�

Z
Rn
ızu

r
˛.y

r
C .1C sry/rn

r
y/Kab.y; z/ dz

D�

Z
Rn
ızu

r
˛.y

r
C .1C sry/rn/Kab

�
y;

�
z

jzj
Cnry �n

�
jzj

�
dz:

Using (H3) and a similar estimate to (5-6), we have

�IabŒy; u
r
˛�� r

��
�
�8.s

r
y/
˛��
�Cƒ..sry/

˛��C1
C .sry/

2˛�� /
�
:
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By a similar estimate to (5-3), there exists a sufficiently small constant 0 < s0 < 1 such that we have, for
any y 2�\ .B.1Cs0/r.y

r/nBr.y
r//,

�IabŒy; u
r
˛�C bab.y/ � ru

r
˛.y/� 1: �

Lemma 5.11. Assume that 0<� <2, bab�0 in� if � <1 and cab�
 in� for some 
 >0. Assume that
fKab. � ; z/ga;b;z , fbabga;b , fcabga;b , ffabga;b are sets of uniformly bounded and continuous functions
in �, uniformly in a2A, b 2B, and fKab.x; � / W x 2�; a 2A; b 2 Bg are kernels satisfying (H0)–(H2),
(H3). Then, for any x 2 @� and 0 < r < r1, there is a continuous viscosity supersolution  r of (3-5) such
that  r � 0 in Br.yr/,  r > 0 in Bcr .y

r/ and

 r �
supa2A;b2B kfabkL1.�/C 1



in Bc.1Cs0/r.y

r/; (5-7)

where s0 is given by Lemma 5.10.

Proof. Without loss of generality, we assume that 0 < 
 < 1. We pick a sufficiently large C5 > 0 that

C5 >
supa2A;b2B kfabkL1.�/C 1

s˛0 

: (5-8)

We then define, for any x 2 @� and 0 < r < r1,

 r.y/Dmin
�

supa2A;b2B kfabkL1.�/C 1



; C5u
r
˛.y/

�
:

It is easy to verify that  r � 0 in Br.yr/,  r > 0 in Bcr .y
r/ and  r is a continuous function in Rn.

Using (5-8), we know that

C5u
r
˛ � C5s

˛
0 �

supa2A;b2B kfabkL1.�/C 1



in Bc.1Cs0/r.y
r/.

Therefore, (5-7) holds. Since cab � 
 > 0 in �, .supa2A;b2B kfabkL1.�/C 1/=
 is a viscosity superso-
lution of (3-5) in �. By Lemma 5.10 and (5-7), we have, for any y 2�\ .B.1Cs0/r.y

r/nBr.y
r//,

sup
a2A

inf
b2B

˚
�IabŒy; C5u

r
˛�CC5bab.x/ � ru

r
˛.y/CC5cab.x/u

r
˛.y/Cfab.y/

	
� sup
a2A;b2B

kfabkL1.�/C 1Cfab.y/� 0: (5-9)

Therefore,  r is a continuous viscosity supersolution of (3-5) in �. �

Theorem 5.12. Assume that 0 < � < 2, bab � 0 in � if � < 1 and cab � 
 in � for some 
 > 0.
Assume that g is a bounded continuous function in Rn, fKab. � ; z/ga;b;z , fbabga;b , fcabga;b , ffabga;b
are sets of uniformly bounded and continuous functions in �, uniformly in a2A, b 2B, and fKab.x; � / W
x 2�; a 2A; b 2 Bg are kernels satisfying (H0)–(H2), (H3). Then (1-2) admits a continuous viscosity
supersolution u and a continuous viscosity subsolution u and uD uD g in �c.
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Proof. We only prove (1-2) admits a viscosity supersolution u such that u D g in �c. Since g is a
continuous function, let �R be a modulus of continuity of g in BR. Let R1 be a sufficiently large constant
such that �� BR1�1. For any x 2 @�, we let

ur D �R1.3r/Cg.x/C

�
2kgkL1.Rn/




supa2A;b2B kfabkL1.�/C 1
C 1

�
 r ;

where  r is given in Lemma 5.11. Using Lemma 5.11, ur.x/D �R1.3r/Cg.x/, ur � g in Rn and ur is
a continuous viscosity supersolution of (3-5) in�. Then the rest of the proof is similar to Theorem 5.5. �

Theorem 5.13. Let � be a bounded domain satisfying the uniform exterior ball condition. Assume that
0 < � < 2, bab � 0 in � if � < 1 and cab � 
 in � for some 
 > 0. Assume that g is a bounded
continuous function in Rn, fKab. � ; z/ga;b;z , fbabga;b , fcabga;b , ffabga;b are sets of uniformly bounded
and continuous functions in �, uniformly in a 2A, b 2 B, and fKab.x; � / W x 2 �; a 2 A; b 2 Bg are
kernels satisfying (H0)–(H2), (H3). Then (1-2) admits a discontinuous viscosity solution u.

Proof. The result follows from Corollary 3.4 and Theorem 5.12. �
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A SPARSE DOMINATION PRINCIPLE FOR ROUGH SINGULAR INTEGRALS

JOSÉ M. CONDE-ALONSO, AMALIA CULIUC, FRANCESCO DI PLINIO AND YUMENG OU

We prove that bilinear forms associated to the rough homogeneous singular integrals

T�f .x/D p:v:
Z

Rd
f .x�y/�

�
y

jyj

�
dy
jyjd

;

where � 2 Lq.Sd�1/ has vanishing average and 1 < q �1, and to Bochner–Riesz means at the critical
index in Rd are dominated by sparse forms involving .1; p/ averages. This domination is stronger than
the weak-L1 estimates for T� and for Bochner–Riesz means, respectively due to Seeger and Christ.
Furthermore, our domination theorems entail as a corollary new sharp quantitative Ap-weighted estimates
for Bochner–Riesz means and for homogeneous singular integrals with unbounded angular part, extending
previous results of Hytönen, Roncal and Tapiola for T�. Our results follow from a new abstract sparse
domination principle which does not rely on weak endpoint estimates for maximal truncations.

1. Introduction and main results

Singular integral operators of Calderón–Zygmund type, which are a priori signed and nonlocal, can
be dominated in norm [Lerner 2013], pointwise [Conde-Alonso and Rey 2016; Lacey 2017; Lerner
and Nazarov 2015], or dually [Bernicot et al. 2016; Culiuc et al. 2016a; 2016b] by sparse averaging
operators (forms), which are in contrast positive and localized. For 1� p1; p2 <1, we define the sparse
.p1; p2/-averaging form to be the bisublinear form

PSFSIp1;p2.f1; f2/ WD
X
Q2S

jQjhf1ip1;Q hf2ip2;Q; hf ip;Q WD jQj
� 1
p kf 1Qkp;

associated to a (countable) sparse collection S of cubes of Rd. The collection S is �-sparse if there
exist 0 < � � 1 (a number which will not play a relevant role) and measurable, pairwise disjoint sets
fEI W I 2 Sg such that

EI � I; jEI j � �jI j:

In this article, we prove a sparse domination principle of type

jhTf1; f2ij. sup
S

PSFSIp1;p2.f1; f2/ (1-1)
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Keywords: positive sparse operators, rough singular integrals, weighted norm inequalities.

1255

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2017.10-5
http://dx.doi.org/10.2140/apde.2017.10.1255
http://msp.org


1256 JOSÉ M. CONDE-ALONSO, AMALIA CULIUC, FRANCESCO DI PLINIO AND YUMENG OU

for singular integral operators T whose (possible) lack of kernel smoothness forbids the avenue exploited
in [Lacey 2017; Lerner 2016]. Our principle, summarized in Theorem C below, can be employed in
a rather direct fashion to recover the best known, and sharp, sparse domination results for Dini- and
Hörmander-type Calderón–Zygmund operators [Bui et al. 2017; Hytönen et al. 2017; Lacey 2017; Volberg
and Zorin-Kranich 2016].

However, the main purpose of our work is to suitably extend (1-1) to the class of rough singular
integrals introduced in the seminal paper of Calderón and Zygmund [1956], and further studied, notably,
in [Duoandikoetxea and Rubio de Francia 1986; Christ 1988; Christ and Rubio de Francia 1988; Seeger
1996]. Prime examples from this class include the rough homogeneous singular integrals on Rd

T�f .x/D p:v:
Z

Rd
f .x�y/�

�
y

jyj

�
dy
jyjd

; (1-2)

with � 2 Lq.Sd�1/ having zero average, as well as the critical Bochner–Riesz means in dimension d,
defined by the multiplier operator

Bıf D F�1
�
Of . � /.1� j � j2/ıC

�
; ı D

d�1

2
: (1-3)

For the singular integrals (1-2) no sparse domination results were known prior to this article, although
some quantitative weighted estimates were established in the recent works [Hytönen et al. 2017; Pérez
et al. 2016]; see below for details. For the Bochner–Riesz means (1-3), the recent results of [Benea et al.
2017] and [Carro and Domingo-Salazar 2016] are far from being optimal at the critical exponent.

The main difficulty encountered by previous approaches in this setting is the following: first, notice that
an estimate of the type (1-1) is already stronger than the weak-Lp1 bound for T. In particular, if p1 D 1
then (1-1) recovers the weak-L1 endpoint bound. On the other hand, the preexisting techniques for sparse
domination [Benea et al. 2017; Bernicot et al. 2016; Hytönen et al. 2017; Lacey 2017; Lerner 2016]
essentially rely on weak-Lp estimates for a grand maximal truncation of the singular integral operator T ,
but those do not seem attainable in the context, for instance, of [Seeger 1996], as observed in [Lerner
2016]. In fact, the rough singular integrals we consider below are not known to satisfy such an estimate
for pD 1, and therefore a different approach is required in order to obtain the sparse bounds that we want.

As a corollary of our domination results, we obtain quantitativeAp-weighted estimates for homogeneous
singular integrals (1-2) whose angular part belongs to Lq.Sd�1/ for some 1 < q �1. These are novel,
and sharp, when q <1, while in the case q D1 we recover the best known result recently proved in
[Hytönen et al. 2017] by other methods. Although our result for the Bochner–Riesz means (1-3) seemingly
yields the best known quantitative Ap estimates, we do not know whether our results are sharp in this case.

Main results. Our main results consist of estimates for the bilinear forms associated to T� and Bı by
sparse operators involving Lp-averages. The formulation of our first theorem requires the Orlicz–Lorentz
norms

k�kLq;1 logL.Sd�1/ WD q

Z 1
0

t log.eC t /
ˇ̌˚
� 2 Sd�1 W j�.�/j> t

	ˇ̌ 1
q dt
t
; 1� q <1:
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Theorem A. There exists an absolute dimensional constant C > 0 such that the following holds. Let
� 2 L1.Sd�1/ have zero average. Then for all 1 < t <1, f1 2 Lt .Rd /, f2 2 Lt

0

.Rd /, we have

jhT�f1; f2ij �
Cp

p� 1
sup
S

PSFSI1;p.f1; f2/

�
k�kLq;1 logL.Sd�1/; 1 < q <1; p � q0;

k�kL1.Sd�1/; 1 < p <1:

Remark 1.1. To avoid Lorentz norms in the statement, one may recall the continuous embeddings
LqC".Sd�1/ ,! Lq;1 logL.Sd�1/ ,! Lq.Sd�1/ for all 1� q <1 and " > 0.

Theorem B. There exists an absolute dimensional constant C > 0 such that the following holds. For all
1 < t <1, f1 2 Lt .Rd /, f2 2 Lt

0

.Rd /, the critical Bochner–Riesz means (1-3) satisfy

jhBıf1; f2ij �
Cp

p� 1
sup
S

PSFSI1;p.f1; f2/; 1 < p <1:

The weak-L1 estimate for T� is the main result of [Seeger 1996], while the same endpoint estimate
for (1-3) has been established in [Christ 1988]. Theorems A and B recover such results; see Appendix B
for a proof of this implication, which we include for future reference. This is not surprising as the
localized estimates for (1-2), (1-3) which are needed to apply our abstract result are a distillation and
an improvement of the microlocal techniques of [Seeger 1996] and of the previous works [Christ 1988;
Christ and Rubio de Francia 1988], and of the oscillatory integral estimates of [Christ 1988] respectively.

We reiterate that the commonly used techniques for sparse domination, which rely on the weak-L1

estimate for the maximal truncation of the singular integral operator, fail to be applicable in the context of
Theorem A as the maximal truncations of T� in (1-2) are not known to satisfy such an estimate even when
� 2L1.Sd�1/ [Grafakos and Stefanov 1999]. Our abstract result, Theorem C, whose statement is more
technical and is postponed until Section 2, only relies on the uniformL2-boundedness (orLr -boundedness
for any r) of the truncated operators, and thus might be considered stronger than the approaches of the
mentioned references. See Remark 2.5 for additional discussion on this point.

Theorems A and B give as corollaries a family of quantitative weighted estimates.

Corollary A.1. If � lies in the unit ball of Lq;1 logL.Sd�1/ for some 1 < q <1 and has zero average,
we have the weighted norm inequalities

kT�kLt .w/!Lt .w/ � Ct;qŒw�
max f1; 1

t�q0
g

A t
q0

; q0 < t <1: (1-4)

If furthermore k�kL1.Sd�1/ � 1,

kT�kLt .w/!Lt .w/ � Ct Œw�
1
t�1

maxft;2g
At

; 1 < t <1: (1-5)

Corollary B.1. Referring to (1-3), we have the weighted norm inequalities

kBıkLt .w/!Lt .w/ � Ct Œw�
1
t�1

maxft;2g
At

; 1 < t <1: (1-6)
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Proof of Corollaries A.1, B.1. To prove (1-4), applying Theorem A for p D q0 (strictly speaking, to the
adjoint of T�) yields that the bilinear form associated to T� is dominated by

sup
S

PSFSIq0;1:

The proof of the weighted estimate can then be found, for instance, in [Bernicot et al. 2016, Proposi-
tion 6.4]. We prove (1-5), and (1-6) follows via the same argument: below, C denotes a positive absolute
constant which may vary between occurrences. Combining the inequality [Di Plinio and Lerner 2014,
Proposition 4.1]

hf i1C";Q � hf i1;QCC"hM1C"f i1;Q;

which is valid for all " > 0, with the estimate of Theorem A for p D 1C " we obtain

jhT�f1; f2ij �
C

"
sup
S

PSFSI1;1.f1; f2/CC sup
S

PSFSI1;1.M1C"f1; f2/; " > 0:

The above display leads via standard reasoning [Cruz-Uribe et al. 2011; Hytönen et al. 2012; Moen 2012]
to the chain of inequalities

kT kLt .w/!Lt .w/ � Ct Œw�
max f1; 1

t�1
g

At
inf

0<"<t�1

�
1

"
CkM1C"kLt .w/!Lt .w/

�
� Ct Œw�

max f1; 1
t�1
g

At
inf

0<"<t�1

�
1

"
C Œw�

1C"
t�.1C"/

A t
1C"

�
� Ct Œw�

1
t�1

maxft;2g
At

: �

Corollary A.1 is a quantification of the weighted inequalities due to Watson [1990] and Duoandikoetxea
[1993]: if 1 < q �1 and � 2 Lq.Sd�1/ then

w 2 A t
q0
; q0 � t <1; t ¤ 1;

w
1
1�t 2 At0

q0
; 1 < t � q; t ¤1;

wq
0

2 At ; 1 < t <1

9>>=>>; D) kT�kLt .w/!Lt .w/ <1:

Estimate (1-5) was first established by Hytönen, Roncal and Tapiola [Hytönen et al. 2017] via a different
two-step technique involving sparse domination for Dini-type kernels, a Littlewood–Paley decomposition
along the lines of [Christ and Rubio de Francia 1988] and interpolation with change of measure. In [Pérez
et al. 2016], these ideas were extended to obtain A1 estimates for T� and commutators of T� and BMO
symbols. At this time, we do not know whether the power of the Muckenhoupt constant in (1-5) is sharp.

Qualitative Ap-bounds for critical Bochner–Riesz means are classical [Shi and Sun 1992]; see also
[Vargas 1996]. On the other hand, Corollary B.1 seems to be the first quantitative Ap estimate for Bı .
We do not know whether the power of the Ap constant in (1-6) is sharp; the construction in [Luque et al.
2015, Corollary 3.1] shows that the optimal power p̨ must obey p̨ �maxf1; 1=.p� 1/g. The article
[Benea et al. 2017] contains sparse domination estimates and weighted inequalities for the supercritical
regime 0 < ı0 < ı which are not informative in the critical case. An extension of our methods to the
supercritical cases will appear in forthcoming work.

Finally, we mention that our argument for (1-5) and (1-6) shows that improvements of powers as those in
Corollaries A.1 and B.1 are tied to the blowup rate as p! 1C of the main estimate of Theorems A and B.
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A remark on the proof and plan of the article. Theorems A and B fall under the scope of the same
abstract result, Theorem C, which is stated and proved in Section 2. Theorem C is obtained by means of
an iterative scheme reminiscent of the arguments used in [Culiuc et al. 2016a] by three of us to prove a
sparse domination estimate for the bilinear Hilbert transform, and later adapted to dyadic and continuous
Calderón–Zygmund singular integrals in [Culiuc et al. 2016b]. At each iteration, a decomposition of
Calderón–Zygmund type is performed, and the operator itself is decomposed into small scales (scales
falling within the exceptional set) which will be estimated at subsequent steps of the iteration, and large
scales. The action of the large scales on the good parts is controlled by means of the uniform Lr -bound for
the truncations of T. The contribution of the bad, mean zero part under the large scales of the operator is
then controlled by means of suitably localized estimates relying on the cancellation of constant-mean zero
type. We emphasize that the present work shares a perspective based on bilinear forms with other recent
papers: [Krause and Lacey 2016; Lacey and Spencer 2017]. The notable difference is that these references,
dealing with oscillatory and random discrete singular integrals, use (dilation) symmetry breaking and
T T �, rather than constant-mean zero, as the principal cancellation mechanisms, in accordance with the
oscillatory nature of their objects of study.

Section 3 contains localized estimates for kernels of Dini- and Hörmander-type which, besides being
of use in later arguments, allow us to reprove the optimal sparse domination results for these classes; see
its last subsection for the statements. In Sections 4 and 5 we provide the necessary localized estimates
for Theorems A and B respectively. The estimates of Section 4 are a delicate strengthening of the
microlocal arguments of [Seeger 1996]. The proof of Theorem B, a re-elaboration along the same lines
as the arguments of [Christ 1988], is carried out in Section 5. Although we find it hard to believe that
these techniques can be sharpened towards the stronger localized .1; 1/ estimate, we have no explicit
counterexample for this possibility.

Notation. As is customary, q0 D q
q�1

denotes the Lebesgue dual exponent to q 2 .1;1/, with the usual
extension 10D1, 10D 1. We denote the center of a cube Q 2 Rd by cQ and its sidelength by `.Q/.
We will also adopt the shorthand sQ D log2 `.Q/. We write

Mp.f /.x/D sup
Q�Rd

hf ip;Q1Q.x/

for the p-Hardy Littlewood maximal function. The positive constants implied by the almost inequality
sign . may depend (exponentially) on the dimension d only and may vary from line to line without
explicit mention.

2. A sparse domination principle

This section is dedicated to the statement and proof of our sparse domination principle, Theorem C.

The main structural assumptions. Our structural assumptions in Theorem C will be the following. Let
1 < r <1 and ƒ be an Lr.Rd /�Lr

0

.Rd /-bounded bilinear form whose kernel K DK.x; y/ coincides
with a function away from the diagonal f.x; y/2Rd�Rd WxDyg. More precisely, whenever f12Lr.Rd /,
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f2 2 L
r 0.Rd / are compactly and disjointly supported

ƒ.f1; f2/D

Z
Rd

Z
Rd
K.x; y/f1.y/ dy f2.x/ dx

with absolute convergence of the integral. We assume that there exists 1 < q �1 such that the kernel K
of ƒ admits the decomposition

K.x;y/D
X
s2Z

Ks.x;y/; suppKs �f.x;y/2Rd�Rd W x�y 2Asg;

As WDfz2Rd W2s�2<jzj<2sg; ŒK�0;q WDsup
s2Z

2
sd
q0 sup
x2Rd

�
kKs.x;xC�/kqCkKs.xC� ;x/kq

�
<1:

(SS)

Further, we assume that the truncated forms associated to the above decomposition by

ƒ��.h1; h2/ WD

Z X
�<s��

Ks.x; y/h1.y/h2.x/ dy dx �; � 2 Z[f�1;1g (2-1)

satisfy

CT.r/DW sup
�<�

�
kƒ��kLr .Rd /�Lr0 .Rd /!C

�
<1: (T)

Remark 2.1. Under the assumptions (SS) and (T), a standard limiting argument [Stein 1993, Paragraph
I.7.2] yields that

ƒ.f1; f2/D hmf1; Nf2iC lim
�!1

ƒ���.f1; f2/

for some m 2 L1.Rd /, whenever f1 2 Lr.Rd /, f2 2 Lr
0

.Rd /. It is not hard to see [Lacey and Mena
Arias 2017, Lemma 4.7] that

jhmf1; f2ij. kmk1 sup
S

PSFSI1;1.f1; f2/

so that for the purpose of our Theorem C below we may assume that mD 0 in the above equality. For
this reason, when �D�1 or � D1 or both, we are allowed to omit the subscript or superscript in (2-1)
and simply write ƒ� or ƒ� or ƒ. Also, when �� �, the summation in (2-1) is void, so that ƒ�� � 0.

Localized spaces over stopping collections. A further condition in our abstract theorem will involve local
norms associated to stopping collections of (dyadic) cubes. Throughout the article, by dyadic cubes we
refer to the elements of any fixed dyadic lattice D in Rd.

Let Q 2 D be a fixed dyadic cube in Rd. A collection Q� D of dyadic cubes is a stopping collection
with top Q if the elements of Q are pairwise disjoint and contained in 3Q,

L;L0 2Q; L\L0 ¤∅ D) LD L0; L 2Q D) L� 3Q; (2-2)

and enjoy the further separation properties

L;L0 2Q; jsL� sL0 j � 8 D) 7L\ 7L0 D¿;
[

L2QW3L\2Q¤∅

9L�
[
L2Q

LDW shQI (2-3)
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the notation shQ for the union of the cubes in Q will also be used below. For 1� p �1, define Yp.Q/
to be the subspace of Lp.Rd / of functions satisfying

supp h� 3Q; 1> khkYp.Q/ WD

�
max

˚
kh1RdnshQk1; supL2Q inf

x2yL
Mph.x/

	
; p <1;

khk1; p D1;

where yL is the (nondyadic) 25-fold dilate of L. We also denote by Xp.Q/ the subspace of Yp.Q/ of
functions satisfying

b D
X
L2Q

bL; supp bL � L:

Furthermore, we write b 2 PXp.Q/ if

b 2 Xp.Q/;
Z
L

bL D 0 8L 2Q:

We will use the notation kbkXp.Q/ for kbkYp.Q/ when b 2 Xp.Q/, and similar notation for b 2 PXp.Q/.
When the stopping collection Q is clear from the context or during proofs we may omit .Q/ from the
subscript and simply write k � kYp or k � kXp .

Remark 2.2 (Calderón–Zygmund decomposition). There is a natural Calderón–Zygmund decomposition
associated to stopping collections. Observe that if Q is a stopping collection, then

sup
L2Q
hhip;L � 2

5d
khkYp.Q/:

Therefore, we may decompose h 2 Yp.Q/ as

hD gC b; b D
X
L2Q

bL 2 PXp.Q/; bL D

�
h�

1

jLj

Z
L

h.x/ dx
�

1L

such that
kgkY1.Q/ � 2

5d
khkYp.Q/; kbk PXp.Q/ � 2

5dC1
khkYp.Q/:

These are nothing but the usual properties of the Calderón-Zygmund decomposition rewritten in our
context.

The statement. Before stating our result, we introduce the notation

ƒQ;�;�.h1; h2/ WDƒ
minfsQ;�g
� .h11Q; h2/Dƒ

minfsQ;�g
� .h11Q; h213Q/ (2-4)

for all dyadic cubes Q; the last equality in (2-4) is a consequence of the assumptions on the support of
Ks in (SS). Furthermore, given a stopping collection Q with top Q, we define the truncated forms

ƒQ;�;�.h1; h2/ WDƒQ;�;�.h1; h2/�
X
L2Q
L�Q

ƒL;�;�.h1; h2/DƒQ;�;�.h11Q; h213Q/: (2-5)

Again, the last equality is due to the support of Ks in (SS). A further consequence of assumptions (SS)
and (T) is that the forms ƒQ;�;� satisfy uniform bounds on Yr.Q/�Yr 0.Q/.
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Lemma 2.3. There exists a positive absolute constant # such thatˇ̌
ƒQ;�;�.h1; h2/

ˇ̌
� 2#dCT.r/jQjkh1kYr .Q/kh2kYr0 .Q/

uniformly over all �, �, all dyadic cubes Q and stopping collections Q with top Q.

Proof. We may estimate the first term in the definition (2-5) as follows:

jƒQ;�;�.h1; h2/j � CT.r/kh11Qkr kh213Qkr 0 . CT.r/jQjkh1kYrkh2kYr0 : (2-6)

Further, using the support condition in (2-4) with L in place of Q and the disjointness property (2-2) in
the last step, we obtainX
L2QWL�Q

jƒL;�;�.h1; h2/j D
X

L2QWL�Q

jƒL;�;�.h11L; h213L/j � CT.r/
X

L2QWL�Q

kh11Lkr kh213Lkr 0

. CT.r/kh1kYrkh2kYr0
X
L2Q

jLj. CT.r/jQjkh1kYrkh2kYr0 :

The proof of the lemma is thus completed by combining (2-6) with the last display. �

Our main theorem hinges upon estimates which are modified versions of the one occurring in Lemma 2.3,
when one of the two arguments of ƒQ;�;� belongs to X -type localized spaces.

Theorem C. There exists a positive absolute constant‚ such that the following holds. Letƒ be a bilinear
form satisfying (SS) and (T) above. Assume that there exist 1� p1; p2 <1 and a positive constant CL

such that the estimates ˇ̌
ƒQ;�;�.b; h/

ˇ̌
� CLjQjkbk PXp1 .Q/

khkYp2 .Q/
;ˇ̌

ƒQ;�;�.h; b/
ˇ̌
� CLjQjkhkY1.Q/kbk PXp2 .Q/

(L)

hold uniformly over all �; � 2 Z, all dyadic lattices D, all Q 2D and all stopping collections Q�D with
top Q. Then the estimate

sup
�;�2Z

ˇ̌
ƒ��.f1; f2/

ˇ̌
� 2‚d ŒCT.r/CCL� sup

S
PSFSIp1;p2.f1; f2/ (2-7)

holds for all fj 2 Lpj .Rd / with compact support, j D 1; 2.

Remark 2.4. By the limiting argument of Remark 2.1, the conclusion (2-7) gives thatˇ̌
ƒ.f1; f2/

ˇ̌
� 2‚d ŒCT.r/CCL� sup

S
PSFSIp1;p2.f1; f2/ (2-8)

when f1; f2 2L1.Rd / with compact support. If we know thatƒ extends boundedly toLt .Rd /�Lt
0

.Rd /

for some 1 < t <1, another simple limiting argument using the dominated convergence theorem extends
(2-8) to all f1 2 Lt .Rd /, f2 2 Lt

0

.Rd /. It is in this last form that Theorem C will be applied to deduce
Theorems A and B.
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Remark 2.5 (a comparison between sparse domination principles). Theorem C identifies rather clearly the
conditions needed for sparse domination of a kernel operator T , namely the adjoint of the bilinear form ƒ.
Condition (L) is a localized reformulation of the constant-mean zero cancellation around which Lp, p¤ 2,
Calderón–Zygmund theory revolves, and it is essentially a strengthening of the weak-Lpj estimate for T
(j D 1) and its adjoint (j D 2). Further, our assumption of uniform Lr -boundedness of the truncations in
(T) is much tamer than requiring Lr -boundedness of the maximal truncations of T. In fact, our theorem
can be applied even when no estimates for maximal truncations of T are known.

Of course the exponents pj enter the sparse domination estimate (2-7), while the exponent r occurring
in (T) does not. This is in contrast with the other sparse domination principles occurring in the literature.
For instance, in [Lerner 2016, Theorem 4.2], a sparse domination of type (1-1) with exponents .r; 1/ is
obtained for operators T whose grand maximal function

MT f .x/ WD sup
Q3x

sup
y2Q

ˇ̌
T .f 1Rdn3Q/.y/

ˇ̌
has the weak-Lr -bound for some r � 1. Notice that MT may be as large as the maximal truncation of T .

A further comparison can be drawn with the abstract result of [Bernicot et al. 2016], which is a
sparse domination principle for nonintegral singular operators. The off-diagonal estimate assumption
Theorem 1.1(b) of the work above is a clear counterpart of (SS), while the maximal truncation assumption
of Theorem 1.1(c) in the same work is the nonkernel analogue of the grand maximal function from [Lerner
2016]. It would be interesting to investigate whether, in the nonkernel setting of [Bernicot et al. 2016], an
assumption in the vein of (L) can be used instead.

Remark 2.6 (the essence of (L)). Let Q be a stopping collection with top Q. When b belongs to an
X˛.Q/-type space, the forms

.b; h/ 7!ƒQ;�;�.b; h/; .b; h/ 7!ƒQ;�;�.h; b/

have a much more familiar representation, which is what allows verification of assumption (L) in practice.
By rephrasing the definition, when b 2X1.Q/ is supported onQ (which we can assume with no restriction)
we have the equality

ƒQ;�;�.b; h/D
X
j�1

Z X
�<s�minfsQ;�g

Ks.x; y/bs�j .y/h.x/ dy dx; where bs WD
X
L2Q
sLDs

bL: (2-9)

This notation will be used throughout the paper; see for instance (2-10) below. Furthermore, if q is the
exponent occurring in (SS), h 2 Yq0.Q/, and b 2 Xq0.Q/, then ƒQ;�;�.h; b/ is essentially self-adjoint up
to a tolerable error term. Namely, if h is supported on Q (which we can also always assume),

ƒQ;�;�.h; b/D

�X
j�1

Z X
�<s�minfsQ;�g

Ks.y; x/b
in
s�j .y/h.x/ dy dx

�
CVQ.h; b/; (2-10)

where

bin D
X
L2Q

3L\2Q¤∅

bL
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is a truncation of b and thus also belongs to Xq0.Q/ with kbinkXq0 .Q/ � kbkXq0 .Q/, and the remainder
VQ.h; b/ satisfies

jVQ.h; b/j � 2
#d ŒK�0;qjQjkhkYq0 .Q/kbkXq0 .Q/ (2-11)

for a suitable positive absolute constant # . The representation (2-10)–(2-11) is a simple consequence of
the structure of b 2 Xq0.Q/ and of the separation properties (2-2), (2-3). We provide the necessary details
for (2-10)–(2-11) in Appendix A at the end.

Proof of Theorem C. Given a form ƒ satisfying the assumptions of Theorem C, � < � 2 Z and
fj 2 L

pj .Rd /, j D 1; 2, with compact support, we will construct a sparse collection S of cubes of Rd

such that ˇ̌
ƒ��.f1; f2/

ˇ̌
� 2‚dC

X
Q2S

jQjhf1ip1;Qhf2ip2;Q; (2-12)

where C is the expression within the square brackets in the conclusion of Theorem C. Here and below, we
denote by‚ a suitably large positive absolute constant which will be chosen during the course of the proof.
Within this proof, we will also denote by # positive absolute constants which belong to Œ2�8‚; 2�7‚� and
may differ at each occurrence. As the assumptions of Theorem C are stable if we replaceƒwithƒ��, we can
work under the assumption thatKs D 0 for all s … .�; �� and thus drop �; � from the notations (2-4), (2-5).

The proof of (2-12) is iterative and is carried out in the next subsection. Here, we give the main
estimate for the form ƒsQ from (2-4) in terms of stopping collection norms.

Lemma 2.7. Let Q be a fixed dyadic cube in Rd and Q be a stopping collection with top Q. Thenˇ̌
ƒsQ.h11Q; h213Q/

ˇ̌
� 2#dC jQjkh1kYp1 .Q/

kh2kYp2 .Q/
C

X
L2Q
L�Q

ˇ̌
ƒsL.h11L; h213L/

ˇ̌
: (2-13)

Proof. We are free to assume that supp h1 �Q and supp h2 � 3Q for simplicity of notation. For j D 1; 2,
construct the Calderón–Zygmund decomposition of hj with respect to the family Q as described in
Remark 2.2, that is,

hj D gj C bj ; bj D
X
L2Q

bjL; bjL WD

�
hj �

1

jLj

Z
L

hj .x/ dx
�

1L:

The Calderón–Zygmund properties in this context are, for j D 1; 2,

kgj kY1 . khj kYpj ; kbj k PXpj . khj kYpj :

Using the definition (2-5), we decompose on our way to (2-13):

ƒsQ.h1;h2/DƒQ.h1;h2/C
X
L2Q
L�Q

ƒsL.h11L;h2/

DƒQ.g1;g2/CƒQ.b1;g2/CƒQ.g1;b2/CƒQ.b1;b2/C
X
L2Q
L�Q

ƒsL.h11L;h213L/: (2-14)
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The last sum on the last right-hand side is estimated by the sum appearing on the right-hand side of (2-13).
We are left with estimating the first four terms in the last line of (2-14). The leftmost is controlled by the
estimate of Lemma 2.3:

jƒQ.g1; g2/j. CT.r/jQjkg1kYrkg2kYr0 . C jQjkh1kYp1kh2kYp2 :

The second term is handled by appealing to assumption (L), which yields

jƒQ.b1; g2/j � CL jQjkb1k PXp1
kg2kYp2 . C jQjkh1kYp1kh2kYp2 ;

where the second estimate follows from the Calderón–Zygmund properties above. The third is also
estimated by appealing to (L), as

jƒQ.g1; b2/j � CL jQjkg1kY1kb2k PXp2
. C jQjkh1kYp1kh2kYp2 :

Finally, again by assumption (L),

jƒQ.b1; b2/j � CL jQ0jkb1k PXp1
kb2kYp2 . C jQjkh1kYp1kh2kYp2 ;

where the final inequality follows again from the Calderón–Zygmund estimates. �

Proof of (2-12). The proof is obtained by means of the iterative procedure described below.

Preliminaries: We will produce stopping collections iteratively, by suitable Whitney decompositions of
unions of sets

EQ D

�
x 2 3Q W max

jD1;2

Mpj .fj 13Q/.x/
hfj ipj ;3Q

> 2
‚d
4

�
(2-15)

associated to a cube Q and a pair of functions f1; f2. We notice that

EQ � 3Q; jEQj � 2
�#d
jQjI (2-16)

the measure estimate is a consequence of the maximal theorem, and holds provided‚ is chosen sufficiently
large. In this proof, we say that two dyadic cubes L;L0 are neighbors, and write L� L0, if

7L\ 7L0 ¤∅; jsL� sL0 j< 8:

The separation condition (2-3) tells us that if the 7-fold dilates of two cubes L;L0 belonging to the same
stopping collection intersect nontrivially, then L;L0 must be neighbors. We also recall the notation yL for
the 25-fold dilate of L.

Initialize: Let fj 2 Lpj .Rd /, j D 1; 2, with compact support be fixed. By suitably choosing the dyadic
lattice D, we may find Q0 2D such that suppf1 �Q0, suppf2 � 3Q0 and sQ0 is larger than the largest
nonzero scale occurring in the kernel. Then set S0 D fQ0g, E0 D 3Q0, and define referring to (2-15)

E1 WDEQ0 ; S1 WDmaximal cubes L 2 D such that 9L�E1:



1266 JOSÉ M. CONDE-ALONSO, AMALIA CULIUC, FRANCESCO DI PLINIO AND YUMENG OU

Notice that the following properties are satisfied:

L 2 S1 are a pairwise disjoint collection; (2-17)

E1 D
[
L2S1

LD
[
L2S1

9L�E0; jQ0 nE1j � .1� 2
�d#/jQ0j; (2-18)

L;L0 2 S1; 7L\ 7L0 ¤∅ D) L� L0: (2-19)

Property (2-17) and the first part of (2-18) are by construction, while the second part of (2-18) follows
from the estimate of (2-16). For (2-19) suppose instead that 7L\ 7L0 is not empty when sL � sL0 � 8.
By the relation between the sidelengths it follows that yL � 9L0, which implies that the 9-fold dilate
of the dyadic parent of L is contained in 9L0 as well, contradicting the maximality of L. By virtue of
(2-17)–(2-19), Q1.Q0/ WD S1 is a stopping collection with top Q0; compare with (2-2), (2-3). The first
property in (2-18) guarantees that

sup
x 62shQ1.Q0/

jfj .x/j � 2
‚d
4 hfj ipj ;3Q0 :

Further, by the maximality condition on L 2 S1, it follows that

sup
L2Q1.Q0/

inf
yL

Mpj .fj 13Q0/� 2
‚d
4 hfj ipj ;3Q0

for j D 1; 2. The last two inequalities tell us that

kfj kYpj .Q1.Q0//
� 2

‚d
4 hfj ipj ;3Q0 ; j D 1; 2:

Applying (2-13) to the stopping collection Q1.Q0/, and h1Df1, h2Df2 we obtainˇ̌
ƒ.f1; f2/

ˇ̌
D
ˇ̌
ƒsQ0 .f11Q0 ; f213Q0/

ˇ̌
� 2‚dC jQ0jhf1ip1;3Q0hf2ip2;3Q0 C

X
L2Q1.Q0/
L�Q0

ˇ̌
ƒsL.f11L; f213L/

ˇ̌
: (2-20)

The obtained properties (2-17)–(2-19) and estimate (2-20) are the `D 1 case of the induction assumption
in the inductive step below.

Inductive step: Suppose inductively collections S`, 0 � ` � k, and sets E`, 1 � ` � k, have been
constructed, with the properties that for all 1� `� k

L 2 S` are a pairwise disjoint collection; (2-21)

E` D
[
L2S`

LD
[
L2S`

9L�E`�1; jQ nE`j � .1� 2
�#d /jQj 8Q 2 S`�1; (2-22)

L;L0 2 S`; 7L\ 7L0 ¤∅ D) L� L0: (2-23)

Suppose also that if Tk�1 D S0[ � � � [Sk�1, the estimateˇ̌
ƒ.f1; f2/

ˇ̌
� 2‚dC

X
R2Tk�1

jRjhf1ip1;3Rhf2ip2;3RC
X
Q2Sk

ˇ̌
ƒsQ.f11Q; f213Q/

ˇ̌
(2-24)
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has been shown to hold. At this point define

EkC1 WD
[
Q2Sk

EQ; SkC1 WDmaximal cubes L 2 D such that 9L�EkC1;

QkC1.Q/D fL 2 SkC1 W L� 3Qg; Q 2 Sk :

Property (2-21), together with the first property in (2-22), as EQ � 3Q �Ek , and (2-23), via the same
reasoning we used for (2-19), now hold for `D kC 1 as well. Let now Q 2 Sk . Property (2-23) with
`D k implies that

3Q\EkC1 �
[

Q02Sk WQ0�Q

EQ0 :

Therefore, we learn that

jQ\EkC1j � j3Q\EkC1j �
X

Q02Sk WQ0�Q

jEQ0 j � 2
�#d
jQj (2-25)

by applying for each Q0 2 Sk with Q0 �Q the estimate of (2-16), and observing that the cardinality of
fQ0 2D WQ0 �Qg is bounded by an absolute dimensional constant, and jQj; jQ0j are comparable, again
up to an absolute dimensional constant. From the above display we obtain the second part of (2-22) for
`D kC1. Moreover, one observes that if L 2 SkC1 with L\3Q¤∅, then by virtue of property (2-25),
L must be significantly shorter thanQ and thus contained in one of the 3d translates of the dyadic cubeQ
whose union covers 3Q. Namely, we have the equality

QkC1.Q/D fL 2 SkC1 W L\ 3Q¤∅g;

which also gives the last equality in[
L2QkC1.Q/W3L\2Q¤∅

9L�
[

L2SkC1WL\3Q¤∅

LD
[

L2QkC1.Q/

LD shQkC1.Q/;

as the set in the left-hand side of the last display is contained in 3Q and (2-22) holds for ` D k C 1.
Comparing with (2-2), (2-3), the discussion above gives that QkC1.Q/ is a stopping collection with
top Q such that EQ � shQkC1.Q/, so that

sup
x 62shQkC1.Q/

jfj 13Q.x/j � 2
‚d
4 hfj ipj ;3Q:

Furthermore, for j D 1; 2

sup
L2QkC1.Q/

inf
yL

Mpj .fj 13Q/� 2
‚d
4 hfj ipj ;3QI

otherwise the 9-fold dilate of the dyadic parent of some L 2QkC1.Q/ would be contained in EQ and
thus in EkC1, contradicting the maximality of such an L. Therefore

kfj 13QkYpj .QkC1.Q// � 2
‚d
4 hfj ipj ;3Q; j D 1; 2;
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and we may apply (2-13) to each Q 2 Sk summand in (2-24), with h1Df1, h2Df2 and obtainˇ̌
ƒsQ.f11Q; f213Q/

ˇ̌
� 2‚dC jQjhf1ip1;3Qhf2ip2;3QC

X
L2QkC1.Q/WL�Q

ˇ̌
ƒsL.f11L; f213L/

ˇ̌
D 2‚dC jQjhf1ip1;3Qhf2ip2;3QC

X
L2SkC1WL�Q

ˇ̌
ƒsL.f11L; f213L/

ˇ̌
:

As Q 2 Sk are pairwise disjoint, see (2-21), summing over Q 2 Sk , writing Tk D S0 [ � � � [ Sk and
combining the resulting estimate with (2-24), we arrive atˇ̌

ƒ.f1; f2/
ˇ̌
� 2‚dC

X
Q2Tk

jQjhf1ip1;3Qhf2ip2;3QC
X

L2SkC1

ˇ̌
ƒsL.f11L; f213L/

ˇ̌
;

that is, (2-24) with k replaced by kC 1. This, together with the previously obtained (2-21)–(2-23) for
`D kC 1, completes the current iteration.

Termination: A consequence of our construction is that �k WD maxfsQ W Q 2 Skg � sQ0 � #k. The
algorithm terminates when k D K, where K is such that �K is strictly less than the minimal nonzero
scale in the kernel. For k DK in (2-24) the second sum on the right-hand side vanishes identically and
we have obtained the estimate (2-12) by setting T WD TK�1 and S WD f3Q WQ 2 T g. We see that the
collection T , and thus the collection of the dilates S, are sparse by simply observing that the sets

FQ WDQ nEkC1; Q 2 Sk;

are pairwise disjoint for Q 2 T and have measure larger than .1� 2�d#/jQj, as can be seen from (2-22).

3. Localized estimates for Dini- and Hörmander-type kernels

In the first part of this section, we state and prove a family of localized estimates, of the type occurring
in condition (L) of Theorem C, for kernels falling within the scope of (SS) and possessing additional
smoothness properties, of Dini or Hörmander type. These estimates and their proof are a reformulation of
the classical inequalities intervening in the proof of the weak-L1-bound for Calderón–Zygmund operators
(see, for example, [Stein 1993, Chapter I]). We choose to provide details as we believe the arguments to
be rather explanatory of the driving philosophy behind Theorem C.

As we mentioned in the Introduction, our abstract Theorem C, coupled with the localized estimates
that follow, can be employed to reprove the optimal sparse domination estimates for Calderón–Zygmund
kernels of Dini and Hörmander type, thus recovering the results (among others) of [Bui et al. 2017;
Hytönen et al. 2017; Lacey 2017; Lerner 2016; Volberg and Zorin-Kranich 2016]. We provide a summary
of the statements of such domination theorems in the second part of this section.

Localized estimates and kernel norms. Throughout these estimates, we assume that a stopping collection
Q with top Q as in Section 2 has been fixed, and the notations ƒQ;�;� refer to (2-5). It is understood that
the constants implied by the almost inequality signs depend on dimension only and are in particular are
uniform over the choice of Q. We begin with the single-scale localized estimate where no cancellation is
exploited.
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Lemma 3.1 (trivial estimate). Let 1 < ˇ �1 and ˛ D ˇ0. Then for all j � 1,X
s

Z
jKs.x; y/jjbs�j .y/jjh.x/j dy dx . ŒK�0;ˇ jQjkbkX1khkY˛ :

Proof. As kbLk1 . jLj kbkX1 for L 2Q, it suffices to prove that for each L 2Q and s D sLC j ,Z
jKs.x; y/jjbL.y/jjh.x/j dy dx . ŒK�0;ˇ kbLk1khkY˛ : (3-1)

In turn, it then suffices to prove that

s � sL D) sup
y2L

Z
jKs.yCu; y/jjh.yCu/j du. ŒK�0;ˇ khkY˛ ;

which readily follows fromZ
jKs.yCu; y/jjh.yCu/j du� kKs.yC � ; y/kˇ

�Z
B.y;2sC10/

jh.z/j˛ dz
�1
˛

. ŒK�0;ˇ
�
inf
yL

M˛h
�
� ŒK�0;ˇkhkY˛

when y 2 L. Above, we used the support condition (SS) and Hölder’s inequality for the first step, and
subsequently that the ball B.y; 2sC10/D fz 2 Rd W jz�yj< 2sC10g contains the dilate yL. �

We introduce a further family of kernel norms in addition to the one of (SS), to which we refer for
notation. For 1 < ˇ �1 set

ŒK�1;ˇ WD

1X
jD1

$j;ˇ .K/; (3-2)

where

$j;ˇ .K/ WDsup
s2Z

2
sd
ˇ0 sup
x2Rd

sup
h2Rd

khk1<2
s�j�1

�

Ks.x;xC�/�Ks.xCh;xC�/

̌ C

Ks.xC� ;x/�Ks.xC� ;xCh/

̌ �
:

The second localized estimate we consider uses the finiteness of ŒK�1;ˇ to incorporate the constant-mean
zero cancellation effect.

Lemma 3.2 (cancellation estimate). Let 1 < ˇ �1 and ˛ D ˇ0. Then for all �; � 2 Z,ˇ̌
ƒQ;�;�.b; h/

ˇ̌
C
ˇ̌
ƒQ;�;�.h; b/

ˇ̌
.
�
ŒK�0;1C ŒK�1;ˇ

�
jQjkbk PX1khkY˛ : (3-3)

Proof. It will suffice to prove the estimateX
L2Q

1X
jD1

ˇ̌̌̌Z
KsLCj .x; y/

QbL.y/ Qh.x/ dy dx
ˇ̌̌̌
. ŒK�1;ˇ jQjk Qbk PX1k

QhkY˛ : (3-4)

In fact, by using the representations in (2-9), (2-10) we see that for all �; � 2 Z and each pair b 2 PX1,
h 2 Y˛, the forms jƒQ;�;�.b; h/j, jƒQ;�;�.h; b/j are both bounded above by the left-hand side of (3-4)
for suitable Qb 2 PX1, Qh 2 Y˛ whose norms are dominated by kbk PX1 , khkY˛ respectively, up to possibly
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replacing Ks with its transpose and controlling the remainder term VQ.h; b/ in the case of ƒQ;�;�.h; b/.
This remainder is estimated in (2-11) for q D1, which is acceptable for the right-hand side of (3-3).

We will obtain estimate (3-4) from the bound
1X
jD1

ˇ̌̌̌Z
KsLCj .x; y/bL.y/

Qh.x/ dy dx
ˇ̌̌̌
. ŒK�1;ˇ jLjk Qbk PX1k

QhkY˛ ; L 2Q (3-5)

by summing over L 2Q in and using their disjointness, given in (2-2). Fix L 2Q and j � 1. Using the
cancellation of QbL and then arguing as in the proof of (3-1) above we obtainˇ̌̌̌Z

KsLCj .x;y/bL.y/
Qh.x/dy dx

ˇ̌̌̌
�k QbLk1 sup

y2L

Z
jKsLCj .yCu;y/�KsLCj .yCu;cL/jj

Qh.yCu/jdu

. k QbLk1!j;ˇ .K/
�
inf
yL

M˛
Qh
�
.!j;ˇ .K/jLjk Qbk PX1k

QhkY˛ ;

and (3-5) follows by summing over j � 1. �

Sparse domination of Calderón–Zygmund kernels. We now briefly mention how our abstract result,
Theorem C, can be employed to recover sparse domination, and thus weighted bounds, for Calderón–
Zygmund kernels with minimal smoothness assumptions. Let T be an L2.Rd /-bounded operator whose
kernel K satisfies the usual size normalization

sup
x¤y

jx�yjd jK.x; y/j � 1:

Let  be a fixed Schwartz function supported in A1 D fx 2 Rd W 2�2 < jxj< 1g such thatX
s2Z

 .2�sx/D 1; x ¤ 0:

It is immediate to see that (SS) holds, and in particular ŒK�0;1 � C , for the decomposition

Ks.x; y/ WDK.x; y/ 

�
x�y

2s

�
; s 2 Z:

We further assume that ŒK�1;ˇ <1 for some 1 < ˇ �1, where the kernel norm has been defined in
(3-2). When ˇ D1, this is exactly the Dini condition [Hytönen et al. 2017; Lacey 2017; Lerner 2016].
For ˇ <1, the above condition is equivalent to the assumptions of [Volberg and Zorin-Kranich 2016],
where in fact a multilinear version is presented.

The assumptions of Theorem C then hold for the dual form

ƒ.f1; f2/D hTf1; Nf2i:

We have already observed that (SS) is verified with q D1. It is well known that the L2-boundedness
of ƒ together with ŒK�1;ˇ <1 yields that the truncation forms ƒ��, see (2-1), are uniformly bounded on
Lt .Rd /�Lt

0

.Rd / [Stein 1993, Chapter I.7] for all 1<t <1; thus we have condition (T) with, for instance,
r D 2. Furthermore, Lemma 3.2 is exactly (L) for the corresponding ƒQ;�;� , with p1 D 1, p2 D ˛ D ˇ0.
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Applying Theorem C in the form given in Remark 2.4, we obtain the following sparse domination result,
which recovers (the dual form of) the domination theorems from the above-mentioned references. We
cite the same references for the sharp weighted norm inequalities that descend from this result.

Theorem D (Calderón–Zygmund theory). Let T be as above and 1� ˇ <1. For all 1 < t <1 and all
pairs f1 2 Lt .Rd /, f2 2 Lt

0

.Rd /,

jhTf1; f2ij � Cˇ ŒK�1;ˇ sup
S

PSFSI1;ˇ 0.f1; f2/;

where Cˇ is a positive constant depending on ˇ and on the dimension d only.

4. Proof of Theorem A

Let 1 < q �1 and suppose that � 2 Lq.Sd�1/ has unit norm and vanishing integral. Set x0 D x=jxj.
We decompose for x ¤ 0 the kernel of T� in (1-2) as

�.x0/

jxjd
D

X
s

Ks.x/; Ks.x/D�.x
0/2�sd�.2�sx/;

where � is a suitable smooth radial function supported in A1 D f2�2 � jxj � 1g. The main result of this
section is the following proposition: again, we assume that a stopping collection Q with top the dyadic
cube Q as in Section 2 has been fixed and the notations Yt and similar refer to that fixed setting.

Proposition 4.1. Let � 2 Lq.Sd�1/ be of unit norm and vanishing integral. Let f"sg 2 f�1; 0; 1gZ be a
choice of signs, b 2 PX1 and define

K.b; h/ WD
X
j�1

X
s

"shKs � bs�j ; Nhi

where
bs D

X
L2Q
sLDs

bL:

There exists an absolute constant C, in particular uniform over all f"sg 2 f�1; 0; 1gZ, such that

jK.b; h/j �
Cp

p� 1
jQjkbk PX1khkYp

�
k�kLq;1 logL.Sd�1/; q <1; p � q0;

k�kL1.Sd�1/; q D1; p > 1:
(4-1)

With the above proposition in hand, we may now give the proof of Theorem A. The structural
assumptions (SS), (T) of the abstract result Theorem C applied to the above decomposition of (the dual
form of) T� are respectively verified with q D q and with r D 2 (this is the classical L2-boundedness of
the truncations of T� [Calderón and Zygmund 1956; Grafakos and Stefanov 1999]).

We still need to verify (L) for the values p1 D 1 and p2 D p for each p in the claimed range
(depending on whether q D1 or not). It is immediate from the representations (2-9) that in this setting
ƒQ;�;�.b; h/DK.b1Q; h/ for a suitable choice of signs f"sg depending on �; �. So Proposition 4.1 yields
the first condition in (L) with p1 D 1, p2 D p. On the other hand, we get from (2-10) that ƒQ;�;�.h; b/

is equal to K.bin; h1Q/, again for a suitable choice of signs f"sg depending on �; �, up to replacing Ks
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by Ks.� � /, and up to subtracting the remainder term from (2-11), which is estimated in this case by an
absolute constant times

jQjkhkY1kbkYq0 � jQjkhkY1kbkYp ;

which is acceptable for the right-hand side of the second condition in (L) when p2 D p. These considera-
tions and another application of Proposition 4.1 finally yield Theorem A, via our abstract result in the
form described in Remark 2.4.

Proof of Proposition 4.1. Throughout this proof, C is a positive absolute dimensional constant which
may vary at each occurrence without explicit mention. We assume f"sg 2 f�1; 0; 1gZ is given. For the
sake of simplicity, we redefine Ks WD "sKs; it will be clear from the proof below that the signs of Ks
play no role. Fix a positive integer j. For ı > 0 to be fixed at the end of the argument define

Oj D f� 2 S
d�1
W j�.�/j> 2ıj g; �j D� 1Sd�1nOj ; �j D� 1Oj : (4-2)

We now have the decomposition

Ks DH
j
s CV

j
s ; H j

s DKs 1supp�j ; V js DKs 1Oj : (4-3)

The first localized form we treat, namely the contribution of the unbounded part of �, is dealt with by
means of a trivial estimate.

Lemma 4.2. Vj .b; h/ WD
X
s

jhV js � bs�j ;
Nhij � Ck�j kq jQjkbkX1khkYp ; p � q0.

Proof. It suffices of course to prove the estimate above with q0 in place of p. This is actually a particular
case of Lemma 3.1 applied with K D fV js g and ˇ D q, as it is immediate to see that for this kernel one
has ŒK�0;q � Ck�j kq: �

The contribution of the bounded part of Ks in (4-3) is more delicate, and we postpone the proof of the
following lemma to the next subsection.

Lemma 4.3. There exist absolute constants C; c > 0 such that for all 1 < p �1

Hj .b; h/ WD

ˇ̌̌̌X
s

hH j
s � bs�j ;

Nhi

ˇ̌̌̌
� C2�cj

p�1
p k�j k1 jQjkbk PX1khkYp :

We may now complete the proof of Proposition 4.1. We assume q <1. The remaining case is actually
simpler as Vj is identically zero. Our decomposition (4-3) yields that

jK.b; h/j �
X
j�1

jHj .b; h/jC
X
j�1

jVj .b; h/j:

Choosing ı D c.p� 1/=.2p/ in (4-2) and using Lemma 4.3, we estimateX
j�1

jHj .b; h/j � C jQjkbk PX1khkYp

X
j�1

2�cj
p�1
p k�j k1

� C jQjkbk PX1khkYp

X
j�1

2�cj
p�1
2p �

Cp

p� 1
jQjkbk PX1khkYp ;
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which is smaller than the right-hand side of (4-1). Using Lemma 4.2, the latter sum involving Vj is then
estimated by �X

j�1

k�j kq

�
jQjkbkX1khkYp �

Cp

p� 1
k�kLq;1 logL.Sd�1/jQjkbkX1khkYp ;

which also complies with the right-hand side of (4-1); here we have used thatX
j�1

k�j kq �
X
j�1

X
k�j

2ıkjOk nOkC1j
1
q �

X
k�1

k2ıkjOk nOkC1j
1
q �

C

ı
k�kLq;1 logL.Sd�1/:

The proposition is thus proved up to establishing Lemma 4.3.

Proof of Lemma 4.3. Our first observation is actually another trivial estimate.

Lemma 4.4. There exists C > 0 such that jHj .b; h/j � Ck�j k1 jQjkbkX1khkY1 :

Proof. This is an application of Lemma 3.1 to K D fH j
s g with ˇ D1, as it is immediate to see that for

this kernel one has ŒK�0;1 � Ck�j k1: �

The second step is an estimate with decay, but involving Y1 norms.

Lemma 4.5. There exist C; c > 0 such that jHj .b; h/j � C2�cj k�j k1 jQjkbk PX1khkY1 :

Before the proof of Lemma 4.5, which is given in the next subsection, we observe that the estimate of
Lemma 4.3 is obtained by Riesz–Thorin (for instance) interpolation in h of the last two lemmata.

Proof of Lemma 4.5. The techniques of this subsection are an elaboration of the arguments of [Seeger
1996]. In particular Lemma 4.6 below is a stronger version of Lemma 2.1 of that work, while Lemma 4.7
is essentially the dual form of its Lemma 2.2.

We perform a further decomposition of H j
s . Let „ D fe�g be a maximal 2�j�10d -separated set

contained in supp�j . We may partition supp�j into #„. 2j.d�1/ subsets E� each containing e� and
such that diamjE� j. 2�j. Set

H j
s�.x/DH

j
s .x/1E� .x

0/:

Also, let  be a smooth function on R with 1Œ�2;2� � � 1Œ�4;4�. Let � 2 Œ0; 1/ and define the multiplier
operator

yP j� .�/D  .2
j.1��/� 0 � e�/:

We now have the decomposition

H j
s WD �

j
s C‡

j
s ; �js WD

X
�

P j� �H
j
s� ; ‡js WDH

j
s ��

j
s

so that Hj is the sum of the single-scale bilinear forms

Gj .b; h/D

�X
s

�js � bs�j ;
Nh

�
; Uj .b; h/D

�X
s

‡js � bs�j ;
Nh

�
satisfying the estimates below.
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Lemma 4.6. Let � > 1. Then

jGj .b; h/j � C�2
�j .1��/

2 k�j k1 jQjkbkX1khkY� ; C� D
C�

� � 1
:

Lemma 4.7. Let b 2 PX1. For all " > 0 there exists a constant C�;" depending on �; " only such that

jUj .b; h/j � C�;"2
�"j
k�j k1 jQjkbk PX1khkY1 :

Notice that the combination of Lemma 4.6 with � D 2 and � D 1
2

and Lemma 4.7 with "D 1
4

yields
the required estimate for Lemma 4.5, with c D 1

4
. Lemma 4.5 is thus proved up to the arguments for

Lemmata 4.6 and 4.7.

Proof of Lemma 4.6. We may factor out k�j k1 and assume that the angular part in the definition of �j
is bounded by 1. We can also assume that H j

s� and b are positive as cancellation plays no role in this
argument; this is just a matter of saving space in the notation. Using interpolation and duality with t
below being the dual exponent of � , the estimate of the lemma follows if we show that for each integer
r � 1 and t D 2r

1

jQj
1
t





X
s

�js � bs�j






t

. t2�
j.1��/
2 kbkX1 (4-4)

with an implicit constant that does not depend on r . Setting

M� D

X
s

P j� �H
j
s� � bj�s; D� D

X
s

H j
s� � bs�j ;

we rewrite the left-hand side of (4-4) raised to t -th power and subsequently estimate



 X
�1;:::;�r

rY
kD1

M�k





2
2

D





 X
�1;:::;�r

yM�1 � � � � �
yM�r





2
2

. 2rj.d�2C�/
X

�1;:::;�r





 rY
kD1

D�k





2
2

. 2tj.d�1/2�rj.1��/ sup
�
kD�k

t
t :

(4-5)

We have used Plancherel for the first equality, followed by the observation that yP j�k .�/ is uniformly
bounded and nonzero only if j� 0�e�k j<2

�j.1��/. Thus there are at most C2rj.d�2C�/ r-tuples such that
the r-fold convolution is nonzero, whence the first bound. Another usage of Plancherel, the observation
that there are at most 2rj.d�1/ tuples in the summation, and finally Hölder’s inequality yield the second
bound. We are thus done if we estimate for each fixed �X

s1�����st

Z � tY
kD1

H j
sk�
.x�yk/bsk�j .yk/

�
dy1 � � � dyt dx . C t2�tj.d�1/jQjkbktX1 (4-6)

as kD�ktt is at most t t times the above integral. Notice that if � � s then suppH j
�� is contained in a

box Rs centered at zero and having one long side of length . 2s and d � 1 short sides of length 2s�j. If
z 2Rd, Rs.z/D zCRs and

Qs.z/D
˚
L 2Q W sL � s� j; L� 100Rs.z/

	
; bRs.z/ WD

X
L2Qs.z/

bL;
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we have, by the disjointness of L 2Q,

2�sdkbRs.z/k1 . 2
�sd
jRs.z/jkbkX1 � C2

�j.d�1/
kbkX1 WD ˛: (4-7)

Also notice that for all fixed y1; : : : ; yt and for all s1 � � � � � st ,

Is1;:::;st .y1; : : : ; yt / WD

Z � tY
kD1

H j
sk�
.x�yk/

�
dx � kH j

st�
k1

t�1Y
kD1

kH j
sk�
k1 . 2�j.d�1/2�d st�1;

where, here and in what follows, we set

sn D

nX
kD1

sk; nD 1; : : : ; t:

Furthermore, Is1;:::;st .y1; : : : ; yt / is nonzero only if yk 2 2Rsk�1.yk�1/ for k D t; t � 1; : : : ; 2. Now,
writing bsk in place of bsk�j for reasons of space as j is kept fixed throughout and using (4-7) repeatedly,
the sum in (4-6) is equal to

X
s1�����st

Z
Is1;:::;st .y1; : : : ;yt /

� tY
kD1

bsk .yk/

�
dy1 � � � dyt

. 2�j.d�1/
X

s1�����st�1

2�d st�2
Z

bs1.y1/

� t�1Y
kD2

bsk .yk/12Rsk�1 .yk�1/.yk/
�
kbRst�1 .yt�1/k1

2dst�1
dy1 � � � dyt�1

.˛2�j.d�1/
X

s1�����st�2

2�d st�3
Z

bs1.y1/

� t�2Y
kD2

bsk .yk/12Rsk�1 .yk�1/.yk/
�
kbRst�2 .yt�2/k1

2dst�2
dy1 � � � dyt�2

. � � �.˛t�12�j.d�1/jQjkbkX1 �C
t2�tj.d�1/jQjkbktX1

as claimed, and this completes the proof. �

Proof of Lemma 4.7. Again we factor out k�j k1 and work under the assumption that the angular part
is bounded by 1. In this proof, M is a large integer whose value may differ at each occurrence and the
constants implied by the almost inequality sign are allowed to depend on M only. Let ˇ be a smooth
function supported in A1 D f2�1 � j�j � 2g and satisfyingX

k2Z

ˇ2.2k�/D 1; � ¤ 0:

Set Bk D F�1fˇ.2k � /g: Defining

yRjks� .�/D ˇ.2
k�/.1� yP j� .�//

yH j
s�.�/;

we recall from [Seeger 1996, equations (2.6), (2.7)] the estimate

kRjks� k1 .M 2�j.d�1/ minf1; 2�M�j 2�M.s�j�k/g:
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Now, fix s and L 2 Q with `.L/D 2s�j for the moment. Recalling the definition of ‡js , we have the
decomposition

jh‡js � bL;
Nhij �

X
�

X
k

jhRjks� �Bk � bL;
Nhij;

and the cancellation estimate (cf. [Seeger 1996, equation (2.5)], a simpler version of Lemma 3.2)

jhRjks� �Bk � bL;
Nhij.minf1; 2.s�j /�kgkRjks� k1kbLk1khk1

. 2�j.d�1/ min
˚
2.s�j /�k; 2�M�j�M.s�j�k/

	
jLj kbk PX1khkY1 : (4-8)

Note that #„. 2j.d�1/. So for each " > 0 we can use the left estimate in (4-8) for k � s� j.1� "/ and
the right estimate otherwise, and obtain

jh‡js � bL;
Nhij �

X
�

X
k

jhRjks� �Bk � bL;
Nhij. 2�"j jLj kbk PX1khkY1 (4-9)

provided that M is chosen large enough to have 2" < M�. The proof is thus completed by summing
(4-9) over L 2Q with `.L/D 2s�j and later over s. �

5. Proof of Theorem B

Throughout this proof, C is a positive absolute dimensional constant which may vary at each occurrence
without explicit mention. Most of the arguments in this section are contained in [Christ 1988, Section 3];
we reproduce the details for clarity.

Let  .x/D cos.2�.jxj � ı=4//: From the asymptotic expansion of the inverse Fourier transform of
the multiplier of Bı [Christ 1988, Section 3], which is C1 and radial, we obtain the kernel representation

Bı.x/D
X
s�1

X
�

Ks;�.x/CL.x/:

Here

Ks;�.x/D��.x
0/ .x/2�sd�.2�sx/;

with �� a finite smooth partition of unity on the unit sphere Sd�1 with sufficiently small support which is
introduced for technical reasons, and � a suitable smooth radial function supported inA1Df2�2�jxj�1g,
while L.x/ is an integrable kernel with L.x/� C.1Cjxj/�.dC1/, so that

Lf .x/� CM1f .x/;

which can be ignored for our purposes. We can also think of � as fixed and omit it from the notation,
and consider the kernel K D fKsg as above. We are going to verify that conditions in Theorem C are
satisfied by (the dual form to) Bı . First of all, condition (SS) is obvious from the above discussion as
ŒK�0;1 <1. Second, the (T) condition follows from the well-known estimate

sup
�;�
kƒ��kL2.Rd /�L2.Rd / � C I
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see for instance [Duoandikoetxea and Rubio de Francia 1986, Theorem E]. In order to verify condition (L),
let Q be a stopping collection with top Q. Let b 2 X1.Q/; we change a bit the notation for bs in this
context by redefining

bs WD
X
sLDs

bL; s � 1; b0 WD
X
sL�0

bL:

It is easy to see that in this context if b 2 X1 supported on Q and h 2 Y1, one has

ƒQ;�;�.b; h/D

�X
j�1

X
s�j

"sKs � bs�j ; Nh

�

for a suitable choice of signs f"sg 2 f�1; 0; 1gZ, and the same for ƒQ;�;�.h; b/ up to replacing b by bin,
restricting h to be supported on Q, transposing Ks , and subtracting the remainder terms, which are
estimated by

jQjkbkX1khkY1 :

Theorem B is thus obtained from the next proposition via an application of Theorem C.

Proposition 5.1. Let f"sg 2 f�1; 0; 1gZ be a choice of signs, b 2 X1 and define

K.b; h/ WD

�X
j�1

X
s�j

"sKs � bs�j ; Nh

�
:

There exists an absolute constant C , in particular uniform over f"sg 2 f�1; 0; 1gZ, such that

jK.b; h/j �
Cp

p� 1
jQjkbkX1khkYp :

Notice that here we do not need to require b 2 PX1 as per the oscillatory nature of the problem.

Proof of Proposition 5.1. Given our choice of f"sg 2 f�1; 0; 1gZ, we relabel Ks WD "sKs . It will be clear
from the proof that the signs "s play no role. We split

K.b; h/D
X
j�1

Kj .b; h/; Kj .b; h/ WD
X
s�j

hKs � bs�j ; Nhi:

The first estimate is a trivial one.

Lemma 5.2. There exists C > 0 such that jKj .b; h/j � C jQjkbkX1khkY1 .

Proof. This follows from applying Lemma 3.1 with ˇ D1 to K D fKsg, as it is immediate to see that
for this kernel one has ŒK�0;1 � C as already remarked. �

The second estimate, which is essentially contained in [Christ 1988, Section 3], is the one providing
decay.

Lemma 5.3. There exists C; c > 0 such that jKj .b; h/j � C2�cj jQjkbkX1khkY2 .
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It is easy to see that interpolating the above estimates yields

jKj .b; h/j � C2�j
c.p�1/
p jQjkbkX1khkYp ;

the summation of which yields Proposition 5.1.

Proof of Lemma 5.3. Let zKs. � /DKs.� � /. We recall from [Christ 1988, Lemma 3.1] the estimates

jKs � zKs.x/j � C2
�ds.1Cjxj/�ı ;

kKs � zKtk1 � C2
�dt2�ıs; 8s < t � 1:

(5-1)

By duality, it suffices to prove that

kKj � b0k
2
2C





X
s>j

Ks � bs�j





2
2

� C2�cj jQjkbk2X1 : (5-2)

For the first term we use the first estimate in (5-1):

kKj � b0k
2
2 D jhb0; Kj �

zKj � b0ij � kb0k1kKj � zKj � b0k1 � C2
�min.ı;d/j

jQjkbk2X1 :

The last inequality above follows from

kKj � zKj � b0k1 � 2
�jd

jX
mD0

2�mı sup
x2Rd

kb0kL1.B.x;C2m// � C2
�min.ı;d/j

kbkX1 ;

where B.x; C2m/ denotes a ball centered at x with radius C2m. For the second term, we begin by quoting
from [Christ 1988, inequality (3.2)] that

kKs � bs�j k
2
2 � C2

�ıj
kbkX1kbs�j k1: (5-3)

Observe that



X
s>j

Ks�bs�j





2
2

�

X
s>j

kKs�bs�j k
2
2C2

X
s

jhKs�bs�j ;Ks�1�bs�1�j ijC2
X
t

X
j<s<t�1

jh zKt�Ks�bs�j ;bt�j ij: (5-4)

The first two terms are bounded by

C2�ıj kbkX1

X
s

kbs�j k1 � C2
�ıj
jQjkbk2X1 ;

according to (5-3) for the first one and Cauchy–Schwarz followed by (5-3) for the second. For the third
term, from the second estimate of (5-1) and support considerations one has

k zKt �Ks � bs�j k1 � C
�

sup
x2Rd

kbs�j kL1.B.x;C2t //
�
k zKt �Ksk1 � C2

�ıs
kbkX1 :

Therefore, the third summand in (5-4) is dominated by

CkbkX1

X
t>j

kbt�j k1
X

j<s<t�1

2�ıs � C2�ıj jQjkbk2X1 ;

and collecting all the above estimates (5-2) follows. �
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Appendix A: Verification of (2-10)–(2-11)

Let Q be a stopping collection with top Q, h2Yq0 , b 2Xq0 . Clearly we can assume supp h �Q. By
possibly replacing Ks by zero when s 62 .�; �� we can ignore the truncations �; � in what follows and
omit them from the notation. Recall the definitions (2-4), (2-5)

ƒQ.h; b/DƒQ.h; b/�
X
R2Q
R�Q

ƒR.h; b/Dƒ
sQ.h; b/�

X
R2Q
R�Q

ƒsR.h 1R; b/

and the decomposition

b D binC bout; bin D
X
L2Q

3L\2Q¤∅

bL; bout D
X
L2Q

3L\2QD∅

bL:

We first estimate
jƒQ.h; b

out/j. ŒK�0;q jQjkhkY1kbkXq0 ; (A-1)

which is a single-scale estimate. In fact, since dist.R; supp bout/ � `.R/=2 for all R �Q, by virtue of
the support restriction in (SS),

s < sR D)

Z
Ks.x; y/h.y/1R.y/bout.x/ dy dx D 0:

Therefore, by the same argument used in (3-1),

jƒsQ.h; bout/j �

Z
jKsQ.x; y/jjh.y/jjb

out.x/j dy dx . ŒK�0;q jQjkhkY1kbkXq0 : (A-2)

Proceeding similarly, if R2Q, R�Q

jƒsR.h 1R; bout/j �
Z
jKsR.x; y/jjh 1R.y/jjbout.x/j dy dx . ŒK�0;q jRjkhkY1kbkXq0 :

and the claimed (A-1) follows by summing the last display over R 2 Q; R � Q, which are pairwise
disjoint, and combining the result with (A-2). The representation (2-10) will then be a simple consequence
of the equality

ƒQ.h; b
in/D

�
ƒsQ.h; bin/�

X
L2QW3L\2Q¤∅

ƒsL.h; bL/

�
CVQ.h; b/; (A-3)

where the remainder VQ satisfies

jVQ.h; b/j. ŒK�0;q jQjkhkYq0kbkXq0 : (A-4)

We turn to the proof of (A-3). We will use below without explicit mention that whenever L;R 2Q with
3R\ 3L¤ ∅, we have jsL � sRj < 8, a consequence of the separation property (2-3). First of all, the
restriction on the support (SS) gives thatX

R2Q

ƒsR.h 1R; bin/D
X
R2Q

X
L2Q

3L\3R¤∅
3L\2Q¤∅

ƒsR.h 1R; bL/; (A-5)
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as ƒsR.h 1R; bL/D 0 unless 3L\ 3R is nonempty. As there are at most 16 s-scales in each difference
ƒsL �ƒsR, using the trivial estimate (3-1) with ˇ D q for each such scale yieldsX

R2Q

X
L2Q

3L\3R¤∅
3L\2Q¤∅

ˇ̌
ƒsL.h 1R; bL/�ƒsR.h 1R; bL/

ˇ̌
. ŒK�0;qkhkYq0

X
R2Q

X
L2Q

3L\3R¤∅
3L\2Q¤∅

kbLk1

. ŒK�0;q khkYq0kbkX1
X
R2Q

jRj. ŒK�0;q jQjkhkYq0kbkX1 : (A-6)

Recalling the second property of stopping collections in (2-3), we have the decomposition

hD hinC hout; hin WD h 1S
R2QR

; supp hout\
� [

L2Q
3L\2Q¤∅

9L

�
D∅:

Therefore, up to including the error term of (A-6) in (A-4), (A-5) can be rewritten asX
R2Q

X
L2Q

3L\3R¤∅
3L\2Q¤∅

ƒsL.h 1R; bL/D
X
L2Q

3L\2Q¤∅

ƒsL.hin; bL/�
X
L2Q

3L\2Q¤∅

ƒsL. QhL; bL/;

QhL D
X
R2Q

3L\3RD∅

h 1R; supp QhL � Rd n 3L:

(A-7)

We note that all the terms in the second sum on the right-hand side of the first line of (A-7) vanish due to
the support restriction on Ks , as all the scales appearing are less than or equal to sL and supp bL � L.
The reasoning beginning with decomposition (A-5) leads thus to the equality, up to tolerable error terms,X

R2Q

ƒsR.h 1R; bin/D
X
L2Q

3L\2Q¤∅

ƒsL.h; bL/�
X
L2Q

3L\2Q¤∅

ƒsL.hout; bL/: (A-8)

Finally the second term on the right-hand side of (A-8) also vanishes, by virtue of the restriction on the
support of hout, which does not intersect 9L for any L in the sum. Therefore, (A-8) is actually the equalityX

R2Q
R�Q

ƒsR.h 1R; bin/D
X
R2Q

ƒsR.h 1R; bin/D
X
L2Q

3L\2Q¤∅

ƒsL.h; bL/CVQ.h; b/;

where VQ.h; b/ satisfies (A-4); the first equality in the above display is due to supp h�Q. This equality
clearly implies the sought after (A-3).

Appendix B: Sparse domination implies weak L1 estimate

We show that if a sublinear operator T satisfies the sparse estimate (1-1) for p1 D 1, p2 D r for some
1� r <1 then T is of weak type .1; 1/. In particular, as mentioned in the Introduction, together with
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Theorem A, this yields the weak L1 estimate of T�, which is the main result of [Seeger 1996]. The proof
that follows is a simplified version of the arguments in [Culiuc et al. 2016a, Appendix A]; we are sure
these arguments are well known but were unable to locate a precise reference.

Theorem E. Suppose that the sublinear operator T has the following property: there exists C > 0 and
1 � r <1 such that for every f1, f2 bounded with compact support there exists a sparse collection S
such that

jhTf1; f2ij � C
X
Q2S

jQjhf1i1;Qhf2ir;Q: (B-1)

Then T W L1.Rd /! L1;1.Rd / boundedly.

Proof. By standard arguments it suffices to verify that

sup
kf1k1D1

sup
G�Rd

inf
G0�G
jGj�2jG0j

sup
jf2j�1G0

jhTf1; f2ij � C;

where f1, f2 are bounded and compactly supported and G has finite measure. Given such f1 with
kf1k1 D 1 and G of finite measure, define the sets

H WDfx2Rd WM1f1.x/>C jGj
�1
g; zH WD

[
Q2Q

3Q; QD
˚
max. dyad. cube Q W jQ\H j�2�5jQj

	
:

It is easy to see that j zH j � 2�10jGj for suitable choice of C . Therefore the set G0 W Gn zH satisfies
jGj � 2jG0j. We make the preliminary observation that

sup
x2Hc

M1f1.x/� C jGj
�1;

so that by interpolation

kM1f1kLp0 .Hc/ �
�

sup
x2Hc

M1f1.x/
�1� 1

p0 kM1f1k
1
p0

1;1 � C jGj
�.1� 1

p0
/
; (B-2)

where p0 > 1 is chosen such that p > r . Fixing now any f2 restricted to G0, we apply the domination
estimate, yielding the existence of a sparse collection S for which we have the estimate

jhTf1; f2ij � C
X
Q2S

jQjhf1i1;Qhf2ir;Q:

We claim that

jQ\H j � 2�5jQj 8Q 2 S: (B-3)

This is because if (B-3) fails for Q, we know Q must be contained in 3Q0 for some Q0 2 Q. But the
support of f2 is contained in zH c , which does not intersect 3Q0, whence hf2ir;Q D 0. Relation (B-3)
has the consequence that if fEQ WQ 2 Sg denote the distinguished pairwise disjoint subsets of Q 2 S
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with jEQj � 2�2jQj, the sets zEQ WDEQ\H c are also pairwise disjoint and j zEQj � 2�3jQj. Therefore,
since the union of zEQ is contained in H c , by standard arguments we arrive at

jhTf1;f2ij � C
X
Q2S

jQjhf1i1;Qhf2ir;Q � C
X
Q2S

j zEQjhf1i1;Qhf2ir;Q � C

Z
Hc

M1f .x/Mrf2.x/dx

� CkM1f1kLp0 .Hc/kMrf2kLp.Rd / � C jGj
�.1� 1

p0
/
jGj

1
p � C;

using (B-2) in the last step. �
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