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The zero sets of harmonic polynomials play a crucial role in the study of the free boundary regularity
problem for harmonic measure. In order to understand the fine structure of these free boundaries, a
detailed study of the singular points of these zero sets is required. In this paper we study how “degree-k
points” sit inside zero sets of harmonic polynomials in Rn of degree d (for all n ≥ 2 and 1≤ k ≤ d) and
inside sets that admit arbitrarily good local approximations by zero sets of harmonic polynomials. We
obtain a general structure theorem for the latter type of sets, including sharp Hausdorff and Minkowski
dimension estimates on the singular set of degree-k points (k ≥ 2) without proving uniqueness of blowups
or aid of PDE methods such as monotonicity formulas. In addition, we show that in the presence of a
certain topological separation condition, the sharp dimension estimates improve and depend on the parity
of k. An application is given to the two-phase free boundary regularity problem for harmonic measure
below the continuous threshold introduced by Kenig and Toro.
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1. Introduction

In this paper, we study the geometry of sets that admit arbitrarily good local approximations by zero sets
of harmonic polynomials. As our conditions are reminiscent of those introduced by Reifenberg [1960],
we often refer to these sets as Reifenberg-type sets which are well approximated by zero sets of harmonic
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polynomials. This class of sets plays a crucial role in the study of a two-phase free boundary problem for
harmonic measure with weak initial regularity, examined first by Kenig and Toro [2006] and subsequently
by Kenig, Preiss and Toro [Kenig et al. 2009], Badger [2011; 2013], Badger and Lewis [2015], and
Engelstein [2016]. Our results are partly motivated by several open questions about the structure and size
of the singular set in the free boundary, which we answer definitively below. In particular, we obtain sharp
bounds on the upper Minkowski and Hausdorff dimensions of the singular set, which depend on the degree
of blowups of the boundary. It is important to remark that this is one of those rare instances in which a
singular set of a nonvariational problem can be well understood. Often, in this type of question, the lack
of a monotonicity formula is a serious obstacle. A remarkable feature of the proof is that Łojasiewicz-type
inequalities for harmonic polynomials are used to establish a relationship between the terms in the Taylor
expansion of a harmonic polynomial at a given point in its zero set and the extent to which this zero set
can be approximated by the zero set of a lower-order harmonic polynomial (see Sections 3 and 4). In a
broader context, this paper also complements the recent investigations by Cheeger, Naber, and Valtorta
[Cheeger et al. 2015] and Naber and Valtorta [2014] into volume estimates for the critical sets of harmonic
functions and solutions to certain second-order elliptic operators with Lipschitz coefficients. Detailed
descriptions of these past works and new results appear below, after we introduce some requisite notation.

For all n ≥ 2 and d ≥ 1, let Hn,d denote the collection of all zero sets 6p of nonconstant harmonic
polynomials p : Rn

→ R of degree at most d such that 0 ∈ 6p (i.e., p(0) = 0). For every nonempty
set A⊆Rn, location x ∈ A, and scale r > 0, we introduce the bilateral approximation number 2Hn,d

A (x, r),
which, roughly speaking, records how well A looks like some zero set of a harmonic polynomial of
degree at most d in the open ball B(x, r)= {y ∈ Rn

: |y− x |< r}:

2
Hn,d
A (x,r)= 1

r
inf

6p∈Hn,d

max
{

sup
a∈A∩B(x,r)

dist(a, x+6p), sup
z∈(x+6p)∩B(x,r)

dist(z, A)
}
∈ [0,1]. (1-1)

When 2Hn,d
A (x, r)= 0, the closure, A, of A coincides with the zero set of some harmonic polynomial of

degree at most d in B(x, r). At the other extreme, when 2Hn,d
A (x, r)∼ 1, the set A stays “far away” in

B(x, r) from every zero set of a nonconstant harmonic polynomial of degree at most d containing x . We
observe that the approximation numbers are scale invariant in the sense that 2Hn,d

λA (λx, λr)=2Hn,d
A (x, r)

for all λ > 0. A point x in a nonempty set A is called an Hn,d point of A if limr→02
Hn,d
A (x, r)= 0.

For all n ≥ 2 and k ≥ 1, let Fn,k denote the collection of all zero sets of homogeneous harmonic
polynomials p : Rn

→ R of degree k. We note that

Fn,k ⊆Hn,d whenever 1≤ k ≤ d.

For every nonempty set A ⊆ Rn, x ∈ A, and r > 0, the bilateral approximation number 2Fn,k
A (x, r) is

defined analogously to 2Hn,d
A (x, r) except that the zero set 6p in the infimum ranges over Fn,k instead

of Hn,d . A point x in a nonempty set A is called an Fn,k point of A if limr→02
Fn,k
A (x, r)= 0. This means

that infinitesimally at x , A looks like the zero set of a homogeneous harmonic polynomial of degree k.
We say that a nonempty set A⊆Rn is locally bilaterally well approximated by Hn,d if for all ε > 0 and

for all compact sets K ⊆ A there exists rε,K > 0 such that 2Hn,d
A (x, r)≤ ε for all x ∈ K and 0< r ≤ rε,K .
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If k = 1, then Hn,1 = Fn,1 = G(n, n − 1) is the collection of codimension-1 hyperplanes through the
origin, and sets A that are locally bilaterally well approximated by Hn,1 are also called Reifenberg flat
sets with vanishing constant or Reifenberg vanishing sets (e.g., see [David et al. 2001]). Our initial result
is the following structure theorem for sets that are locally bilaterally well approximated by Hn,d .

Theorem 1.1. Let n ≥ 2 and d ≥ 2. If A ⊆ Rn is locally bilaterally well approximated by Hn,d , then we
can write A as a disjoint union,

A = A1 ∪ · · · ∪ Ad (i 6= j =⇒ Ai ∩ Aj =∅),

with the following properties:

(i) For all 1≤ k ≤ d, we have x ∈ Ak if and only if x is an Fn,k point of A.

(ii) For all 1≤ k ≤ d, the set Uk := A1 ∪ · · · ∪ Ak is relatively open in A.

(iii) For all 1≤ k ≤ d, the set Uk is locally bilaterally well approximated by Hn,k .

(iv) For all 2 ≤ k ≤ d, the set A is locally bilaterally well approximated along Ak by Fn,k; i.e.,
lim supr↓0 supx∈K 2

Fn,k
A (x, r)= 0 for every compact set K ⊆ Ak .

(v) For all 1≤ l < k ≤ d, the set Ul is relatively open in Uk and Al+1 ∪ · · · ∪ Ak is relatively closed in
Uk .

(vi) The set A1 is relatively dense in A; i.e., A1 ∩ A = A.

If, in addition, A is closed and nonempty, then

(vii) A has upper Minkowski dimension and Hausdorff dimension n− 1; and,

(viii) A \ A1 = A2 ∪ · · · ∪ Ad has upper Minkowski dimension at most n− 2.

Remark 1.2. If 6p ∈ Hn,d , then 6p is locally bilaterally well approximated by Hn,d , simply because
2

Hn,d
6p

(x, r) = 0 for all x ∈ 6p and r > 0. Since A = 6p corresponding to p(x1, . . . , xn) = x1x2 has
A2 = {0}2×Rn−2, we see that the dimension bounds on A \ A1 in Theorem 1.1 hold by example, and
thus, are generically the best possible.

Remark 1.3. Note that A1 is nonempty if A is nonempty by (vi), A1 is locally closed if A is closed
by (ii), and A1 is locally Reifenberg flat with vanishing constant by (iii). Therefore, by Reifenberg’s
topological disk theorem (e.g., see [Reifenberg 1960] or [David and Toro 2012]), A1 admits local bi-Hölder
parametrizations by open subsets of Rn−1 with bi-Hölder exponents arbitrarily close to 1 provided that A
is closed and nonempty. However, we emphasize that while A1 always has Hausdorff dimension n− 1
under these conditions, A1 may potentially have locally infinite (n−1)-dimensional Hausdorff measure
or may even be purely unrectifiable (e.g., see [David and Toro 1999]).

The proof of Theorem 1.1 uses a general structure theorem for Reifenberg-type sets, developed in
[Badger and Lewis 2015], as well as uniform Minkowski content estimates for the zero and singular sets of
harmonic polynomials from [Naber and Valtorta 2014]. A Reifenberg-type set is a set A⊆Rn that admits
uniform local bilateral approximations by sets in a cone S of model sets in Rn. In the present setting, the
role of the model sets S is played by Hn,d . For background on the theory of local set approximation and a
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summary of results from [Badger and Lewis 2015], we refer the reader to Appendix A. The core geometric
result at the heart of Theorem 1.1 is the following property of zero sets of harmonic polynomials: Hn,k

points can be detected in zero sets of harmonic polynomials of degree d (1≤ k ≤ d) by finding a single,
sufficiently good approximation at a coarse scale. The precise statement is as follows.

Theorem 1.4. For all n ≥ 2 and 1 ≤ k < d, there exists a constant δn,d,k > 0, depending only on n, d,
and k, such that for any harmonic polynomial p : Rn

→ R of degree d and, for any x ∈6p,

∂α p(x)= 0 for all |α| ≤ k ⇐⇒ 2
Hn,k
6p

(x, r)≥ δn,d,k for all r > 0,

∂α p(x) 6= 0 for some |α| ≤ k ⇐⇒ 2
Hn,k
6p

(x, r)< δn,d,k for some r > 0.

Moreover, there exists a constant Cn,d,k > 1 depending only on n, d , and k such that

2
Hn,k
6p

(x, r) < δn,d,k for some r > 0 =⇒ 2
Hn,k
6p

(x, sr) < Cn,d,k s1/k for all s ∈ (0, 1). (1-2)

In particular, applying (1-2) with 6p ∈Hn,d and x = 0, we obtain the following property.

Corollary 1.5. In the language of Definition A.12, Hn,k points are detectable in Hn,d .

Remark 1.6. The reader may recognize (1-2) as an “improvement-type lemma”, which is often obtained
as a consequence of a monotonicity formula or a blow-up argument. Here this improvement result states
that at every Hn,k point in the zero set 6p of a harmonic polynomial of degree d > k, the zero set 6p

resembles the zero set of a harmonic polynomial of degree at most k at scale r with increasing certainty
as r ↓ 0. In fact, (1-2) yields a precise rate of convergence for the approximation number 2Hn,k

6p
(x, sr)

as s goes to 0 provided 2Hn,k
6p

(x, r) is small enough. However, we would like to emphasize that the
proof of Theorem 1.1 does not require monotone convergence nor a definite rate of convergence of the
blowups (A− x)/r of the set A as r ↓ 0. Rather, the proof of Theorem 1.1 relies only on the fact that the
pseudotangents T = limi→∞(A− xi )/ti of A at x (along sequences xi → x in A and ti ↓ 0) satisfy (1-2).
The authors expect that both this improvement-type lemma as well as the way in which it is applied in
the proof of Theorem 1.1 should be useful in other situations where questions about the structure and size
of sets with singularities arise.

In the special case when k = 1, Theorem 1.4 first appeared in [Badger 2013, Theorem 1.4]. The
proof of the general case, given in Sections 2–4 below, follows the same guidelines, but requires more
sophisticated estimates. In particular, in Section 3, we establish uniform growth and size estimates for
harmonic polynomials of bounded degree. Of some note, we prove that harmonic polynomials of bounded
degree satisfy a Łojasiewicz-type inequality with uniform constants (see Theorem 3.1). These estimates
are essential to show that the approximability 2Hn,k

6p
(x, r) of a zero set 6p ∈ Hn,d is controlled from

above by the relative size ζ̂k(p, x, r) of the terms of degree at most k appearing in the Taylor expansion
for p at x (see Definition 2.3 and Lemma 4.1).

Applied to harmonic polynomials of degree at most d , [Naber and Valtorta 2014, Theorem A.3] says
that

Vol
({

x ∈ B
(
0, 1

2

)
: dist(x, 6p)≤ r

})
≤ (C(n)d)d r for all 6p ∈Hn,d , (1-3)
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and [Naber and Valtorta 2014, Theorem 3.37] says that

Vol
({

x ∈ B
(
0, 1

2

)
: dist(x, Sp)≤ r

})
≤ C(n)d

2
r2 for all Sp ∈ SHn,d , (1-4)

where SHn,d = {Sp=6p ∩ |Dp|−1(0) : 6p∈Hn,d , 0∈Sp} denotes the collection of singular sets of
nonconstant harmonic polynomials in Rn of degree at most d that include the origin. The latter estimate
is a refinement of [Cheeger et al. 2015], which gave bounds on the volume of the r -neighborhood of the
singular set of the form C(n, d, ε)r2−ε for all ε > 0. The results of Cheeger, Naber, and Valtorta [Cheeger
et al. 2015] and Naber and Valtorta [2014] apply to solutions of a class of second-order elliptic operators
with Lipschitz coefficients; we refer the reader to the original papers for the precise class. Estimates (1-3)
and (1-4) imply that the zero sets and the singular sets of harmonic polynomials have locally finite (n−1)-
and (n−2)-dimensional Hausdorff measure, respectively. They transfer to the dimension estimates in
Theorem 1.1 for sets that are locally bilaterally well approximated by Hn,d using [Badger and Lewis
2015]. See the proof of Theorem 1.1 in Section 5 for details.

Although the singular set of a harmonic polynomial in Rn generically has dimension at most n− 2,
additional topological restrictions on the zero set may lead to better bounds. In the plane, for example, the
zero set of a homogeneous harmonic polynomial of degree k is precisely the union of k lines through the
origin, arranged in an equiangular pattern. Hence R2

\6p has precisely two connected components for
6p ∈ F2,k if and only if k = 1, and consequently, the singular set is empty for any harmonic polynomial
whose zero set separates R2 into two connected components. When n = 3, Lewy [1977] proved that if
R3
\6p has precisely two connected components for 6p ∈ F3,k , then k is necessarily odd. Moreover,

Lewy proved the existence of 6p ∈ F3,k that separate R3 into two connected components for all odd
k ≥ 3; an explicit example due to Szulkin [1978] is 6p ∈ F3,3, where

p(x, y, z)= x3
− 3xy2

+ z3
−

3
2(x

2
+ y2)z.

Starting with n = 4, zero sets of even-degree homogeneous harmonic polynomials can also separate Rn

into two components, as shown, e.g., by Lemma 1.7, which we prove in Section 6.

Lemma 1.7. Let k ≥ 2, even or odd, and let q : R2
→ R be a homogeneous harmonic polynomial of

degree k. For any pair of constants a, b 6= 0, consider the homogeneous harmonic polynomial p :R4
→R

of degree k given by
p(x1, y1, x2, y2)= a q(x1, y1)+ b q(x2, y2).

The zero set 6p of p separates R4 into two components.

Motivated by these examples, it is natural to ask whether it is possible to improve the dimension bounds
on the singular set A \ A1 = A2 ∪ · · · ∪ Ad in Theorem 1.1 under additional topological restrictions on A.
In this direction, we prove the following result in Section 6 below.

Theorem 1.8. Let n≥ 2 and d ≥ 2. Let A⊆Rn be a closed set that is locally bilaterally well approximated
by Hn,d . If Rn

\ A =�+ ∪�− is a union of complimentary NTA domains �+ and �−, then

(i) A \ A1 = A2 ∪ · · · ∪ Ad has upper Minkowski dimension at most n− 3;

(ii) the “even singular set” A2 ∪ A4 ∪ A6 ∪ · · · has Hausdorff dimension at most n− 4.
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Figure 1. Select views of 6p, p(x, y, z)= x2
− y2
+ z3
−3x2z, which separates R3 into

two components and has a cusp at the origin.

NTA domains, or nontangentially accessible domains, were introduced by Jerison and Kenig [1982]
to study the boundary behavior of harmonic functions in dimensions three and above. We defer their
definition to Section 6. However, let us mention in particular that NTA domains satisfy a quantitative
strengthening of path connectedness called the Harnack chain condition. This property guarantees that A
appearing in Theorem 1.8 may be locally bilaterally well approximated by zero sets 6p of harmonic
polynomials such that Rn

\6p has two connected components. Without the Harnack chain condition, this
property may fail, as in the following example by Logunov and Malinnikova [2015].

Example 1.9. Consider the harmonic polynomial p(x, y, z)= x2
− y2
+ z3
− 3x2z from [Logunov and

Malinnikova 2015, Example 5.1]. In that paper, they also show that Rn
\6p =�

+
∪�− is the union of

two domains, but remark that �+ and �− fail the Harnack chain condition, and thus, �+ and �− are not
NTA domains (see Figure 1). Using Lemma 4.3 below, it can be shown that 6p has a unique tangent set
at the origin (see Definition A.5 in Appendix A), given by 6q , where q(x, y, z)= x2

− y2. Note that 6q

divides R3 into four components. However, if the set 6p is locally bilaterally well approximated by some
closed class S ⊆Hn,d , then 6q ∈ S by Theorem A.11.

Remark 1.10. It can be shown that Rn
\6p =�

+
∪�− is a union of complementary NTA domains and

6p is smooth except at the origin when p(x, y, z) is Szulkin’s polynomial or when p(x1, y1, x2, y2) is
any polynomial from Lemma 1.7. Thus, the upper bounds given in Theorem 1.8 are generically the best
possible. The reason that we obtain an upper Minkowski dimension bound on the full singular set A \ A1,
but only obtain a Hausdorff dimension bound on the even singular set A2 ∪ A4 ∪ · · · is that the former is
always closed when A is closed, but we only know that the latter is Fσ when A is closed (see the proof of
Theorem 1.8).

The improved dimension bounds on A \ A1 in Theorem 1.8 require a refinement of (1-4) for 6p ∈Hn,d

that separate Rn into complementary NTA domains, whose existence was postulated in [Badger and
Lewis 2015, Remark 9.5]. Using the quantitative stratification machinery introduced in [Cheeger et al.
2015], we demonstrate that near its singular points, a zero set 6p ∈Hn,d with the separation property
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does not resemble 6h ×Rn−2 for any 6h ∈ F2,k , 2 ≤ k ≤ d. This leads us to a version of (1-4) with
right-hand side C(n, d, ε)r3−ε for all ε > 0 and thence to dimM A \ A1 ≤ n− 3 using [Badger and Lewis
2015]. In addition, we show that at “even-degree” singular points, a zero set 6p with the separation
property, does not resemble 6h × Rn−3 for any 6h ∈ F3,2k , 2 ≤ 2k ≤ d. This leads us to the bound
dimH 02 ∪04 ∪ · · · ≤ n− 4. See the proof of Theorem 1.8 in Section 6 for details.

In the last section of the paper, Section 7, we specialize Theorems 1.1 and 1.8 to the setting of two-
phase free boundary problems for harmonic measure mentioned above, which motivated our investigation.
This includes the case that A = ∂� is the boundary of a 2-sided NTA domain � ⊂ Rn whose interior
harmonic measure ω+ and exterior harmonic measure ω− are mutually absolutely continuous and have
Radon–Nikodym derivative f = dω−/dω+ satisfying log f ∈ C(∂�) or log f ∈ VMO(dω+).

2. Relative size of the low-order part of a polynomial

Given a polynomial p(x)=
∑
|α|≤d cαxα in Rn, define the height by H(p)=max|α|≤d |cα|; i.e., the height

of p is the maximum in absolute value of the coefficients of p. The following lemma is an instance of
the equivalence of norms on finite-dimensional vector spaces.

Lemma 2.1. H(p) ≈ ‖p‖L∞(B(0,1)) for every polynomial p : Rn
→ R of degree at most d, where the

implicit constants depend only on n and d.

Below we will need the following easy consequence of Lemma 2.1.

Corollary 2.2. If p ≡ pd + · · ·+ p0, where each pi : R
n
→ R is zero or a homogeneous polynomial of

degree i , then ‖p‖L∞(B(0,1)) ≈
∑d

i=0 H(pi ), where the implicit constants depend only on n and d.

Proof. On one hand,

‖p‖L∞(B(0,1)) ≤

d∑
i=0

‖pi‖L∞(B(0,1)) .
d∑

i=0

H(pi )

by Lemma 2.1 (applied d+1 times). On the other hand, the assumption that each pi is zero or homogeneous
of degree i ensures that H(p)=maxi H(pi ). Hence

d∑
i=0

H(pi )≤ (d + 1)H(p). ‖p‖L∞(B(0,1))

by Lemma 2.1, again. �

By Taylor’s theorem, for any polynomial p :Rn
→R of degree d ≥ 1 and for any x ∈Rn, we can write

p(x + y)= p(x)d (y)+ p(x)d−1(y)+ · · ·+ p(x)0 (y) for all y ∈ Rn, (2-1)

where each term p(x)i : R
n
→ R is an i-homogeneous polynomial, i.e.,

p(x)i (r y)= r i p(x)i (y) for all y ∈ Rn and r > 0. (2-2)
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Definition 2.3. Let p : Rn
→ R be a polynomial of degree d ≥ 1 and let x ∈ Rn. For all 0≤ k < d and

r > 0, define ζ̂k(p, x, r) by

ζ̂k(p, x, r)= max
k< j≤d

‖p(x)j ‖L∞(B(0,r))∥∥∑k
i=0 p(x)i

∥∥
L∞(B(0,r))

∈ [0,∞].

Remark 2.4. The function ζ̂k(p, x, r) is a variant of the function ζk(p, x, r) appearing in [Badger 2013,
Definition 2.1] and defined by

ζk(p, x, r)=max
j 6=k

‖p(x)j ‖L∞(B(0,r))

‖p(x)k ‖L∞(B(0,r))
.

The latter measured the relative size of the degree-k part of a polynomial compared to its parts of
degree j 6= k, while the former measures the relative size of the low-order part of a polynomial, consisting
of all terms of degree at most k, compared to its parts of degree j > k. We note that ζ̂1(p, x, r) and
ζ1(p, x, r) coincide whenever x ∈6p, the zero set of p.

The next lemma generalizes [Badger 2013, Lemma 2.10], which stated ζ1(p, x, sr)≤ sζ1(p, x, r) for
all s ∈ (0, 1), for all polynomials p : Rn

→ R, for all x ∈6p, and for all r > 0.

Lemma 2.5 (change of scales lemma). For all polynomials p :Rn
→R of degree d ≥ 1, for all 0≤ k < d ,

for all x ∈ Rn and for all r > 0,

sd ζ̂k(p, x, r). ζ̂k(p, x, sr). s ζ̂k(p, x, r) for all s ∈ (0, 1),

where the implicit constants depends only on n and d.

Proof. Let p : Rn
→ R be a polynomial of degree d ≥ 1, let x ∈ Rn, and let 0 ≤ k < d. Write

p̃ = p(x)k + · · · + p(x)0 for the low-order part of p at x . Then, by repeated use of Corollary 2.2 and the
i-homogeneity of each p(x)i , we have that for all r > 0 and s ∈ (0, 1),

‖ p̃‖L∞(B(0,sr)) =

∥∥∥∥ k∑
i=0

p(x)i (sr · )
∥∥∥∥

L∞(B(0,1))
&

k∑
i=0

H(p(x)i (sr · ))&
k∑

i=0

si H(p(x)i (r · ))

& sk
k∑

i=0

H(p(x)(r · ))& sk
∥∥∥∥ k∑

i=0

p(x)(r · )
∥∥∥∥

L∞(B(0,1))
& sk
‖ p̃‖L∞(B(0,r)), (2-3)

where the implicit constants depend on only n and k. It immediately follows that

ζ̂k(p, x, sr)= max
k< j≤d

‖p(x)j ‖L∞(B(0,sr))

‖ p̃‖L∞(B(0,sr))
. max

k< j≤d
s j−k
‖p(x)j ‖L∞(B(0,r))

‖ p̃‖L∞(B(0,r))
. s ζ̂k(p, x, r),

where the implied constant depends only on n and k, and therefore, may be chosen to only depend on n
and d . The other inequality follows similarly and is left to the reader. �

We end with a statement about the joint continuity of ζ̂k(p, x, r). Lemma 2.7 follows from elementary
considerations; for some sample details, the reader may consult the proof of an analogous statement for
ζk(p, x, r) in [Badger 2013, Lemma 2.8].
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Definition 2.6. A sequence of polynomials (pi )∞i=1 in Rn converges in coefficients to a polynomial p in
Rn if d =maxi deg pi <∞ and H(p− pi )→ 0 as i→∞.

Lemma 2.7. For every k ≥ 0, the function ζ̂k(p, x, r) is jointly continuous in p, x , and r. That is,

ζ̂k(pi , xi , ri )→ ζ̂k(p, x, r)

whenever deg p > k, pi
→ p in coefficients, xi → x ∈ Rn, and ri → r ∈ (0,∞).

3. Growth estimates for harmonic polynomials

We need several estimates on the growth of nonconstant harmonic polynomials of degree at most k. The
main result of this section is the following uniform Łojasiewicz inequality for harmonic polynomials of
bounded degree.

Theorem 3.1 (Łojasiewicz inequality for harmonic polynomials). For all n ≥ 2 and k ≥ 1, there exists a
constant c= c(n, k) > 0 with the following property. If p :Rn

→R is a nonconstant harmonic polynomial
of degree at most k and x0 ∈6p, then

|p(z)| ≥ c‖p‖L∞(B(x0,1)) dist(z, 6p)
k for all z ∈ B

(
x0,

1
2

)
. (3-1)

Remark 3.2. Łojasiewicz [1959] proved the remarkable result that if f is a real analytic function on Rn

and x0 ∈6 f (the zero set of f ), then there exist constants C, ε,m > 0 such that

| f (z)| ≥ C dist(z, 6 f )
m for all z ∈ B(x0, ε).

The smallest possible m is called the Łojasiewicz exponent of f at x0. It is perhaps a surprising fact
that the Łojasiewicz exponent of a polynomial can exceed the degree of the polynomial. Bounding the
Łojasiewicz exponent from above is a difficult problem in algebraic geometric; see, e.g., [Kollár 1999;
Pha.m 2012]. The content of Theorem 3.1 over the general form of the Łojasiewicz inequality is the
tight bound on the Łojasiewicz exponent and uniformity of the constant c in (3-1) across all harmonic
polynomials of bounded degree.

The key tools that we use in this section are Almgren’s frequency formula and Harnack’s inequality
for positive harmonic functions. Let us now recall the definition of the former.

Definition 3.3. Let f ∈ H 1
loc(R

n) and let

x0 ∈6 f = {x ∈ Rn
: f (x)=0}.

For all r > 0, define the quantities H(r, x0, f ) and D(r, x0, f ) by

H(r, x0, f )=
∫
∂B(x0,r)

f 2 dσ and D(r, x0, f )=
∫

B(x0,r)
|∇ f |2 dx .

Then the frequency function N (r, x0, f ) is defined by

N (r, x0, f )=
r D(r, x0, f )
H(r, x0, f )

for all r > 0.
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Almgren [1979] introduced the frequency function. It is a simple matter to show that for any harmonic
polynomial p, we have N (r, x0, p) ≤ deg p. When f is any harmonic function, not necessarily a
polynomial, Almgren proved that N (r, x0, f ) is absolutely continuous in r and monotonically decreasing
as r ↓0, and moreover, limr↓0 N (r, x0, f ) is the order to which f vanishes at x0. It can also be verified that

d
dr

log
(

H(r, x0, f )
rn−1

)
= 2

N (r, x0, f )
r

. (3-2)

Integrating (3-2) and invoking the monotonicity of N (r, x0, f ) in r , one can prove the following doubling
property. For a proof of Lemma 3.4, see, e.g., [Han 2007, Corollary 1.5]; the result is stated there with
x0= 0 and R = 1, but the general case readily follows by observing that N (R, x0, f )= N (1, 0, g), where
g(x)= f (x0+ Rx)/R.

Lemma 3.4. If f is a harmonic function on B(x0, R), then for all r ∈
(
0, 1

2 R
)
,

/

∫
B(x0,2r)

f 2 dx ≤ 22N (R,x0, f )− 1 /

∫
B(x0,r)

f 2 dx . (3-3)

Corollary 3.5. For all n ≥ 2 and k ≥ 1, there exists a constant C > 0 such that if p : Rn
→ R is a

harmonic polynomial of degree at most k, x0 ∈ Rn, and r > 0, then

/

∫
B(x0,2r)

p2 dx ≤ C /
∫

B(x0,r)
p2 dx and sup

B(x0,r)
p2
≤ 2nC /

∫
B(x0,r)

p2 dx . (3-4)

Proof. The first inequality in (3-4) is an immediate consequence of Lemma 3.4 and the well known fact
that N (r, x0, p)≤ deg p for every harmonic polynomial p.

To establish the second inequality in (3-4), first note that B(z, r)⊆ B(x0, 2r) for all z ∈ B(x0, r). By
the mean value property of harmonic functions and the first inequality,

p(z)2 =
(

/

∫
B(z,r)

p dx
)2

≤ /

∫
B(z,r)

p2 dx ≤ 2n /

∫
B(x0,2r)

p2 dx ≤ 2nC /

∫
B(x0,r)

p2 dx .

This establishes (3-4). �

Next, as an application of Corollary 3.5 and Harnack’s inequality, we show that p(z) is relatively large
when z is far enough away from 6p.

Lemma 3.6. For all n ≥ 2 and k ≥ 1, there exists a constant c > 0 such that if p : Rn
→ R is a harmonic

polynomial of degree at most k, z ∈ Rn, and x0 ∈ 6p is any point such that ρ := dist(z, 6p) = |z− x0|,
then

|p(z)| ≥ c sup
B(x0,ρ)

|p|. (3-5)

Proof. Let n ≥ 2 and k ≥ 1 be given, and let p : Rn
→ R be a harmonic polynomial of degree at most k.

Since the conclusion is trivial for all z ∈ 6p, we may assume z ∈ Rn
\6p. Without loss of generality,

we may further assume that p is positive in B(z, ρ), where ρ = dist(z, 6p). By Harnack’s inequality



STRUCTURE OF SETS WHICH ARE WELL APPROXIMATED BY ZERO SETS OF HARMONIC POLYNOMIALS 1465

for positive harmonic functions (e.g., see [Axler et al. 2001, Theorem 3.4]), there exists a constant
A = A(n) > 0 such that

p(z)2 ≥ A sup
B(z,ρ/2)

p2
≥ A /

∫
B(z,ρ/2)

p2 dx .

Pick x0 ∈6p such that ρ = |z− x0| and note that B(z, 2ρ)⊇ B(x0, ρ). Hence, by two applications of the
first inequality in Corollary 3.5 and then by the second inequality,

/

∫
B(z,ρ/2)

p2 dx ≥ C2 /

∫
B(z,2ρ)

p2 dx ≥ 2−nC2 /

∫
B(x0,ρ)

p2 dx ≥ 4−nC sup
B(x0,ρ)

p2.

Combining the displayed equations, we conclude that (3-5) holds with c = 2−n
√

AC . �

We can now obtain the Łojasiewicz inequality for harmonic polynomials (Theorem 3.1) by combining
Lemma 3.6 with the estimate (2-3) from the proof of Lemma 2.5.

Proof of Theorem 3.1. Let n ≥ 2 and k ≥ 1 be given. Suppose that p : Rn
→ R is a nonconstant harmonic

polynomial of degree at most k, and without loss of generality, assume that 0∈6p (the origin will play the
role of x0 in the statement of the theorem). Fix z ∈ B

(
0, 1

2

)
and choose x0 ∈6p to be any point such that

ρ := |z− x0| = dist(z, 6p). Note that ρ < 1
2 , since 0 ∈6p and z ∈ B

(
0, 1

2

)
. On one hand, by Lemma 3.6,

|p(z)|& sup
B(x0,ρ)

|p|.

On the other hand, applying (2-3) with r = 2 and s = 1
2ρ (this is fine as s < 1),

sup
B(x0,ρ)

|p|& ρk sup
B(x0,2)

|p| ≥ ρk
‖p‖L∞(B(0,1)).

Here all implicit constants depend on at most n and k. The inequality (3-1) immediately follows by
combining the displayed equations (and recalling the definition of ρ). �

As we work separately with the sets {p > 0} and {p < 0} below, it is important for us to know that
sup p+ and sup p− are comparable in any ball centered on 6p.

Lemma 3.7. For all n≥ 2 and k≥ 1, there exists a constant C > 1 such that if p :Rn
→R is a nonconstant

harmonic polynomial of degree at most k, then

C−1 sup
B(x0,r)

p+ ≤ sup
B(x0,r)

p− ≤ C sup
B(x0,r)

p+ for all x0 ∈6p and r > 0. (3-6)

Proof. Let M± = supB(x0,r) p±, and assume without loss of generality that M+ ≥ M−. The argument now
splits into two cases.

Case I. Assume that supB(x0,r/2) |p| = supB(x0,r/2) p−. Then by the estimate (2-3) in the proof of
Lemma 2.5,

M− ≥ sup
B(x0,r/2)

p− = sup
B(x0,r/2)

|p|& sup
B(x0,r)

|p| = M+,

where the implicit constant depends only on n and k.
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Case II. Assume that supB(x0,r/2) |p| = supB(x0,r/2) p+. Note that p+2M− is a positive harmonic function
in B(x0, r). Thus, by Harnack’s inequality,

2M− = p(x0)+ 2M− ≥ a sup
B(x0,r/2)

(p+ 2M−)= a sup
B(x0,r/2)

(p++ 2M−), (3-7)

where a = a(n) > 0. We now argue as in Case I. By (2-3),

sup
B(x0,r/2)

p+ = sup
B(x0,r/2)

|p|& sup
B(x0,r)

|p| = M+,

where the implicit constant depends only on n and k. Combining the displayed equations, we conclude
that M− & M+. �

Finally, we record a technical observation that will be needed in Section 6.

Lemma 3.8. Let n ≥ 2 and let k ≥ 1. If p : Rn
→ R is a harmonic polynomial of degree at most k, then

‖p‖L2(B(0,1)) ∼n,k ‖p‖L2(∂B(0,1)).

Proof. The fact that ‖p‖L2(∂B(0,1)) is a norm on the space of harmonic polynomials follows from the
maximum principle for harmonic functions. Thus, the equivalence of ‖p‖L2(B(0,1)) and ‖p‖L2(∂B(0,1)) for
harmonic polynomials of bounded degree follows from the equivalence of norms on finite-dimensional
vector spaces. �

4. Hn,k points are detectable in Hn,d

The next lemma shows that ζ̂k (see Definition 2.3 above) controls how close 6p ∈Hn,d is to the zero set
of a harmonic polynomial of degree at most k; cf. [Badger 2013, Lemma 4.1]. For the definition of the
bilateral approximation number 2Hn,k

6p
(x, r), we refer the reader to the Introduction; see (1-1).

Lemma 4.1. For all n ≥ 2 and d ≥ 2, there exists 0< C <∞ such that for every harmonic polynomial
p : Rn

→ R of degree d and for every 1≤ k < d ,

2
Hn,k
6p

(x, r)≤ C ζ̂k(p, x, r)1/k for all x ∈6p and r > 0. (4-1)

Proof. Let p : Rn
→ R be a harmonic polynomial of degree d ≥ 2, let 1 ≤ k < d, and let x ∈ 6p.

Write p( · + x)= p(x)d + · · ·+ p(x)k+1+ p(x)k + · · ·+ p(x)1 , where each p(x)i : R
n
→ R is an i-homogeneous

polynomial in y with coefficients depending on x . We remark that x +6p( · +x) =6p. Now, since p is
harmonic, each term p(x)i is harmonic, as well. Set p̃ = p(x)k + · · · + p(x)1 , the low-order part of p at x ,
and note that p̃(0)= 0. If p̃ ≡ 0, then ζ̂k(p, x, r)=∞ for all r > 0 and (4-1) holds trivially. Thus, we
may assume that p̃ 6≡ 0, in which case 6 p̃ ∈Hn,k . To prove (4-1), we shall prove a slightly stronger pair
of inequalities,

r−1 sup
a∈6p∩B(x,r)

dist
(
a, (x +6 p̃)∩ B(x, r)

)
≤ C1 ζ̂k(p, x, r)1/k (4-2)

and

r−1 sup
w∈(x+6 p̃)∩B(x,r)

dist(w,6p)≤ C2 ζ̂k(p, x, 2r)1/k (4-3)
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for some constants C1 and C2 that depend only on n, d, and k, and therefore, may be chosen to depend
only on n and d . With the help of Lemma 2.5, (4-1) follows immediately from (4-2) and (4-3).

Suppose p̃(z) 6=0 for some z∈ B(0, r) and choose y∈6 p̃∩B(0, r) such that ρ :=dist(z, 6 p̃∩B(0, r))=
|z− y|. We note that ρ ≤ r , since p̃(0)= 0, and B(0, r)⊆ B(y, 2r). Hence, by Lemma 3.6,

| p̃(z)| ≥ c‖ p̃‖L∞(B(y,ρ))
(2-3)
≥ c

(
ρ

2r

)k

‖ p̃‖L∞(B(y,2r)) ≥ c
(
ρ

r

)k

‖ p̃‖L∞(B(0,r)),

where at each occurrence c denotes a positive constant determined by n and k. Thus,

|p(z+ x)| ≥ | p̃(z)| −
d∑

j=k+1

‖p(x)j ‖L∞(B(0,r)) ≥ c1

(
ρ

r

)k

‖ p̃‖L∞(B(0,r))− (d − k)ζ̂k(p, x, r)‖ p̃‖L∞(B(0,r)),

where c1 > 0 is a constant depending only on n and k. It follows that |p(z+ x)|> 0 whenever z ∈ B(0, r)
and dist(z, 6 p̃ ∩ B(0, r))= ρ > C1ζ̂k(p, x, r)1/kr , where

C1 =

(
d − k

c1

)1/k

.

Consequently, for any a = z+ x ∈6p ∩ B(x, r), we have

dist
(
a, (x +6 p̃)∩ B(x, r)

)
= dist

(
z, 6 p̃ ∩ B(0, r)

)
≤ C1ζ̂k(p, x, r)1/kr.

This establishes (4-2).
Next, suppose that w ∈ (x +6 p̃)∩ B(x, r), say w = x + z for some z ∈6 p̃ ∩ B(0, r). Let δ < r be a

fixed scale, to be chosen below. Because p̃ is harmonic, we can locate points z±δ ∈ ∂B(z, δ) such that

p̃(z+δ )= max
z′∈B(z,δ)

p̃(z′) > 0 and p̃(z−δ )= min
z′∈B(z,δ)

p̃(z′) < 0.

Thus, by Lemma 3.7,

± p̃(z±δ )= | p̃(z
±

δ )| ≥ c‖ p̃‖L∞(B(z,δ))
(2-3)
≥ c

(
δ

3r

)k

‖ p̃‖L∞(B(z,3r)) ≥ c
(
δ

r

)k

‖ p̃‖L∞(B(0,2r)),

where at each occurrence c > 0 depends only on n and k. We conclude that

±p(z±δ + x)≥± p̃(z±δ )−
d∑

j=k+1

‖p(x)j ‖L∞(B(0,2r))

≥ c2

(
δ

r

)k

‖ p̃‖L∞(B(0,2r))− (d − k)ζ̂k(p, x, 2r)‖ p̃‖L∞(B(0,r)) > 0

provided that δ > C2ζ̂k(p, x, 2r)1/kr , where C2 = [(d − k)/c2]
1/k. But we also required δ < r above.

To continue, there are two cases. On one hand, if C2ζ̃k(p, x, 2r)1/k
≥ 1, then 2Hn,k

6p
(x, r) ≤ 1 ≤

C2ζ̃k(p, x, 2r)1/k holds trivially. On the other hand, suppose that C2ζ̃k(p, x, 2r)1/k < 1. In this case,
pick any δ ∈ (C2ζ̃k(p, x, 2r)1/kr, r). Then the estimate above gives ±p(z±δ + x) > 0. In particular, the
straight line segment ` that connects z+δ + x to z−δ + x inside B(z+ x, δ) must intersect 6p ∩ B(z+ x, δ)
by the intermediate value theorem and the convexity of ball. Hence dist(w,6p)= dist(z+ x, 6p) ≤ δ.
Therefore, letting δ ↓ C2ζ̃k(p, x, 2r)1/k, we obtain (4-3). �
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Remark 4.2. In the proof of Lemma 4.1, the harmonicity of p was only used to establish the harmonicity
of p̃. Thus, the argument actually yields that 2Hn,k

6p
(x, r).n,d ζ̂k(p, x, r) for all x ∈6p and for all r > 0,

whenever p : Rn
→ R is a polynomial of degree d > k such that p̃ = p(x)k + · · ·+ p(x)1 is harmonic.

The following useful fact facilitates normal families arguments with sequences in Hn,d . It is ultimately
a consequence of the mean value property of harmonic functions.

Lemma 4.3. Suppose that 6p1, 6p2, . . . ∈Hn,d . If pi→ p in coefficients and H(p) 6= 0, then 6p ∈Hn,d

and 6pi →6p in the Attouch–Wets topology (see Appendix A).

Proof. Suppose that, for each i ≥ 1, the function pi :R
n
→R is a harmonic polynomial of degree at most d

such that pi (0)=0. Assume that pi→ p in coefficients and H(p) 6=0. Then p :Rn
→R is also a harmonic

polynomial of degree at most d such that p(0)= 0, because pi → p uniformly on compact subsets of Rn,
and p is nonconstant, because H(p) 6= 0. Hence 6p ∈ Hn,d . It remains to show that 6pi→ 6p in the
Attouch–Wets topology, which is metrizable. Thus, it suffices to prove that every subsequence (6pi j )

∞

j=1
of (6pi )

∞

i=1 has a further subsequence (6pi jk )
∞

k=1 such that 6pi jk→6p in the Attouch–Wets topology.
Fix an arbitrary subsequence (6pi j )

∞

j=1 of (6pi )
∞

i=1. Since 0 ∈6pi j for all j ≥ 1 and the set of closed
sets in Rn containing the origin is sequentially compact, there exists a closed set F ⊆Rn containing 0 and a
subsequence (6pi jk )

∞

k=1 of (6pi j )
∞

j=1 such that6pi jk→ F. We claim that F =6p. Indeed, on one hand, for
any y∈ F there exists a sequence yk ∈6pi jk such that yk→ y; but p(y)= limk→∞ pi jk(yk)= limk→∞ 0=0,
since yk ∈ 6pi jk , pi jk→ p uniformly on compact sets, and yk → y. Hence y ∈ 6p for all y ∈ F. That
is, F ⊆ 6p. On the other hand, suppose z ∈ 6p. Since p(z) = 0, but p 6≡ 0, for all r ∈ (0, 1) we can
locate points z±r ∈ B(z, r) such that p(z+r ) > 0 and p(z−r ) < 0 by the mean value theorem for harmonic
functions. Because pi jk→ p pointwise, it follows that

pi jk(z+r ) > 0 and pi jk(z−r ) < 0

for all sufficiently large k depending on r . In particular, by the intermediate value theorem, the straight
line segment connecting z+r to z−r inside B(z, r) must intersect 6pi jk ∩ B(z, r) for all sufficiently large k
depending on r . Hence dist(z, 6pi jk∩B(z, 1))→ 0 as k→∞. Ergo, since6pi jk→ F in the Attouch–Wets
topology,

dist(z, F)≤ lim inf
k→∞

(
dist(z, 6pi jk ∩ B(z, 1))+ ex(6pi jk ∩ B(z, 1), F)

)
= 0.

That is, z ∈ F for all z ∈6p. Therefore, 6p ⊆ F, and the conclusion follows. �

Corollary 4.4. For all n ≥ 2 and 1 ≤ k ≤ d, the sets Hn,d and Fn,k are closed subsets of C(0) with the
Attouch–Wets topology.

Proof. Suppose 6pi ∈Hn,d for all i ≥ 1 and 6pi→ F for some closed set F in Rn. Replacing each pi by
pi/H(pi ), which leaves 6pi unchanged, we may assume H(pi )= 1 for all i ≥ 1. Hence we can find a
polynomial p and a subsequence (pi j )

∞

j=1 of (pi )
∞

i=1 such that pi j→ p in coefficients and H(p)=1. Thus,
by Lemma 4.3, 6p ∈Hn,d and 6pi j→6p. Therefore, F = limi→∞6pi = lim j→∞6pi j =6p ∈Hn,d . We
conclude that Hn,d is closed. Finally, Fn,k is closed by the additional observation that p is homogeneous
of degree k whenever pi j is homogeneous of degree k for all j . �
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Remark 4.5. For any 6p ∈Hn,d and λ > 0, the dilate λ6p is equal to 6q , where q : Rn
→ R is given

by q(x) = p(x/λ) for all x ∈ Rn. Since p is a nonconstant polynomial of degree at most d such that
p(0)= 0, so is q . Also, q is k-homogeneous whenever p is k-homogeneous. Finally, since p is harmonic
on Rn, the mean value theorem gives

/

∫
B(y,r)

q(x) dx = /

∫
B(y,r)

p(x/λ) dx = /

∫
B(y/λ,r/λ)

p(x) dx = p(y/λ)= q(y)

for all y ∈Rn and r > 0. Thus, since q is continuous, it is also harmonic by the mean value theorem. This
shows that λ6p ∈Hn,d for all 6p ∈Hn,d and λ > 0. Likewise, λ6p ∈ Fn,k for all 6p ∈ Fn,k and λ > 0.
In other words, Hn,d and Fn,k are cones. Therefore, Hn,d and Fn,k are local approximation classes in the
sense of Definition A.7(i). A similar argument shows that Hn,d is translation invariant in the sense that
6p − x ∈Hn,d for all 6p ∈Hn,d and x ∈6p.

The next lemma captures a weak rigidity property of real-valued harmonic functions: the zero set of a
real-valued harmonic function determines the relative arrangement of its positive and negative components.

Lemma 4.6. Let f : Rn
→ R and g : Rn

→ R be harmonic functions, and let 6 f and 6g denote the zero
sets of f and g, respectively. If 6 f =6g, then f and g take the same or the opposite sign simultaneously
on every connected component of Rn

\6 f = Rn
\6g.

Proof. Since the conclusion is trivial if f is identically zero, we may assume, in addition to the hypothesis,
that f is not identically zero. According to [Logunov and Malinnikova 2015, Theorem 1.1], if u and v
are harmonic functions defined on a domain �⊆ Rn whose zero sets satisfy 6v ⊆6u , then there exists a
real-analytic function α in � such that u = αv. Invoking this fact twice, we obtain that f = αg = αβ f ,
where α and β are real analytic functions on Rn. Since f is not identically zero, it follows that αβ = 1
on Rn. In particular, sign(α)=±1 on Rn. Therefore, sign( f )= sign(α) sign(g)=± sign(g) on Rn. �

The following lemma indicates that zero sets of homogeneous harmonic polynomials of different
degrees are uniformly separated on balls centered at the origin. This answers affirmatively a question
posed in [Badger 2013, Remark 4.12].

Lemma 4.7. For all n ≥ 2 and 1 ≤ j < k, there exists a constant ε > 0 such that for all 6p ∈ Fn,k and
6q ∈ Fn, j ,

D̃0,r
[6p, 6q ] =

1
r

max
{

sup
x∈6p∩B(0,r)

dist(x, 6q), sup
y∈6q∩B(0,r)

dist(y, 6p)
}
≥ ε for all r > 0.

Proof. Note that λ6p = 6p and λ6q = 6q for all λ > 0 whenever 6p ∈ Fn,k and 6q ∈ Fn, j . Hence
D̃0,r
[6p, 6q ] = D̃0,1

[r−16p, r−16q ] = D̃0,1
[6p, 6q ] for all r > 0, whenever n≥2, 1≤ j<k, 6p ∈Fn,k ,

and 6q ∈ Fn, j . Thus, it suffices to prove the claim with r = 1.
Assume to the contrary that for some n ≥ 2 and 1≤ j < k we can find sequences p1, p2, . . . ∈ Fn,k

and q1, q2, . . . ∈ Fn, j such that

D̃0,1
[6pi , 6qi ] ≤

1
i

for all i ≥ 1. (4-4)
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By Corollary 4.4, passing to subsequences (which we relabel), we may assume that there exist 6p ∈ Fn,k

and 6q ∈ Fn, j such that 6pi→6p and 6qi→6q . Moreover, replacing each pi and qi by pi/H(pi ) and
qi/H(qi ), respectively, and passing to further subsequences (which we again relabel), we may assume
that pi → p in coefficients and qi → q in coefficients, where p and q are homogeneous harmonic
polynomials of degrees k and j , respectively. By two applications of the weak quasitriangle inequality
(see Appendix A),

D̃0,1/4
[6p, 6q ] ≤ 2D̃0,1/2

[6p, 6pi ] + 2D̃0,1/2
[6pi , 6q ]

≤ 2D̃0,1/2
[6p, 6pi ] + 4D̃0,1

[6pi , 6qi ] + 4D̃0,1
[6qi , 6q ]. (4-5)

Letting i→∞, the first term vanishes since 6pi→6p, the second term vanishes by (4-4), and the third
term vanishes since 6qi→6q . Hence D̃0,1/4

[6p, 6q ] = 0, which implies 6p ∩ B
(
0, 1

4

)
=6q ∩ B

(
0, 1

4

)
.

But 6p and 6q are cones, so in fact 6p =6q . By Lemma 4.6, the functions p and q take the same or
the opposite sign simultaneously on every connected component of Rn

\6p = Rn
\6q . Hence either

p(x)q(x) ≥ 0 for all x ∈ Rn or p(x)q(x) ≤ 0 for all x ∈ Rn. It follows that either
∫

Sn−1 pq dσ > 0 or∫
Sn−1 pq dσ < 0. This contradicts the fact that homogeneous harmonic polynomials of different degrees

are orthogonal in L2(Sn−1) (e.g., see [Axler et al. 2001, Proposition 5.9]). �

We now show that ζ̂k cannot grow arbitrarily large as 2Hn,k
6p

becomes arbitrarily small; cf. [Badger
2013, Proposition 4.8].

Lemma 4.8. For all n ≥ 2 and 1≤ k < d there is δn,d,k > 0 with the following property. If p : Rn
→ R

is a harmonic polynomial of degree d and 2Hn,k
6p

(x, r) < δn,d,k for some x ∈ 6p and r > 0, then
ζ̂k(p, x, r) < δ−1

n,d,k .

Proof. Let n ≥ 2 and 1≤ k < d be given. Suppose in order to reach a contradiction that for all j ≥ 1 there
exists a harmonic polynomial pj :R

n
→R of degree d , x j ∈6pj , and rj > 0 such that2Hn,k

6pj
(x j , rj ) < 1/j ,

but ζ̂k(pj , x j , rj )≥ j . Replacing each pj with p̃j ,

p̃j (y)= H(pj )
−1
· p(rj (y+ x j )) for all y ∈ Rn

;

that is, left translating by x j , dilating by 1/rj , and scaling by 1/H(pj ), we may assume without loss of
generality that x j = 0, rj = 1, and H(pj )= 1 for all j ≥ 1. Therefore, there exists a sequence (pj )

∞

j=1 of
harmonic polynomials in Rn of degree d and height 1 with pj (0)= 0 such that 2Hn,k

6pj
(0, 1)≤ 1/j , and

ζ̂k(pj , 0, 1)≥ j . Passing to a subsequence, we may assume that pj→ p in coefficients to some harmonic
polynomial p : Rn

→ R with height 1. By Lemma 4.3, 6pj→6p, as well. On one hand,

2
Hn,k
6p

(
0, 1

2

)
≤ 2 lim inf

j→∞
2

Hn,k
6pj

(0, 1)= 0. (4-6)

(For a primer on the interaction of limits and approximation numbers, see Appendix A.) On the other
hand, by Lemma 2.1 and the fact that ζ̂k(pj , 0, 1)≥ j , it must be that the height of the polynomial pj is
obtained from the coefficient of some term of pj of degree at least k+ 1, provided that j is sufficiently
large. In particular, we conclude that p has degree at least k+ 1. Hence ζ̂k(p, 0, 1) is well defined and
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ζ̂k(p, 0, 1) = lim j→∞ ζ̂k(pj , 0, 1) =∞ by Lemma 2.7. Thus, the low-order part of p at 0 (that is, the
terms of degree at most k) vanishes and p has the form

p = p(0)d + p(0)d−1+ · · ·+ · · · + p(0)i , p(0)i 6= 0 for some i ≥ k+ 1. (4-7)

We shall now show that (4-6) and (4-7) are incompatible with Lemma 4.7:
By (4-6), there exists 6q ∈Hn,k =Hn,k such that 6p ∩ B

(
0, 1

2

)
=6q ∩ B

(
0, 1

2

)
, say

q = q(0)k + q(0)k−1+ · · ·+ q(0)l , q(0)l 6= 0 for some 1≤ l ≤ k. (4-8)

Choose any sequence rm ↓ 0 as m →∞. By (4-7), r−i
m p(rm · )→ p(0)i in coefficients and by (4-8),

r−l
m q(rm · )→q(0)l in coefficients also. Hence r−1

m 6p=6r−i
m p(rm · )

→6p(0)i
∈Fn,i and r−1

m 6q=6r−l
m p(rm · )

→

6q(0)l
∈ Fn,l by Lemma 4.3. By the weak quasitriangle inequality (applied twice as in (4-5)),

D̃0,1
[6p(0)i

, 6q(0)i
] ≤ 2D̃0,2

[6p(0)i
, r−1

m 6p] + 4D̃0,4
[r−1

m 6p, r−1
m 6q ] + 4D̃0,4

[r−1
m 6q , 6q(0)l

].

As m→∞, the first and the last term vanish, because r−1
m 6p→6p(0)i

and r−1
m 6q →6q(0)l

, respectively.
Thus,

D̃0,1
[6p(0)i

, 6q(0)l
] ≤ lim inf

m→∞
4D̃0,4

[r−1
m 6p, r−1

m 6q ] = lim inf
m→∞

4D̃0,4rm [6p, 6q ] = 0,

where the ultimate equality holds because 6p ∩ B
(
0, 1

2

)
=6q ∩ B

(
0, 1

2

)
and 4rm ↓ 0. But by Lemma 4.7

D̃0,1
[6p(0)i

, 6q(0)l
] > 0, because 6p(0)i

∈ Fn,i , 6q(0)l
∈ Fn,l , and i > l. We have reached a contradiction.

Therefore, for all n≥ 2 and 1≤ k < d , there exists j ≥ 1 such that if p :Rn
→R is a harmonic polynomial

of degree d and 2Hn,k
6p

(x, r) < 1/j for some x ∈6p and r > 0, then ζ̂k(p, x, r) < j . �

We now have all the ingredients required to prove Theorem 1.4.

Proof of Theorem 1.4. Given n ≥ 2 and 1≤ k < d, let δn,d,k > 0 denote the constant from Lemma 4.8.
Let p : Rn

→ R be a harmonic polynomial of degree d and let x ∈6p. Write p̃ = p(x)k + · · ·+ p(x)1 for
the part of p of terms of degree at most k, so that ∂α p(x) 6= 0 for some |α| ≤ k if and only if p̃ 6≡ 0. On
one hand, if p̃ 6≡ 0, then ζ̂k(p, x, 1) <∞, whence

2
Hn,k
6p

(x, r).n,d ζ̂k(p, x, r)1/k .n,d r1/k ζ̂k(p, x, 1)1/k
→ 0 as r→ 0

by Lemmas 4.1 and 2.5. In particular, if p̃ 6≡ 0, then 2Hn,k
6p

(x, r) < δn,d,k for some r > 0. On the other
hand, if 2Hn,k

6p
(x, r) < δn,d,k for some r > 0, then

ζ̂k(p, x, r) < δ−1
n,d,k <∞ (4-9)

by Lemma 4.8, whence p̃ 6≡ 0. Moreover, in this case,

2
Hn,k
6p

(x, sr).n,d ζ̂k(p, x, sr)1/k .n,d s1/k ζ̂k(p, x, r)1/k .n,d,k s1/k for all s ∈ (0, 1)

by Lemmas 4.1 and 2.5, and (4-9). �

Proof of Corollary 1.5. From (1-2) in Theorem 1.4, it immediately follows that Hn,k points are (φ,8)
detectable in Hn,d for φ =min{δn,k+1,k, . . . , δn,d,k}> 0 and some function 8 of the form 8(s)= Cs1/k

for all s ∈ (0, 1) (see Definition A.12). �
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5. Structure of sets locally bilaterally well approximated by Hn,d

Now that we know Hn,k points are detectable in Hn,d , we may obtain Theorem 1.1 from repeated use of
Theorem A.14.

Proof of Theorem 1.1. Let n ≥ 2 and d ≥ 2 be given. By Remark 4.5 and Corollary 4.4, Hn,k and Fn,k

are closed local approximation classes and Hn,k is also translation invariant for all k ≥ 1. Thus, we may
freely make use of the technology in the last three subsections of Appendix A. Using Definition A.13,
Theorem 1.4 yields

Hn,k ∩H⊥n,k−1 =
{
6p ∈Hn,k : lim inf

r↓0
2

Hn,k−1
6p

(0, r) > 0
}
= Fn,k for all k ≥ 2.

Suppose that A ⊆ Rn is locally bilaterally well approximated by Hn,d and put Ud = A. Since Hn,d−1

points are detectable in Hn,d (by Corollary 1.5) and Ud is locally bilaterally well approximated by Hn,d ,
by Theorem A.14 we can write

Ud = (Ud)Hn,d−1 ∪ (Ud)H⊥n,d−1
=:Ud−1 ∪ Ad ,

where Ud−1 and Ad are disjoint, Ud−1 is relatively open in Ud , Ud−1 is locally bilaterally well approx-
imated by Hn,d−1, and Ud is locally bilaterally well approximated along Ad by Hn,d ∩H⊥n,d−1 = Fn,d ,
that is, lim supr↓0 supx∈K 2

Fn,d
Ud

(x, r)= 0 for every compact set K ⊆ Ad . In particular, the latter property
implies that every x ∈ Ad is an Fn,d point of Ud by Theorem A.11. Next, since Hn,d−2 points are
detectable in Hn,d−1, we may repeat the argument, mutatis mutandis, to write

Ud−1 = (Ud−1)Hn,d−2 ∪ (Ud−1)H⊥n,d−2
=:Ud−2 ∪ Ad−1,

where Ud−2 and Ad−1 are disjoint, Ud−2 is relatively open in Ud−1, Ud−2 is locally bilaterally well
approximated by Hn,d−2, Ud−1 is locally bilaterally well approximated along Ad−1 by Fn,d−1, and every
x ∈ Ad−1 is an Fn,d−1 point of Ud−1. In fact, since Ud−1 is relatively open in Ud , we have Ud−2 is
relatively open in Ud , Ud is locally bilaterally well approximated along Ad−1 by Fn,d−1, and every
x ∈ Ad−1 is an Fn,d−1 point of Ud , as well. After a finite number of repetitions, this argument shows that

A =Ud =Ud−1 ∪ Ad = · · · =U1 ∪ A2 ∪ · · · ∪ Ad ,

where the sets U1, A2, . . . , Ad are pairwise disjoint, U1 is relatively open in A, U1 is locally bilaterally
well approximated by Hn,1, Uk = U1 ∪ A2 ∪ · · · ∪ Ak is relatively open in A for all 2 ≤ k ≤ d, Uk is
locally bilaterally well approximated by Hn,k for all 2≤ k ≤ d , A is locally bilaterally well approximated
along Ak by Fn,k for all 2 ≤ k ≤ d, and every x ∈ Ak is an Fn,k point of A for all 2 ≤ k ≤ d. Finally,
assign A1 =U1. Since A1 relatively open in A, A1 is locally bilaterally well approximated by Hn,1, and
Hn,1 = Fn,1, we conclude that every x ∈ A1 is an Fn,1 point of A by Theorem A.11. This verifies (i)–(iv)
of Theorem 1.1 and (v) follows immediately from (ii) and (iii).

Next, we want to prove that A1 is relatively dense in A. Suppose that x ∈ A \ A1, say x ∈ Ak for
some k ≥ 2. To find points in A1 nearby x , we will rely on the following fact: by Remark A.15, since
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Hn,1 points are detectable in Hn,d , there exist α, β > 0 such that

if 2Hn,d
A (y,r ′)<α for all 0< r ′≤ r and 2Hn,1

A (y,r)<β for some y ∈ A and r > 0, then y ∈ A1. (5-1)

To proceed, since x is an Fn,k point of A and Fn,k is closed, we can find a homogeneous harmonic
polynomial p : Rn

→ R and sequence of scales ri ↓ 0 such that r−1
i (A− x)→6p in the Attouch–Wets

topology (6p is a tangent set of A at x). Pick any z ∈ 6p such that |Dp|(z) 6= 0. (That we can always
find such a point is evident, because the singular set of a polynomial has dimension at most n− 2, while
dim6p = n−1.) Then lims↓02

Hn,1
6p

(z, s)= 0 by Theorem 1.4. In particular, there exists s1 > 0 such that

2
Hn,1
6p

(
z, 3

2 s1
)
≤

1
18β. (5-2)

Since r−1
i (A−x)→6p, there exist yi ∈ A such that zi := (yi−x)/ri→ z. Replacing each yi with y′i ∈ A

such that |y′i − yi | ≤ ri/ i , say, we may assume without loss of generality that yi ∈ A for all i (because
D̃0,r
[r−1

i (A− y′i ), r
−1
i (A− yi )] ≤ 1/(ir)→ 0 for all r > 0). Necessarily, yi → x , and thus, there exists

s2 > 0 such that
sup
i≥1

2
Hn,d
A (yi , s)≤ 1

2α < α for all s ≤ s2, (5-3)

because A is locally bilaterally well approximated by Hn,d . Now, by quasimonotonicity of bilateral
approximation numbers (see Lemma A.10) and (5-2),

2
Hn,1
6p

(
zi ,

1
2 s1
)
≤ 2t + 2(1+ t)2Hn,1

6p
(z, (1+ t)s1)≤ 2t + 32Hn,1

6p

(
z, 3

2 s1
)
≤ 2t + 1

6β

whenever |zi − z| ≤ ts1 ≤
1
2 s1. With t = |zi − z|/s1, this yields

2
Hn,1
6p

(
zi ,

1
2 s1
)
≤

2|zi − z|
s1

+
1
6β

for all i sufficiently large that |zi − z| ≤ 1
2 s1. Hence, for all i sufficiently large that |zi − z| < 1

6 s1(
guaranteeing z ∈6p ∩ B

(
zi ,

1
6 s1
)
6=∅

)
,

2
Hn,1

r−1
i (A−x)

(
zi ,

1
6 s1
)
≤ 3D̃zi ,s1/2

[
A− x

ri
, 6p

]
+ 32Hn,1

6p

(
zi ,

1
2 s1
)
≤ 6D̃z,s1

[
A− x

ri
, 6p

]
+

6|z− zi |

s1
+

1
2β,

where we used the weak quasitriangle inequality in the first line and we used the quasimonotonicity of the
relative Walkup–Wets distance in the second line (see Lemma A.1). Since zi → z and r−1

i (A− x)→6p,
we conclude that

lim sup
i→∞

2
Hn,1
A

(
yi ,

1
6ri s1

)
= lim sup

i→∞
2

Hn,1

r−1
i (A−x)

(
zi ,

1
6 s1
)
≤

2
3β < β. (5-4)

Note that 1
6ri s1 ≤ s2 for all i � 1, since ri → 0. Therefore, by (5-1), (5-3), and (5-4), we have yi ∈ A1

for all sufficiently large i . Recalling that yi → x , it follows that x ∈ A1. Since x ∈ A \ A1 was fixed
arbitrarily, this proves (vi).

We now aim to prove dimension bounds on A and A \ A1 assuming that A is closed and nonempty.
Since Hn,d is a closed, translation invariant approximation class and Hn,1 points are detectable in Hn,d ,
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the set
singHn,1

Hn,d =
{
(6p)H⊥n,1

:6p ∈Hn,d and 0 ∈ (6p)H⊥n,1

}
is also a local approximation class and A \ A1 is locally unilaterally well approximated by singHn,1

Hn,d

by Theorem A.17. By Theorem 1.4, applied with k = 1, the class singHn,1
Hn,d is precisely the class

SHn,d = {Sp=6p ∩ |Dp|−1(0) : 6p ∈ Hn,d , 0 ∈ Sp} of all singular sets of nonconstant harmonic
polynomials of degree at most d that include the origin. Recall from the Introduction that

Vol
({

x ∈ B
(
0, 1

2

)
: dist(x, 6p)≤ r

})
≤ (C(n)d)d r for all 6p ∈Hn,d ,

Vol
({

x ∈ B
(
0, 1

2

)
: dist(x, Sp)≤ r

})
≤ C(n)d

2
r2 for all Sp ∈ SHn,d

by work of Naber and Valtorta [2014]. Using an elementary Vitali covering argument (e.g., see [Mattila
1995, (5.4) and (5.6)]), it follows that Hn,d has an (n− 1,C(n, d), 1) covering profile and SHn,d has an
(n− 2,C(n, d), 1) covering profile in the sense of Definition A.19.

Assume that A is a nonempty closed subset of Rn. Since A\A1 is relatively closed in A by (v), A\A1 is
closed in Rn, as well. By Theorem A.20, A has upper Minkowski dimension at most n−1, since A is closed,
A is locally unilaterally well approximated by Hn,d , and Hn,d has an (n− 1,C(n, d), 1) covering profile.
Also, by Theorem A.20, A \ A1 has upper Minkowski dimension at most n− 2, since A \ A1 is closed,
A \ A1 is locally unilaterally well approximated by SHn,d , and SHn,d has an (n−2,C(n, d), 1) covering
profile. This establishes (viii) and the upper bound in (vii). To wrap up, observe that A1 is nonempty by
(vi), A1 is locally closed by (ii), and A1 is locally Reifenberg vanishing by (iii). Therefore, by Reifenberg’s
topological disk theorem (see, e.g., [David and Toro 2012]), A1 is a topological (n−1)-manifold (and
more, see Remark 1.3). Therefore, A1 has Hausdorff and upper Minkowski dimension at least n−1. This
completes the proof of (vii). �

By examining the proof that A1 is relatively dense in A in the proof of Theorem 1.1, one sees the only
essential property about the cones Hn,1 and Hn,d , beyond detectability, is that for every 6p ∈ Fn,k there
exist some z ∈6p such that lim infs↓02

Hn,1
6p

(z, s)= 0. Thus, abstracting the argument, one obtains the
following result.

Theorem 5.1. Let T and S be local approximation classes. Suppose T points are detectable in S, and

for all S ∈ S ∩ T ⊥ there exists x ∈ S such that lim infr↓02
T
S (x, r)= 0. (5-5)

If A is locally bilaterally well approximated by S, then the set AT described by Theorem A.14 is relatively
dense in A, i.e., AT ∩ A = A.

6. Dimension bounds in the presence of good topology

We now focus our attention on sets A that separate Rn into two connected components. When A =6p

and p : Rn
→ R is harmonic, this occurs precisely when the positive set �+p = {x ∈ Rn

: p(x) > 0}
of p and the negative set �−p = {x ∈ Rn

: p(x) < 0} of p are pathwise connected. To start, let us prove
Lemma 1.7 from the Introduction, which implies that Fn,k contains zero sets 6p that separate Rn into
two components for all dimensions n ≥ 4 and for all degrees k ≥ 2.
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U

V1

U
V2

Figure 2. Let q : R2
→ R denote a nonconstant homogeneous harmonic polynomial

(illustrated with degree 4). The light blue cells denote the positive set of q and the
medium blue cells denote the negative set of q . Suppose that q(U ) > 0, q(V1) > 0, and
p(V1, V2) > 0, where p(W1,W2)≡ q(W1)+ q(W2). To move from (V1, V2) to (U,U )
inside the positive set of p, first send V2 to U along the green path and then move V1 to
U along the red path.

Proof of Lemma 1.7. We sketch the argument when a = b = 1, with the other cases following from an
obvious modification. Let q :R2

→R be a homogeneous harmonic polynomial of degree k ≥ 2. Note that
by elementary complex analysis, q can be written as the real part of a complex polynomial q̃ : C→ C,
q̃(z)= czk. Thus, 6q is the union of k equiangular lines through the origin and the chambers of R2

\6q

alternate between the positive and negative sets of q . Let U = (x1, y1) be any point such that q(U ) > 0.
Then p(U,U ) > 0, as well, where p(W1,W2)≡ q(W1)+ q(W2). To show that the positive set of p is
connected, it suffices to show that any point (V1, V2) ∈R2

×R2 such that p(V1, V2) > 0 can be connected
to (U,U ) by a piecewise linear path in the positive set. If p(V1, V2) > 0, then q(V1) > 0 or q(V2) > 0,
say without loss of generality that q(V1) > 0. Then the desired path from (V1, V2) to (U,U ) is described
in Figure 2. A similar argument verifies that the negative set of p is connected and we are done. �

Our goal for the remainder of this section is to prove Theorem 1.8, which requires the following notion
of nontangential accessibility.

Definition 6.1 [Jerison and Kenig 1982]. A domain (i.e., a connected open set) �⊂ Rn is called NTA or
nontangentially accessible if there exist constants M > 1 and R > 0 for which the following are true:

(i) � satisfies the corkscrew condition: for all Q ∈ ∂� and 0 < r < R, there exists x ∈ �∩ B(Q, r)
such that dist(x, ∂�) > M−1r .

(ii) Rn
\� satisfies the corkscrew condition.

(iii) � satisfies the Harnack chain condition: if x1, x2 ∈�∩ B
(
Q, 1

4r
)

for some Q ∈ ∂� and 0< r < R,
and dist(x1, ∂�) > δ, dist(x2, ∂�) > δ, and |x1 − x2| < 2lδ for some δ > 0 and l ≥ 1, then there
exists a chain of no more than Ml overlapping balls connecting x1 to x2 in � such that for each ball
B = B(x, s) in the chain

M−1s < gap(B, ∂�) < Ms, gap(B, ∂�)= inf
x∈B

inf
y∈∂�
|x − y|,

diam B > M−1 min{dist(x1, ∂�), dist(x2, ∂�)}, diam B = sup
x,y∈B
|x − y|.
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We refer to M and R as NTA constants of the domain �. When ∂� is unbounded, R =∞ is allowed. To
distinguish between conditions (i) and (ii), the former may be called the interior corkscrew condition and
the latter may be called the exterior corkscrew condition.

Remark 6.2. In the definition of NTA domains, the additional restriction R=∞ when � is unbounded is
sometimes imposed (e.g., see [Kenig and Toro 1999; 2006; Kenig et al. 2009]) in order to obtain globally
uniform harmonic measure estimates on unbounded domains, but that restriction is not essential in the
geometric context of Theorem 1.8, and thus, we omit it.

An essential feature of NTA domains that we need below is that the NTA properties persist under limits
(with slightly different constants). When 0i = r−1

i (∂�− Qi ) is a sequence of pseudoblowups of the
boundary ∂� of a 2-sided NTA domain �⊂ Rn for some Qi ∈ ∂� and ri > 0 such that Qi → Q ∈ ∂�
and ri ↓ 0, we have the following lemma, due to Kenig and Toro [2006, Theorem 4.1]; also see [Azzam
and Mourgoglou 2015, Lemma 1.5] for a recent variant on uniform domains. For the proof of Lemma 6.3,
see Appendix B below.

Lemma 6.3. Suppose that 0i ⊂ Rn is a sequence of closed sets such that Rn
\ 0i = �

+

i ∪�
−

i is the
union of complimentary NTA domains �+i and �−i with NTA constants M and R independent of i . If
0i → 0 6=∅ in the Attouch–Wets topology, then Rn

\0 =�+ ∪�− is the union of complementary NTA
domains �+ and �− with NTA constants 2M and R.

In the remainder of this section, we work with subclasses of Hn,d and Fn,k whose zero sets 6p separate
Rn into two distinct NTA components with uniform NTA constants.

Definition 6.4 (2-sided NTA restricted classes H∗n,d , H∗∗n,d , F∗n,k , F∗∗n,k). For all n ≥ 2 and d ≥ 1, let H∗n,d
denote the collection of all 6p ∈Hn,d such that �±p = {x ∈ Rn

: ±p(x) > 0} are NTA domains with NTA
constants M∗=M and R∗=∞ for some fixed M>1. (We deliberately suppress the choice of M∗ from the
notation.) Also, let H∗∗n,d denote the collection of all 6p ∈Hn,d such that �±p are NTA domains with NTA
constants M∗∗ = 2M∗ and R∗∗ =∞. Finally, set F∗n,k =H∗n,k ∩Fn,k and F∗∗n,k =H∗∗n,k ∩Fn,k for all k ≥ 1.

Remark 6.5. The classes H∗n,d (hence H∗∗n,d ) and F∗n,k (hence F∗∗n,k) are local approximation classes (see
Definition A.7), because R∗ =∞, and it is apparent that H∗n,d is translation invariant in the sense that
6p − x ∈H∗n,d for all 6p ∈H∗n,d and x ∈6p. Hence H∗n,d is also translation invariant. By Corollary 4.4
and Lemma 6.3, H∗n,d ⊆H∗∗n,d and F∗n,k ⊆ F∗∗n,k . Since Hn,k points are detectable in Hn,d for all 1≤ k ≤ d
by Corollary 1.5 and H∗n,d ⊆ Hn,d , we have Hn,k points are detectable in H∗n,d , as well. Finally, we
reiterate that F∗n,k is nonempty for some M∗ > 1 if and only if k = 1 and n ≥ 2; k ≥ 2 is even and n ≥ 4;
or, k ≥ 3 is odd and n ≥ 3. See Remark 1.10. The assertion that the interiors of the two connected
components of Rn

\6p are NTA domains when n = 3 and p = p(x, y, z) is Szulkin’s polynomial (or
any of Lewy’s odd-degree polynomials) and when n = 4 and p = p(x1, y1, x2, y2) is the zero set of one
of the polynomials from Lemma 1.7 follows from the fact that in each case 6p ∩ ∂B(0, 1) is a smooth
hypersurface in the unit sphere and 6p is a cone.

The following technical proposition, alluded to in the Introduction after the statement of Theorem 1.8,
is a consequence of Lemma 6.3.
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Lemma 6.6. Suppose that A ⊆ Rn is closed and Rn
\ A =�+ ∪�− is a union of complementary NTA

domains. If A is locally bilaterally well approximated by Hn,d for some n ≥ 2 and d ≥ 1, then A is locally
bilaterally well approximated by H∗n,d for some M∗ > 1 depending only on the NTA constants of �+

and �−.

Proof. Suppose that A is closed, A is locally bilaterally well approximated by Hn,d , and Rn
\A=�+∪�−

is a union of complementary NTA domains with uniform NTA constants M and R. On one hand, by
Theorem A.11 and Corollary 4.4, 9- Tan(A, x)⊆Hn,d =Hn,d for all x ∈ A, where 9- Tan(A, x) is the
collection of all pseudotangent sets of A at x . On the other hand, for every x ∈ A and r > 0, the set
(A− x)/r =�+x,r ∪�

−
x,r is a union of complementary NTA domains �+x,r and �−x,r with NTA constants

Mx,r = M and Rx,r = R/r . Thus, every pseudotangent set T = limi→0(A − xi )/ri ∈ 9- Tan(A, x)
separates Rn into two NTA domains with NTA constants MT = 2M and RT =∞ by Lemma 6.3, since
Rxi ,ri = R/ri →∞ as ri → 0. Therefore, 9- Tan(A, x) ⊆ H∗n,d for every x ∈ A with M∗ = 2M . By
Theorem A.11, it follows that A is locally bilaterally well approximated by H∗n,d , as desired. �

In view of Lemma 6.6, Theorem 1.8 is a special case of the following theorem.

Theorem 6.7. Let n≥2, d≥2, and M∗>1. If A⊆Rn is closed and locally bilaterally well approximated
by H∗n,d , then

(i) A \ A1 = A2 ∪ · · · ∪ Ad has upper Minkowski dimension at most n− 3; and,

(ii) the even singular set A2 ∪ A4 ∪ A6 ∪ · · · has Hausdorff dimension at most n− 4.

To prove Theorem 6.7 using the technology of [Badger and Lewis 2015], we need to show the
existence of “covering profiles” (see Definition A.19) for the classes singHn,1

H∗n,d and singHn,d−1
H∗n,d

(see Definition A.16), which are well defined because H∗n,d is translation invariant and Hn,k points are
detectable in H∗n,d by Remark 6.5. The following lemma proves the existence of good covering profiles
for singHn,k−1

H∗n,k for all degrees k ≥ 2.

Lemma 6.8. Let k≥2 and assume that n+(k mod 2)≥4. For every k-homogeneous harmonic polynomial
p : Rn

→ R such that Rn
\6p has two connected components,

(6p)H⊥n,k−1
=
{

x ∈6p : lim inf
r→0

2
Hn,k−1
6p

(x, r) > 0
}

is a linear subspace V of Rn with dim V ≤ n− 4+ (k mod 2). In particular,

singHn,k−1
H∗n,k =

{
(6p)H⊥n,k−1

:6p ∈H∗n,k, 0 ∈ (6p)H⊥n,k−1

}
admits an (n− 4+ (k mod 2),C(n), 1) covering profile.

Proof. Suppose that k and n satisfy the hypothesis of the lemma and let p : Rn
→ R be a k-homogeneous

harmonic polynomial. We will show that (6p)
⊥
Hn,k−1

coincides with

V = {x0 ∈ Rn
: p(x + x0)= p(x) for all x ∈ Rn

},
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which is a linear subspace of Rn because p is k-homogeneous. To start, note that

x0 ∈ (6p)H⊥n,k−1
⇐⇒ ∂α p(x0)= 0 for all |α| ≤ k− 1

⇐⇒ p(x + x0)≡ q(x) for some q , where q : Rn
→ R is k-homogeneous,

where the first equivalence holds by Theorem 1.4 and the second equivalence holds by Taylor’s theorem.
Hence V ⊆ (6p)H⊥n,k−1

, since p is k-homogeneous. Conversely, using the homogeneity of p and q , at any
x0 ∈ (6p)H⊥n,k−1

we obtain

p(x + x0)= q(x)= λkq(x/λ)= λk p(x/λ+ x0)= p(x + λx0) for all λ ∈ R \ {0}.

Letting λ → 0, we conclude that p(x + x0) = p(x) for all x ∈ Rn whenever x ∈ (6p)H⊥n,k−1
. Thus,

(6p)H⊥n,k−1
⊆ V, as well.

To continue, suppose that 6p separates Rn into two components. Let p̃ : V⊥→ R be the image of p
under the quotient map Rn

→ Rn/V ∼= V⊥. Because V is the space of invariant directions for p, the
map p̃ is still a degree-k homogeneous harmonic polynomial (in orthonormal coordinates for V⊥) and

6p =6 p̃⊕ V = {x + v : x ∈6 p̃ ⊆ V⊥, v ∈ V }.

Hence 6 p̃ separates V⊥ into two components, since 6p separates Rn into two components. It follows
that dim V⊥ ≥ 4 if k ≥ 2 is even, and dim V⊥ ≥ 3 if k ≥ 3 is odd; e.g., see the paragraph immediately
preceding the statement of Lemma 1.7. Therefore, dim V ≤ n− 4 if k ≥ 2 is even, and dim V ≤ n− 3 if
k ≥ 3 is odd.

Finally, by Theorem 1.4, Remark 6.5, and the first part of the lemma,

singHn,k−1
H∗n,k =

{
(6p)H⊥n,k−1

:6p ∈ F∗n,k
}
⊆
{
(6p)H⊥n,k−1

:6p ∈ F∗∗n,k
}
⊆

j⋃
i=0

G(n, i),

where j = n−4 if k≥ 2 is even, and j = n−3 if k≥ 3 is odd. Here each G(n, i) denotes the Grassmannian
of dimension-i linear subspaces of Rn, which possesses an (i,C(i), 1) covering profile; that is, V ∩B(0, r)
can be covered by C(i)s−i balls B(vi , sr) centered in V ∩ B(0, r) for all planes V ∈ G(n, i), r > 0, and
0< s ≤ 1. (For example, this follows from the fact that the Lebesgue measure of any ball of radius r in
Ri is proportional to r i.) It follows that the class singHn,k−1

H∗n,k has an (n− 4,C(n), 1) covering profile
when k ≥ 2 is even, and singHn,k−1

H∗n,k has an (n− 3,C(n), 1) covering profile when k ≥ 3 is odd. �

The covering profiles for singHn,k−1
H∗n,k from Lemma 6.8 will enable us to prove (ii) in Theorem 6.7

and also to prove that A \ A1 has Hausdorff dimension at most n− 3. However, to show that A \ A1 has
upper Minkowski dimension at most n− 3, we need to find covering profiles for singHn,1

H∗n,d , whose
existence does not automatically follow from the covering profiles in Lemma 6.8. To proceed, we use
the quantitative stratification and volume estimates for singular sets of harmonic functions developed
by Cheeger, Naber, and Valtorta [Cheeger et al. 2015]. The following description of the stratification
combines several definitions from §1 of their paper; see Definitions 1.4, 1.7 and 1.9 and Remark 1.8 of
the same work.



STRUCTURE OF SETS WHICH ARE WELL APPROXIMATED BY ZERO SETS OF HARMONIC POLYNOMIALS 1479

Definition 6.9 ([Cheeger et al. 2015]; quantitative stratification by symmetry). A smooth function
u : Rn

→ R is called 0-symmetric if u is a homogeneous polynomial and u is called k-symmetric if u is
0-symmetric and there exists a k-dimensional subspace V such that

u(x + y)= u(x) for all x ∈ Rn and y ∈ V.

For all smooth u : B(0, 1)→ R, and for all x ∈ B(0, 1− r), define

Tx,r u(y)=
u(x + r y)− u(x)(

/

∫
∂B(0,1) |u(x + r z)− u(x)|2 dσ(z)

)1/2 for all y ∈ B(0, 1).

(If the denominator vanishes, set Tx,r =∞.) A harmonic function u : B(0, 1)→ R is called (k, ε, r, x)-
symmetric if there exists a harmonic k-symmetric function p with

∫
∂B(0,1) |p|

2 dσ = 1 such that

/

∫
B(0,1)
|Tx,r u− p|2 < ε.

For all harmonic u : B(0, 1)→ R, define the (k, η, r)-effective singular stratum by

Sk
η,r (u)= {x ∈ B(0, 1) : u is not (k+1, η, s, x)-symmetric for all s ≥ r}.

For harmonic functions, [Cheeger et al. 2015, Theorem 1.10] gives the following Minkowski-type
estimates for effective singular strata. In the statement, N (1, 0, u) denotes Almgren’s frequency function
with r = 1, x0= 0, and f = u (recall Definition 3.3 above).

Theorem 6.10 [Cheeger et al. 2015]. If u : B(0, 1)→ R is a harmonic function with u(0) = 0 and
N (1, 0, u)≤3<∞, then for every η > 0 and k ≤ n− 2,

Vol
({

x ∈ B
(
0, 1

2

)
: dist(x, Sk

η,r (u)) < r
})
≤ C(n,3, η)rn−k−η. (6-1)

We now show that if η is small enough depending on n, d , and M∗, then the singular set of 6p ∈H∗n,d
is contained in Sn−3

η,r (p).

Lemma 6.11. For all n ≥ 2, d ≥ 2, and M∗ > 1, there exists η̄ > 0 with the following property. If
6p ∈H∗n,d , x0 ∈6p, and p is (n−2, η, r, x0)-symmetric for some η ∈ (0, η̄) and r > 0, then x0 is an Fn,1

point of 6p. Consequently, the set of all singular points of 6p (that is, Fn,2 ∪ · · · ∪Fn,d points of 6p)
belongs to Sn−3

η,r (p) for all η ∈ (0, η̄) and r > 0.

Proof. Let n ≥ 2, d ≥ 2, and M∗ > 1 be given. Assume in order to obtain a contradiction that for all i ≥ 1,
there exist 6pi ∈H∗n,d , ηi < 1/ i , xi ∈6pi , and ri > 0 such that pi is (n− 2, ηi , ri , xi )-symmetric and xi

is not an Fn,1 point of 6pi . Equivalently, by Theorem 1.4, Dpi (xi )= 0. That is, the Taylor expansion
for pi at xi has no nonzero linear terms. By definition of almost symmetry, there exist (n−2)-symmetric
homogeneous harmonic polynomials hi such that /

∫
∂B(0,1) |hi |

2 dσ = 1 and

/

∫
B(0,1)
|Txi ,ri pi − hi |

2 <
1
i
. (6-2)
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As everything is translation, dilation, and rotation invariant, we may assume without loss of generality
that for all i ≥ 1, we have xi = 0, ri = 1, and hi (y1, y2, . . . , yn)= hi (y1, y2, 0, . . . , 0) for all y ∈ Rn . To
ease notation, let us abbreviate qi ≡ T0,1 pi . We note that

‖qi‖L2(B(0,1)) ∼n,d ‖qi‖L2(∂B(0,1)) ∼n,d 1 for all i ≥ 1, (6-3)

where the first comparison holds by Lemma 3.8 and the second holds by the definition of T0,1 pi .
We now claim that deg hi ≤ d for all i sufficiently large. To see this, suppose to the contrary that

l := deg hi > d for some i ≥ 1. Recalling both that spherical harmonics of different degrees are orthogonal
on spheres centered at the origin and that hi is l-homogeneous with l > deg qi , we have

1∼n,d ‖qi‖
2
L2(B(0,1)) .n,d /

∫
B(0,1)

(q2
i + h2

i )= /
∫

B(0,1)
|qi − hi |

2 <
1
i

by (6-2) and (6-3). This is impossible if i is sufficient large depending only on n and d . Thus, deg hi ≤ d
for all i sufficient large, as claimed. In particular,

‖hi‖L2(B(0,1)) ∼n,d ‖hi‖L2(∂B(0,1)) ∼n,d 1 for all i &n,d 1. (6-4)

By (6-3), (6-4), Lemma 2.1, and Corollary 3.5, we conclude that H(qi )∼n,d 1 and H(qi )∼n,d 1 for
all sufficiently large i . Therefore, by passing to a subsequence of the pair (qi , hi )

∞

i=1 (which we relabel),
we may assume that qi → q in coefficients and hi → h in coefficients for some nonconstant harmonic
polynomials q and h of degree at most d. On one hand, we have 6q ∈H∗n,d ⊆H∗∗n,d by Lemma 4.3 and
Dq(0)= 0, since Dqi (0)= 0 for all i . Hence q has degree at least 2. On the other hand, we have h is
homogeneous and h(y1, y2, . . . , yn)= h(y1, y2, 0, . . . , 0) for all y ∈ Rn, because the same are true of the
polynomial hi for all i &n,d 1.

We are now ready to obtain a contradiction. Since qi → q and hi → h uniformly on compact sets,
we have q ≡ h by (6-2). Thus, 6q ∈ F∗∗n,k for some 2 ≤ k ≤ d — in particular, 6q is the zero set of a
homogeneous harmonic polynomial of degree at least 2 that separates Rn into two components — and q
depends on at most two variables. No such polynomial q exists (e.g., see Remark 6.5)! Therefore, for all
n≥ 2, d ≥ 2, and M∗> 1, there exists η̄ > 0 such that if 6p ∈H∗n,d , x0 ∈ 6p, and p is (n−2, η, r, x0)-
symmetric for some η ∈ (0, η̄) and r > 0, then x0 is an Fn,1 point of 6p. Consequently, if 6p ∈H∗n,d and
x0 ∈ 6p belongs to the singular set of p, then p is not (n−2, η, r, x0) symmetric for all η ∈ (0, η̄) and
r > 0. By definition of the singular strata, we conclude that for all 6p ∈H∗n,d the set of all singular points
of 6p belongs to Sn−3

η,r (p) for all η ∈ (0, η̄) and r > 0. �

At last, we are ready to prove Theorems 6.7 and 1.8.

Proof of Theorems 6.7 and 1.8. As noted earlier, Theorem 6.7 implies Theorem 1.8 by Lemma 6.6. Thus,
it suffices to establish the former. Assume A ⊆ Rn is closed and locally bilaterally well approximated
by H∗n,d for some M∗ > 1. Then A can be written as A = A1 ∪ A2 ∪ · · · ∪ Ad according to Theorem 1.1.
In particular, Uk = A1 ∪ · · · ∪ Ak is relatively open in A and locally bilaterally well approximated by
Hn,k for all 1≤ k ≤ d . Hence Uk is also locally bilaterally well approximated by H∗∗n,k for all 1≤ k ≤ d ,
because 9- Tan(A, x) ⊆ H∗n,d ∩Hn,k ⊆ H∗∗n,k for all x ∈ Uk by Theorem A.11 and Remark 6.5. Also,
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A \ A1 is closed in Rn, because A1 is relatively open in A and A is closed in Rn, and Ak is σ -compact for
each k ≥ 1, because Ak is relatively closed in Uk , Uk is relatively open in A, and A is closed in Rn. Our
goal is to prove that (i) dimM A \ A1 ≤ n− 3 and (ii) dimH Ak ≤ n− 4 for all even k ≥ 2.

We begin with a proof of (i). By Remark 6.5, H∗∗n,d is translation invariant and Hn,1 points are detectable
in H∗∗n,d . Thus, A \ A1 is locally unilaterally well approximated by singHn,1

H∗∗n,d by Theorem A.17. By
Lemma 6.11 and Theorem 6.10, the class singHn,1

H∗∗n,d admits an (n−3+η,C(n, d, η,M∗∗), 1) covering
profile for all η > 0. Thus, since A \ A1 is closed, we have dimM A \ A1 ≤ n− 3+ η for all η > 0 by
Theorem A.20. Letting η ↓ 0, we conclude dimM A \ A1 ≤ n− 3, as desired.

We now prove (ii). Let k ≥ 2 be even. By Remark 6.5, H∗∗n,k−1 is translation invariant and Hn,k−1 points
are detectable in H∗∗n,k . Thus, Ak =Uk \Uk−1 is locally unilaterally well approximated by singHn,k−1

H∗∗n,k
by Theorem A.17. By Lemma 6.8, the class singHn,k−1

H∗∗n,k admits an (n− 4,C(n), 1) covering profile.
Thus, since Ak is σ -compact, we have dimH Ak ≤ n−4 by Theorem A.21, as desired. Because Hausdorff
dimension is stable under countable unions, dimH A2 ∪ A4 ∪ · · · ≤ n− 4, as well. �

7. Boundary structure in terms of interior and exterior harmonic measures

Harmonic measure arises in classical analysis from the solution of the Dirichlet problem and in probability
as the exit distribution of Brownian motion. For nice introductions to harmonic measure, see the books
of Garnett and Marshall [2005] and Mörters and Peres [2010]. One of our motivations for this work is
the desire to understand the extent to which the structure of the boundary of a domain in Rn, n ≥ 2, is
determined by the relationship between harmonic measures in the interior and the exterior of the domain.
This problem can be understood as a free boundary regularity problem for harmonic measure. For an
in-depth introduction to free boundary problems for harmonic measure, see the book of Capogna, Kenig,
and Lanzani [Capogna et al. 2005].

Given a simply connected domain � ⊂ R2, bounded by a Jordan curve, let ω+ and ω− denote the
harmonic measures associated to �+ =� and �− = R2

\�, respectively, which are supported on their
common boundary ∂�= ∂�+ = ∂�−. Together, the theorems of McMillan, Makarov, and Pommerenke
(see [Garnett and Marshall 2005, Chapter VI]) show that

ω+� ω−� ω+ =⇒ ω+�H1
|G � ω+ and ω−�H1

|G � ω−

for some set G⊆ ∂� with σ -finite 1-dimensional Hausdorff measure and ω±(∂�\G)= 0; furthermore, in
this case, ∂� possesses a unique tangent line at Q for ω±-a.e. Q ∈ ∂�. Here Hs denotes the s-dimensional
Hausdorff measure of sets in Rn. Motivated by this result, Bishop [1992] asked whether if on a domain
in Rn, n ≥ 3,

ω+� ω−� ω+ =⇒ ω+�Hn−1
|G � ω+ and ω−�Hn−1

|G � ω− (7-1)

for some G ⊆ ∂� with σ -finite (n−1)-dimensional Hausdorff measure and ω±(∂� \G)= 0. In [Kenig
et al. 2009], Kenig, Preiss, and Toro proved that when �+ =�⊂ Rn and �− = Rn

\� are NTA domains
in Rn, n ≥ 3, the mutual absolute continuity of ω+ and ω− on a set E ⊆ ∂� implies that ω±|E has
upper Hausdorff dimension n − 1: there exists a set E ′ ⊆ E of Hausdorff dimension n − 1 such that
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ω±(E \ E ′)= 0, and ω±(E \ E ′′) > 0 for every set E ′′ ⊂ E with dimH E ′′ < n−1. Moreover, in this case
ω±|E �Hn−1

|E �ω±|E provided that Hn−1
|∂� is locally finite (see [Badger 2012; 2013, Remark 6.19]).

However, at present it is still unknown whether or not (7-1) holds on domains for which Hn−1
|∂� is not

locally finite. For some related inquiries, see the work of Lewis, Verchota, and Vogel [Lewis et al. 2005],
Azzam and Mourgoglou [2015], Bortz and Hofmann [2016].

Remark 7.1 (added in February 2017). Several months after the first version of this paper appeared on the
arXiv in September 2015, a solution to Bishop’s conjecture (7-1) was furnished by Azzam, Mourgoglou,
and Tolsa [Azzam et al. 2017b] and by Azzam, Mourgoglou, Tolsa, and Volberg [Azzam et al. 2016]. An
important tool in these works is a new “bounded Riesz transform” to “uniform rectifiability” criterion of
Girela-Sarrión and Tolsa [2016].

Finer information about the structure and size of the boundary under more stringent assumptions on
the relationship between ω+ and ω− has been obtained in [Kenig and Toro 2006; Badger 2011; 2013;
Badger and Lewis 2015; Engelstein 2016]. We summarize these results in Theorem 7.3 after recalling the
definition of the space VMO(dω) of functions of vanishing mean oscillation, which extends the space of
uniformly continuous bounded functions on ∂�.

Definition 7.2 [Kenig and Toro 2006, Definitions 4.2 and 4.3]. Let � ⊂ Rn be an NTA domain (with
the NTA constant R = ∞ when ∂� is unbounded) equipped with harmonic measure ω. We say that
f ∈ L2

loc(dω) belongs to BMO(dω) if and only if

sup
r>0

sup
Q∈∂�

(

/

∫
B(Q,r)

| f − fQ,r |
2 dω

)1/2

<∞,

where fQ,r = /

∫
B(Q,r) f dω denotes the average of f over the ball. We denote by VMO(dω) the closure

in BMO(dω) of the set of uniformly continuous bounded functions on ∂�.

Theorem 7.3. Assume that �+ = � ⊂ Rn and �− = Rn
\� are NTA domains (with the NTA constant

R = ∞ when ∂� is unbounded), equipped with harmonic measures ω± on �±. If ω+ � ω− � ω+

and the Radon–Nikodym derivative f = dω−/dω+ satisfies log f ∈ VMO(dω+), then the boundary ∂�
satisfies the following properties.

• There exist d ≥ 1 and M∗ > 1 depending on at most n and the NTA constants of �+ and �− such
that ∂� is locally bilaterally well approximated by H∗n,d [Kenig and Toro 2006].

• ∂� can be partitioned into disjoint sets 0k , 1≤ k ≤ d, such that x ∈ 0k if and only if x is an Fn,k

point of ∂�. Moreover, 01 is dense in ∂� and ω±(∂� \01)= 0 [Badger 2011].

• 01 is relatively open in ∂�, 01 is locally bilaterally well approximated by Hn,1, and 01 has Hausdorff
dimension n− 1 [Badger 2013].

• ∂� has upper Minkowski dimension n − 1 and ∂� \ 01 = 02 ∪ · · · ∪ 0d has upper Minkowski
dimension at most n− 2 [Badger and Lewis 2015].

• If log f ∈ C l,α for some l ≥ 0 and α > 0 (resp. log f ∈ C∞, log f real analytic), then 01 is a C l+1,α

(resp. C∞, real analytic) (n−1)-dimensional manifold [Engelstein 2016].
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Remark 7.4. The statements from [Kenig and Toro 2006] and [Badger 2011] recorded in Theorem 7.3
were obtained by showing that the pseudotangent measures of the harmonic measures ω± of �± are
“polynomial harmonic measures” in [Kenig and Toro 2006] and by studying the “separation at infinity”
of cones of polynomial harmonic measures associated to polynomials of different degrees in [Badger
2011] (also see [Kenig et al. 2009]). The statements from [Badger 2013] and [Badger and Lewis 2015]
are forerunners to and motivated the statement and proof of Theorem 1.1 in this paper. However, we wish
to emphasize that the structure theorem [Badger 2013, Theorem 5.10] and dimension estimate on the
singular set ∂� \01 in [Badger and Lewis 2015, Theorem 9.3] required existence of the decomposition
from [Badger 2011] as part of their hypotheses. By contrast, in this paper, we are able to establish the
decomposition A= A1∪· · ·∪Ad and obtain dimension estimates on the singular set A\A1 in Theorem 1.1
directly, without any reference to harmonic measure or dependence on [Badger 2011].

Theorem 1.1 and 1.8 of the present paper yield several new pieces of information about the boundary
of complimentary NTA domains with log f ∈ VMO(dω+), which we record in Theorem 7.5.

Theorem 7.5. Under the hypothesis of Theorem 7.3, the boundary ∂� = 01 ∪ · · · ∪ 0d satisfies the
following additional properties:

(i) For all 1≤ k ≤ d , the set Uk := 01 ∪ · · · ∪0k is relatively open in ∂� and 0k+1 ∪ · · · ∪0d is closed.

(ii) For all 1≤ k ≤ d , the set Uk is locally bilaterally well approximated by H∗∗n,k .

(iii) For all 1≤ k ≤ d, the boundary ∂� is locally bilaterally well approximated along 0k by F∗∗n,k , i.e.,

lim supr↓0 supx∈K 2
F∗∗n,k
∂� (x, r)= 0 for every compact set K ⊆ 0k .

(iv) For all 1≤ l < k ≤ d , the set Ul is relatively open in Uk and 0l+1∪· · ·∪0k is relatively closed in Uk .

(v) ∂� \01 = 02 ∪ · · · ∪0d has upper Minkowski dimension at most n− 3.

(vi) The even singular set 02 ∪04 ∪ · · · has Hausdorff dimension at most n− 4.

(vii) When n ≥ 3, the singular set ∂� \01 has Newtonian capacity zero.

Proof. Parts (i) and (iv) of the theorem are a direct consequence of Theorem 1.1. Parts (ii) and (iii) follow
from Theorem 1.1 in conjunction with Lemma 6.6, Theorem A.11, and Remark 6.5 (see the proof of
Theorem 1.8). Parts (v) and (vi) are a direct consequence of Theorem 1.8. Newtonian capacity in Rn,
n ≥ 3, is precisely the Riesz (n−2)-capacity. Thus, part (vii) follows from (v) and the fact that sets of
finite s-dimensional Hausdorff measure have Riesz s-capacity zero (see, e.g., [Mörters and Peres 2010,
Chapter 4] or [Mattila 1995, Chapter 8]). �

Remark 7.6. The dimension bounds (v) and (vi) in Theorem 7.5 are sharp by example. See Remark 1.10
and Remark 6.5.

Remark 7.7. The fact that ∂� \01 has Newtonian capacity zero implies ω±(∂� \01)= 0; see [Mörters
and Peres 2010, Chapter 8].
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Appendix A: Local set approximation

A general framework for describing bilateral and unilateral approximations of a set A ⊆ Rn by a class S
of closed “model” sets is developed in [Badger and Lewis 2015]. In this appendix, we give a brief,
self-contained abstract of the main definitions and theorems from this framework as used above, but refer
the reader to [Badger and Lewis 2015] for full details and further results. The principal results are two
structure theorems for Reifenberg-type sets; see Theorems A.14 and A.17.

Distances between sets. If A, B⊆Rn are nonempty sets, the excess of A over B is the asymmetric quantity
defined by ex(A, B) = supa∈A infb∈B |a − b| ∈ [0,∞]. By convention, one also defines ex(∅, B) = 0,
but leaves ex(A,∅) undefined. The excess is monotone,

ex(A, B)≤ ex(A′, B ′) whenever A ⊆ A′ and B ⊇ B ′,

and satisfies the triangle inequality,

ex(A,C)≤ ex(A, B)+ ex(B,C).

When A = {x} for some x ∈ Rn, the excess ex({x}, B) is usually called the distance of x to B and is
denoted by dist(x, B).

For all x ∈ Rn and r > 0, let B(x, r) denote the open ball with center x and radius r . (In [Badger
and Lewis 2015], B(x, r) denotes the closed ball, but see Remark 2.4 in that paper.) For arbitrary sets
A, B ⊆ Rn with B nonempty and for all x ∈ Rn and r > 0, define the relative excess of A over B in
B(x, r) by

d̃ x,r (A, B)= r−1 ex
(

A∩ B(x, r), B
)
∈ [0,∞).

Also, for all sets A, B ⊆ Rn with A and B nonempty and for all x ∈ Rn and r > 0, define the relative
Walkup–Wets distance between A and B in B(x, r) by

D̃x,r
[A, B] =max

{
d̃ x,r (A, B), d̃ x,r (B, A)

}
∈ [0,∞).

Observe that D̃x,r
[A, B] ≤ 2 if both A∩ B(x, r) and B ∩ B(x, r) are nonempty; and D̃x,r

[A, B] ≤ 1 if
both x ∈ A and x ∈ B.

Lemma A.1 [Badger and Lewis 2015, Lemma 2.2, Remark 2.4]. Let A, B,C ⊆ Rn be nonempty sets, let
x, y ∈ Rn, and let r, s > 0. Then we have the following properties:

• closure: D̃x,r
[A, B] = D̃x,r

[A, B] = D̃x,r
[A, B] = D̃x,r

[A, B].

• containment: D̃x,r
[A, B] = 0 if and only if A∩ B(x, r)= B ∩ B(x, r).

• quasimonotonicity: If B(x, r)⊆ B(y, s), then D̃x,r
[A, B] ≤ (s/r)D̃y,s

[A, B].

• strong quasitriangle inequality: If d̃ x,r (A, B)≤ ε1 and d̃ x,r (C, B)≤ ε2, then

D̃x,r
[A,C] ≤ (1+ ε2)D̃x,(1+ε2)r [A, B] + (1+ ε1)D̃x,(1+ε1)r [B,C].
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• weak quasitriangle inequalities: If x ∈ B, then

D̃x,r
[A,C] ≤ 2D̃x,2r

[A, B] + 2D̃x,2r
[B,C].

If B ∩ B(x, r) 6=∅, then

D̃x,r
[A, B] ≤ 3D̃x,3r

[A, B] + 3D̃x,3r
[B,C].

• scale invariance: D̃x,r
[A, B] = D̃λx,λr

[λA, λB] for all λ > 0.

• translation invariance: D̃x,r
[A, B] = D̃x+z,r

[z+ A, z+ B] for all z ∈ Rn.

Remark A.2. The relative Hausdorff distance between A and B in B(x, r), defined by

Dx,r
[A, B] = r−1 max

{
ex
(

A∩ B(x, r), B ∩ B(x, r)
)
, ex

(
B ∩ B(x, r), A∩ B(x, r)

)}
whenever A ∩ B(x, r) and B ∩ B(x, r) are both nonempty, is a common, better-known variant of the
relative Walkup–Wets distance. We note that D̃x,r

[A, B] ≤ Dx,r
[A, B] whenever both quantities are

defined. Although the relative Hausdorff distance satisfies the triangle inequality rather than just the
weak and strong quasitriangle inequalities enjoyed by the relative Walkup–Wets distance, the relative
Hausdorff distance fails to be quasimonotone (see [Badger and Lewis 2015, Remark 2.3]). This makes
the relative Hausdorff distance unsuitable for use in the local set approximation framework below. The
use of the relative Walkup–Wets distance is deliberate and ensures that one can obtain structure theorems
for Reifenberg-type sets.

Attouch–Wets topology, tangent sets, and pseudotangent sets. Let C(Rn) denote the collection of all
nonempty closed sets in Rn. Let C(0) denote the subcollection of all nonempty closed sets in Rn containing
the origin. We endow C(Rn) and C(0) with the Attouch–Wets topology (see [Beer 1993, Chapter 3] or
[Rockafellar and Wets 1998, Chapter 4], i.e., the topology described by the following theorem.

Theorem A.3 [Badger and Lewis 2015, Theorem 2.5]. There exists a metrizable topology on C(Rn) in
which a sequence (Ai )

∞

i=1 in C(Rn) converges to a set A ∈ C(Rn) if and only if

lim
i→∞

ex
(

Ai ∩ B(0, r), A
)
= 0 and lim

i→∞
ex
(

A∩ B(0, r), Ai
)
= 0 for all r > 0.

Moreover, in this topology, C(0) is sequentially compact; i.e., for any sequence (Ai )
∞

i=1 in C(0) there
exists a subsequence (Ai j )

∞

j=1 and A ∈ C(0) such that (Ai j )
∞

j=1 converges to A in the sense above.

We write Ai→ A or A= limi→∞ A (in C(Rn)) to denote that a sequence of (Ai )
∞

i=1 in C(Rn) converges
to a set A ∈ C(Rn) in the Attouch–Wets topology. If each set Ai ∈ C(0), then we may write Ai → A in
C(0) to emphasize that A ∈ C(0), as well.

Lemma A.4 [Badger and Lewis 2015, Lemma 2.6]. Let A, A1, A2, . . .∈C(R
n). The following statements

are equivalent:

(i) Ai → A in C(Rn).

(ii) limi→∞ D̃x,r
[Ai , A] = 0 for all x ∈ Rn and for all r > 0.

(iii) limi→∞ D̃x0,rj [Ai , A] = 0 for some x0 ∈ Rn and for some sequence rj →∞.
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The notions of tangent sets and pseudotangent sets of a closed set in the following definition are
modeled on notions of tangent measures (introduced by Preiss [1987]) and pseudotangent measures
(introduced by Kenig and Toro [1999]) of a Radon measure.

Definition A.5 [Badger and Lewis 2015, Definition 3.1]. Let T ∈ C(0), let A ∈ C(Rn), and let x ∈ A. We
say that T is a pseudotangent set of A at x if there exist sequences xi ∈ A and ri > 0 such that xi → x ,
ri → 0, and

A− xi

ri
→ T in C(0).

If xi = x for all i , then we call T a tangent set of A at x . Let 9- Tan(A, x) and Tan(A, x) denote the
collections of all pseudotangent sets of A at x and all tangent sets of A at x , respectively.

Lemma A.6 [Badger and Lewis 2015, Remark 3.3, Lemmas 3.4 and 3.5]. Tan(A, x) and 9- Tan(A, x)
are closed in C(0) and are nonempty for all A ∈ C(Rn) and x ∈ A. Moreover,

• If T ∈ Tan(A, x) and λ > 0, then λA ∈ Tan(A, x).

• If T ∈9- Tan(A, x) and λ > 0, then λT ∈9- Tan(A, x).

• If T ∈9- Tan(A, x) and y ∈ T , then T − y ∈9- Tan(A, x).

Reifenberg-type sets and Mattila–Vuorinen-type sets.

Definition A.7 [Badger and Lewis 2015, Definitions 4.1 and 4.7]. Let A ⊆ Rn be nonempty.

(i) A local approximation class S is a nonempty collection of closed sets in C(0) such that S is a cone;
that is, for all S ∈ S and λ > 0, λS ∈ S.

(ii) For every x ∈ Rn and r > 0, define the bilateral approximability 2S
A(x, r) of A by S at location x

and scale r by
2S

A = inf
S∈S

D̃x,r
[A, x + S] ∈ [0,∞).

(iii) We say that x ∈ A is an S point of A if limr↓02
S
A(x, r)= 0.

(iv) We say that A is locally bilaterally ε-approximable by S if for every compact set K ⊆ A there exists
rK such that 2S

A(x, r)≤ ε for all x ∈ K and 0< r ≤ rK .

(v) We say that A is locally bilaterally well approximated by S if A is locally bilaterally ε-approximable
by S for all ε > 0.

(vi) For every x ∈ Rn and r > 0, define the unilateral approximability βS
A(x, r) of A by S at location x

and scale r by
βS

A(x, r)= inf
S∈S

d̃ x,r (A, x + S) ∈ [0, 1].

(vii) We say that A is locally unilaterally ε-approximable by S if for every compact set K ⊆ A there
exists rK such that βS

A(x, r)≤ ε for all x ∈ K and 0< r ≤ rK .

(viii) We say that A is locally unilaterally well approximated by S if A is locally unilaterally ε-approximable
by S for all ε > 0.
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Remark A.8. Sets that are bilaterally approximated by S are called Reifenberg-type sets and sets that are
unilaterally approximated by S are called Mattila–Vuorinen-type sets with deference to pioneering work
of Reifenberg [1960] and Mattila and Vuorinen [1990], which investigated, respectively, regularity of sets
that admit locally uniform bilateral and unilateral approximations by S = G(n,m), the Grassmannian of
m-dimensional subspaces of Rn. The concept of (unilateral) approximation numbers first appeared in
the work of Jones [1990] in connection with the analyst’s traveling salesman theorem. For additional
background, including examples of Reifenberg-type sets that have appeared in the literature, see the
introduction of [Badger and Lewis 2015].

Remark A.9. For any nonempty closed set A ⊆ Rn and point x ∈ A, the set Tan(A, x) of tangent sets
of A at x and the set 9- Tan(A, x) of pseudotangent sets of A at x are local approximation classes
by Lemma A.6. We also note that from the definitions, it is immediate that any set A ⊆ Rn which is
locally bilaterally well approximated by some local approximation class S is also locally unilaterally well
approximated by S.

The following essential properties of bilateral approximation numbers appear across a number of
lemmas in [Badger and Lewis 2015, §4], which we consolidate into a single theorem statement; see
Lemma 7.2 of that paper for the analogous properties of unilateral approximation numbers.

Lemma A.10 [Badger and Lewis 2015, §4, Remark 2.4]. Let S be a local approximation class, let A⊆Rn

be nonempty, let x, y ∈ Rn, and let r, s > 0. Then we have the following properties:

• size: 0≤2S
A(x, r)− dist(x, A)/r ≤ 1; thus, 0≤2S

A(x, r)≤ 1 for all x ∈ A.

• scale invariance: 2S
A(x, r)=2

S
λA(λx, λr) for all λ > 0.

• translation invariance: 2S
A(x, r)=2

S
A+z(x + z, r) for all z ∈ Rn.

• closure: 2S
A(x, r)=2

S
A
(x, r).

• quasimonotonicity: If B(x, r)⊆ B(y, s) and |x − y| ≤ ts, then

2S
A(x, r)≤

s
r
[
t + (1+ t)2S

A(y, (1+ t)s)
]
.

In particular, if r < s, then 2S
A(x, r)≤ (s/r)2S

A(x, s).

• limits: If A, A1, A2, . . . ∈ C(R
n) and Ai → A in C(Rn), then

1
1+ ε

lim sup
i→∞

2S
Ai

(
x,

r
1+ ε

)
≤2S

A(x, r)≤ (1+ ε) lim inf
i→∞

2S
Ai
(x, r(1+ ε)) for all ε > 0.

The notions of S points and locally bilaterally and unilaterally well-approximated sets admit the
following characterizations in terms of tangent sets and pseudotangent sets. Here S denotes the closure
of S in C(0) with respect to the Attouch–Wets topology.

Theorem A.11 [Badger and Lewis 2015, Corollaries 4.12 and 4.15, Lemma 7.7, Theorem 7.10]. Let S
be a local approximation class and let A ⊆ Rn be a nonempty set and let x0 ∈ A. Then

(i) x0 is an S point of A if and only if Tan(A, x0)⊆ S;
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(ii) A is locally bilaterally well approximated by S if and only if

9- Tan(A, x)⊆ S for all x ∈ A;

(iii) A is locally unilaterally well approximated by S if and only if

9- Tan(A, x)⊆ {T ∈ C(0) : T ⊆ S for some S ∈ S} for all x ∈ A.

Detectability and structure theorems for Reifenberg-type sets.

Definition A.12 [Badger and Lewis 2015, Definition 5.8]. Let T and S be local approximation classes.
We say that T points are detectable in S if there exist a constant φ > 0 and a function 8 : (0, 1)→ (0,∞)
with lim infs→0+8(s)= 0 such that if S ∈ S and 2T

S (0, r) < φ, then 2T
S (0, sr) < 8(s) for all s ∈ (0, 1).

To emphasize a choice of φ and 8, we may say that T points are (φ,8) detectable in S.

Definition A.13 [Badger and Lewis 2015, Definition 5.1]. Let T be a local approximation class. The
bilateral singular class of T is the local approximation class T ⊥ given by

T ⊥ =
{

Z ∈ C(0) : lim inf
r↓0

2T
Z (0, r) > 0

}
= {Z ∈ C(0) : Tan(Z , 0)∩ T =∅}.

The following structure theorem decomposes a set A⊆ Rn that is locally bilaterally well approximated
by S into an open “regular part” AT and closed “singular part” AT ⊥ , on the condition that “regular”
T points are detectable in S.

Theorem A.14 [Badger and Lewis 2015, Theorem 6.2, Corollaries 6.6 and 5.12]. Let T and S be local
approximation classes. Suppose T points are (φ,8) detectable in S. If A ⊆ Rn is locally bilaterally well
approximated by S, then A can be written as a disjoint union

A = AT ∪ AT ⊥ (AT ∩ AT ⊥ =∅),
where

(i) 9- Tan(A, x)⊆ S ∩ T for all x ∈ AT , and

(ii) Tan(A, x)⊆ S ∩ T ⊥ = {S ∈ S :2T
S (0, r)≥ φ for all r > 0} for all x ∈ AT ⊥ .

Moreover:

(iii) AT is relatively open in A and AT is locally bilaterally well approximated by T .

(iv) A is locally bilaterally well approximated along AT ⊥ by S ∩ T ⊥ in the sense that

lim sup
r↓0

sup
x∈K

2S∩T ⊥
A (x, r)= 0

for all compact sets K ⊆ AT ⊥ .

Remark A.15. Suppose T points are (φ,8) detectable in S and A is locally bilaterally well approximated
by S. From the proof that AT is open in the proof of [Badger and Lewis 2015, Theorem 6.2], there
exist constants α, β > 0 depending only on φ and 8 such that if 2S

A(x, r
′) < α for all 0 < r ′ ≤ r and

2T
A (x, r) < β for some x ∈ A and r > 0, then x ∈ AT .
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A local approximation class S is called translation invariant if for all S ∈ S and x ∈ S, S− x ∈ S. It is
an exercise to show that if S is translation invariant, then its closure S is translation invariant, as well. If
T and S are local approximation classes such that

S is translation invariant, and T points are (φ,8) detectable in S, (A-1)

then every set X ∈S is locally (in fact, globally) bilaterally well approximated by S, whence X= XT ∪XT ⊥

and XT ⊥ is closed (since X is closed) by Theorem A.14.

Definition A.16 [Badger and Lewis 2015, Definition 7.12]. Let T and S be local approximation classes.
Assume (A-1). We define the local approximation class of T singular parts of sets in S by singT S =
{XT ⊥ : X ∈ S and 0 ∈ XT ⊥}.

Theorem A.17 [Badger and Lewis 2015, Theorem 7.14]. Let T and S be local approximation classes.
Assume (A-1). If A ⊆ Rn is locally bilaterally well approximated by S, then AT ⊥ is locally unilaterally
well approximated by singT S.

Covering profiles and dimension bounds for Mattila–Vuorinen-type sets. Finally, we record two upper
bounds on the dimension of sets that are locally unilaterally well approximated by a local approximation
class S with a uniform covering profile. Additional quantitative bounds for locally unilaterally ε-
approximable sets may be found in [Badger and Lewis 2015, §8].

For reference, let us recall a definition of Minkowski dimension; e.g., see [Mattila 1995].

Definition A.18. Let A ⊆ Rn, let x ∈ Rn, and let r, s > 0. The (intrinsic) s-covering number of A is
defined by

N(A, s) :=min
{

k ≥ 0 : A ⊆
k⋃

i=1

B(ai , s) for some ai ∈ A
}
.

For bounded sets A ⊆ Rn, the upper Minkowski dimension of A is given by

dimM(A)= lim sup
s↓0

log(N(A, s))
log(1/s)

.

For unbounded sets A ⊆ Rn, the upper Minkowski dimension of A is given by

dimM(A)= lim
t↑∞

(dimM A∩ B(0, t)).

Letting dimH (A) denote the usual Hausdorff dimension of a set A ⊆ Rn,

0≤ dimH (A)≤ dimM(A)≤ n for all A ⊆ Rn,

with dimH (A) < dimM(A) for certain sets. For the definition of Hausdorff dimension, several equivalent
definitions of Minkowski dimension, and related results, we refer the reader to [Mattila 1995].

Definition A.19 [Badger and Lewis 2015, Definitions 8.2 and 8.4]. Let S be a local approximation
class. We say that S has an (α,C, s0) covering profile for some α > 0, C > 0, and s0 ∈ (0, 1] provided
N(S ∩ B(0, r), sr)≤ Cs−α for all S ∈ S, r > 0, and s ∈ (0, s0].
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Theorem A.20 [Badger and Lewis 2015, Corollary 8.9]. Let S be a local approximation class such that
S has an (α,C, s0) covering profile. If A ⊆ Rn is closed and A is locally unilaterally well approximated
by S, then dimM(A)≤ α.

Theorem A.21 [Badger and Lewis 2015, Corollary 8.12]. Let S be a local approximation class such that
S has an (α,C, s0) covering profile. If the subspace topology on A ⊆ Rn is σ -compact and A is locally
unilaterally well approximated by S, then dimH (A)≤ α.

Appendix B: Limits of complimentary NTA domains

For reference, let us recall that a connected open set �⊂ Rn is called an NTA domain (see Definition 6.1
and Remark 6.2) if there exist constants M > 1 and R > 0 for which the following are true:

(i) � satisfies the corkscrew condition: for all Q ∈ ∂� and 0 < r < R, there exists x ∈ �∩ B(Q, r)
such that dist(x, ∂�) > M−1r .

(ii) Rn
\� satisfies the corkscrew condition.

(iii) � satisfies the Harnack chain condition: if x1, x2 ∈�∩ B
(
Q, 1

4r
)

for some Q ∈ ∂� and 0< r < R,
and dist(x1, ∂�) > δ, dist(x2, ∂�) > δ, and |x1 − x2| < 2lδ for some δ > 0 and l ≥ 1, then there
exists a chain of no more than Ml overlapping balls connecting x1 to x2 in � such that for each ball
B = B(x, s) in the chain

M−1s < gap(B, ∂�) < Ms, gap(B, ∂�)= inf
x∈B

inf
y∈∂�
|x − y|,

diam B > M−1 min{dist(x1, ∂�), dist(x2, ∂�)}, diam B = sup
x,y∈B

|x − y|.

The constants M and R are called NTA constants of �, and the value R =∞ is allowed when ∂� is
unbounded. Lemma 6.3 asserts that if Rn

\0i =�
+

i ∪�
−

i , where �+i and �−i are complimentary NTA
domains with NTA constants M and R independent of i , and 0i → 0 6=∅ in the Attouch–Wets topology,
then Rn

\0 =�+ ∪�−, where �+ and �− are complimentary NTA domains with constants 2M and R.

Proof of Lemma 6.3. Assume that we are given a sequence (0i , �
+

i , �
−

i ), constants M and R, and a
set 0 satisfying the hypothesis of the lemma. We note and will frequently use below that Rn

\�±i =�
∓

i ,
0i = ∂�

±

i , and Rn
=�+i ∪0i ∪�

−

i by the separation condition on 0i and the corkscrew conditions for �±i .

Step 0 (definition of �+ and �−). Because the sequence (0i )
∞

i=1 does not escape to infinity (as 0i → 0),
neither do (�±i )

∞

i=1. Thus, there is a subsequence of (0i , �
+

i , �
−

i ) (which we relabel) and nonempty
closed sets F+, F− ⊆ Rn such that �±i → F±. Here and below, convergence of a sequence of nonempty
closed sets in Rn is always taken with respect to the Attouch–Wets topology; we refer the reader to the first
two subsections of Appendix A for a brief introduction to this topology and to [Rockafellar and Wets 1998,
Chapter 4] or [Beer 1993, Chapter 3] for the rest of the story. Consider the open sets�+ and�− defined by

�+ = Rn
\ F− and �− = Rn

\ F+.
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We will show that Rn
\ 0 = �+ ∪�− and �+ and �− are complementary NTA domains with NTA

constants 2M and R.

Step 1
2 (�+, 0, and �− are disjoint). First, because 0i ⊆�

±

i for all i ≥ 1, 0i → 0, and �±i → F±, we
have 0 ⊆ F±, as well. Hence, by the definition of �±,

0 ∩�± ⊆ F∓ ∩�± = F∓ \ F∓ =∅.

Next, suppose that x ∈�±. Then x 6∈ F∓, whence dist(x, F∓)= δ for some δ > 0. Since �∓i → F∓, it
follows that dist(x, �∓i )≥

1
2δ for all i�1. In particular, x ∈�±i ⊆�

±

i for all i�1, because Rn
\�∓i =�

±

i .
Since �±i → F±, we obtain x ∈ F±. Thus, x 6∈�∓ whenever x ∈�±. We conclude that �+ ∩�− =∅.

Step 1 (Rn
=�+∪0∪�−). Let x ∈Rn. Because Rn

=�+i ∪�
−

i , at least one of the following alternatives
occur: x ∈ �+i for infinitely many i or x ∈ �−i for infinitely many i . Hence x ∈ F+ or x ∈ F−, since
�+i → F+ and �−i → F−. As x was arbitrary, we have

Rn
= F+ ∪ F− = (F+ \ F−)∪ (F+ ∩ F−)∪ (F− \ F+)=�+ ∪ (F+ ∩ F−)∩�−.

Therefore, as soon as we show that F+ ∩ F− = 0, we will have Rn
=�+ ∪0 ∪�+.

To prove that F+ ∩ F− ⊆ 0, suppose that y ∈ F+ ∩ F−. Since �±i → F±, we can locate points
y±i ∈ �

±

i such that y±i → y. The line segment between y+ and y− must intersect 0i = �
+

i ∩�
−

i , say
Qi ∈ [y+i , y−i ] ∩0i . Then Qi → y, and because 0i → 0, we obtain y ∈ 0. Thus, F+ ∩ F− ⊆ 0.

To prove that 0 ⊆ F+ ∩ F−, suppose that z ∈ 0. Since 0i → 0, there exists zi ∈ 0i such that zi → 0.
Because 0i = ∂�

+
= ∂�−, we can locate points z±i ∈ �

±

i ∩ B(zi , 1/ i). Then z±i → z, and because
�±i → F±, we obtain z ∈ F+ ∩ F−. Thus, 0 ⊆ F+ ∩ F−.

Step 3
2 (∂�± ⊆ 0). Since �+ and �− are open and disjoint by Steps 0 and 1

2 , �± coincides with the
interior of �± and �∓ is contained in the exterior of �±. Therefore, the boundary of �± must be
contained in Rn

\ (�± ∪�∓)= 0 by Step 1.

Step 2 (Corkscrew condition for �±). Suppose that Q ∈ ∂�± and 0< r < R. By Step 3
2 , Q ∈ 0. Since

0i → 0, there exists Qi ∈ 0i = ∂�
±

i such that Qi → Q. By the corkscrew condition for �±i , there exists
a point y±i ∈�

±

i ∩ B
(
Qi ,

3
4r
)

such that

dist(y±i , �
∓

i )= dist(y±i , ∂�
±

i ) >
3r

4M
.

Assume i ≥ 1 is sufficiently large that

y±i ∈ B
(
Qi ,

3
4r
)
⊂ B

(
Q, 4

5r
)

and dist(y±i , F∓)≤ |y±i − Q|< 4
5r.

Then dist(y±i , F∓)= dist
(
y±i , F∓ ∩ B

(
Q, 4

5r
))

. Hence, by the triangle inequality for excess,

dist(y±i , �
∓

i )≤ dist
(
y±i , F∓ ∩ B

(
Q, 4

5r
))
+ ex

(
F∓ ∩ B

(
Q, 4

5r
)
, �∓i

)
= dist(y±i , F∓)+ ex

(
F∓ ∩ B

(
Q, 4

5r
)
, �∓i

)
.
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The last term vanishes as i→∞, since �∓i → F∓ in the Attouch–Wets topology. Thus,

dist(y±i , F∓)≥ dist(y±i , �
∓

i )− ex
(
F∓ ∩ B

(
Q, 4

5r
)
, �∓i

)
>

2r
3M

for all i � 1. (B-1)

By compactness, we can choose subsequences (y±i j )
∞

j=1 of (y±i )
∞

i=1 such that y±i j → y± for some
y± ∈ B

(
Q, 4

5r
)
⊂ B(Q, r). By (B-1), it follows that dist(y±, F∓) ≥ 2r/(3M) > r/(2M). Thus,

y± ∈�± ∩ B(Q, r) and
dist(y±, ∂�±)= dist(y±, F∓) > r

2M
.

Therefore, �± satisfies the corkscrew condition with constants 2M and R. We note that by an obvious
modification of the argument, one can show that �± satisfies the corkscrew condition with constants M ′

and R for all M ′ > M .

Step 5
2 (∂�± = 0). By Step 3

2 , ∂�± ⊆ 0. To see that 0 ⊆ ∂�±, suppose that Q ∈ 0. By the proof of
Step 2, the ball B(Q, r) contains points in �± for all 0 < r < R. Because �∓ is disjoint from �±, it
follows that Q ∈ ∂�±. We conclude that ∂�± = 0.

Step 3 (Harnack chain condition for �±). Assume that x1, x2 ∈�
±
∩ B

(
Q, 1

4r
)

for some Q ∈ 0 = ∂�±

and 0< r < R. Furthermore, assume that δ1 :=dist(x1, ∂�)>δ, δ2 :=dist(x2, ∂�)>δ, and |x1−x2|<2lδ

for some δ > 0 and l ≥ 1. We must show that x1 can be connected to x2 in�± by a “short” chain of balls in
�± remaining “far away” from the boundary ∂�±, or equivalently, remaining “far away” from F∓. Since
0i → 0, there exists Qi ∈ �

±

i such that Qi → Q. Because �∓i → F∓ in the Attouch–Wets topology,
for all i ≥ 1 sufficiently large, r(1+ |Q− Qi |) < R, x1, x2 ∈�

±

i ∩ B
(
Qi ,

1
4r(1+ |Q− Qi |)

)
, and

dist(x1, ∂�
±

i ) >
1
2δ1 >

1
2δ, dist(x2, ∂�

±

i ) >
1
2δ2 >

1
2δ, |x1− x2|< 2lδ = 2l+1 1

2δ.

(The details are similar to those written in the proof of the corkscrew condition in Step 2.) By the Harnack
chain condition for �±i , we can find a chain of no more than M(l + 1)≤ 2Ml balls connecting x1 to x2

in �±i such that for each ball B = B(x, s) in the chain,

M−1s < gap(B, ∂�±i ) < Ms

and
diam B > M−1 min{dist(x1, ∂�

±

i ), dist(x2, ∂�
±

i )}.

Since �∓i → F∓ in the Attouch–Wets topology, it follows that for all sufficiently large i ,

(2M)−1s < gap(B, ∂�±) < 2Ms

and
diam B > (2M)−1 min{dist(x1, ∂�

±), dist(x2, ∂�
±)}.

(Again, the details are similar to those in Step 2.) By the gap condition, we also know each ball in the
chain belongs to �±. Therefore, �± satisfies the Harnack chain condition with constants 2M and R. We
remark that given the discrete nature of the constant in the Harnack chain condition (counting balls), we
cannot expect to be able to replace 2M by λM for arbitrary λ > 1.
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Step 4 (�+ and �− are connected). It is well known that every NTA domain is a uniform domain with
constants that depend only on the interior corkscrew condition and Harnack chain condition; e.g., see
[Azzam et al. 2017a, Theorem 2.15]. Explicitly, this means that for every M > 1 and R > 0, there
exist C > 1 and c ∈ (0, 1) such that for every NTA domain �⊆ Rn with NTA constants M and R, and
for every x0, x1 ∈ �, there exists a continuous path γ : [0, 1] → � such that γ (0) = x0, γ (1) = x1,
length(γ )≤ C |x0− x1|, and dist(γ (t), ∂�)≥ c min{dist(x0, ∂�), dist(x1, ∂�)} for all t ∈ [0, 1].

Let x0 and x1 be arbitrary distinct points in �±, and set

δ =min
{
dist(x0, ∂�

±), dist(x1, ∂�
±)
}
=min

{
dist(x0, F∓), dist(x1, F∓)

}
.

Assign B = B(x0, 3C |x0− x1| + 3δ), where C is the constant from the previous paragraph. Note that B
contains x0, x1, and every path passing through x0 of length no greater than C |x0−x1|, and the closest point
in F∓ for each item listed above, with room to spare. Since �∓i → F∓ in the Attouch–Wets topology,

ex(�∓i ∩ B, F∓) < 1
3 cδ and ex(F∓ ∩ B, �∓i ) <

1
3 cδ for all i � 1, (B-2)

where c is the constant from the previous paragraph. Pick any i such that (B-2) holds. Then dist(x0, �
∓

i )≥(
1− 1

3 c
)
δ > 2

3δ and dist(x1, �
∓

i )≥
(
1− 1

3 c
)
δ > 2

3δ. In particular, x0, x1 ∈�
±

i and

min
{
dist(x0, ∂�

±

i ), dist(x1, ∂�
±

i )
}
> 2

3δ.

Since�±i is an NTA domain with NTA constants M and R, by the previous paragraph we can find a contin-
uous path γ : [0, 1]→�±i such that γ (0)= x0, γ (1)= x1, length(γ )≤C |x0− x1|, and dist(γ (t),�∓i )=
dist(γ (t), ∂�±i ) >

2
3 cδ for all t ∈ [0, 1]. Using (B-2) once again, we obtain dist(γ (t), F∓) > 1

3 cδ for all
t ∈ [0, 1]. In particular, γ (t) ∈�± for all t ∈ [0, 1]. Thus, γ is a continuous path joining x0 to x1 inside
the set �±. Since x0 and x1 were fixed arbitrarily, we conclude that �± is connected.

Conclusion. We have shown that Rn
\ 0 = �+ ∪�− (Step 1), where �+ and �− are open (Step 0),

connected (Step 4), and satisfy corkscrew (Step 2) and Harnack chain conditions (Step 3) with constants
2M and R. Therefore, Rn

\0 =�+∪�− is the union of complimentary NTA domains �+ and �− with
NTA constants 2M and R, as desired. �
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