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LOCAL ENERGY DECAY AND SMOOTHING EFFECT
FOR THE DAMPED SCHRODINGER EQUATION

MOEZ KHENISSI AND JULIEN ROYER

We prove the local energy decay and the global smoothing effect for the damped Schrodinger equation
on R?. The self-adjoint part is a Laplacian associated to a long-range perturbation of the flat metric. The
proofs are based on uniform resolvent estimates obtained by the dissipative Mourre method. All the
results depend on the strength of the dissipation that we consider.

1. Introduction

Let d = 3. Our purpose in this paper is to study on R? the local energy decay and the Kato smoothing
effect for the damped Schrodinger equation

—idiu+ Pu—ia(x)(D)*a(x)u =0,

u(0) = uy.
The operator P is a Laplacian in divergence form associated to a long-range perturbation of the usual flat
metric (see (1-2) below). For the dissipative part we have denoted by (- ) the function (1 + |- |2)% and by
D the square root of the free Laplacian, so that (D)% stands for (1 — A)%. The parameter o belongs to
[0, 2[. The nonnegative-valued function a will be assumed to be of short range (see (1-3)), so that in terms
of spacial decay, we have an absorption index a(x)? which decays at least like (x) 272 for some p > 0.

(1-1)

It is known that the free Schrodinger equation ((1-1) with P = —A and a = 0) preserves the L?-norm
but satisfies the local energy decay: if ug is supported in the ball B(R) = {|x| < R} of R? for some
R > 0 we have

. _a
lle" A uollz2(B(ry) < Cr(t)™ 2 luollL2gay-

This means that the “mass” of the solution escapes at infinity. On the other hand, the Schrédinger equation
has a regularizing effect:

l .
/[R{”(l - A)4eltAu0||]2JZ(B(R)) dr < CRH”O“%Z(Rd)'

There are many papers dealing with these properties for more and more general Schrodinger equations.
Concerning the local energy decay for a self-adjoint Schrodinger equation, we only refer to [Rauch
1978] for the Schrodinger operator with an exponentially decaying potential, to [Tsutsumi 1984] for the
free Schrodinger equation on an exterior domain, and to [Bouclet 2011; Bony and Héfner 2012] for a
Laplacian associated to a long-range perturbation of the flat metric. For all these papers, the local energy

MSC2010: 35B40, 35Q41, 35B65, 47A55, 47B44.
Keywords: local energy decay, smoothing effect, damped Schrodinger equation, resolvent estimates.
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(1IN

decays like ~ 2 or like =5+ under a nontrapping assumption. There is also a huge literature for the
closely related problem of the local energy decay for the wave equation (see [Lax et al. 1963; Ralston
1969; Morawetz et al. 1977; Burq 1998; Tataru 2013; Guillarmou et al. 2013]).

Concerning the smoothing effect we mention [Constantin and Saut 1988; Sjolin 1987] for the Laplacian
on R¥, [Ben-Artzi and Klainerman 1992] for the Schrodinger operator with a potential, [Burq et al. 2004]
for the problem on an exterior domain and [Erdogan et al. 2009] for the magnetic Schrodinger equation.
We also refer to [Doi 1996; 2000; Burq 2004] for the necessity of the nontrapping condition.

In the dissipative context, the local energy decay for the damped Schrodinger equation in an exterior
domain has been proved in [Aloui and Khenissi 2007]. In this context, the nontrapping condition can be
replaced by the geometric control condition: there can be bounded classical trajectories but they have
to go through the damping region (see [Rauch and Taylor 1974; Bardos et al. 1992] for the original
geometric control condition, and [Aloui and Khenissi 2002] for the exterior geometric condition on
an unbounded domain). Then the local energy decays like t_%, as in the self-adjoint case under the
nontrapping condition. A similar result has been obtained in [Aloui and Khenissi 2010] on an exterior
domain with dissipation at the boundary, and in [Royer 2015] for the same problem on a wave guide (see
also [D’ Ancona and Racke 2012] for the undamped problem on a nonflat wave guide). In the latter case,
the global energy decays exponentially and we have a smoothing effect in the unbounded directions. We
also mention [Bortot and Cavalcanti 2014], where an exponential decay for the global energy is proved
for the solution of the Schrodinger equation with a dissipation effective on a neighborhood of the infinity.

The dissipation by a potential (¢« = 0 in our setting) is not strong enough to recover under the damping
condition the same smoothing effect as under the nontrapping condition. However, it is known that this is
the case for the so-called regularized Schrodinger equation (o = 1). See [Aloui 2008a; 2008b] for the
problem on a compact manifold and [Aloui et al. 2017] for the problem on an exterior domain. As in
the self-adjoint case (see [Burq 2004]), we can recover a H 3= smoothing effect if only a few classical
trajectories fail to satisfy the assumption (see [Aloui et al. 2013]).

In these works, the problem is a compact perturbation of the free Schrodinger equation. Our purpose
in this paper is to prove the local energy decay and the Kato smoothing effect for an asymptotically
vanishing perturbation. In a similar context, the local energy decay has been studied for the dissipative
wave equation in [Bouclet and Royer 2014].

We now describe more precisely the setting of our paper. We consider on R¢ a long-range perturbation
G (x) of the identity: for some p > 0 there exist constants Cg for 8 € N4 such that

102 (G(x) —1)] < Cp(x) P 1AL, (1-2)

Concerning the dissipative term, a is a smooth and nonnegative-valued function on R?. As already
mentioned, it is of short range:

10Pa(x)| < Cg(x)~17PIAL (1-3)

We will use the notation

By =a(x){D)%a(x) and H = P —iBy. (1-4)



LOCAL ENERGY DECAY AND SMOOTHING EFFECT FOR THE DAMPED SCHRODINGER EQUATION 1287

We recall that @ € [0, 2[ and we set

if d is even,

¢ =min(l,0) and « =
L if d is odd.

(1-5)

QU N

N‘

Then & € [0, 1] and « = 2.

We will see that H is a maximal dissipative operator on L?2. In particular, for ug € D(H) = H? the
problem (1-1) has a unique solution ¢ — e~ y5. The main purpose of this paper is to prove that this
solution satisfies the local energy decay and the Kato smoothing effect as stated in the following two

theorems:
Theorem 1.1 (local energy decay). Lete > 0. Let § > k + %, N e N and o €0, 2]. Assume that

(1) there are no bounded geodesics (see the nontrapping condition (1-8) below) or

.. , . . ~ 1
(ii) the bounded geodesics go through the damping region (see (1-9)), Na +o0 =22 and § > N — 5.

Then there exists C = 0 such that for ug € H 93 and t = 0 we have

—itH

_d
e uoll72.—s < Ct~ 278 ||lug| go.s.
L H

In this statement L2 % denotes the weighted space L2({x)™2% dx), while ||ug| zo.s is the L?-norm
of (x)8(D)%uy.

We remark that we have to take o = 2 in the second case if « = 0. This means that we have a loss of
two derivatives. If @ > 0 we can take o = 0 (no loss of derivative) as long as we choose § large enough
(if o« > 1 then we can take N = 2, and in this case the condition § > N — % is weaker than § > k + %)
Under the nontrapping condition we can always take o = 0.

In this setting, we obtain a decay which is almost as good as in the free case. We recall that for such
a P, this is the best decay known even in the particular case a = 0 (see [Bouclet 2011]).

Theorem 1.2 (global smoothing effect). Assume that the damping condition (1-9) holds. Then there exists
C = 0 such that for all ug € L? we have

+0o0
/ 1) (D)
0

Moreover, under the nontrapping condition (1-8), we can replace & by 1.

e g7, dt < Clluol7 -

NIRe

The last statement says that, despite the non-self-adjointness of H, we recover the same gain of
regularity as in the self-adjoint case under the nontrapping assumption. However, the main result is that if
the damping is strong enough, we have the same result for a trapping metric under the usual geometric
condition. For a weaker damping we cannot reach the optimal result, but we still have some gain of
regularity. As for the local energy decay above and for the resolvent estimates below, we can consider a
very strong damping (o > 1), but this does not improve the results (even if we allow trapped trajectories,
there still are trajectories going to infinity, and their contributions are not controlled by the damping).
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The proofs of Theorems 1.1 and 1.2 are based on uniform resolvent estimates. According to
Proposition 2.2 below, the operator H is maximal dissipative, so for all z in

Ct:={zeC:Ilmz >0}
we can consider in £(L?) (the space of bounded operators on L?) the resolvent
R(z)=(H —z)"L (1-6)

After a Fourier transform, the solution u of (1-1) can be written as the integral over frequencies Re(z)
of this resolvent when Im(z) goes to 0 (see Section 6). Thus the problem will be reduced to proving
uniform estimates for R(z) and its derivatives for Im(z) small, and then to controlling the dependence of
these estimates with respect to Re(z). Since the self-adjoint part P of H is a nonnegative operator, the
estimates for Re(z) < 0 are easy: for n € N and z € C4 with Re(z) < —¢p < 0 we have

C
[Re(z)[*+1°
Thus we will focus on z € C4+ with Re(z) = —cg, where 0 < cg < 1. As usual, the difficulties will arise

for low frequencies (Re(z) close to 0) and high frequencies (Re(z) > 1). We first state the uniform
resolvent estimates for intermediate frequencies:

IR (D)l per2y < (1-7)

Theorem 1.3 (intermediate-frequency estimates). Let K be a compact subset of C\ {0}. Let n € N and
§>n+ % Then there exists C = 0 such that for all z € K N C4 we have

1) P R @) (x) Pl 2y < C.

We remark that compared to the resolvent for the dissipative wave equation (see [Bouclet and Royer
2014]), the derivatives of the resolvent correspond to its powers:

R™(z) =n! R (2).

This will significantly simplify the discussion.

It is known that even for the free Laplacian, the estimates of Theorem 1.3 fail to hold uniformly when
z goes to 0 if n is too large. This explains the restriction in the rate of decay in Theorem 1.1. For low
frequencies we prove the following result:

Theorem 1.4 (low-frequency estimates). Let ¢ > 0. Let n € N and let § be such that

n+i if2n+1=d,
n+1 if2n+1<d.

6>

Then there exist C = 0 and a neighborhood U of 0 in C such that for all z € U N C4+ we have
d
1) PR @ () ey < CA+ 2| 275717,

In the self-adjoint case we can improve the estimate for a single resolvent. More precisely we can
replace the weight (x) ™% for § > 1 by (x)~L. See [Bouclet and Royer 2015]. This is particularly interesting
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for Theorem 1.2, which does not require estimates for the derivatives of the resolvent. This sharp resolvent
estimate is also valid in our dissipative context:

Theorem 1.5 (sharp low-frequency estimate). There exist C = 0 and a neighborhood U of 0 in C such
that for all z € U N C1 we have

1) T R(2) () Ml gr2y < C

The high-frequency properties of the problem are closely related to the corresponding classical problem.
Here, the classical flow is the geodesic flow on R24 ~ T*R4 for the metric G(x)~L It is the Hamiltonian
flow corresponding to the symbol

p(x.§) =(Gx)§. ).
We denote this flow by ¢’ = (X(¢), E()). Let
9y = {w € p1({1}) : sup, e X(t, w)] < +00}.

The assumptions used in the statements of Theorems 1.1 and 1.2 are the following. We say that the
classical flow is nontrapping if there is no bounded geodesic:

Qp=0. (1-8)

We say that the damping condition on bounded geodesics (or geometric control condition) is satisfied if
every bounded geodesic goes through the damping region {a(x) > 0}:

Yw e Qp, 3T € R such that a(X(T,w)) > 0. (1-9)

Theorem 1.6 (high-frequency estimates). Letn € N and § > n + %

(1) Assume that the nontrapping assumption (1-8) holds. Then there exists C = 0 such that for z € C+
with Re(z) = C we have

_ _ _n+1
1) R TV (2) ()l poy < Clz| ™ 2

(i1) Assume that the damping condition (1-9) holds. Then there exists C = 0 such that for z € C1 with
Re(z) = C we have

_ _ _(nt+Da
1) SR ) (x) P 2y < Clz| 2

(we recall that & was defined in (1-5)).

To prove the uniform estimates of Theorems 1.3, 1.4 and 1.6 we use the commutators method of Mourre
[1981] (see also [Amrein et al. 1996] for an overview of the subject). The method has been generalized to
the dissipative setting in [Royer 2010], then in [Bouclet and Royer 2014] for the estimates of the derivatives
of the resolvent and finally in [Royer 2016] for a dissipative perturbation in the sense of forms. Here the
dissipative perturbation By is well defined as an operator on L?Z relatively bounded with respect to the
self-adjoint part P. However, for d € {3, 4} the rescaled version of the dissipative part which we are going
to use for low frequencies will be uniformly bounded as an operator in £(H !, H~!) but not in L(H?2, L?),
so we will have to see H as a dissipative perturbation of P in the sense of forms. See Remark 4.7.
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Let us come back to the statement of Theorem 1.2. To prove this theorem we will use in particular
the resolvent estimates of Theorem 1.6, which in turn rely on the damping assumption (1-9). These
estimates and hence the smoothing effect we obtain are optimal (in the sense that they are as good as in the
self-adjoint case with the nontrapping condition) when « = 1. However, with a weaker dissipation (o < 1)
we can obtain (weaker) resolvent estimates and a (weaker) smoothing effect. Similarly, it is possible
to prove high-frequency resolvent estimates weaker than those of Theorem 1.6 without the damping
condition. We have already mentioned [Burq 2004] in the self-adjoint case and [Aloui et al. 2013] in the
dissipative setting, where only a few hyperbolic classical trajectories deny the assumption (in these cases
the high-frequency resolvent estimates are of size In|z|/ \/m , which gives a gain of % —¢€ derivative). We
do not prove resolvent estimates without damping condition in this paper, but we emphasize this fact with
a more general version of Theorem 1.2 (for self-adjoint operators, we mention the result of [Thomann
2010], which gives a relation between the smoothing effect and the decay of the spectral projections).

Theorem 1.7. Let y € [0, 2]. Assume that there exists C = 0 such that for all z € C4+ we have
_ _ _r
1) T RE@ () My < Cl2) 72 (1-10)

Then for all ug € L? we have

+o0
_ Y _;
/ Ix) "1 (D)2 e Hug|7, dt < Cllugl3>.
0

It is classical in the self-adjoint setting to prove the smoothing effect from resolvent estimates by
means of the theory of relatively smooth operators in the sense of Kato [1966] (see also [Reed and Simon
1978]). Other ideas have been used for dissipative operators (see [Aloui et al. 2013; 2017]). Howeyver, the
theory of Kato can also be used in this context (see [Royer 2010; 2015]). We will follow this idea to
prove Theorem 1.7 and hence Theorem 1.2.

This paper is organized as follows. In Section 2 we recall all the abstract properties we need concerning
dissipative operators (including the statement of the Mourre method). In Section 3 we prove Theorem 1.3.
In Section 4 we deal with low frequencies. We first prove Theorem 1.4 for a small perturbation of the free
Laplacian in Section 4A and then in the general setting in Section 4B. Theorem 1.5 is proved in Section 4C.
In Section 5 we prove Theorem 1.6 concerning the high-frequency resolvent estimates. Finally, we turn to
the time-dependent problem: we prove Theorem 1.1 in Section 6 and Theorems 1.7 and 1.2 in Section 7.

2. Abstract properties for dissipative operators

In this section we recall some general properties about dissipative operators. In particular we give the
version of the Mourre’s method that we use in this paper.
Let H be a Hilbert space. An operator H with domain D(H ) on H is said to be dissipative (respectively
accretive) if
Vo eD(H), Im{(Hp,p)y <0 (respectively Re(Ho, )y = 0).

Moreover H is said to be maximal dissipative (respectively maximal accretive) if it has no other dissipative
(respectively accretive) extension than itself. Notice that H is (maximal) dissipative if and only if i H is
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(maximal) accretive. We recall that a dissipative operator H is maximal dissipative if and only if there
exists z € C4 such that the operator (H —z) has a bounded inverse on #. In this case any z € C belongs
to the resolvent set of H and |
- 2-1
Im(z) @D
According to the Hille—Yosida theorem this implies in particular that —i H generates a contractions semi-
group, and then for all ug € D(H ) the function u : t > e “**# y belongs to CO(R4, D(H))NC ' (R4, H)
and is the unique solution for the problem

I(H = 2)" 20 <

—id;u+Hu=0 Vit>0,
u(0) = up.

Moreover we have
Vez 0. fu@)n < lluolln-

Remark 2.1. Assume that H is both dissipative and accretive. Then it is maximal dissipative if and only
if it is maximal accretive. Indeed both properties are equivalent to the fact that (H — (—14i)) has a
bounded inverse on H. Moreover, for z € C with Im(z) > 0 or Re(z) < 0 we have

1
max(Im(z), —Re(z))’

I(H =2)" 2y <

Proposition 2.2. The operator H defined by (1-4) is maximal dissipative and maximal accretive on L.

Proof. The operators P and By are self-adjoint and nonnegative on L2, so H = P —iB,, is dissipative
and accretive. Let ¢ € D(P) = H?2. By interpolation there exists C > 0 (which only depends on a and o)
such that for any ¢ > 0

a 1—« o
1BagllL> < Cllellme < Cllol gz el 2> < zaeClellg2 +C (1 z0)e 24 gl L2

With & > 0 small enough we obtain that the dissipative operator —i By, is relatively bounded with respect
to P with relative bound less than 1. According to [Royer 2010, Lemma 2.1], this proves that H is
maximal dissipative in L2 By Remark 2.1, H is also maximal accretive. O

According to Proposition 2.2, the estimate of Remark 2.1 holds for H in £(L?). As already mentioned,
the difficulties in Theorems 1.3, 1.4 and 1.6 come from the behavior of the resolvent R(z) when the
spectral parameter z € C4 approaches the nonnegative real axis. For this we are going to use a dissipative
version of the Mourre method, which we recall now.

Let go be a quadratic form closed, densely defined, symmetric and bounded from below on H. We set
K = D(qo). Let gg be another symmetric form on H, nonnegative and gg-bounded. Let ¢ = gop —ige
and let H be the corresponding maximal dissipative operator (see Proposition 2.2 in [Royer 2016]). We
denote by H : K — K* the operator which satisfies ¢(¢, V) = (He, V) ik for all ¢, ¢ € K. Similarly,
we denote by Ho and O the operators in £(K, K*) which correspond to the forms gg and gg, respectively.
By the Lax—Milgram theorem, the operator (H — z) has a bounded inverse in £(K* K) for all z € C4.
Moreover for ¢ € H we have (H —z) 1o = (I-I —2)7 .
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Definition 2.3. Let A be a self-adjoint operator on H and N € N* We say that A is a conjugate operator
(in the sense of forms) to H on the interval J, up to order N, and with bounds o € ]0, 1], 8 = 0 and
Y = 0 if the following conditions are satisfied:

(i) The form domain K is left invariant by e *?4 for all € R. We denote by £ the domain of the

generator of e /14|,

(ii) The commutators A® = [Hy,iA] and A; = [H ,iA], a priori defined as operators in £(£, £*), extend
to operators in L(K, K*). Then for all n € [1, N] the operator [A,,iA] defined (inductively) in
L(E,E*) extends to an operator in L(K, K*), which we denote by A, 1.

(iii)) We have
ALl < Vo YN, A1+ BO[IA° <@ YN, A1 Alll+ BIIO, Alll < @0 YN

and
N+1

Z ARl cgcc) S oY,
n=2

where all the norms are in L(KC, K*).

(iv) We have
17 (Ho)(A® + BO) 1, (Ho) = a9 1 (Hop). (2-2)

Theorem 5.5 of [Royer 2016] in the particular case where all the inserted factors are equal to Idy gives
the following abstract resolvent estimates:

Theorem 2.4. Suppose the self-adjoint operator A is conjugate to the maximal dissipative operator H
on J up to order N = 2 with bounds (xo, 8, Yn). Letn € [1,N]. Let I C J bea compact interval.
Let§ >n— % Then there exists ¢ = 0 which only depends on J, 1, 8, B and Yy and such that for all
z € Cr,4+ we have

I(A) 3 (H —2)™(A) | gy < Of_n.
0

We finish this general section with the so-called quadratic estimates. The following result is a
consequence of Proposition 4.4 in [Royer 2016]:

Proposition 2.5. Let T € L(K,H) be such that T*T < qg in the sense of forms on K. Let Q € L(H, K*).
Then for all z € C+ we have
~ _ ~ B 1
I7(H 27 Qoo < 10*(H — 27 Q11
Applied with Q = T'* this proposition gives the following particular case:
Corollary 2.6. Let T be as in Proposition 2.5. Then for all z € C+ we have
IT(H =2)"" T e < 1.

We are going to use all these results with the forms go : ¢ — (P, ¢) and gg : ¢ — (B¢, ¢) defined
on K = H'(R?).
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3. Intermediate-frequency estimates

In this section we prove Theorem 1.3. For this, we will apply Theorem 2.4 with the generator of dilations
as the conjugate operator. Let

We recall in the following proposition the main properties of A that we are going to use in this paper:

Proposition 3.1. (i) For 0 € R, u € S and x € R? we have
(eieAu)(x) = e%u(egx).
(ii) For j €[1,d] andy € C®(R?) we have on S
[0;,iA]=0; and [y,iA]=—(x-V)y.

(iii) For p € [1,+0o0], 6 € Rand u € S we have

||ei9A 9(%—%

ullLr = e® 55| Lo

Now we give a proof of Theorem 1.3:

Proof of Theorem 1.3. Let E > 0. We check that the generator of dilations A is a conjugate operator
for H on a neighborhood J of E in the sense of Definition 2.3. The form domain of H is the Sobolev
space H'! (R?). According to Proposition 3.1, it is left invariant by the dilation e~*?4 for any ¢ € R.
By pseudodifferential calculus we can see that the commutators [P,iA], [[P,iA],iA], [B«,iA] and
[[Bw,iA],iA] define operators in £L(H?2, L?), hence in £(L? H~2) by duality, and in £(H !, H™1) by
interpolation.! Finally, we use the usual trick for the main assumption. For o > 0 we set J, =[E—0, E+0].
We have
15, (P)[P,iA]1;,(P)=1;,(P)2P1,;, (P)+ W1, (P)
=2(E—-0)1,;,(P)+ W1, (P),
where
W:=1,,(P) diV((x . V)G(x))V

is a compact operator. Since £ > 0 is not an eigenvalue of P (see [Koch and Tataru 2006]) the operator
1;,(P) goes strongly to 0 when o goes to 0. Then for o small enough we have

15, (P)[P,iA]1;,(P)= EL1; (P).

Thus we can apply Theorem 2.4, which gives Theorem 1.3 for Re(z) € J, and with weights (A4)~%.

By compactness of K C C* and the easy estimate of Remark 2.1, we have a uniform estimate for all

1 In fact we can also compute these commutators explicitly with Proposition 3.1, except for the commutators of (D)% with A:
for this we can write (D)% = (1 — A)2 x (1 — A)72(—A) 5 and use the Helffer—Sjostrand formula for the second factor (see
[Dimassi and Sjostrand 1999; Davies 1995]).
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z € C4 N K. It remains to replace (4)~% by (x)~%. For this, we use the resolvent identity
R(z)=R(@{)+ (z—i)R({)R(z) = R(@{)+ (z—i)R(2)R().
It gives in particular, for v > 2,
R"(z) = R(i)(R"(2) +2(z —i)R" "1 (z) + (z —i)*R" (2)) R(i).

With these equalities in hand, we can prove by induction on m € N* that R?*1(z) can be written as a
sum of terms of the form (z —i)# R"+t1+8 (i) with B € N or

(Z _ i)zm_n_1+vRm(i)Rv(Z)Rm(i),

where max(1,n + 1 —2m) <v <n+ 1. For any 8 € N, we know R"+1+8 (i) is uniformly bounded in
L£(L?). On the other hand,

[P RO R @R™ @) ()7 < [) 7 R @A) [ [ (4)7° R () (A [ {4)° R™ (1) )" -

The first and third factors are bounded by pseudodifferential calculus if m is large enough and the second
has been estimated uniformly by the Mourre method. This concludes the proof of Theorem 1.3. O

4. Low-frequency estimates

In this section we prove Theorems 1.4 and 1.5. As in [Bouclet 2011; Bouclet and Royer 2014], the
proof of Theorem 1.4 is based on a scaling argument for a small perturbation of the free Laplacian
(see Section 4A), and then on a perturbation argument to deal with the general case (see Section 4B).
Theorem 1.5 is proved in Section 4C.

Let y € Cé’o([R{d) be equal to 1 on a neighborhood of 0. For 1 € ]0, 1] we set y, : x = x(nx). Then
for n1 €10, 1] we set Gy, (x) = xp, (X) g + (1 — xp, (x))G(x),

Py, =—divGy,(x)V and Py =P — Py =—div(xy, (x)(G(x) —I4))V. 4-1)
For the dissipative part we set
B;‘;z =a(l— yp)(D)*a+ayy,(D)*a(l— xy,) 4-2)
and
33‘2 ¢ =Ba— 373[2 = aan(D)aaan’
where 7, € |0, 1]. Finally, for the full operator we define

Hj= Py, —iBY, and Rj(z)=(H;—2)"",

where 7 = (171, 12) €]0, 1]? and z € C4.. The fact that we can choose 11 # 1, will be important in the
sequel (see Remark 4.11).
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4A. Low-frequency estimates for a small perturbation of the Laplacian. In this paragraph we prove
Theorem 1.4 with R(z) replaced by Rj(z). Then in Section 4B we will add the contributions of Py, .
and BY

n2,¢"
The proof relies on a scaling argument. To this purpose we use for z € C* the operator

©; = exp(%iIn|z|A).

For u € S and x € R¢ we have (O,u)(x) = |z|%u(|z|%x). According to Proposition 3.1 we have for
p €[l +o0]
d_d
1©z]lcwry = 2]+ 22 (4-3)

For a function u on R¢ and z € C* we denote by u the function

H(m)

Compared to the scaling for the wave equation we are using the parameter /|z| instead of |z|.

Now we introduce the rescaled versions of our operators:

I _ .
Hy,z = m(az 'H70; = Py —iBy, ..
where Py, ; = —div Gy, (x)V and
1 o 1 o
Bgz,z = m((l — Xn)@)z(1—|z|A)2a; + H(ana)z(l —z1A)2((1 = xnp)a):.

Then for ¢ € C4 we set Rj () = (Hj;,z — ) ™1, so that with the notation Z = z/|z| we have for z € C

R;(2) = |;—|®ZR,5,Z(2)®;1.

Our analysis of the rescaled operators is based on the fact that if a function ¢ decays like (x)_”_g
(recall that p > 0 is fixed by (1-2) and (1-3)) then the multiplication by the rescaled function ¢, behaves
like a differential operator of order v for low frequencies, in the sense that it is of size A" as an operator
from HS to H*~". Since this observation relies on the Sobolev embeddings, there is however a restriction
on the choices of v and s. For o € R, let S~ (R?) be the set of functions ¢ € C°°(R%) such that

1976 ()] < {x)77 1P,
Forv=0, N eNand¢ € S_”_g([l%d) we set

I¢lon = sup sup [(x)" T2 B9 (x - V)" ) ().

Bl<i+1 g < me v xERY

We recall that the integer ¥ was defined in (1-5). The following result is Proposition 7.2 in [Bouclet and
Royer 2014]:
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Proposition 4.1. Let v € [0, %[ and s € ]—%, %[ be such that s —v € ]—%, %[ Then there exists C = 0

such that for ¢ € S_”_g(le), u € HS and A > 0 we have
prull gs—v < CAlBllv,0 llull s
garlls—v < CAY [ @llv,o llullas-

The reason for replacing G(x) by G, (x) and a by a(1 — x;,) in the definition of Hj is that for all
N € N we have

d
AN = Y NGy k() =8 xllon + 10— xn)allin (laliy +lxnalin) = _QO(IﬁI"/z)- (4-4)
k=1 7

Thus this quantity is as small as we wish if we choose 1 and 7, small enough.
Given two operators 7" and S we set ad%(S) =S, adr(S) = ad} (S) =[S, T] and then, for m = 2,
ad?(S) = [ad?~1(S), S]. For w = (i1, ..., ig) € N? we set
ady 1= ad}] ---adid.
At the beginning of the section we said that Hj has to be close to the free Laplacian. What we need
precisely is the following result:

Proposition 4.2. Let ueN?, meN, g9 >0 and s €R. There exists ng €0, 1] such that for 1= (91, n2) €
10, no]? the following statements hold:
1) If s e ]—%, %[ then for z € C4 with |z| < 1 we have
ladiady (Pyy,z )l ceprs+1, ms—1y < 0.

(i) If s e ]—% +1, % — 1[ then we also have

||ad§adffo7‘2,z ”L(HS‘H,HS_I) < &p.
(iii) Foru € H? we have

2l g2 < 11 Pyyull 2 < 20Jull o

Proof. The first statement is the same as for the wave equation. See Proposition 7.6 in [Bouclet and Royer
2014]. In particular with s = 1, |z| = 1 and g9 = % we obtain the last statement. It remains to prove (ii).
Let D, = /|z|D. We write

((1— an)a)z(Dz)aaz = (1= xp)a)z(—|z|A + 1)(Dz>a_2az-
Then adﬁadZ’ (((1 — X,,z)a)z(DZ)“aZ) can be written as a sum of terms of the form
ad{1ady! (1 — xy)a);) ad¥2ad’y? (—|z| A + 1) ad{3ady> ((D;)*~2) ad¥+ad’}* (az).

where (1, o, w3, g € N“ and my,mp, m3,my € [0, m] are such that ;1 + p2 + n3 + 4 = p and
my +my+ms3+mg =m. Let y € [0, 1]. According to Proposition 4.1 we have for z € C

1+45— Y
ladttads" ((1 = g)a)z | cqars-1m,mro-1y Sy 2 Iz (4-5)
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and
y
||adﬁ4ad1'4"4az I ccars+1, ms+1-vy < 12]2. (4-6)

To estimate ad’> adm3(( 2)¥72), we use the Helffer—Sjostrand formula (see [Dimassi and Sjostrand
1999; Davies 1995]). We can check that for £ € C\ R we have

(§)|M3\+m3
! ” s+1— S .
L(H ) |Im(§)||ﬂ3|+m3+1

Hadﬁc’“3adf4"3 (—|z|A=0)~

Let f 1t (t+1)2" En . Let ¢ € Cg°(R, [0, 1]) be supported in [—2, 2] and equal to 1 on [-1, 1]. For
M > |pu3|+m3+1and { = x + iy we set

@) = ¢ ( )Zf(")( )(’y).
We have

a a—2 w2
‘ fM@)' L) <lyl<2(en O () 7+ Ly pp@ Iy M () =M

SO we can write

a—2 1 fM
(—lzla+1) 2 =— == (O)(—lz|A=0) " dx dy.
T Je=x+iyeC 0z
Then we can check that
lad{Pad’y® (D)2 pegs+1-v) S 1. 4-7)
It remains to estimate
ad¥2ady?((D;)?) = —|z[ad¥2ad’y2 A + ad2ad’}?(1). (4-8)

We have |||z]ady?ad}? Al < |z| in L(HSH, H371) so with (4-5), (4-6) and (4-7) applied with y = 0 we
obtain in L(HST!, HS™1)

lad®1ady ! (((1 — xn,)a);) adi?ady? (—|z|A) adiPady* ((D;)* %) adi*ady (az) | < |Z|,]1+2 (4-9)
If |ua| = my = 0 we also have to consider the second term in (4-8). For this we apply (4-5), (4-6) and
(4-7) with y = 1, which gives

o
” ady! ad,’;ll (((1 - an)a)z) ad§3adz13((Dz)“_2) adﬁ?“adff“ (az) ”L(Hs+l’Hs—l) < |Z|7722 .
o
Thus we have proved that adyad’y (((1 — xy,)a)z(Dz)%a;) is of size O(|z|n3) in L(H*t!, HS™1). We
proceed similarly for adyad’y ((xy,a)z(Dz)*((1 — xn,)a):), and the statement follows. O

Remark 4.3. If d > 5 we can replace Py, by Hj in the last statement of Proposition 4.2. This is not
the case for d € {3, 4}. This is due to the fact that s = 1 does not belong to ]—% +1, % — 1[ and hence

By, . is not small in L(H?2, L?) in these cases.
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Proposition 4.4. Let p € N¢, m e N and s € ]—% +1, % — 1[. There exists ng € 10, 1] such that the
operator

adfad} R5 - (—1)
is bounded as an operator from H*~' to H*T1 uniformly in z € Cy with |z| <1 and = (1, n2) €]0, no]>

Proof. The idea of the proof is the same as the proof of Proposition 7.9 in [Bouclet and Royer 2014]. We
only have to be careful with the fact that the dissipative term has to be seen as an operator of order 2.
However, with the smallness assumption on a(1 — y,), it is still a small perturbation of —A, and we
can proceed as for the wave resolvent. We also have to be careful with the restriction on s, which is
stronger than for the wave equation. This is due to the analogous restriction in the second statement of
Proposition 4.2. We omit the details. O

Proposition 4.5. (i) Let s € [0, £[, 8> s and m €N be such that m = 5. Then there exist 1jg €10, 1] and
C = 0 such that for z € Cy with |z| < 1 and 7j € ]0, n9]* we have

1x) 20, RE, (=10 (x) | 12 < Clzl.

(ii) Lets e [ [ §>s, and m € N large enough (say m = § + 3+ 1). Then there exist ng €10, 1] and
C = 0 such that for z € Cy with |z| < 1 and 7j € 10, no]* we have

1x) 7?0 RY (~D{AY [l 22y < €213,
AV RE (1O (x) Pl r2) < Clz.
Proof. According to Proposition 4.4 the operator R:-]” ,(=1) is bounded in £(H ™, H*) uniformly in
z € C4 with |z| < 1 and n close to (0,0). On the other hand, according to the Sobolev embedding
H?® C LP for p = 725, the fact that (x)~ —8 belongs to £(LP?, L?) and (4-3) we have
1) 2O Il p(ars, 22y S 1Ozl wry < 1212
We similarly have

1071 ) Pl s S 1212,

and the first statement follows. For the second statement we use the same idea as in the proof of
Proposition 7.11 in [Bouclet and Royer 2014]. We only prove the first estimate. For this we first remark that

1) PO (1 + XDl s, 22y < 1) POzl s L2y + [ () PO X1 12
3 _ s
S1Ozllewry + 1212 [ () P x1° Oz | o2y S 1213,

where, again, p stands for d . Then it remains to prove that for all § = 0 (we no longer need the
assumption that § > s5), m > 8 —|— s+ 1land e N4 the operator

(x)"%ad (R (—1)(4)°)

is bounded in £(L2, H*) uniformly in z € C4. With x = 0 this will conclude the proof. By interpolation
it is enough to consider the case where § is an integer and m > § 4- 5 (we do not mean to be sharp with
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this assumption). We proceed by induction. The statement for § = 0 is given by Proposition 4.4. Now
let § € N* We have

8
R’#’Z(_I)AS = ZCS Rm 1( 1)A8 kadA(Rn z(=1)).

When k # 0 we can apply the inductive assumption to Rg’;l (—1) A%k With Proposition 4.4 we obtain
that the contributions of the corresponding terms are uniformly bounded in £(L?, H®) as expected. It
remains to consider the term corresponding to k = 0. It is enough to consider

RPN (=1 A% x; Dy Ry - (1)

for some j € [1,d]. The operator D; Rj ;(—1) and its commutators with powers of x are uniformly
bounded operators on L2, and

RPN (=)A= x; RPN (=1 AP +ady, (RPN (-1 AT,
We conclude with the inductive assumption. O

Proposition 4.6. Let k € N and § > k + % Then there exist ng € |0, 1] and C = 0 such that for z € C4
with |z| < 1 and ij = (91, n2) €10, no]* we have

I(A) P REENE)(A) £y < C.

Proof. The estimate is clear when Z is outside some neighborhood of 1. For Z close to 1 we apply
Theorem 2.4 uniformly in z with A as a conjugate operator. We have already said that e 4 leaves
H' invariant for all 1 € R. The assumptions (ii) and (iii) of Definition 2.3 with g = % and 8 =0 are
consequences of Proposition 4.2 applied with s =0, =0 and m € N* For m € {0, 1}, z € C4 and
u € S we have

|(ad? (P, ) ), > — 2™ (—Au,u) 2| < Z (2—x-V)™(Gy, 2. )k — 8jk) Dju. Diut), 5|
Jj.k=1
<0 Vul?,,
and hence
[Pz id] = 2= 0 *)(=D) = 2— 0 Py, 2.

Let J = ]% %[ After conjugation by 1;(Py,,;) we obtain that if 7o is small enough then for all

n1 €10, n9] and z € C4+ we have
1J(P771,Z)[P7’]1,Zv iA]lJ(Pm,Z) = %1J(Pn1,z)~
Then Proposition 4.6 follows from Theorem 2.4. O

Remark 4.7. Itis important to notice that we have estimated [By) ,iA] and [[By.,iA],iA]in L(H ", UH™)
and not in £(H?2 L?). By pseudodifferential calculus, these two commutators define operators in
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L(H?, L?). But in low dimensions (d € {3,4}) they can be estimated uniformly by Proposition 4.2 only
in the sense of forms. This is why we need a form version of the dissipative Mourre method here.

Proposition 4.8. Let ¢ > 0 and n € N. Let § be as in the statement of Theorem 1.4. Then there exist
no €10,1], C = 0 and a neighborhood U of 0 in C such that for ij = (1. 1n2) € 10, no]? and B;, Br € R+
with B; + Br <2 we have

[ ()5 (DY REF ) (D) (x) ™8 2y < €1+ 12 557177,

Remark 4.9. Compared to the analogous result for the wave equation (see Theorem 1.3 in [Bouclet and
Royer 2014]) there is no gain when we add a derivative. This is a consequence of the restriction on the
Sobolev index s in Proposition 4.4, which is stronger than in Proposition 7.9 in [Bouclet and Royer 2014].

Proof of Proposition 4.8. First assume that n > 1. By the resolvent identity we have

(x) (DY RIF (2)(D)Pr (x) 70 = (x) 70 (DY Ry (—1) (x)°
< (x) P (RETN(2) +2(1+ 2)RE(2) + (1 + 2)*R" 1 (2)) (x)
x (x)° Ry (=1)(D)Pr(x) 7.
The first and last factors are bounded on L? uniformly in 7 € ]0, 1] by pseudodifferential calculus, so it
is enough to prove the statement without additional derivatives if n > 1. Since B; + 8, <2 we have a

similar argument for n = 0.
We have

()R (2)(x) 70 = 127D () P, REE ()0 (x)

As in the proof of Theorem 1.3 in Section 3 we can prove by induction on m € N* that R’;]ng (Z) can be
written as a sum of terms of the form

+2PRIEP (1) or (1422 RE (—1)RY (DRI (1), (4-10)

where max(1,n +1—-2m) <v<n+1land B €N. Lets = min(n + 1,%—8). For B € N we have
s € [O, %[, n+14p =5 and § > s, so according to the first statement of Proposition 4.5 we have

|Z|_(n+1)H( SRn+1+,B( 1) SHL(L2)<|Z|S (n+1)<1+|2|2 —e—n— 1

Now we consider the contributions of terms of the second kind in (4-10) We can assume that m is large

enough to apply the second statement of Proposition 4.5. We have § > v— 5, so with Proposition 4.6 we get

29
2]~ (x) PO, RT (D RY (DRI (—1)O; (x) 7|
< |27V [(x) PO RE (- 1) )[4 ‘*R“ LA RE (1O )7

< |Z|s—(n+1) <1+ |Z|7_8_n_1. O
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4B. Low-frequency estimates for a general perturbation of the Laplacian. In this paragraph we use the
estimates on Rj(z) to prove the same estimates for R(z). To this purpose we have to add the contribution
of Py,,c in the self-adjoint part and the contribution of By . in the dissipative part.

For 19, n2 €0, 1] and 7§ = (10, n2) we set, for ¥ € C§°(R),

Sy,i(2) = Pno,c R (2)Y (P).

From Proposition 4.8 we obtain the following result:

Proposition 4.10. Let ¢ > 0, n € Nand M € R. Let ¥ € Cg°(R). Let § be as in the statement of
Theorem 1.4. Let ng € 10, 1] be given by Proposition 4.8. Then there exist C = 0 and a neighborhood U
of 0 in C such that for n, €10, no] and z € U N C4 we have

)M S5 @) 0) Pl < €+ 12 55717,

where i = (10, 12).
Proof. The proposition is a consequence of Proposition 4.8, the boundedness of i (P) in L2 and the
boundedness of (x)M P, (1 —A)~1(x)®. O

Remark 4.11. Until now we had not used the distinction between n; and n,. However, the size of
(x)M Py,.c depends on 711, so 11 has to be fixed in order to obtain uniform estimates in Proposition 4.10
and in Proposition 4.12 below. On the other hand, we have to keep the possibility to take 7, small.
More precisely, the choice of the cut-off function ¥ in Proposition 4.12 (and hence in the proof of
Proposition 4.13) will depend on 71, and then the choice of 7, will in turn depend on . This is why we
could not simply take 11 = 72 in the definition of Hj.

Proposition 4.12. Let ng € |0, 1] be given by Proposition 4.8. Let €1 >0, 0 > 2 and M = 0. Then there
exist a bounded neighborhood U of 0 in C, ¥ € C§°(R) equal to 1 on a neighborhood of 0 and 1j € ]0, no]
such that for n €10, 7] and z € U N C+ we have

1M Sy, 7() () Nl ey < €1,

where 1 = (1o, 12).
Proof. According to the Hardy inequality we have foru € S

d d
)M Pyo,crtllpz S 1MD) Gtno Gra)) Dt 2+ Y 16) o (Gt —87.4) Dy Dyt 2 S Ml gz
Jk=1 Jk=1

According to the third statement of Proposition 4.2 we obtain for y > 0
1 )™ Pro,e Ry (i)Y (P)(x) " ul| 2
SR )Y (P)(x) " ull g2
S Pyo Ry (i) (P)(x) " ull 2
SN (P)(x) ullLz + wl R Gy (P)(x) " ullp2 + | By, Ry (i) (P){x) " ul|
< I (P)x) ™ ullL2 + 0y ) ()™ 7P (=A + DRz ()Y (PY(x)™u .
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The term with the factor u is estimated by the analog of (2-1) for Hj. For the term involving By we
have used the fact that

IBE (—A+ 1)~ <>1+p||c<Lz)— o (n””)

Let ¢1 € C5°(R) be equal to 1 on [—1, 1]. For ¥ € C5°(R) supported in ]—1, 1] we have ¥ (P)(x)™7 =
W (P)y1(P){(x)~°. The operator ¥1 (P){x)~? is compact. On the other hand, since 0 is not an eigenvalue
of P, the operator 1 (P) goes weakly to O when the support of i shrinks to {0}. Thus we can find
equal to 1 on a neighborhood of 0 such that for ;& > 0 and 7, small enough we have

1™ Sy 7 ()™ Nl 22y < 361

Now let T € R and p > 0. We have
[ )™ Pro.e(Ri (v +ip) = Ry (i) ¥ (P) () ™|
< “ (x)MPnO,c(—A + 1)_1(x)"H X/o H (x)79(—A + 1)R%(9 +ipn)(x)"° H deo.

The first factor is bounded by pseudodifferential calculus, and the second factor is of size O(|t|) by
Proposition 4.8. Thus this norm is not greater that %81 if t is small enough, and the proposition is
proved. O

For z € C4 and 5, €]0, 1] we set
Ro(z2) = (P —2)7" (4-11)
and
Ry,(z)=(P—iBY, —2)7".
In the following proposition we prove the resolvent estimates for ﬁm (z). Then we will add the contribution

of By, . in the dissipative part to conclude the proof of Theorem 1.4.

Proposition 4.13. Let ¢ > 0 and n € N. Let § be as in Theorem 1.4. Then there exist 12, C = 0 and a
neighborhood U of 0 in C such that for z € U N C4 and By, Br € Ry with B; + Br < 2 we have

H (x)—S(D>ﬂ1 §2;1(2)<D)ﬂr (x>—3 HL(L2) <C(l+ |Z|%—s—1—n).

Proof. As for Proposition 4.8 we see that it is enough to consider the case 8; = 8, = 0. Let 0 = max(d, 3).
Let &1 € |0, 1] and consider ¢ € C{°(R) as given by Proposition 4.12 for M = 6. We set By (z) =

Ro(z)(1 —)(P). For any y € R, this operator and its derivatives are uniformly bounded on L2 for
z € C4 close to 0. Let ng be given by Proposition 4.8. Given 1, € ]0, no] we write 7 for (19, n72). We have

Ry, (2) = Ri(2)Y (P) — Ry (2)Sy(2) + By (2) +i Ry, (2) BE, By (2).
and hence for n € N

(n)(z) R%n)(z)lp(P)-i-R(n)(Z)( Su”;(Z)—i-lB ' By (2)) + Bg’)(z)

+i ZC R(J)(Z) S(” j)(Z)-i-lB B(n j)(Z)) 4-12)
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We prove by induction on n € N that
~ d
)P R () (x) 77 S 1 2| 2707 (4-13)

According to Propositions 4.8, 4.10 and 4.12, the fact that ¥ (P) is uniformly bounded on L2 and the
inductive assumption for the sum in (4-12) (it vanishes if n = 0), there exists C = 0 such that for z € C+
close to 0 we have

”(X>—5§£]’;)(Z)(X)_UH(1 — &1 — “(x)GB;;sz(z)(X)—U”) < C(l + |Z|%—s—n—1).

By pseudodifferential calculus we see that the norm of (x)? By By, (z)(x)™? goes to 0 when 12 goes
to 0. Thus if 7, is small enough we have

L —e1 = {x)° By, By (2)(x) 77| = 3,

which concludes the proof of (4-13). In order to replace o by § we use (4-12) again and, estimating the
second term with (4-13) and Proposition 4.10 instead of Proposition 4.12 we obtain

8~ _ _ d_ o,
1) 8 R (2) (x) 72 [I(1 = I1{x)® BE By (2)(x) 0 [l) < C(1 + [z 275771,
and we conclude similarly. O

In order to prove Theorem 1.4 it remains to add the dissipative part with compactly supported absorption
index. We begin with a lemma:

Lemma 4.14. Let H be a Hilbert space. Let Ro, R1 € L(H) and let B be such that
R1=Ro—RoBR1 =Ro—R1BRy.

Then for all m € N we can write R7" 1 4s a linear combination of terms of the form

R TIBRIZTIB . BRTETIBRYET, (4-14)
where k € N*, ji,..., jx—1 €{0,1} and mq, ..., my € N are such that

k
Y mp<m and m;=0 if jy=1.
=1

Proof. Using both of the identities above involving R1 and R we obtain
R1(z) = Ro(z) = Ro(2)BRo(2) + Ro(2) BR1(2) BRo(2).
Then the result is proved by induction on m. O

Now we can finish the proof of Theorem 1.4:

Proof of Theorem 1.4. Let 1, be given by Proposition 4.13. Let T = (D)%a)(,,2 e L(H', L?). We have

T*T = By, ¢ < Ba, so according to Corollary 2.6 we have

||TR(Z)T*||£(L2) <1l
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Let M =0and Ty = (x)_M(D) 2. We can write By . =Ty B1T = T*ByTp = Ty, B3Tpy, where By,

12,¢
B, and B3 are bounded on L2 According to Lemma 4.14 applied with

Rozﬁ,,z(z), Ri1=R(z) and B= BY

n2,¢"
we can write R™11(z) as a sum of terms of the form

T=Re" T @BRI2T ()8 BRI (2)BRY“H (2). (4-15)

where k € N*, ji,..., jx—1 €{0,1} and my,...,my € N are such that Z;;lml <m and m; = 0 if
ji=1.If k =3 and M is large enough we obtain for such a term

-6 -4
1) 2T () 77|
k—1 k—1
SR Tl x [T 1T Rp @) Tl x [T ITRET* | x 1 Tag R+ (2) (x) 77
=2 =2
Ji=0 Ji=1

k
<TTA+12E717m8) < (1 4 |z)2 717,
=1

The cases k = 1 and k = 2 are estimated similarly. This concludes the proof of Theorem 1.4. O

4C. Sharp low-frequency resolvent estimate. We finish this section with the proof of Theorem 1.5. The
result follows from the self-adjoint analog by a simple perturbation argument, using the quadratic estimates
and the spatial decay of the dissipative term:

Proof of Theorem 1.5. According to the resolvent identity, Proposition 2.5 and Theorem 1.1 in [Bouclet
and Royer 2015] we have

[T R )T = [ Ro(a) ()™ + [ {x) lRo(z>JB_aH|NB_aR<z><x>—1H
< 140 Ro@) v/ Ba | | 1) R () 2.

Moreover,

[(x) ™ Ro(2) v/ Ba | < [[(x) 7" Ro(i)v/Bae | + |2 =i ]| (x) 7" Ro(2) (x) ™" | | ¢x) Ro (i) v/Ba || S 1.

For the norms involving Rg(i) we have used the fact that (x)? Ro(i)+/ B, extends to a bounded operator
since for 0 <1 and u € S we have by pseudodifferential calculus

I/ Bo Ro(i)(x)7ull 5 < ((x)7 Ro(—i) Ba Ro (i) {x) . u) < ul?..
This gives
1) T R@ ()T S T+ 1) T RE) ()72,

from which the conclusion follows. O
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5. High-frequency estimates

In this section we prove Theorem 1.6. To this purpose we use semiclassical analysis (see for instance
[Zworski 2012]). For 4 > 0 and ¢ € C4 we set H, =h?H, P, =h?P and Rj,(¢) = (H,—¢)~'. Then
forneN, zeCy and h = |Z|_% we have

R(Z)n+1 RZ+1(2) — h2(n+1)RZ+1(2) (5-1)

| |n+1

(we recall that Z = z/|z|).

In order to prove uniform estimates for the resolvent Rj(z) we use again the Mourre method. For high
frequencies and in a dissipative context we follow [Royer 2010; Bouclet and Royer 2014]. Here we have
to be careful with the form of the dissipative part h%By.

Let o € C§°(R) be positive in a neighborhood of 1 and such that 0 < x4 (r) < r% forall r € Ry. For
h €10, 1] we set

BY = a(x) ga(—h*A)a(x).
Then we have
0 < h2¥BY < h* ™ BY < h2a(x)(—A)2a(x) < h2 By, (5-2)
in the sense that for all ¢ € H%/2(R?) we have
0< hz‘&(Bﬁw, P)r2may < h?(Bag, P)L2(Rd)- (5-3)

The operator B} is a bounded pseudodifferential operator on L2 Tts principal symbol is
b(x,§) = a(x) ya(IE).
The damping assumption (1-9) on bounded trajectories is satisfied with b instead of a:

Yw e Qp, 3T € R such that b(¢! (w)) > 0.
Set

Jo(x.§) =x-§.

As in [Bouclet and Royer 2014] (see Proposition 8.1), we can prove that there exist an open neighborhood J
of 1, f. € C(§>°(IR€2”, R), B = 0 and cp > 0 such that on p_l(f) we have

tp. fo+ fey + Bb = 3co. (5-4)

where {p, g} is the Poisson bracket Vg p - Vxq — Vi p - Veq. The fact that the symbol of the dissipative
part depends on ¢ does not change anything in the proof of this statement. We set

Fp = Opj, (fo+ fo).
where Op;, is the Weyl quantization:

i

onp gt = i [ [ eFo g (2 Yoy
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Let J be a neighborhood of 1 and a compact subset of J. Let y € Cé’o(j, [0,1]) be equal to 1 on a
neighborhood of J. After multiplication by (y o p)? the (easy) Gérding inequality (Theorem 4.26 in
[Zworski 2012]) gives for & > 0 small enough

Opp((x o PP, fo+ fe} + Bb(x o p)* +3co(1 = (x 0 p)?)) = 3co — O(h) = 2co.
After multiplication by #2~% we obtain
X(P) ((Pao iR ™ Fy] + B>~ BY) x(Ph) + 3co(1 = (%) (Ph) = 200k~ = O(h*™%).
After conjugation by 1;(Pj) we obtain for 4 small enough
1y (P ([P ih' = Fyl + B>~ BjY) 15 (Py) = coh®* 1y (Pp).
According to (5-2) this finally gives
17 (Pp) ([P ih'=% Fy) + Bh*Ba) 15 (Py) = coh® 15 (Py). (5-5)

which is the main assumption of Definition 2.3 with Sh2 instead of B and « = coh?™%.

It remains to check the other assumptions of Definition 2.3. The first is proved as in [Bouclet and
Royer 2014] (except that we look at the norm in the form domain H! instead of the domain H?), and
the commutator properties are proved using (standard) pseudodifferential calculus, considering 4 as a
parameter (for the dissipative part we cannot use h2~% B} as above, so we have to control directly the
commutators of 42 By with h1~¢ Fp).

Thus we have proved that for & € ]0, ko] the operator h1~% F}, is a conjugate operator to Hj, on a
neighborhood J of 1 with lower bounds hz_&co for some cg > 0. According to Theorem 2.4 we have
proved the following result with (F},) ™% instead of (x)~%:

Proposition 5.1. Letn e Nand § > n + % There exists a neighborhood J of 1, hg > 0 and C = 0 such
that for all ¢ € C+ with Re(¢) € J we have
1) PR O Pl < e
h L) = pe—anrD)

In order to have the estimate with (x)_‘S we proceed as usual (see the end of Section 3 for intermediate
frequencies or [Royer 2010] in the semiclassical context). With (5-1) and Proposition 5.1 we obtain the
second statement of Theorem 1.6. For the first statement, we observe that under the nontrapping condition
we can proceed as above with 8 = 0 and with & replaced by 1 in (5-5).

6. Local energy decay

In this section we use Theorems 1.3, 1.4 and 1.6 to prove Theorem 1.1. Let ug € S. We denote by u the
solution of (1-1). Let u > 0. For t € R we set

() = g, (Du(t)e ™™,
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Then for t € R we set
. too .
(1) = / e, (1) dt = / Ty (1) dt, (6-1)
R 0
so that for all n € N and t € R we have
i (v) = / (i) e u, (1) dt. (6-2)
R
We multiply (1-1) by ¢?*(*+11) and integrate over R, . This yields

(H — (¢ +ip)iiyu(v) = —ino

and hence, for all n e N
i1 () = —in! R (¢ + ip)uo. (6-3)

Lemma 6.1. For all n € N* and j > 0 the map © — R" (v +ip)ug belongs to LY (R, L2(R%)).

Proof. Let yo € Cg°(R,[0,1]) be equal to 1 on a neighborhood of 0. According to (1-7) the map
T+ R (1 4+ ip)ug is bounded, so it is enough to prove that 7 — (1— y0)(t) R 1 (z +iu)ug belongs
to L1(R). Let z € C4.. Using twice the identity

_ REH+1)-1

R b
(2) p——
we get
1 1
R =——R()(H +1)*ug— ——— (H + Dug— :
(o = 5 REVH + 10 = 55 (H + Do = o
The result follows after at least one differentiation with respect to z. O

This lemma does not provide any uniform estimate, but now we can take the Fourier transform of (6-2).
With (6-3) this gives forall = 0
(it)"e Hu(t) = _int e TR (¢ 4 ip)ug d. (6-4)
27 Jrer
We consider y—, xo, x € C°(R, [0, 1]) such that y_ is supported in |—o0, O[, y¢ is compactly supported
and equal to 1 on a neighborhood of 0, x is compactly supported in ]0, +o0o[ and

X—+ xo+ ijzl on R,
JjEN*

where for j € N* and t € R we have set y;(t) = x(z/2/71). We set x4 = > jen= Xj- Starting from
(6-4) applied with n = k — 1 (x was defined in (1-5)) we can write

v—(t) + vo(t) + v4 (1)), (6-5)

n!
uu(f)=—W(

where for * € {—, 0, +} we have set

V() = / 1x(D)e TR (v + ip)ug dr. (6-6)
TER
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To simplify the notation we forget the dependence on w. From now on, all the quantities depend on
@ > 0 but the estimates are uniform in pu.

Proposition 6.2. Let k € N. There exists C = 0 which does not depend on uy € S such that for all 1 > 0

andt = 0 we have

lo-)llL> < C (1) luoll 2.
This implies that the corresponding contribution for u(¢) decays like any power of ¢ in L2,

Proof. After k partial integrations in (6-6) we get

(0o (1) = /

e
R

i dF :
lnﬁ()(_(‘f)R(‘f +ip))uodr.

According to Remark 2.1 we have

dk

2

~

L(L2)

(x—(R(t +ipw)")

and the result follows. O

We now deal with vg. The following result is (a slightly modified version of) Lemma 4.3 in [Bouclet
and Royer 2014]:

Lemma 6.3. Let H be a Hilbert space. Let f € C1(R* H) be equal to 0 outside a compact subset of R.
Assume that for some y € 10, 1{ and My = 0 we have

VeeR: [ f(@)lu<Mple|™ and | f' @)l < Myle|71 7.
Let B € [0, 1[. Then there exists C = 0 which does not depend on f and such that for all t € R we have
1/ @)l < € My (1)PFD,

Proof. Following the proof of [Bouclet and Royer 2014] we set f; (1) = f_ll o) f (r — %) ds, where
¢ € C§°(]—1,1[, R) satisfies [ ¢ = 1 and we write for || > 1

F0l< fm_ﬁ IOl de+ fw_ﬁ ||f(r)—ft(r)||dr+H [| eI fy(r)

|=t—8

—B(1— -1, 1 - -
Sl TPUT e P 1+;(||ft<r A+ S (=) 1+

)5 1t [BaD)

We omit the details. O

/||>t_ﬁ e—it‘rfl/(_[)d_[
T|=

Proposition 6.4. Let ¢ € ]O, %[ and § > k + % Then there exists C = 0 which does not depend on ug € S
and such that for all > 0 and t = 0 we have

_1-d
lvo)llz2—s < ()12 **luoll L2
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Proof. According to Theorem 1.4 applied with 5 instead of & and Theorem 1.3 there exists C > 0 (which
does not depend on u¢) such that for u >0, T € R and z = t + i we have

d_,_ g
Ix0(@) R (2)uollL2.~s < Clz|> 772 |[uoll 2.,
d d_j_1-¢
|7 @R @, < IR ol s

Then the statement follows from Lemma 6.3 applied with 8 € ]0, 1 so close to 1 that

ﬂ(K—%—l-ﬁ-%)SK—%—l-l—S. 0

To finish the proof of Theorem 1.1 we have to estimate v4 (¢). As for v—_(¢) above, k partial integrations
yield

k
(000 = [ Y AP ORT @ io e+ [ L @R+ o de
R . R
Jj=1

=: Ug,k(t) + wy (¢).

The following proposition proves that the contribution of vy (¢) in (6-5) decays like any power of 7.
However, there may be a loss of two derivatives when « = 0 if the nontrapping assumption does not hold.
We apply the following result with k = 1 to conclude the proof of Theorem 1.1.

Proposition 6.5. Letk € N* and § > k + k — % Let o €0, 2].

(i) There exists C = 0 which does not depend on ug and such that for all @ > 0 and t = 1 we have

—5,,0
1{x) v e Oz < Clluoll 2.6

(i1) Assume that the nontrapping assumption (1-8) holds or that we have the damping condition (1-9)
together with (k + k)& + o = 2. Then there exists C = 0 which does not depend on uq such that for
all w>0andt =1 we have

1) P wie ()l 2 < Clluol| gro.s-

Proof. Statement (i) follows from Theorem 1.3 and the fact that XS{) is compactly supported in |0, +o0[
for all j = 1. We turn to the proof of (ii).

e For j € N* we set

W, ; () =/ 2 (e TR (¢ Lipug dr.
T€ER

Let y € Cg°(R%, [0, 1]) be equal to 1 on a neighborhood of supp . For 7 € R and j € N* we set
1) = F(z/2771). Let

I (1) = / 2 (e )T RR (e i) (x) 78 dr e £(L?).
T€R
‘We have
() Pwe  (0) = wy (@) +wi (0 +wi (1),
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where
wi () = 75 (P (07 (P){x) uo,

wg () = (1= Z)(P) i (0 75 (P (x) o,
wi (1) = T j (O (1= 7)) (P){x) uo
¢ By almost orthogonality, Theorem 1.6 and almost orthogonality again we have

2
Swk o £ Iwi 02

 en jenx

ssup(/eRijn( YR (2t ) 8}\dr)><ZHXJ(P) =5 (Y () uol

Jjenx JEN*

2

< sup 22727/ kHR=jo | ()5 (x)Fy, |12
JEN*

2
< luollgo.s-
It remains to prove that
2 3 —j
lw? O+ w0 27 uoll 2. (6-7)

e For the contribution of w,%’j () we prove that there exists C = 0 such that for j € N* and v € supp(y;)
we have

[ (1= 2P )P R @+ i) ()7 ) < €272 (6-8)

For this, we prove by induction on m € N* and then on £ € N that for § > m —% and ¢ € Cg°(R%, [0, 1])
equal to 1 on a neighborhood of supp(y) there exists C > 0 such that for all j € N¥ z =t + iy with
T esupp(y) and u >0

| ()5 (1= g)(PYR™ () (x) ¥ || < €27/ min (m:£(1-%)), (6-9)

where for j € N* we have set ¢; = ¢ (- /2/71). Let m € N* If m > 2, we assume that the estimate is
proved up to order m — 1 (for all £ € N). Note that we will not use any inductive assumption on m for
m = 1. Then we prove the estimate by induction on £ € N. For £ = 0 it follows from Theorem 1.6 and
the boundedness of (1 —¢;)(P) in weighted spaces. Assume that (6-9) is proved up to order £ — 1 for
some £ € N* Let ¢ € C°(R?) be equal to 1 on a neighborhood of supp(y) and such that ¢ =1 on a
neighborhood of supp(¢). For j € N* we set qb] #(-/2/71). We recall that for z € C; we have set
Ro(z) = (P —z)~ . By the resolvent identity we have

R™(z) = Ro(2)R™ ™1 (2) +iRo(2) B« R" (2). (6-10)
If m = 1, the first term is just Ro(z) and we have

[ ()72 (1 =g (P)Ro(2) ()| s 27,
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If m = 2, the contribution of the first term is estimated as follows:

[)7° (1= (PYRo()R™ ™ (2){x) |
< ()72 A=) (PYRo(2); (PY(x) [ | ()P R (2) ()™
< )P A= ) (PYRo(2) ()| [ x) 2 (1 = (PYR™ ! (2){x)° .
Using Theorem 8.7 in [Dimassi and Sjostrand 1999] about functions of a self-adjoint semiclassical
pseudodifferential operator (with A =2~ = ) we see that for any M > 0 we have

|[(x)~*a _¢j)(P)R0(Z)<X>8¢;j(P)Hﬁ(Lz) <=M
We also have
)75 (1 =) (P)Ro(2)(x)* | 5277,

With Theorem 1.6 and the inductive assumption (for qg instead of ¢) we obtain (6-9) with R (z) replaced
by Ro(z)R™~!(z). For the contribution of the second term in (6-10) we similarly write

| ()7 (1 = ¢,)(P)Ro(2) Ba R™ (z){x) |
<[ ()70 (1 = ¢))(P)Ro(2) Batp (P) (x) || | (x) P R™(2)(x) 77|
< [x) 8 (1= ) (P)Ro(2) Ba(x)? | | (x) 72 (1 — g (P) R™ (2) (x) 2.
Here we only have

)7 (1= ) (P) Ro(2) B} | 527709

but with the inductive assumption (on £), we still can conclude. Thus, (6-9) is proved for all m, £ € N.
With m = « + k and £ large enough (we recall that « < 2), this gives (6-8). After integration over
T € supp(x,), this gives (6-7) for wi’j (t). The contribution of wz,j () is estimated similarly, and the
proof is complete. O

7. Smoothing effect

In this section we prove Theorem 1.7. With Theorems 1.3, 1.5 and 1.6 it implies Theorem 1.2. For this
we use a dissipative version of the theory of relatively smooth operators in the sense of Kato.

Proposition 7.1. Under the assumption of Theorem 1.7 there exists C = 0 such that for all z € C4+ we
have

1) HPYF R (P)E (x) 2y < €
Proof. » Let K be a compact subset of C. Using the resolvent identity
R(z) = R(i)+ (z—i)R(i)* + (z—i)*R(i)R(z)R(i),
we obtain forz e C+ N K

[ () "HPYERE)(PYE(x) Y S 1+ () "HPYERG) ()| | (x) T R ) 72| | (x) RGH(PY % (x) 7.

.:;
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By pseudodifferential calculus the operators (P)% R(i) and R(i)(P)% are bounded on L2~! and L?!,
respectively. For the second factor on the right-hand side we use (1-10), and the conclusion follows for
zeCiNK.

* It remains to prove the result for |z| > 1. Let y € C§°(R, [0, 1]) be supported on [—3, 3] and equal to 1
on [—2,2]. For z € Ct we define y, : A+ y(A/|z]). The operator e (P) i (8P)_% is a pseudodifferential
operator whose symbol has bounded derivatives uniformly in ¢ € ]0, 1], so the operator

|z|—5<x>—1<P>5<5>_4<x> a-1)

2|

extends to a bounded operator on L? uniformly in z with |z| > 1. The operator

(X)_1<£>4X(£)(x) (7-2)
|z] 2|

is also bounded on L2 uniformly in z with |z| > 1, and we have similar estimates for the adjoint operators
of (7-1) and (7-2). Thus
-1 z -1 z 1 IpyY, \—1
[6) TP 3 2z (PYR(2) xz(PY(P) 3 (x) 7! S 1212 () (|21 7" P) 3 2 (PYR(2) 2z (P) (1= 7' P) 3 (x) 7|
4 — —
S22 1) T RE) () T S 1

o With Ro(z) = (P —z)~! we have the resolvent identity

R(z) = Ro(z) +iR(z) Ba Ro(2).
We have

)4 V

[(6)THPYF 4z (PYRo(2) (1= ) (PYPY 5 ()7 < (%) THP) ¥ = ()] | Ro(2) (1= x2) (PY(P) 7 (x) |

5<Z>£<Z>4 <1,

.;;

We have estimated the first factor as above and the second by the spectral theorem. On the other hand,

since the operator /By (P _% is bounded we also have by Proposition 2.5
H (X)_ (P ) Xz(P)R(z) By Ro(2)(1 — xz)(P)(P IH
< ) THPY (P (x) | H )L R(2)V/Ba || (P2 Ro(2)(1 - x2)(P)(P)F |
< <z>%<z> HE R

This proves that
[) 7 PY = (PYRE (1= x)(PYPY ()| 1.

¢ The operator
(X)"HP)T (1= 1) (P)R(2)xz(P)(P) 3 (x) ™"

is estimated similarly. Finally for

(X)"H(P)T (1= x)(P)R(2)(1 = x2)(P)(P)

I

()7
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we only have to use twice the resolvent identity
R(z) = Ro(2) +iRo(2) Ba Ro(2z) — Ro(2) Ba R(z) Ba Ro(2).
Then we apply the same idea as above, using Corollary 2.6 to estimate /By R(z)+/ By ([

Taking the adjoint in the estimate of Proposition 7.1 we obtain the same estimate with R(z) replaced by
R(z)* = (P 4+iBy —Z)™! (the same is true for the estimates of Theorems 1.3, 1.5 and 1.6). In particular
we obtain the following result:

Corollary 7.2. Then there exists C = 0 such that for all z € C and ¢ € S we have

(((H =2 = (H* =27 ) (P)5 (x) o, (P) 5 (x)19),.] < Clig)2.

It is known that such an estimate on the resolvent implies Theorem 1.7. This comes from the dissipative
version of the theory of relatively smooth operators. The self-adjoint theory can be found in [Reed and
Simon 1978, §XII1.7]. The dissipative version uses the theory of self-adjoint dilations for a dissipative
operator described in [Sz.-Nagy et al. 2010]. All this has been combined in Proposition 6.2 in [Royer
2016], from which Theorem 1.7 follows.
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A CLASS OF UNSTABLE FREE BOUNDARY PROBLEMS

SERENA DIPIERRO, ARAM KARAKHANYAN AND ENRICO VALDINOCI

We consider the free boundary problem arising from an energy functional which is the sum of a Dirichlet
energy and a nonlinear function of either the classical or the fractional perimeter.

The main difference with the existing literature is that the total energy is here a nonlinear superposition
of the either local or nonlocal surface tension effect with the elastic energy.

In sharp contrast with the linear case, the problem considered in this paper is unstable; namely a
minimizer in a given domain is not necessarily a minimizer in a smaller domain.

We provide an explicit example for this instability. We also give a free boundary condition, which
emphasizes the role played by the domain in the geometry of the free boundary. In addition, we provide
density estimates for the free boundary and regularity results for the minimal solution.

As far as we know, this is the first case in which a nonlinear function of the perimeter is studied in
this type of problem. Also, the results obtained in this nonlinear setting are new even in the case of the
local perimeter, and indeed the instability feature is not a consequence of the possible nonlocality of the
problem, but it is due to the nonlinear character of the energy functional.

1. Introduction

In this paper we consider a free boundary problem given by the superposition of a Dirichlet energy and an
either classical or nonlocal perimeter functional. Differently from the existing literature, here we take into
account the possibility that this energy superposition occurs in a nonlinear way; that is, the total energy
functional is the sum of the Dirichlet energy plus a nonlinear function of the either local or nonlocal
perimeter of the interface.

Unlike the cases already present in the literature, the nonlinear problem that we study may present
a structural instability induced by the domain; namely a minimizer in a large domain may fail to be
a minimizer in a small domain. This fact prevents the use of scaling arguments, which are frequently
exploited in classical free boundary problems.

In this paper, after providing an explicit example of this type of structural instability, we describe
the free boundary equation, which also underlines the striking role played by the total (either local or
nonlocal) perimeter of the minimizing set in the domain, as modulated by the nonlinearity, in the local
geometry of the interface. Then, we will present results concerning the Holder regularity of the minimal
solutions and the density of the interfaces in the one-phase problem.

MSC2010: 35R35.
Keywords: free boundary problems, regularity, nonlinear phenomena.
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The mathematical setting in which we work is the following. Given an (open, Lipschitz and bounded)
domain Q C R" and o € (0, 1], we use the notation Per, (E, 2) for the classical perimeter of E in Q2
when o = 1 (which will be often denoted as Per(E, 2), see, e.g., [Ambrosio et al. 2000; Maggi 2012])
and the fractional perimeter of E in 2 when o € (0, 1) (see [Caffarelli et al. 2010]). More explicitly,
if 0 € (0, 1), we have

Per, (E, Q) := L(ENQ, E)+ L(ENQ, ENQ), (1-1)

where, for any measurable subsets A, B € R" with AN B of measure zero, we set

dxdy
L(A,B):= Iy — ylnto”
AxB |x =Y

As customary, we are using here the superscript ¢ for complementary set; i.e., E :=R" \ E.

The notation used for Per, when o =1 is inspired by the fact that Per,, suitably rescaled, approaches
the classical perimeter as s 7 1; see, e.g., [Bourgain et al. 2001; Davila 2002; Caffarelli and Valdinoci
2011; Ambrosio et al. 2011].

In our framework, the role played by the fractional perimeter is to allow long-range interaction to
contribute to the energy arising from surface tension and phase segregation.

As a matter of fact, the fractional perimeter Per, naturally arises when one considers phase transition
models with long-range particle interactions (see, e.g., [Savin and Valdinoci 2014]): roughly speaking, in
this type of model, the remote interactions of the particles are sufficiently strong to persist even at a large
scale, by possibly modifying the behavior of the phase separation.

The fractional perimeter Per, has also natural applications in motion by nonlocal mean curvatures,
which in turn arises naturally in the study of cellular automata and in image digitization procedures (see,
e.g., [Imbert 2009]).

It is also convenient' to fix Y € (0, %] and set

Qr:=(J Br(p) and Perj(E,Q)=
PE

{Per(E, Qy) ifo=1, (12

Per, (E,Q2) ifo €(0,1).
We consider a monotone nondecreasing and lower semicontinuous function @ : [0, 4-00) — [0, +00), with

lim ®(f) = +oo. (1-3)

t—+00

IThe explicit value of T plays no major role, since it can be fixed by an “initial scaling” of the problem, but we decided to
require it to be less than IIW to emphasize, from the psychological point of view, that Q+ can be thought as a small enlargement
of Q.

The reason we introduced such an Y is that, in the classical case, the interfaces inside 2 do not see the contributions that
may come along 0€2, since €2 is taken to be open (conversely, in the nonlocal case, these contributions are always counted). By
enlarging the domain 2 by a small quantity Y, we are able to count also the contributions on d€2 and this, roughly speaking,
boils down to computing the classical perimeter in the closure of €.
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For any measurable function u : R* — R such that |Vu| € L?*(2) and any measurable subset £ C R"
such that # > 0 a.e. in E and u < 0 a.e. in E€, we consider the energy functional

Eo(u, E) :=/ IVu(x)|? dx + ®(Per’, (E, Q)). (1-4)
Q

As usual, the notation Vu stands for the distributional gradient.

When @ is the identity, the functional in (1-4) provides a typical problem for (either local or nonlocal)
free boundary problems; see [Athanasopoulos et al. 2001; Caffarelli et al. 2015].

The goal of this paper is to study the minimizers of the functional in (1-4). For this, we say that (u, E)
is an admissible pair if

e u:R" — R is a measurable function such that u € H' (),
o E C R"is a measurable set with Per}, (E, ) < 400, and
e yu>0ae.in E and u <0 a.e. in E-

Then, we say that (u, E) is a minimal pair in €2 if
e (u, E) is an admissible pair,
e Eo(u, E) < 400, and

« for any admissible pair (v, F) such that v —u € HO1 () and F \ Q = E \ Q up to sets of measure
zero, we have
Eau, E) < Eq(v, F).

The existence” of minimal pairs for fixed domains and fixed conditions outside the domain follows from
the direct methods in the calculus of variations (see Lemma 2.3 below for details).

A natural question in this framework is whether or not this minimization procedure is “stable” with
respect to the choice of the domain, i.e., whether or not a minimal pair in a domain €2 is also a minimal pair
in any subdomain Q" C Q. This stability property is indeed typical for “linear” free boundary problems,
i.e., when @ is the identity, see [Athanasopoulos et al. 2001; Caffarelli et al. 2015], and it often plays a
crucial role in many arguments based on scaling and blow-up analysis.

In the “nonlinear” case, i.e., when @ is not the identity, this stability property is lost, and we will
provide a concrete example for that. In further detail, we consider the planar case of R? we take
coordinates X := (x, y) € R? and we set

u(x,y) :=xy (1-5)

and ~
E:={(x,y) € R*: xy > 0}

={(x,y)eR?’:x>0and y >0}U{(x,y) eR*:x <0and y < 0}. (1-6)
2As a technical remark, we point out that the definition in (1-2) is useful to make sense of nontrivial versions of this

minimization problem when o =1 and u > 0. Indeed, in this case, the setting in (1-2) “forces” the sets to interact with the boundary
data. This expedient is not necessary when o = 0 since, in this case, the nonlocal effect produces the nontrivial interactions.
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In this setting, we show that:

Theorem 1.1 (an explicit counterexample). There exists K, > 2 such that the following statement is true.
Let n =2. Assume
®@)=1t" foranyt €[0,1]

4
re(05)

d(t)=1 foranytel2, K,]. (1-7)

Jor some

and

Then, there exist R, > r, > 0 such that (&, E ) is a minimal pair in Bg, and is not a minimal pair in B, for
anyr € (0, r,].

The heuristic idea underlying Theorem 1.1 is, roughly speaking, that the nonlinear energy term &
weights differently the fractional perimeter with respect to the Dirichlet energy in different energy regimes,
so it may favor a minimal pair (u, E) to be either “close to a harmonic function” in the u or “close to a
fractional minimal surface” in the E, depending on the minimal energy level reached in a given domain.

It is worth stressing that, in other circumstances, rather surprising instability features in interface
problems arise as a consequence of the fractional behavior of the energy; see, for instance, [Dipierro et al.
2017]. Differently from these cases, the unstable free boundaries presented in Theorem 1.1 are not caused
by the existence of possibly nonlocal features, and indeed Theorem 1.1 holds true (and is new) even in
the case of the local perimeter.

The instability phenomenon pointed out by Theorem 1.1 in a concrete case is also quite general, as it can
be understood also in the light of the associated equation on the free boundary. Indeed, the free boundary
equation takes into account a “global” term of the type ®'(Per (E, €2)), which varies in dependence of
the domain Q. To clarify this point, we denote by HE the (either classical or fractional) mean curvature
of JE (see [Caffarelli et al. 2010; Abatangelo and Valdinoci 2014] for the case o € (0, 1)). Namely,
if o = 1 the above notation stands for the classical mean curvature, while for o € (0, 1), if x € 0 E, we set

H(,E(x) :=lim sup/ —XEc(y) — Xf ) d
50 Jrn\Bsx) X —y["T

In this setting, we have:
Theorem 1.2 (free boundary equation). Let ® € C Le(0, +00) for some a € (0, 1). Assume (u, E) is a
minimal pair in Q. Assume

(0E)N Q2 is of class CYT witht € (0, 1) when o € (0, 1) and of class C? when o = 1. (1-8)
Suppose also

u > 0 in the interior of EN 2, u < 0 in the interior of E° N L2, (1-9)

and

ueC'fu=0NNC'(u<0nQ). (1-10)



A CLASS OF UNSTABLE FREE BOUNDARY PROBLEMS 1321

Let also v be the exterior normal of E, and for any x € (E) N let

B,/ u(r) = lim uir = t”t) “U) (e = lim ux “"t) —u) (1-11)
Then, for any x € (0E) N2, we have
(3 u(x))? — (0, u(x))* = HE (x) &' (Per’ (E, Q)). (1-12)

We remark that (1-12) has a simple geometric consequence when @ > 0 and we consider the one-phase
problem in which u# > 0: indeed, in this case, we have 9, u = 0 and therefore formula (1-12) reduces to

(3 u(x))> = HE (x) @' (Per’ (E, Q)).

In particular, we get that HE > 0; namely, in this case, the (either classical or fractional) mean curvature
of the free boundary is nonnegative.

In order to better understand the structure of the solution and of the free boundary points, we now
focus, for the sake of simplicity, on the one-phase case; i.e., we suppose that u > 0 to start with. In this
setting, we investigate the Holder regularity of the function u# by obtaining uniform bounds and uniform
growth conditions from the free boundary. For this, it is also convenient to introduce the auxiliary set

Uy := {x € Q2 : there exists a sequence x; € 2 : xx — x with u(xy) - 0 as k — +oo}. (1-13)

Notice that {# = 0} lies in Uy (just taking a constant sequence in the definition above). Also, if u > 0,
then 0 E lies in Uy (since in this case # must vanish in the complement of E).

Of course, when u is continuous, such a set lies in the zero level set of u, but since we do not have this
information a priori, it is useful to consider explicitly this set, and prove the following result:

Theorem 1.3 (growth from the free boundary). Let R,, Q > 0. Assume
® is Lipschitz continuous in [0, Q1, with Lipschitz constant bounded by L. (1-14)
Assume (u, E) is a minimal pair in Q, with Bg, € €,
0elp (1-15)
andu > 0 in R*\ Q. Suppose R € (0, R,] and
Per) (E, Q) + R""7 Per, (B, R") < Q. (1-16)
Then, there exists C > 0, possibly depending on R,, n and o such that, for any x € Bg2,
u(x) < C Lo |x|'™2.

We observe that condition (1-14) is always satisfied if ¢ is globally Lipschitz, but the statement
of Theorem 1.3 is more general, since it may take into account a locally Lipschitz &, provided that
the domain is small enough to satisfy (1-16) (indeed, small domains satisfy this condition for locally
Lipschitz @, as remarked in the forthcoming Lemma 2.8).
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We also point out that (1-16) may be equivalently written
Per) (E, Q) + Per, (Bg, R") < Q. (1-17)

One natural way to interpret (1-16), or (1-17), is that once Per’; (E, ) is strictly less than Q (i.e., strictly
less than the size of the interval in which @ is Lipschitz), then (1-16), and thus (1-17), holds true as long
as R is sufficiently small.

The growth result in Theorem 1.3 implies, as a byproduct, an interior Holder regularity result:

Corollary 1.4. Let Q > 0 and assume ® is Lipschitz continuous in [0, Q], with Lipschitz constant
bounded by L.

Assume (u, E) is a minimal pair in Q, with Bg € Q andu > 0in R" \ Q.

Suppose that Per}, (E, ) + R"~° Per, (B1, R") < Q and that u < M on 9%2.

Then u € C'=/2(Bg4), with

M
||u||C1_”/2(BR/4) < C(” LQ + RI—O‘/Z)’

for some C > 0, possibly depending on n and o.

When @ is linear, the result in Corollary 1.4 was obtained in Theorem 3.1 of [Athanasopoulos et al.
2001] if 0 = 1 and in Theorem 1.1 of [Caffarelli et al. 2015] if o € (0, 1). Differently than in our
framework, in both papers mentioned above, scaling arguments are available, since scaling is compatible
with the minimization procedure.

Now we investigate the structure of the free boundary points in terms of local densities of the phases.
Indeed, we show that the free boundary points always have uniform density from outside E, according to
the following result:

Theorem 1.5 (density estimate from the null side). Assume (u, E) is a minimal pair in Q, with Bg C €,
0€dE andu >0inR"\ Q. Set

P =P(E,Q,R):=Per, (E, Q)+ R"° Pery(B;, R") (1-18)
and assume
D is strictly increasing in the interval (0, P). (1-19)
Then there exists § > 0, possibly depending on n and o such that, for anyr € (0, %R),
|B \ E| > ér".

We point out that condition (1-19) is always satisfied if @ is strictly increasing in the whole of [0, 4-00),
but Theorem 1.5 is also general enough to take into consideration the case in which @ is strictly increasing
only in a subinterval, provided that the energy domain is sufficiently small to make the perimeter values lie
in the strict monotonicity interval of ® (as a matter of fact, the perimeter contributions in small domains
are small, as we will point out in the forthcoming Lemma 2.8).
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The investigation of the density properties of the free boundary is also completed by the following
counterpart of Theorem 1.5, which proves the positive density of the set E:

Theorem 1.6 (density estimate from the positive side). Let Q > 0 and assume

® is Lipschitz continuous in [0, Q], with Lipschitz constant bounded by L ¢, (1-20)

and
® >c, ae inl0, Q] (1-21)

for some c, > 0.
Assume (u, E) is a minimal pair in Q, with Bg € Q, 0 € 0E and u > 0 in R" \ Q. Suppose

Per) (E, Q) + R""7 Per, (B, R") < Q. (1-22)
Then there exists 8, > 0, possibly depending on n, o, ¢, and Lo, such that, for any r € (O, %R),
|B,NE|>8,r".

More explicitly, such &, can be taken to be of the form

¢ njo
8 =3, min{l, (-) } (1-23)
Lo

for some &, > 0, possibly depending on n and o.

We remark that the results obtained in this paper are new even in the local case in which o = 1.
Also, we think it is an interesting point of this paper that all the cases o € (0, 1) and o0 =1 are treated
simultaneously in a unified fashion. The methods presented are also general enough to treat the case o =0,
which would correspond to a volume term (see, e.g., [Maz’ya and Shaposhnikova 2002; Dipierro et al.
2013]). This case is in fact rich in results and so we will discuss it in detail in a forthcoming paper.

The rest of the paper is organized as follows. In Section 2 we show some preliminary properties of the
minimal pair, such as existence, harmonicity and subharmonicity properties, and a comparison principle.
We also prove a “locality” property for the (either classical or fractional) perimeter and provide a uniform
bound on the (classical or fractional) perimeter of the set in the minimal pair.

Section 3 is devoted to the construction of the counterexample in Theorem 1.1. In Section 4 we provide
the free boundary equation and prove Theorem 1.2.

Then we deal with the regularity of the function u in the minimal pair in the one-phase case, and
we prove Theorem 1.3 and Corollary 1.4 in Sections 5 and 6, respectively. Finally, Sections 7 and 8
are devoted to the proofs of the density estimates from both sides provided by Theorems 1.5 and 1.6,
respectively.

Since we hope that the paper may be of interest for different communities (such as scientists working
in free boundary problems, variational methods, partial differential equations, geometric measure theory
and fractional problems), we made an effort to give the details of the arguments involved in the proofs in
a clear and widely accessible way.
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2. Preliminaries

We start with a useful observation about the positivity sets of sequences of admissible pairs:

Lemma 2.1. Let (u;j, E;) be a sequence of admissible pairs. Assume u; — u a.e. in R" and xg;, — xg
a.e. in R" for some u and E. Then u > 0 a.e. in E and u < 0 a.e. in E.

Proof. We show that u > 0 a.e. in E (the other claim being analogous). For this, we write R" = X U Z,
with |Z| = 0 and such that for any x € X we have

dim uj(x) =u(x) and lim xg (x) = xe(x).
J—>+0oo Jj—>+o0

Let now x € EN X. Then

lim x5 (x) = xg(x) =1,
J—+0o0

and so there exists j, € N such that xg, (x) > % for any j > j,. Since the image of a characteristic
function lies in {0, 1}, this implies xg; (x) =1 for any j > j,, and therefore u;(x) > O for any j > j;.
Taking the limit, we obtain u(x) > 0. Since this is valid for any x € EN X and £ N X C Z, which has
null measure, we have obtained the desired result. |

Now we recall a useful auxiliary identity for the (classical or fractional) perimeter:

Lemma 2.2 (“clean cut” lemma). Let Q' € Q. Assume Per, (E, Q) < +00 and Per, (F, Q) < +o0.
Suppose also that

E\Q =F\Q. (2-1)
Then
Per, (E, ) — Per, (F, Q) = Per, (E, Q') — Per, (F, Q). (2-2)
If in addition Per), (E, Q) < 400 and Per}. (F, Q) < +00, then
Per’ (E, Q) — Per? (F, Q) = Per, (E, Q') — Per, (F, Q). (2-3)

Proof. For completeness, we distinguish the cases 0 =1 and o € (0, 1). If 0 = 1, we write the perimeter
of E in term of the Gauss—Green measure (g (see Remark 12.2 in [Maggi 2012]); namely
Per(E, Q) = |uel(€2).
So we define
U:=Q\Q. (2-4)
We remark that U is open and Q = Q' U U, with disjoint union. Thus we obtain
Per(E, Q) — Per(F, Q) — Per(E, Q') + Per(F, Q')

= |uel(Q) — ur|(RQ) — [wel(Q) + |nrl(Q)

=uel(QUU) = ur|(QUU) — |nel(Q) + nrl(R)

= uel(Q) + uelU) — url(Q) = url(U) = |nel(Q) + nrl(Q)

= |uel(U) — Inrl(U) =Per(E, U) — Per(F, U). (2-5)
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Now we observe that
ENU=ENQ\Q)=ENQN Q) =(E\Q)NQ,

and a similar set identity holds for F. Thus, by (2-1), it follows that E N U = F N U. Therefore, by the
locality of the classical perimeter (see, e.g., Proposition 3.38(c) in [Ambrosio et al. 2000]), we obtain

Per(E, U) = Per(F, U).

If one inserts this into (2-5), then one obtains (2-2) when o = 1.
Now we deal with the case o € (0, 1). For this we use (1-1) and (2-4) and we get
Per, (E, Q) —Per, (E, Q) =L(ENQ, E)+L(ENQ, E\Q)—L(ENQ, E)—L(E‘NQ, E\Q)
=LENQ,E)+L(ENU, E)+L(E°NQ, E\Q)+L(E‘NU, E\RQ)
—L(ENQ,E)—L(E‘NQ, E\Q)—L(E‘NQ, ENU)
=L(ENU, E9)+L(E‘NU, E\Q)—L(E‘NQ, ENU)
=L(ENU, E°\Q)+L(E‘NU, E\Q),
and a similar formula holds for F replacing E. Now, from (2-1), we see that

ENU=FNU, E‘NU=F'NU, E\Q=F\Q and E\Q=F\Q;

thus we obtain (2-2) when o € (0, 1).

Now, to prove (2-3), we can focus on the case 0 = 1 (since Per; = Per, when o € (0, 1), in this
case we return simply to (2-2)). To this end, we observe that Q" € Q~ (recall formula (1-2)), so we can
apply (2-2) to the sets " and Q~ and obtain, when o = 1,

Per! (E, Q) — Per’ (F, Q) = Per(E, Q) — Per(F, Qy) = Per(E, Q') — Per(F, Q).
This completes the proof of (2-3). (Il
Now we state the basic existence result for the minimizers of the functional in (1-4):

Lemma 2.3 (existence of minimal pairs). Fix an admissible pair (u,, E,) such that Eq(u,, E,) < 4+00.
Then there exists a minimal pair (u, E) in Q such that u — u, € HO1 (2) and E \ Q2 coincides with E, \ €2

up to sets of measure zero.
Proof. Let (u;, E;) be a minimizing sequence, namely

lim Eq(u;, Ej) = inf &g, (2-6)
j—+oo X (o, Es)
where Xq(u,, E,) denotes the family of all admissible pairs (v, F) in 2 such that v — u, € HO1 (2)
and F \ 2 coincides with E, \ 2 up to sets of measure zero.

We stress that

sup ®(Per (E;, Q)) < +o0,
jeN '
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thanks to (2-6). By this and (1-3), we obtain

sup Per, (E;, ) < +o00.

jeN
Using this and (2-6), by compactness (see, e.g., Corollary 3.49 in [Ambrosio et al. 2000] for the case o = 1
or Theorem 7.1 in [Di Nezza et al. 2012] for the case o € (0, 1)), we obtain that, up to subsequences, u;
converges to some u weakly in H' () and strongly in L?(2), and x E; converges to some g strongly
in L'(Q) as j — +00. By Lemma 2.1, we have that (u, E) is an admissible pair, and so by construction

(u, E) € Xqa(u,, E,). 2-7

Also, by the lower semicontinuity (or Fatou’s lemma; see, e.g., Proposition 3.38(b) in [Ambrosio et al.
2000] for the case 0 = 1) we have

liminf/ |Vu‘,~(x)|2dx2/ |Vu(x)[*dx and liminf Per’ (E;, Q) > Per’ (E, Q),
Q Q

j—>+o0 j—+o0

and so, using also the monotonicity and the lower semicontinuity of @,

lim inf @ (Per}, (E;, Q)) > ®(liminf Per} (E;, Q)) > ®(Per, (E, Q)).
J—+00

J—+o0
These inequalities and (2-6) give that

Eau, E) < inf &g,
XQ(uasEa)

and then equality holds in the formula above, thanks to (2-7). (I

As it often happens in free boundary problems (see, e.g., [Alt and Caffarelli 1981; Athanasopoulos
et al. 2001; Caffarelli et al. 2015]), the solutions are harmonic in the positivity or negativity sets. This
happens also in our case, as clarified by the following observation:

Lemma 2.4. Let (u, E) be a minimal pair in Q2. Let U be an open set. Assume that either infy u > 0

or supy u < 0. Then u is harmonic in U.

Proof. The proof is standard, but we give the details to assist the reader. We suppose
infu > 0, (2-8)
U

the other case being similar. Let x, € U. Since U is open, there exists r > O such that B,(x,) C U.
Let ¥ € C3°(B;2(x,)). Let also ue :=u + €y and

m:= inf u.
BV/Z(-XU)

By (2-8), we know m > 0. Thus, if € € R, with |e| < (14| ||LDC(Rn))_1m, we have ue > u—e|| Y| pomn =0
in B, /»(x,). This and the fact that v vanishes outside B,2(x,) give that (u, E) is an admissible pair.
Thus, the minimality of (u, E) gives

0< Eqlue, E) — Eq(u, E) = [ (IVu(x) + eV (x)[* — [Vu(x)|?) dx,
Q

from which the desired result easily follows. U
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As often happens in free boundary problems, the minimizers satisfy the following subharmonicity
property:

Lemma 2.5. Let (u, E) be a minimal pair in Q and u™* := max{u, 0} and u™ :=u™

—u = — min{u, 0}.
Then both u™ and u= are subharmonic in Q in the sense that

f Vut(x) Vi (x)dx <0
Q

forany ¥ € H& (2), with ¢ =2 0 a.e. in 2.

Proof. The proof is a modification of the one in Lemma 2.7 in [Athanasopoulos et al. 2001], where
this result was proved for the case in which @ is the identity and o = 1. We give the details to assist
the reader. We argue for u™, since a similar reasoning works for u~. We define v* to be the harmonic
replacement of u™ in € which vanishes in E¢, that is, the minimizer of the Dirichlet energy in 2 among
all the functions v in H'(S2) such that v —u™ € HO1 (2) and v =0 a.e. in E°. For the existence and the
uniqueness of the harmonic replacement, see, e.g., Section 2 in [Athanasopoulos et al. 2001] or Lemma 2.1
in [Dipierro and Valdinoci 2015]. In particular, the uniqueness result gives that

if vin H'(Q) is such that v —u™ € Hj(Q), v =0 a.e. in E

and / IVu(x)|>dx < / |Vv*(x)|>dx, then v =v* ae. in R%. (2-9)
Q Q
Moreover, by Lemma 2.3 in [Athanasopoulos et al. 2001], we have

v* is subharmonic. (2-10)

We also notice that v* > 0 by the classical maximum principle and therefore (v*, E) is an admissible pair.
Then, the minimality of (u, E) implies

0= E&qu, E)—Eq(v?, E)=/ |Vu(x)|2dx—/ |Vv*(x)|2dx>/ |Vu+(x)|2dx—f IVv*(x)|? dx.
Q Q Q Q

This implies that u™ coincides with v*, thanks to (2-9), and so it is subharmonic, in light of (2-10). [
Remark 2.6. In light of Lemma 2.5, we have (see, e.g., Proposition 2.2 in [Giaquinta 1983]) that the map
— ut(x)dx

|Br| JBr(p)

is monotone nondecreasing; therefore, up to changing u™ in a set of measure zero, we can (and implicitly
do from now on) suppose

u(p) = lim ut(x)dx.

eNO [Be| Jp.(p)
Another simple and interesting property of the solution is given by the following maximum principle:
Lemma 2.7. Assume

O0) < ®(t) foranyt > 0. 2-11)

Let (u, E) be a minimal pair in Q and let a € R. If u < a in QF, then u < a in the whole of R".
Similarly, if u > a in Q, then u > a in the whole of R".
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Proof. We suppose
u>a in QS (2-12)

the other case being analogous.

We need to distinguish the cases @ < 0 and a > 0.

If a <0, we take u* := max{u, a}. Notice that (u* E) is an admissible pair: indeed, a.e. in £ we have
0 <u < u* while a.e. in E€ we have u < 0 and so u* < 0. Also, by (2-12), we have u > a in Q€, and
so u* = u in Q° As a consequence, the minimality of (u, E) gives

0< Eaw B) ~ ol £) = [ (Wu@P = VuP)dx =~ [ [VutwPax.
Q Q

N{u<a}

which implies u > a, as desired.
Now suppose a > 0. We take u* to be the minimizer of the Dirichlet energy in £ with trace datum u
along 92 (and thus we set u” := u outside Q); then we have

r::f |Vu(x)|2dx—/ IVul(x))?dx = 0. (2-13)
Q Q
Moreover, by (2-12) and the classical maximum principle, we know
u* >a in the whole of R". (2-14)
Thus, u” > 0 and so («*, R") is an admissible pair. Accordingly, the minimality of (u#, E) and (2-13) give
0 < Equf, R") — Eq(u, E)
=/ Vi (x)|? dx + D (0) —/ |Vu(x)|> dx — ®(Per’ (E, Q)
Q Q
=—I"+ ®(0) — (Per, (E, Q)). (2-15)

As a consequence,
® (Per, (E, Q) < =T+ @(0) < ©(0);

hence, exploiting (2-11), we see that Per), (E, 2) = 0. Plugging this information into (2-15), we obtain
that 0 < —TI' and thus, recalling (2-13), we conclude that I' = 0. By the uniqueness of the minimizer of the
Dirichlet energy, this implies that u® coincides with . In light of this and of (2-14), we have u = u® > a,
as desired. O

Now we give a uniform bound on the (classical or fractional) perimeter of the sets in the minimal pairs:
Lemma 2.8. Suppose Q is strictly star-shaped, i.e., tQ C Q foranyt € (0, 1), and that

d is strictly monotone. (2-16)

Let (u, E) be a minimal pair in Q. Assume u > 0. Then, for any Q' C Q, with Q' open, Lipschitz and
bounded, we have
Per, (E, Q') < 2Per, (2, R"). (2-17)
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In particular, if 2 2 Bg, then, for anyr € (0, R],
Per, (E, B,) < Cr'"™° (2-18)

for some C > 0 possibly depending on n and o.

Proof. We observe that (2-18) follows from (2-17) by taking " := B,, so we focus on the proof of (2-17).
For this, first we suppose that Q" € 2 (the general case in which ' C © will be considered at the end of
the proof, by a limit procedure). Let F := E U . Notice that F\ Q' = EUQ' N (Q)¢ = E \ . Thus,
by formula (2-3) in Lemma 2.2, we get

Per} (E, Q) — Per (F, Q) = Per, (E, Q') — Per, (F, ). (2-19)

Now, let v be the minimizer of the Dirichlet energy in ' with trace datum u along 2’ (then take v := u
outside 2'). Since u > 0, so is v. Hence, the pair (v, F) is admissible. Therefore, the minimality of (u, E)
implies

0< &, F) —&a(u, E)

5 IVo(x)|>dx — 5 |Vu(x)|> dx + @ (Per’ (F, ) — @ (Per’ (E, Q))
< 0+ ®(Per’ (F, Q) — ®(Per’ (E, Q)).
Hence, by (2-16), we have Per}, (E, Q) < Per; (F, ) and so, by (2-19),
Per, (E, Q') — Per, (F, Q') = Per’ (E, Q) — Per’ (F, Q) < 0. (2-20)

In addition, we have
Per, (F, Q') = Per, (E U/, Q') < 2Per, (', R"),

where the last formula follows using (1-1) if o € (0, 1) and, for instance, formula (16.12) in [Maggi 2012]
when o = 1.
The latter inequality and (2-20) give

Per, (E, Q') < Per, (E, Q') < Per, (F, Q') < 2Per, (', R").

This proves the desired result when Q' € Q. Let us now deal with the case Q' C Q. For this, we
set Q. := (1 —€)Q". Since Q2 is strictly star-shaped, we have Q. = (1 —€)Q' C (1 —€)Q2 € Q for
any € € (0, 1), so we can use the result already proved and we get

Per, (E, Q) < 2 Per, (2., R"). (2-21)
Moreover,
Per, (2., R") = (1 —€)" 77 Per, (2, R"). (2-22)
Also, we claim that
lim Per, (E, Q.) = Per, (E, Q). (2-23)
e\

To prove it, we distinguish the cases 0 =1 and o € (0, 1). If 0 = 1, we use the representation of the
perimeter of E in term of the Gauss—Green measure pg (see Remark 12.2 in [Maggi 2012]) and the
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monotone convergence theorem (applied to the monotone sequence of sets ., see, e.g., Theorem 1.26(a)
in [Yeh 2006]): in this way, we have

1{1(1)Per(E, Q)= 1{1(1) lEl() = nel(Q) = Per(E, Q).

This proves (2-23) when o = 1. If instead o € (0, 1), we first observe that Per, (E, Q) < Per, (E, Q')
and then

lim sup Per, (E, Q2.) < Per, (E, ). (2-24)
e\

Conversely, we use (1-1) to write

Per, (E, Q) = L(ENQ., E)+ L(ECNQL, EN(QL))
> L(ENQL, ES) + L(E°NQ., EN(Q)°).

Consequently, by taking the limit of the inequality above and using Fatou’s lemma,

lim\iéqf Per, (E, Q) > L(ENQ, EY) + L(E° N, EN(Q)°) = Per, (E, ).
€

This, together with (2-24), establishes (2-23).
Now, combining (2-21)—(2-23), we obtain (2-17) by taking a limit in €. O

3. Proof of Theorem 1.1

Now we prove Theorem 1.1. The idea of the proof is that, on the one hand, for large balls, we obtain
a large contribution of the perimeter, which makes the energy functional simply the Dirichlet energy
plus a constant, due to the special form of ®. On the other hand, for small balls, both the Dirichlet
energy and the perimeter give a small contribution, and in this range the contribution of the perimeter
becomes predominant. This dichotomy of the energy behavior makes the minimal pair change accordingly;
namely, in large balls, harmonic functions are favored, somehow independently of their level sets, while,
conversely, for small balls the sets which minimize the perimeter are favored, somehow independently on
the Dirichlet energy of the function that they support. That is, in the end, the core of the counterexample
is, roughly speaking, that being a minimal surface is something rather different than being the level set of
a harmonic function.

Of course, some computations are needed to justify the above heuristic arguments and we present now
all the details of the proof.

Estimates on Per, (E, Bg) from below. Here we obtain bounds from below for the (either classical or
fractional) perimeter of a set E in By, once E is “suitably fixed” outside? the ball Bx C R2 For this
scope, we recall the notation in (1-5) and (1-6), and we have:

3For simplicity, we state and prove all the results of this part only in R?, though some of the arguments would also be valid in
higher dimensions.
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Lemma 3.1. Let ¢, > 0. Let (u, E) be an admissible pair in R% Assume u — ii € H(} (By) and

IVu(X)|2dX < c,.
B

Then there exists ¢ > 0, possibly depending on c,, such that
Per, (E, By) > c. 3-1)
Proof. We argue by contradiction. If the thesis in (3-1) were false, there would exist a sequence of

admissible pairs (u;, E;) such that u; —u € H(} (By),

IVu; (X)*dX < c,
B
and

Pery (£ B1) < . (3-2)

Thus, by compactness, (see, e.g., Corollary 3.49 in [Ambrosio et al. 2000] for the case ¢ =1 or Theorem 7.1
in [Di Nezza et al. 2012] for the case o € (0, 1)), we conclude that, up to subsequences, u; converges to
some U, weakly in H'(B;) and strongly in L?*(B;), with

Uoo — @l € Hy (By), (3-3)

and xg; converges to some x g, strongly in L'(B)) as j — 400. Accordingly, by the lower semicontinuity
of the (either classical or fractional) perimeter (or by Fatou’s lemma; see, e.g., Proposition 3.38(b) in
[Ambrosio et al. 2000] for the case 0 = 1) we deduce from (3-2) that

Per, (Eo, B1) =0.

Hence, from the relative isoperimetric inequality (see, e.g., Lemma 2.5 in [Di Castro et al. 2015]
when o € (0, 1) and formula (12.46) in [Maggi 2012] when o = 1),

min{|B1 N Eoc] 72 |Bi \ Eao|®™?} < € Pero (Enc, B1) =0
for some C > 0. Thus, we can suppose
|Bi N Ex| =0, (3-4)

the case | B; \ Eoo| =0 being similar. Also, by virtue of Lemma 2.1, we have uy, >0 a.e. in E5 and uqo <0
a.e. in E . Thus, by (3-4), we obtain that u,, < 0 a.e. in B;. Looking at a neighborhood of 9 B in the
first quadrant, we obtain that this is in contradiction with (3-3), thus proving the desired result. O

By scaling Lemma 3.1, we obtain:

Lemma 3.2. Letc, > 0and R > 0. Let (u, E) be an admissible pair in R2 Assume u —ii € HO1 (Bg) and
/ IVu(X)|*?dX < c, R* (3-5)
Bp

Then there exists ¢ > 0, possibly depending on c,, such that

Per, (E, Bg) > cR>°.
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Proof. We set

S E X
uy(X) =R “u(RX) and E*::E:: E:XGE.

Notice that R™2ii(RX) = R™*(Rx)(Ry) = i(X); therefore u, — it € Hj(By). Also, (u,, E,) is an
admissible pair. In addition,
IVu, (X)?dX =R [ |Vu(RX)?dX = R—“/ IVu(Y)|*dY < co,
By B Br
thanks to (3-5). As a consequence, we are in a position to apply Lemma 3.1 to the pair (u, E,) and thus
we obtain

R R2 = Per, (E, Bg),

as desired. O

E BR 1
< Per, (Ey, By) = Per,

Analysis of minimizers in large balls. Now we give a concrete example of a minimizer in B C R?
for R large enough. To this end, we consider a monotone nondecreasing and lower semicontinuous
function  : [0, +00) — [0, +00), with
d()=1 forany1 e [2, +0). (3-6)
We let
Eq, E) ::/ IVu(X)|> dX + ®(Per’ (E, Q)).
Q

We remark that, in principle, the minimization procedure in Lemma 2.3 fails for this functional, since the
coercivity assumption (1-3) is not satisfied by ®. Nevertheless, we will be able to construct explicitly a
minimizer for large balls of &. Then, we will modify ® at infinity and we will obtain from it a minimizer
for a functional of the type in (1-4), with a coercive ®. The details are as follows.

Proposition 3.3. Let n = 2. Let i and E be as in (1-5) and (1-6).
Then, there exists R, > 0, only depending on n and o, such that if R > R, then

SBR(u E) SBR(U F) (3-7)
for any admissible pair (v, F) such that v —1ii € H(} (Br) and F\ B = E\ Bpr, up to sets of measure zero.

Proof. We observe that Vi(x, y) = (y, x), and so

IVi(X)?dX = | |X?dX <CR* (3-8)
Br Br

for some C; > 0. Moreover, since Eisa cone, we have E=RE ; thus
Per, (E, Bg) = Pery (RE, RBy) = C,R*™°
for some C» > 0. In particular, if R > (2/C2)1/(2 %) we have

Per), (E Br) > Pera(E Br) >
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and then, by (3-6),
®(Per’ (E, Bg)) = 1. (3-9)

This and (3-8) imply that
Ep, (i, E) < CR* +1<2C R (3-10)

if R is large enough.
Now suppose, by contradiction, that (3-7) is violated, i.e.,

Ep(ii, E) > Ep, (v, F) (3-11)
for some competitor (v, F). In particular, by (3-10),

[ 19000R ax < Eayo. F) < Byt By < 2018 (3-12)
Br

This says that formula (3-5) is satisfied by the pair (v, F) with ¢, :=2Cy, and so Lemma 3.2 gives
Per’ (F, Bg) > Per, (F, Bg) > cR*™°
for some ¢ > 0. In particular, for large R, we have

®(Per? (F, Bg)) =1
and therefore
Ep, (v, F)=f IVo(X)|>dX +1. (3-13)

Bg
On the other hand, since # is harmonic,
Vo) PdX > | |[Va(X)]?dX;
Br Bp
hence (3-13) and (3-9) give
Ep, (0, F)> | |Va(X)|?dX +1=Ep,(@, E).
Br
This is in contradiction with (3-11) and so the desired result is established. O

Corollary 3.4. Let n = 2. Let ui and E be as in (1-5) and (1-6). There exists K, > 2 such that the
following statement is true. Assume

O(t)=1 foranyt€[2, K,]. (3-14)
Then, there exists R, > 0 such that (i, E) is a minimal pair in Bg,.

Proof. We define
() ifrel0,2],

®) = {1 if 1 € (2, +00).
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Then we are in the setting of Proposition 3.3 and we obtain that there exists R, > 0, only depending on n
and o, such that (&, E) is a minimal pair for g Bg,- S0 we define

K, :=Per’ (E, Bg,) +3.

Notice that K, only depends on »n and o, since does R, also, and & and E are fixed.

To complete the proof of the desired claim, we need to show that (i, E ) is a minimal pair for &g, ,
as long as (3-14) is satisfied. For this, we remark that, since ® is monotone, we have ®(¢) > ¢ (2) =1
for any ¢ > 2. As a consequence, we get O (¢) > <I>(t) for any ¢t > 0. Therefore, if (v, F) is a competitor
for (u, E), we deduce from (3-7) that

Epy, (i, E) < Epy, (v, F) < Epy, (v, F). (3-15)

On the other hand,
Per’ (E, Bg,) < K,. (3-16)

Moreover, we have 5(1) =1=®(t)ift € (2, K, ]. Therefore, we get d=din [0, K, ] and thus, by (3-16),
®(Per’ (E, B,)) = ®(Per’ (E, Bg)).
By plugging this into (3-15), we conclude that

Epy, (@1, E) = Ep, (i1, E) < Epy, (v, F),
as desired. O

Estimates in small balls. Here, we show that the minimal pair constructed in Corollary 3.4 in large balls
does not remain minimal in small balls.

Proposition 3.5. Let n = 2. Assume

d(t) =1t foranyt €0, 1] (3-17)

(o 2i) (3-18)

(o2

for some

Let i and E be as in (1-5) and (1-6).
Then there exists r, > 0 such that if r € (0, r,] then the pair (i, E ) is not minimal in B,.

Proof. We suppose, by contradiction, that (i, E ) is minimal in B,, with r sufficiently small.
We observe that E is not a minimizer of the perimeter in B, 172 (see [Savin and Valdinoci 2013] for the
case o € (0, 1)). Therefore there exists a perturbation E; of E inside B, /2 for which

Pera(Eu, Bl/z) Perg(E Bl/2) —da
for some (small, but fixed) a > 0. As a consequence, recalling Lemma 2.2,

Per, (E;, By) —Per, (E, By) = Pery (Ez, By3) — Pero (E, Byjp) < —a. (3-19)
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Now we take ¥ € C*®°(R?, [0, 1]) such that 1 (X) =0 for any X € B34 and ¥ (X) =1 for any X € B9C/10'
We define
ug(X) =uz(x, y) == u(X) Y (X) =xy ¢ (x, y).
We claim that
us >0 ae.in Ey and u; <0 ae.in E3. (3-20)

To check this, we observe that u; = 0 in B34, so it is enough to prove (3-20) for points outside B3 4.
Then, we also remark that E; \ B34 = E \ B34, and, as a consequence, we get that u > 0 a.e. in E; \ B34
and u <0 a.e. in Eg \ B3,4. Hence, since ¥ > 0, we obtain that u; > 0 a.e. in Ey \ B34 and uy <0 ae.
in Ef \ Bsjs. These observations complete the proof of (3-20).

Now we define

ur(X) = rzuu(§> =Xy lﬁ(§> =u(X) W(%)
and
E, :=rE;.

From (3-20), we obtain that u, > 0 a.e. in E, and u, <0 a.e. in Ef, and thus (u,, E,) is an admissible pair.
Now we check that the data of (u,, E,) coincide with (i, E ) outside B,. First of all, we have that ¢ =1
in Bg/lo; thus, if X € Bgr/lo we have u,(X) = u(X). This shows that

u, —ii € Hy (B,). (3-21)
Moreover,

E.\B, = {XEB,C.‘:}"ilXEEﬁ} ={X=rY:YeE;\Bi}={X=rY: YEE\BI}.
Now, since Eisa cone, we have Y € E if and only if rY € E , and so, as a consequence,
E\B ={X=rYeE:YcB{}=E\B,.

Using this and (3-21), we obtain that, if (i, E ) is minimal in B,, then

Es, (i, E) < Ep, (uy, Ey). (3-22)
Now we remark that, since Eisa cone,
Per, (E, B,) = Pet, (rE, r B;) = r>~° Per, (E, By). (3-23)
Now we define
— {4T ifo=1,
0 ifoe(,1),

and we claim that
Per’ (E, B,) = r>~° Per, (E, B)) + 0. (3-24)
Indeed, if o € (0, 1), then (3-24) boils down to (3-23). If instead o = 1, we use (3-23) in the following
computation:
Per* (E, B,) = Per(E, B,.v) = Per(E, B,) +Per(E, B,yx \ B,) =7 Pery (E, B)) + 4.
This proves (3-24).
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From (3-24) we obtain that

Ep, (i, E) > ®(r* Per, (E, B) +9). (3-25)
On the other hand, recalling (3-19), we have
Per, (E,, B,) = Per, (rEs, B,) = r*~° Per, (E;, B)) < r*~° (Per, (E, B)) —a). (3-26)
Now we claim that
Per’ (E,, B,) <r>~°(Per, (E, By) —a) + 9. (3-27)

Indeed, if o € (0, 1) then (3-27) reduces to (3-26). If instead 0 = 1, we use the fact that E, coincides
with E outside B, and (3-26) to see that

Per; (Er: Br) = Per(Er, Br+T) = Per(Er, Br) + Per(E,, Br+T \ Br) < "'2_0 (Pera(E’ Bl) - a) + 47.

This establishes (3-27).
Then, the monotonicity of ® and (3-27) give

@ (Per’, (Ey, B,)) < ®(r?~% (Per, (E, B)) —a) + ) (3-28)
Now we remark that
Vu, GO < IVAX) Y (X /)| +r~HaX) Vi (X/r)| < IX|+Crt X P,
for some C > 0. As a consequence of this, and possibly renaming C > 0, we obtain

/ Vi, (X)>dX < cf (IXP*+r21X1*) dx < Cr',
B, B,

This and (3-28) give
Ep, (ur, E;) < Cr+ @ (r>~% (Per, (E, B)) —a) +9).
Putting together this, (3-22) and (3-25), we conclude that
@ (277 Per, (E, B)) +0) < Cr* + & (r>~7 (Per, (E, By) —a) + ).
Thus, if r2~° Perg(g, B)) < %, and so Per, (E, B;) + 9 < 1, we can use (3-17) and obtain
[r7° Per, (E, By) +0]” < Cr* + [r*~% (Pety (E, By) —a) +9]". (3-29)

Now we distinguish the cases o € (0, 1) and 0 = 1. When o € (0, 1), we have ¥ =0 and so (3-29) becomes

r@= (Per, (E, B1))” < Cr*+r®=97 (Per, (E, B)) —a)".
So we multiply by 7©~27 and we get

a, := (Per, (E, B))! — (Per, (E, B)) —a)” < Crite=2r,

Notice that a, > 0 since a > 0, and therefore the latter inequality gives a contradiction if r is small
enough, thanks to (3-18). This concludes the case in which o € (0, 1).
If instead o = 1, then we have ¢ > 0 and so, for small 7, we have

(t+9) =97 +yd" "1+ 0.
Therefore, we infer from (3-29) that
9 +y 0?20 Pery (E, By) <0 +y0" 120 (Per, (E, B) —a) + 0(*7).
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Hence we simplify some terms and we divide by 72~ to obtain
a< 0™,

which gives a contradiction for small » > 0. This completes the case o = 1. ([

Completion of the proof of Theorem 1.1. The claim in Theorem 1.1 now follows plainly by combining
Corollary 3.4 and Proposition 3.5.

4. Proof of Theorem 1.2

The argument is a combination of a classical domain variation (see, e.g., [Alt and Caffarelli 1981]) with
an expansion of the (classical or fractional) perimeter. Some similar perturbative methods appear, in
the classical case, for instance, in [Garofalo and Lin 1986; Caffarelli et al. 2009]. Since the arguments
involved here use both standard and nonstandard observations, we give all the details to assist the reader.
First, we observe that

the function & := (3 u(x))*> — (8, u(x))* — HE (x) ®'(Per® (E, 2)) belongs to CAENK), (4-1)

thanks to (1-8), (1-10) and Proposition 6.3 in [Figalli et al. 2015] (to be used when o € (0, 1)).
Also, given a vector field V € C*°(R", R") such that

V(x)=0 forany x € QF, 4-2)

for small # € R we consider the ODE flow y = y(¢; x) given by the Cauchy problem

{8z)’(f§ x) = V(y(t; x), w3
y(0; x) =x.
We remark that, for small r € R,
Vi, x)=x+tV(y(; x)+o(t)=x+1tV(x)+o(t). 4-4)
Accordingly,
Dyy(t;x)=1+tDV(x)+o@)=1+tDV(y(t; x))+o(t), 4-5)

where [ denotes the n-dimensional identity matrix.
Also, the map R"” > x — y(¢; x) is invertible for small ¢; i.e., we can consider the inverse diffeomor-
phism x(¢; y). In this way,

x(t; y(t;x))=x and y(t; x(t; x)) = y. (4-6)
By (4-4), we know
x(t;y) = y(t; x(t;y)) —tV(y(t; x (25 ¥)) +o@) =y —tV(y) +o(1), 4-7)

and therefore
Dyx(t;y)=1—tDV(y)+o(t).
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In particular,
det Dyx(t;y) =1—1tdivV(y)+o(1). (4-8)

Now, given a minimal pair (¢, E) as in the statement of Theorem 1.2, we define
ur(y) == u(x(t; y)).

We remark that the subscript ¢ above does not represent a time derivative. By (4-6), we can write u(x) =
u,(y(t; x)) and thus, recalling (4-5),

Vu(x) = Dyy(t; x) Vu (y(t; x)) = Vu (y(15 ) +1 DV (y (15 %)) Vi (y (25 %)) + 0(2). (4-9)
Also, we consider the image of the set E under the diffeomorphism y(¢; -); i.e., we define

E, =yt E).
We claim that
the pair (u;, E;) is admissible. (4-10)

To check this, let y € E; (resp., y € E;). Then there exists
xeE (resp.x € E) 4-11)
such that y = y(¢; x). Then, by (4-6), we have
x(t;y) =x(t; y(t; x)) = x.
This identity and (4-11) imply
O<u(x) =ulx@; y)=u/(y) (esp.0=u/(y)).

From this, we obtain (4-10).
In addition, we recall that
y(t; x) =x forany x € QF, (4-12)

thanks to (4-2) and (4-3). Therefore, we have
y(t; Q) = Q. (4-13)
Moreover, as a consequence of (4-12) and of (4-10), and using the minimality of (u, E), we have
0< quy, E) —Equ, E). (4-14)

Now we compute the first order in ¢ of the right-hand side of (4-14). For this scope, using, for instance,
formula (6.3) (when o = 1) or formula (6.12) (when o € (0, 1)) in [Figalli et al. 2015], and recalling
that V vanishes outside €2, one obtains that

Per) (E;, Q) = Per, (E, Q)—l—t/ Hf(x) V(x)-v(x)dH" " (x) + o). (4-15)
(VE)NQ

Above, we denote by v the exterior normal of E and by H"~! the (n—1)-dimensional Hausdorff measure.
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From (4-15), we obtain that

® (Per’. (E;, Q) = q>(Per;(E, Q)+t / HE (x) V(x)-v(x)d?—["l(x)+0(t)>
(0

E)NQ
= @ (Per, (E, Q))-I—ICD’(Per;(E, Q)) Hf(x) V(x)-v(x)d?—["_l(x)—i-o(t). (4-16)
(BE)NQ
Moreover, by (4-9),
IVu))* = [V, (y(t; X)) 1> + 2t Vu, (y (25 %)) - (DV (y(t; x)) Vu (y(t; x))) + 0(t).

Now we integrate this equation in x over Q2 and we use the change of variable y := y(¢; x). In this way,
recalling (4-8) and (4-13), we see that

/Q Vue) P dx = /Q (Vs (52 )2 426 Vatg (53 )) - (DV (385 1)) Vit (315 1) ] dx + 0(0)
- /Q [V, ()21 Vity () - (DV () Vi, 0] | det Dy (15 )| dy + 0(0)
_ fg [V, (1) 2 Vit () - (DV () Vi, 6] [1 — 1 div V()] dy + (1)

= /Q [IVu, () 42t Vuy () - (DV () Vi, (0) — t [V, ()P div V() ] dy + o(2).
‘We write this formula as

/ |Vu, () dy
Q

= /Q |Vu(x)|*dx +1 fQ [IVu, (02 div V (y) =2 Vu, () - (DV (p) Vur (»)) ] dy +o(t).  (4-17)

Also, by (4-9),
Vu(x) = Vu,(y(t; x)) + O (1),

and so, evaluating this expression at x := x(¢; y) and using (4-7), we get
Vu(y) = Vu (y(t; x(2; y))) = Vulx(t; y)) + O@) = Vu(y) + O(1).

We can substitute this into (4-17), thus obtaining

f |Vu,(y) > dy
Q

=/Q|Vu(x)|2dx—f—tfg[|Vu(y)|2diV V(y) =2 Vu(y)- (DV(y) Vu()]dy +o(t). (4-18)

Now we define Q1 := QN {u > 0} and Q, := QN {u < 0}. Notice that Au = 0 in 2 and in 2, thanks
to Lemma 2.4. Accordingly, in both €, and 2, we have

div(|Vu|> V) = |Vu > div V +2V - (D*u Vu) (4-19)
and
div((V - Vu)Vu) = V(V - Vu) - Vu = Vu - (DVVu) + V - (D*u Vu). (4-20)
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So, we take the quantity in (4-19) and we subtract twice the quantity in (4-20); in this way we see that, in

both €27 and 2,

div(|Vu|* V) — 2div((V - Vu)Vu) = |Vul* div V +2V - (D*u Vu) —2[Vu - (DVVu) + V - (D*u Vu)]
= |Vu|>divV —2Vu - (DVVu).

We remark that the last expression is exactly the quantity appearing in one integrand of (4-18); therefore
we can write (4-18) as

/ Vi, ()2 dy

/|Vu(x)| dx+t Z / [div(IVu() >V () —2div((V (»)-Vu () Vu))]dy+o(t). (4-21)

ie{1,2}

Now we recall (1-9) and we notice that the exterior normal vy of £ coincides with v, while the exterior
normal v, of Q5 coincides with —v. Furthermore, by (1-11), we see that v = —Vu/|Vu| = —Vu/|3; u|
coming from 2 and v =Vu/|Vu|=Vu/|0, u| coming from 2. Accordingly, coming from €2, we have

Vu i
O =v1-Vu=———-Vu=—1[0]ul

|Vul

Similarly, coming from €2,

Vu _
8,,2 =1Vy- Vu—ﬁ Vu = |8v Ml.

Therefore, coming from €2,
Vu dy,u =—|Vu| dy,uv; = |8:Fu|2 v,

and coming from 2,

Vi dy,u = |Vuu| dyyuva = —|0; ul* v.
Consequently, coming from €2; we have
IVul> Vv —2(V - Vu)dyu = [3 ul>V v —2(V - v) [0 u|* = =9 ul*V - v,
while, coming from €,
IVul> V-vy = 2(V - Vu)dyu = — |8, ul*V - v 4+2(V -v) |8, ul® = 9, ul*V - v.

Hence, if we apply the divergence theorem in (4-21), we obtain

fqut(y)lzdy—/IVu(x)Fdx

=t Z/ [IVu) PV (3)vi () =2V (3)-Vu(y)dyu(y) [ dH" ™ () +o(t)

ie{l1,2)

=—t / 19 u() 2 V() v(y) dH ™ (y)+1 [ 18, u( P V() v()dH ™ (y)+o(t). (4-22)
(QEY)NQ BE)NQ
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Using this and (4-16), and also recalling the definition in (4-1), we conclude that

Eaus, ED)— Eau, E) =f Vi, ()2 dy —/ Vi) dx + ®(Pert (E,, Q) — d(Per’.(E, Q)
Q Q

:tf (18, uM > =13 u(WI?) V) - v(») dH" (y)
VE)NQ

+ 1 (Per’ (E, Q) HE(x)V(x) - v(x) dH"~ (x) 4+ 0(t)
(E)N

= —rf Ex)V(x) - vx) dH N x) +o(1).
(OE)NQ

This and (4-14) imply
/ E(x)V(x)-vx)dH"'(x) =0.
BE)NQ

Since V is arbitrary, the latter identity and (4-1) imply that E vanishes in the whole of d E N 2, which
completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

Energy of the harmonic replacement of a minimal solution. We start with a computation on the har-
monic replacement:

Lemma 5.1. Assume that (1-14) holds true. Let (u, E) be a minimal pair in Q, with u > 0 a.e. in Q°
and Bg, @ Q. Let R € (0, R,] and ug be the function minimizing the Dirichlet energy in Br among all
the functions v such that v —u € HO1 (Bg). Then

/ |Vu(x) — Vug(x)|?dx <CLyR"™®
Bg

for some C > 0, possibly depending on R,, n and o, and L g is the one introduced in (1-14).

Proof. We observe that u > 0 a.e. in R”, thanks to Lemma 2.7. Hence ug > 0 a.e., by the classical
maximum principle, and therefore, taking u g := u in Bf, we see that (ug, E U Bg) is an admissible pair,
and an admissible competitor against (u#, E). Therefore, by the minimality of (u, E),

0 < gQ(”R? EU BR) _SQ(M’ E)
= / (IVug(x)]* — |Vu(x)[?) dx + ®(Per} (E U Bg, Q)) — ®(Per} (E, Q). (5-1)
Br

Now we use the subadditivity of the (either classical or fractional) perimeter (see, e.g., Proposition 3.38(d)
in [Ambrosio et al. 2000] when o = 1 and formula (3.1) in [Dipierro et al. 2013] when o € (0, 1)) and
we remark that
Per) (E U Bg, Q) < Per; (E, Q) + Per}, (Bg, 2) < Per), (E, Q) + Per, (Bg, R")
= Per (E, )+ R"° Per,(B;, R") < Q, (5-2)
in light of (1-16).
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Now we claim that
& (Per; (EU Bg, 2)) — & (Per (E, Q) <CLoR"°. (5-3)

To prove it, we observe that if Per} (E U Bg, 2) < Per}, (E, 2) then, by the monotonicity of ® it
follows that @ (Per, (E U Bg, 2)) < ®(Per’ (E, Q2)), which implies (5-3). Therefore, we can assume
that Per), (E U Bg, Q2) > Per}, (E, 2). Then, by (1-14), which can be utilized here in view of (5-2), and
using again the subadditivity of the (either classical or fractional) perimeter,

@ (Per; (E U Bg, ) — ®(Per (E, Q) < Lg |Per), (E U Bg, Q) — Per, (E, Q)|
< LQ Per;(BR, Q) < LQ PCI'G(BR, Rn) < CLQ R"°.

This proves (5-3).
By (5-3) and (5-1) we obtain

CLoR"™ >f (IVu)* = |Vug(x)[?) dx
Bg

= (Vu(x) +Vur(x))- (Vu(x) — Vug(x))dx
Bg

= / (Vu(x) — Vug(x) +2Vug(x)) - (Vu(x) — Vug(x)) dx
Bp

:f |Vu(x)—VuR(x)|2dx+2f Vur(x)- (Vu(x) — Vugr(x))dx
Bg

Bg

_ / Vi(x) — Vug (o) dox,
Bg

where the last equality follows from the fact that ug is harmonic in Bg. The desired result is thus
established. O

Remark 5.2. From Lemma 5.1 it follows that the gradient of the minimizers locally belongs to the
Campanato space £P*, with p :=2 and A :=n — o, and thus to the Morrey space L>"~°. This and the
Poincaré inequality would give that the minimizers belong to the Campanato space £>"+2~7, and thus to
the Holder space of continuous functions with exponents %((n +2—0)—n)=1-— %a. In any case, in
the forthcoming Section 6 we will provide an alternate approach to continuity results.

Estimate on the average of minimal solutions. Now we estimate the average in balls for minimal
solutions:

Lemma 5.3. Assume that (1-14) holds true. Let (u, E) be a minimal pair in Q2, with u > 0 a.e. in Q°
and Bg,(p) € Q. Assume R € (0, R,] and p € Uy. Then

1

u(x)dx < C+Ly R'7?
1Br(P)| Jai) ¢

for some C > 0, possibly depending on R,, n and o, and L g is the one introduced in (1-14).
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Proof. By (1-13), we can take a sequence pj with
lim u(py) =0. (5-4)
k—+o0

For any r € (0, R] and for any k € N, we define

Y(r) = r_”/ u(x)dx and Y (r):= r_"/ u(x)dx.
B (p) B

r(pk)
‘We observe that

Jim e (r) = (). (5-5)
—+00

To check this, we let R > R,, with Bgr(p) € Q and we consider a continuous approximation of u
in L'(B z(p)). That is, we take continuous functions u. such that

lim lu(x) —uc(x)|dx =0. (5-6)
NOJSBR(p)

For large k, we have B, (pr) € Bg(p), and so

r"wk(r)—w(rn:f u(x)dx—/ u(x) dx
By (pr) B (p)

< / ue(x)dx — / ue(x)dx
B (pk) B, (p)

= / (“e(x + pr) —ue(x +P)) dx
B,

+ 2/ lu(x) —ue(x)| dx
Bg(p)

—|—2/ [u(x) —ue(x)| dx.
Bz(p)
Hence, taking the limit in k and using the dominated convergence theorem, we get
lim " [y (r) — ¥ (r)] <2/ |u(x) —ue(x)|dx.
k—>+OO Bﬁ(ﬂ)

Then, we take the limit in € and we obtain (5-5) from (5-6), as desired.
Now, we recall that # > 0 a.e. in R", thanks to Lemma 2.7. Thus, by Remark 2.6,

Y (0) := }1{1(1) Vi (r) = u(pr)- (5-7)

Furthermore, using polar coordinates,

d
1//12(1”)=d—f u(pk+ry)dy=f Vu(px+ry)-ydy
r B

B

1 1
= / [t”/ Vu(py +rtw) -a)d’H”_l(a))] dt = / [t”/ du(pr +rtw) d?—["_l(w)i| dt,
0 sn-1 0 B 5:8)

where v is the exterior normal of Bj.
Now, for a fixed k € N, we use the notation of Lemma 5.1 for the harmonic replacement u, in B, (py) € 2.
For p € (0, r], we define v, (x) := u,(pr + px) and we observe that, for any x € By, we have Av,(x) =
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p* Au, (px + px) =0, and so
0= / Avy (x) dx = / 000 (@) dH' (@) = p / Butty (pi+ pe) dH" ().
B dBy 9B

We take p := rt and we insert this into (5-8). In this way, we obtain

1
Vi(r) = / |:t"/ (8vu(pk +rtw) — dyu, (pi +rta))) dH"_l(a)):| dt.
0 3B
That is, switching from polar to Cartesian coordinates and making the change of variable y := p; +rx,
Y (r) = / x - (Vu(pk+rx) = Vup(pr +rx))dx = r_("H)/ (y = pr) - (Vu(y) = Vu,(y)) dy.
B By (pr)

Hence, using the Holder inequality and Lemma 5.1,

1/2
Y <r " f IVu(y) — wr<y>|2dy) <CVLor P

Br(pk)
for some C > 0. This and (5-7) give

|Vu(y) — Vu,(y)|dy < Cr"/z(/
Br(Pk)

Vi (R) —u(pr) = Yi(R) — ¥ (0) = /OR Y (r)dr <C x/L_Q/ORr_“/Z < CVLoR'™2
up to renaming constants. Hence, making use of (5-4) and (5-5), we find that
Y(R) < CVLg R,
which is the desired claim. U

Completion of the proof of Theorem 1.3. We recall that u > 0 a.e. in R”, thanks to Lemma 2.7. In
particular, u is subharmonic, thanks to Lemma 2.5, and thus

— dy > 5-9
B, Bp(x)u(y) y 2 u(x) (5-9)

for small p > 0. Now we take x € €2, with |x| suitably small, and we define R := |x|. Notice that Bg(x) C
B,k and therefore, since u > 0,

f u(y)dyéf u(y)dy. (5-10)
Br(x)

Bag

In addition, by applying Lemma 5.3 in B,g, we find that

1
— u(y)dy < C~Lg R'™2
R" Byr

As a result, exploiting (5-9) and (5-10),

C C
w0 < g [ wmdy < [ utdy < VIR = C VI Il
R Br(x) R Bag

up to renaming constants. This proves Theorem 1.3.
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6. Proof of Corollary 1.4

To prove Corollary 1.4, it is useful to point out a strengthening of Lemma 2.4 in which one replaces the
condition on the infimum with a pointwise condition (this refinement is possible by virtue of Theorem 1.3):

Lemma 6.1. Let the assumptions of Corollary 1.4 hold true. Let (u, E) be a minimal pair in Q, withu > 0.
Let U € 2 be an open set with u > 0 in U. Then u is harmonic in U.

Proof. Let U" € U be open. The claim is proved if we show that u is harmonic in U’. To this aim, we
claim that

infu > 0. (6-1)
U/
We argue for a contradiction, assuming that this infimum is equal to 0. Then, recalling (1-13), we have
that there exists x, € U’ Nlp. In particular, since x, € U’ C U, we know that

u(x,) > 0. (6-2)
On the other hand, by Theorem 1.3, for small y,
u(x, +y) <C Loyl

As a result, recalling Remark 2.6,

+ L1
u(xy) =u (x*):ll\r‘l(lﬂB |
€

1
/uJ“(x,—i-y)dySC«/LQ lim /|y|1“/2dy=o.
B. e\O |Be| Jp,

This is in contradiction with (6-2) and so we have proved (6-1).
Then, in light of (6-1), we fall under the assumptions of Lemma 2.4, which in turn implies the desired
claim. O

First we recall that u > 0 a.e. in R”, thanks to Lemma 2.7. Also we know that u is subharmonic in 2
(recall Lemma 2.5) and therefore, by the classical maximum principle,

ux) <M (6-3)
for any x € Q2. Also, we may suppose that
there exists g, € B3g;10 such that u(qg,) = 0. (6-4)

Indeed, if this does not hold, then u is harmonic in B3g/19, due to Lemma 6.1, and thus

cM

C
sup |[Vu| < — sup u < R

Brya B30
for some C > 0, where we also used (6-3) in the latter inequality. This implies

CM CM _
1) =W < == 18 =¥ < oz =317

which gives the desired result in this case.
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Hence, from now on, we can suppose that (6-4) holds true. We fix x # y € Bg/4 and we define d(x)
to be the distance from x to the set {u = 0}; we define d(y) analogously. By (6-4), we know that d(x),
d(y) € [0, 2R]. We distinguish two cases:

Case l: |x —y| = %max{a’(x), d(y)}.
Case2: |x —y| < %max{d(x), d(y)}.
First, we deal with Case 1. In this case, we use Theorem 1.3 and we have
u()| < CVLo @(x)'™? and |u(y)| < C VLo @d(y)' />
As a consequence,
u(x) —u()| < @)+ [u()| < C VLo ((dx)' ™72+ @d(y)' ).
Then, the assumption of Case 1 implies
u(x) —u()| < CVLglx =y,

up to renaming constants, which gives the desired result in this case.
Now we consider Case 2. In this case, up to exchanging x and y, we have

0<2|x —y| <d(x) =max{d(x), d(y)} (6-5)

and u > 0 in By(y)(x). Then, by Lemma 6.1, we know that « is harmonic in By()(x) and thus

C
sup  |Vu|<—— sup u (6-6)
Boa(x)/10(x) d(x) B (x)
for some C > 0.
Now, we prove
sup u < C~Lg(d(x))' ™ (6-7)
By (x)

for some C > 0. For this, take n € By(x)(x). By construction, there exists ¢ € By(y)(x) such that u(¢) =0.
Accordingly, we have |n —¢| < |[n— x|+ |x — ¢| < 2d(x), and then, by Theorem 1.3,

u(n) <CNLgln—¢|"™? < CVLg(dx)' ™"

up to renaming C > 0, and this establishes (6-7).
Thus, exploiting (6-6) and (6-7), and possibly renaming constants, we obtain that

sup  |Vu| < C Lo (d(x))™/2

Bod(x)/10(x)

Notice now that y € By(x)/2(x) C Bog(x)/10(x), thanks to (6-5); therefore
u(x) —u(NI < C VLo @)™ |x —y| <CVLg lx —y'™,

up to renaming constants. This establishes the desired result also in Case 2 and so the proof of Corollary 1.4
is now completed.
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7. Proof of Theorem 1.5

The proof is based on a measure theoretic argument that was used, in different forms, in [Caffarelli et al.
2015; Dipierro and Valdinoci 2016], but unlike the proof in the existing literature, we cannot use here the
scaling properties of the functional: namely, the existing proofs can always reduce to the unit ball, since
the rescaled minimal pair is a minimal pair for the rescaled functional, whereas this procedure fails in our
case (as stressed for instance by Theorem 1.1). For this reason, we need to perform a measure-theoretic
argument which works at every scale. To this end, for any r € (0, R) we define
V(r):=|B,\E| and a(r):=H"""((0B,)\E)
and we observe that

V)= /ra(t) dt; (7-1)
0

see, e.g., formula (13.3) in [Maggi 2012].
The proof of Theorem 1.5 is by contradiction: we suppose that, for some r, € (O, %R), we have
V(ry) =By, \ E| < ér) (7-2)

and we derive a contradiction if § > 0 is sufficiently small. We recall that u > 0 a.e. in R", due to
Lemma 2.7, and we define
A:=B,\E.
We observe that (u, E U A) is admissible, since (E U A)° = E° N A° C E“. Then, by the minimality
of (u, E), we obtain
0<&qu, EUA) —Eq(u, E) = ®(Per, (EUA, Q)) — ®(Per, (E, Q2)). (7-3)
Now, by the subadditivity of the (either classical or fractional) perimeter (see, e.g., Proposition 3.38(d) in
[Ambrosio et al. 2000] when o = 1 and formula (3.1) in [Dipierro et al. 2013] when o € (0, 1)), we have
Per) (EUA, Q) =Per,(E U B,, Q) < Per (E, Q) + Per}, (B:, Q2)
< Per (E, Q) + Per, (B, R") < Per, (E, Q)+ R"° Pery (B, R").

Then, both Per}, (E, 2) and Per, (E U A, Q) are bounded by P, as defined in (1-18), and so they lie in the
invertibility range of ®, as prescribed by (1-19). This observation and (7-3) imply

Per) (E, Q) < Per;(EUA, Q). (7-4)
Now we claim that

Per, (E, Q) < Per, (EUA, Q). (7-5)
Indeed, if o € (0, 1), then (7-5) is simply (7-4). If instead o = 1, we notice that E \ B, = (E U A) \ B,
and so we use (2-2), (2-3) and (7-4) to obtain

0 < Per,(EUA, Q) —Per, (E, Q)
=Per,(EUA, B,) —Per, (E, B,) =Per, (EU A, Q) — Per, (E, Q),

which establishes (7-5).
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Now we use the (either classical or fractional) isoperimetric inequality in the whole of R" (see, e.g.,
Theorem 3.46 in [Ambrosio et al. 2000] when o = 1, and [Frank et al. 2008], or Corollary 25 in [Caffarelli
and Valdinoci 2011] when o € (0, 1)); in this way, we have

(V(r)"=/" =B, \ E|"~/" = |A|"~"/" < C Pery (A, R") (7-6)
for some C > 0.
Now we claim that, for a.e. r € (0, R),
Ca(r) ifo=1,
C [y alp)(r—p)~°dp ifo€(0,1)

for some C > 0 (up to renaming C). First we prove (7-7) when o = 1. For this, we write the perimeter
of E in term of the Gauss—Green measure (g (see Remark 12.2 in [Maggi 2012]), we use the additivity

Per, (A, R") < { (7-7)

of the measures on disjoint sets and we obtain

Per(E, B,) +Per(E, @\ B,) = |uel(B,) + e\ B,)
< uel(Br) + el (€2\ Br) = |nel(§2) = Per(E, €2). (7-8)

Now we prove that, for a.e. r € (0, R), we have
H'((0B,) \ E) =Per(B, \ E, Q) —Per(E, B,). (7-9)

For this scope, we make use of the property of the Gauss—Green measure with respect to the intersection
with balls (see formula (15.14) in Lemma 15.12 of [Maggi 2012], applied here to the complement of E).
In this way, we see
H' N OB)\E)=H"""(OB)NENQ)=H""!
= |1teens, |(R) = gl 5, ()
= Per(E° N B,, Q) — |ppe| (B, NQ)
=Per(E°N B,, Q) — |ee|(By)
=Per(E°N B,, Q) — Per(ES, B,).

Ecm(aB,)(Q)

From this and the fact that Per(E¢, B,) = Per(E, B,) (see, for instance, Proposition 3.38(d) in [Ambrosio
et al. 2000]), we obtain that (7-9) holds true.
Now we claim that, for a.e. r € (0, R), we have

Per(EUB,, B,) =H""'((0B,) \ E). (7-10)

Since it is not easy to find a complete reference for such formula in the literature, we try to give here an
exhaustive proof. To this end, given a set F and ¢ € [0, 1], we denote by F®) the set of points of density ¢
of F (see, e.g., Example 5.17 in [Maggi 2012]), that is,

FNB
F® .= xeR”:limﬂ:
r—0 |Br|
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With this notation, we observe that B,(O) =R"\ B,, and thus
BYNB, =2. (7-11)

We denote by 0* the reduced boundary of a set of locally finite perimeter (see, e.g., formula (15.1) in
[Maggi 2012]); we recall that for any x € 9* E one can define the measure-theoretic outer unit normal to E,
which we denote by vg. We also recall that, by De Giorgi’s structure theorem (see, e.g., formula (15.10)
in [Maggi 2012]),

el =H"",. . (7-12)
‘We also set
N, :={x € (@*E)N(dB,) : vg = vp,}.
We claim that, for a.e. r € (0, R),
H'N(N,) = 0. (7-13)

To check this, for any k € N we define

By = {r € (0. R) : H"'(N,) >

I

| =

Then, if r € By, by (7-12) we have

el (@B,) =H"!

1o (0B) =H'" (@ E)N(3B,) = H''(N,) >

=

As a consequence, if r, ..., r; € B and r € (0, R), we obtain

J J
Per(E, Bg) = |pg|(Bg) > |uE|<U<aBr,.>) =Y l1Eel(3B,) > %
i=1 i=1

that is, j < k Per(E, Bpg).
This says that §; has a finite (indeed less than k Per(E, Bg)) number of elements. Thus the following
set is countable (and so is of measure zero):

+00
U Br=1{re(,R): H”_I(N,) >0} ={r € (0, R) : (7-13) does not hold}.
k=1

This proves (7-13).
Now we use the known formula about the perimeter of the union. For instance, exploiting for-
mula (16.12) of [Maggi 2012] (used here with F = B, and G := B,) we have

Per(E U B,, B,) =Per(E, B” N B,) +Per(B,, EY N B,) +#"~(N,NB,).
In particular, using (7-11) and (7-13), we obtain

Per(E U B,, B,) =Per(B,, EY N B,) (7-14)
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for a.e. r € (0, R). On the other hand, B, is a smooth set and so (see, e.g., Example 12.6 in [Maggi 2012])
we have
Per(B,, EONB)=H"YEPNB,N®B)) =H"""EPN®B,)),

and so (7-14) becomes
Per(EUB,, B,) =H""Y(E® N (3B,)). (7-15)
Now we set
S:=(EO\E)YU(E\ ED)

and we remark that | S| =0 (see, e.g., formula (5.19) in [Maggi 2012]). Then, also |SN B,| = 0. Therefore
(see, e.g., Remark 12.4 in [Maggi 2012]) we get that Per(S, R") = 0 = Per(S N B,, R") and then (see,
e.g., formula (15.15) in [Maggi 2012]) for a.e. r € (0, R) we obtain

H"1(SN(3B,)) = Per(SN B,, R") — Per(S, B,) =0,

and so, as a consequence,
H'YEQN@B,)) =H"HE N B))).

Now we combine this and (7-15) and we finally complete the proof of (7-10).
Now we show that, for a.e. r € (0, R),

Per(E U B,, Q) — Per(E, Q\ B,) =Per(B, \ E, Q) — Per(E, B,). (7-16)
To prove this, we notice that (E U B,) \ B,=E \ B,, and so we use Lemma 2.2 to see
Per(E U B,, Q) — Per(E, Q) = Per(E U B,, B,) — Per(E, B,).
As a consequence,
Per(E U B,, Q) —Per(E, Q\ B,) =Per(E U B,, B,) —Per(E, B,) +Per(E, Q) —Per(E, Q\ B,)

=Per(EUB,, B,) — |ue|(B,) + [1el(Q) — |nel(R\ B

= Per(E U B,, B,),
thanks to the additivity of the Gauss—Green measure (g. Then, we use (7-10) and we obtain

Per(E U B,, Q) —Per(E, 2\ B,) = H"'((3B,) \ E).

Then, we exploit (7-9) and we complete the proof of (7-16).
Now we observe that, using (7-9) and (7-16), we obtain, for a.e. r € (0, R),

Per(E U B,, Q) =Per(E, Q\ B,) +H" ' ((3B,) \ E). (7-17)
Now, putting together (7-8) and (7-17), and noticing that EU B, = E U A, we have
Per(E, B,) < Per(E, Q) —Per(E, 2\ B,)
=Per(E, Q) —Per(EUB,, Q) +H" ' ((3B,) \ E)
=Per(E, Q) —Per(EUA, Q) +H"'((8B,) \ E).
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Therefore, recalling (7-5) (used here with o = 1), we conclude that
Per(E, B,) <H"'((3B,) \ E). (7-18)

Now we take r’ € (r, R) and we observe that B, € B, € Q. Also, we see that A \ B, = &; thus, by
Lemma 2.2 (applied here with F := @),

Per(A, R") = Per(A, B,) < Per(A, Q) = Per(B, \ E, Q).
As a consequence of this and of (7-16), we obtain
Per(A, R") < Per(E U B,, Q) — Per(E, Q\ B,) + Per(E, B,).
Hence, in light of (7-17) and (7-18),
Per(A, R") <2H" ' ((dB,) \ E) = 2a(r).

This completes the proof of (7-7) when o = 1.

When o € (0, 1), to prove (7-7) we use a modification of the argument contained in formulas (5.8)—(5.12)
in [Dipierro and Valdinoci 2016]. We first observe that

Per, (E, Q) —Per,(EUA, Q)=L(A,E)—L(A, (EUA)°).
As a consequence,
Per, (A,R") = L(A, A)=L(A,E)+ L(A, (EUA)°)
=2L(A,(EUA))+Per,(E, Q) —Per, (EUA, Q).
This and (7-5) give
Per, (A, R") <2L(A, (EUA)°) <2L(A, By). (7-19)

Now we recall that A € B, and so, using the change of coordinates ¢ := x — y, we obtain

L(A,Bf):/ dx dy </{ dxdt

et axds
AxBe |x =yt (.0 eAxR ¢ >r—|x]} 1§17

+o0 n—1 d d
<c/[/ p p]dxgcf—x. (7-20)
AlJroy P A (r—|xP?

Now we use the coarea formula (see, e.g., Theorem 2 on page 117 of [Evans and Gariepy 1992], applied
here in codimension 1 to the functions f(x) = |x| and g(x) := xa(x)/(r — |x])?), and we deduce that

dx xa(x) n—1 ]
R — =~ dH d
/A (r — [x])° /R[/BB (r — x])° (0| dt

r . r n—1 c r
= / |:/ XE(—(X) deVl—l(x)] dt = f H (E“N(3B;)) dt — f a(t) dt
o LJag, (r—1)° 0 (r—1)° o (r—1)°

This and (7-20) imply

a(t)
(r—1)°

,
L(A, B < C/
0
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Inserting this into (7-19) we get

a(t)

dt,
(r—1)°

Pery (A, R") < C/
0

which gives the desired claim in (7-7) when o € (0, 1).
Using (7-6) and (7-7), and possibly renaming constants, we conclude that, for a.e. r € (0, R),

vy ey S, (-2
C [y a(p)(r—p)~7dp ifoe(0,1).
Our next goal is to show that, for any ¢ € [th %], we have
try
/ (V) dr < Ct'r 0 Vtr,) (7-22)
ro/4

for some C > 0. To prove this, we integrate (7-21) in r € [$r,, t7,]. Then, when o = 1, we obtain (7-22)
directly from (7-1). If instead o € (0, 1), we obtain

tro try r
/ V)" dr < C / [ / a(p)(r — p)™° dp] dr
ro/4 ro/4 0
11, tr, C try
<C/ [/ a(p)(r—p)~—° dr} dp:—/ a(p)(tro—p)' =% dp
0 p 1—0 0

C tr, C (1 -0
<—— a(p)(try)' = dp = Clr) 7 V(tr,),
1—0 Jy l1—o

where we used (7-1) in the last identity. This completes the proof of (7-22), up to renaming the constants.
Now we define 7 := le + 21—k for any k > 2. Let also wy :=r," V (tr,). Notice that ;1 > }L. Then we
use (7-22) with ¢ := 1, and we obtain

tro Ikro

V= dr > f V)" adr,

tk+170

Ctyrl = Vnry) = /
ro/4

Thus, since V (-) is monotone,

—o 11— — r —
Cr™ry ™7V (tro) 2 (tero = tr17) (V (1s170)) 7" = 2 (V (1 7)) "7

o - 2k+1

This can be written as

w7 = P T(V (trq170) O L2 OOV () = 25T O

Consequently, using that #; < 1 and possibly renaming C > 0, we obtain

w7 < Chu. (7-23)

Also, we have 1, = % and thus

o

wy = r(,_"V(%ro) <r)"Vi(r,) <6,
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in view of (7-2). Then, if § > 0 is sufficiently small, we have wy; — 0 as k — +o00 (see, e.g., formula (8.18)
in [Dipierro et al. 2014] for explicit bounds). This and the fact that #, > i say that

0= lim r,"V(tr,) = lim r,"|By,, \E|>r,"|B: s\ E|.
k——+o00 k—+o00

Hence, we have |B,, ;4\ E| =0, in contradiction with the assumption that 0 € d E (in the measure-theoretic
sense). The proof of Theorem 1.5 is thus complete.

8. Proof of Theorem 1.6

By Lemma 2.7, we have
u>0 ae. in R™ 8-1)

For any r € (0, R) we define
V(r):=|B,NE| and a(r):=H"""((3B,)NE),

and we observe that

V() = /ra(t) dt; (8-2)
0

see, e.g., formula (13.3) in [Maggi 2012].
The proof of Theorem 1.6 is obtained by a contradiction argument. Namely, we suppose that, for

some r, € (0, %R) we have
V(”())=|Br{,ﬂE|<5*F;’, (8-3)

and we derive a contradiction if &, > 0 is sufficiently small.

We let A := B, N E. Let also v be the minimizer of the Dirichlet energy in B,, among all the possible
candidates v : R" — R such that v =u outside B,,, v—u € HO1 (B;,) and v=_0a.e. in E°U A (for the
existence and the uniqueness of such harmonic replacement see, e.g., page 481 in [Athanasopoulos et al.
2001]). By (8-1) and Lemma 2.3 in [Athanasopoulos et al. 2001] we have

v>0 ae. inR" (8-4)

Now we set F := E \ A. We observe that v =0 a.e. in ' = EU A by construction. This and (8-4) give
that (0, F) is an admissible pair, and recall also that v —u € HO1 (B, < HO1 (£2). Hence, the minimality
of (u, E) gives

0< &, F)—Equ, E) = / IVE(x)|*dx — / |Vu(x)|* dx 4+ ®(Per’ (F, Q)) — ®(Per’ (E, Q)).
Q Q
Using this and the fact that v and u coincide outside B,,, we obtain

O (Per: (E, Q2)) — ®(Per (F, ) < /

IVO(x)|? dx — / |Vu(x)|* dx. (8-5)
B,

ro B ro
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Now we take w to be the minimizer of the Dirichlet energy in B,, among all the functions w : R” — R
such that w = u outside B, w —u € HO1 (B,,) and w =0 a.e. in E°. We remark that u is a competitor
with such w and therefore

/|vw(x)|2dx</ |Vu(x)|* dx.
B B

ro To

Plugging this into (8-5), we deduce that

® (Per’ (E, Q)) — ®(Per’ (F, Q))g/ |Vﬁ(x)|2dx—/ |V (x)| dx.

ro B, ro

This and Lemma 2.3 in [Caffarelli et al. 2015] imply
® (Per (E, 2)) — P (Per}, (F, 2)) < Cr, %A IIII)IIiOO(BrU). (8-6)

Since, by Lemma 2.3 in [Athanasopoulos et al. 2001], we know that w > 0 a.e. in R" and is subharmonic,
we have that w in B, takes its maximum along 0 B, , where it coincides with u. Hence

WL~ (B,,) < sup u. (8-7)

To

Now we observe that condition (1-20) allows us to use Theorem 1.3, which gives

supu < C/Lor)="?
):

for some C > 0. Hence (8-7) gives
1Bl 25,y < CLor, >
Thus, recalling (8-6), and possibly renaming constants, we conclude that
& (Per, (E, ) — O (Per}, (F, 2)) < Cr, 7 |A|Lg. (8-8)
Now we claim that
Per, (E, ) — Per, (F, Q) < Cco_lr,,_‘7 |A| Lo, (8-9)

where ¢, > 0 is the one introduced in (1-21). To check this, we may suppose that 1| := Per, (E, 2) >
Per, (F, 2) =: A, otherwise we are done. Then, by (1-22), both A and X, belong to [0, Q]; therefore we
can make use of (1-21) and obtain

@ (Per’, (E, Q) — ®(Per’.(F, Q)) = d (%)) — ®(12)

Al
=/ (1) dt > co(h — X2) = ¢, (Pery (E, Q) — Per, (F, Q)),
A2

and then it follows from (8-8) that

Per’ (E, Q) —Per’ (F, Q) < Cc,'r, " |A|Lg. (8-10)

o
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Now we observe that E \ B, = F \ B,; therefore, using (2-2) and (2-3), we see that
Per’ (E, Q) — Per’ (F, Q) = Per, (E, B,) — Per, (F, B,) = Per, (E, ) — Per, (F, Q).

Putting together this and (8-10) we obtain (8-9).
Now we show that, for a.e. r € (0, r,),

Cla(r)+c;'ry " |A|Lg) ifo =1,

Per, (A, R") < . . .
C(fyap)(r—p)2dp+c,'r, 7 |A|Lg) ifo €(0,1).

(8-11)

To prove (8-11) we distinguish the cases 0 = 1 and o € (0, 1). If 0 = 1, we notice that A \ B, =
(B, NE)\ B, = @; hence, by Lemma 2.2, we have

Per(A, R") = Per(A, B,) = Per(E N B,, B,).

Hence we use the formula for the perimeter associated with the intersection with balls (see, e.g., (15.14)
in Lemma 15.12 of [Maggi 2012]) and we obtain

Per(A, R") = |ueng, [(B) = H' ™ g5, (B + I1el| 5 (B))
=H""YEN@B,)NB,)+Per(E, B,NB,)
=H"""(EN(dB,)) +Per(E, B,). (8-12)

On the other hand, we have (E \ B,)° = E°U B,; hence (see, e.g., formula (16.11) in [Maggi 2012]) we
obtain that Per(E \ B,, B,) = Per(E¢U B,, B,) for a.e. r € (0, r,). Hence, by Lemma 2.2,

Per(E, Q) — Per(F, Q) = Per(E, B,) — Per(F, B,)
=Per(E, B,) —Per(E \ B,, B,) = Per(E, B,) —Per(EUB,, B,) (8-13)

for a.e. r € (0, r,). Moreover (see, e.g., formula (7-10), applied here to the complementary set), we have
Per(E°U B,, B,) =H" ' ((B,) N E),
so we can write (8-13) as

Per(E, Q) — Per(F, Q) = Per(E, B,) —H" "' ((dB,) N E).

In particular
Per(E, B,) < Per(E, B,) = Per(E, Q) — Per(F, Q) + H' (BB, N E).
Then we insert this information into (8-12) and we obtain
Per(A, R") <2H" ' (EN (dB,)) + Per(E, Q) — Per(F, Q).

Now we recall (8-9), which completes the proof of (8-11) when o = 1, and focus on the case o € (0, 1).
For this, we use (1-1) and we see that

Per, (E, Q) — Per, (F, Q) = Per, (E, Q) —Per, (E\ A, Q) = L(A, E) — L(A, E\ A).
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Therefore
Per, (A,R")=L(A, A)=L(A, E9)+L(A, E\A) =Per,(E, Q)—Per, (F,Q)+2L(A, E\A). (8-14)

Now we use the fact that A C B, and the change of coordinates ¢ := x — y to write

dxdy </ dxd¢
{

n+o n+o
vl |

L(A, E\ A) < L(A, BY) =/
AxBe X — (r.0)eAxRr(gzr—|x1} 1€

+o0 n—ld d
gc/[/ p p]dxgcf—x. (8-15)
alJr—p 0" A (r—1xD°

Now we observe that, by the coarea formula (see, e.g., Theorem 2 on page 117 of [Evans and Gariepy
1992], applied here in codimension 1 to the functions f(x) = |x| and g(x) := xa(x)/(r — |x])?),

dx w@ ]
_dx ECICONY d
/A<r—|x|>a /R[/ag r—|x)° (0] dr

r r qmn—1 r
-/ [/ XE_@)dHnl(x)} =" (EN@B,) - a)
0 3B, (r—m1° 0 (r—1)° 0o (r—1°

This and (8-15) give

a(t)
(r—1)°
So we substitute this and (8-9) into (8-14) and we complete the proof of (8-11) when o € (0, 1).

Now we recall that |A| = V (r) and we use the (either classical or fractional) isoperimetric inequality in
the whole of R" (see, e.g., Theorem 3.46 in [Ambrosio et al. 2000] when o = 1, and [Frank et al. 2008],
or Corollary 25 in [Caffarelli and Valdinoci 2011] when o € (0, 1)) and we deduce from (8-11) that, for
ae.re(0,r,),

L(A,E\A)gC/r
0

1. — : —
(V(r))(”_")/” _ |A|("_U)/n < C(aEr) +c, 1y ¢ V(r)LQ) | ?fa =1, (8-16)
C(fyalp)r—p) = dp+c,'r,” " V(r)Lg) ifo€(0,1),
up to renaming C > 0. Now we recall (8-3) and we notice that, if r € (0, r,),
o ro TV Lo <)y T (VN T (V) Lo <87 ey (V)T L.
This means that, if 8, > 0 is small enough, or more precisely if
_ 1
83" Lo < Tok (8-17)

we can reabsorb* one term in the left-hand side of (8-16): in this way, possibly renaming constants, we
obtain that, for a.e. r € (0, r,),
Ca(r) ifo=1,
C [y alp)(r—p)~°dp ifo€(0,1).
Htis interesting to point out that the possibility of absorbing the term C ¢, ! ro~ % V(r) L into the left-hand side of (8-16)

crucially depends on the fact that the power produced by the (either classical or fractional) isoperimetric inequality and the one
given by the growth result in Theorem 1.3 match together in the appropriate way.

(V(r))n=o/n < {
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This implies that, for any ¢ € [%, %], we have

try
VN dr < Ct'=r) 7 V(tr,) (8-18)
ro/4
for some C > 0. Indeed, the proof of (8-18) is obtained in the same way as that of (7-22) (the only difference
is that here one has to use (8-2) in lieu of (7-1)). Then, one defines #; := le + 217 and wy :=r, " V(txr,)
and observes that
w7 < Chuy. (8-19)

Indeed, (8-19) can be obtained as in the proof of (7-23) (but using here (8-18) instead of (7-22)).
Furthermore

wy = r, " V(%I"()) < 8*’

o

thanks to (8-3). This says that
if 8, > 0 is sufficiently small (with respect to a universal constant), (8-20)
then wy — 0 as k — 400 (see formula (8.18) in [Dipierro et al. 2014] for explicit bounds). Thus

O:kETmr;nV(tkro) =kETwr;" |Byr, NE| >r," |B,, ;4N E]|.

This is in contradiction with the assumption that 0 € d E' (in the measure-theoretic sense) and so the proof
of Theorem 1.6 is finished. We stress that the explicit condition in (1-23) comes from (8-17) and (8-20).
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GLOBAL WELL-POSEDNESS OF THE MHD EQUATIONS
IN A HOMOGENEOUS MAGNETIC FIELD

DONGYI WEI AND ZHIFEI ZHANG

We study the MHD equations with small viscosity and resistivity coefficients, which may be different.
This is a typical setting in high temperature plasmas. It was proved that the MHD equations are globally
well-posed if the initial velocity is close to O and the initial magnetic field is close to a homogeneous
magnetic field in the weighted Holder spaces. The main novelty is that the closeness is independent of the
dissipation coefficients.

1. Introduction

We consider the incompressible magnetohydrodynamics (MHD) equations in [0, T) x 2, with Q C R4,

v—vAv+v-Vo+Vp=5b-Vb,
0tb—uAb+v-Vb=>b-Vv, (1-1)
divv=divh =0,

where v denotes the velocity field and b denotes the magnetic field, v > 0 is the viscosity coefficient, and
u > 0 is the resistivity coefficient. If v = u = 0, (1-1) consists of the so-called ideal MHD equations; if
v>0and b =0, (1-1) is reduced to the Navier—Stokes equations. We refer to [Sermange and Temam
1983] for a mathematical introduction to the MHD equations.

It is well known that the 2-dimensional MHD equations with full viscosities (i.e., v > 0 and p > 0)
have a global smooth solution. In the general case, the question of whether a smooth solution of the MHD
equations develops a singularity in finite time is basically open [Sermange and Temam 1983; Cordoba
and Fefferman 2001]. Recently, Cao and Wu [2011] studied the global regularity of the 2-dimensional
MHD equations with partial dissipation and magnetic diffusion. We refer to [Cao et al. 2013; Chemin
et al. 2016; Fefferman et al. 2014; He et al. 2014; Jiu et al. 2015; Lei 2015] for more relevant results.

In this paper, we are concerned with the global well-posedness of the MHD equations in a homogeneous
magnetic field By. Recently, there have been a lot of works [Abidi and Zhang 2016; Lin et al. 2015; Ren
et al. 2014; 2016; Zhang 2014] devoted to the case without resistivity (i.e, v > 0 and p = 0). Roughly
speaking, it was proved that the MHD equations are globally well-posed and the solution decays in time if
the initial velocity field is close to 0 and the initial magnetic field is close to Bg. These results especially
justify the numerical observation [Califano and Chiuderi 1999]: the energy of the MHD equations is
dissipated at a rate independent of the ohmic resistivity.

MSC2010: 76W05.
Keywords: MHD equations, global well-posedness, Holder spaces.

1361


http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2017.10-6
http://dx.doi.org/10.2140/apde.2017.10.1361
http://msp.org

1362 DONGYI WEI AND ZHIFEI ZHANG

In high temperature plasmas, both the viscosity coefficient v and resistivity coefficient y are usually
very small [Califano and Chiuderi 1999]. Up to now, the heating mechanism of the solar corona is still
an unsolved problem in physics [Priest et al. 1998], so it is very interesting to investigate the long-time
dynamics of the MHD equations in the case when the dissipation coefficients are very small.

For simplicity, let us first look at the case ;& = v. Following [Bardos et al. 1988], we rewrite the system
(1-1) in terms of the Elsésser variables

Z+:v+b, Z_=v-—b.
Then the ideal MHD equations (1-1) can be written as

8tZ+ +Z_-VZy =vAZy—-Vp,
0tZ_+724-VZ_=vAZ_—Vp, (1-2)
divZ, = divZ_ =0.

We introduce the fluctuations
zy =2Z4+—Bo, z—=Z_+ By.

Then the system (1-2) can be reformulated as

0izy +7Z_-Vzy =vAzy —Vp,
0iz—+7Z4+-Vz_=vAz_—Vp, (1-3)
divzy =divz_ =0.

In the case of @ = R? and v = 0, Bardos, Sulem and Sulem [Bardos et al. 1988] proved that for large
time, the solution z1 of (1-3) tends to linear Alfvén waves:

d;w+ F Bg- Vw4 = 0.

Cai and Lei [2016] and He, Xu and Yu [He et al. 2016] studied the global well-posedness of (1-1) for any
v >0 and Q = R3. The result in [Cai and Lei 2016] also includes the case 2 = R2. These works are based
on an important observation: the nonlinear terms z— - Vz4 and z4 - Vz_ can be essentially neglected after
a long time since zy are transported along the opposite direction. To justify this observation, the key
point is to make weighted estimates for the fluctuations z4+. Due to the nonlocal pressure, the choice of
weight function is very delicate. On the other hand, the viscosity gives rise to more technical troubles
compared with the ideal case.

From the physical point of view, it is more natural to consider the MHD equations in a domain
with boundary. One frequently used domain in physics is a slab bounded by two hyperplanes, i.e.,
Q =R41 %[0, 1]. More importantly, although both v and p are very small, they should be different in
the real case. However, the proof in [Cai and Lei 2016; He et al. 2016] strongly relies on the facts that 2
is a whole space and v = p. In particular, the formulation (1-3) plays a crucial role.

The main goal of this paper is to prove the global well-posedness of (1-1) in the physical case when €2
is a slab and v # p. In this case, we need to impose suitable boundary conditions on zy. Let zy be a
function of (z, x, y), (x, y) € Q. In the case when v = u = 0, we impose the nonpenetrating boundary
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condition
z4=0 ony=o0,1. (1-4)

In the case when v > 0 and p > 0, we impose the Navier-slip boundary condition
z4 =0, dgz, =0, i=1,...,d—1, ony=0,L. (1-5)

To deal with the boundary case, our idea is to use the symmetric extension and solve the MHD equations
in the framework of Holder spaces C 1** for 0 < o < 1. In the ideal case, we give a representation formula
of the pressure by using the symmetric extension. Although the extended solution does not have the
same regularity as the original one under the nonpenetrating boundary condition, we have the important
observation that V p still lies in C 1** based on the representation formula. In the viscous case, we can
reduce the slab domain to 2 = R4~1 x T by using the symmetric extension, because the extended solution
still keeps the C 1'% regularity under the Navier-slip boundary condition.

The most challenging task comes from the case v # . To handle this case, we need to introduce some
new ideas. First of all, we introduce a key decomposition: let ;1 = %(v + W), p2 = %(v — 1), and we

have the decompositions z4 = ZSFI) + Zf) and z_ =z 4 2@ such that

8;25_1) +Z_- Vzg_l) = U1 Azg_l) — Vpg_l),
0z + Z 4 - vz = iy Az -V pD),
8;2_(5) +Z_- sz) = U1 Azf) + py Az — fo),
3,z2P 4+ 7, .Vz® =y Az® 4 pp Az —Vp?.

@)

il) and z*” with respect to

The next task is to establish a closed uniform estimate for the fluctuations z
@1 and ¢. For this, we need the following key ingredients:

¢ The construction of the weighted Holder spaces for the solution. Due to the appearance of the
extra problematic terms Az, we have to work in spaces with different regularity and weight for
the solution zil), zf). Such inconsistencies give rise to the essential difficulties. In particular, the
choice of the weight is very delicate. In [Bardos et al. 1988; Cai and Lei 2016; He et al. 2016], the
weight has decay in all directions. For the slap domain, the weight is only allowed to decay in partial

directions. Again, the weight has to be compatible with the estimate of the nonlocal pressure.

¢ Uniform estimates of the transport equation in the weighted Holder spaces, which are very crucial to
control the growth of the Lagrangian map.

¢ Uniform estimates for the parabolic equation with variable coefficients in the suitable weighted
Holder spaces. This is the most important step.

¢ Boundedness of the Riesz transform and its commutator in the weighted Holder spaces, which is
essentially used to handle the nonlocal pressure. To our knowledge, these results are new and may
be independent of interest. The proof is highly nontrivial.

In this work, we require that 5 /1 is small. However, this cannot be handled as a perturbation of

the case > = 0 except when || < u$ for some o > 1. In this case, the smallness of 25:2) is not easily
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observed. If we directly use the energy method, we can only prove that ||Z§|:2) ) lz2 = O(|2]/ 1) for
fixed z4 (0). However, we can show that |Z§|:2) ()]0, = O(p1) fort ~ 1/p; and fixed z4(0).

In this paper, we consider the MHD equations in a homogeneous magnetic field. In the real case (for
example, solar corona), it is more natural to consider the MHD equations in an inhomogeneous magnetic
field. An important question is to consider the decay of Alfvén waves in an inhomogeneous magnetic
field Bo(y) = (b1(¥), b2(y),0). This is similar to the situation of Landau damping.

2. The weighted Holder spaces and symmetric extension

Weighted Hilder spaces. Let  C R be a domain and o € (0, 1]. We denote by CK2(Q), (k =0, 1)
the Holder space equipped with the norm

|u|0,a;9 = |U|o;sz + [u]a;Q, |u|1,a;Q = |u|0;82 + |Vu|0,a;52,
where

Ju(X) —u(Y)|
|u|0;Q = Sup |U(X)|, [u] Q= Ssup ——————
XeQ * xyeq |X-=Y[*

Let h(X) € C(R?) be a positive bounded function. We introduce the weighted C ke norms

[ulo,q:n,@ = Ulo:n,Q + Ula:nes  ulian0 = ulone + [Vilo,wh-

where
Ju(X) —u(Y)|

u
Ulo:h = |- s Ula;h,Q = SU '
|uo:n.2 ‘h‘o;sz [la;n,0 xyoa (h(X)+h(¥)|X -V

We say that u € C;f’a (2) if ||k q;n,0 < +00. We also introduce

[ulk a:n,Q,7 = sup |u(t)|ka:h@),Q-
0<t<T

When € = R?, we will omit the subscript €2 in the norm of Holder spaces.

The following two lemmas can be proved by using the definition of Holder norm.

Lemma 2.1. Let h, hy, hy be the weight functions such that there exists a constant cq such that
0<coh(X)<h(Y) foranyX,Yele, X -Y|<2. 2-1)
Then there exists a constant C depending only on co such that, fork =0, 1,

[ulo.a:n.a < C(Iulon.q + | Vilong)

[UW |k a:hy o2 < C i ,a:hy Q| Wk aho,0o

/tsu(r) dr

‘ < sup [u(")lka:ne)o-
k[ h(r)dr,Q t<r=<s
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Lemma 2.2. Let ® be a map from Q to Q with V® € C%*(Q). It holds that

|uo CI)|0,oe;h0<I>,Q =< |u|0,a;h,52 maX(|vq>|g;Q’ 1),

[uo @y ginod,0 =< [Ul1,a:n.0 max(|VP[G.q, 1) max(|VP|o,u:q. ).
Here and in what follows, |V ®| denotes the matrix norm defined by

|A|:= sup |AX]. (2-2)
| X|=1

To deal with the viscous case, we introduce the following scaled weighted Holder space. Let o € (0, 1),
R > 0 and define
ulo,a;n,R := |ulo;n + R* [Ula:n,
Ul 10,8 = [Ulo.a:n + max(R, R'™%)|Vulo g:p &-

For these kinds of weighted spaces, we have analogues of Lemmas 2.1 and 2.2. For example, if #(X)
satisfies
0 <coh(X) <h(Y) forany X,Yele, | X —Y| <2R, (2-3)

then for R > 1, we have
|u|0;h + Rlvu|0,a;h,R = |“|1,rx;h,R = |u|0,a;h,R + Rlvu|0,a;h,R = C(|”|O;h + R|v”|0,a;h,R)-
Here C is a constant depending only on cg. In the following, we will fix o € (0, 1).

Lemma 2.3. Let y > 0 and h(X) > 0. Then there exists a constant C independent of h, y, t such that

/Otu(s) ds

Losh,v/k+yt
— 1 1 _a
<cy™! [ Sup ((VS)Z(V(I — )2 () o,ash + Pa(VE +y5) (1t =)' 2 [Vuls)logn
<s<t

3—a
+ 0a (VEF79) (0 =) T [Vuls)]a ).
where ¢ (R) = max(R, R179).
Proof. We denote by Cy~! A the right-hand side of the inequality. Then we have

‘/Otu(s)ds

‘v/ot u(s) ds

t t
< / u(s)lo.aun ds < / () Syt — )~ dsA < Cy1 A,
0,a:h 0 0

t t
h 5/0 IVu(s)logn ds = /0 ga(Vk +y5) " (1 —5) 712 dsA
0;
=< Cy—l min((k + yt)—%, (k + V[)_I_Ta)A,
For any X, Y € R, we have

[Vu(s, X) = Vu(s, Y)| < [X =Y |(A(X) + 2(Y)[Vu(s)]i;h.
[Vu(s, X) = Vu(s. Y)| < [Vu(s, X)[ + [Vu(s. Y)| < (h(X) + h(Y)[Vu(s)lo;n-
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This gives
|Vu(s, X)—Vu(s,Y)| < min((y(t—s))%, |X—YI)(h(X)+h(Y))([Vu(s)]1;h+(y(z_s))—%|vu(s)|0;h)
< min((y(t—=5)) 2. [X =Y ) (2(X) +h(Y)ga(Vhk+y5) " (p(t=5)) 72" 4

Therefore,
'V/Ot u(s) ds(X)—V/Ot u(s) ds(Y)‘
t
5/ |Vu(s, X)—Vu(s,Y)|ds
< /0 min((y(t =), [X =¥ ) (h(X)+h (¥ )gal VET79) " (0t =)~ "7 A ds
< c<h<X>+h(Y))A(min(<w>i, X—7)) /0 ? (VR ys) " ds(yn) 3
t 1
+ [ min((ra= 3 XY =) 7T dsga(VEFT )

N

< C(h(X)+h(Y))A(( 1) 2| X =Y "tpa(Vk+y) )2 1y X =Y (Y0 (VE+y1)” 1
<Cy Y h(X)+h(Y)AIX =Y [*0a(Vk+yt)~".

Hence, we deduce our result. O
Lemma 2.4. Let ® be a map from R? to R¢ with V& € C%*(R?). It holds that

[uo ®@lo gno0,R = [|0,a;n,r max([VO[g, 1)

luo q)|1,0t;h0<I>,R = |“|1,a;h,R maX(|V¢|g, 1) maX(|V¢|0,a;1,Ra 1).
Symmetric extension. Let Q@ = R?~1 %[0, 1] be a strip and X = (x, y), x € R¥~1, y €0, 1] be a point
in €.

Let 7, be an even extension from C(Q2) to C(R?) defined by
Tef(x.2n+y)=Te f(x.2n—y) = f(x.y)
for x e R~ y €[0,1], n € Z. Let T, be an odd extension from Co(2) = {u € C(2) : u=0 on I} to
C(R%) defined by
Tof(x.2n—y)=—=f(x,y), Tof(x.2n+y)= f(x,y)

for x € Rd_l, y€[0,1], neZ.
Lemma 2.5. It holds that

|Tef|0,a = |f|0,o¢,Q» |f|0,o¢;$2 = |T0f|0,a = 2|f|0,¢x;§2-

The same result holds for the weighted Holder norm | - |o o5 if the weight function h(X) depends only
on x.
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Proof. First of all, it is obvious that

|fWO¢uQ f|7%fW0ﬂ’ |fWO¢uQ S|7bfw0ﬂ’
and the same is true for the weighted Holder norm |- | .. We define
po(y)=inf |y —2n| €[0,1] fory eR,
nez

p(X) = (x.po(y)) € @ for X = (x,y) € R,
and let
Q=R x2n2n+1]. Q=R x[2n—1,2n].

nez nez

Then it is easy to see that
Tef = fop,
Tof =fop inQy, Tof=—fop inQ_,
1po(¥) = po ) =1y =)'l |p(X)—p(¥)| =X = Y],

from which, it follows that

ITeflow < | floass: 1Tefloan < 1/ loasne:

1T flo = | flo:e. 1 To flon = | flosn,-
Given X = (x,y), Y = (x’,y) e R? with y < y",if X, Y € Q4 or X,Y € Q_, then
1 To f(X)=To f(Y)| = |fop(X)— fop(Y)

<|floana(hop(X)+hop(¥))|p(X)—p(¥)[*
<|flowheh(X)+h¥)|X-Y|%

1367

Here we used hop(X) = h(X). Otherwise, there exists y1, yo €Zsothat y1—1 <y <y; <y, <y <yr+1.

Let X' = (x,y1), Y/ = (x, y2). Then for f € Co(R2), we have

1T fOI=1fop(X)|=1fop(X)— fop(X))]
<|flo.a:n.e(hop(X)+hop(X")p(X)—p(X")|*
<2/ flo,un@h (X)X — X"|*
Similarly, we have
To S| =2/ floashe k(MY = Y|

Then, using | X — X'|+|Y = Y/| < |X =Y, we get
1T f(X) = To f(Y)] = 2] flo,en,2(A(X) + (Y )X =Y |%

This shows [T fla:n < 2[fla:n,- Similarly, [T flo < 2[f]u:-
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3. Global well-posedness for the ideal MHD equations

This section is devoted to the proof of the global well-posedness of the ideal MHD equations in R¢ ~1x[0, 1]
with the boundary condition (1-4). Recall that in terms of the Elsésser variables z4 = Z 4 + By, the ideal
MHD equations take

0iz+ +Z_-Vzy =—-Vp,

3‘tZ_+Z+‘-VZ_=—Vp, 3-1)

divzy =divz_ =0,

zi(r,x,y) =0 ony=0,1.
Without loss of generality, we take the background magnetic field By = (1,0,...,0).

Main result. Let f(x,y) = fo(x1), where fp € C1(R) is chosen so that | fol < fo <1 and for some
Cf >0,
A T
8(T)= sup / f(Y +2Bot)dt <C{ forany T >0,
Yerd /T
(3-2)

SY)
/Rd I1|X —y[d+ dY <C}f(X) forany X e RY,

f(X)<2f(Y) forany|X—Y|<2.

In fact, fo(r) = (Co + rz)_HTl satisfies the above conditions for some Cp > 1 and 0 <6 < 1.
Now we introduce the weight function f4 (¢, X) given by

fe(t, X) 2 f(X £ Bot),

which satisfies (2-1) with a uniform constant ¢ independent of ¢. Let

A
My (1) = sup |21(5)] 1,05 11 (5).02-
|s|=<t
The main result of this section is stated as follows.
Theorem 3.1. Let o € (0, 1). There exists € > 0 such that if M4 (0) < ¢, then there exists a global in time
unique solution (z4,z_) € LOO(O, +o00; C 1 (Q)), with the pressure p determined by (3-10), to the ideal
MHD equations (3-1), which satisfies

My(t) <Ce foranyt €]0,+00).

Remark 3.2. Since M4 (0) ~ |2+ (0)(x1)' 7|} 4.0 if fo(r) = (Co + r2)_5#, the initial data decays
at infinity only in one direction. This is very crucial for the global well-posedness in the slap domain,
especially in R x [0, 1].

We conclude this subsection by introducing some properties of weighted functions. Let

S Y + Bot) f(Y — Bot)
Rd 1+ |X-Y|d+!

g(t,X) 2

We have the following important facts.
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Lemma 3.3. There exists a constant C > 0 such that for any X € R, t € R,

F(X + Bot) f(X — Bot) < Cg(t. X).
gt.X)<C+x-Y))" e 1),

T
/ gt, X £ Bot)dt <CS(T) f(X).
-T

Proof. Thanks to f(Y) > f(X)/2for | X —Y| <2, we get
Y + Bot) f(Y — Byt X + Bot) f(X — Bot
g(t’X)Z/ f(+o)f(d of) 21/ f(+o)f(d of)
Bx2 1+|X-Y[dt! 4JB(x2 1+|X—Y|d+]
> C7! f(X + Bot) f(X — Bot),

dY

which gives the first inequality.
Using the inequality

1 - 1+ |X —Y|4+!
1+ |X —Z[4+1 = " 14|y —Z|a+V’
we infer
f(Z + Bot) f(Z — Bot) f(Z + Bot) f(Z — Bot) d+1
1, X)= dZ <C I1+|X-Y dYy
8. X) /d 1+ |X —Z|d+1 T Jra 1+ |Y —Z|d+1 1+ =
=C(1+|X=Y|" e, 7),
which gives the second inequality.
Make a change of variable
Y + Bot) f(Y — Byt Y +2Bot) f(Y
(X4 By [ L EBDSC=Bo) [ J 4280 D)
rd 14 |X + Bot — Y|4 +1 rd 1+ |X—Y[¢F1

which along with (3-2) gives

T JTr FOY +2Bot) f(Y) di S(T)f(Y)
/Tg(t’X—i_BOZ): Rd 1+ |X —Y|d+1 dYSC/%dl—I—|X—Y|d+1

dY < C8(T) f(X).

Similarly, we have

T
/Tg(t,X—Bot)fCS(T)f(X). g

Weighted C 1% estimate for the transport equation. Let Z € C'([0,T] x Q) be a vector field with
Z4 =0 on 9. We introduce the characteristic associated with Z:

%@(s,t, X) = Z(t, ®(s,1, X)), D(s,s, X) = X. (3-3)
Then ®(s,¢, X) € Cl([O, T]x[0,T] x ) is a diffeomorphism from € to  and 9 to dQ having the

property
D(r,t) o O(s,r) = P(s, 1), D(s,5) =1d.
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Lemma 3.4. If Z(t, X) satisfies the extra condition
T
VZlownar [ G ST X0Vt < Ao forany X €2
o

then it holds that for 0<to <t <s < T,

V(s t)—1Id|g.0 < e —1,
| ;
IVO(s, )]0 < e,

[VO(s, 1)]asn < 24ge@T® 40,
Proof. Thanks to the definition of ®(s, ), we have

3, VO(s.1) = VO(s,1)((VZ(1)) o D(s.1)),
D(s,s) =1d, VOP(s,s)=1d,
[V®(s,t)] < |VD(s,t) —1d| + 1.

Here |V®(s, t)| is the matrix norm defined by (2-2). Therefore,
N
|V (s, 1) —Id| 5[ [0,V®(s,r)| dr
t

3 /s |VCI)(S, r)| |(VZ(V)) o ®(s, r)| dr
t

< /s‘(VZ(r))OCD(s,rﬂ dr +/S|V<I>(s,r)—ld| }(VZ(r))odJ(s,r)‘ dr,
t t

which implies
|V&(s,1)—1d| < exp(/s}(VZ(r)) o ®(s,r)| dr) —1.
t

Thanks to
|(VZ(r)) o ®(s.7)| < VZloasn,0,17h(r) o D(s.r),

we get by (3-4) that

/t (VZ(r) 0 ®(s. ) (X)| dr <V Z]o a7 /t h(r) o B(s.r)(X) dr

s
= |VZ|o,a;h,sz,T/ h(r, ®(T.r, (s, T)(X))) dr < Ao.
t

Thus, we conclude that
|V®(s, 1) —1d|g. < e0—1,
IVO(s.1)]o:2 < e,
|B(s.7, X) — D(s5,2,Y)| < |VD(s.1)|o:| X — Y| <eo|X —7Y].

(3-4)



GLOBAL WELL-POSEDNESS OF THE MHD EQUATIONS IN A HOMOGENEOUS MAGNETIC FIELD 1371
Notice that

|Vd(s.t, X)—Vd(s,1,Y)| < /SWCI)(S, r.X)=Vo(s,r,Y)|[(VZ(r)) o ®(s.r. X)|dr
t

+ /s |VO(s, r, Y)|[(VZ(r) o ®(s.r. X) = (VZ(r)) o ®(s, 1, Y)|dr.
t

From this and Gronwall’s inequality, we infer

|V®(s,1,X)—VD(s,2,Y)|
N N
5/ }VCD(S,r,Y)‘}(VZ(r))oCIJ(s,r,X)—(VZ(r))o@(s,r,Y)}drexp(/ ‘(VZ(}’))O(D(S,V,X)‘CIV)
t t
s
5/ }V@(s,r,Y)‘ |VZ|0,a;h’Q,T(h(r,®(s,r,X))—J,—h(r,CIJ(s,r,Y)))‘q)(s,r,X)—q)(s,r, Y)!OldreAO
t
N
5/ eV Zown.a.r (h(r, @(s,r, X)) +h(r, (s, 7, Y)))e* 0| X ~Y |* dredo
! Ry
:e(2+“)A0|X—Y|O‘|VZ|0,a;h!Q,T/ (h(r, ®(s,r, X)) +h(r,®(s,r,Y))) dr
t
S 2A0€(2+Q)AO|X—Y|Q,

which shows the last inequality of the lemma. O

Next we consider the transport equation
u+2Z-Vu=F, u(0,X)=uo(X). (3-5)

Using the characteristic, the solution u(¢, X) is given by

t

u, X) =uo(®(,0, X))+/ F(s,®(t,s, X)) ds. (3-6)
0

Lemma 3.5. If Z satisfies (3-4), then we have
t
0loae = e (juoloaa + [ 1FO)oa ds),
0

t
|div u(?)]o.@ < |div uolo:0 +/ !(tr(VZ Vu) —div F)(s)|0.Q ds.
0 ;

Proof. Using (3-6) and Lemmas 2.2 and 3.4, we get
¢
[u@)o,a;2 < [uo o @(7,0)|0,0;2 + / |F(s)o®(t,5)|0,a:2 ds
0
t
S |u0|0,a;9 maX(|V<D(t, O)|(())lsﬂv 1) + / |F(S)|0,(¥;Q maX(|vq)(t’ s)|((:)l;Q’ 1) ds
0

t
< Ao (l“olo,a;sz + / F5)loas ds).
0
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Taking the divergence of (3-5), we obtain
drdivu+Z-Vdivu +tr(VZVu) =div F, u(0,X) =1up(X).
So, we have
t
divu(t) = divug o ®(¢,0) + / (diV F—-tuw(VZ Vu))(s) o®(t,s)ds,
0
and then the second inequality follows easily. O
Proposition 3.6. If |Z + Bo|y 4.7 @,70(T) < 1, then we have
ult,a:fr.0,17 < C(luolia; 0 + (DI Fliag.0.7)
If|Z = Bol1,a; 7, ,,78(T) < 1, then we have
|u|1,a;f_,Q,T =< C(|u0|1,a;f,fz + S(T)|F|1,a;g,Q,T)-

Here C is a constant independent of T.

Proof. We only prove the first inequality; the proof of the second one is similar. Let us claim
|®(s, 7, X)+ Bo(t —s)— X|<2 for0<t<s<T. (3-7)

Otherwise, there exists ¢ € [0, s] such that |<I>(s, t,X)+Bo (t—s)—X! =2and ‘@(s, r,X)+Bo (r—s)—X‘ <2
for r € [t, s]. Thus,

s
‘@(s,t,X)—i—Bo(t—s)—X‘ff |0, D (s, 7, X)+ Bol|dr
t
s
=[ |Z(r, ®(s, 7, X))+ Boldr
t
)
< [ 12+ Boliass ar S 06 r. X dr
t

S
—1Z+ Bohaisax / F(®(s.r. X) — Bor) dr,
t
while, by (3-2),

/tf(dD(s,r,X)—BOr)der/t f(X —Bo(r—s)— Bor)dr <26(T).

This shows
|®(s, 1, X) + Bo(t —s) — X| <2|Z + Bol1,a:7_.,78(T) <2,

which is a contradiction; hence (3-7) is true.
Now we verify (3-4) for h = f_ and Ay = 2. Indeed, by (3-2) and (3-7),

T T T
/f_(t,CID(T,z,X))dtz/f(CD(T,t,X)—BOt)dt§2/ F(X = Bo(t —T) — Bot) dt < 28(T),
0 0 0
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which implies (3-4). Then we infer from Lemma 3.4 that
V(1. 5)|00;:2 = C. (3-8)

It follows from Lemma 3.3 and (3-7) that
t t
/ gr, ®@,r,X))dr < C/ g(r, X —Bo(r —1t))dr <C&(T) f(X + Bot),
0 0

which implies

[u(|1,0: 11 @),0 < U0 0 @, 0)|1,0; 7, (1), + CHT) sup [F(s)o D(t,5)]0,a:g(s)00(1,5),2-

o<s<t

Using the fact f(®(z,0, X)) <2f(X — Bo(0—1)) =2f4(t, X), we get

[uo o @(7,0)|1,0; 71 (1), 2 = 2|u0 © P, 0)|1,0; fod(2,0),2-

Then by Lemma 2.2 and (3-8), we obtain

U 1,0; 11 1), 0
SC(|u00(p(t’0)|1,0t,f,9+8(T) Sup |F(S)|1,O(;g(s),9)maX(|V(D(t’S)|g;Q’l)max(|vq>(t’s)|0,(¥;951)

0<s<t

< Cluoli,a;,@+C(T) sup |F(s)|1,a:0(s),0-

o<s<t
This shows the first inequality of the lemma. O
Representation formula of the pressure. In this subsection, we give a representation formula of the

pressure by using the symmetric extension.

Let (v, b, p) be a smooth solution of (1-1) in [0, T'] x 2 with the boundary condition (1-4). We make
the following symmetric extension for the solution:

0=Tv:= (T, ..., Tv" Tov?), b=Tbh, p=T.p.

Then (0, b, p) satisfies (1-1) in [0, T'] x R? in the weak sense. Although the solution after the symmetric
extension does not have the same smoothness as the original one, we have the following important
observation.

Lemma 3.7. Let h be a weight satisfying (2-1). Letu = (u',..., u?),w = (w!,...,w%) e C}:’“(Q)
be two vector fields with u¢ = w? =00n dQ. Let i = Tu and w = Tw. Then it holds that for
i,j=1,...,d,

Iaiﬁ] aj w' |O,a;h + |ai7/_ll aj w’ |0,a;h =< C|Vu|0,a;h,s2|vw|0,a;h,s2’

it 0;W" [o,0;n + |1 ;W |0,0:n < C l1t]o,0:0,2|VW]0,0:h,0-
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Proof. 1t is easy to verify that

9! ;W' = T, (3;u’ djw'), i’ 3;w! = To(du' d;w’),

i/ 3w’ = T’ d;w), il 9w = T,(u' djw’) fori=1,....,d—1,
al 3w =T, d;w?),  a?d;w/ = Tow? d;w’).
Then the lemma follows easily from Lemma 2.5. O

Taking the divergence of the first equation of (1-1), we get
—Ap=3;(079;0" —b’9;b").

Formally, we have
Vpt,X)=V / N(X —Y)d; (879;0" —b’/3;b")(t,Y)dY,
R4
where N(X) is the Newton potential. In terms of the Elsésser variables Z (¢, X), we have

Vi, X) = V/Rd N(X —Y) 3,8,z )(t,Y)dY.

However, this integral does not make sense for 0; (Zfr d; z1 ) e C%% To overcome this trouble, we introduce
a smooth cut-off function 8(r) such that

1 for|r| <1,
0(r) = - 3-9
") {O for |r| > 2. (3-9)
Integrating by parts, we can split Vp(¢, X) as
~Vit, X) =/ VN(X —Y)(3;209;20)(1,Y)dY
R4

+ f 9;0;(VN(X —Y)(1—0(X —Y[)(E.Z)(t.Y)dY. (3-10)
R4

It is easy to check that this representation makes sense for z4 € wLoo(RD),
We define

Tlué/ VN(X —Y)0(|X —Y|u(Y)dY,
R G-11)

Tjw 2 /d 9;0; (VN(X —Y)(1—0(|X —Y|))w(Y)dY.
R

Let u, w € C1*(2) be two vector fields with u? = w? =0 on 3. Let## = Tu and w = Tw be the
symmetric extension. We define

I(u, w) 2 Ty (3;a/ ;0" — 0’ 9;w') + T (' ). (3-12)
Here and in what follows, the repeated index denotes the summation. Thanks to

;1! 3w’ — d;u! 9;w' = 9; (it ;W' — i’ §;w’), (3-13)
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we infer from Lemmas A.1 and 3.7 that
(1, w)|o,e:2 < Clulou:elw|1a:0- (3-14)
Using Lemma A.2 and (3-13), we calculate
div I(u, w) + (3;u’ djw’ —d;u’ d;w’)
= fRd VN(X —Y)-VO(X =Y )@@/ 8;w" — ;" 3;w/)(Y)dY

—/ 3;9; (VN(X =Y)-VO(X —Y|) @/ w' ) (Y)dY

Rd

:/d 3 (VN(X —Y)-VO(X =Y ) (—it/ ;0" +u' 3w’ +9; @’/ w'))(Y)dY
R

= fd 3 (VN(X —Y)-VO(IX —Y|)) (@' diviwo + w' divit)(Y)dY,
which implies !
|div 7(u, w) — (3ju? 9w’ — 3’ 9;w”)|.q < C(luloldivwloe + [wloeldivuleg).  (3-15)
In the case of R4, the pressure p(¢, X) can also be expressed as

—Vpit,X)=1(z4,z-), (3-16)

where
T, w) 2 /Rd VN(X —=Y)0(X =Y )(@3;u’ 3;v')(Y)dY

+ Ad 9;9; (VN(X =Y)(1=0(1X =Y )@/ v')(¥)dY. (3-17)
Notice that the representation formula (3-16) is independent of the choice of 6 in I(u, w).

Proof of Theorem 3.1. Since we cannot find a well-posedness theory for the ideal MHD equations in
the weighted Holder spaces, we will present a complete proof of Theorem 3.1. In fact, we find that the
proof of the existence part is very nontrivial.

Using the representation of the pressure (3-10), we rewrite the system (3-1) as
ez4 +Z--Vzp =—1I(z4,2-),
0iz—+2Z4 -Vz_=—1(z4,z-), (3-18)
724(0, X) = z40(X), z-(0,X) = z—o(X).

Let T > 0 be determined later and

A1 =zp0l1,0:. 10 + 17-0l1,0: 1.0

When A is sufficiently small, 7" can be taken to be +oo. The system (3-18) is solved by the following
iteration scheme:

0 =:9=0 z=:0"1+By. z™M=:"_B,.
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Let us inductively assume that ng) satisfies

O hasrer 2260 P haer a7 S2004,

where C is the constant in Proposition 3.6.
Take T > 0 so that 4C1 A18(T) < 1. Then we have

2w fy 2 8T < b 12710y 0.0 8(T) < L. (3-19)
Now, the solution foﬂ), z(+1D g determined by

8;Z§7+1) +2zm -Vzgflﬂ) = —I(ZEZ’), zm),
8;2(_”“) + Zif) Vot — —I(ZSZ’), Z(_")),
200, X) = zp0(X). 20FD(0,X) = z0(X).

It follows from Proposition 3.6 that

+1
2 g pear < Cillz4ohiare + 82" lwe pe 0712w a.1);
(n+1)

1200 0 r a1 < Cillz—oliasfa + 8Dz lw sy 0112w pa.1)-

Here we used
[(u, w)|1,0:g,2 < Cl0;u/ 0;w" —0;u/ 0; W' |g,q;n + Clit]o;p < Cluly,e:nlwlang.

which follows from Lemma A.1 with A(z, X) = f+ f—(¢, X) and Lemma 3.7.
Due to (3-19), we obtain

n+1 1
|er )|1,oc;f+,S2,T <2C14;, |207F )|1,oc;f_,§2,T <2Ci14;.
In particular, we show that for any #,
n
|ZS_)|1,oc;f+,Q,T <C, 12" 4r ar=<C.

Next, we show that {Zf:)}nz() are Cauchy sequences in C%%(Q). Indeed, we have

at(z_(:-i-l) _ZE:)) + Zin) . V(Zf:-i-l) _ ZE:)) + (z&") _Z(_n—l)) ) VZE:)
+ I(sz) — zf:_l), ™y 4+ I(sz_l), zM =Dy — g,

3,z D My 4 ng) V(0D 0y 4 (Zsf) —zS:’_l)) vz
+ I(ZE:') — ng'_l), zMy 4 1(25:1_1), W =y =,

(ZE:+1) —ZE:))(O, X) =0, (Z(_n+1) _Z(_"))(O, X) =0.
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Then it follows from Lemma 3.5 and (3-14) that
t
1 _
G = 0] g = C [ 12 =20 D)0y g |92 Gloaa ds
t
4+ [0 =20 g 20O s ds

t
c /0 |G = 2D) ()] o 28T 0 s ds

t
< C2/0 (l(sz) (n 1))(3)‘001{2 + ‘(z(") (n—l))(s)}o’a;g) ds

Similarly, we have

t
1 —
D20 = Co [ (L =200 + [ =200 )
This implies that

D = 2N O] g + [EETD =2 (1) 0 < CRC2Y" /01,

(n) (n)

Therefore, z", z converge to some z, z_ uniformly in [0, /] xQ forany 0 <7 < T. As zy , 2% are uni-

formly boun—ged in C1% we have z,z_ € C1** Then Vzi) Vz®™ converge to Vz, VZ uniformly in
[0, #]x 2 forany 0 <¢ < T Using the equations of Zg_ ‘el 1), 2+ we have 8,25_ ), 3,z also converge uni-
formly in [0, ¢]xQ forany 0 <t < T. Thus, z4, z_ € C1(]0, 1]x ) satisfies (3-18) and zi =24 =00n9Q.

Finally, it remains to prove that if divz¢ = divz_g = 0, then divzy = divz_ = 0. It follows from
Lemma 3.5 and (3-15) that

|div z4 (1) o0

t X .
5/ |(0iz7, 928 —div I(z4.2-))(5)|y.q dS
O bl
t
= C/ (Idiv 24 () 0; [div 2 () |0:2 + 12+ () oz |div z— (5)[0;2 + |div 24 (5)[0;2 |2 (5)|0:2) s
0

t
< C/ (Idiv z4(s)]o;@ + [divz—(s)|o;@) ds
0
Similarly,

t
div 2=l = C [ (1iv24 o + ldivz(5)loim) ds
0

This implies that divz4 =divz_ = 0.
Let us remark that 7(z4, z_) can be expressed as V p. Indeed, we can find 61, 6, € C°°(0, +00) such
that 0] (r) = —0(r)N(r) and 65(r) = (6(r) — 1)N(r). Let 6;; (X) = 9;9;62(|X|) and

Lic(u, w)(x)
:/ 91(|X—Y|)(8iujiji—ajujaiwi)(Y)dY+/ (0;;(X =Y) =0, ;(=Y))(w/ w)(Y)dY.
R4 R4
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Then we have VI.(u,v) = I(u,v). Therefore, we can take p = I.(Z4+,Z_), which satisfies |p| <
C In(2 + |x|). This completes the proof of Theorem 3.1.

4. Global well-posedness for the viscous MHD equations

In this section, we study the global well-posedness for the viscous MHD equations in the slab domain
Q=RI1x [0, 1] with the Navier-slip boundary condition. Because we can reduce the slab domain
Q=RI1x [0,1] to RI-1xT by using the symmetric extension, we will consider more general domain
Q =RK x T4k for2 <k <d. The case k = 1 is more difficult and will be dealt in the future work.

In fact, @ = RF x T9 7k is a special case of R periodic in d —k directions ey, ..., e _x. We will
assume that ey, ..., e z_g, Bo are linearly independent.

New formulation. Let (11 = %(v + ) and py = %(v — ). In terms of the Elsésser variables Z+ =v+b,
the MHD equations (1-1) read

01z+ +Z_-Vzy =u1 Azy +usy Az_—Vp,
0tz +Z4 -Vz_ =1 Az + up Az —Vp, 4-1)
divzy =divz_ =0,

where z4 = Z4 &+ By. In the case of v = p (thus, wp = 0), the formulation (4-1) plays a crucial role in

the proof of [Cai and Lei 2016; He et al. 2016]. To deal with the case of v # u, we need to introduce the
key decomposition

Z4 = ZS:) + zf), 2=z 4@

@)

where thl) and z]” are determined by
8tz_(|_1) +Z_. VZS_I) = U] Azil) — Vpg_l),
3;zM 4+ 7, . vz = py Az v p D),
. (1) . 1) (4'2)
divz’ =divzl’ =0,
2(0) = 24.(0). z0(0) = z_(0).
and
atzf) +Z_. sz) = U1 Azf) 4y Az — Vpg_z),
02 + 24 -VzD = iy Az® + py Azy —Vp?, @3
divz? =divz® =0,
22(0) =22 (0) = 0.
To estimate zg:l), we rewrite (4-2) as
3,23_1) +2zM. Vzg_l) = U1 Azg_l) —z®. VZS_I) —1(z®, Zg_l)) —1(zW, 25_1)), (4-4)

8,20 + ZW v D = 1y Az P v O (2P W) (P, D),
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(1)

where (1, w) is defined by (3-17). We also need to use the equation of J M = curl z ', which is given by
0¢ J(l) +zO. VJ(I) + vz A Vz(l) + curl(z® - Vz(l)) J(l)

(4-5)
8,]11) + Zil) VJE) + Vzil) A VZ(_I) + curl(zi) vy =4 AJSI).

Here AA B = (AB) — (AB)T is understood as matrix multiplication.
To estimate 25:2), we need to introduce another formulation in terms of the stream function w(z)

A~ curlz( ) which satisfies
3,y + At eurl(Z- - VzP) = 1 AYP 00,
@D+ A eurl(Zy - Vz) = 5y AYD 4 o J
where

Jr=curlzy = J( ) + curlz(z) (4-6)

We introduce
I (u, w) £ A curl div(u ® w),

I (u, w) YN curl(u - Vw) —u -V A~ ! curl w.
So, we get
A1 curl(Z— - VZS_Z)) zM. Vlﬂ(z) + 114 (2(2) (2)) + Hz(Z(_l), 25_2)).

Then we deduce that

0,0? + 720 vy P 11,0, 2P) + 1D, 2P = 1y AYP + 0, )
0y @+ 7. vy @ 11,0, 2@) + 1, (22, 2@) = jy AY® + 04
A direct calculation shows
— (A curl(u - Va))’* = AT (0,0 (u' w’ ) — 9,0 ('l w)) = —Re R (' w’) + R Ry (u' w),
—(u V(A curl w))jk =u' ;AT (B w’ — jwk) =u'(—R; Ryw’ + R,'ijk),
where R; is the Riesz transform defined by R; = 9; (—A)_%. This gives
o (u, w)’* = [u', R RjJw* — [u', R; Ry ]w’. (4-8)

Weighted C1+* estimates for the parabolic equation. We consider the parabolic equation with variable
coefficients

du—y d;(aj; ;u) + Fy + F2 +9;G' =0, (4-9)
where y > 0 and the coefficients a;; (¢, X) satisfy

sup (Jaij (t) = 8ijlo + (1 4+ y1) 2[ai; ()]a) < €0 (4-10)
t€[0,T]

for some @ € (0, 1), g9 >0and T > 0.
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Let f (¢, X) and h(z, X) be two weight functions satisfying (2-1) with a uniform constant co independent
of ¢ and

/t HQ2y(t—s)h(s.X)ds <cg' f(t. X), HQy(t—5)f(s.X)<cy' f(t.X) (4-11)
0

forall0<s<t<T, Xe[Rd,Where

1 X-Y
HHp(X) = —— e~ 4 Y)dY.
0000 = s [ oY)
Let § > 0. We introduce

_ 1 s
AT, Fi, F2,G, f.h) & SUPT(|Fl(f)|1,a;h(t),(1+yz)l/2+V "2+ ) ) F(0lo,a; £0)
0<t<

— 1
+y A+ YD GO lo s ). 4v0y172)-
and

A _ _a s
Ao(T, F1, F2,G, f,h) = SUPT(|F1(f)|1,a;h(t),(yt)1/2 +y D"+ )T D)IR0lo s
0<t<

— 1 1—a
DR+ 00 TN O s.012):
Proposition 4.1. There exist g > 0 and C > 0 independent of y and T such that

sup_ Oy g ). 14700172 < C(1u0)]1,0; £0)1 + A1 (T, F1, F2. G, f.h)),

0o<t<

sup_ Oy g £1).r)172 < C (1400, (0) + Ao(T. F1. F2, G, f. 1)).

o<t<

Proof. Let us first consider the case a;; = §;;. Then we get

t

u(t) = H(yr)u(0) +/0 (H(y(t =) (Fi(s) + Fa(s)) + 8 H(y(t —5))G' (5)) ds.
Using H(2yt) £(0) < co_lf(O, X), we get by Lemma A.4 that

[H(yOuO)y o; 7(6),14yn172 = CLHYDUO) |y 0; 5 2y1) £0),1 4700172 = Clu(0)]1,0; £(0),1-
[H(yDu )1 a: £¢t),(yey172 < CLHy DUy o: H2y1) £(0).(ve)1/2 < C[1(0)]o,a; £(0)-

By (4-11) and Lemma A.4, we have

t
‘ / H(y(t—s))Fi(s)ds <C sup [HyE—$) FL()|1.0: 12y —s) h(s).(+y1)1/2
0 La; f(2),(k+yt)1/2  O<s<t

=C sup [H(y(—=9)F1(5)|1 a: H@2yt—5)h(s),k-+ys+yt—s))1/2

0<s<t

<C sup [F1(9)l1 a:n(s),(k+ys)1/2>

0<s<t
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and by Lemma A 4,

t
= Cfo [H(y (¢ =) F2() 101 2y (1-5)) £ (). (k +yr) 172 S

" ga(Vk +y1)
c [ LNYEEYD e Dlow o d
2CJ, ity s s

for k = 0, 1. Recall that ¢y (R) = max(R, R'™¥) for k =0, 1,

! R 1+Ut+k(1 ) 1— _1+a+k(1—a)
/O P (Vy(t —5))"" min((ys)~ ys)” dS</ (vt —5) 72 (ys) > ds

t
‘ [0 H(y(t — ) Fa(s) ds

Lo f(),(k+yt)1/2

()
and
/t ¢a(V/y (=) min((ys) "I, (ys) 71 72) ds
0
/(y(t—s)) =5 mll’l(()/s) 1+0t+ (1—a) (ys)” _7)

tx+k(1 —)

) t 1+«
<C/ (y)~ =D mm((ys) I ()/S)_l_z)a’er/t(V(f—S))_Jg(Vf)_lds

<Cy g

Thus, we have

/t a(\Vk +yt)
0 @al(/y(t—15))

at+k(1—a)
2

min((ys)~' ,()/s)_l_g) ds

a— k)(l —o)

< Cy_l max((k + yt)%, k + yt)HTa) min((yt)_ (yt)_i) < Cy

Therefore, we deduce that fork = 0,1 and j = 1,2,

S CAk(T’ F17 F2’ G? ﬁh)
Lo f(2),(k+y1)l/2

It follows from Lemmas 2.3 and A.3 that for k =0, 1,

t
‘ [0 H((t — ) Fj(s) ds

t
‘ /O 8 H(y(t — )G’ (s)) ds

La; f(2),(k+yt)1/2

<Cy7t sup (9200 =D HGA =G ) g0
+<oa(\/m><y(r—s))l‘%\vaﬂ(y(z—s))G"(s)}O 50

+ (VK )t =) T IV Hy = )G ()] ) )

<Cy" sup ((19)21G )00 rs) + Lo (VE + Y9)GS)]a: £(s))

O<s<t
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— 1 1—a
<Cy™! S ((k +y8$)2 +(k+v5) 2 )IG)o.a: £(s).(k+ys)/2
<s<t

< CAk(T, Fi, F>, G, f,]’l)

Summing up, we conclude the proof for the case a;; = §;;.
To deal with the general case, we rewrite (4-9) as

du—y Au+ Fy+ F, + ;G =0,
where G = Gi — y(aij —&8;j) 0ju. Thus, we have

SUPT U1 0 @) teryn1/2 < C (14010 0y k + Ak (T, F1, Fa, G.f. h))

0<t<

for k =0, 1, where
Aw(T. Fy, F>. G, f.h)

1 1—a
< AT P PG foh)+ sup sup(k+y0)2 + () 2) | (@i =8i) 010 o g; 0 yeyyo
0o<t< i

and by (4-10),
|@ij = 8i) 71O o g: oy, k4yiy1r2 = Claij () =8ijlo,as1,tey01721074Olo.a; p0y,k4y0)1 /2
= CeolVu®)lo,a; £2),+y1)172

. 1 _l1—a
< Ceomin((k +y0)™2, (k + 1)~ 2 )u(l1,q: £(1), (k+y1)1/2-
This shows that

SHPT [u(O1,a: £t).(k+ye)1/2

0<t<
< C(|u(0)|1,a; (0) + Ak (T, F1. F2, G, f.h) + g9 SUPT (1 g: £ 1) +y1)1/2)-

0<t<

O

which gives the desired result by taking o such that Cgg < %

Weighted C 1% estimates for the transport-diffusion equation. We consider the transport-diffusion equa-
tion with general form

du+Z-Vu—yAu+Fi+F,+93;G' =0, u(0,X)=uo(X). (4-12)
Given the divergence-free vector field Z(r, X) € C1([0, T] x R?) and s € [0, T], we define
%@(s,t, X) = Z(t, (5.1, X)), B(s,s, X) = X.
We denote by D® and V& the matrix with the convention
(D®);; =3, ', (Vd);; =9;d/.
That is, (D ®) = (V®)T. We introduce
b=(D®) Y a=DO) VD), a; =biby;.
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For v(¢, X) defined in [0, T] x RY, we define

v¥(t, X) 2 v(t, D(s, 1, X)).
Using the formulas
(divG)o® =div(D®)'Go®), (Au)o® =div((DP) (V) ! Vuod),
we can transform (4-12) into the form
dpu*(t) — ydi(aijd;,u™(t)) + Fy + FS +0;,GL, =0, (4-13)
where G% = b;; (G*).
We introduce the weight functions f(z, X), f (t, X), h(t, X), which satisfy (2-1) with a uniform

constant cg and

t
/ HQy(t —s)hi(s, X)ds <cy' f(t1.X) forall0<:<T, X eR?,
0

T r (4-14)
/ fa(t, X &+ Bot) dt :/ f(t, X £2Bpt)dt < cgl,
0 0

HQRy(t—5))f(s.X)<cg' f(t.X) forall0<s<t<T, X eR?
where we set

Jx@. X) =U(F0) f(2, X), U@)f(s, X) = f(s, X + Bo?).

Proposition 4.2. There exist €1 > 0 and C > 0 independent of y and T such that if

|Z() + Bol1,a; (1), (1+y1)1/2 < €1

and (4-14) holds for the minus sign, then it holds that for k =0, 1,

sup |u(l)|1,a;f+(t),(k+yt)1/2 = C(|u0|1’a;f(0),k + Ap (T, F1, F2, G, fy, h))

0<t<T
Similarly, if
|Z(Z) - BO|1,(x;f+(t),(1+yt)l/2 <é1,

and (4-14) holds for the plus sign, then it holds that for k = 0, 1,

OiltlET |u(t)|l,a;f_(t),(k+yt)1/2 = C(|u0|1,a;f(0),k + Ak(T, F1.F, G, f—, h))

Proof. We only consider the case |Z(1) + Boly 4: _(¢),(14+yr)1/2 < €1. In this case, similar to (3-7), we
have

|®(s,t, X)+ Bo(t—s)—X| <2 forO0<t<s<T.
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Then we get by (2-1) and (4-14) that

T
sup |VZ()|oaf (S)/ fo(s, ®(T,s, X)) ds

t<s<T
T
<e1(1+ )/t)_%co_1 / f_(s, X—Bo(s—T))ds <e1(1+ yt)_%cgl, (4-15)
0

and by (2-1),
UG —t)h(t) =h(t, X + Bo(s—1)) > coh(t) o O(s,1), (4-16)
U(s)f (1) = Uls =) f+(1) = o f+(1) 0 D(s.1). (4-17)
Now we fix s > 0 and assume 0 <t < s < T. With (4-15), we infer from Lemma 3.4 that
IVO(s.t) —1d|o.q < Cer(1+ y1) 2. (4-18)
This implies that
laij(t) = 8ijlo,e < Cer(1+ yi)2, 1bij (Olo.q:1,(14y0y1/2 < C.
Using (4-14), it is easy to verify that

HQy(t —0)U(s) f (1, X) = UG)HQ2y(t — 1)) f (. X) < ¢ LU(s) £ (0),
and

/ HQ2y(t—1)U(s — 1) h(z, X)dr—/ HQy(t—=1)U(s)h—(r,X)dt <cg U(S)f(t)

Therefore, if we take &1 > 0 so that Ce; < g9, then we can apply Proposition 4.1 to obtain

oores 1Ol a0 f o), k4172
<C(Jugo (5.0} 4.005) f0y ke T A FY' FY, Gy, U(s) f,U(s — -)h)).
Thanks to (4-18), we get by Lemma 2.4, (4-16) and (4-17) that

|ug 0 ®(s,0)], . UGs) £ (0),k = < Clug o ®(s, 0)|1af(0)oq>(s 0),k = < Cluol . F(0)k

<C|F; )] = ClFy(1)]

1E2 Do ais) f oy = 0,03 F1 (1)o®(s,t) = 0,0 /4 (1)’

|FY (D 1,0:0-0)h@),t+y172 < CIFT O ash@yod(s.0),(k+y0)172 < CIlFL O 0:h(),(k+y0)1725
and

< C|G«(1)]

G Dlo a0 f ).k +yey172 = 0,03 4 (0)0®(s.),(k+71)1/2

< CIb)o,a;1,(14y1)1/21G (1) 0 D(s, t)|0,a;f+(f)°q’(s”)’(k+”t)1/2
= CIGWlo ;7 @), Geyiy/2

This proves
Ak(s, F' Fy,Gy, U(s) f, U(s—t)h) < CAi(s, F1, F2,G, fy,h).
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Therefore, we conclude

sup |u*(t)|1,a;U(s)f(t),(k+yt)1/2 =< C(|u0|1,a;f(0),k + Ak(sa F1, Fz, G, f+v h))

0<t<s
Thanks to u*(s) = u(s) and U(s) £ (s) = f4(s), we have
) s £y (9,412 = C (0l g oy i + Ak(s: Fr. F2. G f )
forall 0 <s < T. The case s = 0 is trivial. O

Main result. Let us first introduce the weight functions

f@)=HA+2mt)er,  f1(t) = H(1+2u11)po.

where if Bo = (1,0,...,0), we may take
_148 _
1(X)=[x7+x372 . @o(X)=|x2|? (4-19)

for some 0 < § < % Let
S+ Y) [~ (. Y)

dy.
« 1+|X-Y|d+1

gt X) 2

We introduce
A 1 1 — 2
M (t)zoiugtﬂzi)(f)|1,a;fi(r>,<1+mr)1/2+|fi 'Ol £2@.00072 T TVE O as £, 0. 00172)-
=T=

The main result of this section is stated as follows.

Theorem 4.3. Let o € (0, 1). There exists e > 0 such that if M+(0) + |u2|/ 1 < & < &3, then there
exists a global in time unique solution (z4,z-) € L% ((0, +00) x ), with the pressure p determined by
(3-16), to the viscous MHD equations (4-1) satisfying

My(t) <Ce foranyt €]0,+00).

Remark 4.4. Since M4 (0) ~ |z4+ (O)((xl,xz))l""sh,a, the initial data decays at infinity only in two
directions. This is crucial for the global well-posedness in domains like R? and R? x [0, 1].

Remark 4.5. The condition |, | < guq is crucial to our proof. Although p, /1 is small, the smallness
is independent of 1. It remains open whether one can prove a similar result for any © > 0, v > 0.

Remark 4.6. In numerical simulation, , is usually taken to be zero, although it is unreasonable in
physics. However, our result provides a theoretical base for the validity of such a choice, because our
result shows that a small discrepancy between the dissipation coefficients does not change the dynamics
of the system.

To proceed, we need to verify that the weight functions introduced here satisfy some key properties,
(2-3) and (4-14).
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With the choice of (4-19), it is easy to check that for k =0, 1,

C' R4 min(ge (X). R+P) < / or(Y)dY < CR? min(gy (X), R+,
B(X,R)

/ o1(X + Bot) di < Cpo(X),
R

which imply

C ' min(py(X). (14 111)" 2 ) < f(t. X) < C min(py (X). (1+ 1) 2), (4-20)
C ™ min(go(X). (1 + u1£)™2) < fi(t, X) < C min(go(X)., (1 + £11)™3), 4-21)
/ f(t, X + Bos)ds <Cfi(t, X). (4-22)
R

Therefore,

/ At Y)dY < CRY min(R™5, (14 j10)""2") (4-23)
B(X,R)
and
[ wyay =chco. (4-24)
B(X,R)

which is true for 2 = 1, f(¢), f1(¢), and fL(¢) by translation. Thus,

S+, Y)dY .
/Rd R+ {|X —y[d+1 <CR™ fx(1,X). (4-25)

Lemma 4.7. (1) The weight functions f(t, X), f1(t, X), g(t, X) satisfy (2-3) with R = (1 + /th)% and
a uniform constant cq independent of t.

(2) Property (4-14) with y = 1 holds true for (f, h)=(f g) and (f h) = (f1, f=) for the minus sign
or (f h) = (f1, f+) for the plus sign.

Proof. We deduce from (4-20) and (4-21) that f(¢) and f7(¢) satisfy (2-3) with R = (1 + /th)%. So do
fa(¢) and f4(¢) f—(¢), and thus g(z). This also implies

g(t7X) = C_lf-i-(t?X)f—(t’X)'

By definition, we have

HQ2ui(t =) f(s. X) = f(t. X), HQu1(t —5)) f1(s. X) = f1(r, X),

which give the third inequality of (4-14).
By

T T
/ fi(t,X:I:Bot)dt=/ ft,X £2Bot)dt <Cfi(t,X) <C,
0 0

we get the second inequality of (4-14).
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Thanks to
t t
/0 HQui(t —5)) f-(s. X) ds = /0 HQpui(t — ) U(=25) f(s. X) ds
= /t f(t, X =2Bos)ds < Cfi(t, X),
0

we get the first inequality of (4-14) with minus sign for ( f ,h) = (f1, f=). Similarly, the first inequality
of (4-14) with plus sign for (£, h) = (f1, f+) is true.
Notice that

HQ2p1( - _(s))(Y £ B
HQpui(t - 5))g=(s. X) = fR ) (2pa (1 f)l((’;(f;’]ji?( 0s) .y

_/ H(2u1(t—S))(f(S)U(ﬂS)f(S))(Y)dY
 Jra 1+ |X—Y|9+1 '

By (4-20), we have

flt X)<C(1+ ¥ — X )1+8f(t Y)
T T+t o

which gives

Y —X|
1+ s

242§
F(5)U(25) f()(X) < C (1 + ) F(5)U(225) f($)(Y).

Therefore, for ¢ /2 < s <,
HQ2u1(t —s5)(f(s)U(£25) f(5))(Y)

= /Rd K(2u1(t —5), X — Y)(f(s)U(i2s)f(s))(X) dX
¥ — x| 2t

ﬁ) F5)U(E25) f5)(¥) dX

< CF(5)U(E25) FsN(Y) = CL () U(E28) FO)(Y),

and for 0 <s <¢/2,

§C/ K(2u1(t—s),X—Y)(1+
R4

HQ2u1(t =) (f(s)U(E2s) f(5)) < CHRu1t)(f(s) U(£2s) f(5)) < CHQ2u11)(f(0) U(£2s) £(0)).
Therefore,
[ #eme - (160 U2 1) ds
<C /0 2 HQu1t)(f(0)U(x2s) f(0)) ds + C /, (f()U(£25) £(0)) ds

< CHQ2p11)(f(0) /1(0)) + Cf () /1(0) = Cf(1).
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This shows that

[ CHQuA (- $)ge (s X)ds < C / JOY) gy < crax,
0

rRd 14 |X =Y |d+1
which gives the first inequality of (4-14) for (£, h) = (£, g). O

Proof of Theorem 4.3. The following lemma gives the relation between the Holder norms of z i)(t)
i =1,2,and ML(¢).

Lemma 4.8. It holds that
|Z:|: Olo,as f1(0).urry1/2 < Cpy min((pt)~ 5 un~ ML),
122 O)o.ae1. (14,0172 < Cor min((p17)” 5 (uar)™ )Mi(f)
V28w e 02 < CM(0),
Proof. As z( ) = div w(z) we have
122 Olow 10,6172 < CIVYE Ol 169, (ua 1172
< CWf)(f)h @ fl(t) (u11)1/2 min((ﬂlf)_% (Mll)_l_Ta)
< Cpy min((p11)~ S gun~ ML),
which along with (4-21) gives

2
|Z( )(Z)|O(x 1L,(4u01/2 = |Zi (Dlo,a: £10), (;,th)l/2(1 +—) |/1(]o

IR

< Cprmin(Gun) 7 (u0) ™ )Mo (14 ) (14

< Cpymin((p1)” 5 (i)™ )Mﬂ:([)
Obviously, we have

1 1
V2Pl e ) < 1281w a0, 4072 < M ().

Thanks to Azil) = div Jil), we have

1828100 72 0.Gu0172 = C s o 0.2 min((at) =2, (uar) = 2%)
< CM(s) min((u12)~ S un” T)
Notice that by Lemma 4.7,
fet, X) S CLe(,Y) i [X = Y] = (14 pan)?.
Then we infer from Lemma A.10 that
|V22i lo,a: £ (6), (1 )1/2 <C(|VZ:|: |0afi(t)m1n((ﬂlt) 5 (uar)” )+|Azi 0,05 £ (6), (1) 1/2)

< CM(s) min((p12)~ 3 (uat)” T)
This proves the third inequality. O
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Proof of Theorem 4.3. For fixed v > 0 and p > 0, the local well-posedness of the MHD equations in
the weighted Holder spaces can be proved by using the semigroup method and the estimates of the heat
operator in the weighted Holder spaces (see the subsection on page 1394). Here we omit the details. The
local well-posedness of the linear equations (4-2)—(4-7) in the weighted Holder spaces is also true.

The proof of global well-posedness is based on a continuity argument. Let us first assume

My(s) <é&p (4-26)
for €1 > 0 given by Proposition 4.2. This in particular gives

12O % Boly s 0,012 < 1.
Our next goal is to show that
M (s) < C(M4(0) + (M1 (s) + |12l / 11) M—(s)). (4-27)
M_(s) < C(M—(0) + (M—(s) + |2l / 1) M1.(5)). (4-28)
With the above estimates, we can deduce our result if €, is taken small enough that

CMi(0)§C82<%81, C282<%.

This condition on &5 implies that if M (s) < &1 then ML (s) <2CM1(0) < &;.
The proof of (4-27) and (4-28) is split into three steps.

Step 1: C1¢ estimate for thl). For the system (4-4), we apply Proposition 4.2 to obtain

1
,Sup 28O s £ 00,1 40012
<t<s
< C(lz4+ O @1 + A1 (s 1D, 280). 2@ vz 4+ 1@ 29, 0, £1.5)).
By (A-5), we have
1 1
DO 2L O gy a2 = CIEL Ol asr@,4m0172128 Ol s £ 0,012
< CM4(s)M_(s).
By (A-6) and Lemma 4.8,
1 1
2@ vzP0 + 120,28 O)g g s, 0
1 _1
< ClE2Olo.ast, (1410172128 Ol s 10,0401 2 0 11) 72
. _1 _ 1448 _1
< CpuaM—(s) min((12) "2, (at)™ 2 )My (s)(1 + pa2) ™2

. _1 _1-_8
< Cpy My (s)M—(s) min((pu12) ™2, (1) ™' 72),
and obviously,

12+ (0)1,e; £(0),1 < M+(0).
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Therefore, we obtain

sup |Z+ Ot f1 @), (1+10y172 < C(M4(0) + M4 () M—(5)).

0<t<s

Similarly, we have

sup |29 a3 0,14a012 = C(M=(0) + My (5)M—(5)).

0<t<s
Step 2: C 1% estimate for Jj(cl). For the system (4-5), we apply Proposition 4.2 to obtain

sup |J (t)|laf+(t)(,ult)1/2<C(|J+(O)| f(o)+Ao(S,VZ(_1)AVZSFI),O,Z(_Z)-VZS:),f+,g))-

0<t<s

Thanks to the choice of weight functions, we have

-, X) f+ (. X) =Cg(t, X).
Then by Lemma 4.8 and the analogue of Lemma 2.1, we have
1
vz AV )(Z)}l g (1), (uin)1/2 = < CIVz 40, (mt)‘/2|vz+ Otz 14 0010172
= CMi(s)M—(s),
2. vz < Clz22O)lg,a (w)‘/2|VZ+ Olo,a; 1), (10172
<CM1H11H((M1I) (Hll)_j)M ()M (s),

and [J4(0)]o,a: £(0) < M+(0). Therefore, we obtain

sup |3 (t)|1cxf+(t) G2 < C(M4(0) + My (s)M—(5)).

0<t<s

Similarly, we have

sup /2O a3 70,0172 = C(M—(0) + My (5)M(5)).

0<t<s

Step 3: C 1% estimate for v/ :l:) For the system (4-7), we apply Proposition 4.2 to obtain

sup [V PO 0110010172 < CAo(5, 2D, 22) = 1oy D11 2P, 22), 1229, 11, 1),

0<t<s

where we used the facts that 1//(2) (0) =0and fi+ = f1, and the decomposition of J1 in (4-6). We get
by Proposition A.6 and Lemma 4.8 that

2D @), 2P 0) = 127 L O a1 0,002

< C|Z(—1)(t)|1,¢x;f_(t),(,ult)1/2|Vw_(|_2)(t)|1,oc;f1 O.0unt2 T2l TP O w1612
< CpurM4(s)M—(s) + | 2| M—(s),
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and
2
DO, 22 O)o 0
_8 _a
< CIEZPOlo.as f10),001017212 2 Olo,as £, g2 L+ 1) 72 (14 (at)~2)

. 14 —1-8
< Cpfmin((u10) ™2, ()T 2) M_(9) M (s),
and
. _1 e
1122 (o 02 11 (0. (yry1/2 < Cita |2 min((u11) 72, (u1) ™2 ) M_(s).

This shows that

2
sup |w-(|-)(t)|l,a;f1(t),(ult)1/2 < C(u1M4(s) + |pal ) M—(s).

0<t<s

Similarly, we have

sup [V PO 4. 11 0. 010172 < C (1M(5) + |pa) My (s).

0<t<s
Summing up the estimates in Steps 1-3, we conclude (4-27) and (4-28). O
Appendix

Weighted C1+* estimate for the integral operator. Recall that
Tiu é/ VN(X-Y)0(X —Yu(Y)dY, T;jw é/ 9;0; (VN(X —Y)(1—0(1X —Y|)))w(Y)dY,
R4 R4

where the cut-off function 6 is given by (3-9).

Lemma A.1. Letu,weC ;l) *(RY), with the weight h satisfying (2-1). Then there exists a constant C > 0
depending only on cq such that

|T1u|1,a;h §C|u|0,a;hv |Tijw|1,a;g §C|w|0;h,

h(Y)
X) = dy.
g(X) /[Rd1+|X—Y|d+1 Y

where

In particular, we have
|Tlu + Tijwll,(x;g = C(|u|0,a;h + |w|0,h)-
Proof. Thanks to
C
Vk3;0;(VN(X —Y)-(1—6(|x — <——— —— k=012,
[VE3,0; (VNG = 1) (=0 =y D) =
and h(X) < Cg(X), we get

w
VAT ()] = (0|

0
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which in particular implies

w
|Tijw|1,a;gsC|—\ |

7l (A-1)

To deal with T7u, we decompose it as

+o0
Thu= Z By (u),
k=0
where
Bye(u) = /R X =Vu(¥)dY. g(X) = VNX)- (025X ) - 02" x))).
To proceed, we need to use the simple facts
[ Joccolax sc2i [ wacolixiax scrr [ Vg Qolx e dx < cakime)
R4 R4 R4

or(X)=0 for|X|>2,k>0.
Then we have

B01= [ e =ynmlay|E| = catnn|;

. (A-2)
Notice that ’
V() = [ VX =)V —u(x)) av,

from which, we deduce
VB () (X)) < /R Vo (X =X =Y [*hX) +h(V)) dY Julo.asn < C27*h (X0 lulogan- (A-3)

Similarly, we have
V2 By (u)(X)] < C2KO=n(X) ulg g (A-4)

It follows from (A-2) and (A-3) that

400 +o00
—k U u
;) |Be(u)(X)| < ;)cz h(X)‘h ‘0 < chx)

0

+o00 +o00
D IVB@)(X)| < > C27*R(X)ulo.e < Ch(X)|ulo.as-
k=0 k=0

It follows from (A-3) and (A-4) that
|V B () (X) ~ VB )(Y)| < C27(h(X) + h(Y))|ulo g min(1, 25| X — V),

which gives

+o0 +o0
> V(Br@)(X) = Be@)(Y))| < C(X) + h(Y))|ulo.qsn Y 27** min(1,2¥|X - Y)
k=0 k=0

< C(h(X) + h(Y))ulo,an| X — Y%
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Now we can conclude that

|Tlu|1,a;h = §C|u|0,a;h- O

“+o0
> Be(w)
k=0 I,Ol;h
Lemma A.2. It holds that
div (Tyu + Tijw" ) 4 u
= / VN(X -Y)-VO(|X =Y )u(Y)dY —/ 3;9; (VN(X =Y)-VO(|X =Y ))w” (Y)dY.
R4 R4

Proof. With the notations in Lemma A.1, a direct calculation gives

div Tj; (w) = —/

3;9; (VN(X =Y)-VO(IX —Y)w" (Y)dY,
Rd

div By (u) = /Rd divop (X — Y)u(Y) dY,

where
div g (X) = VN(X)- V(02| X|) — 021X ) = f (X) — ¢, (X).
2k0'(2%| X )
P (X) = VN(X)-VoQ2k|x|) = RN > 0.
Therefore,

N
v Y- Betwrtu= [ (05 (X-1) 0k (X-Y)u(¥) dY +u(x)
k=0

= [ o x=YDur) @y = g (X)) Y L=,
where we used [ps ¢ (X) dX = 1. Now,
il < [u]a/d PN (X =) X -Y[*dY = C[u]az—Na 50
R

as N — +oo. This proves the lemma. O

We also introduce

Ti(u, R) 2 /Rd VN(X —Y)0(X —Y|/Ru(Y)dy,

Tyw.R) 2 [

3;0;(VN(X —Y)(1-6(|X —Y|/R)))w(Y)dY,
R4

where N(X) is the Newton potential. Let R > 1. If h(X) < Coh(Y) for | X — Y| < 2R, then we can
deduce by following the proof of Lemma A.1 that

Ty, R) |10z, R + | Tij (W, R)|1,a:0,8 < C(R*ulo.a:n.r + [Wo:n)
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h(¥)
X)= .
g(X) /Rd Rd+1+|x_y|d+l dy

where

Due to (4-25), we also have
RNT1(u, R 1 (o).8 + 1T (0, R)lo.as £ 0,8 < C (1ulo.e .8 + R wlos £ 1)
for R = /14 ut.

In particular, we have
[, w1 a3 0y, (14 111)172
< C((1+ w1Vl g £ (1), (141101721 VWlo.0s 1 0.1+ 1100172 F [lo; £ [Wlo: £ )

= Cluly o fy().0+0172 W e f@).(1+ 100172
(A-5)

where g, f+ are defined as in the subsection on page 1385.
For divu = divw = 0, we have

I(u,w) £ Ty (3;u’ d;w’, R) + Ty (' w’, R) = 8; Ty (u/ d;w’, R) + Ty (u' w/, R).
Therefore, we deduce
_1
[, w)o,a: 14 (1) < Clulo,s1,4y0)1721W 1 as £y (1), 14yry12 (L YD) 72 (A-6)

Weighted Holder estimates for the heat operator. Let H(t) be the heat operator given by

1 x-v)2
H(t) f(X) ::W/Rd e f(Y)dY:/Rd K(t, X —Y)f(Y)dY,

2
where K(t, X) = (4nt)_%e_%. Let o > 0 and k € N. It is easy to verify the properties

IVEK(1,X)| < C1=3 K1, X),
VKK (2, X)||X'|% < Ct—" 3" K (21, X), N
(A-T)
IVKK(t. X)— VK@ Y)| < Cr" T KQ1. X)|X Y|,

k+1—a
T KQt, X)|X Y|

IVEK(t, X)— VK@, Y)||X'|* <Ct™

forany X, Y € B(X, V/t). Here C is a constant independent of .
We introduce the seminorm

e sup O =u()]
T xyerd (MX)+h(Y))|X Y]
Then it is easy to check that

(o < ]fpluloy”  [Vulon < 2[ulisp. (A-8)
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Lemma A.3. Letu € C}?’a (R?), with 0 < h < Co and « € (0, 1). Then there exists a constant C > 0
depending only on d, o, k such that, fork € N,

k _k k _k+1
IVEHOulo,ann < Ct™ 2 ulon, [V HOUlHEHR =< Ct™ 2 |ulom,
_k _ktl-a
[V*H(Oula:r@on < Ct 2 [ulan,  [VKHOWLaERS CET 2 [Wan.
Proof. Thanks to (A-7), we have

IVEHu(X)| = ’/Rd VEK(, X =Y )u(Y)dY

</ IVEK(, X —=Y)||u(Y)|dY

Rd

5Cz—’§[ KQt.X —Y)h(Y)dY |ulop
Rd

< Cr™ 5 HQOW(X)lulog.
which gives the first inequality.
If | X — Y| < /1, then we get by (A-7) that

\VEH(Ou(X) - VFH@Ou(Y)| = ‘/ (VEK(@t, X = X")=VFK@, Y — X' )u(X) dX'
R4

5[ VKK, X — X') = VFK(1, Y — X')|[u(X")| dX’
R4

<Cr= 7 |X=Y| [ KQ@t.X—=X)h(X")dX |u|o
R4

< Cr X — Y| HQ@OAX) ulosh.
and if | X — Y| > J/t, then
|VEH(Ou(X) - VEH@Ou(Y)| < [VFH@Ou(X)| + |VFH(Ou(Y))
< Cr™ S HROMX)lulo + C1™ 2 HQOYR(Y ) luloy,

<t FX —Y|(H@OAX) + HQOKY)) lulo.
which imply the second inequality.
For any X,Y € [F\Rd, we have

\VEH(Ou(X) - VEH(@Ou(Y)| = VW VEK @ X u(X —X')dX' — /Rd VEK@, X (Y —X')dX’
< / VKK, X)) [u(X = X") —u(Y — X")|dX’
R4
<Cr % / Kt X")(h(X = X")+h(Y = X)) dX'|X =Y |*[ula:n
R4

< Ci73 (HRO(X) + HRORMY)) X =Y * g,
which gives the third inequality.
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Forany X,Y € R%, if | X — Y| < /7, we take Y’ € B(X, +/7) so that

h(Y') KQt, X —XdXx' < / KQt, X — X h(X')dX' < HQ2t)h(X),
B(X,\/7) B(X,/1)

which gives h(Y’) < CH(2t)h(X). Then we deduce, for | X — Y| < /1,
IVEH@u(X) = V¥ H@Ou ()

f (VEK(. X = X) = VFK@.Y = X)) (u(X") —u(Y")) dX'

R4

5/d\ka(z,X—X’)—ka(z,Y—X’)\|u(X’)—u(Y/)}dX/
R

5/ IVEK(t, X —X') = VFK@, Y = X")||X' = Y% (h(X") + h(Y")) dX[ula:n
R4

k+1—a

<Ct 2 |X—Y|/ KQ2t, X = X")(h(X")+h(Y") dX'[ulg:n
Rd

k+

<Cr T X =Y |(HROKX) + h(Y)) gz

<Ct T X — Y HQRORX) s

While, if | X — Y| > /7, then

}ka(z)u(X) — ka(z)u(Y)| <Cr % (HQtYh(X)+ HRt)R(Y))|X =Y |*[ula:n

k+l—«a

<Ct™ 2 (HROX) + HRORY))|X =Y | [laun-

This proves the fourth inequality. O

Lemma Ad4. Lety >0, k >0,and u € C}?’a ([Rd), with 0 < h < Cy. Let R > \/t > 0. Then there exists
a constant C > 0 depending only on d, o such that

¢a(R) |M| "
oY1) et

[ HOuly o meonvire < Clulygnvi: 1HOULg;HEHRR = Cgo

where ¢ (R) = max(R, R119).

Proof. By Lemma A.3 and (A-8), we have

|H(tulo:a20n < Clulon,  [HOulg:H@HR < Clula:n, [H@ulo,o:HEHR < ClUlo,a:h

—a

1 1 1 1—
|V H (t)ulo: 1 2yn < min(Ct ™2 ulop. Ct™ 2 [ulggn) < Cmin(t™2, 67 2) |l aun-

14+o

[V H(Olg: fraryn <min(Ct™ 2 [ulgy. Ct™ 2 [ulgep) < C min(t™ 2. 172 ulo qun.

+

Due to VH (t)u = H(t) Vu, we have

IVH@Oulo,znn < ClVulon, [VHOulo;HEHE < C[Vitlg;p.



GLOBAL WELL-POSEDNESS OF THE MHD EQUATIONS IN A HOMOGENEOUS MAGNETIC FIELD 1397
Therefore,

(HOuly g pron v = 1 HOUlo,asrreon +max((k +1) 25, (k + 02|V H@Oulo;paon

+max((k+1)2, (k+1) ) VHOul: Ha0h

< Clulo.gn + max(k 2" k2)|VH(O)ulo; m Gy
+max(t 2%, 1)V HOulo; s +max(k2, k35 [V H(Oulas 1 Gon

+max(2, tHTa)[VH(Z)”]a;H(Zt)h

< Clulogn + C max(k 2" k2)|Vaelogs + Clulo gsn
+C max(k 2,k 2) [Vadlgsh + C lulo.ash

= C|“|1,a;h,~/E’

which gives the first inequality. Also,

|H(Ouly a: o = [HOU|o.a:HE@yn+max(R™, RY(IVH(t)ulo: eyn+ RV H(Oulg: H2000)

< Clulo,q;n +max(R, RH“)(Z_% \VH ()ulo:r2eyn+ [V H@uUla: o) h)

. _lda 1
5C|u|0,a;h+c¢a(R)mm(t 2t 2)|u|0,¢x;h

¢a(R)
C
= (D)

which gives the second inequality. O

|u|0,a;hv

Riesz transform in the weighted Hélder spaces. Throughout this subsection, we take f, fi, f+ to be
as in the subsection on page 1385. We need the following property for the weight functions.

Lemma A.5. For h =1, f1(t), f(t), and f+(t), we have
R_d[ h(Y)f1(t,Y)dY < Ch(X) min(R_‘s,(l —i—,ult)_%). (A-9)
B(X,R)
Proof. The case of h = 1 follows from (4-23). We define
p1(X) =|xal.  p2(X) =|(x1.x2)] for X = (x1,....xg) € RY.
Then by (4-21), for h = f1(¢) if p1(X) > 2R or p1(X) <2./1 4+ u1t, we have
h(Y)<Ch(X) for|Y —X|<R,

which gives,

R—d/ h(Y)fi(,Y)dY < CR—d/ h(X) fi(t,Y)dY < Ch(X)min(R™, (1 + p11)"2).
B( )

s BX,

Using (4-20), the above inequality holds for & = f(¢) if p2(X) > 2R or pa(X) <2./1 + u1t.
For the case h = f1(¢), if 2/T+ p1t < p1(X) < 2R, then by (4-21),

hX)>Clo1(X) > CT'R™S, h(Y)fi(t,Y) < Co1(Y)? = Co1(Y) ™%,
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which imply

R—d/ hY)fi@t,Y)dY < CR_d/ o1(Y) 2 dy <CR™ <Ch(X)R™S.
B(X,R B(X,R)

For the case h = f(t), if 24/1 4 pu1t < p2(X) < 2R, then by (4-20),
_ _ _1— _1_ _1_
h(X) = Clga(X) = CTIR™'5 h() f1(1.Y) < Cor(Y)ga(Y) = Clya| 7270 |ya| 7275,
which imply
R_d/ h(Y)fi(t,Y)dY <CR™'™2 <Ch(X)RS.
B(X,R)

Thus (A-9) is true for A= f1(¢), f(¢). The case h = fu (¢) follows from the case 1= f(¢) by translation. [
Proposition A.6. It holds that
[0 Ri ROk g 1, 1), uanyrr2 = Clulnas .02 10 s 110,10y 1725

_3 _a
|Ri Rj (uw)o,q; 11 (0) < C+ pat) "2 (1 + (1) ™ 2) [Ulo.g: £, (1)1 )12 1W o0 £1 (1) (g 1)172

The proof of the proposition is very complicated. Let us begin with some reductions. For fixed i, j,

o0
RiRjw(X) + %w(X) = —p.v. /Rd i N(X —Y)w(¥)dY £ > RI(w),
where T
RY () = —fRd on (X — YYu(Y) dY,
with ¢, (X) = 9;9; N(X)(6(2"|X|) — 6(2" 1| X|)). Therefore,
o0
. RiRj] 0w = > [u.R}] dw. (A-10)

n=—oo

Lemma A.7. For h =1, f1(t), f(t) and f+(t), it holds that

_$
[Ri Rj Dlo.ah, (110172 = CA+ 1172 [lo gcify (.14 1 1)172-
Proof. Notice that

/Rd on(X)dX =0, suppe, C B(0,2'")\ B(0,27'™"), |Vig,| <C2"@*+D [ =0,1,2.
We deduce from Lemma A.5 that
|RY; () (X)] < fRd lon (X =V)IA(Y) f1(2,Y) dY [ulons ()
sc2d [ RO AED Y oo < CYROWlonr

For X € RY,
Ry @00 == [ on(X 1)) ~u(x))d¥.
R4
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which along with (4-24) gives
|R}; ()(X)] < /Rd |on (X = Y)I(W(X) +h(Y)|X =Y [* dY [u]g;n

<2 / (h(X) +h(Y)) dY [u]g;p < C27"R(X) [u]asn-
B(X,ZI_")

By (4-21), we have
-8 _ats
[esn < CA+ 1) 2[Uanfi ) < CA+ 1107 2 [uloginf (), (1410172

Thus, we can conclude

o0

[RiRj)(X)| < D R 0)(X)

n=—oo

o0
. _ _até
< Y Cmin(2"27" (4 0)” 2 VR ulo,ash sy (6,014 100012

n=—00
_$
<C+ p1)" 2h(X) |[ulo,q:nf, 1), (14110172
For any X, X’ € R?, with | X — X'| <27,

|RZ () (X) = R (u)(X)] < /R (X =)= gu (X' = V)| (B(X) + R DIX =Y |* Y [l

< C2@H=ay — x| (h(X) +h(Y)) dY [u]on
B(X,21—7n)

< C2"TINX — X[ h(X)[ulasn.
which gives, for any X, X' € RY,
|RY; (u)(X) — R (u)(X)| < C27"* min(1, 2" [X — X[)(h(X) + 7(X") [u]az-

Then we have
(o,¢]

[RiR; ) (X) = RiR; ) (X)) = 3 |RE ) (X) = R o) (X))

n=—oo

o
< Y 27" min(1,2"X — X)) (h(X) + h(X")[ula;n
n=—00
< CIX = X'|*(h(X) + h(X")) [u]a;h.
which implies [R; Rju]y.n < Cu]g;p- Thus,
|Ri Rj ()|o,0:h (140100172 = | Ri Rj (W)]o;n + (1 + (10) 2 [Ri Rjulgon
_3 o
<CA+ 1) 2 ulog:nfi@),1+mnr/2 T A+ p10) 2 [u];n
_$
< C +pat) "2 |ulo s fy (1), 4+1010)1/2>

which gives our result. O
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Lemma A.8. For! =0, 1, it holds that

|V [u, R dw(X)| < €20 |Vl g, pix p1-n) Wl
Proof. Thanks to

[, R dpw(X) = /R (X =Y)@(¥)—u(X)) dgw(¥)d Y

= [ en XD ) O aY = [ gu (XD B ()Y, (a-11)
R R
we deduce that
e, R 9w (X)] < fR 10k@n (X =) IX =YY |Vulo; i a1y wlo; e 211

+/Rd lon (X =Y)|dY |Vulp. px 21-m)|Wlo. B(x 21-n)

< C|Vuly.gx 21-m)lwlo; B(x,21-n)>
Thanks to

V[M,RZ]akw(X)=/Rd Voron(X=Y)u(Y)—u(X)w(¥)dY
—Vu(X) /Rd Bk(pn(X—Y)w(Y)dY—/Rd Voo (X=Y)oru(Y)w)dY, (A-12)
we can similarly deduce that
|VIu, R ] 0w (X)| < C2"|Vug, g(x,21-m)[wlo; p(x,21-m)-
As [u, RY; ] orw = [u, RZ-] or (w —w(X)), we have, for/ =0, 1,

V! [, R 9w (X)| < €2 [Vulg, g p1-my [ w = w(X)lo:pex.t-m) < €279 | Vatlg, g x p1-m) [W]a
O

Lemma A9. If [uly o.p (1410172 = W a; £10), )72 = Lfor k=1, f1(2), f(t) and [ (t), then we
have

)-

+

[t R 0w (X)) <Ch(X)m1n(2”8(1+u1t) 327 4 )T

N\'—‘

|01, RE] 05w (X)| < CROO( 4 pat)™ 2 min(2707), 277 (1)~
Proof- As [uly o.n. (141,012 = 1WI1a: £, (0).(u 00172 = 1, we have
)| <h(X).  [Vu(X)| <h(X)(1+pi0)"2,  [wX)| < fi(t, X).
Using f1(¢, X) <C(1 + Mlt)_%, we also have
wlo < CL+mn) ™2, [wla <C(1+w)—% |Vw|o<C(1+mr>—%(mt)—%

[Vwle < C(1L+ )% min((u10) ™%, (ui)™ 27) < C(1L+ t) ™ 2" (uan) ™2,
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and
_ _s _a
[wle < Clwlg~*Vw[§ < C(1 + p1t) "2 (r1t)~ 2.
Therefore

[Wle < C + w16)~3 min(1, Gui1)~%) < A + i)~ 3*
Then we deduce from (A-11) and Lemma A.5 that, for 277" > /1 + w11,
[, R2] dw (X))
< /Rd |3k<ﬂn(X—Y)|(h(X)+h(Y))f1(t,Y)dY+(1+,ulz)_§/Rd lon(X =) |h(Y) f1(1,Y)dY

< Czn(d-{-l)/

(h(X)+h(Y)) f1(t,Y) dY+C(1+,u1t)_§2”d/ h(Y) f1(t,Y)dY
B(X,21—71)

B(X,Zl_”)
< C2" U (X )+ C(1+ prt) 22" h(X)
< C(14p11) 22" h(X).

For 27" < /1 + u1t, we have
_1
[Vulo.px 21—y < [Vulo.p px.21-myhlo:B(x 21-n) < Ch(X)(1 + p11)~2,
where we used the fact that & satisfies (2-3) with R = /1 + ¢, Similarly, we have

[Vuly. B(x,21-7) < [Vulen, Bx,21-m)|Plo; Bx,21-7) < Ch(X)(1 + Mll)

Then we get by Lemma A.8 that

4o

I, RE] 9w (X)] < C2"h(X)| Vulg. px 21-mwla < C2*R(X)(1+pat) ™
which gives the first inequality of the lemma.

Similarly, by (A-12) and Lemmas A.5 and A.8, we can deduce

S+ta

19, R B w(X)] < Ch(X)2" min(2"3 (14 pa1) "2, 27" (14 pyt) ™2

1438 +a

< Ch(X)2" =1 4 1)~
On the other hand,
0y [u, R”]akw(X)—/ 01on (X=Y)(u(Y)—u(X))dpw(¥Y)dY — azu(X)/ Pn(X=Y)pw(Y)dY
2 [u,a,R,. ]akw(X)+81u(X)R drw(X).
From the proof of Lemma A.7, we can see that

IR dw(X)| = C27"¥[Ogw]e = C27"(1 4 pat)™ B un 2.
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By (4-24), we deduce that, for 27" > /1 + uqt,
I, 7 R B w (X)) </d 10100 (X — V)| ([(¥)] + [u(X)]) [9ew(¥)] d¥
< CO@D (4 ) S ) / (h(Y) +h(X))dY
B(X,21—1)
<Cc2'(1+ mrr%(w)—%h(X)
< COM( 4 pgt) 2 (at) 2 h(X).
For 27" < /1 4 u1t, using the formula
[, 3 Y] dpw(X) = /R Brgn(X =) @(¥) —u(X) @pw(¥) = dw (X)) dY
4000 [ gn(X = ¥)@u(r) - du(x)) Y,
R
we deduce that
00 RE1 9000 < [ 100X =YX = ¥4 QY Vil g 1oy Bl
+ |akUJ|0/I; gﬂn(X — Y)lX — Y|a dY[VM]a;B(X’zl—n)
< COMR(X)(1+ pat) (4 pat) ™ 2" (uat) 2
1
+C(1 ) ) IR (X) (1 4 pat) T

< CORX) 1+ )T 2 ()R
This shows that
‘Bl[u, R?j]akw(X)}
< |[u. 0 R} ] B w(X)] + \alu(X)R Iw(X)|

<c2 E E S un
< CORX)(1 4 pat) ™ 2 ()73,
which gives the second inequality of the lemma. O

Using the formula
Bm[u,alR;;]akw(X)
= /Rd Om01on (X = Y)(u(Y) —u(X)) dpw(¥) dY — dpu(X) /Rd dgn(X =Y) dpw(Y)dY,
we can also deduce that
[l B RI] 5w (X)] < C2" O R(X) (14 par)™ 2 (uan) 2. (A-13)

Now we are in position to prove Proposition A.6.
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Proof. We get by Lemma A.7 with h = fi(¢) that
_8
[Ri Rj (uw)lo.a; £y = C(1+ pat) "2 [uwlo g £, ()2, (14 11)1/2
_$ _a
< C(1+pa)"2(1+ ()" 2)[uwly g £, (0)2, (u11)1/2

<C(l+mn 3 (1+ (1) ) lo.0; £ (0,112 1 Wlosas £ 1), 0)1/25
which gives the second inequality of the proposition.
For the first inequality, without loss of generality, we can assume
Ul an, 02 = Wle A 0.0z =1
where h = fi(¢).
First of all, by Lemma A.9, we have

[, R Rj]dw(X)| < Y | R 9w (X))

n=—oo

<C ) h(X)min(

n=—oo

) <Ch(X)(14pat) ™ 2,

and
(0,¢]

|9, Ri Rj] 0 w(X)| < Z |97 [u. R} ] 8w (X)|

n=—o0
o0
<C 3 A+t min(27070, 277 (1))
n=—oo
<ChX)(A+mt) ™ (7"
Now we consider X, Y € R?, with |X — Y| < /T + 17 It follows frorn Lemma A.9 that
|l R 0w (X) — [, RE] dpw(Y)| < CAOX)27 (L4 )™ 2 min(1,27|X —Y|),
where we used the fact that & satisfies (2-3) with R = /1 + p1¢. Therefore,
![u RiR;] 0pw(X) —[u, R; R)] Bkw(Y)} Z |[u R ] 0w (X) —[u, R:-}] Bkw(Y)|

n=—0oo

<C Z R(X)27 (1 4 )™ 2 min(1,2"|X — Y )

n=—oo

<ChX)( )2

X —Y |~
We write

Oi[u, RiRj] 0w = [u,0;R; R;] 0rw+ 0ju R; R; 0w,
where
[u 81R R; ]Bkw_ Z [u 8,R ]akw
n=—00

We get by Lemma A.9 and (A-13) that
[, 8 R 0w (X) — [, 3R] 03w (V)| < CR(X)27" (L4 pyt)™ 2 (uat) ™ min(1,2" X — Y ),
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which gives

[, 9, Ri Rj] 3w (X) — [u, 9, R; R;] akw(Y)|

< Z |[w. 0; R} 1 85w (X) — [u, 8; RY;] 9w (Y)|

<C Z R(X)27"%(1 4 at)™ 2 (uyr)~"2 min(1,2"|X — Y))
< Ch(X) (1 + i)™ 2 () 3| X = Y|

By
195Wlo,0: 10,1 +ney1/2 < (1 (1) ™) 8wl 0, AO G2
<+ (u1t)~ 2)fIllfl((Mll) L (ur)” 2) <2(u1t)” 5,
we infer from Lemma A.7 that
|91 Ri Rj Ok wlo,q;n (1410012 = ClO1lo,0s, (1410100172 | Ri R} 9k Wlo,0:1, (141211172
<C(+ mr)—%(l - m—%|akw|o,a;h,(1+w>uz

<C+ p1t)” Ea (le)
and

[0ju R;i Rj 0pw]g.p < C(1 +M11) (Mlt) 3

This shows that

|0, [u. Ri R}] dw(X) — d;[u. Ri R;] 5w (Y)| < Ch(X)(1 + puyt “3|X Y|
For the case X, Y € RY, with | X — Y| > /T+ 117, we have
. R Rj] 0w (X) —[u, Ri R;] 9w (Y)| < C(R(X) +h(Y)(1 + p11)” =
= C(h(X)+h¥))(A+ p1t
and
|97 [u, R R;j] 0w (X) — 81, Ri R;]dw(Y)| < C(h(X) + h(Y))(1 +M10“W(M11)_%
< CX)+ RN+ mt) ™ 2 () 3 X - Y%

In summary, we conclude
“”’RiRJ']akw|1,a;h,(mt)l/2
= |[u, Ri Rj] 9 w|g, +[[u, Ri Rj]1 9 w]
1—a 1 o
+max((u11)'2 ,(mr)z)(}wu,R:-R,-]akw|0;,,+<w>z[V[u,Rz-leakw]a;h)

+oz

<C(l+p1t)” = +C(1+M11)

+CmaX((Mll)T,(Mll)i)((lﬂilf) (Mll) (i) (1+M11) (,ulf) 2)<C
which gives the first inequality of the proposition. O
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Weighted Schauder estimate. Let h(X) be a positive bounded weight satisfying
h(X) <Coh(Y) for|X—Y|<2R, R>0.
Lemma A.10. Letu € Chz’a([Rd). Then we have
V2uloasn,R < C(IVttlo,asn min(R™' T R™Y) + [Aufo a;,R)-
Here C is a constant depending only on Cy.
Proof. Fix X € R? and consider the function w(Y) = u(Y) —u(X) — (Y — X) - Vu(X). So,

Viw =V, Aw=Au, |Aulog:px.2r).R=<2Coh(X)|Aulog:n R,
where

lulo.0:Bx,2R).R = [Ulo;B(x2R) + R¥[ula:B(x 2R)-
As Vw(Y) = Vu(Y) — Vu(X), we have for | X — Y| <2R,
Vw(Y)] = [Vu¥) — Vu(X)| < (h(X) + h(Y)|X =Y |*|Vuloa:n < 4Coh(X)R* [Vuulg,g:n,
IVw(¥)| = [Vu(Y)[ + [Vu(X)| < (h(X) + h(Y))[Vulo,a;p < 2Coh(X)[Vitlo,a;h-
This shows that
IVwlo: px,2R) < 4Coh(X) min(R*, 1)|Vu|g g4
from which and w(X) = 0, we infer
[wlo:B(x.2R) < 2R|Vwlo:(x,2R) < 8Coh(X) min(R'T¥, R)|Viulg g:-
Then by the (scaled) Schauder estimate, we obtain
IV2wlo,.0;80x,8).8 < C(R™?|wlo;B(x,2R) + | AWl0.0:B(X.2R),R)
< Ch(X)(min(R™"F% R™H)|Vulg g + | Attlo,asn,r) £ Ch(X)A,
which in particular shows
IV2u(X)| = [V2w(X)| < IV*wlo,0;8(x,R),R < Ch(X)A.
On the other hand, if |Y — X| < R, then
[V2u(X) = V2u(Y)| < |X =Y |* R |V?wlo.a;8(x,R),k < Ch(X)A|X —Y|*R™°,
and if |Y — X| > R, then

1405

|V2u(X)—V2u(Y)| < |V2u(X)|+|Vu(Y)| < Ch(X)A+Ch(Y)A < C(h(X)+h(Y)A|X Y |*R™™.

This gives
|V2”|0,a;h,R = |V2u|0;h + Ra[vzu]a;h = CA.
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NONNEGATIVE KERNELS AND 1-RECTIFIABILITY
IN THE HEISENBERG GROUP

VASILEIOS CHOUSIONIS AND SEAN LI

Let E be a 1-regular subset of the Heisenberg group H. We prove that there exists a —-homogeneous
kernel K such that if E is contained in a 1-regular curve, the corresponding singular integral is bounded
in L2(E). Conversely, we prove that there exists another —I-homogeneous kernel K, such that the
L?(E)-boundedness of its corresponding singular integral implies that E is contained in a 1-regular curve.
These are the first non-Euclidean examples of kernels with such properties. Both K; and K, are weighted
versions of the Riesz kernel corresponding to the vertical component of H. Unlike the Euclidean case,
where all known kernels related to rectifiability are antisymmetric, the kernels K; and K, are even and
nonnegative.

1. Introduction

One of the standard topics in classical harmonic analysis is the study of singular integral operators (SIOs)
of the form

Q —
rrm= [ S rmaso).

where Q is a 0-homogeneous function and £” is the Lebesgue measure in R”; see, e.g., [Stein 1993]. A
considerable amount of research has been devoted to such SIOs, and nowadays they are well understood.
On the other hand if the singular integral is defined on lower-dimensional measures, the situation is much
more complicated even when one considers the simplest of kernels.

As an example the reader should think of the Cauchy transform

CEf(Z):/ Md%l(w), EcCC,
EZ—W

where 1! denotes the 1-dimensional Hausdorff measure in the complex plane. Two questions arise
naturally. For which sets E is Cg bounded in L?(E)? And, if Cg is bounded in L*(E), what does this
imply about E? Here L?(E)-boundedness means that there exists a constant C > 0 such that the truncated
operator

ciro=[ I aniw

E\B(z,e) £ — W

Chousionis was supported by the Academy of Finland through the grant Geometric harmonic analysis, grant number 267047. Li
is supported by NSF grant DMS-1600804.

MSC2010: primary 28A75; secondary 28C10, 35R03.
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satisfies [|Cg fll 211, < CN fll 2, forall f e L?(#'|g). It turns out that the L?(E)-boundedness
of the Cauchy transform depends crucially on the geometric structure of E.

The problem of exploring this relation has a long history and it is deeply related to rectifiability and
analytic capacity; we refer to the recent book of Tolsa [2014] for an extensive treatment. One of the
landmarks in the field was the characterization of the 1-regular sets E on which the Cauchy transform is
bounded in L?(E). Recall that an #!-measurable set E is 1-Ahlfors-regular, if there exists a constant
1 < C < oo such that

C'r<H'(B(x,r)NE)<Cr

forall x € E, and 0 < r < diam E. It turns out that if E is 1-regular, the Cauchy transform Cf is bounded
in L2(E) if and only if E is contained in a 1-regular curve. The sufficient condition is due to David
[1988] and it even holds for more general smooth antisymmetric kernels. The necessary condition is due
to Mattila, Melnikov and Verdera [Mattila et al. 1996]. It is a remarkable fact that their proof depends
crucially on a special subtle positivity property of the Cauchy kernel related to an old notion of curvature
named after Menger; see, e.g., [Melnikov and Verdera 1995; Mattila et al. 1996]. We also note that the
above characterization also holds for the SIOs associated to the coordinate parts of the Cauchy kernel.

Very few things are known for the action of SIOs associated with other —1-homogeneous, 1-dimensional
Calder6n—Zygmund kernels (see Section 2 for the exact definition) on 1-regular sets in the complex plane.
Call a kernel “good” if its associated SIO is bounded on L?(E) if and only if E is contained in a 1-regular
curve. It is noteworthy that all known good or bad kernels are related to the kernels

2n—1

kn(z)=x|zv, z=(x,y) €C\ {0}, neN.

Observe that k; is a good kernel as it is the x-coordinate of the Cauchy kernel; see [Mattila et al. 1996].
It was shown in [Chousionis et al. 2012] that the kernels k,, n > 1, are good as well, and these were the
first nontrivial examples of good kernels not directly related to the Cauchy kernel. Now let

k() =ka(2)+1-k1(z), teR.

It follows by [Chousionis et al. 2012] and [Mattila et al. 1996] that «; is good for ¢ > 0. Recently
Chunaev [2016] showed that «; is good for + < —2 and Chunaev, Mateu and Tolsa [Chunaev et al.
2016] proved that «; is good for ¢ € (=2, —fz). Fort=—1andt = —% there exist intricate examples
of sets E, due to Huovinen [2001] and Jaye and Nazarov [2013] respectively, which show that the
L?(E)-boundedness of the SIO associated to x_; and k_3 /4 does not imply rectifiability for E. Therefore
the kernels k_1(z) = )cy2/|z|4 and k_3,4(x, y) = (x3 — 3)cy2)/|z|4 are bad kernels.

Notice that all the kernels mentioned so far are odd and this is very reasonable. Consider, for example,
a 1-dimensional Calder6n—-Zygmund kernel k : R x R\ {x =y} — R which is not locally integrable along
the diagonal. Take, for example, k(x, y) = |x — y|~!. Then f ;1 k(x, y) dy = oo for all open intervals I C R.
It becomes evident that defining a SIO which makes sense on lines and other “nice” 1-dimensional objects
depends crucially on the cancellation properties of the kernel. Surprisingly in the Heisenberg group H the
situation is very different.
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The Heisenberg group H is R*> endowed with the group law
prg=(x+x, y+y, 247+ 1(xy —yx)) (1-1)
for p=(x,y,1), g=(x',y',t') € R>. We use the following metric on H:
dyy:HxH—[0,00), du(p,q):=N(g " p),
where N : H — [0, 00) is the Kordnyi norm in H,

Ny, 2= (4 D
We also let
NH(x,y,z) = |z|1/2,

where NH stands for nonhorizontal. Note that
dyg(x, y) = (17 () = w)[* + NH ™ y)H A
We also remark that the metric dy is homogeneous with respect to the dilations
S H—>H, 8((x,y,2)=(x,ry,r’z), (@ >0).

Finally let 2 : H\ {0} — [0, c0),
NH(p)

N(p)
and notice that €2 is 0-homogeneous, as 2(5,(p)) = Q(p) for all r > 0. One can also define the dilations

Q(p) =

(1-2)

for r < 0 for which the metric is still 1-homogeneous (although with absolute value).

In our first main theorem we prove that, in contrast to the Euclidean case, there exists a nonnegative,
—1 homogeneous, Calderén—Zygmund kernel which is bounded in L?(E) for every 1-regular set E which
is contained in a 1-regular curve. We warn the reader that from now on ' will denote the 1-dimensional
Hausdorff measure in (H, dy).

Theorem 1.1. Let Ky : H\ {0} — [0, 00) be defined by

and let E be a 1-regular set which is contained in a 1-regular curve. Then the corresponding truncated
singular integrals

TE f () = / K™ p) f(@) dH' (@)

E\By(p.e)
are uniformly bounded in L*>(E).
There are abundant examples of 1-regular sets in H which are not contained in 1-regular curves. For

example, one can consider suitable 1-dimensional Cantor sets in the vertical axis, 7 = {(0, 0, z) : z € R},
which is 2-dimensional.
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We define the principal value of f at p to be
pY.T1(p) = lim T{ (f)(p).

when the limit exists. Because the kernel is positive, we will be able to use Theorem 1.1 to easily show
that the principal value operator is bounded in L2

Corollary 1.2. If f € L*(E), then p.v. T f (x) exists almost everywhere and is in L*(E). Moreover, we
have that there exists a constant C > 0 such that

Ip-v. Ti fll2ey < Cll fllp2ey  Vf € L*(E).

Let us quickly give an intuition behind why one would expect a positive kernel like NH (x)" /N (x)"*!
to be bounded on Lipschitz curves. Rademacher’s theorem says that Lipschitz curves in R" infinitesimally
resemble affine lines, and antisymmetric kernels cancel on affine lines. This is essentially what controls
the singularity. In the Heisenberg setting, a Rademacher-type theorem by Pansu [1989] says that Lipschitz
curves infinitesimally resemble horizontal lines and NH is O on horizontal lines. Thus, we again have
control over the singularity.

Some heuristic motivation comes from the fact that the positive Riesz kernel |z|/(x? 4 y? 4 z2)3/?
defines a SIO which is trivially bounded in R? for curves in the xy-plane. In this case, however, the
boundedness of this SIO tells us nothing about the regularity of the xy-curve. An analogous concern in
the Heisenberg group would be whether the boundedness of kernels of the form NH(z)” /N (z)?*! implies
anything about the regularity of the sets if the vertical direction is “orthogonal” to Lipschitz curves. While
we do not know if the boundedness of the kernel of Theorem 1.1 says anything about regularity, our next
result shows that there exists some p for which these vertical Riesz kernels do:

Theorem 1.3. Let K, : H\ {0} — [0, 00) be defined by

Q(p)?
N(p)’

and let E be a 1-regular set. If the corresponding truncated singular integrals

K> (p) =

TS f (p) = / Ka(a™' - p) f(@) dH (@)

E\By(p.e)

are uniformly bounded in L*>(E) then E is contained in a 1-regular curve.

One can interpret this statement as saying that the vertical fluctuations of a 1-regular set E C H (that
is, K;(p~' - q) when p, g € E) contain enough information to determine that it lies on a 1-regular curve.

The following question arises naturally from Theorems 1.1 and 1.3. Does there exist some m € N such
that any 1-regular set E is contained in some 1-regular curve if and only if the operators

Q =1, ,,\ym
rro= [ S ')
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are uniformly bounded in L*>(E)? The methods developed in this paper do not allow us to answer this
question, partly because our proof for Theorem 1.1 seems to require a large power for Q2(p). This is
essential because we are using a positive kernel and so are not able to use antisymmetry to gain additional
control from the bilinearity, as is commonly used in these types of arguments; for example, see Section 6.2
of [Tolsa 2009]. The proof of Theorem 1.3 uses delicate estimates regarding the Kordnyi norm and is
also not likely to be improved without a major change in the proof structure.

A motivation for the geometric study of SIOs in R” is their significance in PDE and potential theory.
In particular the d-dimensional Riesz transforms (the SIOs associated to the kernels x / lx [ty ford = 1
and d = n — 1 play a crucial role in the geometric characterization of removable sets for bounded
analytic functions and Lipschitz harmonic functions. Landmark contributions by David [1998], David
and Mattila [2000], and Nazarov, Tolsa and Volberg [Nazarov et al. 2014a; 2014b] established that these
removable sets coincide with the purely (n—1)-unrectifiable sets in R", i.e., the sets which intersect every
(n—1)-dimensional Lipschitz graph in a set of vanishing (n—1)-dimensional Hausdorff measure. For an
excellent review of the topic and its connections to nonhomogeneous harmonic analysis, we refer the
reader to the survey [Volberg and Eiderman 2013].

The same motivation exists in several noncommutative Lie groups as well. For example, the problem
of characterizing removable sets for Lipschitz harmonic functions has a natural analogue in Carnot groups.
In that case the harmonic functions are, by definition, the solutions to the sub-Laplacian equation. It was
shown in [Chousionis and Mattila 2014] that in the case of the Heisenberg group, the dimension threshold
for such removable sets is dimH — 1 = 3, where dim H denotes the Hausdorff dimension of H. See also
[Chousionis et al. 2015] for an extension of the previous result to all Carnot groups. As in the Euclidean
case, one has to handle a SIO whose kernel is the horizontal gradient of the fundamental solution of the
sub-Laplacian. For example, in H, such a kernel can be explicitly written as

Xy +Hyz vy -z
((x2 + y2)2 + ZZ)S/Z ’ ((xz + y2)2 + Z2)3/2

for p = (x, y, z) € H. Currently we know very little about the action of this kernel on 3-dimensional

K@%=<

subsets of H. Nevertheless it has motivated research on SIOs on lower-dimensional subsets of H, e.g.,
[Chousionis and Mattila 2011] and the present paper, as well as the very recent study of quantitative
rectifiability in H; see [Chousionis et al. 2016].

2. Preliminaries

Although we have already defined a metric on H, we will also need the fact that there exists a natural path
metric on H. Notice that the Heisenberg group is a Lie group with respect to the group operation defined
in (1-1), and the Lie algebra of the left invariant vector fields in H is generated by the vector fields

X :=0,+yd;,, Y:=0y—x0, T:=0,.

The vector fields X and Y define the horizontal subbundle HH of the tangent vector bundle of R>. For
every point p € H we will denote the horizontal fiber by H,H. Every such horizontal fiber is endowed
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with the left invariant scalar product (-, - ), and the corresponding norm | - |, that make the vector fields
X, Y, T orthonormal.

Definition 2.1. An absolutely continuous curve y : [a, b] — H will be called horizontal with respect to
the vector fields X, Y if
y(@) e H,pnyH forae.t €la,b].

Definition 2.2. The Carnot—Carathéodory distance of p, q € H is

b
dec(p. q) =inf/ ly (Olyw dt,

where the infimum is taken over all horizontal curves y : [a, b] — H such that y(a) = p and y (b) =gq.

By Chow’s theorem, the above set of curves joining p and ¢ is not empty and hence d.. defines a
metric on H. Furthermore the infimum in the definition can be replaced by a minimum. See [Bonfiglioli
et al. 2007] for more details.

Remark 2.3. It follows by results of Pansu [1982a; 1982b] that any 1-regular curve is horizontal; hence
the reader should keep in mind that our two main theorems (Theorems 1.1 and 1.3) essentially involve
subsets of horizontal curves.

A point p € H is called horizontal if p lies on the xy-plane. We can now define an important family of
curves in the Heisenberg group.

Definition 2.4. Let p, g € H such that ¢ is horizontal. The subsets of the form

{p-6:(q):reR}
are called horizontal lines.

Observe that horizontal lines are horizontal curves with constant tangent vector. Thus, in the horizontal
line above, the element ¢ can be thought of as defining a “horizontal direction” for the line.

Note also that the horizontal lines going through a specified point in H span only two dimensions
instead of three as in R3. This is a significant difference between Heisenberg and Euclidean geometry.

It is easy to see that the homomorphic projection 7 : H — R? defined by

m(x,y,z) =(x,y)
is 1-Lipshitz. We will also use the map 7 : H — H defined by
7(x,y,2)=(x,y,0).
We stress that 77 is not a homomorphism.

Definition 2.5 (horizontal interpolation). For p, g € H,

pa=1{p-87(p~'-q):rel0,1]}.

Note that pgq is a horizontal segment starting from p traveling in the horizontal direction of p~! - ¢.
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Definition 2.6. Let (X, d) be a metric space. We say that
k(-,): XxX\{x=y} >R

is an n-dimensional Calderon—Zygmund (CZ)-kernel if there exist constants ¢ > 0 and 1, with 0 < n < 1,
such that for all x, y € X, with x # y,

(1) [k(x, y)| <c/d(x, y)",
(2) 1k(x,y) = k&', )+ 1k(y, x) =k(y, x)| < ed(x, x)/d (x, y)" T if d(x, x) < d(x, y)/2.
For the next lemma, recall the definition (1-2) of the functions 2.

Lemma 2.7. Fixm e N, and letk : H x H\ {x =y} — R be defined as

Q@' p)"
O NG T

Then k is a 1-dimensional CZ-kernel.

Proof. We need to verify (1) and (2) from Definition 2.6. Notice that (1) is immediate because by the
definition of the Kordnyi norm, NH(p) < N(p) for all p € H. For (2) we will use the fact that the function

_ap"

=7 H\ {0},
f(p) N ) p € H\ {0}

is C! away from the origin and it is also —I-homogeneous, that is,

FGo) =11 (p)

for all » > 0 and p € H\ {0}. Hence by [Folland and Stein 1982, Proposition 1.7] there exists some
constant C > 0 such that for all P, Q € H with N(Q) < N(P)/2,

N(Q)

FPQ) = (P =C .

Hence if p, p’, ¢ € H such that dy(p, p') <du(p, q)/2,
k(P q) =k(p', )l =1fq""-p) = fg~" - P

N /—l‘ d /’
=1f@ " p-f@p-pt-phlscC PP _ P, p)

N(g='-p)r  du(p,q)*

Since k is symmetric, from (2-1) we deduce that k also satisfies (2) of Definition 2.6. O

2-1)

In the sequel, we will use the notation a < b or a 2 b to mean that there exists a universal constant C
so that a < Cb or a > Cb. This universal constant can change from instance to instance. We let a < b
mean both a < b and b < a. Given another fixed quantity «, we let a <, b and b <, a mean that the
quantity C can depend only on «.
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3. Necessary conditions

In order to simplify notation, in the two following sections we will denote d := dy, B(p,r) := Buy(p, r)
and ab:=a-bfora,beH.
Let E C H such that u = H'|f satisfies the 1-regularity condition

Er < u(B(x,r)) §§_lr Vxe E, r>0,

for some & < 1. We now recall the construction of David cubes [1991]. David cubes can be constructed
on any regular set of a geometrically doubling metric space. In particular, for the set E, we obtain a
constant ¢ > 0 and a family of partitions A; of E, j € Z, with the following properties:

(D1) If k < j, Qe Ajand Q" € Ay, then either QN Q' = or Q C Q.
(D2) If Q € A}, then diam Q < 27/,
(D3) Every set Q € A; contains a set of the form B(py, c27/) N E for some py € Q.

The sets in A :=J A; are called David cubes, or dyadic cubes, of E. Notice that diam Q =< 277 if
Q € A;. For acube § € A, we define
AS):={QeA:QCS}.
Given a cube Q € A and A > 1, we define
AQ :={xe E:d(x, Q) <(A—1)diam Q}.

It follows from (D1), (D2), and the 1-regularity of E that ;(Q) ~ 27/ for Q € A j
Define the positive symmetric —1-homogeneous kernel K by
K(p) = Q%(p) _ NH(p)*
N(p)  N(p)’
For any ¢ > 0, we can define the truncated operator as before:

T f(x) = f Ky ') fx)duy).
d(y,x)>¢

Proof of Theorem 1.1. Our goal is to show that when E lies on a rectifiable curve, there exists a uniform
bound C < oo that can depend on & such that

1T 51325, < Ci(S) VS €A, Yo >0. (3-1)

We then apply the 7'(1) theorem for homogeneous spaces — see, e.g., [Deng and Han 2009; David 1991] —
to deduce the uniform L2-boundedness of Ty for all ¢ > 0. We may suppose E is a 1-regular rectifiable
curve, as taking a subset can only decrease the L?-bound of T{ xs-

From now on we assume the 1-regular set E actually lies on a rectifiable curve. For x € E and r > 0,

we define
d(z, L
Be(x,r)=inf  sup (z ),
L ;eEnBGx,r)y T

where the infimum is taken over all horizontal lines.
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Proposition 3.1. There exists a constant C > 1 depending only & so that for any S € A, we have
> BU0QY 1(Q) < Cu(S). (3-2)
Q€eA(S)
Proof. This essentially follows from Theorem I of [Li and Schul 2016b], which says that there exists
some universal constant C > 0 such that

/ /OO,BE(B(xs 1)* d—jd%“(x) <CH'(E)
H JO t

when E is simply a horizontal curve. When E is in addition 1-regular, it is a standard argument to use the
Ahlfors regularity to bound this integral from below by a constant multiple — which can depend on & —
of the left-hand side of (3-2) (after intersecting E with §). In fact, one can easily show that the integral
and sum are comparable up to multiplicative constants.

One then gets

> BU0Qu(Q) < CHYENS) S u(S),

QeA(S)
where we again used 1-regularity of E in the final inequality. (Il
We now fix S € A a cube.
Now define a positive, even Lipschitz function ¥ : R — R such that xp,1/2) < ¥ < xB(0,2)- We define
Y H—>R, 2z y(Q2/N@)),
and ¢; := ¥; — ¥j11. Thus, ¢; is supported on the annulus B(0, 2!=/)\ B(0,2727/) in H and we have
XH\B(0,2-n+1) = Z ®n = XH\B(0,2-72)- (3-3)

n<N

For each j € Z, we can define K ;) = ¢, - K and also

T xs(x) = /S K)o 'x)du(y).

Define Sy =Y, _y T(n)- As the kernel K is positive, we can easily get the following pointwise estimates
for any positive function f from (3-3):
O0<T{f<Sytf Ve=2""
Thus, to show uniform bound (3-1), it suffices to show that there exists C < oo depending possibly on &
such that
152 x501725) < Ci(S) VS €A, VneZ
We now fix S € Ay.
We will need the following lemma.
Lemma 3.2 [Li and Schul 2016a, Lemma 3.3]. For every a, b € H and horizontal line L C H, we have

da. D). db. L)) > NH(a'b)’ (3-4)
max{d(a, L), , }_EW_ -

Lemma 3.3. Forany j € Z and x € E, we have
T 1(x) g Be(x, 2% (3-5)
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Proof. Define the annulus A = E N A(x, 2727/, 2177). Then

NH —1.\8 NH —1,1\8
O~ %) dp(y) <S¢ sup 0

. (1 -1 j+2 AN A N A
T()1(x) = /E 8,07 0K dn) =27 | S sup S

It suffices to show

NH —1.,1\8 )
Yy = ((xy y)? <8 Bp(B(x, 21T

when y € A. This follows easily from (3-4). Indeed, as y € A, we have d(x, y) > 27/~2 We can then
find a horizontal line so that
max{d(x, L), d(y, L)} _ max{d(x, L), d(y, L)} G:H NH(x"'y)*
21-J - 8d(x,y) ~ 128d(x, y)?’
The statement now follows as B (B(x, 2!77)) > B 1 (B(x, 2 7)). O

Biry)(B(x,2'77)) =

We now have the following easy corollary.
Corollary 3.4. Let R € A;. Then for any a > 0, we have
f T 1) d(x) Se Be(IOR)* (R). (3-6)
R

Remark 3.5. We may replace the constant 1 function in (3-5) and (3-6) with any positive function f <1
(such as f = s for some § € A). This is again because the kernel of 7} is positive and so respects the
partial ordering of positive functions.

For any Q € A, we can also define

Toxs:=xoTij)Xs-

Saxs =Y _ Tipxs=_ > Toxs:

Thus, we have

j<n j=<n Q€A
and so
1Suxsl32es) = D N T xsFas +2 D (Tihxs: TaoXs), (3-7)
j<n Jj<k<n

where the inner product (-, -) is integration on S. We will bound the two terms on the right-hand side
separately.

Let $* € Ay_» be such that § C S* It follows from (D1) that S* is unique for S. It follows from the
¢; factor and the fact that cubes of A, have diameter at most 2~¢ that Tjyxs(x)=0forx € § € Ay
whenever j < £ — 2. Thus, as S € Ay, we have

(3-6)
STty < S Y /Q Toxs@due) Se Y U000, (3-§)

Jj=<n {=2<j<n Q€A;,QCS QeA(S*)
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We now have to bound the off-diagonal terms of (3-7). We have

Z Z /T(j)XS(x)‘T(k)(X)XSdM(x) Z Z B(100)* Z/ Ty xs d(x)

j=0=2 j<k<n J=t=2 QeA;(S) k>j
(3 6)

Se Y BU0QY D BUOR) u(R)
QeA(S*) ReA(Q)
(32

e € Y BU00)Y Q). (3-9)

QeA(S*)
Note that the constants hidden in the < of (3-8) and (3-9) do not depend on S or n.
Altogether, we have

5 3 7) (3-9) 4 < o <
ISaxslias, St D BUOQYM(Q) W5 e (S,
QeA(S%)

where we used properties (D2), (D3), and 1-regularity of E in the last inequality. ([
We now demonstrate how using a positive kernel leads to an easy proof of Corollary 1.2.

Proof of Corollary 1.2. First suppose that f € L>(E) is a nonnegative function. Then as the kernel K is
positive, we have for fixed p € E that T} f (p) is a monotonically increasing sequence as ¢ — 0 and so

pv.Tif(p) = 811% T¢ f(p)

is a well-defined function, although it be infinity. By Theorem 1.1, we get that there exists some C > 0
such that

sup f (Tf f)dp < C / .

e>0

Thus, by Fatou’s lemma, we get
/(p.v. T ) du < limi(r)lf/(Tff)z < cff2 du.
E—>

This then proves the corollary for nonnegative functions.
Now let f € L?(E) be a real-valued function. We have the decomposition f = fT — f~, where
ft =max{f,0} and f~ = max{— f, 0}. Then
maX(||f+||L2(E), flz2ey) < W f e

and so we get that the principal values of f* and f~ under 7; are controlled by C|| f|l;2(g. Thus, the
principal values have to be finite almost everywhere and so we get p.v. T1 f =p.v. Ty f T —p.v. T1 f~ as
L?(E) functions. Additionally, we get

Ip-v. T1 fll2cey < Ip-v- i f Tl 2y + Ip-v- T f " 2y < 2C 1 fll 2 ey

This proves the entire corollary. U
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4. Sufficient conditions

We will need the following “triangle inequality” for this section.
Lemma 4.1 (NH? triangle inequality). Let a, b, ¢ € H and let A be the (unsigned) area of the triangle
in R? with vertices (a), w(b), w(c). For the four quantities
A, NH@ 'b)?, NH® 'c)?, NH(c 'a)?,
any one of these numbers is less than the sum of the other three.

Proof. Let us first show A is less than the sum of the other three quantities. Since everything is
invariant under left translation, we may suppose ¢ = (0, 0,0), a = (x, y,1), and b = (x, ¥, ¢’). Then
NH(c 'a)* = |t| and NH(b~'¢)? = || and we have
A=ty —xy| < |3x'y —xy' =t 41|+ 1| +|t| <NH(@ 'b)* + NH(b '¢)* + NH(c"'a)*.
We now show that NH (a~'b)? is less than the sum of the other three quantities. We will keep the same
normalization as the last case:

NH(@ 'b)? = |ix'y —xy' —t +1'| < 3Ix'y —xy/| + || + 11| < A+ NH®b 'o)* + NH(c'a)*. O

For r < R and x € H, we can define the annulus
Ax,r,R)y:={yeH:d(x,y) e (r, R)}.
For three points p1, p2, p3 in H, we define
(p1, p2, p3) = gneig{d(Pa(l), Pe@) +d(Ps@): Po3) —d(Pot)s Po3)}-

For @ € (0, 1), r > 0, and a metric space X, we let X x («, r) denote the triples of points (pi, p2, p3) € X
such that
ar <d(pi, pj) <r Vi#].

We also let Xy (o) =,
want X = E, where E is the 1-regular set of the hypothesis of Theorem 1.3.

Y x (a, r). For notational convenience, we will drop the X subscript when we

Lemma 4.2. Let (p1, p2, p3) € Z(«a, r). If for some ¢ € (0, 1/2) we have

NH(p; ' pj) < ed(pi, pj), (4-1)

then the point 7w (p;) € R? is contained in the strip around the line w(p;+1), 7 (pit2) of width 16a~€2r.

Proof. We will view m(p,), w(p3) as the base of a triangle with top vertex 7 (p;). It suffices to bound the
height. We let A denote the area of the triangle.
Suppose A > 42r2 We have by the NH? triangle inequality that

_ _ _ 4-1)
NH(p;'p3)* > A—NH(p; ' p2)* —NH(p; ' p3)?* > 262

This is a contradiction of (4-1).
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Thus, we may assume A < 4¢2r2 But if NH(pz_lp_g) < d(p2, p3)/2, then |mw(py) — w(p3)| >
d(p>, p3)/2 = ar/2. Thus, the height of the triangle is less than

24 16
—82}’.

=< O
IT(p2) —7w(p3)| — «@
Given u, v, w € H, we denote the largest and second largest quantities of
NHu 'v) NHv 'w) NH@u 'w)
du,v) = dw,w) = du,w)
by y1(u, v, w) and y»(u, v, w), respectively.
Lemma 4.3. For all a > 0, there exists a constant ¢1 > 0 such that if (p1, p2, p3) € 2(a, r), then
d(p1, P2, p3) < c1yi(p1, p2, p3)'r.
Proof. Let y = y1(p1, p2, p3), and we may suppose without loss of generality that
d(p1, p2, p3) =d(p1, p2) +d(p2, p3) —d(p1, p3).
Suppose first that ¥ < ¢ for some ¢ > 0 to be determined soon. Then
NH(p;' pj) <yd(pi, pj) < cd(pi. pj) Vi # J, (4-2)

and so

1/4

17 (pi) —m(pp)| = (d(pi, pp)* = NH(p; ' pp)*) " = (1 = cHY*d(pi, p)).

By taking ¢ small enough, we get that (w(p1), m(p2), 7(p3)) € e (a/2) and, by Taylor expansion of
the Kordnyi norm, that

NH(p;'pp)*
|l (pi) — 7 (pj)l

d(pi, pj) < | (pi) —7(pj)+ T <lm(p) —m(ppl+ (1 =y,

and so
d(p1, 2, p3) < |m(p1) — ()| + 7w (p2) — T (p3)| — [ (p1) — w(p3)| +2(1 — cH /4yt (4-3)

As (m(p1), m(p2), m(p3)) € X2 (a/2), we get by a Taylor approximation of the Euclidean metric that
h2
|7 (p1) —w(p)| + | (p2) — 7w (p3)| — |7 (p1) — 7 (P3)] Se o (4-4)

where £ is the height of the triangle in R? defined by m(p;) with base (p;), 7(p3). From (4-1) and
(4-2), we have
h < 16a_1y2r. (4-5)

The result now follows from (4-3)—(4-5).
Now suppose y > c. As d(p1, p2, p3) < 3r, the lemma trivially follows. |
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We let E C H be a set with u = H' | satisfying the estimate
Er <u(B(x,r)) < é_lr VxeE, r>0,
where £ < 1.

Lemma 4.4. Let E C H be a 1-regular set and a € (0, 1). There exists ¢y > 1 depending on o and & such
that if (p1, p2, p3) € X(«, 1), then one of the following is true:

(1) vi(p1, p2, p3) < c2v2(p1, p2, p3).
(2) After a possible reindexing of p;, there exists a set V. C E N B(py, ar/10) with u(V) > r/cp such
that for every x € V we have

v1(p1. p2, p3) < caya(x, p2, p3)

and (x, p2. p3) € Z(c; ).
(3) After a possible reindexing of p;, there exist sets Wi, Wy C E N B(py, ar/5) with u(Wy), u(Ws) >
r/cy such that for all (x, y) € Wi x W, we have

v1(p1, p2, p3) < c2ya(p1, x,y)
and (p1,x,y) € X(c; ', r).

Proof. Throughout this proof, we will give a finite series of lower bounds for ¢;. The final ¢, will then
just be the maximum of these lower bounds. For simplicity of notation, let y; = y;(p1, p2, p3). We
may of course suppose that y» < cy; for some small ¢ > 0 depending on « and & to be determined,
as otherwise condition (1) would be satisfied. Without loss of generality, we can assume that y; =
NH(p, ! p3)/d(p2, p3). Let A denote the area of the triangle in R? with vertices 7 ( pi). Then we have
from the NH? triangle inequality that
NH(p; ' p3)* < NH(p7 ' p2)* + NH(py ' p3)* + A,
and so if we set ¢ < /2 (while still allowing ourselves to take ¢ smaller) then
A> %azylzrz. (4-6)
Fix A € (0, 1) depending only & so that
W(A(x, AL, 0) > 160 VxeE, £>0.

Suppose now A(p;, Aar/10, ar/10) contains a subset S of p-measure at least £r /40 so that

NH(x"'p1)

d(x, p1)

If there is a further subset V C § with (V) > &ar /80 such that NH(x_lpz) >cy1d(x, pp) foreachx €'V,

then we are done as we’ve satisfied condition (2) for large enough c; if we keep p», p3 and draw x from V.
Thus, suppose there is a subset V C § with u(V) > £ar/80 and

NH(x""py)
d(x, p2)

<cy1 VxeS. 4-7)

<cy; VxelV. (4-8)
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Figure 1. A denotes the area of the triangle determined by 7 (p;), i = 1,2, 3, and A,
denotes the area of the triangle determined by 7w (p1), m(p3) and m(x).

Recalling
d(x, p1) € [%Aar, %ar], d(x, pp) € [%r, 2r], VxeV C A(pl, %Aar, %ar), (4-9)

from (4-7), (4-8), and Lemma 4.2, for every x € V we get that 7 (x) lies in the strip around 7 (p1), 7 (p2)
of width

w= Ec vir. (4-10)

As NH(x'p1) < cy1d(x, p1), we easily get (supposing c is small enough) that

1 @9
() = (p)| = Yd(x, p) = grar. @-11)

As d(p1, p2) <r, we get that the height of the triangle given by 7 (p;) with base 7w (p1), m(p2) is then

at least

h> ——
—d(p1,p2)
Let A denote the area of the triangle determined by 7 (p1), 7 (x), 7w (p3). By (4-10), we have that w
is at most some constant multiple (depending on « and A) of ¢?A. Thus, if we choose ¢ small enough
to get 7 (x) sufficiently close to the line 7 (p;), w(p2) compared to h, we get

4-11)
Ay = thim(p) — ()| = Gradyir.

See Figure 1 for an illustration of these triangles.
Now using the NH? triangle inequality, we get

_ _ (4-7),(4-9) _
00 2T < AL <NHG ™' p)* +NH(p; 'p3) +NH( ' p3)* = 2%y +- NH(x ' ps)™

Thus, if we choose ¢ small enough compared to o and A once and for all, we get
NH(x™'p3) = v el inir = g5V’ iyid(x, p3).

Now we can satisfy condition (2) for sufficiently large c; by keeping p», p3 and drawing x from V.
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Thus, we may suppose that E N A(py, Aar/10, ar/10) contains a subset S so that u(S) > £ar/40 and
NH(z"'p1) = eyid(z, p1) Vz€S.

Using the 1-regularity of E, an elementary, although tedious, packing argument shows that there exist
n, T < Aa/100 depending only on « and & and points x, y' € E N A(p1, Aar/10, ar/10) such that
d(x',y") > 10tr and

min{u(SN B, tr)), w(SN B, tr)} = nr.

Note by the triangle inequality that we get
B(x',Tr), B(y',tr) € A(p1, zl—okar, %ar).

Thus, after setting ¢, large enough, we’ve satisfied condition (3) with W; = SN B(x/, tr) and W, =
SN B(y, r), which would completely finish the proof of the lemma. We will present a quick sketch
of the packing argument and leave the details to the reader.

Find a maximal tr-separated net NV of E N B(py, ar) for t > 0 to be determined. By 1-regularity,
we have #N 2 «/t. First use the 1-regularity of E to find M > 1 such that any subset S C N for which
#S > M must contain x’, y’ € S so that d(x’, y’) > 10tr. Now {B(x, tr) : x € N} is a covering of
B(p1, ar/10). Define B={B(x, tr):x € N, (SN B(x, r)) > nr}. By choosing n small enough relative
to at, we can use the 1-regularity of E and the fact that 1(S) > ar to get that #8 > aN > o/t (with
no dependence on 1). Now simply choose t small enough so that #53 > M. One then finds two balls
B(x', tr), B(y', tr) € B such that d(x’, y") > 10tr, which finishes the sketch. O

For x,y € E, we let
S, r;x):={(y,2) € E*: (x,y,2) € Z(a, 1)}, T(a:x,y):={z€E:(x,y,2) € Z()}.
One easily has that there exists some constant c3 > 1 depending on & such that
érz <X u(E (e, r; x) < car’, éd(x, y) = u(E(a; x, ) <c3d(x, y).

For simplicity, we will adopt the convention that the integral f 4 J (x) dx means f A J(x)dpu(x) when
A C E. Recall that for three points p;, p», p3 in a metric space X, the Menger curvature c(py, p2, p3) €R
is defined as

1
c(p1, p2, P3) = &
where R is the radius of the circle in R? passing through a triangle defined by the vertices Pls Py, Py € R?,
where d(pi, pj) = |p; — pjl-

Proposition 4.5. For any o > 0, there exists c4 > 1 such that

2 2
//f c(x,y,2)?dxdydz <cs /// yl(x,‘y, 2"y, yz, 2) dxdydz. (4-12)
2 (@) s diam({x, y, z})

Proof. We have by [Hahlomaa 2005] that there exists some 7 > 0 depending on « such that if (x, y, z) €
Y (a), then

c(x, v, 2)* < rdiam({x, y, z) 33(x, y, 2). (4-13)
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By Lemma 4.3, we have that there exists ¢; > 0 such that

/// diam({x, y, z}) 9(x, y, 2)dxdydz < ¢ /// yi(y, 9 ———————dxdydz. (4-14)
(@) s diam({x, y, z})

We now decompose X («) into three pieces. Fori =1, 2, 3, let S; € ¥ («) denote the triples of points for
which condition (i) of Lemma 4.4 holds for some r > 0 (that can depend on the triple of points). Note
Y () € S1U S, U S3, but this decomposition need not be disjoint.

It will be convenient to define the functions

yi(x,y, 2)* x Z)_:J/l(x,y,z)zyz(x,y,Z)2
diam({x,y.z2p2" YT T diam((x, v, 2))2

f/ f(x,y,2)dxdydz < c% f// gx,y,2)dxdydz. (4-15)
S1 S1

When we write a triple of points (x, y, z) € S, we will always assume y, z play the role of p;, p3 in
condition (2). Now let (x, y, z) € S N X (). We then have that there exists a subset with w(V) >r/c,

fx,y,2):=

We trivially have that

fx,y,2) <coglu,y,z) YueV.

‘We then have

1
fx,y,2) < f g(u,y,z)du.
uv) Jy
We also have (u, y, z) € E(cz_l) for all u € V and so
(a5 y, 2
/ Oy dx < MEEXD o,y < c§c3/ g(u. y.2)du.
S(@:y.2) u(V) v S(ey " y.2)

Now we have

// f(X,y,Z)dxdydz:/// 1s,f(x,y,2)dxdydz
52 (@)
5/// ls, f(x,y,2)dxdydz
EJE JX(a;y,2)
5C§C3/// g(x,y,2)dxdydz
EJE JE(c;"y.2)

= 66503///;( _])g(x, v,z)dxdydz. (4-16)
€

For §3, we will write the points (x, y, z) with the understanding that z plays the role of p; in condition (3).
Now let (x,y,z) € S3N X(a/2,r). In a way similar to that above, we can use the properties of the
conclusion of property (3) to get that

fx,y,2) < C%C3f/ g(u, v, z)dudv.
2(e; ' ri2)
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It is elementary to see that if (x, y, z) € X (), then

* dr
l{r:(x,y)ei(a/z,r;z)}— =q L.
0 r

Here, we need the extra factor of % in case (x, y, z) achieves tightness in the X («) condition. We can
now decompose the integral:

o0
d
f/ f(x7 y’ Z) dx dy dZ 50{ /// f(x7 y’ Z)/ 1{1‘:()(,}’)62(0[/2,";1)}7’” d'x dy dZ
S: s 0
2 OZ dr
5///7 .y, 2 dxdy®t dz
E JO {(x,y)eX(a/2,r;2):(x,y,2)€S3} r
o dr
< C%Cj,/ / // gu,v,z)dudv—dz
=(c; i) r

dr
,S / -1, g(x Vs Z)f {r:(u, v)eE(cz_] r; z)} —dudvdz
X(ey )

//f gx,y,2)dxdydz. 4-17)
ey

In the second and penultimate inequalities, we used Fubini. We then get the conclusion from (4-13)—(4-16)
and (4-17). O

Proof of Theorem 1.3. By a result of Hahlomaa [2007, p. 123], it suffices to show that for some « > 0,

/f/ (1, y2, y3)dyrdyadys SR VpeE, R>0. (4-18)
S (a)NB(p,R)?

Hence by (4-12), it is enough to prove that for some o« > 0,

2 2
/// O 2, ¥3) Vz(yl,yzz, )" v dyadys <R ¥peE. R>0. 4-19)
S(@NB(p,R) diam({y1, y2, y3})

By our assumption, for all ¢ > 0 and every f € L*(E),

175 fll2ey S 012 (4-20)

Let p € E and R > 0. Applying (4-20) to f = xp(p,r), We get that there exists some C > 0 such that for
every ¢ > 0,

NH(y; ' y2)? NH(y; ' y3)?
/ f — dyZ/ ———=—dy;dy| <CR,
ENB(p,R) JENB(p.nNBGye d(V1, ¥2) ENB(p,r)NBO1e) AV, ¥3)

Us = {31, y2.¥3) € Z(@) N B(p, R’ :d(y1, y2) > &, d(y1, y3) > €},

Ve ={(1, y2.53) € (@) NB(p, R :d(y1, y2) > &, d(y1,y3) > &, d(y2, y3) > ¢}.
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It then easily follows from Fubini (remember that all the terms in the integrand are positive) that

NH -1 2NH -1 2
/// (yl y2)” NH(y, 6ya) dy, dysdys < CR.
. diam({y1, y2, y3})

Therefore,

NHOT y2)* NHO ys)” NH (=" 9002 NH (v y0)2
CRZ/// b1 01 _y3) dyldyde3+/// Oy _%) (yy ¥3)
8 e\ Ve

diam({y1, y2, y3})° diam({y1, y2, y3})®

Using the upper regularity of w, it is not difficult to show that

NH(y; ' y2)? NH(y; ' y3)?
/// — L= dy dy,dy; S R.
v, diam({y1, y2, y3})

Using (4-21)—(4-23) and letting ¢ — 0 we deduce that

NH(O ™ 'y2)2 NH(y L ys)?
/// (yl y2) o) 6ys) dy: dysdys < CR.
S@nB(p, R} diam({y1, y2, y3})

By permuting variables, we get

NH(; Yo NH(Y, Ly Ve 3))?
/// o(H)Yo(2) o(1)Yo3) dyy dys dys < 6CR.
S (a)NB(p,R)?

dlam({YI s Yy )’3})6

o€eS3

If (y1, y2, ¥3) € (), then it follows easily that

—1 2 —1 2
1O 2,9 e, y2. 3 _ - NHQG 1) Y0 )” NH (Y1) Yo 3)
diam({y1, y2, y3})? ~ e diam({y1, y2, y3})°
—1 2 —1 2
- Z NH(yg(l)yo(Z)) NH(yU(l)yoG))
- ol diam({y1, y2, y3})®

’

(4-21)

dyidy; dys.
(4-22)

(4-23)

(4-24)

(4-25)

where the constant multiple implicit in the first inequality depends on «. We then get (4-19) from (4-24)

and (4-25).

5. Norm independence

O

In this short section we will show that Theorems 1.1 and 1.3 do not depend on the Kordnyi metric.

Let || - |1 and || - ||> be two homogeneous norms on H and denote by

1

di(p,q) =g - pli

the induced metrics for i =1, 2. We will also denote by B;(p, r) the balls with respect to the metric d; for

i =1, 2. Itis well known—see, e.g., [Bonfiglioli et al. 2007, Proposition 5.1.4] — that all homogeneous

norms in a Carnot group are globally equivalent. In particular there exists some L > 0 such that

L7iplla < llplh < Lliplla for p € H.
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Let s > 0 and define ky, k : H\ {0} — (0, +00) by

(= — and g =
1 = 2 == b
| plI3+! I plI3+!

where p = (x, y, z) € H\ {0}. As in the proof of Lemma 2.7 one can show that the kernels k;, i =1, 2,
are CZ kernels. Note also that

L™V ka(p) <ki(p) < LT ka(p).

Let u be a 1-regular measure on H and define the truncated singular integrals

Sif(p) = /B kG pf@) i) S = /B ko™ p) f(@) d()
1(p,e)°

2(p,e)¢

for f € L?(w) and € > 0.
Proposition 5.1. The operator S; is bounded in L? (i) if and only if the operator S, is bounded in L* ().

Proof. 1t suffices to show that if S, is bounded in L?*(p) then S; is bounded in L%(u). We define the
following auxiliary truncated singular integral for & > 0 and f € L?():

S5 f(p) = f kg™ p)f @) du).

Ba(p.e)¢

Let Q be any David cube associated to ., as in the beginning of Section 3. Then

2
IISEXQHizw):/(/ ki(g™! -p)du(q)) du(p)
ONBy(p.e)°
2
< L2 / ( / ka(g™" - p) du(q)) dp(p) < L VIS2x0l172, S m(Q)
ONBy(p.e)°

because S5 is bounded in L2(x). Hence by the 7' (1) theorem for homogeneous spaces — see, e.g., [Deng
and Han 2009; David 1991] — we deduce that §2 is bounded in L?(u).
For f € L?(n), € > 0, and p € H, we have

IS5 £(p) = S5 f(p)l =

/B k@) du) - / ki@ p)f @) du(q)
1(p,e)°

Bx(p.e)©
[ f(q)] [ f(q)]
5/ A du(q)Jr/ AC di(q).
Bi(p.e)\Ba(p.e) d1(P> q) Ba(p.o)\Bi(p.e) d1(P> q)
Note that
| f (@)l | f (@)l
f DL ) < / DLy )
Bi(p,e)\Ba(p.¢) 1(p,q) {g:e/L<di(p.q) <€} di(p,q)

L 1
=% d N o d <M! ,
= Bl(p’a)lf(y)l n(q) i B1(p.8) Bl(p}g)lf(y)l n(q@) <M, f(p)
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where M ,lll, denotes the Hardy—Littlewood maximal function with respect to d; and w. Similarly,

|f (@)l |
—d <M ’

and we have shown that
1S5 £ (p) = S5 £ (D) S M, f (D).

Hence the proposition follows because we already showed that S, is bounded in L2(11) and it is also well
known that the maximal operator M /IL is bounded in L?(). O
In particular, as a corollary to Theorems 1.1 and 1.3 and Proposition 5.1, we obtain that Theorems 1.1

and 1.3 hold respectively for the kernels

|z|* ||
dec(p, 0)° dec(p,0)3’

where, recalling Definition 2.2, d.. stands for the Carnot—Carathéodory distance.

K{(p)= and Kj(p) =
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BERGMAN KERNEL AND HYPERCONVEXITY INDEX
B0O-YONG CHEN

Dedicated to Professor John Erik Fornaess on the occasion of his 70th birthday

Let 2 C C" be a bounded domain with the hyperconvexity index «(2) > 0. Let o be the relative
extremal function of a fixed closed ball in 2, and set i := |o|(1 + |log|o|)~! and v := |o|(1 + |log|o|])".
We obtain the following estimates for the Bergman kernel. (1) For every 0 < o < «(£2) and 2 <
p <2+ 2a(2)/(2n — a(Q)), there exists a constant C > 0 such that [,[Ko(-, w)/v/Kow)|? <
Clu(w)|~P=2m/« for all w € Q. (2) For every 0 < r < 1, there exists a constant C > 0 such that
|Kq(z, w)|?/(Kq(z)Kq(w)) < C(min{v(z)/u(w), v(w)/u(z)})" for all z, w € Q. Various applications
of these estimates are given.

1. Introduction

A domain @ C C" is called hyperconvex if there exists a negative continuous plurisubharmonic (psh)
function p on €2 such that {p < ¢} € Q2 for any ¢ < 0. The class of hyperconvex domains is very wide;
e.g., every bounded pseudoconvex domain with Lipschitz boundary is hyperconvex [Demailly 1987].
Although hyperconvex domains already admit a rich function theory (see, e.g., [Ohsawa 1993; Blocki and
Pflug 1998; Herbort 1999; Poletsky and Stessin 2008]), it is not enough to get quantitative results unless
one imposes certain growth conditions on the bounded exhaustion function p (compare [Berndtsson and
Charpentier 2000; Btocki 2005; Diederich and Ohsawa 1995]).

A meaningful condition is —p < C§* for some constants «, C > 0, where § denotes the boundary
distance. Let a(£2) be the supremum of all . We call it the hyperconvexity index of Q. From the
fundamental work of Diederich and Fornaess [1977], we know that if €2 is a bounded pseudoconvex domain
with C2-boundary then there exists a continuous negative psh function p on Q such that C~187 < —p < C8§"
for some constants 1, C > 0. The supremum 7 (£2) of all 5 is called the Diederich—Fornaess index of Q2
(see, e.g., [Adachi and Brinkschulte 2015; Fu and Shaw 2016; Harrington 2008]). Clearly, o (€2) > n(£2).
Recently, Harrington [2008] showed that if €2 is a bounded pseudoconvex domain with Lipschitz boundary
then n(2) > 0.

On the other hand, there are plenty of domains with very irregular boundaries such that «(€2) > 0, while
it is difficult to verify n(€2) > 0. For instance, Koebe’s distortion theorem implies o« (£2) > % ifQCCisa
simply connected domain [Carleson and Gamelin 1993, Chapter 1, Theorem 4.4]. Recently, Carleson
and Totik [2004] and Totik [2006] obtained various Wiener-type criteria for planar domains with positive

Chen was supported by Grant IDH1411041 from Fudan University.
MSC2010: primary 32A25; secondary 32U35.
Keywords: Bergman kernel, hyperconvexity index.
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hyperconvexity indices. In particular, if 9€2 is uniformly perfect in the sense of Pommerenke [1979], then
a(2) > 0 [Carleson and Totik 2004, Theorem 1.7]. Moreover, for domains like 2 = C\ E, where E is
a compact set in R (e.g., Cantor-type sets), the connection between the metric properties of E and the
precise value of «(€2) (especially the optimal case «(£2) = %) was studied in detail in [Carleson and Totik
2004; Totik 2006]. In the Appendix of this paper, we will provide more examples of higher-dimensional
domains with positive hyperconvexity indices. The Teichmiiller space of a compact Riemann surface
with genus > 2 which is boundedly embedded in C*¢~3 probably has a positive hyperconvexity index.
For a domain 2 C C”, let o be the relative extremal function of a (fixed) closed ball BCQ;ie.,

0(z) == 05(2) :=sup{u(z) :u € PSH™ (), ulz < —1},

where PSH™ () denotes the set of negative psh functions on . It is known that g is continuous on
if 2 is a bounded hyperconvex domain [Btocki 2002, Proposition 3.1.3(vii)]. Furthermore, it is easy to
show that if «(€2) > 0 then for every 0 < o < «(2) there exists a constant C > 0 such that —p < C§*.

The goal of this paper is to present some off-diagonal estimates of the Bergman kernel on domains
with positive hyperconvexity indices, in terms of o. Usually, off-diagonal behavior of the Bergman kernel
is more sensitive to the geometry of a domain than on-diagonal behavior (compare to [Barrett 1992]).

Let Kqo(z, w) be the Bergman kernel of 2. It is well-known that Kq(-, w) € L*() for all w € Q.
Thus, it is natural to ask the following:

Problem. For which 2 and p > 2 does one have Kq(-, w) € L?(2) for all w € Q7

For the sake of convenience, we set
B() =sup{B >2:Kq(-,w) e LP(Q) for all w € Q}.

We call it the integrability index of the Bergman kernel. From the well-known works of Kerzman, Catlin
and Bell, we know that 8(2) = oo if €2 is a bounded pseudoconvex domain of finite D’ Angelo type.
On the other hand, it is not difficult to see from the work of Barrett [1992] that there exist unbounded
Diederich—Fornaess worm domains with 8(€2) arbitrarily close to 2 (see, e.g., [Krantz and Peloso 2008,
Lemma 7.5]). Thus, it is meaningful to show the following:

Theorem 1.1. If Q C C" is pseudoconvex, then (2) > 24+ 2a(2)/(2n — a(2)). Furthermore, if Q is
a bounded domain with a($2) > 0, then for every 0 < o < a(2) and 2 < p <2+ 20(2)/(2n — a(2)),
there exists a constant C > 0 such that

/|KQ<-,w>/\/KQ(w>|”scww)r(”—z)"/“, we, (1-1)
Q

where Ko(w) = Ko(w, w) and p = |o|(1 + [loglo|) 7.
The lower bound for 8(2) can be improved substantially when n = 1:
Theorem 1.2. If Q is a domain in C, then B(2) > 24+ a(2)/(1 — a(2)).

In particular, we obtain the known fact that if Q@ C C is a simply connected domain then S(2) > 3. A
famous conjecture of Brennan [1978] suggests that the bound may be improved to §(£2) > 4; an equivalent
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statement is that, if f : © — D is a conformal mapping where D is the unit disc, then f’ € L?(2) for all
p < 4. There has been extensive research on this conjecture (see [Bertilsson 1998; Carleson and Jones
1992; Carleson and Makarov 1994; Pommerenke 1992], etc.).

Nevertheless, Theorem 1.2 is best understood in view of the following:

Proposition 1.3. Let E C C be a compact set satisfying Cap(E) > 0 and dimy (E) < 1, where Cap and
dimp denote the logarithmic capacity and the Hausdorff dimension, respectively. Set Q := C\ E. Then
B(RQ) <2+4+dimy(E)/(1 —dimy(E)).

Example. There exists a Cantor-type set E with dimg (£) = 0 and Cap(E) > 0 [Carleson 1967, §4,
Theorem 5]. Thus, 8(C\ E) =2 in view of Proposition 1.3.

Example. Andrievskii [2005] constructed a compact set E C R with dimg (E) = % and x(C\ E) = % It
follows from Theorem 1.2 and Proposition 1.3 that 8(C\ E) = 3.

Problem. Is there a bounded domain 2 C C with §(2) =27

Theorems 1.1 and 1.2 shed some light on the study of the Bergman space
A”(Q):{fe@(gz):/|f|p<oo}
Q

for domains with positive hyperconvexity indices. For instance, we can show that A”(2) N A%(R) lies

dense in A%(2) for suitable p > 2 and the reproducing property of Kq(z, w) holds in A?(2) for suitable

p < 2 (see Section 4). A related problem is to study whether the Bergman projection can be extended to a

bounded projection L”(2) — AP (2) for all p in some nonempty open interval around 2. For flat Hartogs

triangles, a complete answer was recently given by Edholm and McNeal [2016]. For more information

on this matter, we refer the reader to the review article of Lanzani [2015] and the references therein.
Set

Ko p(z) :=sup{| f(2)|: f € AP(Q), | fllLr < 1}.

Using f:=(Kq(-,2)/~/Ka(@)/IKa(-,2)/~/Ka(2)|lLr) as a candidate, we conclude from estimate
(1-1):

Corollary 1.4. Let Q@ C C" be a bounded domain with a(2) > 0. For every p <2+ 2a(2)/(2n —a(£2)),
Ka.p(2) = Copv/Ka(2)|p(z)|P=20/ ),

Remark. If Q2 is a bounded pseudoconvex domain with C 2—boundary, then Kq(z) > C8(z)~2 in view of
the Ohsawa—Takegoshi extension theorem [1987]. On the other hand, Hopf’s lemma implies |o| > C$.
Thus,

KQ,p(Z) > Ca,p(g(z)—(l—(P—ﬂﬂ/(Pa)) |1Og3(z)|—(l7—2)n/(170l)

as z — 0€2. Notice also that (p —2)n/(pa) < % if and only if p <2+ 2a(2)/(2n — a(2)).

We would like to mention an interesting connection between the problem on page 1430 and the
regularity problem of biholomorphic maps. The starting point is the following:
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Theorem 1.5 [Lempert 1986, Theorem 6.2]. Let Q) C C" be a bounded domain with C 2—boundary
such that its Bergman projection Pq, maps Cg°(21) into LP(S2y) for some p > 2. Let Q; C C" be a
bounded domain with real-analytic boundary. Then any biholomorphic map F : Qy — 2, extends to a

Holder-continuous map Q- Q.

Notice that if € is a domain with [,|Kq(-, w)|? locally uniformly bounded in w for some p > 1,
then for any ¢ € C3°(R2),

|P9<¢)<z>|p5f Ko, D17 1610, 1/p+1/a=1,
{esupp ¢
so that

/Q|PQ(¢)(Z)|p§ ”¢”€q(Q)/ fQIKQ(Z,§)I”<00, (1-2)

{esupp ¢
i.e., Po maps C3°(2) into L7(2). Thus, we have:

Corollary 1.6. Let 21 C C" be a bounded domain with C 2—bomwlary such that the integral fQ |[Kq(-, w)|P
is locally uniformly bounded in w for some p > 2. Let Q2 C C" be a bounded domain with real-analytic
boundary. Then any biholomorphic map F : Q1 — Q0 extends to a Holder-continuous map Q — Q».

In particular, it follows from Corollary 1.6 and Theorem 1.1 that any biholomorphic map between a
bounded pseudoconvex domain with C?-boundary and a bounded domain with real-analytic boundary
extends to a Holder-continuous map between their closures, which was first proved in [Diederich and
Fornaess 1979]. On the other hand, Barrett [1984] constructed a nonpseudoconvex bounded smooth
domain Q C C? such that Pq fails to map C;°(£2) into L?(L2) for any p > 2 so that fﬂlKQ( -, w)|” can
not be locally uniformly bounded in w. However, it is still expected that if €2 is a bounded domain with
real-analytic boundary then there exists p > 2 such that f ol Ka (-, w)|” is locally uniformly bounded in w.

With the help of an elegant technique due to Btocki [2005] (see also [Herbort 2000] for prior related
techniques) on estimating the pluricomplex Green function, we may prove the following:

Theorem 1.7. Let 2 C C" be a bounded domain with o« (2) > 0. For every 0 < r < 1, there exists a
constant C > 0 such that

 KaG w)P? (@ v Y _
Bal W)= Kaw) = C(mm{um)’ e })  Bwes (-9

where . := |o|/(1 + |log|ol|) and v := |o|(1 + [log|e|])".

We call Bg(z, w) the normalized Bergman kernel of €2. There is a long list of papers about pointwise
estimates of the weighted normalized Bergman kernel Bg (2, w) := |Kq o(z, w) |2/(KQ’¢(Z)KQ’¢(LU))
when 2 is C" or a compact algebraic manifold, after a seminal paper of Christ [1991] (see [Delin 1998;
Lindholm 2001; Ma and Marinescu 2007; Christ 2013; Zelditch 2016], etc.). Quantitative measurements
of positivity of idd¢ play a crucial role in these works.

The basic difference between B (z, w) and B ,(z, w) is that the former is always a biholomorphic
invariant. Skwarczynski [1980] showed that

ds(z, w) := (1 —y/Boz, w)) '
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gives an invariant distance on a bounded domain 2. The relationship between ds and the Bergman
distance dp is
dp(z, w) = V2ds(z, w) (1-4)

(see, e.g., [Jarnicki and Pflug 1993, Corollary 6.4.7]). By Theorem 1.7 and (1-4), we may prove the
following:

Corollary 1.8. If Q2 is a bounded domain with o (2) > 0, then for fixed zo € 2, there exists a constant

C > 0 such that
llog 8(2)|

dp(z0,2) =2 C——F———F—,
5(z0.2) log|log 8(z2)]

(1-5)

provided z sufficiently close to 02.

Btocki [2005] first proved (1-5) for any bounded domain which admits a continuous negative psh
function p with C16% < —p < C»8% for some constants Ci, Cp, a > 0 (e.g., 2 is a pseudoconvex domain
with Lipschitz boundary [Harrington 2008]). Diederich and Ohsawa [1995] proved earlier that the weaker
inequality

dp(z0. 2) = C log|log 5(2)|

holds for more general bounded domains admitting a continuous negative psh function p with C;8'/% <
—p < (6% for some constants Cy, C, o > 0.

In order to study isometric embedding of Kéhler manifolds, Calabi [1953] introduced the notion
“diastasis”. Marcel Berger [1996] wrote, “It seems to me that the notion of diastasis should make a
comeback [...]. For example, it would be interesting to compare the diastasis with the various types of
Kobayashi metrics (when they exist).”

Notice that the diastasis Dg(z, w) with respect to the Bergman metric is — log B (z, w).

Corollary 1.9. If Q2 is a bounded domain with o (2) > 0, then for fixed zo € 2, there exists a constant
C > 0 such that

Dp(z0,z) = Cdk (20, 2), (1-6)
where di denotes the Kobayashi distance.

Problem. Does one have dg(zg, z) = Cdk (20, z) for bounded domains with «(€2) > 0?

A domain Q C C" is called weighted circular if there exists an n-tuple (ay, ..., a,) of positive numbers
such that z € Q implies (e!“%z;, ..., e!%%z,) € Q for any 6 € R. As a final consequence of Theorem 1.7,
we obtain:

Corollary 1.10. Let ) C C" be a bounded domain with a(€21) > 0. Let Q, C C" be a bounded weighted
circular domain which contains the origin. Let 0 < o < a(€21) be given. Then for any biholomorphic map
F : Qi — Q», there is a constant C > 0 such that

8(F(2)) < C81 ()™, zeQ. (1-7)

Here 81 and 6, denote the boundary distances of 21 and Q2,, respectively.
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Remark. Inequalities like (1-7) are crucial in the study of the regularity problem of biholomorphic maps
(see, e.g., [Diederich and Fornaess 1979; Lempert 1986]).

2. L? boundary decay estimates of the Bergman kernel

Proposition 2.1. Let Q@ C C" be a pseudoconvex domain. Let p be a negative continuous psh function
on 2. Set
Q={zeQ:—p)>t}), t>0.

Let a > 0 be given. For every 0 <r < 1, there exist constants &,, C, > 0 such that
/ |Ka(-. w)|> < C,Kg, (w)(e/a)’ (2-1
—p<e

forall w e Q, and ¢ < g,a.

The proof of the proposition is essentially the same as for Proposition 6.1 in [Chen 2016]. For the sake
of completeness, we include a proof here. The key ingredient is the following weighted estimate of the
L?-minimal solution of the d-equation due to Berndtsson.

Theorem 2.2 [Chen 2016, Corollary 2.3]. Let Q be a bounded pseudoconvex domain in C" and ¢ €
PSH(R2). Let  be a continuous psh function on Q which satisfies riddy > idy A 3V as currents
for some 0 < r < 1. Suppose v is a d-closed (0, 1)-form on Q such that fglvlze_w < 00. Then the
L%(Q, ¢)-minimal solution of du = v satisfies

1
2,—v—¢ 2 V-9 _
/Q|u| eV < 1_rf9|v|,.aawe : (2-2)

Here |v |i28 n should be understood as the infimum of nonnegative locally bounded functions H satisfying
iv Av < Hiddy as currents.

Proof of Proposition 2.1. Assume first that €2 is bounded. Let k¥ : R — [0, 1] be a smooth cut-off function
such that k|(—oo,11 = 1, k|[3/2,00) = 0 and |«’| < 2. We then have

f |KQ<-,w>|2s/K<—p/s>|1<g(-,w>|2.
—p<e

Q

By the well-known property of the Bergman projection, we obtain
| k=p/eKal w)- Ral o0 = k(-p(@)/e)Kale, w) ~u(0). ¢ €2,
Q

where u is the L?(£2)-minimal solution of the equation

ou =0(k(—p/e)Ka(-, w)) =:v.

Since xk (—p(w)/e) = 0 provided %8 <a (ie., € <2a/3),

f Ka(-, w)|* < —u(w). (2-3)
—p=<e
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Set
Y =—rlog(—p), O<r<l.

Clearly, v is psh and satisfies riddv > idy A Y so that
iv Av < Cor k' (=p/e)P|Ka(-, w)[*iddy

for some numerical constant Cy > 0. Thus, by Theorem 2.2,

/|u|2e—¢ < c,/ IKa(-, w)|?e™V
Q e<—p=(3/2)e

< c,s’/ Ko (-, w)%.
-p=(3/2)e

Since e=¥ > a” on Q, and u is holomorphic there, it follows that
()P = Ko, @) [ P
Qq

< Ko, (w)a™" / uPe
Q

< € Ke, (w)(e/a)’ f Ka(-, w2,
—p=(3/2)e
Thus, by (2-3),

/ |Ka(-, w)|* < C,Kq,(w)?(e/a)"? ( /
—p=e

—-p=(3/2)e

1/2
|KQ(-,w>|2> :
Notice that
/ |KQ<-,w)|2s/|KQ<.,w>|2=KQ(w)sKga<w>
—p=(3/2)e Q

provided %8 <a. Thus,

f Ko (-, w)* < C,Kg,w)(e/a)"?.
—p=e
Replacing ¢ by %6‘ in the argument above, we obtain
/ |Ka(-, w)? < C;Kq,w)(3/2)*(e/a)/

—p=(3/2)e

provided (%)28 < a. Thus, we may improve the upper bound by
| IKaC w) = ¢ Ko )erar
—p=e

By induction, we conclude that, for every k € Z7,

k
/ |Ka(-, w)|*> < CriKa, (w)(e/a) >4t/
—p=e
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provided (%)ke <a. Since r/24+r/4+---4+r/2¥ = 1 ask — oo and r — 1, we get the desired estimate
under the assumption that €2 is bounded.

In general, 2 may be exhausted by an increasing sequence {€2;} of bounded pseudoconvex domains.
From the argument above, we know that

/ Ko, (- w)? < C,Ka,n0, (w)(e/a)’
Q;N{—p=e}

holds for all j > 1. Since 2; 1 €2, it is well-known that K, (-, w) = Kq(-, w) locally uniformly in €2
and K o;ne, (w) > Kq, (w). It follows from Fatou’s lemma that

—P=E I=o0 Ja;n{—p=e}

< C,Kg, (w)(e/a) . O

Remark. One of the referees kindly suggested an alternative proof as follows. Berndtsson and Charpentier
[2000] showed that, if [,| f|*|o|™" < oo for some 0 < r < 1, then

/lPsz(f)|2|,0|_r§Cr/IfIZI,OI_r < o0
Q Q

where Po(f)(z) := fQ Kq(z, -) f(-) is the Bergman projection. If one applies f = xq,Kq, (-, w) where
xg, denotes the characteristic function on €2,, then Kq(z, w) = Pq(f)(z) and

/ Ka(-,w)2lpl ™" < c,/ Ko, (- w)Plol "
Q Q4

from which the estimate (2-1) immediately follows.

Let o be the relative extremal function of a (fixed) closed ball B C Q. We have:
Proposition 2.3. Let Q@ C C" be a bounded domain with a(2) > 0. For every 0 < r < 1, there exist
constants &,, C, > 0 such that

/ [Ka(-, w)*/Ka(w) < Cr(e/pu(w))” (2-4)
—ose

forall & < &,pu(w), where = |o|(1+ [loglo|)~".

In order to prove this proposition, we need an elementary estimate of the pluricomplex Green function.
Recall that the pluricomplex Green function gg(z, w) of a domain 2 C C” is defined as

gal(z, w) =sup{u(z) : u e PSH™ (), u(z) <log|z — w|+ O(1) near w}.

We first show the following quasi-Holder-continuity of .

Lemma 2.4. Let 2 C C" be a bounded domain with «(2) > 0. Foreveryr > 1 and 0 < o < a(S2), there
exists a constant C > 0 such that

0(z2) >ro(z1) —Clzi —22|%, z1,22€ Q. (2-5)
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Proof. Choose p € C(2) NPSH™ (2) with —p < C,6¢. Clearly

p(2)
infg|p|

o0(z) > > —Cyb%.

To get (2-5), we employ a well-known technique of Walsh [1968] as follows. Set ¢ := |z; — 22|,
Q' :=Q— (21 —22) and

0(z) if 7€ Q\ X,

u(z) = i
@ {max{g(z),rg(z+zl—12)—C8"‘} ifze QNQ'.

We claim that u € PSH™(2) provided C > 1. Indeed, if z € QN 32/, then §(z) < ¢ so that

Q(Z) > _Ca(s(z)a = _Caga = rQ(Z +21—22) — Cozga-

Moreover, if ¢ < g < 1, then o(z +z; —22) < —1/r for z € B since © is continuous on Q. Thus,
ulg < —1. Since z = z1 — (21 — z2) € N/, it follows that

0(z2) > u(z2) 2 ro(z1) — Cog”.
If ¢ = |z1 — z2| > &, then (2-5) trivially holds. H

Remark. It is not known whether o is Holder-continuous on Q. The answer is positive if n = 1 [Carleson
and Gamelin 1993, p. 138].

Proposition 2.5. Let Q@ C C" be a bounded domain with a(S2) > 0. There exists a constant C >> 1 such that
{ga(- w) < -1} Clo<—C'luw)}, weQ. (2-6)

Proof. Fix 0 < a < a(£2). We have —p < C,8% for some constant C, > 0. Clearly, it suffices to consider
the case when |o(w)| < % Applying Lemma 2.4 with r = % we see that if 0(z) = o(w)/2 then

Cilz—w|* > 30(z) — o(w) = —Jo(w)

so that

log |z —w|

1
> EIOgIQ(w)I/(4C1) —log R = C> log|o(w)|

for some constant C, > 1. It follows that

log|z —w|/R if 0(z) <0o(w)/2,

V= {max{loglz —wl|/R, 2C2(o(w) " loglo(w))e(2)}  otherwise

is a well-defined negative psh function on 2 with a logarithmic pole at w, and if o(z) > o(w)/2, then

ga(z, w) > ¥(2) > 2C2(o(w) ' loglo(w)e(z). (2-7)
Thus,
{ga(-,w) < —1}N{o > o0(w)/2} C{o < —C'n(w)}

provided C >> 1. Since {0 < o(w)/2} C {o < —C'u(w)} if C > 1, we conclude the proof. [l
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Proof of Proposition 2.3. Set Ay, = {gq(-, w) < —1}. It is known from [Herbort 1999] or [Chen 1999]
that

Ky, (w) = CyKo(w). (2-8)
By Proposition 2.5,
Aw C Qa(w) = {Q < _a(w)} (2'9)

where a(w) := C~'u(w) with C > 1. If we choose p = ¢ in Proposition 2.1, it follows that, for every
e < gra(w),

/ |Ko(-, w)* < CrKa,,, (w)(e/a(w))’
—o=<e

< CprKo(w)(e/a(w))" (2-10)
in view of (2-8) and (2-9). U

3. LP-integrability of the Bergman kernel

Proof of Theorem 1.1. Without loss of generality, we may assume «(2) > 0. For every 0 < a < a(2),
we may choose p € PSH™ (£2) such that
—p= Coz8a

for some constant C, > 0. Let S be a compact set in €2, and let w € S. By virtue of Proposition 2.1, we
conclude that, for every 0 < r < 1,

[ iKat.wpscs
—p<e
where C = C(n,r,«, S) > 0. Since {§ <¢e} C {—p < Cye®}, it follows that
f |Ka(-, w)|* < Ce"™.
§<e
Since |8(¢) —6(2)| < |¢—z|, we have B(z, 6(z)) C {6 <25(z)}. By the mean value inequality, we get
|Ka(z, w)|* < Cyd(z) ™" / |Ka(-, w)|> < C8(2) " 3-1)

8=<258(2)

Thus, for every 7 > 0,

o
/|KQ(-,w)|2+’=f |KQ(-,w)|2+f+Z/ |Ka(-, )T
Q 5§>1/2 k=] Y27k <s<2k

o
< C2n‘[ / |KQ( ., w)|2 + C Zz(k-i—])‘[(n—rol/?.) /
Q

2
k|KQ( ) w)l
k=1 §<2~

00
<C+ C2r(n—ra/2) Z 2—k(ra+r(roz/2—n))
k=1
<X
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provided t < 2ra/(2n — ror). Since r and o can be arbitrarily close to 1 and «(£2), respectively, we
conclude the proof of the first statement.
Since {§ < e} C {—o < C,e”}, it follows from Proposition 2.3 that

/6 Ka(- w2/ Ka(w) < Car (% /m(w))’ (3-2)

provided */u(w) < ¢, < 1. For every z € Q,

|Ka(z, w)|*/Kq(w) < Ko(z) < C,8(2) ", (3-3)
and if (26(2))* < & u(w),

|Kg<z,w)|zscn6<z>2"/ |Ka(-, w)|
8<26(z)

< CyrKow)pu(w)™"8(2)* 2" (3-4)

For every t < 2ra/(2n — ra), we conclude from (3-3) that

/ |Ko(-, w)[**T < cnKQ(w)’ﬂ/ Ko (-, w)>87""
28> (er pu(w)) /e 28> (g, pu(w)) /e
Ksz(w)r/2
<Cari /| Ko, w)P?
Ko (w)!+7/2
fca,r%. (3-5)

Now choose k,, € Z* such that (g, u(w))"/% € (2=k»=1 2=kw] (it suffices to consider the case when u(w)
is sufficiently small). We then have

o0
/ KaCowPr =Y [ Ka(, w)*
28 < (& p(w)) /e ke, 2—k=lo§<—k

K &
< Gy RO Zz’"(" ref? / [Ka(-,w)*  (by (3-4))

p(w)Tr/? 5<2k
KQ(w)l-i-f/Z 0 B
<Cu., (w)r(1+r/2) Z k(ra+t(ro/2—n)) (by (3_2))
KQ(w)H_T/z (w)(rot+r(ra/2—n))/a
= Tent M(w)r(H—r/Z)
K (w)l+r/2
S Ca,r,rg—'
)
(3-6)
By (3-5) and (3-6), (1-1) immediately follows. U

Proof of Theorem 1.2. 1t suffices to use the following lemma instead of (3-1) in the proof of the first
statement in Theorem 1.1. ]
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Lemma 3.1. Let 2 be a domain in C. For every compact set S C Q and a < «(S2), there exists a constant
C > 0 such that

|Ko(z, w)| < C8()*!, zeQ, wes.

Proof. Let gq(z, w) be the (negative) Green function on 2. Let A(c, r) be the disc with center ¢ and
radius r. Fix w € § and z € 2 for a moment. Clearly, it suffices to consider the case when §(z) < é(w)/4.
Since gq (&, ¢) is harmonic in & € A(z, 6(z)) and ¢ € A(w, 6(w)/2), respectively, we conclude from
Poisson’s formula that

1 2 2 ) .
gﬂ(g,f)=m f gg(z—l—%r?(z)ele,w—{—%é(w)e”?)
o Jo
1@ 6=z 8w’ —c-wl
|38(2)e’® — (=2)|" |38 (w)el? — (¢ —w)]
where £ € A(z,8(z)/4) and ¢ € A(w, 6(w)/4). By the extremal property of gg, it is easy to verify that
—ga < C8(2)* on 0A(z,58(2)/2) x 0A(w, §(w)/2). Thus,

°ga(€, ¢)
98 a¢

de do

<C8()* .

2
Using the formula K (&, ¢) = 2% from [Schiffer 1946], the assertion immediately follows. []
bid

In order to prove Proposition 1.3, we need the following:
Theorem 3.2 [Carleson 1967, §6, Theorem 1]. Let Q = C\ E where E C C is a compact set. Then
(1) A%2(Q) # {0} if and only if Cap(E) > 0, and
(2) AP(Q)={0}if Ar_4(E)<00,2<p<ooandl/p+1/q=1. Here A;(E) denotes the s-dimensional
Hausdorff measure of E.
Remark. Let Q C C be a domain and E a closed polar set in €2. It is well-known that E is removable for
negative harmonic functions so that go\ £ (z, w) =gq(z, w) forz, w € Q\E. Thus, Ko\ (z, w) =Kq(z, w)

in view of Schiffer’s formula. By the reproducing property of the Bergman kernel, we immediately get
the known fact that A%(Q\ E) = A%(Q).

Proof of Proposition 1.3. Suppose on the contrary §(2) > 2 +dimg (E)/(1 —dimg (E)). Fix

dimpy (E)

Q 24+ ————,
PO > p > 2 T i (B

and let g be the conjugate exponent of p,i.e., 1/p+1/g=1. We then have Kq(-, w) € AP(2) for fixed w.

Since
dimy (E) = sup{s : A;(E) = oo}

and 2 — g > dimy (E), it follows that A,_,(E) < 00 so that Kq(-, w) =0 in view of Theorem 3.2(2).
On the other hand, Cap(E) > 0, so Kq(-, w) # 0 in view of Theorem 3.2(1), which is absurd. [l
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Theorem 1.2 implies B(2) — oo as «(€2) — 1 for planar domains (notice that ¢ (2) =1 when Q C C
is convex or 92 is C!). It is also known that () = oo if € is a bounded smooth convex domain in C”
[Boas and Straube 1991]. Thus, it is reasonable to make the following:

Conjecture 3.3. If Q C C" is convex, then B(2) = oo.

4. Applications of L?-integrability of the Bergman kernel
We first study density of A?(Q) N A%(Q) in A%(RQ).

Proposition 4.1. Let Q be a pseudoconvex domain in C". For every 1 < p <2+ 2a(2)/(2n — a(2)),
AP(Q) N A%(Q) lies dense in A*(Q).

Proof. Choose a sequence of functions x; € C3°(£2) such that 0 < x; < 1 and the sequence of sets
{x; = 1} exhausts 2. Given f € A%(Q), we set fi=Pa(x;f). Clearly, f; € AP () N A%(S) in view of
Theorem 1.1 and (1-2). Moreover,

||fj - f||L2(S2) = ||PSZ((Xj - 1)f)||L2(sz) = ||(Xj - 1)f||L2(Q) — 0. U
Similarly, we may prove the following:

Proposition 4.2. Let Q be a domain in C. Forevery 1 < p <2+ a(Q)/(1 —a(R)), AP(Q) N A%(RQ) lies
dense in A%(Q).

Next we study the reproducing property of the Bergman kernel in A”(£2).

Proposition 4.3. Let Q be a bounded domain in C with «(2) > 0. If p > 2 — a(RQ), then f = Pq(f) for
all f € AP(Q).

Proof. Suppose f € AP(2) with p > 2 — a(Q2). Let g be the conjugate exponent of p. Since g <
24+ a(2)/(1 —a(2)), the integral fQ f(-)Kgq(z, ) is well-defined in view of Theorem 1.2. Clearly,
it suffices to consider the case p < 2. By Theorem 1 of [Hedberg 1972], we may find a sequence
fi€ 0(Q) C A%2(Q) C AP(Q) such that I fi — fllLr@ — O. It follows that, for every z € €2,

f@) = lim fi@ = tim [ fi()Ka )= [ FCKaG.)
]— 00 J7>0JQ Q
since Kq(z,-) € L1(2). O
For a bounded domain Q C C", the Berezin transform Tg of 2 is defined as

|Ka(-,2)?
Kq(2)

Clearly, one has f = Tq(f) for all f € A®(RQ).

TQ(f)(Z)Z/S;f(') . ZEQ, fELT(Q).

Corollary 4.4. Let Q be a bounded domain in C with a(2) > 0. If p > 2/a(2) — 1, then f = Tq(f) for
all f € AP(Q).
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Proof. Set p’ =2p/(p+ 1). It follows from Holder’s inequality that

2—p' p
/|fl<g(-,z)|f”s (/|f|”’/<2‘1”>> (/mg(.,z)w’/(p’—n)
Q Q Q
2-p L p'—1
</|f|l’) (/IKQ(-,Z)IP/(”_U)
Q Q

< 0

'—1

since p' >2—a(Q)and p'/(p'—1) <2+ a(R)/(1 —a(R)). Thus, h:= fKq(-,z)/Ka(z) € AI’/(Q)
for fixed z €  so that

|Ka(-, 2))?

f@)=h(z) /Q ()Kal(z, ) /Qf() Ko@)

For higher-dimensional cases, we can only prove the following:

Proposition 4.5. Let Q2 be a bounded pseudoconvex domain in C". Suppose there exists a negative psh
exhaustion function p on Q such that, for suitable constants C, o > 0,

lp(z) —p(w)| < Clz—wl|*, z,weQ.
For every p > 4n/(2n+ ), one has f = Pq(f) forall f € AP(Q2).

Proof. Set Q; ={—p >1t},t >0, and p; := p +1t. For every z € €, we choose z* € 92, such that
|z —z*| = 68;(z) :=d(z, 982;). We then have

Lot = 1p:(2) — pr (27)] < Clz — 2 |* = C8, ()"
where C is a constant independent of ¢. By a similar argument as the proof of Theorem 1.1, we may show
that, for fixed w € €,

|KQt('7 w)lq =< C :C(q’ 'U.)) <0
Q2

holds uniformly in t < 1 for every ¢ <2+420/(2n — ). Let2 > p > 4n/(2n+ ) and f € AP(2). Fix
z € Q for a moment. For every t < 1, we have z € ©; and

f@)= o f()Ke (2, ). (4-1)

Notice that

/f(-)sz,-)—f f(-)KQ,<z,->‘
Q Q;

5/ IfIIKsz(Z,')—KQ,(Z,-)I-i-/ | flIKa(z, )l
Q o\

< fller@llKa(z, -) — Ko, (z, )i,y + 1 fller@enllKa(z, )l (4-2)
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where 1/p+1/g =1 (which implies ¢ <2+2a/(2n —a)). Take 0 <y < 1sothat (g —y)/(1—y/2) <
24 2a/(2n —a). We then have

/ |KQ(Z7')_KQI(Z7')|q
2,

= | |Ka(z,") —Kg,(z, )I"Ka(z, ) — Ko, (z, )T
Q

5 v/2 | 5 1—-y/2
s(f IKQ(z,-)—KQ,(z,-)I) (f |Ka(z, ) — Kg, (z, )|« 7/=r/ >)
Q @,

in view of Holder’s inequality. Since

fQ|KQ(z,->—KQ,<z,->|2=/Q|Kg<z,-)|2+/Q|KQ,<z,->|2—2Re/ Ka(z )Ke (- 2)

Q
< Kgq,(2) — Kq(z)

-0 (t—>0
and

/ |Ka(z, ) — Kgq,(z, .)|(q—y)/(1—y/2)
Q

< 2@=r)/a=y/2) (/ |Ka(z, )@= /A=r/2) 4
Q
=<C,
it follows from (4-1) and (4-2) that f = Pqo(f). [l

Ko (z, ,)|(q—V)/(1—)’/2))
Q

Similarly, we have:

Corollary 4.6. If p > 2n/a, then f = Tq(f) forall f € AP ().

5. Estimate of the pluricomplex Green function

The goal of this section is to show the following:

Proposition 5.1. Let Q C C" be a bounded domain with a(2) > 0. There exists a constant C >> 1 such that
{ga(-,w) < -1} C{o>—-Cv(w)}, weQ, (5-1

where v = |o|(1 + |log|o|])".

We will follow the argument of Btocki [2005] with necessary modifications. The key observation is
the following:

Lemma 5.2 [Blocki 2005]. Let Q C C" be a bounded hyperconvex domain. Suppose ¢ and w are two
points in Q such that the closed balls B(¢, €), B(w, &) C C" and B(¢, &) N\ B(w, €) = @. Then there
exists € B(¢, €) such that

lga(C, w)|" <n!(ogR/e)" ga(w, ¢)| (5-2)
where R := diam(£2).
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For the sake of completeness, we include a proof here, which relies heavily on the following fundamental
results.

Theorem 5.3 [Demailly 1987]. Let Q be a bounded hyperconvex domain in C".
(1) Forevery w € Q, one has (dd°gq(-, w))" = 2m)" 8y, where §,, denotes the Dirac measure at w.
(2) Forevery ¢ € Q and n > 0, one has fQ(ddC max{ga(-,¢), —nP)"* = Q2x)".

Theorem 5.4 ([Btocki 1993]; see also [Btocki 2002]). Let Q2 be a bounded domain in C"*. Assume that
u, v € PSH™ N L () are nonpositive psh functions such that u = 0 on 0. Then

[ @@y <ol [ oi@acor. (5-3)
Q Q
Proof of Lemma 5.2. Let n =log R/e. Since gq(z, £) > log|z — ¢|/R, it follows that

First applying Theorem 5.4 with u = max{gq(-, w), —t} and v = max{gq(-, {), —n} and then letting
t — +00, we obtain

fglgsz( -, w)|"(dd® max{ga(-, ), —n})" <n! 2n)"n"|ga(w, )

in view of Theorem 5.3(1). Since E(;, e)NB(w, ¢) = @, it follows that ga (-, w) is continuous on E(g, g)
so that there exists £ € B(¢, €) such that

lga (¢, w)| = min |ga(-, w)|.
B(¢,¢)

Since the measure (dd° max{gq(-, ¢), —n})" is supported on {ga (-, {) = —n} with total mass (27)",
we immediately get (5-2). ]

Proof of Proposition 5.1. Clearly, it suffices to consider the case when w is sufficiently close to 9€2.
Fix ¢ € Q with 0(¢) < 2p(w) for a moment. Set ¢ := |Q(w)|2/“. Since ¢ < Ci/“é(w)z, we see that
B(w,&) C Q provided §(w) < &, < 1. For every z € Q with §(z) < &, we have

lo(2)| < Cad(2)* < Coe® = Colo)* (< lo(w)]/2) (5-4)
provided §(w) < g4 < 1. It follows from (2-7) and (5-4) that for every T > 0 there exists &; < &, such

that
suplga(-, w)| <t (5-5)

8<e
provided §(w) < &;. Since
Cad(§)* = —0(8) = —20(w) =26/
and Lemma 2.4 yields
Cilg—w|* = Jo(w) —0(¢) = —30(w) = 36/2,
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it follows that if §(w) < &; < 1 then B(¢, &) C Q and
B(,e)NB(w, &) =@.

By Lemma 5.2, there exists E € B(¢, ¢) such that (5-2) holds.
Now set
W (z) :=sup{u(z) : u € PSH™ (), ulgq, ) < -1}k

‘We claim that

ga(z, w) >logR/eV(z), z€Q\B(w,e), gal(z, w) <logd(w)/eW¥(z), z€Q.

To see this, first notice that

|z — w] |z —w]

1 < ,w) <1 , Q.
g % < ga(z, w) <log 5(w) Z €
Since
@ log|lz —w|/R if z € B(w, ¢),
u =
¢ max{log|z — w|/R,log R/eWV(z)} ifzeQ\B(w,e¢)

is a negative psh function on €2 with a logarithmic pole at w, it follows that
ga(z,w) >logR/eV(z), z€Q\B(w,se).

Since (5-8) implies go( -, w)lg(w’s) <loge/s(w), we have

vz s S2&w
logé(w)/e
By (5-5) and (5-7), we obtain
T
sup|¥| < ——.
Pl = Togs e
Set Q=Q— (7 —¢) and
W(z) ifz€Q\Q,

v(z) = {max{\lf(z), ‘IJ(Z‘FE —¢)—1t/(logd(w)/e)} ifze Qﬂﬁ.

Since QNI C {8 < &}, it follows from (5-9) that v € PSH™ (£2). Since
log|z —w|/3(w)

1445

(5-6)

(5-7)

(5-8)

(5-9)

U(z) < , Q\ B(w, ¢),
() < log R /e 7€ Q\ B(w,e)
in view of (5-8) and (5-7), and z +g: —¢ € B(w,2¢) if z € B(w, ¢), it follows from the maximal principle
that
log6(w)/(2¢)
VBwe =~ o/
logR/e
Thus,
~ T logé(w)/(2¢)
V@)= =v(@) = ———— V().

logd(w)/e — logR/e
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Combining with (5-6) and (5-7), we obtain

(log R/e)?

w) > log () e -Tog 3(w)/(2%) (gaC, w)—1) = C3(8a(C, w) — 1)

gal(¢,

since §(w) > |o(w)/Cy|/® = \/g/Co’®. If we choose T = 1/(2C3), then

ga(t, w) = —C3(n)/"(log R/e)' /" |ga(w, O)'/" — 1 (by (5-2))
1_1/n|Q(w)10g|Q(§)||l/n
lo(¢)|V/n
lo(w)|"/"|loglo(w)]
-C —
2T T o
since 0(¢) < 2o(w). Thus,

> —Cylloglo(w)]] — 1 (by 2-7)

1/n

I —

{ga(-,w) < =1}N{o <20(w)} C {0 > —Cv(w)}

provided C > 1. Since {0 > 2o0(w)} C {0 > —Cv(w)} if C > 1, we conclude the proof.

6. Pointwise estimate of the normalized Bergman kernel and applications

Proof of Theorem 1.7. By Proposition 2.3, we know that for every 0 < r < 1 there exist constants

&r, C, > 0 such that
/ Ka(-, w2/ Kow) < Cr(s/u(w)y’
—o<e

for all ¢ < &, u(w). Fix z € Q with b(z) := Cv(z) < &, u(w) for a moment, where C is the constant in

(5-1). Let x : R — [0, 1] be a smooth function satisfying x[(,c0) = 0 and x |(—oo,—10g2) = 1. We proceed
with the proof in a similar way as [Chen 1999]. Notice that go( -, z) is a continuous negative psh function

on 2\ {z} which satisfies

—iddlog(—ga(-,2)) =idlog(—ga(-,2)) Adlog(—gal-,2))

as currents. By virtue of the Donnelly—Fefferman estimate [1983] (see also [Berndtsson and Charpentier

2000]), there exists a solution of the equation

ou=Kq(-,w)dyx(—log(—ga(-,2)))

such that

2 —2ngq(-,2) . 219 (__ _ . 2 —2nga(-,z2)
[ ue < Co [ 1KaC P13 (= 10880+ NP 1o o€

scn/ Ka(-, )P (by (5-1)
0>—b(2)

< CprKow)(w(z)/pm(w))".
Set

fi=Ka(-, w)x(=log(—ga(-,2)) —u.
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Clearly, we have f € 0(€2). Since gq(¢, z) = log|¢—z| + O(1) as { — z and u is holomorphic in a
neighborhood of z, it follows that u(z) =0, i.e., f(z) = Kq(z, w). Moreover,

/|f|2§2/ |I<Q(-,w>|2+2f|u|2
Q 0>—b(z) Q

= CorKa(w)(v(z)/n(w))”

since ga( -, z) < 0. Thus, we get

| f@P - 11K, w)|?

Ko@) 2 >
1o~ " Ka(w)

(u(w)/v(2))",
and
Ba(z, w) < Cpr((2)/(w))".

If b(z) > &, u(w), then the inequality above trivially holds since |Kq(z, U))|2/(KQ(Z)KQ(U))) < 1. By
symmetry of B, the assertion immediately follows. (I

Remark. It would be interesting to get pointwise estimates for |Sq(z, w)|? /(Sq(2)Sq(w)), where Sg is
the Szegd kernel (compare to [Chen and Fu 2011]).

Proof of Corollary 1.8. Let z € Q2 be an arbitrarily fixed point which is sufficiently close to 2. By the
Hopf-Rinow theorem, there exists a Bergman geodesic y jointing zg to z, for dslzg is complete on 2. We
may choose a finite number of points {z;};., C y with the order

0>~ > > Zm 4%,

where
lo @it 1(1+ [loglo @)D" = lo(z)]
and
l0(@)I(1 + logle ()N > lo(zm)!.
Since

V(Zk41) _ lo(zk4+1)]
w(zk) lo(zi)l
- lo(zk+1)]
— ezl

= (1 + [loglo(zx+DID ™",

(1+[loglo(ze+)1D" (1 + logle(zi) 1)

(1+ lloglo(ze+) D" !

it follows from Theorem 1.7 that there exists kg € Z" such that Bo(zx, zx41) < zlt for all kK > ko. By (1-4),

dp(zk, zZk+1) = 1.

Notice that

|0(zk)| = lo(zrer D loglo e )"

< |lo(zky+2) 11loglo(ziky+2)11
<+ <lo(zm)lloglo(z,) || t+2),

2(n+2)
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Thus,
1 1
m— ko > const. llogle(zm)l| > const. |logle(2)|]
log|log|e(zm)l| log[log|o ()|
so that
m—1
dg(z,20) = Y dp(zi, sy1) =m—ko— 1
- 1
- congt gl
[log[loglo(2)]]]
[log §(z)|
> const.———————
log|log 8(2)|
since |9(z)| < Cyé* for any o < «(£2). O

Proof of Corollary 1.9. For every 0 < o < a(£2), we have —p < C,8%. Theorem 1.7 then yields

Dp(z0, 2) = allogé(2)]
as z — 0K2. Thus, it suffices to show

dk (2, 20) = Cllog(2)] (6-1)

as z — 9. To see this, let Fx be the Kobayashi—-Royden metric. Since Fk is decreasing under holomor-
phic mappings, we conclude that Fx (z; X) is dominated by the KR metric of the ball B(z, §(z)). Thus,
Fk(z; X) < C|X|/8(z), from which (6-1) immediately follows (compare to the proof of Proposition 7.3
in [Chen 2016]). O

In order to prove Corollary 1.10, we need the following elementary fact.
Lemma 6.1. If Q2 C C" is a bounded weighted circular domain which contains the origin, then Kq(z, 0) =
Kq(0) for any z € Q2.
Proof. For fixed 6 € R, we set Fy(z) := (€997, ..., em0z,). By the transform formula of the Bergman

kernel,
Kq(Fyp(2),0) = Kq(z,0), z€Q.

It follows that, for any n-tuple (my, ..., m,) of nonnegative integers,
gmitetmy KQ(Z, 0) B gt tm, KQ(Z 0)

ei(alml+"'+anmtt)9 —
8Zml . 8Z,r1n" 220 8Zml . azm” 0

forall 8 e R

am|+ “+mp KQ(Z 0)
so that W’Z -0

identity theorem of holomorphic functions yield Kq(z, 0) = Ko (0) for any z € 2. ([
Proof of Corollary 1.10. By Lemma 6.1,

B, (F(2),0) = Ka,(0)Kq,(F(2))™' = C716,(F(2))*".

=0 if not all m; are zero. Taylor’s expansion of Kq(z,0) at z =0 and the

On the other hand, Theorem 1.7 implies
Ba, (2, F1(0) < Cadi (2)°.
Since RBg, (F(z), 0) = Bg, (z, F~1(0)), we conclude the proof. U
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Appendix: Examples of domains with positive hyperconvexity indices

We start with the following almost trivial fact.

Proposition A.1. Let Q1 and 2, be two bounded domains in C" such that there exists a biholomorphic
map F : Q| — Q0 which extends to a Holder-continuous map Q= Q. If (822) > 0, then a(€21) > 0.

Proof. Let §; and 6, denote the boundary distances of £2; and €2,, respectively. Choose p, € PSH™NC(£2»)
such that —pp < C85 for some C, a > 0. Set p; := pro F. Clearly, py € PSH™ NC(L2;). For fixed z € 2,
we choose z* € 921 so that |z — z*| = 8;(z). Since F(z*) € 092,, it follows that

—p1(z) < C82(F (2))* = C(82(F (2)) — 82(F (z))*
<C|F(z) = F()|" < Clz— """
=< C81 (Z)ya’

where y is the order of Holder continuity of F on ;. (Il

Example. Let D C C be a bounded Jordan domain which admits a uniformly Hélder-continuous con-
formal map f onto the unit disc A (e.g., a quasidisc with a fractal boundary). Set F(zy,...,z,) :=
(f(z1)s ..., f(zy)). Clearly, F is a biholomorphic map between D" and A" which extends to a Holder-
continuous map between their closures. Let

Qyi={zeC":|z|" 4+ +|z,|" < 1},

where a; > 0. Clearly, we have «(£2;) > 0. By Proposition A.1, we conclude that the domain 2 :=
F~1(Q,) satisfies « (1) > 0. Notice that some parts of d; might be highly irregular.

A domain 2 C C" is called C-convex if Q2N L is a simply connected domain in L for every affine
complex line L. Clearly, every convex domain is C-convex.

Proposition A.2. If Q C C" is a bounded C-convex domain, then o (2) > %

Proof. Let w € 2 be an arbitrarily fixed point. Let w* be a point on 92 satisfying §(w) = |w — w*|.
Let L be the complex line determined by w and w*. Since every C-convex domain is linearly convex
[Hormander 1994, Theorem 4.6.8], it follows that there exists an affine complex hyperplane H C C" \ @
with w* € H. Since |w — w*| = §(w), H has to be orthogonal to L. Let 7 denote the natural projection
C" — L. Notice that 7 (€2) is a bounded simply connected domain in L in view of [Hormander 1994,
Proposition 4.6.7]. By Proposition 7.3 in [Chen 2016], there exists a negative continuous function py
on 77 (£2) with

/800N < —pr < (8L /8L.(ZON?,

where &; denotes the boundary distance of 7, (2) and Z(L) € my, (R2) satisfies 57 (z%) = SUpP,, (@) OL- Fix a
point z¥ € . We have
81(zp) = 8r.(wr(z%) = 8(2").
Set
04,(z) = sup{u(z) : u e PSH™(Q), u(z’) < —1}.
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Clearly, 0., € PSH™ (£2). Since 2 C JTL_l (1 (2)), it follows that 7} (pr) € PSH™ (2). Since 7} (81) (w) =
4(w) and
7o) @) = pr(wL(2”) < =L (mL () /8L(2]))7,

then
0 (W) > (8.(20) /81 (1 (2°)) 7} (o) (w)
> — (82918 (L (2%))?)8 (w)!/?
> —(R7?/8(z°)H8(w)'/2,
where R = diam(Q). Thus, «(Q) > 1. 0

Remark. After the first version of this paper was finished, the author was kindly informed by Nikolai
Nikolov that Proposition A.2 follows also from Proposition 3(ii) of [Nikolov and Trybuta 2015].

Complex dynamics also provides interesting examples of domains with «(€2) > 0. Letg(z) = Z?:o a jzj
be a complex polynomial of degree d > 2. Let ¢g” denote the n-iterates of ¢g. The attracting basin at co
of g is defined by

Fy:={z€C:q"(z) > 00 as n — oo},

which is a domain in C with g(Fs) = Fso. The Julia set of ¢ is defined by J := 9 Fx. It is known that J
is always uniformly perfect. Thus, o (F) > 0.
We say that g is hyperbolic if there exist constants C > 0 and y > 1 such that

iIJlf|(q”)/| >Cy" foralln>1.

Consider a holomorphic family {g,} of hyperbolic polynomials of constant degree d > 2 over the unit
disc A. Let Fé\o denote the attracting basin at co of ¢, and let J, := 8F§o. Let €2, denote the total space
of F2 over the disc A, :={z € C: |z] < r}, where 0 < r < 1, that is

Q ={(hw:reA, weFL).
Proposition A.3. For every 0 <r < 1, Q, is a bounded domain in C* with a(,) > 0.

Proof. We first show that €2, is a domain. Maiié, Sad and Sullivan [Mafié et al. 1983] showed that there
exists a family of maps { f)}rea such that

(1) fio:Jo— Jy is a homeomorphism for each A € A,

(2) fo=1d|y,

(3) f(A,z):= fi(z) is holomorphic on A for each z € Jy and

4) g, = faoqoo f)\_1 on J;, for each A € A.

In other words, properties (1)—(3) say that { f;},ca gives a holomorphic motion of Jy. By a result of
Slodkowski [1991], { f,.},ca may be extended to a holomorphic motion { f,\} aeA Of C such that

(a) fk :C—>Cisa quasiconformal map of dilatation < (1 + |A])/(1 — |A]), for each A € A,
(b) fi: F% — F’ is a homeomorphism for each A € A and

(©) f (A, 2) = fk (z) is jointly Holder-continuous in (X, z).
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It follows immediately that €2, is a domain in C" for each r < 1. Let §, and § denote the boundary
distances of F% and €, respectively. We claim that for every 0 < r < 1 there exists ¥ > 0 such that

S (w) < C8(h, w), reA,, weFL. (A-1)

To see this, choose (A, wy/) where w;s € Jy/, such that

SO w) =VIA— A2+ [w—wy 2.
Write w;, = f()J, z0) Where zg € Jy. Since fN(k, z0) € J,, it follows that
&) <lw— f, z0)| < lw—wy|+f, 20) = F (A, 20)]
<lw—wy|+Clx =21
<8, w)+Cs(\, w)”
<C'§(r, w)’,

where y is the order of Holder continuity of f on €,.
Recall that the Green function g, (w) := gz (w, 00) at 0o of F2 satisfies

g(w) = lim d"loglg!(w)|, we FL, (A-2)
n—oo

where the convergence is uniform on compact subsets of FZ [Ransford 1995, Corollary 6.5.4]. Actually
the proof of that result shows that the convergence is also uniform on compact subsets of €2;. Since
log|g (w)|is pshin (A, w), sois g(A, w) := g, (w). By (A-1) it suffices to verify that for every 0 <r < 1
there are positive constants C and « such that —g; (w) < C§, (w)* for each A € A, and w € Fgo This
can be verified similarly to the proof of Theorem 3.2 in [Carleson and Gamelin 1993]. ]

Conjecture A.4. Let D C C be a domain with a(D) > 0. Let { f3 },.ea be a holomorphic motion of D. Let
Q ={(A,w):Ae A, we fi(D))].

One has o (R2,) > 0 for each r < 1.
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STRUCTURE OF SETS WHICH ARE WELL APPROXIMATED
BY ZERO SETS OF HARMONIC POLYNOMIALS

MATTHEW BADGER, MAX ENGELSTEIN AND TATIANA TORO

The zero sets of harmonic polynomials play a crucial role in the study of the free boundary regularity
problem for harmonic measure. In order to understand the fine structure of these free boundaries, a
detailed study of the singular points of these zero sets is required. In this paper we study how “degree-k
points” sit inside zero sets of harmonic polynomials in R” of degree d (for alln > 2 and 1 <k < d) and
inside sets that admit arbitrarily good local approximations by zero sets of harmonic polynomials. We
obtain a general structure theorem for the latter type of sets, including sharp Hausdorff and Minkowski
dimension estimates on the singular set of degree-k points (k > 2) without proving uniqueness of blowups
or aid of PDE methods such as monotonicity formulas. In addition, we show that in the presence of a
certain topological separation condition, the sharp dimension estimates improve and depend on the parity
of k. An application is given to the two-phase free boundary regularity problem for harmonic measure
below the continuous threshold introduced by Kenig and Toro.
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1. Introduction

In this paper, we study the geometry of sets that admit arbitrarily good local approximations by zero sets
of harmonic polynomials. As our conditions are reminiscent of those introduced by Reifenberg [1960],
we often refer to these sets as Reifenberg-type sets which are well approximated by zero sets of harmonic
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polynomials. This class of sets plays a crucial role in the study of a two-phase free boundary problem for
harmonic measure with weak initial regularity, examined first by Kenig and Toro [2006] and subsequently
by Kenig, Preiss and Toro [Kenig et al. 2009], Badger [2011; 2013], Badger and Lewis [2015], and
Engelstein [2016]. Our results are partly motivated by several open questions about the structure and size
of the singular set in the free boundary, which we answer definitively below. In particular, we obtain sharp
bounds on the upper Minkowski and Hausdorff dimensions of the singular set, which depend on the degree
of blowups of the boundary. It is important to remark that this is one of those rare instances in which a
singular set of a nonvariational problem can be well understood. Often, in this type of question, the lack
of a monotonicity formula is a serious obstacle. A remarkable feature of the proof is that Lojasiewicz-type
inequalities for harmonic polynomials are used to establish a relationship between the terms in the Taylor
expansion of a harmonic polynomial at a given point in its zero set and the extent to which this zero set
can be approximated by the zero set of a lower-order harmonic polynomial (see Sections 3 and 4). In a
broader context, this paper also complements the recent investigations by Cheeger, Naber, and Valtorta
[Cheeger et al. 2015] and Naber and Valtorta [2014] into volume estimates for the critical sets of harmonic
functions and solutions to certain second-order elliptic operators with Lipschitz coefficients. Detailed
descriptions of these past works and new results appear below, after we introduce some requisite notation.

Foralln > 2 and d > 1, let H, 4 denote the collection of all zero sets X, of nonconstant harmonic
polynomials p : R" — R of degree at most d such that 0 € ¥, (i.e., p(0) = 0). For every nonempty
set A € R", location x € A, and scale r > 0, we introduce the bilateral approximation number @?:""’ (x, 1),
which, roughly speaking, records how well A looks like some zero set of a harmonic polynomial of
degree at most d in the open ball B(x,r) ={y e R": |y — x| < r}:

®?:"’d(x,r)=l inf max{ sup  dist(a,x+X,), sup dist(z,A)}e[O,l]. (1-1)
I's,eHna acANB(x,r) z€(x+2,)NB(x,r)

When @j:"’d (x,r) =0, the closure, A, of A coincides with the zero set of some harmonic polynomial of
degree at most d in B(x, r). At the other extreme, when @?Z”"’ (x,r) ~ 1, the set A stays “far away” in
B(x, r) from every zero set of a nonconstant harmonic polynomial of degree at most d containing x. We
observe that the approximation numbers are scale invariant in the sense that @;{X’d (Ax, Ar) = ®Z["‘d (x,r)
for all A > 0. A point x in a nonempty set A is called an H, 4 point of A if lim,_¢ @X”"’ (x,r)=0.
For all n > 2 and k > 1, let F, ; denote the collection of all zero sets of homogeneous harmonic

polynomials p : R" — R of degree k. We note that
Fok CHpa whenever 1 <k <d.

For every nonempty set A C R", x € A, and r > 0, the bilateral approximation number ®§"’k (x,r)1s
defined analogously to @ZL"“’ (x, r) except that the zero set X, in the infimum ranges over F, ; instead
of H, 4. A point x in a nonempty set A is called an F;, x point of A if lim,_,¢ ®Af’”‘ (x, r) =0. This means
that infinitesimally at x, A looks like the zero set of a homogeneous harmonic polynomial of degree k.
We say that a nonempty set A C R" is locally bilaterally well approximated by ‘H,, 4 if for all ¢ > 0 and
for all compact sets K € A there exists 7., x > 0 such that @:l”"’ (x,r)<eforallxe Kand 0 <r <r, k.
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If k=1, then H,; = F,,1 = G(n,n — 1) is the collection of codimension-1 hyperplanes through the
origin, and sets A that are locally bilaterally well approximated by H,, ; are also called Reifenberg flat
sets with vanishing constant or Reifenberg vanishing sets (e.g., see [David et al. 2001]). Our initial result
is the following structure theorem for sets that are locally bilaterally well approximated by H,, 4.

Theorem 1.1. Letn > 2 and d > 2. If A C R" is locally bilaterally well approximated by H,, 4, then we
can write A as a disjoint union,

A=AU---UA; (i#] = AiNA;=0),
with the following properties:
(1) Forall1 <k <d, we have x € Ay if and only if x is an F, y point of A.
(11) Forall 1 <k <d, the set Uy := A1 U---U Ay is relatively open in A.
(iii) Forall 1 <k <d, the set Uy is locally bilaterally well approximated by H,, k.
(iv) For all 2 < k < d, the set A is locally bilaterally well approximated along Ay by F,x; i.e.,
limsup, o sup,cx ®§"’k (x,r) =0 for every compact set K C Ay.
(v) Forall1 <l <k <d, the set U is relatively open in Uy and A;41 U - --U Ay is relatively closed in
Uy.
(vi) The set A is relatively dense in A; i.e., AINA=A.
If, in addition, A is closed and nonempty, then
(vil) A has upper Minkowski dimension and Hausdorff dimension n — 1, and,
(viii) A\ A; = Ay U---U Ay has upper Minkowski dimension at most n — 2.
Remark 1.2. If ¥, € H, 4, then X, is locally bilaterally well approximated by H, 4, simply because
@g’:“’(x, r)=0forall x € ¥, and r > 0. Since A = X, corresponding to p(xi, ..., X,) = x1x2 has
A; = {0)? x R"2, we see that the dimension bounds on A \ A; in Theorem 1.1 hold by example, and

thus, are generically the best possible.

Remark 1.3. Note that A; is nonempty if A is nonempty by (vi), A; is locally closed if A is closed
by (ii), and A; is locally Reifenberg flat with vanishing constant by (iii). Therefore, by Reifenberg’s
topological disk theorem (e.g., see [Reifenberg 1960] or [David and Toro 2012]), A; admits local bi-Holder
parametrizations by open subsets of R"~! with bi-Holder exponents arbitrarily close to 1 provided that A
is closed and nonempty. However, we emphasize that while A always has Hausdorff dimension n — 1
under these conditions, A; may potentially have locally infinite (n—1)-dimensional Hausdorff measure
or may even be purely unrectifiable (e.g., see [David and Toro 1999]).

The proof of Theorem 1.1 uses a general structure theorem for Reifenberg-type sets, developed in
[Badger and Lewis 2015], as well as uniform Minkowski content estimates for the zero and singular sets of
harmonic polynomials from [Naber and Valtorta 2014]. A Reifenberg-type set is a set A € R" that admits
uniform local bilateral approximations by sets in a cone S of model sets in R”". In the present setting, the
role of the model sets S is played by #,, 4. For background on the theory of local set approximation and a
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summary of results from [Badger and Lewis 2015], we refer the reader to Appendix A. The core geometric
result at the heart of Theorem 1.1 is the following property of zero sets of harmonic polynomials: H,, x
points can be detected in zero sets of harmonic polynomials of degree d (1 < k < d) by finding a single,
sufficiently good approximation at a coarse scale. The precise statement is as follows.

Theorem 1.4. Foralln > 2 and 1 <k < d, there exists a constant &, 4 > 0, depending only on n, d,
and k, such that for any harmonic polynomial p : R" — R of degree d and, for any x € Z,,

Fp(x)=0 forallla| <k <= @g;’k(x,r)z Suax forallr >0,

0p(x) #0 forsome |a| <k <+ @g:’k(x, r)<8ndx forsomer >0.

Moreover, there exists a constant C,, 4 > 1 depending only on n, d, and k such that

OF (¥, 1) <Byax  forsomer>=0 = OL*(x,5r) < Cpaus'/* forallse©,1). (1-2)

In particular, applying (1-2) with ¥, € H, 4 and x = 0, we obtain the following property.
Corollary 1.5. In the language of Definition A.12, H, i points are detectable in H, 4.

Remark 1.6. The reader may recognize (1-2) as an “improvement-type lemma”, which is often obtained
as a consequence of a monotonicity formula or a blow-up argument. Here this improvement result states
that at every H, ; point in the zero set ¥, of a harmonic polynomial of degree d > k, the zero set X,
resembles the zero set of a harmonic polynomial of degree at most k at scale r with increasing certainty
as r | 0. In fact, (1-2) yields a precise rate of convergence for the approximation number 672-[;’* (x, sr)
as s goes to 0 provided @;if"‘ (x, r) is small enough. However, we would like to emphasize that the
proof of Theorem 1.1 does not require monotone convergence nor a definite rate of convergence of the
blowups (A — x)/r of the set A as r | 0. Rather, the proof of Theorem 1.1 relies only on the fact that the
pseudotangents T =1im;_, (A — x;)/t; of A at x (along sequences x; — x in A and #; |, 0) satisfy (1-2).
The authors expect that both this improvement-type lemma as well as the way in which it is applied in
the proof of Theorem 1.1 should be useful in other situations where questions about the structure and size
of sets with singularities arise.

In the special case when k = 1, Theorem 1.4 first appeared in [Badger 2013, Theorem 1.4]. The
proof of the general case, given in Sections 2—4 below, follows the same guidelines, but requires more
sophisticated estimates. In particular, in Section 3, we establish uniform growth and size estimates for
harmonic polynomials of bounded degree. Of some note, we prove that harmonic polynomials of bounded
degree satisfy a Lojasiewicz-type inequality with uniform constants (see Theorem 3.1). These estimates
are essential to show that the approximability @;if'k (x,r) of a zero set ¥, € H, 4 is controlled from
above by the relative size {x(p, x, r) of the terms of degree at most k appearing in the Taylor expansion
for p at x (see Definition 2.3 and Lemma 4.1).

Applied to harmonic polynomials of degree at most ¢, [Naber and Valtorta 2014, Theorem A.3] says
that

Vol ({x € B(0, 1) : dist(x, £,) <r}) < (C)d)*r forall T, € H,.4. (1-3)
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and [Naber and Valtorta 2014, Theorem 3.37] says that
Vol ({x € B(0, ) : dist(x, S,) <r}) < Cm)®r?  forall S, € SH, 4, (1-4)

where SH, 4 = {S,=%, N |Dp|~1(0) : ¥,€Hna, 0€S,} denotes the collection of singular sets of
nonconstant harmonic polynomials in R" of degree at most d that include the origin. The latter estimate
is a refinement of [Cheeger et al. 2015], which gave bounds on the volume of the r-neighborhood of the
singular set of the form C(n, d, e)r2~¢ for all &€ > 0. The results of Cheeger, Naber, and Valtorta [Cheeger
et al. 2015] and Naber and Valtorta [2014] apply to solutions of a class of second-order elliptic operators
with Lipschitz coefficients; we refer the reader to the original papers for the precise class. Estimates (1-3)
and (1-4) imply that the zero sets and the singular sets of harmonic polynomials have locally finite (n—1)-
and (n—2)-dimensional Hausdorff measure, respectively. They transfer to the dimension estimates in
Theorem 1.1 for sets that are locally bilaterally well approximated by #, 4 using [Badger and Lewis
2015]. See the proof of Theorem 1.1 in Section 5 for details.

Although the singular set of a harmonic polynomial in R" generically has dimension at most n — 2,
additional topological restrictions on the zero set may lead to better bounds. In the plane, for example, the
zero set of a homogeneous harmonic polynomial of degree k is precisely the union of & lines through the
origin, arranged in an equiangular pattern. Hence R? \ X, has precisely two connected components for
¥, € F if and only if k = 1, and consequently, the singular set is empty for any harmonic polynomial
whose zero set separates R? into two connected components. When n = 3, Lewy [1977] proved that if
R3\ >, has precisely two connected components for X, € F3, then k is necessarily odd. Moreover,
Lewy proved the existence of X, € F3 that separate R? into two connected components for all odd
k > 3; an explicit example due to Szulkin [1978] is X, € F3 3, where

p(x,y,2) =x> =3xy*+ 27 = 3(x* + y))z.
Starting with n = 4, zero sets of even-degree homogeneous harmonic polynomials can also separate R”
into two components, as shown, e.g., by Lemma 1.7, which we prove in Section 6.

Lemma 1.7. Let k > 2, even or odd, and let g : R> — R be a homogeneous harmonic polynomial of
degree k. For any pair of constants a, b # 0, consider the homogeneous harmonic polynomial p : R* — R
of degree k given by

p(x1, y1, %2, y2) = aq(xi, y1) + b g(x2, y2).

The zero set ¥, of p separates R* into two components.

Motivated by these examples, it is natural to ask whether it is possible to improve the dimension bounds
on the singular set A\ A = A, U---U Ay in Theorem 1.1 under additional topological restrictions on A.
In this direction, we prove the following result in Section 6 below.

Theorem 1.8. Letn>2andd > 2. Let A CR" be a closed set that is locally bilaterally well approximated
by Hpq. If R"\ A = Q1Y UQ™ is a union of complimentary NTA domains Q% and Q~, then

(i) A\A; = Ay U---U Ay, has upper Minkowski dimension at most n — 3;

(i1) the “even singular set” Ay U A4 U AgU - - - has Hausdorff dimension at most n — 4.
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Figure 1. Select views of X, p(x, y,z) = xZ— y2 + 23 —3x2z, which separates R3 into
two components and has a cusp at the origin.

NTA domains, or nontangentially accessible domains, were introduced by Jerison and Kenig [1982]
to study the boundary behavior of harmonic functions in dimensions three and above. We defer their
definition to Section 6. However, let us mention in particular that NTA domains satisfy a quantitative
strengthening of path connectedness called the Harnack chain condition. This property guarantees that A
appearing in Theorem 1.8 may be locally bilaterally well approximated by zero sets X, of harmonic
polynomials such that R" \ X, has two connected components. Without the Harnack chain condition, this
property may fail, as in the following example by Logunov and Malinnikova [2015].

Example 1.9. Consider the harmonic polynomial p(x, y, z) = x> — y? 4 z> — 3x?z from [Logunov and
Malinnikova 2015, Example 5.1]. In that paper, they also show that R" \ £, = QT U Q™ is the union of
two domains, but remark that Q% and Q~ fail the Harnack chain condition, and thus, Q1 and Q~ are not
NTA domains (see Figure 1). Using Lemma 4.3 below, it can be shown that X, has a unique tangent set
at the origin (see Definition A.5 in Appendix A), given by X, where g (x, y, z) = x? — y% Note that 2y
divides R? into four components. However, if the set %, is locally bilaterally well approximated by some
closed class S € H, 4, then £, € S by Theorem A.11.

Remark 1.10. It can be shown that R" \ £, = QT U Q™ is a union of complementary NTA domains and
%, is smooth except at the origin when p(x, y, z) is Szulkin’s polynomial or when p(x1, y1, x2, y2) is
any polynomial from Lemma 1.7. Thus, the upper bounds given in Theorem 1.8 are generically the best
possible. The reason that we obtain an upper Minkowski dimension bound on the full singular set A\ Ay,
but only obtain a Hausdorff dimension bound on the even singular set Ay U A4 U - - - is that the former is
always closed when A is closed, but we only know that the latter is F,, when A is closed (see the proof of
Theorem 1.8).

The improved dimension bounds on A\ A in Theorem 1.8 require a refinement of (1-4) for £, € H, 4
that separate R” into complementary NTA domains, whose existence was postulated in [Badger and
Lewis 2015, Remark 9.5]. Using the quantitative stratification machinery introduced in [Cheeger et al.
2015], we demonstrate that near its singular points, a zero set X, € H, 4 with the separation property
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does not resemble ¥, x R"~2 for any X, € Fox, 2 <k <d. This leads us to a version of (1-4) with
right-hand side C(n, d, €)r3~¢ for all & > 0 and thence to dimy; A\ A; < n — 3 using [Badger and Lewis
2015]. In addition, we show that at “even-degree” singular points, a zero set X, with the separation
property, does not resemble X, x R"=3 for any X € F3 2, 2 <2k <d. This leads us to the bound
dimg N UT4U- - <n—4. See the proof of Theorem 1.8 in Section 6 for details.

In the last section of the paper, Section 7, we specialize Theorems 1.1 and 1.8 to the setting of two-
phase free boundary problems for harmonic measure mentioned above, which motivated our investigation.
This includes the case that A = 9<2 is the boundary of a 2-sided NTA domain 2 C R" whose interior
harmonic measure w™ and exterior harmonic measure w™ are mutually absolutely continuous and have
Radon—Nikodym derivative f = dw~/dw™ satisfying log f € C(32) or log f € VMO(dw™).

2. Relative size of the low-order part of a polynomial

Given a polynomial p(x) = Z\alfd cex® in R”, define the height by H (p) = max|y|<q |cq|; i.€., the height
of p is the maximum in absolute value of the coefficients of p. The following lemma is an instance of
the equivalence of norms on finite-dimensional vector spaces.

Lemma 2.1. H(p) ~ || pllL=(B(0,1)) for every polynomial p : R" — R of degree at most d, where the
implicit constants depend only on n and d.

Below we will need the following easy consequence of Lemma 2.1.

Corollary 2.2. If p= pg+ -+ po, where each p; : R" — R is zero or a homogeneous polynomial of
degree i, then || pllL=(B(0.1)) ~ Z?:o H (p;), where the implicit constants depend only on n and d.

Proof. On one hand,
d

d
IpllLeBo,1) < Z I pillL>B0,1) < Z H(pi)
i=0 i=0

by Lemma 2.1 (applied d+-1 times). On the other hand, the assumption that each p; is zero or homogeneous
of degree i ensures that H(p) = max; H(p;). Hence

d

Y H(p) < d+1DH(p) S llple=o.1)
i=0

by Lemma 2.1, again. U

By Taylor’s theorem, for any polynomial p : R* — R of degree d > 1 and for any x € R", we can write

px+y)=p? M +pi? )+ +pg(y) forally e R, 2-1)
where each term pi(x): R" — R is an i-homogeneous polynomial, i.e.,

pry)=ripP(y) forall y e R" and r > 0. (2-2)
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Definition 2.3. Let p : R" — R be a polynomial of degree d > 1 and let x € R". For all 0 <k < d and
r > 0, define Ek(p, x,r) by
125l LB 0.1

<d =) € [0, oo].
S >y ||L°°(B(0 )

G(p, x,r) =

Remark 2.4. The function Ek (p, x, r) is a variant of the function ¢ (p, x, r) appearing in [Badger 2013,
Definition 2.1] and defined by
IIPJ 0.

&k(p, x, r) = max
J#k ||Pk ||L°°(B(0r))

The latter measured the relative size of the degree-k part of a polynomial compared to its parts of
degree j # k, while the former measures the relative size of the low-order part of a polynomial, consisting
of all terms of degree at most k, compared to its parts of degree j > k. We note that 21( p,x,r) and
¢1(p, x, r) coincide whenever x € X, the zero set of p.

The next lemma generalizes [Badger 2013, Lemma 2.10], which stated ¢;(p, x, sr) < s¢1(p, x, r) for
all s € (0, 1), for all polynomials p : R" — R, for all x € ¥, and for all r > 0.

Lemma 2.5 (change of scales lemma). For all polynomials p : R" — R of degree d > 1, for all 0 <k < d,
for all x € R" and for all r > 0,

s G(p,x,r) S&lpx,sr) Ssbp,x,r) foralls € (0, 1),
where the implicit constants depends only on n and d.

Proof. Let p: R" — R be a polynomial of degree d > 1, let x € R”, and let 0 < k < d. Write

p=p"++p

i-homogeneity of each p

for the low-order part of p at x. Then, by repeated use of Corollary 2.2 and the
@) we have that for all r > O and s € (0, 1),

.(x)(sr )

> Z H(p (sr)) 2 Zs H(p™(r-))

L>°(B(0,1)) i=0

Zp("’(r-)
i=0

where the implicit constants depend on only 7 and k. It immediately follows that

IpllL=(B(0,sr)) =

> 5Pl L 0. (2-3)

k
2 HEW ) 2 s
i=0 L>(B(0,1))

||p;X)||L°°(B(O,sr)) i ||PJ Nl a0, )
< max ¢/ oL _1E2EOD

Te(p, x, s7) = <sGp,x,r),

ke <d 1PllLoB0.5r)) ~ k<i=d 21l (B(0.r))
where the implied constant depends only on n and k, and therefore, may be chosen to only depend on n
and d. The other inequality follows similarly and is left to the reader. (Il

We end with a statement about the joint continuity of i ( p, x,r). Lemma 2.7 follows from elementary
considerations; for some sample details, the reader may consult the proof of an analogous statement for
Lk (p, x, r) in [Badger 2013, Lemma 2.8].
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Definition 2.6. A sequence of polynomials (p')72, in R" converges in coefficients to a polynomial p in
R" if d = max; deg p' < oo and H(p — p') - 0 asi — oo.

Lemma 2.7. For every k > 0, the function Ek (p, x, r) is jointly continuous in p, x, and r. That is,
&P’ xiy i) = &(p,x, 1)

whenever deg p > k, p' — p in coefficients, x; — x € R", and r; — r € (0, 00).

3. Growth estimates for harmonic polynomials

We need several estimates on the growth of nonconstant harmonic polynomials of degree at most k. The
main result of this section is the following uniform Lojasiewicz inequality for harmonic polynomials of
bounded degree.

Theorem 3.1 (Lojasiewicz inequality for harmonic polynomials). For all n > 2 and k > 1, there exists a
constant ¢ = c(n, k) > 0 with the following property. If p : R" — R is a nonconstant harmonic polynomial
of degree at most k and xo € X, then

1P| = cllpll=(Bexo1y dist(z, £,)¢  forall z € B(xo, 1). (3-1)

Remark 3.2. Lojasiewicz [1959] proved the remarkable result that if f is a real analytic function on R”
and xo € Xy (the zero set of f), then there exist constants C, &, m > 0 such that

| f(z)] = Cdist(z, Xp)" forall z € B(xo, €).

The smallest possible m is called the fojasiewicz exponent of f at x¢y. It is perhaps a surprising fact
that the Lojasiewicz exponent of a polynomial can exceed the degree of the polynomial. Bounding the
Lojasiewicz exponent from above is a difficult problem in algebraic geometric; see, e.g., [Kollar 1999;
Pham 2012]. The content of Theorem 3.1 over the general form of the Lojasiewicz inequality is the
tight bound on the fL.ojasiewicz exponent and uniformity of the constant ¢ in (3-1) across all harmonic
polynomials of bounded degree.

The key tools that we use in this section are Almgren’s frequency formula and Harnack’s inequality
for positive harmonic functions. Let us now recall the definition of the former.

Definition 3.3. Let f € H,! (R") and let
xo€e Xy ={xeR": f(x)=0}.

For all r > 0, define the quantities H (r, xo, f) and D(r, xg, f) by

Hexof)= [ fldo and Doovo = [ ViR,
dB(xqp,r) B(xo,r)
Then the frequency function N (r, xg, ) is defined by
D 9 9
N, f) = 20X /) ey 0.

H(r, xo, f)
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Almgren [1979] introduced the frequency function. It is a simple matter to show that for any harmonic
polynomial p, we have N (r, xg, p) < deg p. When f is any harmonic function, not necessarily a
polynomial, Almgren proved that N (r, xg, f) is absolutely continuous in r and monotonically decreasing
asr | 0, and moreover, lim, o N (r, xo, f) is the order to which f vanishes at xo. It can also be verified that

d . (H(r,xo, f))_ N(r, xo, )
— log =2 .
dr r

o (3-2)
Integrating (3-2) and invoking the monotonicity of N(r, xo, f) in r, one can prove the following doubling
property. For a proof of Lemma 3.4, see, e.g., [Han 2007, Corollary 1.5]; the result is stated there with
xo=0and R =1, but the general case readily follows by observing that N (R, xo, f) =N (1,0, g), where

g(x) = f(xo+ Rx)/R.

Lemma 3.4. If f is a harmonic function on B(xy, R), then for all r € (0, %R)

][( X fzdeZZN(R’XO’f)_lf f2dx. (3-3)
B(xg,2r)

B(xo,r)

Corollary 3.5. For all n > 2 and k > 1, there exists a constant C > O such that if p : R" — R is a

harmonic polynomial of degree at most k, xo € R", and r > 0, then

][ pldx < C][ p’dx and sup p>< 2"C][ pdx. (3-4)
B(xo,2r) B(xo,r) B(xo,r) B(xo,r)

Proof. The first inequality in (3-4) is an immediate consequence of Lemma 3.4 and the well known fact
that N (r, xo, p) < deg p for every harmonic polynomial p.

To establish the second inequality in (3-4), first note that B(z, r) € B(xo, 2r) for all z € B(xg, r). By
the mean value property of harmonic functions and the first inequality,

2
p(z)zz(][ pdx) 5][ pzdx§2”][ pzdx§2”C][ p?dx.
B(z,r) B(z,r) B(xo,2r) B(xo,r)

This establishes (3-4). |

Next, as an application of Corollary 3.5 and Harnack’s inequality, we show that p(z) is relatively large
when z is far enough away from X,,.

Lemma 3.6. For alln > 2 and k > 1, there exists a constant ¢ > 0 such that if p : R" — R is a harmonic
polynomial of degree at most k, z € R", and xo € X, is any point such that p := dist(z, ¥,) = [z — x|,
then

lp(2)|=c sup Ipl. (3-5)

B(xo,p)
Proof. Let n > 2 and k > 1 be given, and let p : R" — R be a harmonic polynomial of degree at most k.
Since the conclusion is trivial for all z € X, we may assume z € R" \ X,. Without loss of generality,
we may further assume that p is positive in B(z, p), where p = dist(z, £,). By Harnack’s inequality
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for positive harmonic functions (e.g., see [Axler et al. 2001, Theorem 3.4]), there exists a constant
A = A(n) > 0 such that

p()?=>A sup p’> A][ pldx.
B(z.0/2) B(z,p/2)

Pick xo € X, such that p = |z — x| and note that B(z, 2p) 2 B(xo, p). Hence, by two applications of the
first inequality in Corollary 3.5 and then by the second inequality,

][ pzdeCz][ pzdxz2"C2][ p2dx >47"C sup p*
B(z,p/2) B(z,2p) B(xo,p) B(xo,p)

Combining the displayed equations, we conclude that (3-5) holds with c =27"+ AC. (]

We can now obtain the Lojasiewicz inequality for harmonic polynomials (Theorem 3.1) by combining
Lemma 3.6 with the estimate (2-3) from the proof of Lemma 2.5.

Proof of Theorem 3.1. Let n > 2 and k > 1 be given. Suppose that p : R* — R is a nonconstant harmonic
polynomial of degree at most k, and without loss of generality, assume that 0 € X, (the origin will play the
role of xg in the statement of the theorem). Fix z € B(O, %) and choose x( € ¥, to be any point such that
p := |z —xo| = dist(z, Z,). Note that p < 1, since 0 € X, and z € B(0, 5). On one hand, by Lemma 3.6,

lp(2)| 2 sup |pl.
B(x0,p)

On the other hand, applying (2-3) with r =2 and s = % p (this is fine as s < 1),
sup |pl 2 0" sup [pl = p"llpll~so.1)-
B(xo,p) B(x0,2)
Here all implicit constants depend on at most n and k. The inequality (3-1) immediately follows by

combining the displayed equations (and recalling the definition of p). O

As we work separately with the sets {p > 0} and {p < 0} below, it is important for us to know that
sup p™ and sup p~ are comparable in any ball centered on %,,.

Lemma 3.7. Foralln>2 and k > 1, there exists a constant C > 1 such that if p : R* — R is a nonconstant
harmonic polynomial of degree at most k, then

Clsup pt< sup p~<C sup p* forallxoe Y, andr > 0. (3-6)
B(xo,r) B(xo,r) B(xo,r)

Proof. Let M* = sup Bxo.r) p¥, and assume without loss of generality that M+ > M. The argument now
splits into two cases.

Case I. Assume that supg .2 [Pl = supp(, ;) P~ Then by the estimate (2-3) in the proof of
Lemma 2.5,

M~ > sup p = sup |p|Z sup |pl=MT,
B(x0,r/2) B(x0,r/2) B(xo,r)

where the implicit constant depends only on n and k.
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Case II. Assume that supg(, .2 [Pl =SUpg, r/2) p™. Note that p+2M ™ is a positive harmonic function
in B(xg, r). Thus, by Harnack’s inequality,

2M™ =p(xg)+2M~ >a sup (p+2M~")=a sup (p+ +2M7), (3-7)
B(xo,r/2) B(xo,r/2)

where a = a(n) > 0. We now argue as in Case 1. By (2-3),

sup pT= sup |p|Z sup |pl=M",
B(xo,r/2) B(xo,r/2) B(xo,r)
where the implicit constant depends only on n and k. Combining the displayed equations, we conclude
that M~ > M™. O

Finally, we record a technical observation that will be needed in Section 6.

Lemma 3.8. Letn > 2 and let k > 1. If p: R* — R is a harmonic polynomial of degree at most k, then
lpllz2o.1y) ~nk 1PIL2@0B0.1))-

Proof. The fact that || pll.2¢3p(0.1)) 1 @ norm on the space of harmonic polynomials follows from the
maximum principle for harmonic functions. Thus, the equivalence of || p|lz2(5(,1y) and || pllz2(38(0,1)) for
harmonic polynomials of bounded degree follows from the equivalence of norms on finite-dimensional
vector spaces. (Il

4. H,, . points are detectable in H, 4

The next lemma shows that fk (see Definition 2.3 above) controls how close ¥, € H, 4 is to the zero set
of a harmonic polynomial of degree at most k; cf. [Badger 2013, Lemma 4.1]. For the definition of the

bilateral approximation number ®;{:"‘

(x, r), we refer the reader to the Introduction; see (1-1).
Lemma 4.1. Foralln > 2 and d > 2, there exists 0 < C < 0o such that for every harmonic polynomial

p:R" = R of degree d and for every 1 <k <d,
@’;,;m, r) < C&(p,x,r)V* forallx € £, andr > 0. 4-1)

Proof. Let p : R" — R be a harmonic polynomial of degree d > 2, let 1 <k < d, and let x € X,.
Write p(- +x) = p((ix) +- 1t p,ﬁxﬁl + p,(cx) +- pix), where each pi(x): R" — R is an i-homogeneous
polynomial in y with coefficients depending on x. We remark that x + X ,(. 1) = X,. Now, since p is
harmonic, each term pl.(x) is harmonic, as well. Set p = p,ix) +-- 4 p§"), the low-order part of p at x,
and note that p(0) = 0. If p =0, then Ek( p, x,r)=o0 for all » > 0 and (4-1) holds trivially. Thus, we
may assume that p # 0, in which case X ; € H,, x. To prove (4-1), we shall prove a slightly stronger pair
of inequalities,
r~' sup  dist(a, (x + ;) NB(x, 1)) < Cr &(p, x, 1)k (4-2)
a€x,NB(x,r)
and
rl sup dist(w, ) < Cr&(p, x, 2r) 1k (4-3)
we(x+X;)NB(x,r)
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for some constants C and C; that depend only on #, d, and k, and therefore, may be chosen to depend
only on n and d. With the help of Lemma 2.5, (4-1) follows immediately from (4-2) and (4-3).
Suppose p(z) #0 for some z € B(0, r) and choose y € EﬁﬂB(T,r) such that p :=dist(z, EﬁﬂB(T,r)) =
|z — y|. We note that p <r, since p(0) =0, and B(0, r) € B(y, 2r). Hence, by Lemma 3.6,
- - @3 (p ko p ko
[P =cllpllLeBy.py = C(;) PNl L B(y,2r)) = C(:) 12Nl Lo (B(©,))

where at each occurrence ¢ denotes a positive constant determined by n and k. Thus,

d k

~ 1Y ~ A ~

PG+ =15 - ) ||P;x)||L<>O(B(o,r)) > Cl(;) IPNzeB©.r7) = (d = K) (P, x, ) PllL=B0.r))
j=k+1

where c¢; > 0 is a constant depending only on n and k. It follows that | p(z +x)| > 0 whenever z € B(0, r)
and dist(z, X5 N B(0, 7)) = p > Clé‘k(p, x, r)Y*r, where

d— k\/k
C1=( ) .
1

Consequently, for any a =z +x € X, N B(x, r), we have

dist(a, (x + Z5) N B(x, r)) = dist(z, ;N B(O, ) < Ci&(p, x,r)"r.

This establishes (4-2).
Next, suppose that w € (x + X5) N B(x, r), say w = x + z for some z € X5 N B(0,r). Let § <r be a
fixed scale, to be chosen below. Because p is harmonic, we can locate points zgt € dB(z, §) such that
pzg)= max p(z)>0 and p(z;)= min p(z) <O0.
7/€B(z,8) 7’eB(z,0)
Thus, by Lemma 3.7,

3r

where at each occurrence ¢ > 0 depends only on # and k. We conclude that

T N 23 8\ . S\
£p(z5) =1p)| = cllpllii=m3es)y = c| =) IPIlLe®BeE3)) = ¢ - 1PNl L (B©,2)),

d
+£p(zy +x) = £p@5) — Z ”P](‘X)”LOO(B(O,Zr))
j=k+1

A . 3
> Cz(;) | Pl (B(0,2r)) — (d — k)i (p, x, 20) || pll L (B(0,r)) > O

provided that 8§ > CoZi(p, x, 2r)Y/*r, where C, = [(d — k) /c>]"/*. But we also required § < r above.
To continue, there are two cases. On one hand, if szk(p, X, 2r)1/k > 1, then ®7;:’k x,r) <1<
ngk(p, x, 2r)/% holds trivially. On the other hand, suppose that szk(p, X, 2r)1/k < 1. In this case,
pick any 8 € (C2Zi(p, x, 2r)"/*r, r). Then the estimate above gives + p(zgt + x) > 0. In particular, the
straight line segment ¢ that connects z; +x to z; +x inside B(z + x, §) must intersect X, N B(z+x,9)
by the intermediate value theorem and the convexity of ball. Hence dist(w, ¥,) = dist(z + x, X,) < 4.
Therefore, letting 8 | C2zx(p, x, 2r)'/%, we obtain (4-3). O
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Remark 4.2. In the proof of Lemma 4.1, the harmonicity of p was only used to establish the harmonicity

of p. Thus, the argument actually yields that @7;:"‘ (x,7) <na k (p,x,r) forall x € ¥, and for all r > 0,

(x)

whenever p : R* — R is a polynomial of degree d > k such that p = p,ﬁx) +---+ p,’ is harmonic.

The following useful fact facilitates normal families arguments with sequences in H, 4. It is ultimately
a consequence of the mean value property of harmonic functions.

Lemma 4.3. Suppose that £, , Z,, ... € Hpy . If pi — p in coefficients and H(p) # 0, then X, € H, 4
and X, — X, in the Attouch—Wets topology (see Appendix A).

Proof. Suppose that, for each i > 1, the function p; : R" — R is a harmonic polynomial of degree at most d
such that p; (0) =0. Assume that p; — p in coefficients and H (p) #0. Then p : R" — R s also a harmonic
polynomial of degree at most d such that p(0) =0, because p; — p uniformly on compact subsets of R”,
and p is nonconstant, because H(p) # 0. Hence X, € H, 4. It remains to show that X,, — X, in the
Attouch—Wets topology, which is metrizable. Thus, it suffices to prove that every subsequence (X pij);’.ozl
of (Xp,);2, has a further subsequence (X, )72, such that %, . — ¥, in the Attouch—Wets topology.

Fix an arbitrary subsequence (X Pij)?il of (£,)72,. Since 0 € ¥ pi; forall j > 1 and the set of closed
sets in R” containing the origin is sequentially compact, there exists a closed set F' C R” containing 0 and a
subsequence (X, )2, of (Xp,)7Z, such that ¥, — F. We claim that F = %,,. Indeed, on one hand, for
any y € F' there exists a sequence yi € X, such that y — y; but p(y) =limg— o pijk (k) =limg— 00 0=0,
since yx € X, pijk—> p uniformly on compact sets, and y; — y. Hence y € ¥, for all y € F. That
is, F € X,. On the other hand, suppose z € ¥,. Since p(z) =0, but p # 0, for all » € (0, 1) we can
locate points zfﬁ € B(z,r) such that p(z}) > 0 and p(z;) < 0 by the mean value theorem for harmonic
functions. Because p;;x — p pointwise, it follows that

Pijk(Zj_) >0 and p;jr(z,) <0

for all sufficiently large £ depending on r. In particular, by the intermediate value theorem, the straight
line segment connecting z;r to z,” inside B(z, r) must intersect X, N B(z, r) for all sufficiently large k
depending on r. Hence dist(z, X, N B(z, 1)) > 0 as k — oo. Ergo, since X, , — F in the Attouch—Wets
topology,

NB(z, 1)) +ex(Z

dist(z, F) < 13€m inf(dist(z, = NB(z, 1), F)) =0.
— 00

Dijk Dijk

That is, z € F for all z € ¥,,. Therefore, X, C F, and the conclusion follows. O

Corollary 4.4. Foralln >2 and 1 <k <d, the sets H, 4 and F, ; are closed subsets of €(0) with the
Attouch—Wets topology.

Proof. Suppose X, € H, 4 foralli > 1 and X, — F for some closed set F in R". Replacing each p; by
pi/H(p;), which leaves X, unchanged, we may assume H(p;) =1 for all i > 1. Hence we can find a
polynomial p and a subsequence (p; j);?’;] of (p;){2, such that p;; — p in coefficients and H (p) = 1. Thus,
by Lemma 4.3, ¥, € H, 4 and ), — %,. Therefore, F =1im; 00 Xp, =lim;j_ o0 X, = X, € Hy g We
conclude that H, 4 is closed. Finally, F, i is closed by the additional observation that p is homogeneous
of degree k whenever p;; is homogeneous of degree k for all ;. U



STRUCTURE OF SETS WHICH ARE WELL APPROXIMATED BY ZERO SETS OF HARMONIC POLYNOMIALS 1469

Remark 4.5. For any X, € H, 4 and A > 0, the dilate A, is equal to X, where g : R" — R is given
by g(x) = p(x/A) for all x € R*. Since p is a nonconstant polynomial of degree at most d such that
p(0) =0, sois g. Also, g is k-homogeneous whenever p is k-homogeneous. Finally, since p is harmonic
on R", the mean value theorem gives

][ g(r) dx = f p(e/A) dx = f p(x) dx = p(y/A) = q(¥)
B(y.r) B(y,r) B(y/A,r/))

for all y € R" and r > 0. Thus, since ¢ is continuous, it is also harmonic by the mean value theorem. This
shows that AX, € H, 4 for all £, € H, 4 and A > 0. Likewise, AX, € F, x forall ¥, € F,  and A > 0.
In other words, #,, 4 and F, ; are cones. Therefore, H, 4 and F,  are local approximation classes in the
sense of Definition A.7(i). A similar argument shows that 7, 4 is translation invariant in the sense that
Y,—x€Hyqforall ¥, e H, sand x € .

The next lemma captures a weak rigidity property of real-valued harmonic functions: the zero set of a
real-valued harmonic function determines the relative arrangement of its positive and negative components.

Lemma 4.6. Let f : R" — Rand g : R" — R be harmonic functions, and let ¥y and X4 denote the zero
sets of f and g, respectively. If Xy = X, then f and g take the same or the opposite sign simultaneously
on every connected component of R" \ Ly = R" \ X.

Proof. Since the conclusion is trivial if f is identically zero, we may assume, in addition to the hypothesis,
that f is not identically zero. According to [Logunov and Malinnikova 2015, Theorem 1.1], if u and v
are harmonic functions defined on a domain €2 € R" whose zero sets satisfy ¥, € ¥, then there exists a
real-analytic function « in €2 such that u = av. Invoking this fact twice, we obtain that f = ag = aBf,
where o and B are real analytic functions on R”. Since f is not identically zero, it follows that ¢ = 1
on R". In particular, sign(e) = =1 on R". Therefore, sign( ) = sign(«) sign(g) = £ sign(g) on R". I

The following lemma indicates that zero sets of homogeneous harmonic polynomials of different
degrees are uniformly separated on balls centered at the origin. This answers affirmatively a question
posed in [Badger 2013, Remark 4.12].

Lemma 4.7. Foralln > 2 and 1 < j <k, there exists a constant € > 0 such that for all ¥, € F,, ; and
Zq S }—n,j9

]50”[2,,, Xyl = 1 max{ sup  dist(x, Xy), sup  dist(y, Ep)} >¢ forallr > 0.
r x€Z,NB(0,r) yEZ,NB(0,r)

Proof. Note that X, = ¥, and AX, = X, for all A > O whenever £, € F, ; and £, € F, ;. Hence
D% [%,, £,1=D%"[r's,, r 1%, ]=D%'[%,, =,] forall r > 0, whenever n>2, 1< j <k, , € Fy s,
and X, € 7, ;. Thus, it suffices to prove the claim with r = 1.

Assume to the contrary that for some n > 2 and 1 < j < k we can find sequences pp, p2, ... € Fni
and q1, q2, ... € F j such that
1

]SO’][EPN Eqi] i

foralli > 1. (4-4)
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By Corollary 4.4, passing to subsequences (which we relabel), we may assume that there exist X, € F, «
and X, € F, j such that ¥, — ¥, and X, — X . Moreover, replacing each p; and g; by p;/H (p;) and
qi/ H (qi), respectively, and passing to further subsequences (which we again relabel), we may assume
that p; — p in coefficients and g; — ¢ in coefficients, where p and g are homogeneous harmonic
polynomials of degrees k and j, respectively. By two applications of the weak quasitriangle inequality
(see Appendix A),

D%4[%,, 5,1 <2D%?[%,, £, 1+2D"? (3, ,]
<2D%12[x,, £, 1+4D%[5,,, £, 1+4D%'[3,, Z,1. (4-5)

Letting i — oo, the first term vanishes since X, — X, the second term vanishes by (4-4), and the third
term vanishes since ¥, — X,. Hence ]50’1/4[21,, 3,41 =0, which implies ¥, N B(O, 4—11) =3%,N B(O, 21;)
But 3, and X, are cones, so in fact ¥, = ¥,. By Lemma 4.6, the functions p and g take the same or
the opposite sign simultaneously on every connected component of R" \ X, = R" \ X,. Hence either
p(x)g(x) >0 for all x € R" or p(x)g(x) <O for all x € R". It follows that either fS'H pgdo >0 or
f g1 pq do < 0. This contradicts the fact that homogeneous harmonic polynomials of different degrees
are orthogonal in L?(s™ 1 (e.g., see [Axler et al. 2001, Proposition 5.9]). O

We now show that ¢ cannot grow arbitrarily large as ®7;;"" becomes arbitrarily small; cf. [Badger
2013, Proposition 4.8].

Lemma 4.8. Foralln >2and 1 <k < d there is 8, 4.x > O with the following property. If p:R" - R

is a harmonic polynomlal of degree d and @H”k

Ge(px.r) <8,k

(x,7) < 8p,ak for some x € ¥, and r > 0, then

Proof. Letn > 2 and 1 < k < d be given. Suppose in order to reach a contradiction that for all j > 1 there
exists a harmonic polynomial p; : R" — R of degree d, x; € ¥, and r; > 0 such that @7;" “(xjor) < 1/),

but g:k(pj, xj,rj) > j. Replacing each p; with p;,
B =H(pp™ - p(rj(y+x;)) forall y e R

that is, left translating by x;, dilating by 1/r;, and scaling by 1/H (p;), we may assume without loss of
generality that x; =0, r; =1, and H(p;) =1 for all j > 1. Therefore, there exists a sequence ( p,)"O | of
”""(o 1) < 1/j, and
i ( pj, 0, 1) > j. Passing to a subsequence, we may assume that p; — p in coefﬁc1ents to some harmonic

harmonic polynomials in R" of degree d and height 1 with p;(0) = 0 such that ®

polynomial p : R* — R with height 1. By Lemma 4.3, ¥, — ¥,,, as well. On one hand,

Hn,k

Hn k
g

(0, )<211m1nf® (o H=0 (4-6)

(For a primer on the interaction of limits and approximation numbers, see Appendix A.) On the other
hand, by Lemma 2.1 and the fact that i ( pj,0,1) > j, it must be that the height of the polynomial p; is
obtained from the coefficient of some term of p; of degree at least k + 1, provided that j is sufficiently
large. In particular, we conclude that p has degree at least k 4+ 1. Hence é:k (p, 0, 1) is well defined and
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Z‘k(p, 0,1)=1lim;_ Z‘k(pj, 0, 1) = co by Lemma 2.7. Thus, the low-order part of p at O (that is, the
terms of degree at most k) vanishes and p has the form

p= p[(lo) + pflo)l SR SR o pl(o), (O) # 0 for some i > k 4+ 1. 4-7)

We shall now show that (4-6) and (4-7) are incompatible with Lemma 4.7:
By (4-6), there exists £, € H, x = Hyux such that £, N B(0, 1) = £, N B(0, 3), say

q= q,EO) +q,£0)1 +- —I—q(o) (O) # 0 for some 1 <[ <k. (4-8)

Choose any sequence 7, | 0 as m — oo. By (4-7), ;' p(rm+) — p ) in coefficients and by (4-8),
i )~ Zp0 EFniandr, 15, =3
)) 0 € Fn.1 by Lemma 4.3. By the weak quasitriangle inequality (apphed twice as in (4-5)),

T q(rm )— q @ in coefficients also. Hence r_1 X=X - vl prm )

Doﬂl[zpl@, z,0] <2D% [zp;m,rn; '2, 144D [l s,, rt s, 1 +4D% [l 8, z,0l

As m — 00, the first and the last term vanish, because r,,' %, — % o andr, 'y, — %, o, respectively.
i 1
Thus,
D[z, 0. Z,0] < liminf 4D [ty 18, = liminf 4D [5,, £,] =

m—00 m—0o0
where the ultimate equality holds because £, N B(0, ) %, N B(0, 1) and 4r,, | 0. But by Lemma 4.7
DO l[2) o, % (0)] > 0, because X p© € Fni, & © € Fn1, and i > [. We have reached a contradiction.
Therefore for all n>2and 1 <k < d there ex1sts Jj = 1 such thatif p : R" — R is a harmonic polynomial

of degree d and @H"k(x, r) < 1/j for some x € £, and r > 0, then ;“k(p, xX,r)<j. U

We now have all the ingredients required to prove Theorem 1.4.

Proof of Theorem 1.4. Givenn > 2 and 1 <k <d, let §, 4 x > 0 denote the constant from Lemma 4.8.
Let p : R" — R be a harmonic polynomial of degree d and let x € X,. Write p = p(x) 4+ 4 p%x) for
the part of p of terms of degree at most &, so that 9% p(x) # 0 for some || < k if and only if p = 0. On
one hand, if p # 0, then Ek(p, x, 1) < oo, whence

an l/k

o (s P Spa G(px, V<, o r* o(p,x, DV 50 asr—0

by Lemmas 4.1 and 2.5. In particular, if p # 0, then ® Hnk (x r) < 8y.4.x for some r > 0. On the other
hand, if @E""(x r) < 8u.q. for some r > 0, then

G(p,x,r) <8, <00 (4-9)

by Lemma 4.8, whence p # 0. Moreover, in this case,

OF (x, 57) Sna be(p, %, s1)* a8 8ep, x, )V Spaae s forall s € 0, 1)

by Lemmas 4.1 and 2.5, and (4-9). [l

Proof of Corollary 1.5. From (1-2) in Theorem 1.4, it immediately follows that #, ; points are (¢, ®)
detectable in H,, 4 for ¢ = min{8, k41, --.,0n.a.x} > 0 and some function ® of the form P (s) = Csl/k
for all s € (0, 1) (see Definition A.12). U
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S. Structure of sets locally bilaterally well approximated by #, 4

Now that we know H, ; points are detectable in H, 4, we may obtain Theorem 1.1 from repeated use of
Theorem A.14.

Proof of Theorem 1.1. Let n > 2 and d > 2 be given. By Remark 4.5 and Corollary 4.4, H,, x and F,
are closed local approximation classes and H,, x is also translation invariant for all kK > 1. Thus, we may
freely make use of the technology in the last three subsections of Appendix A. Using Definition A.13,
Theorem 1.4 yields

Huk VMoo = {Zp € He : li%nf@’;lj*k*‘ 0,r) >0} =F,x forall k >2.

Suppose that A € R” is locally bilaterally well approximated by #, 4 and put U; = A. Since H,, 41
points are detectable in H,, 4 (by Corollary 1.5) and Uy is locally bilaterally well approximated by #,, 4,
by Theorem A.14 we can write

Us= Ui, Y (Ud)yia_l:: Us—1UAy,

where U, and Ay are disjoint, Uy_; is relatively open in Uy, Uy_; is locally bilaterally well approx-
imated by H, 4—1, and Uy is locally bilaterally well approximated along Az by Hy a0 Hi d—1="nd>
that is, lim sup,. | o sup,.c ¢ @5:"1 (x, r) =0 for every compact set K € A,. In particular, the latter property
implies that every x € Ay is an F, 4 point of U; by Theorem A.11. Next, since H, 4, points are
detectable in #,, 4—1, we may repeat the argument, mutatis mutandis, to write

Ua-1 = WUa-D1,4 Y Va3, = Ua—2U Ay,

where Uy, and A, are disjoint, Uy, is relatively open in Uy_1, Uy—; is locally bilaterally well
approximated by H, 4—2, Uy is locally bilaterally well approximated along A;_ by F, 4—1, and every
x € Ag—1 i1s an F, 4—1 point of Uy_;. In fact, since Uy_; is relatively open in Uy, we have Uy_; is
relatively open in Uy, Uy is locally bilaterally well approximated along A4—1 by F, 4—1, and every
x € Ag_1 is an F, 41 point of Uy, as well. After a finite number of repetitions, this argument shows that

A=U;=Uy;1UA;=---=UUAU---UA,,

where the sets Uy, Aa, ..., Ay are pairwise disjoint, U] is relatively open in A, U is locally bilaterally
well approximated by #,.1, Uy = U; U A, U---U A is relatively open in A forall 2 <k <d, Uy is
locally bilaterally well approximated by H, x for all 2 <k <d, A is locally bilaterally well approximated
along Ay by F, x for all 2 <k <d, and every x € Ay is an F, ; point of A for all 2 < k < d. Finally,
assign A} = Uj. Since A relatively open in A, A is locally bilaterally well approximated by #, 1, and
‘Hn.1 = Fnu.1, we conclude that every x € Aj is an F,, ; point of A by Theorem A.11. This verifies (i)—(iv)
of Theorem 1.1 and (v) follows immediately from (ii) and (iii).

Next, we want to prove that A; is relatively dense in A. Suppose that x € A\ Ay, say x € Ay for
some k > 2. To find points in A| nearby x, we will rely on the following fact: by Remark A.15, since



STRUCTURE OF SETS WHICH ARE WELL APPROXIMATED BY ZERO SETS OF HARMONIC POLYNOMIALS 1473

‘H,.1 points are detectable in H,, 4, there exist «, § > 0 such that

Hnd

if ®,"(y,r') <aforall0<r' <r and ®§"‘l(y,r) < B forsome ye Aandr >0, then ye A;. (5-1)

To proceed, since x is an F,  point of A and F, i is closed, we can find a homogeneous harmonic
polynomial p : R” — R and sequence of scales r; | 0 such that rl._1 (A—x) —> ¥, in the Attouch—Wets
topology (X, is a tangent set of A at x). Pick any z € X, such that |Dp|(z) # 0. (That we can always
find such a point is evident, because the singular set of a polynomial has dimension at most n — 2, while

nl

dim X, =n—1.) Then lim; ®2 (z, 8) =0 by Theorem 1.4. In particular, there exists s; > 0 such that

0% (2. 391) < 15 (5-2)

Since rl._1 (A—x) —> X, there exist y; € A such that z; := (yi —x)/ri = z. Replacing each y; with yi’ €A
such that |y] — y;| <r;/i, say, we may assume without loss of generality that y; € A for all i (because
DO [r7 (A = y)), 7N (A = yi)] < 1/(ir) — O for all r > 0). Necessarily, y; — x, and thus, there exists
sp > 0 such that

sup ®7:”‘d (yi,8) < %Ot <a foralls <so, (5-3)

i>1

because A is locally bilaterally well approximated by H, ;. Now, by quasimonotonicity of bilateral
approximation numbers (see Lemma A.10) and (5-2),

OF (zi, 351) <2 +2(1+ 0O (2, (1 +1)s1) <2 +305" (2, 351) <2 + B

whenever |z; —z| <ts1 < §s1. With t = |z; — z|/s1, this yields

Hor (. 1 20zi—z
Oy, (i 2%1) < . + 58

for all i sufficiently large that |z; — z| < %sl. Hence, for all i sufficiently large that |z; — z| < %sl
(guaranteemg z€X,N B(zl, s1) #* @)

A—x

Ha,1 1 Zi:51/2
©, sy (@ gs1) =3D° s‘/[

A—x 6|z —z;
oo <[22 5] 55
! 4

i S1
where we used the weak quasitriangle inequality in the first line and we used the quasimonotonicity of the
relative Walkup—Wets distance in the second line (see Lemma A.1). Since z; — z and rl._1 (A — x) = %,,
we conclude that
limsup® (i, r,sl) = hmsup® ’I(A x)(zl-, ésl) < %,8 < B. (5-4)
1—>00 1—00

Note that érisl <s, for all i > 1, since r; — 0. Therefore, by (5-1), (5-3), and (5-4), we have y; € A;
for all sufficiently large i. Recalling that y; — x, it follows that x € A;. Since x € A \ A was fixed
arbitrarily, this proves (vi).

We now aim to prove dimension bounds on A and A \ A; assuming that A is closed and nonempty.
Since H, 4 is a closed, translation invariant approximation class and #,, | points are detectable in H, 4,
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the set
singy, | Hnd = {(Zp)yt, 1 Tp € Hya and 0 € ()5 |

is also a local approximation class and A \ A; is locally unilaterally well approximated by sing;, | Hp,q
by Theorem A.17. By Theorem 1.4, applied with k = 1, the class sing,, | Hn.q is precisely the class
SHpa = {Sp=%, N |Dp|~1(0) : Y, € Hpa, 0 € Sy} of all singular sets of nonconstant harmonic
polynomials of degree at most d that include the origin. Recall from the Introduction that

Vol ({x € B(0, 1) : dist(x, Z,) <r}) < (Cm)d)*r forall £, € Hy a4,
Vol ({x € B(0, 1)  dist(x, S,) <r}) < C)¥r>  forall S, € SHo g

by work of Naber and Valtorta [2014]. Using an elementary Vitali covering argument (e.g., see [Mattila
1995, (5.4) and (5.6)]), it follows that H,, 4 has an (n — 1, C(n, d), 1) covering profile and SH,, 4 has an
(n—2,C(n,d), 1) covering profile in the sense of Definition A.19.

Assume that A is a nonempty closed subset of R". Since A\ A is relatively closed in A by (v), A\ A; is
closed in R", as well. By Theorem A.20, A has upper Minkowski dimension at most n—1, since A is closed,
A is locally unilaterally well approximated by #,, 4, and #,, 4 has an (n — 1, C(n, d), 1) covering profile.
Also, by Theorem A.20, A \ A; has upper Minkowski dimension at most n — 2, since A \ A; is closed,
A\ Aj is locally unilaterally well approximated by SH, 4, and SH,, 4 has an (n —2, C(n, d), 1) covering
profile. This establishes (viii) and the upper bound in (vii). To wrap up, observe that A; is nonempty by
(vi), Aq is locally closed by (ii), and A is locally Reifenberg vanishing by (iii). Therefore, by Reifenberg’s
topological disk theorem (see, e.g., [David and Toro 2012]), A; is a topological (n—1)-manifold (and
more, see Remark 1.3). Therefore, A; has Hausdorff and upper Minkowski dimension at least n — 1. This
completes the proof of (vii). U

By examining the proof that A is relatively dense in A in the proof of Theorem 1.1, one sees the only
essential property about the cones H, 1 and H, 4, beyond detectability, is that for every X, € F;, ; there
exist some z € X, such that lim infj o @72{:’1 (z, ) = 0. Thus, abstracting the argument, one obtains the

following result.

Theorem 5.1. Let T and S be local approximation classes. Suppose T points are detectable in S, and
forall S € SNT+ there exists x € S such that lim inf, 1o @g(x, r)=0. (5-5)

If A is locally bilaterally well approximated by S, then the set A% described by Theorem A.14 is relatively
dense in A, i.e., Afﬂ A=A

6. Dimension bounds in the presence of good topology

We now focus our attention on sets A that separate R" into two connected components. When A = X%,
and p : R* — R is harmonic, this occurs precisely when the positive set SZIJDr ={xeR": px) >0}
of p and the negative set 2, = {x € R" : p(x) < 0} of p are pathwise connected. To start, let us prove
Lemma 1.7 from the Introduction, which implies that 7, ; contains zero sets X, that separate R" into
two components for all dimensions n > 4 and for all degrees k > 2.
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\%3

Vi

Figure 2. Let ¢ : R — R denote a nonconstant homogeneous harmonic polynomial
(illustrated with degree 4). The light blue cells denote the positive set of ¢ and the
medium blue cells denote the negative set of g. Suppose that g(U) > 0, g(V;) > 0, and
p(Vi, Va) > 0, where p(W, W,) = qg(W;) 4+ g(W;). To move from (Vy, V,) to (U, U)
inside the positive set of p, first send V, to U along the green path and then move V| to
U along the red path.

Proof of Lemma 1.7. We sketch the argument when @ = b = 1, with the other cases following from an
obvious modification. Let ¢ : R — R be a homogeneous harmonic polynomial of degree k > 2. Note that
by elementary complex analysis, g can be written as the real part of a complex polynomial g : C — C,
G(z) = czk. Thus, 34 is the union of k equiangular lines through the origin and the chambers of R%\ Xy
alternate between the positive and negative sets of g. Let U = (x;, y;) be any point such that g(U) > 0.
Then p(U, U) > 0, as well, where p(W;, W,) = qg(W)) 4+ g(W>). To show that the positive set of p is
connected, it suffices to show that any point (Vy, V») € R2 x R? such that p(Vi, V) > 0 can be connected
to (U, U) by a piecewise linear path in the positive set. If p(Vy, V») > 0, then g(V;) > 0 or g(V2) > 0,
say without loss of generality that g(V;) > 0. Then the desired path from (Vy, V») to (U, U) is described
in Figure 2. A similar argument verifies that the negative set of p is connected and we are done. (]

Our goal for the remainder of this section is to prove Theorem 1.8, which requires the following notion
of nontangential accessibility.

Definition 6.1 [Jerison and Kenig 1982]. A domain (i.e., a connected open set) 2 C R” is called NTA or
nontangentially accessible if there exist constants M > 1 and R > 0 for which the following are true:

(i) 2 satisfies the corkscrew condition: for all Q € 02 and 0 < r < R, there exists x € 2N B(Q, r)
such that dist(x, 9Q) > M~ 'r.

(i) R"™\ Q satisfies the corkscrew condition.

(iii) 2 satisfies the Harnack chain condition: if x;, x, € QN B(Q, zltr) for some Q € 02 and 0 <r < R,
and dist(x;, 9Q) > 8, dist(xa, Q) > 8, and |x] — x2| < 2'8 for some § > 0 and / > 1, then there
exists a chain of no more than M| overlapping balls connecting x; to x, in €2 such that for each ball
B = B(x, s) in the chain

M5 < gap(B, 02) < Ms, gap(B, 02) = inf inf |x —y]|,
xeB yedQ

diam B > M~! min{dist(x;, 8), dist(x», 8Q)}, diam B = sup |x — y|.
x,yeB
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We refer to M and R as NTA constants of the domain 2. When 92 is unbounded, R = oo is allowed. To
distinguish between conditions (i) and (ii), the former may be called the interior corkscrew condition and
the latter may be called the exterior corkscrew condition.

Remark 6.2. In the definition of NTA domains, the additional restriction R = co when 2 is unbounded is
sometimes imposed (e.g., see [Kenig and Toro 1999; 2006; Kenig et al. 2009]) in order to obtain globally
uniform harmonic measure estimates on unbounded domains, but that restriction is not essential in the
geometric context of Theorem 1.8, and thus, we omit it.

An essential feature of NTA domains that we need below is that the NTA properties persist under limits
(with slightly different constants). When I'; = ri_1 (02 — Q;) is a sequence of pseudoblowups of the
boundary €2 of a 2-sided NTA domain 2 C R" for some Q; € 92 and r; > 0 such that Q; — Q € IQ2
and r; | 0, we have the following lemma, due to Kenig and Toro [2006, Theorem 4.1]; also see [Azzam
and Mourgoglou 2015, Lemma 1.5] for a recent variant on uniform domains. For the proof of Lemma 6.3,
see Appendix B below.

Lemma 6.3. Suppose that T'; C R" is a sequence of closed sets such that R" \ I'; = Q:r U Q" is the
union of complimentary NTA domains Qf and Q2 with NTA constants M and R independent of i. If
I'; — T # & in the Attouch—Wets topology, then R* \ I' = QU Q™ is the union of complementary NTA
domains Qt and Q= with NTA constants 2M and R.

In the remainder of this section, we work with subclasses of H, 4 and F;, x whose zero sets X, separate
R" into two distinct NTA components with uniform NTA constants.

Definition 6.4 (2-sided NTA restricted classes 7-[:’ & Z* B ]-':, o ]-';:j(). Foralln >2andd > 1, let H; ,
denote the collection of all X, € H, 4 such that sz ={x e R": £p(x) > 0} are NTA domains with NTA
constants M* = M and R* = oo for some fixed M > 1. (We deliberately suppress the choice of M* from the
notation.) Also, let H:Td denote the collection of all ¥, € H,, 4 such that Qljf are NTA domains with NTA
constants M** =2M* and R** = oo. Finally, set ]-':’k = H;’k N Fu.kx and ]-',f";( = :*k NFpx forall k > 1.

Remark 6.5. The classes H, ; (hence ;%) and F; (hence ) are local approximation classes (see
Definition A.7), because R* = oo, and it is apparent that #;, , is translation invariant in the sense that
Yy —x €M, forall ¥, e H; ;, and x € ¥,. Hence 77[:’ 4 1s also translation invariant. By Corollary 4.4
and Lemma 6.3, H , € H3*, and Fy; , C F%. Since H, ;. points are detectable in H, 4 forall 1 <k <d
by Corollary 1.5 and H, ; € Hy a4, we have H, ; points are detectable in H, ,, as well. Finally, we
reiterate that ]-';; « is nonempty for some M* > 1l if and only if k =l andn > 2; k > 2 is even and n > 4;
or, k > 3 is odd and n > 3. See Remark 1.10. The assertion that the interiors of the two connected
components of R" \ ¥, are NTA domains when n =3 and p = p(x, y, z) is Szulkin’s polynomial (or
any of Lewy’s odd-degree polynomials) and when n =4 and p = p(xy, y1, X2, y2) is the zero set of one
of the polynomials from Lemma 1.7 follows from the fact that in each case X, N dB(0, 1) is a smooth
hypersurface in the unit sphere and %, is a cone.

The following technical proposition, alluded to in the Introduction after the statement of Theorem 1.8,
is a consequence of Lemma 6.3.
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Lemma 6.6. Suppose that A C R" is closed and R" \ A = QT U Q™ is a union of complementary NTA
domains. If A is locally bilaterally well approximated by H,, 4 for some n > 2 and d > 1, then A is locally
bilaterally well approximated by H;, , for some M* > 1 depending only on the NTA constants of Qt
and Q7.

Proof. Suppose that A is closed, A is locally bilaterally well approximated by H,, 4, and R"\ A = QT UQ~
is a union of complementary NTA domains with uniform NTA constants M and R. On one hand, by
Theorem A.11 and Corollary 4.4, W-Tan(A, x) C ’}Tln,d = H, 4 for all x € A, where W-Tan(A, x) is the
collection of all pseudotangent sets of A at x. On the other hand, for every x € A and r > 0, the set
(A—x)/r=Qf,UQ;, is a union of complementary NTA domains 2, and Q, with NTA constants
M., =M and R, , = R/r. Thus, every pseudotangent set T = lim;_,o(A — x;)/r; € W-Tan(A, x)
separates R” into two NTA domains with NTA constants My = 2M and Ry = oo by Lemma 6.3, since
Ry, , = R/ri — oo as r; — 0. Therefore, W-Tan(A, x) C H:’d for every x € A with M* =2M. By
Theorem A.11, it follows that A is locally bilaterally well approximated by H, ,, as desired. U

In view of Lemma 6.6, Theorem 1.8 is a special case of the following theorem.

Theorem 6.7. Letn>2, d>2,and M* > 1. If A CR" is closed and locally bilaterally well approximated
by ”H,:; > then

(i) A\A; =A,U---U Ay, has upper Minkowski dimension at most n — 3; and,

(i) the even singular set Ay U A4 U AgU - - - has Hausdorff dimension at most n — 4.

To prove Theorem 6.7 using the technology of [Badger and Lewis 2015], we need to show the

existence of “covering profiles” (see Definition A.19) for the classes singy, | 77:’ g andsingy,  H:
(see Definition A.16), which are well defined because ﬁ:’ 4 1s translation invariant and H,, ; points are
detectable in H; ;, by Remark 6.5. The following lemma proves the existence of good covering profiles

for sing,, , | H, , for all degrees k > 2.

Lemma 6.8. Letk > 2 and assume that n+(k mod 2) > 4. For every k-homogeneous harmonic polynomial
p :R" — R such that R" \ ¥, has two connected components,

_ T Houk—1
(Cplat, | = [xez,: llglélf@zp (x,r) > 0}
is a linear subspace V of R" with dimV <n —4 4 (k mod 2). In particular,
singy,  Hp = {(EP)Hik_. Sy ety O€ (Tplaet, }
admits an (n —4 4+ (k mod 2), C(n), 1) covering profile.

Proof. Suppose that k and n satisfy the hypothesis of the lemma and let p : R” — R be a k-homogeneous
harmonic polynomial. We will show that (E,,),L_[” ., coincides with

V=1{x0eR": p(x + x9) = p(x) for all x € R"},
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which is a linear subspace of R" because p is k-homogeneous. To start, note that
X0 € (EP)HLH < 0%p(xp) =0 forall |o|<k—1
< phx+x9) =q(x) forsome g, where g : R" — R is k-homogeneous,

where the first equivalence holds by Theorem 1.4 and the second equivalence holds by Taylor’s theorem.
Hence V C (EP)HLH, since p is k-homogeneous. Conversely, using the homogeneity of p and ¢, at any
x0 € (Bp)ul, | we obtain

p(x +x0) = q(x) = g (x/2) = A p(x /A + x0) = p(x + Axp) forall A € R\ {0}.

Letting A — 0, we conclude that p(x + x9) = p(x) for all x € R” whenever x € (Ep)Hik—li Thus,
(Zp)yr, SV, as well.

To continue, suppose that X, separates R" into two components. Let p : V+ — R be the image of p
under the quotient map R” — R"/V = V.. Because V is the space of invariant directions for p, the
map p is still a degree-k homogeneous harmonic polynomial (in orthonormal coordinates for V) and

Y, =3;0V={x+vixeX;CViveV}

Hence X ; separates V1 into two components, since %, separates R" into two components. It follows
that dim V+ > 4 if k > 2 is even, and dim V1 > 3 if k > 3 is odd; e.g., see the paragraph immediately
preceding the statement of Lemma 1.7. Therefore, dimV <n —4if k> 2 iseven,and dimV <n —3 if
k > 3 is odd.

Finally, by Theorem 1.4, Remark 6.5, and the first part of the lemma,

J
singy, , Hnk = {1 B € Foud S{Epne, e At clJGm b,
i =0

where j =n—4ifk>2iseven, and j =n—3 if k > 3 is odd. Here each G (n, i) denotes the Grassmannian
of dimension-i linear subspaces of R”, which possesses an (i, C (i), 1) covering profile; thatis, VN B(0, r)
can be covered by C(i)s~* balls B(v;, sr) centered in V N B(0, r) for all planes V € G(n, i), r > 0, and
0 < s < 1. (For example, this follows from the fact that the Lebesgue measure of any ball of radius r in

R’ is proportional to r'.) It follows that the class sinanqkf | 7—[:’ i has an (n — 4, C(n), 1) covering profile

when k& > 2 is even, and singq_ln.k_l Hf;’k has an (n — 3, C(n), 1) covering profile when k > 3 is odd. [

The covering profiles for singy, ~ H, ; from Lemma 6.8 will enable us to prove (ii) in Theorem 6.7
and also to prove that A \ A; has Hausdorff dimension at most n — 3. However, to show that A \ A; has
upper Minkowski dimension at most n — 3, we need to find covering profiles for sing;, | ﬁ:y 4> Whose
existence does not automatically follow from the covering profiles in Lemma 6.8. To proceed, we use
the quantitative stratification and volume estimates for singular sets of harmonic functions developed
by Cheeger, Naber, and Valtorta [Cheeger et al. 2015]. The following description of the stratification
combines several definitions from §1 of their paper; see Definitions 1.4, 1.7 and 1.9 and Remark 1.8 of

the same work.
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Definition 6.9 ([Cheeger et al. 2015]; quantitative stratification by symmetry). A smooth function
u :R" — Ris called O-symmetric if u is a homogeneous polynomial and u is called k-symmetric if u is
0-symmetric and there exists a k-dimensional subspace V such that

u(x+y)=u(x) forallx eR"andyeV.

For all smooth u : B(0, 1) — R, and for all x € B(0, 1 —r), define

T ou(y) = u(x+ry)—u(x) )1/2 for all y € B(0, 1).

(faB(o,l) lu(x +rz) —u(x)|?do(z)

(If the denominator vanishes, set Ty , = 00.) A harmonic function u : B(0, 1) — R is called (k, ¢, r, x)-
symmetric if there exists a harmonic k-symmetric function p with |, 3B(0.1) | p|?>do =1 such that

f |Tx,ru_p|2<8-
B(0,1)

For all harmonic u : B(0, 1) — R, define the (k, n, r)-effective singular stratum by
SI,;’,(u) ={xe€ B(,1):uisnot (k+1, n, s, x)-symmetric for all s > r}.

For harmonic functions, [Cheeger et al. 2015, Theorem 1.10] gives the following Minkowski-type
estimates for effective singular strata. In the statement, N (1, 0, #) denotes Almgren’s frequency function
with r =1, x9 =0, and f =u (recall Definition 3.3 above).

Theorem 6.10 [Cheeger et al. 2015]. If u : B(0,1) — R is a harmonic function with u(0) = 0 and
N(,0,u) < A < oo, then for everyn > 0and k <n —2,

Vol({x € B(0, §) : dist(x, 8§ .(u)) <r}) < C(n, A, p)r" 7" (6-1)

We now show that if 7 is small enough depending on n, d, and M*, then the singular set of X, € H ,

is contained in 82;3 (p).

Lemma 6.11. For alln > 2, d > 2, and M* > 1, there exists 1 > 0 with the following property. If
PIMS ’H;d, xXo € Xp, and pis (n —2, n, r, xo)-symmetric for some n € (0, ) and r > 0, then x¢ is an F |
point of X,. Consequently, the set of all singular points of X, (that is, F,2U---UJF, 4 points of ¥,)
belongs to 8:‘];3 (p) foralln € (0,7n) and r > 0.

Proof. Letn > 2, d >2,and M* > 1 be given. Assume in order to obtain a contradiction that for all i > 1,
there exist X, € H;",d, ni <1/i, x; € ¥p,, and r; > 0 such that p; is (n — 2, n;, r;, x;)-symmetric and x;
is not an ¥, | point of X, . Equivalently, by Theorem 1.4, Dp; (x;) = 0. That is, the Taylor expansion
for p; at x; has no nonzero linear terms. By definition of almost symmetry, there exist (n—2)-symmetric
homogeneous harmonic polynomials /; such that fa B(0.1) |hi|*do =1 and

1
Ty 0o pi — hil* < . (6-2)
B(0,1) l
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As everything is translation, dilation, and rotation invariant, we may assume without loss of generality
that for all i > 1, we have x; =0, r; = 1, and h; (y1, ¥2, ..., Yn) = hi(y1, 2,0, ...,0) for all y € R". To
ease notation, let us abbreviate g; = Tp | p;. We note that

Igill2(B0.1)) ~n.a 1gillL2@@B(0,1)) ~na 1 foralli >1, (6-3)

where the first comparison holds by Lemma 3.8 and the second holds by the definition of T 1 p;.

We now claim that deg h; < d for all i sufficiently large. To see this, suppose to the contrary that
[ :=degh; > d for some i > 1. Recalling both that spherical harmonics of different degrees are orthogonal
on spheres centered at the origin and that /; is [-homogeneous with [ > deg ¢g;, we have

1 ~pallgill? Snd ][
L=(B(0,1)) BO.1)

1
@rm=f la-mP <]
B(0,1) l

by (6-2) and (6-3). This is impossible if i is sufficient large depending only on »n and d. Thus, degh; <d
for all i sufficient large, as claimed. In particular,

Ihillz2Bo,1)) ~na 1hillL2@Bo,1)) ~na 1 foralliZ,q 1. (6-4)

By (6-3), (6-4), Lemma 2.1, and Corollary 3.5, we conclude that H(q;) ~,.4 1 and H(g;) ~p.4 1 for
all sufficiently large i. Therefore, by passing to a subsequence of the pair (g;, #;)72, (which we relabel),
we may assume that g; — ¢ in coefficients and h; — h in coefficients for some nonconstant harmonic
polynomials g and & of degree at most d. On one hand, we have %, € 771;‘;’ ¢ S H;%, by Lemma 4.3 and
Dq(0) =0, since Dg;(0) =0 for all i. Hence g has degree at least 2. On the other hand, we have # is
homogeneous and i (yy, y2, ..., yu) = h(y1, 2,0, ..., 0) for all y € R", because the same are true of the
polynomial h; foralli 2, 4 1.

We are now ready to obtain a contradiction. Since ¢; — ¢ and h; — h uniformly on compact sets,
we have g = h by (6-2). Thus, X, € F,; for some 2 < k < d —in particular, ¥, is the zero set of a
homogeneous harmonic polynomial of degree at least 2 that separates R” into two components —and g
depends on at most two variables. No such polynomial g exists (e.g., see Remark 6.5)! Therefore, for all
n>2,d>2,and M* > 1, there exists 7 > 0 such that if ¥, € H:,d’ X0 € Xp, and p is (n—2, n, r, Xo)-
symmetric for some 1 € (0, 1) and r > 0, then x¢ is an 7, ; point of %,. Consequently, if ¥, € H; ; and
X0 € X, belongs to the singular set of p, then p is not (n—2, n, r, x9) symmetric for all n € (0, n) and
r > 0. By definition of the singular strata, we conclude that for all ¥, € H, , the set of all singular points
of X, belongs to 8;;3 (p) forall n € (0, 1) and r > 0. [l

At last, we are ready to prove Theorems 6.7 and 1.8.

Proof of Theorems 6.7 and 1.8. As noted earlier, Theorem 6.7 implies Theorem 1.8 by Lemma 6.6. Thus,
it suffices to establish the former. Assume A C R" is closed and locally bilaterally well approximated
by H,, ; for some M* > 1. Then A can be written as A = A; UA,U---U A, according to Theorem 1.1.
In particular, Uy = A; U --- U Ay is relatively open in A and locally bilaterally well approximated by
Hy x for all 1 <k < d. Hence Uy is also locally bilaterally well approximated by 7% forall 1 <k <d,
because W-Tan(A, x) C ﬂ:’d NHpx S H:fk for all x € U by Theorem A.11 and Remark 6.5. Also,
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A\ Aj is closed in R”, because A is relatively open in A and A is closed in R”, and Ay is o-compact for
each k > 1, because Ay is relatively closed in Uy, Uy is relatively open in A, and A is closed in R". Our
goal is to prove that (i) dimy, A \A; <n—3and (ii)) dimyg Ay <n —4 for all even k > 2.

We begin with a proof of (i). By Remark 6.5, ﬁ;fd is translation invariant and H, | points are detectable
in H;*;. Thus, A\ Ay is locally unilaterally well approximated by sing,, | _;j"d by Theorem A.17. By
Lemma 6.11 and Theorem 6.10, the class singm,1 :f‘d admits an (n—3+n, C(n, d, n, M**), 1) covering
profile for all n > 0. Thus, since A \ A; is closed, we have dimy; A\ A} <n —3+n for all n > 0 by
Theorem A.20. Letting n | 0, we conclude (HlM A\ A; <n—3, as desired.

We now prove (ii). Let k > 2 be even. By Remark 6.5, ﬁ:jkk—l is translation invariant and H,, x_; points
are detectable in ;. Thus, Ay = Uk \ Uy is locally unilaterally well approximated by singy, , | ”F[fk
by Theorem A.17. By Lemma 6.8, the class sing;, , | H;fk admits an (n — 4, C(n), 1) covering profile.
Thus, since Ay, is o-compact, we have dimy Ay <n —4 by Theorem A.21, as desired. Because Hausdorff

dimension is stable under countable unions, dimyg A, U A4 U--- <n —4, as well. O

7. Boundary structure in terms of interior and exterior harmonic measures

Harmonic measure arises in classical analysis from the solution of the Dirichlet problem and in probability
as the exit distribution of Brownian motion. For nice introductions to harmonic measure, see the books
of Garnett and Marshall [2005] and Morters and Peres [2010]. One of our motivations for this work is
the desire to understand the extent to which the structure of the boundary of a domain in R”, n > 2, is
determined by the relationship between harmonic measures in the interior and the exterior of the domain.
This problem can be understood as a free boundary regularity problem for harmonic measure. For an
in-depth introduction to free boundary problems for harmonic measure, see the book of Capogna, Kenig,
and Lanzani [Capogna et al. 2005].

Given a simply connected domain  C R?, bounded by a Jordan curve, let * and ™ denote the
harmonic measures associated to Q+ = Q and Q= = R? \ Q, respectively, which are supported on their
common boundary dQ2 = Q" = 9Q™. Together, the theorems of McMillan, Makarov, and Pommerenke
(see [Garnett and Marshall 2005, Chapter VI]) show that

ot <o <ot = oT<«HsKo and o «H'|g Ko

for some set G C 9S2 with o -finite 1-dimensional Hausdorff measure and a)i(aQ \ G) = 0; furthermore, in
this case, dQ possesses a unique tangent line at Q for w*-a.e. Q € Q2. Here H* denotes the s-dimensional
Hausdorff measure of sets in R”. Motivated by this result, Bishop [1992] asked whether if on a domain
in R", n >3,

ot <o Kot = oT<H gkt ad o” KH g <0 (7-1)

for some G C 3 with o-finite (n—1)-dimensional Hausdorff measure and »* (3 \ G) =0. In [Kenig
et al. 2009], Kenig, Preiss, and Toro proved that when Q" = Q C R" and Q~ = R"\ Q are NTA domains
in R", n > 3, the mutual absolute continuity of @' and w™ on a set E C dQ2 implies that a)i|E has
upper Hausdorff dimension n — 1: there exists a set E/ C E of Hausdorff dimension n — 1 such that
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ot (E\E)=0,and ™ (E\ E”) > 0 for every set E” C E with dimyy E” <n — 1. Moreover, in this case
ot <K H g < 0oF|E provided that H' g is locally finite (see [Badger 2012; 2013, Remark 6.19]).
However, at present it is still unknown whether or not (7-1) holds on domains for which %" ~!|;q is not
locally finite. For some related inquiries, see the work of Lewis, Verchota, and Vogel [Lewis et al. 2005],
Azzam and Mourgoglou [2015], Bortz and Hofmann [2016].

Remark 7.1 (added in February 2017). Several months after the first version of this paper appeared on the
arXiv in September 2015, a solution to Bishop’s conjecture (7-1) was furnished by Azzam, Mourgoglou,
and Tolsa [Azzam et al. 2017b] and by Azzam, Mourgoglou, Tolsa, and Volberg [Azzam et al. 2016]. An
important tool in these works is a new “bounded Riesz transform” to “uniform rectifiability” criterion of
Girela-Sarrién and Tolsa [2016].

Finer information about the structure and size of the boundary under more stringent assumptions on
the relationship between w™ and w™ has been obtained in [Kenig and Toro 2006; Badger 2011; 2013;
Badger and Lewis 2015; Engelstein 2016]. We summarize these results in Theorem 7.3 after recalling the
definition of the space VMO(dw) of functions of vanishing mean oscillation, which extends the space of
uniformly continuous bounded functions on 9€2.

Definition 7.2 [Kenig and Toro 2006, Definitions 4.2 and 4.3]. Let Q2 C R” be an NTA domain (with
the NTA constant R = oo when 92 is unbounded) equipped with harmonic measure w. We say that
f € L% _(dw) belongs to BMO(dw) if and only if

loc
1/2
sup sup (][ |f—fQ,r|2da)) < 00,
r>0 Qed2 B(Q,r)

where fo , = fB 0.1 f dw denotes the average of f over the ball. We denote by VMO(dw) the closure
in BMO(dw) of the set of uniformly continuous bounded functions on 92.

Theorem 7.3. Assume that QT = Q C R" and Q™ = R" \ Q are NTA domains (with the NTA constant
R = 00 when 32 is unbounded), equipped with harmonic measures w* on QF. If 07 K 0~ <K 0™
and the Radon—Nikodym derivative f = dw™ /dw™ satisfies log f € VMO(dw™), then the boundary 0
satisfies the following properties.

o There exist d > 1 and M* > 1 depending on at most n and the NTA constants of QT and Q™ such
that 92 is locally bilaterally well approximated by H, , [Kenig and Toro 2006].

» 0R2 can be partitioned into disjoint sets I'y, 1 <k <d, such that x € Iy if and only if x is an F,
point of Q. Moreover, T'y is dense in 3Q and = (3 \ T';) = 0 [Badger 2011].

o 'y is relatively open in 92, I'y is locally bilaterally well approximated by H,, 1, and I\ has Hausdorff
dimension n — 1 [Badger 2013].

e 02 has upper Minkowski dimension n — 1 and 0Q2\ T’y = T, U---UT'y has upper Minkowski
dimension at most n — 2 [Badger and Lewis 2015].

o If log f € CH% for some 1 >0 and o > 0 (resp. log f € C*, log f real analytic), then T'y is a C!T1:¢
(resp. C*°, real analytic) (n—1)-dimensional manifold [Engelstein 2016].
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Remark 7.4. The statements from [Kenig and Toro 2006] and [Badger 2011] recorded in Theorem 7.3
were obtained by showing that the pseudotangent measures of the harmonic measures w® of Q¥ are
“polynomial harmonic measures” in [Kenig and Toro 2006] and by studying the “separation at infinity”
of cones of polynomial harmonic measures associated to polynomials of different degrees in [Badger
2011] (also see [Kenig et al. 2009]). The statements from [Badger 2013] and [Badger and Lewis 2015]
are forerunners to and motivated the statement and proof of Theorem 1.1 in this paper. However, we wish
to emphasize that the structure theorem [Badger 2013, Theorem 5.10] and dimension estimate on the
singular set 32\ I'; in [Badger and Lewis 2015, Theorem 9.3] required existence of the decomposition
from [Badger 2011] as part of their hypotheses. By contrast, in this paper, we are able to establish the
decomposition A = A;U- - -UA, and obtain dimension estimates on the singular set A\ A; in Theorem 1.1
directly, without any reference to harmonic measure or dependence on [Badger 2011].

Theorem 1.1 and 1.8 of the present paper yield several new pieces of information about the boundary
of complimentary NTA domains with log f € VMO(dw™), which we record in Theorem 7.5.

Theorem 7.5. Under the hypothesis of Theorem 7.3, the boundary 02 = 'y U --- U 'y satisfies the
following additional properties:
(i) Forall1 <k <d, the set Uy :=T1U---UTy is relatively open in 02 and T'y11 U ---UT; is closed.
(ii) Forall 1 <k <d, the set Uy is locally bilaterally well approximated by 1.

(iii) Forall 1 <k <d, the boundary 92 is locally bilaterally well approximated along Ty by F,% , i.e.,
R s
limsup, | o sup,cx O,  (x, r) =0 for every compact set K C T'y.

(v) Forall1 <l <k <d, the set U, is relatively open in Uy and I'j1 U - - - UT is relatively closed in Uy,.
(v) dQ2\ Ty =T U---UTy has upper Minkowski dimension at most n — 3.

(vi) The even singular set 'y UT'4 U - - - has Hausdorff dimension at most n — 4.

(vii) When n > 3, the singular set 02\ I'| has Newtonian capacity zero.

Proof. Parts (i) and (iv) of the theorem are a direct consequence of Theorem 1.1. Parts (ii) and (iii) follow
from Theorem 1.1 in conjunction with Lemma 6.6, Theorem A.11, and Remark 6.5 (see the proof of
Theorem 1.8). Parts (v) and (vi) are a direct consequence of Theorem 1.8. Newtonian capacity in R”,
n > 3, is precisely the Riesz (n—2)-capacity. Thus, part (vii) follows from (v) and the fact that sets of

finite s-dimensional Hausdorff measure have Riesz s-capacity zero (see, e.g., [Morters and Peres 2010,
Chapter 4] or [Mattila 1995, Chapter 8]). ([

Remark 7.6. The dimension bounds (v) and (vi) in Theorem 7.5 are sharp by example. See Remark 1.10
and Remark 6.5.

Remark 7.7. The fact that 92 \ I'; has Newtonian capacity zero implies ot OQ \ I'1) = 0; see [Morters
and Peres 2010, Chapter 8].
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Appendix A: Local set approximation

A general framework for describing bilateral and unilateral approximations of a set A C R” by a class S
of closed “model” sets is developed in [Badger and Lewis 2015]. In this appendix, we give a brief,
self-contained abstract of the main definitions and theorems from this framework as used above, but refer
the reader to [Badger and Lewis 2015] for full details and further results. The principal results are two
structure theorems for Reifenberg-type sets; see Theorems A.14 and A.17.

Distances between sets. If A, B CR" are nonempty sets, the excess of A over B is the asymmetric quantity
defined by ex(A, B) = sup, 4 infj,cp |la — b| € [0, oc]. By convention, one also defines ex(&, B) =0,
but leaves ex(A, @) undefined. The excess is monotone,

ex(A, B) <ex(A’, B’) whenever AC A’ and B D B/,
and satisfies the triangle inequality,
ex(A,C) <ex(A, B) +ex(B, C).

When A = {x} for some x € R", the excess ex({x}, B) is usually called the distance of x to B and is
denoted by dist(x, B).

For all x € R" and r > 0, let B(x, r) denote the open ball with center x and radius r. (In [Badger
and Lewis 2015], B(x, r) denotes the closed ball, but see Remark 2.4 in that paper.) For arbitrary sets
A, B C R" with B nonempty and for all x € R" and r > 0, define the relative excess of A over B in
B(x,r) by

d* (A, B) =r'ex(ANB(x,r), B) € [0, 00).

Also, for all sets A, B C R"” with A and B nonempty and for all x € R" and r > 0, define the relative
Walkup—Wets distance between A and B in B(x, r) by

D*'[A, B] = max{d*" (A, B),d*" (B, A)} € [0, c0).

Observe that ISX”[A, B] <2 ifboth AN B(x,r) and BN B(x, r) are nonempty; and ﬁ“[A, Bl <1if
both x € A and x € B.

Lemma A.1 [Badger and Lewis 2015, Lemma 2.2, Remark 2.4]. Let A, B, C C R" be nonempty sets, let
x,y € R", and let r, s > 0. Then we have the following properties:

e closure: D*'[A, B] = D*'[A, B] = D*'[A, B] = D*"[A, B].
e containment: 15”[14, Bl=0ifand only if AN B(x,r) = BN B(x,r).
e quasimonotonicity: If B(x,r) C B(y, s), then IS“[A, B] < (s/r)lsy’s[A, B].

strong quasitriangle inequality: If d*" (A, B) < &1 and d*" (C, B) < ¢, then

D*[A, C1 < (1+e) D" [A, B]+ (1 +e)D"**[B, C].
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o weak quasitriangle inequalities: If x € B, then

D*"[A, C] <2D*¥[A, B]1+2D*? B, CI.
If BN B(x,r) # O, then

D*"[A, B] <3D*¥[A, B]+3D*¥[B, CI.

e scale invariance: ]5“[A, B] = ]5”’“[AA, AB] forall . > 0.

e translation invariance: ISX"[A, B] = 13X+Z'r[z + A, z+ B] forall z e R"

Remark A.2. The relative Hausdorff distance between A and B in B(x, r), defined by
D*'[A, Bl =r"max {ex(ANB(x,r), BNB(x,r)),ex(BNB(x,r), ANB(x,r))}

whenever AN B(x,r) and B N B(x, r) are both nonempty, is a common, better-known variant of the
relative Walkup—Wets distance. We note that D~ "[A, B] < D*"[A, B] whenever both quantities are
defined. Although the relative Hausdorff distance satisfies the triangle inequality rather than just the
weak and strong quasitriangle inequalities enjoyed by the relative Walkup—Wets distance, the relative
Hausdorff distance fails to be quasimonotone (see [Badger and Lewis 2015, Remark 2.3]). This makes
the relative Hausdorff distance unsuitable for use in the local set approximation framework below. The
use of the relative Walkup—Wets distance is deliberate and ensures that one can obtain structure theorems
for Reifenberg-type sets.

Attouch—Wets topology, tangent sets, and pseudotangent sets. Let €(R") denote the collection of all
nonempty closed sets in R". Let €(0) denote the subcollection of all nonempty closed sets in R” containing
the origin. We endow €(R") and €(0) with the Attouch—Wets topology (see [Beer 1993, Chapter 3] or
[Rockafellar and Wets 1998, Chapter 4], i.e., the topology described by the following theorem.

Theorem A.3 [Badger and Lewis 2015, Theorem 2.5]. There exists a metrizable topology on €(R") in
which a sequence (A;):2, in €(R") converges to a set A € €(R") if and only if

1

lim ex(A;NB(0,r),A)=0 and lim ex(ANB(0,r),A;)=0 forallr>O0.
1—> 00 1—>00

Moreover, in this topology, €(0) is sequentially compact; i.e., for any sequence (A;){2, in €(0) there

exists a subsequence (A; j)C/?OZ  and A € &(0) such that (A; j);’.i | converges to A in the sense above.

We write A; — A or A =1im;_, A (in €(R")) to denote that a sequence of (A;)72, in €(R") converges

to a set A € €(R") in the Attouch—Wets topology. If each set A; € €(0), then we may write A; — A in
€(0) to emphasize that A € €(0), as well.

Lemma A.4 [Badger and Lewis 2015, Lemma 2.6]. Let A, A1, A, ... € C(R"). The following statements
are equivalent:

(1) A; — Ain C(R").
(1) lim; o IA)J’”[A,', Al=0 forall x € R" and for allr > 0.

(iii) lim;_, o D*"[A;, A] =0 for some xo € R" and for some sequence rj — oC.



1486 MATTHEW BADGER, MAX ENGELSTEIN AND TATIANA TORO

The notions of tangent sets and pseudotangent sets of a closed set in the following definition are
modeled on notions of tangent measures (introduced by Preiss [1987]) and pseudotangent measures
(introduced by Kenig and Toro [1999]) of a Radon measure.

Definition A.S [Badger and Lewis 2015, Definition 3.1]. Let T € €(0), let A € €(R"), and let x € A. We
say that T is a pseudotangent set of A at x if there exist sequences x; € A and r; > 0 such that x; — x,

ri — 0, and
A—Xl'

r

— T in €(0).

If x; = x for all i, then we call T a tangent set of A at x. Let ¥-Tan(A, x) and Tan(A, x) denote the
collections of all pseudotangent sets of A at x and all tangent sets of A at x, respectively.

Lemma A.6 [Badger and Lewis 2015, Remark 3.3, Lemmas 3.4 and 3.5]. Tan(A, x) and W-Tan(A, x)
are closed in €(0) and are nonempty for all A € E(R"*) and x € A. Moreover,

e If T e Tan(A, x) and A > 0, then LA € Tan(A, x).

e If T e W-Tan(A, x) and ) > 0, then AT € W-Tan(A, x).

e IfTeW-Tan(A,x)and y € T,then T —y € V-Tan(A, x).

Reifenberg-type sets and Mattila—Vuorinen-type sets.
Definition A.7 [Badger and Lewis 2015, Definitions 4.1 and 4.7]. Let A € R" be nonempty.

(1) A local approximation class S is a nonempty collection of closed sets in €(0) such that S is a cone;
that is, forall Se Sand A > 0, AS € S.

(ii) For every x € R" and r > 0, define the bilateral approximability @‘f\ (x,r) of AbyS at location x
and scale r by
©F = inf D*"[A, x + S] € [0, 00).
NN
(iii) We say that x € A is an S point of A if lim, ;o ©5 (x,r) = 0.

(iv) We say that A is locally bilaterally e-approximable by S if for every compact set K C A there exists
rx such that @‘j(x, ry<eforallx e K and 0 <r <rg.

(v) We say that A is locally bilaterally well approximated by S if A is locally bilaterally e-approximable
by S for all ¢ > 0.

(vi) For every x € R" and r > 0, define the unilateral approximability ,Bf (x,r) of Aby S at location x
and scale r by

B3 (x,r) = inf d*" (A, x + ) € [0, 1].
SeS

(vii) We say that A is locally unilaterally e-approximable by S if for every compact set K C A there

exists rg such that ,Bf(x, ry<eforallx e K and 0 <r <rg.

(viii) We say that A is locally unilaterally well approximated by S if A is locally unilaterally e-approximable
by S for all ¢ > 0.
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Remark A.8. Sets that are bilaterally approximated by S are called Reifenberg-type sets and sets that are
unilaterally approximated by S are called Mattila—Vuorinen-type sets with deference to pioneering work
of Reifenberg [1960] and Mattila and Vuorinen [1990], which investigated, respectively, regularity of sets
that admit locally uniform bilateral and unilateral approximations by S = G (n, m), the Grassmannian of
m-dimensional subspaces of R". The concept of (unilateral) approximation numbers first appeared in
the work of Jones [1990] in connection with the analyst’s traveling salesman theorem. For additional
background, including examples of Reifenberg-type sets that have appeared in the literature, see the
introduction of [Badger and Lewis 2015].

Remark A.9. For any nonempty closed set A C R" and point x € A, the set Tan(A, x) of tangent sets
of A at x and the set W-Tan(A, x) of pseudotangent sets of A at x are local approximation classes
by Lemma A.6. We also note that from the definitions, it is immediate that any set A € R" which is
locally bilaterally well approximated by some local approximation class S is also locally unilaterally well
approximated by S.

The following essential properties of bilateral approximation numbers appear across a number of
lemmas in [Badger and Lewis 2015, §4], which we consolidate into a single theorem statement; see
Lemma 7.2 of that paper for the analogous properties of unilateral approximation numbers.

Lemma A.10 [Badger and Lewis 2015, §4, Remark 2.4]. Let S be a local approximation class, let A CR"
be nonempty, let x, y € R", and let r, s > 0. Then we have the following properties:

o size: 0 < ®§(x, r) —dist(x, A)/r < 1; thus, 0 < @i(x, r) <1 forall x € A.
e scale invariance: @‘z (x,r)= @fA (Ax, Ar) forall A > 0.

e translation invariance: ®§ (x,r)= @iﬂ (x+2z,7) forall z e R".

closure: @‘f\ (x,r)= ®§(x, r).

o quasimonotonicity: If B(x,r) C B(y, s) and |x — y| < ts, then
Oh (. 1) < 21+ A +0O3(y. (1+0s5)].

In particular, if r < s, then ®‘§ (x,r) < (s/r)@‘i (x,s).

o limits: If A, A1, Ay, ... € ERY) and A; — A in E(R"), then

lim sup ®f\i (x,

i—00

r < @‘z(x, r)<(l+eg) liminf®fl,(x, r(14+¢)) foralle > 0.
14+¢ i—00 !
The notions of S points and locally bilaterally and unilaterally well-approximated sets admit the
following characterizations in terms of tangent sets and pseudotangent sets. Here S denotes the closure
of S in €(0) with respect to the Attouch—Wets topology.

Theorem A.11 [Badger and Lewis 2015, Corollaries 4.12 and 4.15, Lemma 7.7, Theorem 7.10]. Let S
be a local approximation class and let A C R" be a nonempty set and let xo € A. Then

() xq is an S point of A if and only if Tan(A, x¢) C S;
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(i1) A is locally bilaterally well approximated by S if and only if
W-Tan(A,x) C S forall x € A;
(iii) A is locally unilaterally well approximated by S if and only if

W-Tan(A, x) C{T €€0): T C S for some S € S} forallx € A.

Detectability and structure theorems for Reifenberg-type sets.

Definition A.12 [Badger and Lewis 2015, Definition 5.8]. Let 7 and S be local approximation classes.
We say that T points are detectable in S if there exist a constant ¢ > 0 and a function @ : (0, 1) — (0, c0)
with lim inf;_, g+ ®(s) = 0 such that if § € S and ®ST(0, r) < ¢, then 6}—(0, sr) < ®(s) forall s € (0, 1).
To emphasize a choice of ¢ and ¢, we may say that T points are (¢, ) detectable in S.

Definition A.13 [Badger and Lewis 2015, Definition 5.1]. Let 7 be a local approximation class. The

bilateral singular class of T is the local approximation class 7+ given by

TH={Z e 0): lirrignf®§(0, r) >0} ={Z € €(0): Tan(Z,0) N T = @}.

The following structure theorem decomposes a set A C R” that is locally bilaterally well approximated
by S into an open “regular part” A= and closed “singular part” A1, on the condition that “regular”
T points are detectable in S.

Theorem A.14 [Badger and Lewis 2015, Theorem 6.2, Corollaries 6.6 and 5.12]. Let T and S be local
approximation classes. Suppose T points are (¢, ) detectable in S. If A € R" is locally bilaterally well
approximated by S, then A can be written as a disjoint union
A=A7UAr. (AFzNArL =09),

where

(i) W-Tan(A, x) CSNT forall x € A7, and

(i) Tan(A,x) CSNTL =({Se€S:0%(0,r) > ¢ forallr > 0} forall x € Ay..
Moreover:
(iii) A= is relatively open in A and Az is locally bilaterally well approximated by T

(iv) A is locally bilaterally well approximated along A1 by SNT in the sense that

lim sup sup @‘EHTL (x,r)=0
r{0 xek

for all compact sets K C Agv..

Remark A.15. Suppose 7 points are (¢, @) detectable in S and A is locally bilaterally well approximated
by S. From the proof that A% is open in the proof of [Badger and Lewis 2015, Theorem 6.2], there
exist constants «, 8 > 0 depending only on ¢ and & such that if ®i (x,r") <aforall 0 <r' <rand
@Z(x, r) < B for some x € A and r > 0, then x € A5.
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A local approximation class S is called translation invariant if forall Se Sandx € §, S—x € S. Itis
an exercise to show that if S is translation invariant, then its closure S is translation invariant, as well. If
T and S are local approximation classes such that

S is translation invariant, and 7 points are (¢, ®) detectable in S, (A-1)

then every set X € S is locally (in fact, globally) bilaterally well approximated by S, whence X = X FUX 71
and X7 is closed (since X is closed) by Theorem A.14.

Definition A.16 [Badger and Lewis 2015, Definition 7.12]. Let 7 and S be local approximation classes.
Assume (A-1). We define the local approximation class of 7 singular parts of sets in S by sing; S =
{(Xri:XeSand0e X1}

Theorem A.17 [Badger and Lewis 2015, Theorem 7.14]. Let T and S be local approximation classes.

Assume (A-1). If A C R" is locally bilaterally well approximated by S, then Ar. is locally unilaterally
well approximated by sing S.

Covering profiles and dimension bounds for Mattila—Vuorinen-type sets. Finally, we record two upper
bounds on the dimension of sets that are locally unilaterally well approximated by a local approximation
class S with a uniform covering profile. Additional quantitative bounds for locally unilaterally e-
approximable sets may be found in [Badger and Lewis 2015, §8].

For reference, let us recall a definition of Minkowski dimension; e.g., see [Mattila 1995].

Definition A.18. Let A C R”, let x € R”", and let r, s > 0. The (intrinsic) s-covering number of A is
defined by
k
N(A,s) = min{k >0:AC U B(a;, s) for some a; € A}.
i=1

For bounded sets A C R”", the upper Minkowski dimension of A is given by

__ _log(N(A, 5))
d A) =1 _—
i (A) =Hm e = e (1)

For unbounded sets A C R", the upper Minkowski dimension of A is given by
dimy(A) = l%m(cﬁnM AN B(,1)).
tTo00

Letting dimg (A) denote the usual Hausdor{f dimension of a set A C R",
0 <dimy(A) <dimy(A) <n forall A CR",
with dimy (A) < dimy,(A) for certain sets. For the definition of Hausdorff dimension, several equivalent
definitions of Minkowski dimension, and related results, we refer the reader to [Mattila 1995].

Definition A.19 [Badger and Lewis 2015, Definitions 8.2 and 8.4]. Let S be a local approximation
class. We say that S has an («, C, so) covering profile for some a > 0, C > 0, and sg € (0, 1] provided
NS NB,r),sr) <Cs*forallSe€S, r>0,and s € (0, so].
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Theorem A.20 [Badger and Lewis 2015, Corollary 8.9]. Let S be a local approximation class such that
S has an (o, C, s9) covering profile. If A C R" is closed and A is locally unilaterally well approximated
by S, then dimy(A) < a.

Theorem A.21 [Badger and Lewis 2015, Corollary 8.12]. Let S be a local approximation class such that
S has an (a, C, so) covering profile. If the subspace topology on A C R" is o-compact and A is locally
unilaterally well approximated by S, then dimg (A) < .

Appendix B: Limits of complimentary NTA domains

For reference, let us recall that a connected open set 2 C R” is called an NTA domain (see Definition 6.1
and Remark 6.2) if there exist constants M > 1 and R > 0 for which the following are true:

(1) €2 satisfies the corkscrew condition: for all Q € 92 and 0 < r < R, there exists x € QN B(Q, r)
such that dist(x, 9Q) > M~ 'r.

(i) R™\ Q satisfies the corkscrew condition.

(iii) 2 satisfies the Harnack chain condition: if x;, x, € QN B(Q, ‘—1‘1’) for some Q € 02 and 0 <r < R,
and dist(x;, 02) > 8, dist(xp, 92) > §, and |x; — x2| < 2!8 for some § > 0 and [ > 1, then there
exists a chain of no more than M1 overlapping balls connecting x; to x; in €2 such that for each ball
B = B(x, s) in the chain

M~ s < gap(B, 02) < Mss, gap(B, 0Q2) = inf inf |x —y]|,
xeB yedQ
diam B > M~ min{dist(x1, ), dist(x», dQ)}, diam B = sup |x — y|.
x,yeB

The constants M and R are called NTA constants of €2, and the value R = oo is allowed when 92 is
unbounded. Lemma 6.3 asserts that if R" \ I'; = Q:L U, where Q;r and ;" are complimentary NTA
domains with NTA constants M and R independent of i, and I'; — ' # & in the Attouch—Wets topology,
then R"\ ' = QT U Q~, where QT and Q~ are complimentary NTA domains with constants 2M and R.

Proof of Lemma 6.3. Assume that we are given a sequence (I';, Q?“, 2;7), constants M and R, and a
set I" satisfying the hypothesis of the lemma. We note and will frequently use below that R" \ S_Zli =Qf,
I = BSZI.i, and R" = Qf UT'; U, by the separation condition on I'; and the corkscrew conditions for Qli

Step 0 (definition of Qt and 7). Because the sequence (T';)72, does not escape to infinity (as I'; — I),
neither do (5_2?E 2 ,- Thus, there is a subsequence of (I, SZ:r ;") (which we relabel) and nonempty
closed sets F*, F~ C R" such that S_Zli — F¥. Here and below, convergence of a sequence of nonempty
closed sets in R” is always taken with respect to the Attouch—Wets topology; we refer the reader to the first
two subsections of Appendix A for a brief introduction to this topology and to [Rockafellar and Wets 1998,
Chapter 4] or [Beer 1993, Chapter 3] for the rest of the story. Consider the open sets QT and Q™ defined by

Qt=R'\F~ and Q =R"\F™.
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We will show that R*\T' = QT U Q™ and Q% and Q~ are complementary NTA domains with NTA
constants 2M and R.

Step % (QT, T, and Q™ are disjoint). First, because I'; S_Qli foralli > 1, I; - I', and S_lli — F* we
have I' C F*, as well. Hence, by the definition of Q*,

FrNQEC FINQT=FF\FT=0.

Next, suppose that x € Q*. Then x ¢ FT, whence dist(x, FT) = § for some § > 0. Since Q@ — F7, it
follows that dist(x, S_Zf) > %8 forall i 3> 1. In particular, x € Qli C S_Zli forall i > 1, because R" \S_Zf = Qli
Since S_Zli — F* we obtain x € F*. Thus, x g QF whenever x € Q* We conclude that QT N Q™ = @.

Step 1 (R" =QTUT'UQ™). Letx € R" Because R" = Q" UQ;", at least one of the following alternatives
occur: x € S_Z;r for infinitely many i or x € S_Zl_ for infinitely many i. Hence x € F' or x € F~, since
8_21+ — F* and 8_21_ — F7. As x was arbitrary, we have

R'=FtUF =(F"\F)UFTNFHU(F \FH=QTU(F"NnF)NQ".

Therefore, as soon as we show that FT N F~ =T, we will have R* = QT UTruQt
To prove that F* N F~ C T, suppose that y € F* N F~. Since S_Zli — F*, we can locate points
yl.jE € S_Zli such that yl.jE — y. The line segment between y™ and y~ must intersect I'; = 5_21+ N S_Zf, say
0; € [yi+, y; INT;. Then Q; — y, and because I'; — I', we obtain y € I'". Thus, FrNnF-CT.
To prove that ' € F™ N F~, suppose that z € I". Since I'; — T, there exists z; € I'; such that z; — T'.
Because I'; = dQ+ = 9Q~, we can locate points zl.i S Qli N B(z;, 1/i). Then zF

i — z, and because
Q > F* weobtainz e F*NF~. Thus, T C F*NF~.

Step % (0Q* CT'). Since Q1 and Q~ are open and disjoint by Steps 0 and 1, Q% coincides with the
interior of QT and QT is contained in the exterior of Q4 Therefore, the boundary of Q% must be
contained in R" \ (QT U QT) =T by Step 1.

Step 2 (Corkscrew condition for Q). Suppose that Q € 9QT and 0 < < R. By Step %, Q €T. Since
I'; = I, there exists Q; € I'; = BQ;—L such that Q; — Q. By the corkscrew condition for Qli there exists
a point yijE € Qli N B(Q,-, %r) such that

dist(y:, @F) = dist(y*, 0QF) > 43—]"4.

Assume i > 1 is sufficiently large that
yl-jE € B(Qi, %r) C B(Q, %‘r) and dist(yl.i, FH) < IyijE - 0| < gr.
Then dist(yl.i, FT) = dist(yii, FTNB (Q, %r)). Hence, by the triangle inequality for excess,

dist(y;", @F) < dist(y", FTNB(Q, 3r)) +ex(FTNB(Q, 2r), &F)
= dist(y", FT) +ex(FT N B(Q, #r), @F).
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The last term vanishes as i — 00, since Qf — F7T in the Attouch—Wets topology. Thus,
dist(yE, FT) > dist(yE, @F) —ex(FF N B(Q, &), &F) > 32—1(4 foralli 1.  (B-1)
By compactness, we can choose subsequences (yl.?)?oz1 of (yii 2, such that yl.ﬂ; — y* for some
y* € B(Q, %r) C B(Q,r). By (B-1), it follows that dist(y*, F¥) > 2r/(3M) > r/(2M). Thus,
yF e Q¥ NB(Q, r) and
dist(y*, Q%) = dist(y®, F7) > =
ist(y™, Q%) =dist(y™, F™) > 5o+
Therefore, QT satisfies the corkscrew condition with constants 2M and R. We note that by an obvious
modification of the argument, one can show that Q¥ satisfies the corkscrew condition with constants M’
and R forall M' > M.

Step 3 (3Q* =T). By Step 2, 3Q* CI'. To see that I' C 9Q%, suppose that Q € I'. By the proof of
Step 2, the ball B(Q, r) contains points in QT for all 0 < r < R. Because Q7 is disjoint from Q% it
follows that Q € dQ*. We conclude that QT =T.

Step 3 (Harnack chain condition for Q%). Assume that x1, x» € QT N B(Q, é—llr) for some Q e I' = 9Q*
and 0 < r < R. Furthermore, assume that §; := dist(x;, 9Q) > 8, 8, :=dist(x2, IQ) > 8, and |x; —x2| <28
for some 8 > 0 and / > 1. We must show that x; can be connected to x, in QF by a “short” chain of balls in
Q¥ remaining “far away” from the boundary 3%, or equivalently, remaining “far away” from F¥. Since
I'; = T, there exists Q; € Qli such that Q; — Q. Because S_Zf — F7T in the Attouch—Wets topology,
for all i > 1 sufficiently large, 7 (14|Q — Qi]) < R, x1,x2 € QF N B(Qi, 3r(1+|0 — Q;])), and

dist(xy, 9QF) > 181 > 18, dist(x, 9QF) > 18, > 18, |x1 —xo| <28 =2/""1s.

(The details are similar to those written in the proof of the corkscrew condition in Step 2.) By the Harnack
chain condition for Q?E, we can find a chain of no more than M (I + 1) < 2M| balls connecting x; to x
in QllL such that for each ball B = B(x, s) in the chain,

M~'s < gap(B, 89?) < Ms
and
diam B > M~ min{dist(x;, Q7), dist(x2, dQ2)}.

Since Qf — FT in the Attouch—-Wets topology, it follows that for all sufficiently large i,

M)~ 's < gap(B, 9Q%F) < 2Ms
and
diam B > (2M) ™" min{dist(x;, 3Q%), dist(x2, 1Q5)}.

(Again, the details are similar to those in Step 2.) By the gap condition, we also know each ball in the
chain belongs to Q*. Therefore, Q¥ satisfies the Harnack chain condition with constants 2M and R. We
remark that given the discrete nature of the constant in the Harnack chain condition (counting balls), we
cannot expect to be able to replace 2M by A M for arbitrary A > 1.
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Step 4 (Q" and Q~ are connected). It is well known that every NTA domain is a uniform domain with
constants that depend only on the interior corkscrew condition and Harnack chain condition; e.g., see
[Azzam et al. 2017a, Theorem 2.15]. Explicitly, this means that for every M > 1 and R > 0, there
exist C > 1 and c € (0, 1) such that for every NTA domain 2 C R" with NTA constants M and R, and
for every xg, x; € €2, there exists a continuous path y : [0, 1] — Q such that y(0) = xp, vy (1) = x1,
length(y) < Clxg — x1|, and dist(y (¢), 0€2) > ¢ min{dist(xg, d€2), dist(x;, d€2)} for all ¢ € [0, 1].

Let xo and x; be arbitrary distinct points in Q%, and set

8 = min{dist(xo, 3QF), dist(x1, dQ)} = min{dist(xo, F), dist(x1, F¥)}.

Assign B = B(xg, 3C|xo — x1| 4+ 35), where C is the constant from the previous paragraph. Note that B
contains xg, x|, and every path passing through x( of length no greater than C|xo— x|, and the closest point
in F¥ for each item listed above, with room to spare. Since 8_213F — FT in the Attouch-Wets topology,

ex(QFNB, FF) < ¢85 and ex(FFNB,QF) < 1cs foralli> 1, (B-2)

where c is the constant from the previous paragraph. Pick any i such that (B-2) holds. Then dist(x, S_Zf) >
(1—1c)8 > 25 and dist(x1, F) > (1 — 1¢)8 > 25. In particular, xo, x; € Q" and

min{dist(xo, 32;"), dist(x1, 8Q)} > 26.

Since Q:—L is an NTA domain with NTA constants M and R, by the previous paragraph we can find a contin-
uous path y : [0, 1] — Qli such that y (0) = xp, y (1) =x, length(y) < Cl|xo— x|, and dist(y (¢), S_ZfF) =
dist(y (¢), BQ?E) > %C(S for all ¢ € [0, 1]. Using (B-2) once again, we obtain dist(y (¢), FT) > %C(S for all
t €10, 1]. In particular, y(t) € QF for all 7 € [0, 1]. Thus, y is a continuous path joining x¢ to x; inside
the set Q. Since x( and x; were fixed arbitrarily, we conclude that QF is connected.

Conclusion. We have shown that R" \ I' = QT U Q™ (Step 1), where Q* and Q™ are open (Step 0),
connected (Step 4), and satisfy corkscrew (Step 2) and Harnack chain conditions (Step 3) with constants
2M and R. Therefore, R" \T' = QT U Q™ is the union of complimentary NTA domains Q" and Q~ with
NTA constants 2M and R, as desired. [l
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FUGLEDE’S SPECTRAL SET CONJECTURE FOR CONVEX POLYTOPES

RACHEL GREENFELD AND NIR LEV

Let 2 be a convex polytope in RY. We say that Q is spectral if the space L?(£2) admits an orthogonal
basis consisting of exponential functions. There is a conjecture, which goes back to Fuglede (1974), that
Q2 is spectral if and only if it can tile the space by translations. It is known that if €2 tiles then it is spectral,
but the converse was proved only in dimension d = 2, by losevich, Katz and Tao.

By a result due to Kolountzakis, if a convex polytope  C R? is spectral, then it must be centrally
symmetric. We prove that also all the facets of €2 are centrally symmetric. These conditions are necessary
for €2 to tile by translations.

We also develop an approach which allows us to prove that in dimension d = 3, any spectral convex
polytope 2 indeed tiles by translations. Thus we obtain that Fuglede’s conjecture is true for convex
polytopes in R>.

1. Introduction

1A. Let © C R? be a bounded, measurable set of positive Lebesgue measure. A countable set A C R? is
called a spectrum for 2 if the system of exponential functions

E(A) ={es}ren, ei(x) = *0), (1-1)

constitutes an orthogonal basis in L?(£2), that is, the system is orthogonal and complete in the space. A
set 2 which admits a spectrum A is called a spectral set.

The classical example of such a situation is when €2 is the unit cube in R¢, and A is the integer lattice Z¢.
Which other sets €2 are spectral? The study of this problem was initiated by Fuglede [1974]. For example,
in that paper it was shown that a triangle and a disk in the plane are not spectral sets.

The set €2 is said to tile the space by translations along a countable set A C R? if the family of sets Q4 A,
X € A, constitutes a partition of R up to measure zero. In this case we will say that Q + A is a filing.
Fuglede [1974] observed the following connection between the concepts of spectrality and tiling:

Let A be a lattice. If 2+ A is a tiling, then the dual lattice A* is a spectrum for 2, and also the
converse is true.

Here, by a lattice we mean the image of Z¢ under some invertible linear transformation, and the dual
lattice is the set of all vectors A* such that (A, A*) € Z, L € A.

Fuglede conjectured that the spectral sets could be characterized in geometric terms using the concept
of tiling in the following way: the set Q2 is spectral if and only if it can tile the space by translations. This

Research supported by ISF Grant no. 225/13 and ERC Starting Grant no. 713927.
MSC2010: 42B10, 52C22.
Keywords: Fuglede’s conjecture, spectral set, tiling, convex polytope.
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conjecture inspired extensive research over the years, and a number of interesting results supporting the
conjecture were obtained. See, for example, the survey given in [Kolountzakis 2004, Section 3].

On the other hand, it turned out that there also exist counterexamples to Fuglede’s conjecture. Tao
[2004] constructed in dimensions 5 and higher an example of a set 2 which is spectral, but cannot tile by
translations. Subsequently, also examples of nonspectral sets which can tile by translations were found,
and eventually the dimension in these examples was reduced up to d > 3; see [Kolountzakis and Matolcsi
2010, Section 4]. In all these examples the set €2 is the union of a finite number of unit cubes centered at
points of the integer lattice Z¢.

1B. Itis nevertheless believed that Fuglede’s conjecture should be true if the set €2 is assumed to be convex.
There is a well-known characterization due to Venkov [1954], which was rediscovered by McMullen
[1980; 1981], of the convex bodies (compact convex sets with nonempty interior) that can tile the space
by translations:

Let Q be a convex body in R%. Then S tiles by translations if and only if the following four conditions
are satisfied:

(1) 2 is a polytope.
(i1) 2 is centrally symmetric.
(i) All the facets of 2 are centrally symmetric.

(iv) Each “belt” of Q2 consists of exactly 4 or 6 facets.

By a belt of a convex polytope  C R? with centrally symmetric facets one means the collection of its
facets which contain a translate of a given subfacet, that is, a (d—2)-dimensional face, of 2.

It was also proved in [ Venkov 1954; McMullen 1980] that if a convex polytope €2 can tile by translations,
then it admits a face-to-face tiling by translates along a certain lattice. Hence, combined with Fuglede’s
theorem above this yields the following result:

Let Q C RY be a convex body. If Q tiles by translations, then Q is spectral.

The converse to this result, however, is known only in dimension d = 2. It is due to losevich, Katz and
Tao [Tosevich et al. 2003], who showed that a spectral convex body in R> must be either a parallelogram
or a centrally symmetric hexagon, and hence it tiles by translations.

The situation in dimensions d > 3 is much less understood. It is known that the ball is not a spectral
set [losevich et al. 1999; Fuglede 2001], nor any convex body with a smooth boundary [losevich et al.
2001]. We established in [Greenfeld and Lev 2016] that if €2 is a cylindric convex body whose base has a
smooth boundary, then it can neither be spectral.

Kolountzakis [2000] proved the following result:

Let Q be a convex body in R% If Q is spectral, then it must be centrally symmetric.

1C. In this paper we will focus on the case when 2 is a convex polytope. Our first result shows that in
this case, not only the central symmetry of €2, but also the central symmetry of all the facets of €2, is a
necessary condition for spectrality:
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Theorem 1.1. Let Q be a convex polytope in R If Q is a spectral set, then all the facets of Q must be
centrally symmetric.

Our proof of this result is inspired by the paper [Kolountzakis and Papadimitrakis 2002].

Together with the result from [Kolountzakis 2000] we thus obtain that a spectral convex polytope
Q C R? must satisfy the conditions (ii) and (iii) in the Venkov—McMullen theorem above. So this supports
the conjecture that any such Q2 can tile by translations.

Our next theorem, which is the main result of this paper, confirms that this is indeed the case in
dimension d = 3:

Theorem 1.2. Let Q be a convex polytope in R>. If Q is a spectral set, then it can tile by translations.

Combined with the above-mentioned results, we thus obtain that Fuglede’s conjecture is true for convex
polytopes  C R,

1D. Intwo dimensions, the convex polygons which can tile by translations are precisely the parallelograms
and the centrally symmetric hexagons. The three-dimensional convex polytopes which can tile by
translations were classified by Fedorov [1885] into five distinct combinatorial types: the parallelepiped,
the hexagonal prism, the rhombic dodecahedron, the elongated dodecahedron and the truncated octahedron
(see, for example, [Gruber 2007, Figure 32.4] for a graphical illustration of these types). Thus, for a
convex polytope 2 C R? to tile by translations, it is necessary and sufficient that it belongs to one of
these five types, and that €2, as well as all its facets, are centrally symmetric. A detailed exposition of this
result can be found in [Alexandrov 2005, Section 8.1].

Theorem 1.2 therefore yields that these conditions are also necessary and sufficient for a convex
polytope  C R? to be spectral.

(The requirement that €2 is centrally symmetric is in fact redundant in this characterization: it is known
[Alexandrov 1933] that if all the facets of a convex polytope Q C R? d > 3, are centrally symmetric,
then €2 itself must also be centrally symmetric.)

1E. As mentioned above, the Venkov—McMullen and Fuglede results imply not only that a convex
polytope 2 C RY which can tile by translations is necessarily spectral, but also that Q admits a lattice
spectrum. Our approach allows us to establish that for certain convex polytopes, this spectrum is the
unique one, up to translation.

First we have the following result in two dimensions:

Theorem 1.3. Let Q be a centrally symmetric hexagon in R%. Then Q has a unique spectrum up to
translation.

This result is essentially contained in [Iosevich et al. 2003], although it was not stated explicitly in that
paper.

The three-dimensional version of the result is the following:
Theorem 1.4. Let Q be a convex polytope in R® which is spectral (and hence it can tile by translations),
but which is neither a parallelepiped nor a hexagonal prism. Then Q has a unique spectrum up to
translation.
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Remark that it is necessary in these results to exclude the parallelograms in R? and the parallelepipeds
and the centrally symmetric hexagonal prisms in R>. Indeed, these convex polytopes admit infinitely
many non translation-equivalent spectra (see [Jorgensen and Pedersen 1999, Section 2]).

1F. The paper is organized as follows.

In Section 2 we present some preliminary background.

In Section 3 we give a proof of the fact that a spectral convex polytope £ C R? must be centrally
symmetric. The proof given is based on the argument from [Kolountzakis and Papadimitrakis 2002].

In Section 4 we prove that also all the facets of such an Q2 are centrally symmetric (Theorem 1.1).

In Sections 5-7 we develop an approach to show that a spectral convex polytope 2 C R¢ can tile by
translations. In Section 8 we give a proof, based on this approach, of the result that a spectral convex
polygon  C R? can tile by translations.

The proof of the three-dimensional Theorem 1.2 is given through Sections 9-15.

In Section 16 the results concerning the uniqueness of the spectrum up to translation are deduced
(Theorems 1.3 and 1.4).

In Section 17 we give additional remarks and discuss some open problems.

2. Preliminaries

2A. Notation. We fix some notation that will be used throughout the paper.
We shall denote by e, . .., e; the standard basis vectors in R
Asusual, (-, -) and | - | are the Euclidean scalar product and norm in R4
For a set A C R and a vector x € R?, we use (A, x) to denote the set {(a, x) : a € A).
We denote by || the Lebesgue measure of a measurable set Q C R
The Fourier transform in R¢ will be normalized as

fe = / fx) e 2mHEX) g,
Rd

2B. Properties of spectra. We recall some basic properties of spectra that will be used in the paper.

Let 2 C R? be a bounded, measurable set of positive measure. A countable set A C R? is a spectrum
for Q if the system of exponential functions E(A) defined by (1-1) is an orthogonal basis in the space
L?(2). Since we have

(e, en) 2o = / eI AN gy = 1o/ =),
Q
it follows that the orthogonality of E(A) in L?() is equivalent to the condition
A—AC{lg=0}U{0}. 2-1)

A set A C R? is said to be uniformly discrete if there is 8 > 0 such that |’ — 1| > § for any two distinct
points A, 2" in A. The maximal constant § with this property is called the separation constant of A, and
will be denoted by §(A).



FUGLEDE’S SPECTRAL SET CONJECTURE FOR CONVEX POLYTOPES 1501

The condition (2-1) implies that if A is a spectrum for €2 then it is a uniformly discrete set, with
separation constant § (A) not smaller than

x(Q) := min{|¢| : £ e RY, 1q(8) =0} > 0. (2-2)

It is easy to verify that the property of A being a spectrum for €2 is invariant under translations of
both €2 and A. It is also easy to check that if A is a spectrum for €2, and if A is an invertible d x d matrix,
then the set (A=) T (A) is a spectrum for A(RQ).

2C. Limits of spectra. Let A, be a sequence of uniformly discrete sets in R? such that §(A,) > 8 > 0.
The sequence A, is said to converge weakly to a set A if for every € > 0 and every R there is N such that

AyNBrR CA+B;, and ANBrCA,+ B;

for all n > N, where by B, we denote the open ball of radius r centered at the origin. In this case, the
weak limit A is also uniformly discrete, and moreover, §(A) > 8.

By a standard diagonalization argument one can show that given any sequence A, satisfying §(A,) >
§ > 0, there is a subsequence A,; which converges weakly to some (possibly empty) set A.

It is known that if for each n the set A, is a spectrum for €2, and if A, converges weakly to a limit A,
then also A is a spectrum for 2. See, for example, [Greenfeld and Lev 2016, Section 3], where a simple
proof of this fact can be found.

The latter fact easily implies that any spectrum A of € must be a relatively dense set in R?; namely,
there is R > 0 such that every ball of radius R intersects A. Moreover, the constant R = R(£2) does not
depend on the spectrum A. Indeed, if this was not true then there would exist a sequence A, of spectra
for €2 which converges weakly to the empty set, which contradicts the fact that the weak limit must also
be a spectrum for .

2D. Fourier expansion with respect to a spectrum. If A is a spectrum for 2, then each f € L*(Q)
admits a Fourier expansion with respect to the orthogonal basis E(A). If we extend such a function f to
the whole R by defining it to be zero outside of 2, then we have (f, e;) Q) = f (1); hence the Fourier
expansion of f has the form

| — -
f:EﬂE:f@WM (2-3)

reEA

and the series converges in L?(2). Furthermore, Parseval’s equality holds; namely,
1 R
2 2
11120 = 1 oI
reA

The following fact will be useful for us:

Lemma 2.1. For each function f € L?(2) (extended to be zero outside of Q) the series (2-3) converges
unconditionally in L? on any bounded set to some measurable function f defined a.e. on the whole R,
and f coincides with f a.e. on .
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This is a simple consequence of the following:

Lemma 2.2. Let A C R be a uniformly discrete set and {c(\)} be a sequence in 02(A). Then the series
Y ces (2-4)
reA

converges unconditionally in L*(S) for every bounded set S C R

The latter fact is well known; see, for instance, [ Young 2001, Section 4.3, Theorem 4], where it is
proved in dimension one. For the reader’s convenience we provide a self-contained proof in arbitrary
dimension d.

Proof of Lemma 2.2. First we show that if S is a bounded set then there is a constant C = C(A, S) such
that for every sequence {c(})} with only finitely many nonzero terms we have

Zc(k)ek

LEA

2

<CY e (2-5)

LX(S) AEA

Indeed, let § > 0 denote the separation constant of A, and choose a smooth function ¢ supported on a
ball of radius §/2 around the origin such that [ lo(t)|?dt =1 and

n = inf |@(x)| > 0.
xes

Then the left-hand side of (2-5) is not greater than 1/5? times
2
D A dx =
fw'wx) Y e dx /R
hence (2-5) holds with C = 1/n%

LEA
Now it follows from (2-5) that given an arbitrary sequence {c(A)} in 02(A), the partial sums of the

2
dr =" le();

rEA

> gt +1)

LEA

series (2-4) constitute a Cauchy sequence in L?(S) for every arrangement of the terms of the series,
and the limit in L2(S) of these partial sums is the same for every such arrangement. This confirms the
assertion of the lemma. O

2E. Convex polytopes. By a convex polytope Q2 in RY we mean a compact set which is the convex hull
of a finite number of points. By a facet of Q2 we refer to a (d—1)-dimensional face of €2, while a subfacet
is a (d—2)-dimensional face.

If G is a k-dimensional face of 2 (0 < k < d), then |G| denotes the k-dimensional volume of G. For a
facet F of 2 we denote by o the surface measure on F.

The interior of €2 will be denoted by int(£2).

We say that Q is centrally symmetric if there is a point x € R? (the center) such that @ —x = —Q+x. The
following theorem, due to Minkowski, gives a criterion for the central symmetry of a convex polytope 2
in terms of the areas of its facets:

Theorem 2.3 (Minkowski). A convex polytope 2 is centrally symmetric if and only if for each facet F
of Q there is a parallel facet F' such that |F| = |F’|.
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This is a consequence of the classical Minkowski’s uniqueness theorem; see, for example, [Gruber
2007, Section 18.2].

We shall need some well-known facts about Fourier transforms related to convex polytopes in R?
(actually, in some of these results the convexity is not necessary). Since the proofs are not difficult, they
are included for completeness.

Lemma 2.4. Let Q be a convex polytope in R (d > 1). For each facet F of R, let ng denote the outward
unit normal to Q on F. Then

—2milo@#) =) nrér), &eR (2-6)
where the sum is over all the facets F of Q.
Proof. Fix two vectors £ and u in RY, and let
®(x) :=ue 7EN xR
Then we have

div ®(x) = —27i (&, u)e 271 &),

By the divergence theorem,

/divCID(x)dx:/ (®(x),n(x))do(x),
Q a0

where o denotes the surface measure on the boundary 02, and n(x) := nr if x belongs to the relative
interior of a facet F' of 2. This means that

—2milE, u)lo®) = (np, u)6r (&),
where the sum is over all the facets F of Q. But since £ and u were arbitrary vectors in RY, this
implies (2-6). O
Corollary 2.5. If Q is a convex polytope in R? (d > 1), then

n 0
o) < %wsrl,
T

where |0S2| denotes the total surface area of 2.
This follows from Lemma 2.4 using that the right-hand side of (2-6) is bounded in norm by |9€2].

Lemma 2.6. Let Q be a convex polytope in RY (d > 2), andF be a facet of Q. Let 6(&, F) denote the
angle between a nonzero vector & € R? and the outward normal vector to Q on F. Then

|0 F| i

lor@Is - =+ OGP

where |0 F| is the (d—2)-dimensional volume of the relative boundary of F.
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Proof. By applying a rotation and a translation, we may assume F is contained in the hyperplane {x; =0},
and that the outward unit normal to  on F is ¢;. Hence

6r(€) =9r (52,8, ...,&),

where ¢ denotes the Fourier transform of the indicator function of the polytope in R?~! obtained by
projecting the facet F' on the (x;, x3, ..., xg)-coordinates. Using Corollary 2.5, this implies

IF| (& -2
167 (5)I < %(Zsﬁ) .
j=2

However, since we have

&1 =(§ ¢1) =|&|cosO(&, F),

it follows that

d
Y g =& -] = |51 —cos*0(&, F)) = &7 sin® O, F),
j=2

so this proves the claim. (Il
The previous lemmas imply the following result, which will be used in the next sections:

Lemma 2.7. Let Q be a convex polytope in R? (d > 2). Assume that A and B are two parallel facets
of R, and that the outward unit normals to Q on A and B are respectively the vectors é| and —e| (we
also allow A to be a facet which does not have a parallel facet, in which case we understand B to be the
empty set). Then there is « = a(S2) > 0 such that

—2mitilq#) =64(8) —68E) + O0(&I7"),  |&] > oo, 2-7)
in the cone
K@):={geR": |5 <ale] 2<j <)} (2-8)
Proof. By Lemma 2.4 we have

—2migi 1a(§) = 6a(6) = 68(6) + Y (np. 1) 67 (6), 2-9)

where the sum is over all the facets F of Q2 other than A and B. If « is sufficiently small, then the angle
between any vector in K («) and the outward normal to 2 on any facet F other than A and B is bounded
away from 0 and 7. Hence by Lemma 2.6, the sum on the right-hand side of (2-9) is O (& |=1) as |€] — o0
in the cone K (). But since the ratio |&1]/|€| is bounded from below in K («), this implies (2-7). U

3. Spectral convex polytopes are symmetric

3A. In this section we give a proof of the following result:

Theorem 3.1 [Kolountzakis 2000]. Let Q2 be a convex polytope in R (d > 2). If Q is spectral then S is
centrally symmetric.
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In fact, it was proved in [Kolountzakis 2000] that any convex body (not assumed to be a polytope) which
is spectral must be centrally symmetric. This supports the conjecture that a spectral convex body €2 can tile
by translations, as the central symmetry is a necessary condition for €2 to tile, by the Venkov—McMullen
theorem.

There is another approach to prove Theorem 3.1, which was introduced in [Kolountzakis and Papadim-
itrakis 2002]. This approach is specific for polytopes, but on the other hand it does not require 2 to be
convex. The main result in that paper gives a certain condition on a polytope €2 C R? that is necessary
for its spectrality. If the polytope €2 is convex, then this condition coincides with the requirement that €2
is centrally symmetric.

For the completeness of our exposition, below we give a proof of Theorem 3.1 based on the argument
in [Kolountzakis and Papadimitrakis 2002]. See also [Kolountzakis 2004, pp. 184-185]. The proof may
also serve as a preparation for the next section, where the argument will be further developed.

3B. Proof of Theorem 3.1. By Minkowski’s theorem, Theorem 2.3, it would be enough to show that
for each facet A of 2 there is a parallel facet B such that |A| = | B|. If this is not true, then there is a
facet A of 2 whose parallel facet B satisfies |A| > |B|, where we understand B to be the empty set if A
is a facet of 2 with no parallel facet.

By applying an affine transformation, we may assume that A is contained in the hyperplane {x; = 0},
that B is contained in the hyperplane {x; = —1}, and that the outward unit normals to €2 on A and B are
respectively the vectors ¢; and —e;. It follows that

6-A($):§0A($29$3v'“’$d)v (3'1)
6(E) =™ S pp(E, £3, ..., Ea), (3-2)

where ¢4, ¢p are respectively the Fourier transforms of the indicator functions of the polytopes in R?~!
obtained by projecting the facets A, B on the (x>, x3, ..., xg)-coordinates. In particular, ¢4 and ¢p are
continuous functions, and

¢a(0) =1Al,  ¢g(0)=B]. (3-3)
For any r > 0 we denote by S(r) the cylinder of radius r along the xj-axis; namely

Sry:={téi+w:reR, weR’ |w| <r}.
Notice that
S(r)—S@r) = S2r). (3-4)

By assumption, we have |A| > | B|. Choose a number 7 such that
0<n<|A|l—|B|.
It follows from (3-1), (3-2) and (3-3) that there is ¢ > 0 such that

164(€) —65(E) 2 164E) —168(E) >n, &€ S(Q28).
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By Lemma 2.7 we have

—2miglq(€) =6a() —65(E)+ O(E ™Y,  |&]— oo,

in the cylinder S(2¢). It follows that there is R > 0 such that

1a() #0, &€ S(2)\ Bg, (3-5)

where Br denotes the ball of radius R centered at the origin.
Now let A be a spectrum for 2. We claim that for any t € R4, if A, A are two points in AN (S(e) + 1),
then [A" — A| < R. Indeed, if not then using (3-4) we get

A — e S(2e)\ Bg,

but due to (3-5) this implies ig (A — 1) #0, a contradiction.

Since A is a uniformly discrete set, it follows that A N (S(e) + 7) is a finite set for every t € RY.
Since A is a relatively dense set, there is M > 0 such that every ball of radius M intersects A. The
cylinder S(M) may be covered by a finite number of cylinders S(¢) +7; (1 < j < N); hence AN S(M)
is also a finite set. But this implies that S(A) must contain a ball of radius M free from points of A, a
contradiction. This completes the proof of Theorem 3.1. ]

4. Spectral convex polytopes have symmetric facets

4A. The result in Section 3 shows that the central symmetry is a necessary condition for a convex
polytope ©2 C R? to be spectral. In the present section we prove that also the central symmetry of all the
facets of €2 is necessary for spectrality:

Theorem 4.1. Let Q be a convex, centrally symmetric polytope in R (d > 3). If Q is spectral then all
the facets of Q2 are also centrally symmetric.

Recall that by the Venkov—McMullen theorem, the central symmetry of the facets is also a necessary
condition for 2 to tile by translations. Hence this result further supports the conjecture that any spectral
convex polytope €2 can tile by translations.

Notice that the conclusion cannot be further improved by showing that also all the k-dimensional faces
of €2, for some 2 < k < d — 2, are centrally symmetric. Indeed, this would imply [McMullen 1970] that
all the faces of 2 of every dimension are centrally symmetric. However, the 24-cell in R* is a well-known
example of a convex polytope which tiles by translations, and hence is spectral, but which does not satisfy
this property.

The rest of this section is devoted to the proof of Theorem 4.1. The proof is based on a development
of the argument in [Kolountzakis and Papadimitrakis 2002].

4B. Let F be one of the facets of 2. As before, to prove that F is centrally symmetric it would be enough,
by Minkowski’s theorem, Theorem 2.3, to show that for each subfacet A of F' there is a parallel subfacet B
of F such that |A| = |B|. So, again, suppose to the contrary that A, B are two parallel subfacets of F
such that |A| > | B|, with the agreement that B is empty if A has no parallel subfacet of F.
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By applying an affine transformation, we may assume

Q=-Q; 4-1)
namely, €2 is symmetric about the origin,
Fclx =1} (4-2)
and the outward unit normal to Q on F is é;,
Acix =1 x=0) 4-3)
BC{xi=3, xn=-1}, 4-4)

and the outward unit normals to F on A and B are respectively &, and —é.

4C. Let ¢F (respectively, ¢4 and ¢p) denote the Fourier transform of the indicator function of the polytope

in R?~! (respectively, R?~2) obtained by projecting the facet F on the (x2, X3, ..., x4)-coordinates
(respectively, the subfacets A and B on the (x3, ..., x4)-coordinates). Define
V(&) =Re[e ™ (pa8s, ... &) — T Ppp(&s, .. E0))], EERY (4-5)

Also, for any three positive real numbers L, § and o, we let
K(L.8,0):={§ eR': L <|&a| <8l&l, 1] <alfa] B<j <D}
Lemma 4.2. There is o > 0 such that given any n > 0 one can find § > 0 and L such that
27’616 1a@) + v (©)] <n, € K(L.5 ). (4-6)

Proof. Due to (4-1), the facet of Q2 parallel to F is —F. If 0 < § < o < 1, then the set K(L, 8, @) is
contained in the cone

{1§1 <algi], 2<j <d}. 47
Hence by Lemma 2.7, if « is sufficiently small then
—2mi& 10(E) =6rE) —6_rE) + O(&IT"),  |&1] > oo, (4-8)
in the cone (4-7). Observe that by (4-2) we have
6p(E)—6_p(§) =2iIm[6p(§)] =2iIm[e ™ “pp (£, &, ... &1)]. (4-9)
Now if £ € K(L, 8, ) then the vector (&, &3, ..., ;) belongs to the cone
{151 <algl, 3<j <df cR, (4-10)
so again by Lemma 2.7 and by (4-3), (4-4) it follows that if « is sufficiently small then

—27iE0F(E2, 83, ... Ea) = 0a(Es, ... Ea) — €T Rgp(Es, . E) + O, |&] > oo, (4-11)
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in the cone (4-10). Combining (4-8), (4-9) and (4-11) shows that there is « > 0 and a positive constant C
such that for any 0 < § < « and any L > 0 we have

27261610 +v &) < C(&/61+11/81), §€K(L,8, ).

But for & € K(L, 8, o) we have |&/&| < & and |1/&| < L~!. Hence given any 5 > 0, by choosing &
sufficiently small and L sufficiently large, we obtain (4-6). (Il

4D. Recall that, by assumption, we have |A| > | B|. Choose a number 7 such that
0<2n<|A|l—|B]|.
Use Lemma 4.2 to find L, § and « such that (4-6) holds. Define the vector
vs :=2¢1+ 862 =(2,8,0,0,...,0). (4-12)

For any r > 0 we denote by E(r, §) the union of balls of radius r centered at the integral multiples of
the vector vg; that is,
E(rd)=lkvst+w:ke”Z, weIRd, lw| < r}. (4-13)
Notice that
E(r,8) — E(r,8) = E(2r, §). (4-14)

Since @4, @p are continuous functions satisfying

¢a(0)=|Al, ¢p(0)=1B],

it follows from (4-5), (4-12) and (4-13) that there is & > 0 such that
[ (&) —Re[|A| —e*™®|B|]| <n, &€ EQs,6).
In particular, this implies
W& =1Al—[Bl—n>n, §&e€kEQ2¢?). (4-15)

4E. Lemma 4.3. There is R > 0 such that

E2e,8)\BrR C K(L, 4, o), (4-16)
where Bg denotes the ball of radius R centered at the origin.

This can be verified easily, so we skip the proof.

4F. Now suppose that A is a spectrum for 2. Use Lemma 4.3 to choose R such that (4-16) holds. We
claim that for any 7 € R4, if A, A’ are two points in AN (E (e, §) + 1), then A" — A| < R. Indeed, if not
then using (4-14) we get

M —1eEQe 8 \Br CK(L,S,a).

It thus follows from (4-6) and (4-15) that igz()J — A) # 0, a contradiction.



FUGLEDE’S SPECTRAL SET CONJECTURE FOR CONVEX POLYTOPES 1509

Since A is a uniformly discrete set, it follows that A N (E (g, §) 4 1) is a finite set for every 7 € RY.
Since A is a relatively dense set, there is M > 0 such that every ball of radius M intersects A. Let S(M, 3)
denote the cylinder of radius M along the vector vs,

S(M,8) :={tvs+w:teR, weR’ |w < M).

Then S(M, §) may be covered by a finite number of sets E(g, §) +1; (1 < j < N); hence ANS(M,J) is
also a finite set. It follows that S(M, §) contains a ball of radius M free from points of A, a contradiction.
This completes the proof of Theorem 4.1. (Il

5. Covering and packing

It was shown in Sections 3 and 4 that if a convex polytope Q@ C R? is spectral, then it must be centrally
symmetric and have centrally symmetric facets. In order to prove that €2 tiles by translations, a conceivable
strategy may therefore be to try and show that every belt of €2 must consist of either 4 or 6 facets. Indeed,
this would imply that €2 tiles, by the Venkov—McMullen theorem.

Our approach, however, will not be based on such a strategy. Instead, we will use another condition,
given in terms of the spectrum A, which implies that €2 tiles by translations. In this section, we prove the
sufficiency of this condition (Corollary 5.3).

5A. Let Q C R? be a convex polytope, which is centrally symmetric and has centrally symmetric facets.
If F is any facet of €2, then by the central symmetry, the opposite facet F’ is a translate of F. We shall
denote by T the translation vector in R¢ which carries F’ onto F.

Following [Venkov 1954; McMullen 1980], we consider the set

T:T(Q):{karp : kFeZ}; (5-1)
F

that is, T is the set of all linear combinations with integer coefficients of the vectors tr, where F' goes
through all the facets of Q. The set 7 is a countable subgroup of R?.

Theorem 5.1 [Venkov 1954; McMullen 1980]. Q + T is a covering; that is, each point in R¢ belongs to
at least one of the sets Q+ 1, Tt € T.

This is a part of the Venkov—McMullen theorem, which characterizes the convex bodies that tile by
translations by the four conditions (i)—(iv) mentioned in Section 1B. In the sufficiency part of the theorem
it is shown that these four conditions imply that 2+ 7 is a tiling. However the last condition, namely the
requirement (iv) that each belt consists of exactly 4 or 6 facets, is not used in that part of the proof where
it is shown that €2+ 7 is a covering; see [McMullen 1980, pp. 115-116], where the latter fact is also
mentioned explicitly. Hence the proof yields that the first three conditions (i)—(iii) are enough to conclude
that Q2+ T is a covering, as stated in Theorem 5.1.

Observe that Theorem 5.1 implies that 7 is a relatively dense set in R,

It also follows from this theorem that, in order to prove that €2 tiles by translations, it would be enough
to show that Q2 + T is a packing, which means that the sets Q2+ 7, t € T, are disjoint up to measure zero.
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Indeed, in such a case 2 4 T is simultaneously a covering and a packing; hence €2 tiles by translations
along the set 7.

Notice that if 2+ 7T is a packing (and hence a tiling), then 7 must be a uniformly discrete set in R
So in this case T is a subgroup of RY which is both uniformly discrete and relatively dense, and it follows
that 7 must be a lattice. As mentioned in [McMullen 1980], the tiling by translations of €2 along the
lattice T constitutes a face-to-face tiling.

5B. The next lemma gives a sufficient condition for 2+ 7 to be a packing:

Lemma 5.2. Suppose that A C R is a set satisfying the condition
(A=A, tp)CZ (5-2)
for every facet F of Q. If the system of exponentials E(A) is complete in L*(R2), then Q+ T is a packing.

Proof. By translating A we may assume that it contains the origin; hence (A, tr) C Z for every facet F.
It follows that the exponential functions e, (A € A) are periodic with respect to 7; namely

e (x+1)=1¢,(x)

for every t € T. If Q + T is not a packing then there exist distinct vectors t/, t” € T such that the set
(24 t") N (2 + 1”) has positive measure. Thus the set E defined by

E=QNn(Q-1), tv:=1"-17

is a set of positive measure, and E, E + t are both contained in €2. Hence the function f :=1p —1g;
is supported by €2, and since T # 0, the function f does not vanish identically a.e. On the other hand, for
every A € A we have

(ex, f)LZ(sz) =/ e (x)dx —/ e, (x)dx =0,
E E+t

due to the periodicity of e;. Hence f is orthogonal in L?(2) to all the exponentials {e;}, A € A, which
contradicts the completeness of the system E(A) in the space L*(). U

5C. Combining Theorem 5.1 and Lemma 5.2 we obtain the following:

Corollary 5.3. Let Q C R? be a convex polytope which is centrally symmetric and has centrally symmetric
facets. Suppose that Q admits a spectrum A satisfying (5-2) for every facet F of Q2. Then Q+ T is a
tiling, and so Q2 can tile by translations.

Moreover, in this case the set 7' defined by (5-1) is a lattice in RY and  tiles face-to-face by translations
along the lattice 7.

Remark. The formulation of Corollary 5.3 is inspired by [losevich et al. 2003, p. 568], where the
assertion was proved in dimension d = 2 by directly showing that 2 must be either a parallelogram or a
centrally symmetric hexagon. The proof in arbitrary dimension that we have given above is based on
different considerations than the one in that paper.
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6. Structure of spectrum, I

We obtained in Section 5 a sufficient condition for a spectral convex polytope € in R¢ to tile by translations.
This condition (Corollary 5.3) requires the existence of a spectrum A admitting a certain structure. In the
present section we start to develop an approach to analyze the structure of a given spectrum A.

6A. Let Q C R? be a convex polytope which is centrally symmetric and has centrally symmetric facets.
We will assume 2 = —€; that is, 2 is symmetric about the origin. Let F' be one of the facets of €2, and
assume that F' C {x1 = %}, and that the center of F is the point (%, 0,0,..., 0).
These assumptions are made merely for convenience. Later on, we will reduce the general situation to
this more specific one by applying an affine transformation.
The assumptions imply that
F={3}xx,

where X is a convex polytope in R¢~! such that

Y=-3%.
The facet opposite to F' is therefore
—F={-1}xx.
6B. For o > 0 we consider the cone
K@ :={ R : gl <alsi] 2<j <D} (6-1)
Lemma 6.1. There is o = o (2) > 0 such that
w5 lg@) =sinngr-1x (5. 6. .. 80 + 06T, 161l — o0, (6-2)

in the cone K (o).

Proof. By Lemma 2.7, if « is sufficiently small then

—2mig 1g(8) =6p(E) —6_p(E)+ O0(E ™Y,  |&1] — oo,

in K (o). But we have

6rE)=e " 156, &, ... 8) and G_p(§) =" 15 (6, 6, ..., &),

which yields the conclusion of the lemma. U

6C. Assume now that we are given a set A C RY which is a spectrum for . To this spectrum A we
associate a set IT C R?~! defined as follows: IT is the set of all points s € R?~! such that for every open
ball B containing s, the cylinder R x B contains infinitely many points of A.

If we denote a point in R? as (¢, s) € R x R?~!, then one can check that a point s € R?~! belongs to IT
if and only if there is a sequence (#,, s,) € A such that

|ty > 00, s, —>s5 (n— 00). (6-3)
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It is also not difficult to verify that IT is a closed subset of R?~!.
The motivation for introducing the set IT is the following observation:

Lemma 6.2. For each s € Il there is a (unique) number 0 < 6(s) < 1 such that
ANRX (s+Ux)) CZ+0(s) xR,

where

Us = {1y #0}.
In other words, if (t',s") € A and if 15(s' —s) #0, thent' € Z +6(s).

Proof. Tt would be enough to show that if (#, s") and (¢”, s”) are two points in A N (R x (s + Uyx)), then
t" —t € Z. Since s € II, there is a sequence (t,, s,) € A such that |t,| — o0, s, — s. The vectors
' —t,,s"—s,)and (1" —t,,s” —s,) belong to the set (A — A) \ {0} for all large enough n; hence they
lie in the zero set of 1¢. Using Lemma 6.1 it follows that

sint(t' —1,)-1g(s' —s,) > 0, sinw(t” —1,) 15" —s,) = 0

as n — oo. Recall that s’ —s and s” — s are not in the zero set of 1. Hence |15 (s’ —s,)| and |15 (s” —s,)]
remain bounded away from zero as n — 0o. We conclude that

sinmw(t' —t,), sinm(t’ —t,)
both tend to zero as n — oo, or equivalently,
dist(t' —t,,2), dist(t" —t,,7)
both tend to zero. But
dist(t” — ¢/, 7) < dist(t' — t,,, Z) + dist(t” — t,,, Z),
which implies 1" — ¢’ € Z. O
Corollary 6.3. Let s',s"” € TL. If 0(s") # 6(s"), then 15 (s” —s') = 0.

Proof. Let (&, s,) € A be a sequence such that |t,| — 00, s, — s”. If 15(s” —s’) # 0, then for large
enough n we would have 15 (s, —s’) # 0. By Lemma 6.2 it follows that 1, € Z + 6(s’). On the other
hand, for all large enough n we also have 1s(sp—s") # 0, since

1s0)=|=|> 0.

Hence, again by Lemma 6.2, we have ¢, € Z + 6(s”). So we must have 6(s") = 6(s"). O
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6D. Lemma 6.2 allows us to define an equivalence relation on IT by saying that s ~ s” if 6(s") = 6(s").
It follows from Corollary 6.3 that if 1" and 1" are two distinct equivalence classes, then

n -1 c{iz =0}

The set {iz = 0} is disjoint from the open ball of radius x (X) > O centered at the origin; see (2-2).
It follows that each equivalence class is a closed set, and that there can be at most countably many
equivalence classes. So we may enumerate them as I1g, [1y, I1y, ... (finitely or infinitely many), and we
denote by 6y, 61, 6, ... respectively the values of the function 6 (s) on these equivalence classes.

6E. To illustrate the construction above, let us consider two representative examples.

Example 6.4. Assume that 2 tiles face-to-face along a lattice T of translation vectors, which in this case
is given by (5-1). Since the facet F has the form F = {%} x X, wehave 7, =(1,0,0,...,0) e T. Let A
be a spectrum of 2 given by the dual lattice; that is, A = T* Then (A, t) C Z for any t € T. In particular
this is true for T = tx; hence

ACZ xR

It follows that 8(s) = O for all s € I1. Thus in this case the set IT consists of a single equivalence class,
namely IT = I, and we have 6y = 0.

Example 6.5. Assume that Q = I x X, where I denotes the interval [—%, %] Then €2 is a prism with
base X. Suppose that X is a spectral set, and let I’ € R?~! be a spectrum for X. For each y €T, let 6(y)
be an arbitrary real number, 0 < 6(y) < 1, and define

A= J@+om) x (v}
yell
It is known, see [Jorgensen and Pedersen 1999, Theorem 4], that A is a spectrum for €2. In this case we
clearly have IT =TI, and the numbers 6(y) coincide with the ones given by Lemma 6.2. The equivalence
classes IT; depend on the specific choice of the numbers 6(y), but in the case when all the 6(y) are
distinct, the sets IT; are singletons. Observe that we have

M-y c{ls =0} (k#))

since I" is a spectrum for X. This is in accordance with Corollary 6.3.

7. Structure of spectrum, II

In this section we continue to work under the same assumptions as in Section 6. Namely, we assume
Q C R? is a convex polytope which is centrally symmetric, 2 = — and has centrally symmetric facets,
F is one of the facets of ©, and F = {J} x X, where ¥ is a convex polytope in R*~! such that & = —X.

We also assume A is a spectrum for ©, and to this spectrum A we associate the set IT ¢ R?~! that
was defined in Section 6.
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7A. From the given spectrum A one can construct a new spectrum A’ for Q in the following way.
Consider the sequence of translates of A given by

A—k-(1,0,0,...,0), k=1,2,3,....

Each one of these sets is a spectrum for €2, and they are uniformly discrete with the same separation
constant. Hence one may extract from this sequence a subsequence

A—k,-(1,0,0,...,0), £k, — o0,

which converges weakly to some set A’, which is also a spectrum for € (see Section 2C). Notice that we
do not make any claim concerning the uniqueness of the weak limit A’, which in general may depend on
the particular subsequence that was selected.

Lemma 7.1. We have
NclJz+o)xn;. (7-1)

j>0

We remind that by 6; (j > 0) we denote the distinct values attained by the function 6 (s) defined on IT,
given in Lemma 6.2, and

I, ={s el:6(s) =0;}. (7-2)

Recall also that according to Corollary 6.3 we have
M~ C (Ix =0} ( #k); (7-3)
hence Lemma 7.1 reveals a certain structure satisfied by the new spectrum A’.

Proof of Lemma 7.1. The claim is equivalent to the statement that for every (7, s") € A’ we have s’ € IT and
t' e Z+6(s’). Let therefore (¢, s") € A’. Since A’ is the weak limit of the sequence A —k,-(1,0,0,...,0),
there exist (¢,, s,) € A such that

(tn — kn, s50) = (t',5),  n— o0.
Hence s, — s/, and t, — o0 since k, — o0o. This implies s’ € I1. For all sufficiently large n we have
Lx(sa—s) #0;

thus by Lemma 6.2 we have t, € Z +6(s’). Since t, — k, — t" and the k,, are integers, this implies that
alsot’' € Z+6(s"). O

7B. Given a point (79, o) in R x R?~!, we associate with it a function f defined by
FOey) =10 Lp (e 00N, (x, y) e Rx R (7-4)

where I denotes again the interval [—%, %] Notice that the function f is supported by the prism / x X.

This prism is contained in €2 since {%} x % and {—%} x X are facets of €2 and €2 is convex. Hence f is

also supported by €2.
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It follows from the definition (7-4) of f that its Fourier transform is given by
fa.9)=10-10)1s6 50, @.5)eRxR (7-5)

Using the function f thus defined, we can prove a result similar to Lemma 7.1 but which is concerned
with the originally given spectrum A. However, the conclusion is somewhat weaker, as the right-hand
side of (7-1) is replaced by a larger set:

Lemma 7.2. We have
Ac|Jz+6) x @; +Us),
>0
where, as before, we let

Us = {1z #0}.
Proof. By Lemma 6.2 we have
ANRx (Hj—i-Uz)) C (Z+9j) X (Hj—i-Ug)

for every j. Hence, to prove the claim it would be enough to show that the sets I1; + Us. cover the whole
R?~!. Suppose to the contrary that there is a point so € R?~! which lies outside all the sets IT i +Us.
Since Uy, = —Us;, this means that

ig(s—so)zo, s e I1.

Let 7o be an arbitrary real number, and consider the function f defined by (7-4). Then f is supported
by €2, and by (7-5) its Fourier transform f vanishes on R x I1. In particular we have f () =0 for all
A € A/, due to Lemma 7.1. That is,

(fren o) = f()») =0, reA

Hence f is orthogonal in L2(2) to all the exponentials {e;}, A € A, which contradicts the completeness
of the system E(A’) in the space L?(). O

Corollary 7.3. Assume that the function 6(s) is constant on I1. Then
A—ACZxR (7-6)

Proof. 1t is assumed that IT = Iy and 6 (s) = 6y for all s € I1. Hence by Lemma 7.2, the set A is contained
in (Z+6p) x (Ilg + Us), which implies (7-6). O

7C. Corollary 7.3 is an important point in our approach to the proof that 2 can tile by translations. Let
us clarify its role. Recall that a sufficient condition for €2 to tile was given by Corollary 5.3; namely, it
is enough to know that the spectrum A satisfies condition (5-2) for every facet F of Q2. For the facet
F= {%} x X we have 7 = (1,0, 0, ..., 0); hence for this facet the condition (5-2) is the same as (7-6).
It thus follows from Corollary 7.3 that in order to establish (5-2) for the facet F = {%} X %, it would be
sufficient to prove that the function 6(s) is constant on IT.
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8. Spectral convex polygons tile the plane

8A. In this section we will demonstrate how the tools developed so far can be useful in our problem by
showing that at this point they already enable us to give an alternative proof of the following result in
dimension d = 2:

Theorem 8.1 [Iosevich et al. 2003]. Let Q2 be a convex polygon in R If Q is spectral, then Q2 tiles by
translations.

We remark that the paper [losevich et al. 2003] actually contains a proof of a more general result,
which yields the same conclusion for any convex body © C R? (not assumed a priori to be a polygon).

8B. In order to prove Theorem 8.1, we now restrict ourselves to dimension d = 2. Let Q2 be a convex
polygon in R% Assume that  is spectral, and let A be a spectrum for 2. We must prove that 2 tiles
by translations. This is obvious if 2 is a parallelogram, so in what follows we will assume €2 is not a
parallelogram.

By Theorem 3.1 the polygon €2 is centrally symmetric, and since the facets of €2 are line segments,
then automatically also all the facets of €2 are centrally symmetric.

Lemma 8.2. Let Q be a convex, centrally symmetric polygon in R, and assume Q is not a parallelogram.
If A is a spectrum of 2, then
(A—A,tp)CZ (8-1)

for every facet F of Q.

Theorem 8.1 follows immediately from a combination of Lemma 8.2 and Corollary 5.3. Hence, it only
remains to prove the lemma.

Lemma 8.2 was proved in [losevich et al. 2003, Proposition 3.1], and was also used there to deduce
that 2 tiles by translations. However, both our proof of Lemma 8.2, and the argument we use to deduce
Theorem 8.1 from Lemma 8.2, are different from theirs.

8C. Now we give our proof of Lemma 8.2.

Proof of Lemma 8.2. Let F be a facet of 2. We must show that if A is a spectrum of €2, then it satisfies
condition (8-1). By applying an affine transformation we may assume 2 is symmetric about the origin,
Q= —, and that F = {1} x I, where [ is the interval [—1, 1]. Hence we have £ = I, 7 = (1, 0), and
condition (8-1) becomes

A—ACZxR. (8-2)

Let IT C R be the set associated to the spectrum A defined as in Section 6, and 6 (s) be the function on IT
given by Lemma 6.2. By Corollary 7.3, to establish (8-2) it would be enough to show that 6 (s) is constant
on IT.

Let us first consider the case when

n-Incz. (8-3)
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We will show that in this case we must have 2 = I x [, that is, €2 is the unit cube, which is not possible
as we have assumed that € is not a parallelogram. Indeed, suppose that (8-3) holds, and let A’ be the
spectrum constructed from A in Section 7. Fix a point Ag = (¢o, so) € A’. It follows from Lemma 7.1 and
(8-3) that if A" = (¢/, s) is any point in A" other than A¢, then at least one of the numbers ¢’ — #y and s" — s
must be in Z \ {0}. Now consider the function f defined by (7-4). This function is supported by €2, and by
(7-5) its Fourier transform f vanishes on all the points of A’ except for A, since i ; vanishes on Z \ {0}.
Hence f is orthogonal in L?(Q) to all the exponentials {e;}, A € A’\ {Ao}. Since the system E(A’) is
orthogonal and complete in L2(£2), this implies that f must coincide a.e. on  with a constant (nonzero)
multiple of e,,. In particular, f cannot vanish on any subset of 2 of positive measure. On the other hand,
by the definition of f it does vanish on 2\ (/ x I). This is possible only if 2 =1 x I.
We thus conclude that (8-3) is not possible, so we must have

n-1gez. (8-4)

Let us then show that 6(s) is a constant function on IT. Indeed, due to (8-4) there exist s”, s” € I1 such
that s” — s’ ¢ Z. Since {1;=0} = Z\ {0}, Corollary 6.3 implies 6(s’) = 6(s”). Observe that for any
s € Il we must have s —s" ¢ Z or s —s” ¢ Z, and in either case we obtain, again by Corollary 6.3, that
0(s) =0(s") =0(s”). This shows that 0 (s) must be a constant function on IT. O

9. Prisms and cylindric sets

9A. The proof presented in Section 8 that a spectral convex polygon in the plane R? can tile by translations
eventually relied on showing that the function 6(s) is constant on the set I1. In order to show this we
had to exclude the case when 2 is a parallelogram, but since a parallelogram automatically tiles by
translations, this loss of generality was innocuous in the proof.

In dimension d = 3, however, the situation is more complicated. Even if we exclude the case when 2
is a parallelepiped, one still cannot expect to be able to prove that 6(s) is a constant function on IT.
Indeed, we have seen in Example 6.5 above that if €2 is a prism whose base is a spectral set, then the
function 6 (s) may attain countably many arbitrary distinct values. Hence, the role of the parallelogram in
dimension d = 2 will be played not by the parallelepiped, but by the prism, in dimension d = 3.

We remind the reader that by a prism in R? one means a polytope € which can be expressed as the
Minkowski sum of a (d—1)-dimensional polytope and a line segment.

Notice, however, that while a parallelogram in R? automatically tiles by translations, this is not so for
a prism in R>. Hence it is yet required to prove — necessarily by a different method — that a spectral
convex prism in R? can tile by translations.

Let us formulate this result explicitly:

Theorem 9.1. Let Q be a convex prism in R>. If Q is spectral, then it tiles by translations.
9B. A bounded, measurable set 2 C R? (d > 2) will be called a cylindric set if it has the form Q =1 x X,

where I is an interval in R, and ¥ is a measurable set in R?~!. In this case, the set ¥ will be called the
base of the cylindric set 2.
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If the base X is a convex polytope in R?~!, then the set 2 = I x X is a convex prism. Conversely, any
convex prism in R? is the affine image of some set of the form I x X, where I is an interval and ¥ is a
convex polytope in R4,

We will deduce Theorem 9.1 from the following result, proved in our paper [Greenfeld and Lev 2016].
The result is valid in all dimensions d > 2 (not just d = 3).

Theorem 9.2 [Greenfeld and Lev 2016]. A cylindric set @ = I x ¥ is spectral (as a set in RY) if and only
if its base X is a spectral set (as a set in R4™1),

This result thus provides a characterization of the cylindric spectral sets €2 in terms of the spectrality
of their base X.

The “if” part of Theorem 9.2 is obvious. Suppose for simplicity that / = [—% %] Ifr cR¥lisa
spectrum for X, then it is easy to check that Z x I is a spectrum for €2; hence €2 is spectral.

On the other hand, the converse, “only if” part of the theorem (which is what we shall need for our
present goal), is nontrivial. Roughly speaking, the difficulty lies in that knowing €2 to have a spectrum A
in no way implies that A has a product structure as Z x I'. In particular, we do not have any obvious

candidate for a set ' € R?~! that might serve as a spectrum for X.

Remark. In [Greenfeld and Lev 2016] we also gave a similar characterization of the cylindric sets €2
in R? which can tile the space by translations. Namely, it was proved there that a cylindric set Q =1 x X
tiles if and only if its base X tiles.

9C. Theorem 9.1 can now be obtained by a combination of Theorem 9.2 and the result from [losevich
et al. 2003] that a spectral convex polygon in R? can tile by translations, namely, Theorem 8.1 (for which
we have provided an independent proof in Section 8).

Proof of Theorem 9.1. By applying an affine transformation we can assume 2 =/ x X, where [ is the

interval [—%, %] and ¥ is a convex polygon in R? Since 2 is spectral, it follows by Theorem 9.2 that
also ¥ is spectral. Hence by Theorem 8.1, ¥ tiles by translations, so there is a set I' C R? such that

¥ + T is a tiling of R? It is then clear that Q tiles R? with the translation set Z x T". O

10. Prisms and zonotopes

In Section 9 we explained why the case when the convex polytope € C R? is a prism requires a special
treatment in our approach. In this case we obtained a complete solution to our problem; namely, it was
proved that if a convex prism in R? is a spectral set, then it tiles by translations (Theorem 9.1). Hence, in
what follows we will be mainly interested in the case when €2 is not a prism. The goal of the present
section is to point out some geometric properties of such an €2 that will be useful in the analysis of the
spectrum later on.

10A. Let Q C R? be a convex polytope, centrally symmetric and with centrally symmetric facets. Let F
be a facet of €2, and F’ be the opposite facet. Recall that by the central symmetry, F’ is a translate of F,
and that we have denoted by tf the translation vector in R3 which carries F’ onto F, that is, F = F' + 1p.
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Suppose now that A is a subfacet of F. Then A is the image under the translation by 75 of a subfacet A’
of F/, that is, A = A’ + tp. We denote by Hp 4 the hyperplane which contains the subfacets A and A".

Lemma 10.1. If Q is not a prism, then for any facet F of 2 there is a subfacet A such that int(2)
intersects each one of the two open half-spaces bounded by HF 4.

Proof. Let F be a facet of Q. By applying an affine transformation we may assume
Q=-Q, F={3}x%, F={-1}xz,

where X is a convex polygon in R? such that ¥ = —X. Suppose to the contrary that for any subfacet A
of F, int(2) entirely lies within one of the open half-spaces bounded by Hf 4. The intersection of the
closures of all these half-spaces with the set I x R2 where [ = [—%, %], is equal to / x X. Hence 2 is
contained in I x X. But Q2 also contains I x X, since I x X is the convex hull of the facets F and F’. We
conclude that 2 = I x X, which is not possible unless €2 is a prism. This contradiction ends the proof. [

10B. By a zonotope in R? one means a polytope which can be represented as the Minkowski sum of a
finite number of line segments. A zonotope is a convex, centrally symmetric polytope, and all its facets
are also zonotopes. In particular, all the facets of a zonotope are also centrally symmetric.

It is known, see, e.g., [Schneider 1993, Theorem 3.5.1], that in dimension d = 3, a convex polytope
which has centrally symmetric facets must be a zonotope.

Remark, by the way, that this is not true in dimensions d > 4. A well-known example is the 24-cell
in R, a convex polytope which tiles by translations, and hence is centrally symmetric and has centrally
symmetric facets, but which is not a zonotope.

10C. Let again © C R? be a convex polytope, centrally symmetric and with centrally symmetric facets
(and hence a zonotope). Let F be a facet of 2, and A, B be two parallel subfacets of F. Let F’ and
A’, B’ be the facet and its two subfacets which are carried onto F and A, B respectively by the translation
vector Tr. We denote by Sr 4 p the closed slab which lies between the two parallel hyperplanes Hr 4
and H, F,B-

Lemma 10.2. Assume that the intersection of Q2 and Sg 4, p coincides with the convex hull of the facets F
and F'. Then Q is a prism.

Proof. By applying an affine transformation we may assume
Q=-Q, Fc{x=1},
F is symmetric about the point (3, 0, 0), and
A= x b xn B= {3 x (4} %0,
where [ denotes as usual the interval [—% %
{_l

such that ¥ = —X, and such that {%} x I, {—3
The assumption in the lemma thus means that

]. Hence F = {%} x ¥, where ¥ is a convex polygon in R?
} x I are facets of X.

QNRxIxR) =1x3. (10-1)
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Since €2 is a zonotope, it can be represented as the Minkowski sum of several line segments Sy, S, ..., S,.
Thus we have 2= S1+85,+- - -+S5,. As Q is symmetric about the origin, we can assume that the same is true
for each line segment S;; that is, S; = —S;. We can also assume that no two of the segments S; are parallel.

Now we consider two distinct cases separately. Let us first consider the case when X is not the cube
I x I. In this case there must exist at least one vertex v of X which belongs to int(/ x R). Hence I x {v}is a
subfacet of 7 x X. By (10-1) it follows that I x {v} is also a subfacet of 2. Each subfacet of 2 is a translate
of one of the §;’s (see, for example, [McMullen 1971]). Hence one of the line segments, say Sj, must be
equal to I x {0} x {0}. It then follows that all the other line segments S, ..., S, must lie in {0} x R x R.
Indeed, if this is not true for some S;, then S; + S; is not contained in I x R x R. But §; + §; is contained
in 2, and 2 is contained in / x R x R, so this is not possible. Hence all the segments Sy, ..., S, lie in
{0} x R x R. It follows that S, +-- -+ S, = {0} x X, and Q2 = I x X. This shows that €2 must be a prism.

Now we consider the remaining case, namely, when X = [ x [. In this case, the assumption (10-1)
becomes

QNRxIxR)y=1Ix1x1. (10-2)

Hence Rx R x {5} and R x R x { —7} are supporting hyperplanes of 2, and thus & C Rx Rx I. Since A =
{%} X { % } x I is a subfacet of €2, then as before, one of the line segments, say again S;, must be equal to {0} x
{0} x I. Tt then follows that all the other line segments S, . . ., S, must lie in R x R x {0}, since if not, then as
before, this would contradict the fact that Q CR xR x I. Hence S +- - -+ S,, = P x {0} for a certain convex
polygon P C R? and Q = P x I. Again we obtain that  must be a prism, so this proves the lemma. [J

11. Structure of spectrum, I11

In this section our goal is to relate the geometric observations made in Section 10 to the spectrality
problem for convex polytopes in dimension d = 3. More specifically, we will see how one can use the
assumption that €2 is not a prism in order to obtain new information on the structure of the spectrum A.

11A. Let  C R? be a convex polytope, centrally symmetric and with centrally symmetric facets. Assume,
as before, that 2 = —Q; that is, Q is symmetric about the origin, F is a facet of 2 contained in {x 1= %},
and the center of F is the point (3, 0,0). Hence F = {1} x &, where T is a convex polygon in R? such
that ¥ = —X.

Suppose also that A is a spectrum for Q. Let IT C R? be the set associated to the spectrum A defined
as in Section 6 and 6(s) be the function on IT given by Lemma 6.2. We also let A’ be the new spectrum
constructed from A in Section 7.

Recall that to each point (79, so) € R x R* we have associated a function £, supported by , defined by
(7-4). As an element of L2(£2), this function f admits a Fourier expansion with respect to the spectrum A/,
given by

1 A
f=ig > fen. (11-1)
reN
By Lemma 2.1 the series on the right-hand side of (11-1) converges in L? on any bounded set to a
measurable function f on R3, and f coincides with f a.e. on .
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We now observe that for certain values of (%, sg), the Fourier expansion of f with respect to the
spectrum A’ consists of exceptionally few terms:

Lemma 11.1. Let (ty, so) be a point belonging to (Z + 0;) x Il; for some j, and let f be the function
defined by (7-4). Then the Fourier expansion (11-1) of f with respect to the spectrum A’ consists only of
terms corresponding to . € A" N ({to} x IT;).

In other words, all the coefficients f (A) in the expansion (11-1) must vanish except for possibly those
which correspond to A = (¢, s) € A" such that t =1y and s € IT;.

Proof of Lemma 11.1. If (¢, s) € A, then by Lemma 7.1 there is k such that t € Z + 6, and s € T1;. If
k # j then ig(s —s0) = 0 due to (7-3), and it follows from (7-5) that f(t, s) = 0. If k = j then both £,
and ¢ belong to Z + 6;; hence t — 1¢ is an integer. Since 1; vanishes on Z \ {0}, it follows again by (7-5)
that f (t,s) = 0 unless ¢t = fg. This shows that in the series (11-1) the nonzero coefficients can only
correspond to A = (¢, s) such that r = o and s € I1;. O

Remark. It may be interesting to notice that Lemma 11.1 implies that A" must contain points from each
one of the sets {tp} x I1;, where ty goes through the elements of Z + 6;.

11B. Now suppose that 2 is not a prism. Then by Lemma 10.1 there is a subfacet A of F such that int(£2)

intersects each one of the two open half-spaces bounded by the hyperplane Hr 4. Let us assume, for
1
2
reduced to this case by applying an affine transformation). Thus {%} x I is a facet of the convex polygon X.

simplicity, that this subfacetis A = {%} X { } x I, where [ = [—% %] (later on, the general situation will be
We can now use Lemma 11.1 to obtain some additional information on the structure of the components
I, of the set IT.

Lemma 11.2. For each j we have
I, -I; ¢ Zx R. (11-2)

Proof. Suppose that (11-2) is not true for some j. By translating the spectrum A we can assume I1;
contains the origin, and hence
I, CZxR. (11-3)

Choose a point (1, so) € (Z+6;) x I}, and let f be the function associated to this point defined by
(7-4). By Lemma 11.1 and due to (11-3), the Fourier expansion of f with respect to A" consists only of
exponentials e, such that A € A’ N (R x Z x R). It follows (Lemma 2.1) that the right-hand side of (11-1)
is a function f on R3 which is periodic with respect to the vector (0, 1, 0), and f coincides with f a.e.
on 2.

Recall that we have chosen the subfacet A of F' (using Lemma 10.1) such that int(£2) intersects each one
of the two open half-spaces bounded by the hyperplane Hp, 4. Since it was assumed that A = {1} x {1} x I,
this means that Hr, 4 = {x, = %} and hence

Q¢ {xn<3) (11-4)

Recall also that F = {%} x ¥, where ¥ is a convex polygon in R%, ¥ = —%, and {%} x I is a face
of X. By convexity, ¥ contains the unit square / x I, and hence / x X contains the unit cube I x I x I.
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Thus |f| =|f|=1a.e.onl x I x I. By the periodicity of f this implies |f| =lae.onl xRx /I In
particular, | f | =1 a.e. on the set
QN x(R\T)x1I). (11-5)

On the other hand, the set (11-5) is disjoint from / x X; hence | f| = 0 on this set. It follows that the set
(11-5) cannot have positive measure, and therefore

QNUxRxI)=1x1Ix1.
This implies that {xz = %} is a supporting hyperplane of €2, which contradicts (11-4). O
Lemma 11.3. For each j we have

M —1; ¢ RxZ. (11-6)

Proof. We argue in a way similar to the proof of the previous lemma. If (11-6) is violated for some j,
then by translating A we can assume
[T, CRxZ. (11-7)

Hence, choosing a point (#9, so) € (Z+6;) x I1;, the corresponding function f defined by (7-4) coincides
a.e. on Q with a function f on R, which by (11-7) and Lemma 11.1 is periodic with respect to the vector
0,0, 1).

Since we have |f| =|f|=1ae.on I x I x I, the periodicity of f implies |f| =lae.onl xIxR.
In particular, | f| = 1 a.e. on the set

QN x((I xR)\ X)). (11-8)

But since this set is disjoint from / x X, we have | f| = 0 on the set (11-8). So the set (11-8) cannot have
positive measure, and therefore
QNI xIxR)=1xX.

By Lemma 10.2 this is possible only if €2 is a prism, so this concludes the proof. O

Lemma 11.4. Let X be a subset of an abelian group G, and let Hy and H, be two subgroups of G.
Assume that

X—XCH UH,. (11-9)
Then X — X C H or X — X C Hj.

Proof. Suppose that X — X ¢ Hj, so there exist x, y € X such that x —y ¢ H;. Then by (11-9) we
have x — y € H,. The property x — y ¢ H; implies that for each z € X we must have z —x ¢ H| or
7 —y ¢ Hj. But in either case, it follows from (11-9) that z € x + H, = y + H», so we conclude that
XCx+Hy=y+ H,. Thus X — X C H». |

Corollary 11.5. For each j we have
IT; - IT;  (ZxR)U R x Z). (11-10)

This is an immediate consequence of Lemmas 11.2, 11.3 and 11.4.
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12. Structure of spectrum, IV

In the present section, we continue to analyze the structure of the spectrum of a convex polytope €2 in
dimension d = 3. Although we are mainly interested in the case when €2 is not a prism, we will not need
to assume this in the present section.

12A. Let  be a convex polytope in R3, centrally symmetric and with centrally symmetric facets. Assume
that €2 is in our “standard position”; namely, 2 = —, F is a facet of 2 contained in {x1 = %}, and F
is symmetric about the point (%, 0, O). Assume also that A = {%} X {%} x I 1s a subfacet of F, where
I = [—% %] Hence F = {3} x X, where ¥ is a convex polygon in R, £ = —%, and {3} x I is a facet
of X.

Suppose that A is a spectrum for 2. Let IT C R? be the set associated to the spectrum A defined in
Section 6 and 6(s) be the function on IT given by Lemma 6.2. Recall that in Section 7 a new spectrum A’
was constructed from the given spectrum A by taking the weak limit of a sequence of translates of A.

The new spectrum A’ was shown (Lemma 7.1) to enjoy a particular structure, namely

Ncl| Jz+o) x 1, (12-1)

Jj=0
where IT; are the components of the set IT, and 6; are respectively the values of the function 6(s) on
these components. The sets I1; were shown (Corollary 6.3) to satisfy

M —T; C{lsg =0} (#k. (12-2)

When we want to further analyze the structure of the spectrum in dimension d = 3, a new complication
arises that was not present in the case d = 2. Namely, the zero set {1z = 0} is not known explicitly,
except in the special case when X is the cube / x [. In order to address this difficulty, a further limiting
procedure will now be performed on the spectrum A, yielding a third spectrum A” of €.

12B. The new spectrum A” is constructed as follows. Consider the sequence of translates of the
spectrum A’ given by

AN—-r-0,1,0), r=1,2,3,....
As in Section 7 we may extract from this sequence a subsequence
AN —r,-(0,1,0), r,— o0, (12-3)

which converges weakly to some set A”, which is again a spectrum of .
According to (12-1) we may form a partition of the spectrum A’ into sets defined by

A} =ANN{(Z+06;) x1)). (12-4)
It would be convenient for us to know that for each j, the sequence of translates

A} —r,-(0,1,0) (12-5)
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of each component A;. has a weak limit as n — oo. This does not follow automatically from the weak
convergence of the sequence (12-3), though, since we have not excluded the possibility that there may be
infinitely many 6; and that they may have accumulation points. Nevertheless, we can assume that (12-5)
has a weak limit as n — oo for each j, simply by selecting a further subsequence if necessary.

We shall denote by A;.’ the weak limit of (12-5). Observe that a point (¢, u, v) € R* belongs to A}’ if
and only if there is a sequence (¢, u,, v,) € A} such that

(tnaun_rn’ U}’l)_)(tvu’ U)v n — o0.

Remark that while by Lemma 11.1 none of the components A} may be empty, this is not true for the
sets A;.’ that we cannot exclude some of which to be empty.
It follows from (12-4) that

A} C A N(Z+6)) x R); (12-6)

hence the sets A are disjoint subsets of A”. Remark, however, that these sets do not necessarily form a
partition of A”; namely, their union need not be equal to the whole A”. Again, this may happen only if
there are infinitely many 6;. An example of such a situation can be obtained if €2 is a prism whose base
is a spectral set. Indeed, we have seen in Example 6.5 that in such a case the function 6(s) may attain
countably many arbitrary distinct values, and that the components IT; of the set IT may be singletons.
This implies that every A}’ is empty, while A” certainly cannot be empty being a spectrum for Q.

This makes it necessary for us in general to consider also the subset of A” defined by

A=A\ A

Jj=0

Lemma 12.1. Let (¢, u, v) € R>. Then (¢, u, v) belongs to A if and only if there is a sequence k, — 00,
and for each n there is a point (t,, un, v,) € A,;n such that

(tn;”n_rn,vn)_)(t’u7v), n— o0.

Proof. Suppose first that (¢, u, v) is a point in A. Then (¢, u, v) € A”, and since A” is the weak limit of
(12-3), there exist (¢,, u,, v,) € A’ such that (¢,,, u,, — r,, v,) = (¢, u, v). Due to (12-1) and (12-4), for
each n there is k,, > 0 such that (¢,, u,, v,) € A;c,,' If k,, /> oo, then k, admits infinitely often a certain
value, say k, = j, for infinitely many #n. But this implies that (¢, u, v) must belong to the weak limit of
(12-5), and hence (¢, u, v) € A;f, so it cannot lie in A . Hence we must have k, — oo.

Conversely, suppose that the point (¢, u, v) satisfies the condition in the lemma. The condition implies
that (¢, u, v) belongs to the weak limit of (12-3); hence (¢, u, v) € A”. If (¢, u, v) is not in A, then it
belongs to one of the sets A;f . But then we must have k,, = j for all sufficiently large n, so k, / 00, a
contradiction. Hence (7, u, v) € AZ. O

We also point out that the inclusion (12-6) is not necessarily an equality, as the right-hand side of
(12-6) may contain elements of A .
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12C. Now we establish some properties satisfied by the new spectrum A” and its components A}
(0 < k < 00). The first property is derived from the condition (12-2).

Lemma 12.2. Foreach0< j, k < oo, j #k, we have
A=A} cRx {1z =0} (12-7)

Proof. By symmetry we may assume 0 < j < k < oo. Let (¢, u, v) € A;f and (¢, u’, v") € A}. Then there
exist two sequences

(tns tn, V) € Ny (tns n — Ty Up) = (8, u, V),
and

(t ) €AY, (th, 1y — 1y, ) = (2, U, 1),

n v}’l

where k, = k in the case when £ is finite and k,, — oo if k = oo (Lemma 12.1). In any case we have
k, # j for all sufficiently large n. Since by (12-4) we have

(un, vp) € Hja (u;p U;,) € Hkna

it follows from (12-2) that

(ty/p u; —TIn, v;,) —(ty, Uy — 1y, Vp) = (tr/, — Iy, u; — Up, U;, —v,) € R x {iE =0}.

Letting n — oo we obtain
(' u,v) =t u,v) e Rx {1y =01,
which confirms (12-7). ([l

Lemma 12.2 shows that the structure (12-2) is basically preserved in the new spectrum A” and its
components A} (0 < k < 0o). However, our motivation for introducing this new spectrum is due to the
following lemma:

Lemma 12.3. Let0< j <00, 0<k <00, k # j. Then
Al —-RxT; C RxZxR)URxRx (Z\{0}). (12-8)
In other words, if (uo, vo) € I1j and if (t,u,v) € A}, then u —ug € Z or v—1vg € Z\ {0}.

This lemma is similar in spirit to Lemma 6.2. To see the resemblance between the two lemmas, recall
that {%} x I is a facet of the polygon X, and (i,=0=2 \ {0}. The assertion of (12-8) is equivalent to
the statement that if (1o, vo) € I1;, (t,u,v) € A}, and if 1;(v —vo) # O, then u € Z+ ug. The proof is
also similar to that of Lemma 6.2.

Proof of Lemma 12.3. Let (ug, vo) € I; and (¢, u, v) € AZ . Regardless of whether £ is finite or not, there
is a sequence k, and there are points (¢,, U, v,) € A;{n such that

(tl’lsun_rrH Un)_) (t’ u’ v)’ n— o0. (12_9)
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Indeed, if 0 < k < oo then k, = k for all n, while if k = oo then k, — oo (Lemma 12.1). In any case, we
have k, # j for all sufficiently large n. Since (¢,, u,, v,) € A;Cn we have (u,, v,) € 1, by (12-4). Hence
by (12-2) this implies

5w —ug, va —v0) =0 (12-10)

for all sufficiently large n.
Observe that since r, — oo, (12-9) implies that also u#, — oco. Hence using Lemma 6.1 for the
polygon ¥ and its facet {3} x I, it follows from (12-10) that

sin 7w (u, — ug) - i,(vn —vg) >0, n— oo.

Indeed, the polygon X is centrally symmetric and it has centrally symmetric facets, as the facets of X are
line segments; hence all the conditions of Lemma 6.1 are satisfied.

Now suppose that v — vy &€ Z \ {0}. Then v — vg is not contained in the zero set of i 1, and hence
|i 1 (v, — vp)| remains bounded away from zero as n — oo. So we must have sin 7 (4, — ug) — 0, or
equivalently, dist(u, —ug, Z) — 0. But since r,, is an integer, (12-9) implies that also dist(u, —u, Z) — 0.
It follows that

dist(u — ug, Z) < dist(u,, — ug, Z) + dist(u,, —u, Z2) — 0.
We conclude that u — ug € Z as required. ]

From the previous lemma it is easy to deduce the next one:

Lemma 12.4. Foreach0 < j, k < oo, j #k, we have
AZ—A}/C(RXZXR)U(RXRX(Z\{O})). (12-11)

Actually we will not use Lemma 12.4 in what follows. We state it merely to demonstrate an essential
advantage of the newly constructed spectrum A”. On one hand, according to (12-7) it basically inherits
the structure of the previously constructed spectrum A’, while on the other hand, condition (12-11) reveals
an extra structure in A”.

Since the proof of Lemma 12.4 is quite short, we include it for completeness.

Proof of Lemma 12.4. By symmetry we may assume 0 < j < k < co. Let (t,u,v) € A}. Then by
Lemma 12.3 the set R x IT; must be contained in

Rxw+2) xR URXRx v+ (Z\{0}))). (12-12)

Due to (12-4) we have A;. C R x ITj; hence also the set A;. is contained in (12-12). Since the set (12-12)
is invariant under translations by vectors in {0} x Z x {0}, it follows that all the sets (12-5) are also
contained in (12-12), and hence the same is true for their weak limit A}/. This implies that A}/ —(t,u,v)
is contained in the set on the right-hand side of (12-11). As (¢, u, v) was an arbitrary element of A7, this
establishes (12-11). U
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13. Auxiliary lemmas

In this section we establish some specific facts about the spectrum of a convex polytope €2 that will be
used later on. These facts are true in arbitrary dimension, so in the present section we do not restrict the
discussion to three dimensions.

13A. Let Q c R? be a convex polytope. Let F and F’ be two parallel facets of €2, and assume F C {x1 = %}
F' C {x1 = —%} and that F is the image of F’ under translation by the vector ¢;. These assumptions
imply that

F={3) x5 F={-4xz.

where X is a convex polytope in R4~
Assume also that €2 is spectral, and let A be a spectrum for €.

Lemma 13.1. If Q is not a prism, then A cannot contain any set of the form
(Z+0) x {s}, (13-1)
where 6 € R and s € R\,

Proof. Suppose to the contrary that A does contain a set of the form (13-1). This implies that the set
A — A contains Z x {0}. On the other hand, since A is a spectrum for €2, the set A — A must be contained
in {iQ = 0} U {0}. We conclude that

lak,00=0, kez\{0). (13-2)

For each x € R denote by €2, the (d—1)-dimensional polytope obtained by the intersection of €2 with
the hyperplane {x} x R?~!, and let ¢(x) be the (d—1)-dimensional volume of .. Then the function ¢
vanishes off the interval / = [—1, 1], it is continuous on 7, and ¢(1) = ¢(—1) = |Z|. Notice that, by
convexity, 2, contains {x} x X for every x € I. In particular this implies p(x) > |X], x € L.

It follows from the definition of the function ¢ that its Fourier transform is given by

o) =1g(r,0), reR.

Combining this with (13-2) we obtain that ¢ vanishes on Z \ {0}. Since ¢ is supported on 7, this implies
that ¢ is orthogonal in L2(I) to all the exponentials {e;}, k € Z\ {0}. But as the system E (Z) is orthogonal
and complete in L2(I), this is possible only if ¢ is constant on 1. Hence ¢(x) = |X| for all x € . In turn,
this implies 2, = {x} x X, x € I. We conclude that Q2 =1 x X, and so 2 is a prism, a contradiction. [

Remark. One can see from the proof that the only property of the set (13-1) that was actually used was
that its difference set contains Z x {0}. Hence the lemma remains true if (13-1) is replaced by any other
set for which the latter property is satisfied.

13B. Denote by Q =1 d=1 the unit cube in R?~L. As usual, I is the interval [—%, %]

Lemma 13.2. Assume that ¥ contains Q. If Q2 is not a prism, then A cannot be covered by the union of
two translates of 7°.
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Proof. Suppose to the contrary that A is contained in the union of two translates of Z%. By translating A
we may assume
ACZiU@+1) (13-3)

for some T € RY. According to Lemma 13.1, the spectrum A cannot contain the whole set Z x {0}. This
implies that by further translating A by a certain vector in Z x {0}, we may additionally assume A does
not contain the origin.

Since ¥ is assumed to contain Q, and since by convexity €2 contains / x X, it follows that & must
contain I x Q, the unit cube in R?. Hence the function f =1;, o is supported by €2. Consider the Fourier
expansion (2-3) of this function f. Since f vanishes on all the points of Z¢ except the origin, and since
the origin does not belong to A, it follows from (13-3) that only exponentials e, such that A € AN (79 +7)
may have a nonzero coefficient in the expansion (2-3). Hence by Lemma 2.1 the right-hand side of (2-3)
represents a function f of the form

fx) =™ "¥e(x), xeRY,

where g is some Z¢-periodic function, and f coincides with f a.e. on 2. Notice that |g| = | f l=1fl=1
a.e. on I x Q. By the periodicity of g this implies |g| = 1 a.e. on R? Hence | f| = |f| =|gl=1a.e.
on 2. In particular, f cannot vanish on any subset of Q2 of positive measure. On the other hand, by the
definition of f it does vanish on 2\ (I x Q). This is possible only if Q2 =1 x Q; namely, €2 is the unit
cube in R?. But this contradicts the assumption that € is not a prism, so the proof is complete. ]

14. Structure of spectrum, V
In this section we complete the analysis of the spectrum in dimension d = 3.

14A. Our assumptions will be the following.
Let  C R? be a convex polytope, centrally symmetric and with centrally symmetric facets. We assume

2 is not a prism. Suppose that €2 is in the “standard position”; namely, 2 = —, F is a facet of Q
contained in {x1 = %}, and F is symmetric about the point (%, 0, 0). Hence F = {%} X X, where X is
a convex polygon in R? such that ¥ = —%. We assume A = {1} x {3

I = [—%, %], and therefore {%} x I is a facet of ¥. We also suppose that int(2) intersects each one of

} x I is a subfacet of F, where

the two open half-spaces {x2 < %} and {x2 > %}

Suppose now that A is a spectrum for €2. Let IT be the set constructed from A in Section 6, and 6(s)
be the function on IT given by Lemma 6.2. Let A" be the spectrum for 2 constructed from A in Section 7,
and A” be the spectrum constructed from A’ in Section 12. We shall continue to use the notations IT s 0,
A%, A} and A7 with the same meaning as in the previous sections.

Our goal in the present section is to prove that, under the assumptions above, the function 6(s) is
necessarily constant on IT.

14B. It will be convenient to introduce the following notation. Let

G:=ZxR)URx2) (14-1)
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and
Go:=ZxR)U([R x (Z\{0})). (14-2)
Lemma 14.1. Let IT; (0 < j < 00) be one of the components of T1, and let 0 < k < 00, k # j. Then we
have
A CRx [ (s +Go). (14-3)
SEH]'

Also, if the set A} is not empty, then we have

I c () +Go. (14-4)

(t,8)eA]

In fact, each one of (14-3) and (14-4) is just a reformulation of condition (12-8). Hence Lemma 14.1
is a consequence of Lemma 12.3.

14C. Lemma 14.2. If for some 0 < k < 00, the set A} is not empty, then
N — A ¢ RxG. (14-5)

Proof. The proof is very similar to that of Corollary 11.5, and therefore it will only be outlined. The proof
involves several steps.

Step 1. Let (19, so) be a pointin A}, and let f be the function defined by (7-4). Then the Fourier expansion

1 A
f==Y fwe. (14-6)
1€ reA”
of f with respect to the spectrum A” consists only of terms corresponding to A € A}. This follows from
Lemma 12.2 and the expression (7-5) for the Fourier transform of f.

Step 2. We have
AN — A ¢ RxZxR. (14-7)

Indeed, if this is not true then by translating A we may assume A} C R x Z x R. Hence from the Fourier
expansion (14-6) it follows (Lemma 2.1) that f coincides a.e. on Q2 with a function f on R3 which is
periodic with respect to the vector (0, 1, 0). As in the proof of Lemma 11.2, this leads to a contradiction
to the assumption that int(€2) intersects both half-spaces {xz < %} and {xz > %}

Step 3. We have
AN — A ZRxRxZ. (14-8)

In the same way, if this does not hold then by translating A we can assume A} C R x R x Z. As in Step 2
this implies that f coincides a.e. on §2 with a function f on R? which is periodic with respect to the
vector (0, 0, 1). As in the proof of Lemma 11.3, this together with Lemma 10.2 implies that €2 must be a
prism, a contradiction.
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Step 4. We have
A — AN ZRxG.
This follows by combining (14-7), (14-8) and Lemma 11.4. O

14D. Lemma 14.3. Let s, s', s be three points in R2 and
X=6+GNE+6)NE"+G). (14-9)
If the points s, s, s" are distinct modulo 7%, then X — X C G.
This is not difficult to verify, and we omit the details.

Lemma 14.4. Suppose that there is a component I1; of the set T1 (0 < j < 00) such that for any
0<k <oo,k#j,the set A} is empty. Then I1 = I1;; namely T1; is the unique component of T1, and so
the function 0(s) is constant on I1.

Proof. The assumption means that A” = A7. By (12-6) we therefore have
A C(Z+6;) xR

Consider the s