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A VECTOR FIELD METHOD FOR RELATIVISTIC TRANSPORT EQUATIONS
WITH APPLICATIONS

DAVID FAJMAN, JEREMIE JOUDIOUX AND JACQUES SMULEVICI

We adapt the vector field method of Klainerman to the study of relativistic transport equations. First, we
prove robust decay estimates for velocity averages of solutions to the relativistic massive and massless
transport equations, without any compact support requirements (in x or v) for the distribution functions.
In the second part of this article, we apply our method to the study of the massive and massless Vlasov—
Nordstrom systems. In the massive case, we prove global existence and (almost) optimal decay estimates
for solutions in dimensions 7 > 4 under some smallness assumptions. In the massless case, the system
decouples and we prove optimal decay estimates for the solutions in dimensions n > 4 for arbitrarily
large data, and in dimension 3 under some smallness assumptions, exploiting a certain form of the null
condition satisfied by the equations. The 3-dimensional massive case requires an extension of our method
and will be treated in future work.
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1. Introduction

The vector field method of Klainerman [1985b] provides powerful tools which are at the core of many
fundamental results in the study of nonlinear wave equations, such as the famous proof of the stability of
the Minkowski space [Christodoulou and Klainerman 1993]. In essence, the method takes advantage of
the symmetries of a linear evolution equation to derive in a robust way boundedness and decay estimates
of solutions. The robustness is crucial, as the final aim is typically to prove the nonlinear stability of
some stationary solution, so that the method should be stable when perturbed by the nonlinearities of the
equations.

In this paper, we are interested in the massive and massless relativistic transport equations’

T (f) = (y/m? + [v]23; + 0" 9,) (/) =0, (1)

where m > 0 is the mass? of the particles and f is a function of (7, x,v) defined on R; x R x R” if
m >0 and R; x R? x (R} \ {0}) otherwise, with n > 1 being the dimension of the physical space.

Decay estimates via the method of characteristics for relativistic transport equations. For transport
equations, the standard method to prove decay estimates is the method of characteristics. The origin of
these decay estimates goes back in the nonrelativistic case to the work of Bardos and Degond [1985]
on the Vlasov—Poisson system. Recall that if f is a regular solution to say 7T1(f) = 0 then, for all
(t,x,v) € Ry x RZ x R7,

vt
f(t,x,v)zf(O,x—\/TW,v),

and assuming that f has initially compact support in v, one can easily infer the velocity average estimate,
for all # > 0 and all x € R",

c(v)
t}’l

[ 1o s SR e=0l @

I'we will be using in the whole article the Einstein summation convention. For instance, vl d,.; in (1) stands for Z;;l vl 0,
21n the remainder of this article, we will often normalize the mass to be either 1 or 0 and thus consider mostly T and Ty. We
will however sometimes keep the mass m > 0 so that the reader can see how some of the estimates would degenerate as m — 0.
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where V' is an upper bound on the size of the support in v of f at the initial time and C (V') — 400 as
V — +o0.

These estimates, while being relatively easy to derive, suffer from several significant drawbacks when
applied to a nonlinear system:

(1) They require a strong control of the characteristics of the system.

(2) The constant C (V') in (2) depends on the size of the v-support of the solutions. Similar, more refined
estimates, which do not require a compact support assumption, can nonetheless be derived (see
[Schaeffer 2004]), but they are based on an even finer analysis of the characteristics.® This explains
(partially) why most of the previous works assumed compact support in v. One therefore typically
needs to bound an extra quantity, the size of the v-support at time . In particular, this approach
enlarges the number of variables of the system that need to be controlled.

Concerning the first problem, we note that there are many evolution problems for which the characteristics
in a neighbourhood of a stationary solution will eventually diverge from the original ones, introducing
extra difficulties in the analysis. A famous example of that is the stability of Minkowski space, where
there is a logarithmic divergence; see [Christodoulou and Klainerman 1993; Lindblad and Rodnianski
2010]. Moreover, to prove decay estimates such as (2), one needs to control the Jacobian associated with
the differential of the characteristic flow* and in order to obtain improved decay estimates for derivatives,
one also needs estimates on the derivatives of the Jacobian. See, for instance, [Hwang et al. 2011], where
such a program is carried out for the Vlasov—Poisson system. In other words, one needs strong control
on the characteristics to be able to prove sharp decay estimates via this method in a nonlinear setting.
Finally, note that there are many interesting models where the correct assumption, from the point of view
of physics (see, for instance, the end of the Introduction in [Villani 2010]), is to allow arbitrarily large
velocities.

Decay estimates for the wave equation. In the context of the wave equation

n
O¢ = [-a? + Zaﬁi}ﬁ =0,
i=1
several methods exist to prove decay estimates of solutions. For instance, one standard way is to use the
Fourier representation of the solution together with estimates for oscillatory integrals. In his fundamental
paper, Klainerman [1985b] introduced what is now referred to as the vector field method.” Instead of
relying on an explicit integral representation of the solutions, it uses:

(1) A coercive conservation law. In the case of the wave equation, this is simply the conservation of the
energy.

3Note also that in [Schaeffer 2004], there is a loss of decay for the velocity averages of f compared to the linear case, which
is directly related to the polynomial decay in v of the initial data and independent of the smallness assumptions.

“4In the context of the Vlasov equation on a curved Lorentzian manifold, this means that one needs estimates on the differential
of the exponential map, or at least on its restriction to certain submanifolds.

SLet us also mention that, complementary to the method of Klainerman, which uses vector fields as commutators, one can
also use vector fields as multipliers, in the style of the work of Morawetz [1962; 1968].



1542 DAVID FAJMAN, JEREMIE JOUDIOUX AND JACQUES SMULEVICI

(2) A set of vector fields which commute with the equations. In the case of the wave equation, these are
the Killing and conformal Killing fields of the Minkowski space.

(3) Weighted Sobolev L2 — L inequalities. The standard derivatives d;, d,; are rewritten in terms of
the commutator vector fields before applying the usual Sobolev inequalities. The weights in these
decompositions together with those arising from the conservation laws are then translated into decay
rates.

This leads to the decay estimate

£2(9)

1 n=1
(T fr =1l (1 [+ 1x1]) 2

for solutions of the wave equation [l¢p = 0, where E(¢) is an energy norm obtained by integrating ¢ and

10 (r. x)| < 3)

derivatives of ¢ (with weights) at time t = 0.

These types of estimates, being based on conservation laws and commutators, are quite robust, and as
a consequence, are applicable in strongly nonlinear settings, such as the Einstein equations or the Euler
equations; see, for instance, [Christodoulou 2007] for such an application.

A vector field method for transport equations. In our opinion, the decay estimate (2), being based on
an explicit representation of the solutions, given by the method of characteristics, should be compared
to the decay estimates for the wave equation obtained via the Fourier or other integral representations.
In this paper, we derive an analogue of the vector field method for the massive and massless relativistic
transport equations (1). The coercive conservation law is given by the conservation of the L!-norm of
the solution, while the vector fields commuting with the operators are essentially obtained by taking the
complete lifts of the Killing and conformal Killing fields, a classical operation in differential geometry
which takes a vector field on a manifold M to a vector field on the tangent bundle 7M. The weighted
Sobolev inequalities are slightly more technical. One of the main ingredients is that averages in v possess
good commutation properties with the Killing vector fields and their complete lifts. Our decay estimates
can then be stated as:

Theorem 1 (decay estimates for velocity averages of massless distribution functions). For any regular
distribution function f, solution to To(f) =0, and any (¢, x) € [R?' x R%, we have

d
[l
VeERI\{0} [v]
1 ~
< V[T ZE =0 prmr@nionyy: @
TErEFTETEr P SRS

Zx ekl
where the a are multi-indices of length || and the Z% are differential operators of order |a| obtained as

a composition of |«| vector fields of the algebra K.

The detailed list of the vector fields and their complete lifts used here is given in Section 2G1. For the
massive transport equation, we prove:
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Theorem 2 (decay estimates for velocity averages of massive distribution functions). For any regular
distribution function f, solution to T1(f) =0, any x € R" and any t > /1 + |x|?, we have

dv 1 ~
| £t x.v) < S NZ% ) s e | 1 g 5)
fvem Vit oA+ o= ‘ (HED
Zaeplol

where Hy denotes the unit hyperboloid Hy = {(t,x) € R, x R% | 1 = t? — x?}, 2"‘(f)|H1X|Rg is the
restriction to Hy x RY of Ze (f), vav{ is the contraction of the 4-velocity (y/1+ [v|?, v') with the unit
normal vy to Hy and where the Z% are differential operators obtained as a composition of |a| vector
fields of the algebra P.

Remark 1.1. No compact support assumptions in x or in v are required for the statements of Theorems 1
or 2, but the norm on the right-hand side of (5) has two extra powers of v compared to the left-hand side
of (5). Of course, for the norms on the right-hand sides of (4) or (5) to be finite, some amount of decay in
x and v for the data is needed. Note that from the point of view of nonlinear applications, it is sufficient
to propagate bounds for the norms appearing on the right-hand sides of (4) or (5), without any need to
control pointwise the decay in x or v of the solutions, to get the desired decay estimates for the velocity
averages.

Remark 1.2. In (4), the decay is worse near the light cone ¢ = |x|. This of course is an analogue of the
decay estimate (3) as traditionally obtained for the wave equation by the vector field method.

Remark 1.3. Estimate (5) is the analogue of the decay estimate for Klein—Gordon fields ¢, solutions to

O¢ = ¢, for which, for all > /1 + |x|2,

£3[¢]
O s

where E[¢] is an energy norm obtained by integrating ¢ and derivatives of ¢ (with weights) on an initial
hyperboloid, as obtained by Klainerman [1993].

Remark 1.4. As in the case of the Klein—-Gordon equation, one can easily prove that for regular solutions f
to T1(f) = 0 with data given at = 0 and decaying sufficiently fast as |x| — 4o0 (in particular, solutions
arising from data with compact support in x) the norm on the right-hand side of (5) is finite, so that
the decay estimate applies.® Thus, the use of hyperboloids is merely a technical issue. The restriction
“t > /1 + |x|?” simply means in the future of the unit hyperboloid. We provide a classical construction
in Appendix A, which explains how Theorem 2 can be applied to solutions arising from initial data with
compact x-support given at t = 0 to obtain a 1/¢" decay of velocity averages in the whole future of the
t = 0 hypersurface.

Remark 1.5. The reader might wonder whether the same types of techniques could be applied for the
classical transport operator Ty = d; + vl d,.i . This question was addressed in [Smulevici 2016], where

6See also [Georgiev 1992], where decay estimates for the Klein—-Gordon operator were obtained starting from noncompactly
supported data at ¢ = 0 using (mostly) vector-field-type methods.
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decay estimates for velocity averages of solutions to the classical transport operator were obtained. As
an application, that paper considered the study of small data solutions of the Vlasov—Poisson system
and provided an alternative proof (with some additional information on the asymptotic behaviour of the
solutions, concerning in particular the decay in |x| and uniform bounds on some global norms) of the
optimal time decay for derivatives of velocity averages obtained first in [Hwang et al. 2011]. One of the
nice features of the vector field method is that improved decay estimates for derivatives follow typically
easily from the main estimates, and [Smulevici 2016] was no exception. In the relativistic case, our vector
field method also provides improved decay for derivatives. See Propositions 3.2 and 3.4 in Sections 3B
and 3C, respectively.

Applications to the massive and massless Vlasov—Nordstrom systems. In the second part of this paper, we
will apply our vector field method to the massive and massless Vlasov—Nordstrom systems

= [ ©
v m?2 + |v|2 ’
- ;.0
Tn(F) = (@) 4 m?9'9) 20 = (14 1) (), @
where m = 0 in the massless case and m > 0 in the massive case, 0 = —92 + Y 7_; Bii is the standard

wave operator of Minkowski space, ¢ is a scalar function of (¢, x) and f is, as before, a function of
(t,x,v") with x e R", v e R* if m > 0, v € R"\ {0} if m = 0. A good introduction to this system can
be found in [Calogero 2003]. See also the classical works [Calogero 2006; Pallard 2006].

Roughly speaking, the Vlasov—Nordstrom system can be derived, in the context of scalar gravitation
metric theory, by considering only a special class of metrics (that of metrics conformal to the Minkowski
metric) and by neglecting some of the nonlinear terms in the equations for the gravitational field (see
[Calogero 2003, Section 2] for a detailed discussion on the derivation). Since most of the simplifications
concern difficulties which we already know how to handle, in the style of [Christodoulou and Klainerman
1993] or [Lindblad and Rodnianski 2010], and since the method that we are using here is of the same type
as the one used to study the Einstein vacuum equations, we believe it is a good model problem before
addressing the full Einstein—Vlasov system via vector field methods.

Before presenting our main results for the massive and massless Vlasov—Nordstrom systems, let us
explain the main differences between the m = 0 and m > 0 cases. First, as easily seen from (6)—(7), when
m = 0, the system degenerates to a partially decoupled system’

O¢ =0, (8)
0
To(f) — (To@W) e = (a4 1) To(9). ©

Because of the decoupling, the first equation is simply the wave equation on Minkowski space and
the second can be viewed as a linear transport equation, where the transport operator is the massless

In fact, using e~ (D¢ f as an unknown, we can obtain an even simpler form of the equations where the right-hand side of
(9) is put to 0. See (51).
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relativistic transport operator plus some perturbations. In particular, all solutions are necessarily global as
long as the initial data is sufficiently regular that the linear equations can be solved. Thus, our objective
is solely to derive sharp asymptotics for the solutions of the transport equation. Moreover, since we have
in mind future applications to more nonlinear problems, the only estimates that we will use on ¢ will be
those compatible with what can be derived via a standard application of the vector field method.

Apart from the decoupling just explained, let us mention also two important pieces of structure present
in the above equations. First, another great simplification comes from the existence of an extra scaling
symmetry present only in the massless case: the vector field v’ d,; commutes with the massless transport
operator T and it is precisely this combination of derivatives in v which appears in equation (9). This fact
will make all the error terms obtained after commutations much better than if a random set of derivatives
in v was present in (9). Another property of (8)—(9) is the existence of a null structure, similar to the
null structure of Klainerman for wave equations. More precisely, we show that To(¢) has roughly the
structure

To(@) = v[ + 1 9p-2(1.x.v).

where 5¢ denotes derivatives tangential to the outgoing cone, d¢ denotes arbitrary derivatives of ¢ and
z(t, x, v) are weights which are bounded along the characteristics of the linear massless transport operator.
Since d¢ has better decay properties than a random derivative d¢, we see that products of the form
To(¢)g, where g is a solution to To(g) = 0, have better decay properties than expected.® Similar to the
study of 3-dimensional wave equations with nonlinearities satisfying the null condition, the extra decay
obtained means that in dimension 3 (or greater), all the error terms in the (approximate) conservation
laws are now integrable.
We now state our main results for the massless Vlasov—Nordstrém system.

Theorem 3 (asymptotics in the massless case for dimension n > 4). Letn > 4 and N > %n + 1. Let ¢
be a solution of (8) satisfying ¢ (t =0) = ¢o and ;¢ (t =0) = ¢ for some sufficiently regular functions
(¢0, P1). Then, if En[Po, P1] < +00, where En [po, 1] is an energy norm containing up to N derivatives
of (0o, P1) and if En|fo] < +00, where EnN| fo] is a norm containing up to N derivatives of fy, then
the unique classical solution f to (9) satisfying f(t =0) = fy also satisfies:

(1) Global bounds. For allt > 0,
EN[f](t) < eC€}l\j/2[¢0:¢l]EN[fO]’

where C > 0 is a constant depending only on N, n.

81t is interesting to compare this form of the null condition to the one uncovered in [Dafermos 2006] for the massless
Einstein—Vlasov system in spherical symmetry. In fact, two null conditions were used there. The obvious one consists essentially
in understanding why null components of the energy momentum tensor of f* decay better than expected. A more secret null
condition is used in the analysis of the differential equation satisfied by the part of the velocity vector tangent to the outgoing
cone. Our null condition is closely related to this one, even though we exploit it in a different manner since we are not using
directly the characteristic system of ordinary differential equations associated with the transport equations.
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(2) Pointwise estimates for velocity averages. For all (t,x) € [0, +00) x R% and all multi-indices o
satisfying |a| < N —n,
1/2
eCEN 0B E 1 o]
n—1"
(1+ [t = |x[[) (1 + |2 + Ix]])

In dimension n > 3, similar results can be obtained provided an extra smallness assumption on the
initial data for the wave function as well as stronger decay for the initial data of f hold.

/ 298|t x.v) ol dv <
veRP\{0}

Theorem 4 (asymptotics in the massless case for dimension n = 3). Letn >3, N >7 and q > 1. Let ¢
be a solution of (8) satisfying ¢(t =0) = ¢g and 3;¢(t =0) = ¢ for some sufficiently regular functions
(¢o, P1). Then, if En[po, P1] < &, where En[po, P1] is an energy norm containing up to N derivatives of
(0¢o, 1) and if En 4] fo] < 400, where En 4] fo] is a norm® containing up to N derivatives of fy, then
the unique classical solution f to (9) satisfying f(t =0) = fo also satisfies:

(1) Global bounds with loss. For allt > 0,

1/2

Englf1() <A+ Eng4lfol.

where C > 0 depends only on N, n.
(2) Improved global bounds for lower orders. For any M < N — %(n +2) and any t > 0,

Epmg—1[f1() < €€ En 4 fo.

(3) Pointwise estimates for velocity averages. For all (t,x) € [0,4+00) x R} and all multi-indices
| <N —3(3n+2),
En.g[ /o]
(1 [ = D (1 fe el )™
Perhaps counterintuitively, the massive case turned out to be harder to treat. While it is true that in the

massive case the pointwise decay of velocity averages is not weaker along the null cone, there are two
important extra difficulties, namely:

/ |Z%f | (t, x, v)|v| dv <
veRP\{0}

» The equations are now fully coupled. In particular, one cannot close an energy estimate for (6)
unless we have some decay for the right-hand side. On the other hand, our decay estimates, being
based on commutators, necessarily lose some derivatives. In turn, this would imply commuting (9)
more, but we would then fail to close the estimates at the top order. We resolve this issue by another
decay estimate for inhomogeneous transport equations with rough source terms satisfying certain
product structures. This other type of decay estimate only provides L)ZC time decay of the velocity
averages, which is precisely what is required to close the energy estimate for (6). The proof of this
L2 decay estimate itself can be reduced to our L™ estimates, so that it can also be obtained using
purely vector-field-type methods.

9The index ¢ refers to powers of certain weights. See (63) for a precise definition of the norms.
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e The vector field viavi does not commute with the massive transport operator. This implies that
commuting with (some of) the standard vector fields will lose a power of ¢ of decay compared to the
massless case.

Because of the last issue, the results that we will present here are restricted to dimension n > 4. One way
to treat the 3-dimensional case would be to improve upon the commutation formulae to eliminate the
most dangerous terms. For instance, one could try to use modified vector fields in the spirit of [Smulevici
2016]. We plan to address the 3-dimensional case in future work.

A slightly more technical consequence of this last issue is that it introduces ¢ weights in the estimates,
which are not constant on the leaves of the hyperboloidal foliation that we wish to use. Together with the
fact that the energy estimates are weaker on hyperboloids, this implies that the error terms arising in the
top-order approximate conservation laws can be shown to be space-time integrable only in dimension n > 5.
To address the dimension n = 4, instead of estimating directly zZ¢ (f), where f is the unknown distribution
function and Z is a combination of « vector fields, we estimate instead a renormalized quantity of the
form Z “(f) + g%, where the g% is a (small) nonlinear term constructed from the solution. The extra
terms appearing in the equation when the transport operator hits g% will then cancel some of the worst
terms in the equations.

Our main result in the massive case can then be stated as follows.

Theorem 5. Letn >4 andm > 0. Let N € N be sufficiently large depending only on n. For any p > 1,
denote by H, the hyperboloid
H,={(t,x) e Ry xR | p> = 1% — x?}.

For any sufficiently regular function  defined on Ry x RY, denote by ¥y, its restriction to H.
Similarly, for any sufficiently regular function g defined on Uls p<+o0 Hp X Ry, denote by g g, xry
its restriction to H, x RY. Then, there exists an o > 0 such that for any 0 < ¢ < g, if Enyn[fo] +
ENldo, P1] < &, where En n[ fol and En[po, P1] are norms depending on respectively N + n derivatives
of fo and N derivatives of (0¢g, ¢1), then there exists a unique classical solution (f,¢) to (6)—(7)
satisfying the initial conditions

& H, =0, 0tdH, =P1. fiH xwp = fo
such that ( f, ) exists globally'® and satisfies the following estimates:
(1) Global bounds. For all p > 1,

ENIBl(0) Se and En[f][p] < epCc",

where C =1 whenn =4 and C = 0 whenn > 4.

(2) Pointwise decay for 0Z%¢. For all multi-indices |o| such that |a| < N — %(n +2) and all (¢, x) with

t > /14 |x|2, we have

&
A+0)"T (14— x>

10Here, globally means at every point lying in the future of the initial hyperboloid Hi. In 3 dimensions, this, of course,
would already follow from [Calogero 2006] for regular initial data of compact support given on a constant-time slice.

10Z%¢| <
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. . .o N
(3) Pointwise decay for p(|[dZ*f|). For all multi-indices o and  such that || < N—n and |B| < | 5 |—n
and all (t, x) witht > /1 + |x|?, we have
S g AV € ~ €
o < 0,78 L —
L7915 5 e @d [ 2 1S
where C =1 whenn =4 and C = 0 whenn > 4.

(4) Finally, the following L?-estimates on f hold. For all multi-indices o with I_%J —n+1<|a| <N,

and all (t, x) witht > /1 + |x|?, we have

t -~ dv\? 2 Cell4_
—\ [ 12%fl— | dnn, Se™p=° 7",
H, P\Jv v0 ?

where C =2 whenn =4 and C = 0 whenn > 4.

Remark 1.6. As for the linear decay estimates of Theorem 2, it is not essential to start on an initial
hyperboloid for the conclusions of Theorem 5 to hold. In particular, an easy argument based on finite
speed of propagation, similar to that given in Appendix A, shows that our method and results apply to the
case of sufficiently small initial data with compact x-support given at = 0.

Remark 1.7. In [Friedrich 2004], solutions of the massive Vlasov—Nordstrom system in dimension 3
arising from small, regular, compactly supported (in x and v) data given at t = 0 were studied and
the asymptotics of velocity averages of the Vlasov field and up to two derivatives of the wave function
were obtained. However, no estimates were obtained for derivatives of the Vlasov field or for higher
derivatives of the wave function. Thus, [Friedrich 2004] is the analogue of [Bardos and Degond 1985] for
the Vlasov—Nordstrom system, while we obtained here (in dimension 4 and greater) results more in the
spirit of [Hwang et al. 2011; Smulevici 2016].

Remark 1.8. A posteriori, it is straightforward to propagate higher moments of the solutions in any of
the situations of Theorems 3, 4 and 5, provided that these moments are finite initially. Moreover, we
recall that improved decay for derivatives of f and ¢ follows from the statements of Theorems 3, 4 and 5.
See, for instance, Propositions 3.2 and 3.4 below.

Aside: the Einstein—Vlasov system. As explained above, the Vlasov—Nordstrom system is a model problem
for the more physically relevant Einstein—Vlasov system. We refer to the recent book!! [Ringstrom
2013] for a thorough introduction to this system. The small data theory around the Minkowski space is
still incomplete for the Einstein—Vlasov system. The spherically symmetric cases in dimension (3 + 1)
have been treated in [Rein and Rendall 1992] for the massive case and in [Dafermos 2006] for the
massless case with compactly supported initial data. A proof of stability for the massless case without
spherical symmetry but with compact support in both x and v was recently given by M. Taylor [2017].
As in [Dafermos 2006], the compact support assumptions and the fact that the particles are massless are
important as they allow one to reduce the proof to that of the vacuum case outside from a strip going to
null infinity. Interestingly, Taylor’s argument is quite geometric, relying for instance on the double null

LT Apart from a general introduction to the Einstein—Vlasov system, the main purpose of [Ringstrém 2013] is to present a
proof of stability of exponentially expanding space-times for the Einstein—Vlasov system.
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foliation, in the spirit of [Klainerman and Nicolo 2003], as well as several structures associated with the
tangent bundle of the tangent bundle of the base manifold.

We hope to address the stability of the Minkowski space for the Einstein—VIlasov system in the massive
and massless case (without the compact support assumptions) using the method developed in this paper
in future works.

Structure of the article. Section 2 contains preliminary materials, such as basic properties of the transport
operators, the definition and properties of the foliation by hyperboloids used for the analysis of the massive
distribution function, the commutation vector fields and elementary properties of these vector fields. In
Section 3, we introduce the vector field method for relativistic Vlasov fields and prove Theorems 1 and 2.
In Section 4, we apply our method first to the massless case in dimension n > 4 (Section 4B3) and n = 3
(Section 4B4) and then to the massive case in dimension n > 4 (Section 4C). In Appendix A, we provide
a classical construction which explains how our decay estimates in the massive case can be applied to
data of compact support in x given at t = 0. Some integral estimates useful in the course of the paper are
proven in Appendix B. Finally, Appendix C contains a general geometrical framework for the analysis of
the Vlasov equation on a Lorentzian manifold.

2. Preliminaries

2A. Basic notations. Throughout this paper we work on the (n+1)-dimensional Minkowski space
(R"*1 1), where the standard Minkowski metric 7 is globally defined in Cartesian coordinates (¢, x’) by
n = diag{—1, 1,..., 1}. We denote space-time indices by Greek letters «, §, ... € {0, ...,n} and spatial
indices by Latin letters 7, j,... € {1,...,n}. We will sometimes use dx«, d;, 0., 0
partial derivatives d/dx%, d/0t, .. ..

Since we will be interested in either massive particles with m = 1 or massless particles m = 0, the

vis - - - to denote the

velocity vector (vﬂ)ﬁzo,“_,n will be parametrized by (v');=1..., and v® = |v| in the massless case,
v? = /1 + |v|2 in the massive case.

The indices 0 and m > 0 will be used to denote objects corresponding to the massless and massive
cases respectively, such as the massless transport operator Ty and the massive one T%,, and should not be
confused with spatial or space-time indices for tensor components (we use bold letters on the transport
operators to avoid this confusion).

The notation A < B will be used to denote an inequality of the form A < CB for some constant C > 0
independent of the solutions (typically C will depend on the number of dimensions, the maximal order of
commutations N, the value of the mass m).

2B. The relativistic transport operators. For any m > 0 and any v € R", let us define the massive
relativistic transport operator Ty, by

' =v08t+vi8x;, with v% = vVm? + [v|%. (10)
Similarly, we define for any v € R\ {0}, the massless transport operator To by

T0=v08,+v"ax,~, with v0:|v|. (11)
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Figure 1. The H), foliations in the (¢, r) plane, p > 1.

For the sake of comparison, let us recall that the classical transport operator is given by
T,=0;+ Uiaxi.

In the remainder of this work, we will normalize the mass to be either 1 or 0, so that the massive
transport operators we will study are

Ty = V1+|v*0, +v'0,: and To=|v]d; +v 0.

2C. The foliations. We will consider two distinct foliations of (some subsets of) the Minkowski space.

Let us fix global Cartesian coordinates (¢, x'), 1 <i <n, on R**! and denote by X; the hypersurface
of constant ¢. The hypersurfaces ¥;, ¢ € R, then give a complete foliation of R”*!. The second foliation
is defined as follows. For any p > 0, define H, by

H,={(t,x)|t>|x| and 1* — |x|* = p*}.

See Figure 1. For any p > 0, H, is thus only one sheet of a two-sheeted hyperboloid.?
Note that
U Hy = ((.0) e R |1 = (1 + 22,
p=1
The above subset of R” 1 will be referred to as the future of the unit hyperboloid; see Figure 2. On this set,
we will use as an alternative to the Cartesian coordinates (¢, x) the following two other sets of coordinates:

* Spherical coordinates. We first consider spherical coordinates (r, @) on R”,, where @ denotes spherical
coordinates on the (n—1)-dimensional spheres and r = |x|. Then (p, r, ®) defines a coordinate
system on the future of the unit hyperboloid. These new coordinates are defined globally on the
future of the unit hyperboloid apart from the usual degeneration of spherical coordinates and at
r=0.

12The hyperboloidal foliation was originally introduced in [Klainerman 1985a] in the context of the nonlinear Klein—Gordon

equation. For more recent applications, see [Wang 2015a; LeFloch and Ma 2016], which concern the stability of the Minkowski
space for the Einstein—Klein—Gordon system.
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Q;
Hp,
STt
Hﬂl
o
Il
o | H
<
v
Y

Figure 2. The H), foliations in a Penrose diagram of Minkowski space, p2 > p1 > 1.

e Pseudo-Cartesian coordinates. These are the coordinates (y°, y/) = (p, x/). These new coordinates
are also defined globally on the future of the unit hyperboloid.

For any function defined on (some part of) the future of the unit hyperboloid, we will move freely
between these three sets of coordinates.

2D. Geometry of the hyperboloids. The Minkowski metric 7 is given in (p, r, ®) coordinates by

2
o 2pl"
n= —t—z(dp2 —drz) — t_2 dpdr + VZO‘gn—lv

where ogn—1 is the standard round metric on the (n—1)-dimensional unit sphere, so that, for instance,
02 = sin 02 d6? + d¢?

in standard (6, ¢) spherical coordinates for the 2-sphere. The 4-dimensional volume form is thus given by
?r”_l dpdr dogn—1,

where dogn—1 is the standard volume form of the (n—1)-dimensional unit sphere.

The Minkowski metric induces on each of the H, a Riemannian metric given by
2 P> 2 o
dsg, = ) dr= +r-ogn-1.

A normal differential form to H, is given by ¢ dt —r dr, while 19; + r 0, is a normal vector field.
Since

N(td; +rdy, 13 +1rdy) = —p>,
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the future unit normal vector field to H, is given by the vector field
vp = %(Z d; +r ay). (12)
Finally, the induced volume form on H, denoted by dup,,, is given by
dug, = l;)r”_l dr dogn—1.

2E. Regular distribution functions. For the massive transport operator, we will consider distribution
functions f as functions of (¢, x, v) or (p, r, w, v) defined on

U H, xR, P ell,+oo];
1<p<P
i.e., we are looking at the future of the unit hyperboloid, or a subset of it, times R?..

For the massless transport operator, we need to exclude |v| = 0 and we will only use the X, foliation so
that we will consider distribution functions f as functions of (¢, x, v) defined on [0, 7)) x R} x (RZ \ {0}),
T €0, +o0].

In the remainder of this article, we will denote by regular distribution function any such function f
that is sufficiently regular that all the norms appearing on the right-hand sides of the estimates are finite.
For simplicity, the reader might assume that f is smooth and decays fast enough in x and v at infinity and
in the massless case, that f is integrable near v = 0 and similarly for the distribution functions obtained
after commutations.

In physics, distribution functions represent the number of particles and are therefore required to be
nonnegative. This will play no role in the present article, so we simply assume that distribution functions
are real-valued.

2F. The linear equations. In the first part of this paper, we will study, for any T = Ty, T1, the homoge-
neous transport equation
Tf=0, (13)

as well as the inhomogeneous transport equation
T f =21, (14)

where v° = /1 + |v|? in the massive case and v° = |v| in the massless case and where the source term
h is a regular distribution function, as explained in Section 2E.

In the massless case, we will study the solution f to (13) or (14) with the initial data condition
S =0,-)= fo, where fj is a function defined on R% x (R} \ {0}).

In the massive case, we will study the solution f to (13) or (14) in the future of the unit hyperboloid
with the initial data condition f|g,xrz = fo, Where fg is a function defined on Hy x Ry.

Equations (13) and (14) are transport equations and can therefore be solved explicitly (at least for
C'! initial data) via the method of characteristics. If f solves (13), then

f(t,x,v)zf(O,x—%t,v),
v
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where v% = /1 + |v|? for the massive case and v® = |v| for the massless case. In the inhomogeneous
case, we obtain via the Duhamel formula that if f solves (14) with 0 initial data, then

f(t, x,v) =/Oth(s,x—(t—s)5—0,v) ds.

2G. The commutation vector fields.

2G1. Complete lifts of isometries and conformal isometries. Let us recall that the set of generators of
isometries of the Minkowski space, that is to say, the set of Killing fields, denoted by P, consists of the
translations, the rotations and the hyperbolic rotations; i.e.,

P={8,05,...,0m}U{Q;;j =x'0,; —x/ 0, |1 <i,j <n}U{Qo; =13 +x'd;|1<i<n)}.

Mostly in the case of the massless transport operator, it will be useful, as in the study of the wave equation,
to add the scaling vector field S = 79; + x'9; to our set of commutator vector fields. Let us thus define
the set

K=PU{S}.

The vector fields in [ and P lie in the tangent bundle of the Minkowski space. To any vector field
on a manifold, we can associate a complete lift, which is a vector field lying on the tangent bundle, to
the tangent bundle of the manifold. In Appendix C, we recall the general construction on a Lorentzian
manifold. For the sake of simplicity, let us here give a working definition of the complete lifts only in
coordinates.

Definition 2.1. Let W be a vector field of the form W = W%*9,«. Then let
~ aW'!
W =W+ 0P —0,:. (15)
dxB
where (vﬂ)ﬂzoj,__’n = (0%, v!,...,v") with v = |v] in the massless case and v° = /1 + |v|? in the
massive case, be called the complete lift'3 of W.

We will denote by
K={Z|ZekK} and P={Z|ZeP}

the sets of the complete lifts of IK and [P.
Finally, let us also define Po and K as the sets composed respectively of P and K and a scaling vector
field'# in (¢, x) only:

Po=PU{1d; +x'0,:}=PU{S}, (16)
Ko=KU{td, +x'0,:} =KU{S}. (17)

13This is in fact a small abuse of notation, as, with the above definition, 114 actually corresponds to the restriction of the
complete lift of W to the submanifold corresponding to v® = /1 + [v]2 in the massive case and v® = |v] in the massless case.
See again Appendix C for a more precise definition of w.

14Here, by a small abuse of notation, we denote with the same letter S, the vector field # 3; + x’ 0, irrespectively of whether
we consider it as a vector field on R”*! or a vector field on (some subsets of) Rr+1 RZ.
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Lemma 2.2. In Cartesian coordinates, the complete lifts of the elements of P and K are given by the
following formulae:
d; = 0, éxi =0yi.,
Qij = xi 8x_,~ — .X'j 8xi + Uiavj — Uj avi s QOZ' = laxi -+ xiat -+ UOavi ,
S=18;+x"8.: +v'd,.
2G2. Commutation properties of the complete lifts. As for the wave equation, the symmetries of the

Minkowski space are reflected in the transport operators (10) and (11) through the existence of commutation
vector fields. More precisely,

Lemma 2.3. ¢ Commutation rules for the massive transport operator:
[T,,Z]=0 VZeP, (18)
[T1,S] =T, (19)

where S =19; + x! 0,i is the usual scaling vector field.

e Commutation rules for the massless transport operator:

~

[T0.Z]=0 VZekK, (20)
[To. S]= To. 21
Proof. The identities can be verified directly using the explicit expressions for the elements in P and K,

but also follow from the general formula given in Appendix C (see Lemma C.7). O

Remark 2.4. Note that from the expression of S and the two commutation rules for To and S and for
Ty and S, it follows that

i _
[T(), v avi] = —Tp.
Thus, we have in a certain sense two scaling symmetries, one in x and one in v.

Remark 2.5. It is interesting to note that while the Klein—Gordon operator [ — m?2 (m > 0) does not
commute with the scaling vector field, the massive transport equation does commute in the form of
equation (19). What does not commute is the second scaling vector field v’ 0y -

We also have the following commutation relation within ﬂ50 and [Ro.

Lemma 2.6. For any Z,Z' € Py, there exist constant coefficients Cz zw such that

(2.2')= )" CzzwW.
Wep
Similarly, forany Z,Z' € [KO, there exist constant coefficients Dz zw such that

2.7 = Z DzzwW.
wek
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2H. Weights preserved by the flow. Recall that in a general Lorentzian manifold with metric g, if y is a
geodesic with tangent vector y and K denotes a Killing field, then g(y, K) is preserved along y. In this
section, we explain how to transpose this fact to the transport operators on Minkowski space.

We define the sets of weights

ky, = {v"‘xﬂ — x%P, v}, (22)
Ko = {x%vq, v¥xP — x%vB v, (23)
The following lemma can be easily checked.
Lemma 2.7. (1) For all 3 € Ko, we have [Ty, 3] = 0.
(2) For all 3 € Ky, we have [Ty, 3] = 0.

The weights in K,, and K¢ also have good commutation properties with the vector fields in Po and Ko.

Lemma 2.8. For any 3 € Ky, and any Z € Py,
[Z,Zﬁ] = Z 63/3,’
3’ €Km
where the cy are constant coefficients.
Similarly for any 3 € Ko and any Z € Ko,
(Z.3)= ) dyy
3'€km
for some constant coefficients dy .

Proof. This follows from straightforward computations. O

21. Multi-index notations. Recall that a multi-index « of length |«| is an element of N” for some
r € N\ {0} such that Y7 _; o = |ex|.

LetZ, i=1,....2n+2+ %n(n — 1), be an ordering of [K. For any multi-index «, we will denote
by Z* the differential operator of order || given by the composition Z*1 Z¢2 ...,

In view of the above discussion, the complete lift operation defines a bijection between K and K. Thus,
to any ordering of I, we can associate an ordering of K. One extends this ordering to IRO by setting!?
Z2n+3+5n0=1 — 5 We will again write Z“ to denote the differential operator of order |«| obtained
by the composition AIVACIN

Similarly, we consider an ordering of PP, which gives us an ordering of P which can be extended to
give an ordering of Po, and we write Z% and Z% for a composition of |«| vector fields in P, P or Py.

The notation K will be used to denote the set of all the differential operators of the form Z¢, with
lo| = N. Similarly, we will use the notations P!, [R(I)al and I]BI(;X |

We will also write 7, to denote a differential operator of order |«| obtained as a composition of
|| translations among the d;, d,; vector fields.

As for the sets of vector fields, we will also consider orderings of the sets of weights K, and ko and
we will write 3¢ € kl,of "or 3% e kloa‘ to denote a product of || weights in K, or K.

I5Note that this is a small abuse of notation, since S is not obtained via the complete lift construction.
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2]). Vector field identities. The following classical vector field identities will be used later in the paper.

Lemma 2.9. The following identities hold:

. . . i
(2—r2)d, =1S —x'Qoi.  (2—rD)d = —xIQ; +1Qo; — xS, (2—r2)d, =1Q0; —18.
r

Furthermore, .
S + w'Qo;
85 =10 +0,) = 2
2(t+r) (24)
éi = 81 _a)iar = a)JQlJ = _wiwj 82;)] + QOi .
r

2K. The particle vector field and the stress energy tensor of Vlasov fields. Recall that in the Vlasov—
Poisson or Einstein—Vlasov systems, the transport equation for f is coupled to an elliptic equation or a
set of evolution equations, via integrals in v of f, often referred to as velocity averages in the classical
case. In the relativistic cases, the volume forms!® in these integrals are defined as

dvi A+ Ado" dv
= (25)

v0 VmZ+ )2

dim

where as usual m = 0 in the massless case.

Remark 2.10. In the massless case, the volume form dv/|v]| is singular near v = 0. In the remainder of
this article, we will however study mostly energy densities, which introduce an additional factor of |v|?
in the relevant integrals and thus remove this singular behaviour near v = 0.

We now define the particle vector field in the case of massive particles as

NE = fotdum,
Rn

and in the case of massless particles as

N#E/ fv“ duo,
R7\{0}

as well as the energy momentum tensors
TH = f fofvYdum and TV = / fo*v¥ duo,
R R\ {0}

where dit, and djg are the volume forms defined in (25). More generally, we can define the higher
moments

M;:ll..-(xp = fva] ..'U(Xp d/vLm,
R
and similarly for the massless system.

16For the interested reader, they can be interpreted geometrically as the natural volume forms associated with an induced
metric on the manifold on which the averages are computed, together with a choice of normal in the massless case.
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The interest in any of the above quantities is that if f is a solution to the associated massless or massive
transport equations, then these quantities are divergence free. Indeed, we have

au73“)=l/j To(f)v” dpo, (26)
R\ {0}

E)MT,@”:/ T (VY ditm. 27)
R}’l

We will be interested in particular in the energy densities

() =To@r 0= [ floldo (28)
R7\{0}
for the massless case, while for the massive case we define

(1) = Tn(@r 0 = [ 12%av. 9)

In the following, we will denote by p( f') either of the quantities p,, ( f) or po( f) depending on whether
we are looking at the massive or the massless relativistic operator.
In the massive case, we will also make use of the energy density

Im(f) = Tn(0,vp), (30)

where v, is the future unit normal to H), introduced in Section 2D. We compute

t r t xt
= vol —v +—vr)d =/ (—vo——v)dv
Xl f) /velR"f O(p 0l ) veR"f P p

The following lemma will be used later.

Lemma 2.11 (coercivity of the energy density normal to the hyperboloids). Assuming thatt > r, we have

dv

w1z [ [ (1) @0 i gt 4G 61

v

Proof. Using that
w9?% = v + r2osvivB + m?,

A B

where 04 p denotes the components of the metric os» and v are the angular velocities, we have

(1°)2 = 02+ 12 + rPoagviv® +m?),
and thus

t x! x!
UO(—UO——U,) = ((v0)2+v +r UABUAUB+m 2—viv0).
P P 2p t

The lemma now follows from

Xi r
) v —2—viv® = (1 — ;) ()% +v7),

assuming ¢t > r. O
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Remark 2.12. Since (v°)% > vrz, we will use (31) in the form

Im(f) = 2%0/ . f[(l - ;)(vo)z +r204gvv® —i—mz} ditm.

v

e We also remark that

d
o0 = 30 [ 17155 = 4o (155 ),

(v0)2
. 1
since t/(2p) > 5. and, furthermore,

t—r _ P
2 (1D =505

* Finally, independently of Lemma 2.11, since by the Cauchy—Schwarz inequality for Lorentzian

xm(1fD) =

Pm (| f D).

metrics, as the vectors v, and v are both timelike future directed,

100 —xiv;
o

we get immediately

1
= (v, vp)l = |vl|vp| =m, where [v] = [g(v,v)[2,

fvlflde/v%

2L. Commutation vector fields and energy densities. Vector fields and the operator of averaging in v

100 —xly;

S| v = (),

essentially commute in the following sense.
Lemma 2.13. Let f be a regular distribution function for the massless case. Then:

e For any translation 0y« , we have
dxe[00 ()] = po(Bxa (f)) = po(dxa (/).
e For any rotation Q;;, 1 <1i, j, <n, we have
Qijlpo()] = po(Qij (),

where Qij is the complete lift of the vector field Q2;;.

e For any Lorentz boost Q29;, 1 <i <n, we have

Qoilpo(f)] = po(Q0i (f)) + 2P0(|l;—|f)-

e For the scaling vector field S, we have

S[oo( )] = po(S(f)) + (1 + Dpo(f).

e Finally, all the above equalities hold (almost everywhere) with f replaced by | f |.
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Proof. Let us consider, for instance, a Lorentz boost Q¢; =10, + xi d;. Then

Qoi[po(f)] =/(z8x,» +x'9)(f)v] dv. (32)
On the other hand,

/(taxf X 8)(f)vldv = /(raxf +xia 4 Ivlavi)(f)lvldv—/ 1028, (f) dv

=/§20,-(f)|v|dv+2 Y Pl dv

v vl

— po(@0i () + 200 (U—lf),

[v]

using an integration by parts in v’. The other cases can all be treated similarly, the translations being trivial
since dye = dxa. That f can be replaced by | /| follows from the standard property of differentiation of
the absolute value.!” O

In the massive case, we have the following lemma, whose proof is left to the reader since it is very
similar to the above.

Lemma 2.14. Let f be a regular distribution function for the massive case. Then:

e For any translation 0y« , we have

3 [om ()] = pm(Dxe () = pm (dxe (1))

e For any rotation Q;;, 1 <i, j, < n, we have

Qs lom (] = om (i (),
where Q; j is the complete lift of the vector field Q2;; .

e For any Lorentz boost Q29;, 1 <i <n, we have

G011 () = oG (1) + 20 557

e Finally, all the above equalities holds with f replaced by | f|.

Remark 2.15. Although we do not have for all commutation vector fields Zp = pZ , we do have that
[Zo(| )] S p(|2(f)|) + p(|f]) and this is all we shall need from the above. Note also that if we were
looking at other moments, then similar formulae would hold with different coefficients. For instance, we
have Qo; [, f dim = [, Qoi f djum for sufficiently regular f.

Remark 2.16. In the massless case, we included the scaling vector field, but recall that T actually
commutes with S (in the sense that [T, S] = Tp) so we will not really need to replace S by S. Note also
that S’ enjoys good commutation properties with T, and that Sp,,;, = pm S.

17Recall that £ € W1-1 implies that | f| € W11 with 3| f| = (f/| f]) 9f almost everywhere. See, for instance, [Lieb and
Loss 1997, Chapter 6.17].
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2M. (Approximate) conservation laws for Vlasov fields. The following lemma is easily verified.'®

Lemma 2.17 (massless case). Let h be a regular distribution function for the massless case in the sense of
Section 2E. Let f be a regular solution to To(f) = v°h, with v = |v|, defined on [0, T] x R x (R \ {0})
for some T > 0. Then, forallt €[0,T],

/E, oo(f)(t,x) dx(z /xeR" /veR"\{o} lv| f(t, x,v)dx dv)
t
:/20 po(f)(O,x)dx—i-/O /Es po(h)(s,x)dx ds, (33)

and

t
/ po(LF (. x) dx < / po(1£ (0. x) dx + f / po(Ih])(s. x) dx ds. (34)
X 2o 0 JX

Proof. The proof of (33) follows from an easy integration by parts (or an application of Stokes’ theorem)
and (26). A standard regularization argument of the absolute value allows to derive (34) in a similar
manner. .

A similar identity holds for the massive case, but we shall need the following variant where we replace
the X, foliation by the H), one.

Lemma 2.18 (massive case). Let h be a regular distribution function for the massive case in the sense
of Section 2E. Let f be a regular solution to Ty (f) = v°h, with v° = \/m2 + |[v|2, m > 0, defined on
Upep,p) Ho X Ry for some P > 1. Then, forall p € [1, P],

P
/ Im(f) (o, r.0)dug, =/ xm(F)(A,r,0)dp, +/ / pm(h)(s,r,w)dup,ds,  (35)
H, H, 1 JH,

0
/ S (1 D). o) g, < / S (1 DL o) dpig, + / / om(h)(s. r.0) dpgy, ds, (36)
H, H, 1 JH,

Proof. Again, the proof of (35) just follows from (27) and an integration by parts, while that of (36)
follows similarly after a standard regularization argument. O

3. The vector field method for Vlasov fields

3A. The norms. We define, in the following, norms of distribution functions obtained from the standard
conservation laws for the transport equations and the commutation vector fields introduced in the previous
section.

Definition 3.1.  * Let f be aregular distribution function for the massless case in the sense of Section 2E
defined on [0, 7] x R% x (R? \ {0}). For k € N, we define, for all ¢ € [0, T],

Iha0= 3 3 [ w(ZerD 0 dx 37

lal<k ZeeRlal® 2!

18Recall that if f is a regular solution to T'(f) = vOh, then | f| is a solution, in the sense of distributions, of T (| f]) =

(f/1£Dv°h.
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e Similarly, let f be a regular distribution function for the massive case in the sense of Section 2E
defined on (., p Hp x Ry. For k € N, we define, for all p € [1, P],

flexm=3 % fH Im(12°1 1) dpin,. (38)

lal<k Zaeplal P

3B. Klainerman—Sobolev inequalities and decay estimates: massless case. We are now ready to prove

to following variant of the Klainerman—Sobolev inequalities.!®

Theorem 6 (Klainerman—Sobolev inequalities for velocity averages of massless distribution functions).
Let f be a regular distribution function for the massless case defined on [0, T] x R” x (R \ {0}) for some
T > 0. Then, for all (t,x) € [0, T] x R%,

1

X)) S n(t). 39
po(l S (. x) =)t 1/ lltcn (2) (39)

Proof. Let (¢, x) € [0, T] x R and assume first that |x| ¢ [%t %t] and ¢t + |x| > 1. Let ¥ be defined as

vy = po(lf1(tx +( +1xDy)),

where y = (y1, y2,..., ¥»n). Note that

Iy () =i [po(1f1(t.x + (¢ +1xD)y) ] = (¢ + [x]) i (poll £ D (2. x + (2 + | x])y).

Assume now that |y| < %. Using the fact that we are away from the light cone and the condition on |y], it

follows that
1 _ |t + |x|

C ™ lr—Ix+@+IxDyl] ~

for some C > 0. It then follows from the vector field identities of Lemma 2.9 that

|0y 00 (L 12, x + (¢t +1xDY)| S Y [Z(poll £ D] ¢, x + (¢ + [x])y).

ZeK

From Lemma 2.13, we then obtain that

18y po[ | £1(Ex+ @+ XD S D [polZ(f DI @+ @ +1xDy) +p0(Lf D X+ +1x])y)

lo]<1
Z2eKle!

< D0 polZ* (D) Gx+ @+ xDy)

lo]<1
ZoeKle!

19Note that (in more than one spatial dimension) we cannot apply directly the standard Klainerman—Sobolev inequalities, in
fact not even the usual Sobolev inequalities, to quantities such as p(| f|) because of the lack of regularity of the absolute value.
The aim of this section is therefore to explain how to circumvent this technical issue.

For a very clear introduction to Klainerman—Sobolev inequalities in the classical case of the wave equation, the interested
reader may consult [Wang 2015b]. Some of the arguments below have been adapted from those notes.
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< D0 pol|Z2(f D] x+ @ +]xDy)

lel<1
Zeeklel

< D0 pol[IZ¥(NN) (. x+( +x)y),

lel<1
Zoeklel

where we have used in the last line that for any vector field Z, we have |2 (Dl = |2 (f)] (almost
everywhere and provided f is sufficiently regular), which essentially follows from the fact that 9| f| =
(f/1f]) df almost everywhere if f € WL Let now § = 1/(16n), so that if |y;| < §2 for all 1 <i<n,
we then have |y| < %. Applying now a 1-dimensional Sobolev inequality in the variable y;, we have

W(O)I:Po[lf”(t,x)S/ (|0y, ¥ (31.0,....0)| + [¥(31.0.,....0)|) dy
ly11<81/2
5/ ( > p0[|2a(f)|](t’x+(t+|x|)()’1,0,---,0))) dy;.

il=81 2\ 2

ZoeRlel

We can now apply a 1-dimensional Sobolev inequality in the variable y, and repeat the previous argument,
with | Z*( f)| replacing | f|, to obtain

pois [ (X elZ e G a....0) dvidya
y11=81/2 J]ya|<81/2

lo|<2
ZoeRlel

Repeating the argument up to exhaustion of all variables, we obtain that

poll £11(5. )
Lok a0 AlZE N x D y2. 300) dy e
=812 ai=stz yalssr2\ 2=
Z%ekle!

Applying the change of variable z = (¢ 4 |x|)y gives us a (¢ + |x|)" factor which completes the proof of
the inequality in this particular case. The case where (¢ + |x|) < 1 follows from simpler considerations
and is therefore left to the reader.

Let us thus turn to the case where x € [%t, %t] and (¢ + |x|) > 1 . Note that it then follows that ¢ > %
and |x| > % Let us introduce spherical coordinates (r, ) € [0, +00) x S"! such that x = rw and denote
by ¢ the optical function ¢ =r —t. Let v(t, g, w) = po(f) (¢, (t + q)w).

Note that d;v = 0, p0 and g d4v = (r — )0, and that there exist constants C;; such that

IV = 30 (po (/). (¢ + Dw)) = Z CijQjpo(f),

i<j

where the €2;; are the rotation vector fields.
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Let go = |x| —t. We need to prove that

"1+ 1gol) [v(2, go, @) S 1S Nl (@)

Using a 1-dimensional Sobolev inequality, we have for any @ € S*~ 1,

gl s [ 3 |@5uea+a0n|da

1
l1=3t g <1

Now
(9g0)(t. g + g0, @) = (3rpo (). ¢ + qo. @) = po (3 (| /1)
and thus
19gv(r.q + go. @)| < po(19- f1) (. 4 + g0, w),
where we have used again the properties of the derivatives of the absolute value. Let now (w1, w2, ...,ws—1)

be a local coordinate patch in a neighbourhood of the point @ € S"~!. Using again a 1-dimensional
inequality, we have

1po(10% (2, q +qo.w)| S / 100, 00102 f (7.4 + go.w + (@1.0,...,0))| dewy
]

+/ |00 (192 f1)(t.q + g0, @ + (1,0, ....,0))| doy.
1
Since d, can be rewritten in terms of the rotation vector fields, it follows from Lemma 2.13 that
10010010271 < Y po(1ZB02)).
1B1<1

Repeating until exhaustion of the number of variables on S”~! and using that 8, = (x* /|x[)d .« and the
commutation properties between Z% and d,, we obtain that

ool Dea ol [ [ Y w(ZHNCq o) dg dos.
lgl<zt nesn—1 la|<n
Now since in the domain of integration r =t 4+ ¢ + go = ¢ + |x| ~ ¢, we have

" Heo(l/ Dt g +q0.@)| S D » / oy POUZE DN + o ™™ dg doga-
<4t Jnes"—

lef<n ¥ 19

; [ ] / S 1’00(|2a(f)|)(f’r777)r"_1drdOSn—l
la|<n gisr=<zt Jnes"—
le|<n t<lyl<it

which concludes the proof when |go| < 1.

Assume now that |go| > 1. Let y € Cg° (—%, %) be a smooth cut-off function such that y(0) = 1

and define Vg (t. g, w) = x((q —qo0)/q0)v(t, q, ®). To get the extra factor of |go|, we apply the method
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used above replacing the function v by the function (s, n) — V4, (¢, g0 + gos, n) and applying first a
1-dimensional Sobolev inequality in s on |s| < % The extra powers of g appearing are then absorbed
since |¢o + qos| ~ |qo| in the region of integration and since (r —¢)d, can be expressed as a linear
combination of commutation vector fields from Lemma 2.9 (with coefficients homogeneous of degree 0).
The rest of the proof is similar to the one just given when |go| < 1 and therefore omitted. O

Since the norm on the right-hand side is conserved for solutions of the homogeneous massless transport
equations, we obtain in particular:

Theorem 7 (decay estimates for velocity averages of massless distribution functions). Let f be a regular
distribution function for the massless case, a solution to To(f) = 0 on R; x R% x (R \ {0}). Then, for all
(t,x) € Ry xRZ,

1

LX) S 1 (0). 40
po(|f (. x) =)t ) 1./ lle.n (0) (40)

Finally, as for the wave equation, we have improved decay for derivatives of the solutions. More
precisely, let 0 = d;, let d,; be any translation, and let d be a derivative tangential to the cone ¢ = |x|,
such as d; + 9, or the projection on the angular derivatives of d.;, d,; = d,; — (x' /r)d,. Then, we have
the following proposition.

Proposition 3.2 (improved decay for derivatives of velocity averages of massless distribution functions).
Let f be a regular distribution function for the massless-case solution to To(f) =0 on R; xR} x (R?\{0}).
Then, for all multi-indices , k and for all (¢, x) € Ry x R%,

1
(1 [e =1l 1+ e+ 1)

Proof. This proof is similar to that of the improved decay estimates for the wave equation, and therefore
omitted. O

18/ 6% po(f)(1. X)] 5 iz 1 k41 (0). (41

Remark 3.3. Note that the improved decay estimates (41) only apply to velocity averages of f, because
of the lack of regularity of velocity averages of | f].

Finally, let us mention that we can obtain decay for other moments of the solutions, provided the
corresponding moments for f and the A (f) are finite initially. For instance, in Theorem 1 on page 1542,
the decay estimate was written for the density of particles, while in Theorem 7, we considered the energy
density. One can move freely from one to the other by considering f|v|? instead of f (provided the
initial data can support it of course).

3C. Klainerman—Sobolev inequalities and decay estimates: massive case. In the massive case m > 0,
we will prove:

Theorem 8 (Klainerman—Sobolev inequalities for velocity averages of massive distribution functions).
Let f be a regular distribution function for the massive case defined on | J, <p<p Hp % R? for some
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where p(t,x) = (12 — |x|2)% and the norm || f ||p,n is defined as in Section 3A.

Proof. Recall from Remark 2.12 that

t t dv
1,x)>m>— ditym =m?*— 1,X,0)—, 43
w00 =0 [ =m0 @3)
and thus,
4
[ amirdendnn, = [ o2l [ il oSG den, @)
H, H, P Jvern

Let (¢, x) be fixed in {J, o<p Hp and define the function ¥ in the (y%)-system of coordinates (see the
end of Section 2C) as
v y)) = / | F10° %7 +1y7) dpm.

vER?

Similarly to the proof of the massless case, we apply first a 1-dimensional Sobolev inequality in the
variable y!

/R |f|<y°,xf>dum=|w<y°,o>|s[ 09,0100 30, 0 W (0,50, 0)] .
vER” |y

|<1/(3n)2

Now
t

= Qo1,
(O, x+1yl x2,...,x") ol

Ay

, . . c oL
where the ¢ in the numerator is that of the point (¢, x), while #(y°, x/ +ty/) = ((yO)2 + (x/ + tyf)z) 2
is the time of the point defined in the y -coordinates by (y°, x/ +ty/). Now if |x| < %t, then it follows
from the condition |y!| < 1/(8n2) < L & that (y°)? > 212 and thus that

t

<C
t(O, x eyl x2,... x|~

for some uniform C > 0. On the other hand if |x| > —t then it follows from the condition | yl <
1/(8n2) <3 L that [x/ +1y/| > 3t where y/ = (y1,0,...,0). Thus, we have, for [y!| < 1/(8n2)

10,191(»°, ¥.0,....0) <

/901|f|()70,x1 +eylx? X" v) dm |
v

The remainder of the proof is then similar to the massless case. We have

> /IZ"‘fI(y Xy a2 X v) dim.

la|<1

/ Qo1 (LFDO0 x1 + 191 X% . 2™ v) dyim]| <
v
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Inserting in the Sobolev inequality and repeating up to exhaustion of all the variables (the fact that, for all j,
1

|y/| < 1/(8n?) guarantees that |y| = (X271 197 1%)? < § so that we still have /(¢ (y°, x7/ +1y7)) ~ 1),
we obtain

v |oz|<n v

Recall that the volume form on each of the H,, is given in spherical coordinates by (o/1)r"~! dr do, or
in y*-coordinates by (y°/t) dy. Thus, we have

1601 52 ) e % Z/

la|<n J’|<

t(y xf) Z/

1
MEe

t(y°, x7 41y’
/ 12971 (60 xT 41y v)dumyTy)dqu

/ 12971 (0.7 +1yT ) dpom dpi,.

where we have used again that #(y°, x/ +ty/) ~ t(y°, x/) in the region of integration. Applying the
change of coordinates z/ = ty/ and noticing that the quantities on the right-hand side are controlled by
the estimate (44) applied to Z%( f) completes the proof. |

Since the norm on the right-hand side of (42) is conserved if f is a solution to the massive transport
equation, we obtain, as a corollary, the following pointwise decay estimate.

Theorem 9 (pointwise decay estimates for velocity averages of massive distribution functions). Let f be
a regular distribution function for the massive case satisfying the massive transport equation Ty, (f) =0

on U1§p<+oo H, xR2. Then, for all (t,x) € U15p<+oo Hp,

dv
| 1105055 5 sl e

Finally, let us mention the following improved decay for derivatives.

Proposition 3.4 (improved decay estimates for derivatives of velocity averages of massive distribution
functions). Let f be a regular distribution function for the massive case satisfying the massive transport
equation Ty, (f) = 0 on U1<p<+oo H, xRZ. Then, for alli € N, for all multi-indices | and for all

(1,x) € U1§p<+oo Hy,
v a’/ f,

where v, = x%0xa / p is the future unit normal to H, and 85 is a combination of |l| vector fields among
the Byk, 1 <k < n, which are tangent to the H).

m”f”n»;ﬁwl,

Proof. We have v, = S/p with S the scaling vector field. On the other hand, recall that S essentially
commutes with the massive transport operator, so that in particular T, (S( f)) = 0 if T}, (f) = 0. Thus,
[, S(f)/v0dv = S([, f/v°dv) satisfies the same decay estimates as [, f/v®dv, which shows the
improved decay for v, ( fv f/v° dv). The higher-order derivatives follow similarly. Indeed, using that
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S(p) = p, we have for instance S2( f) = p? v%( )+ S(f). Applying the decay estimates for the velocity
averages of SZ(f) and S( f) gives the correct improved decay for velocity averages of vf,( f). Higher
normal derivatives can be treated similarly. Finally, the improved decay for tangential derivatives of
velocity averages is an easy consequence of the fact that d,x = (1/7)Qk- O

4. Applications to the Vlasov—Nordstrom system

4A. Generalities on the Vlasov—Nordstrom system. In 1913, Nordstrom introduced a gravitation theory
based on the replacement of the Poisson equation by a scalar wave equation. The Vlasov—Nordstrém
system describes the coupling of this gravitational theory with collisionless matter.2°

It can be roughly obtained from the Einstein—Vlasov equations within the class of metrics conformal
to the Minkowski metric by neglecting some of the nonlinear self-interactions of the conformal factor. In
dimension n = 3, global existence for sufficiently regular massive distribution functions, with compact
support in (x, v), has been proven in [Calogero 2006].

Following [Calogero 2003], it is possible to make a derivation of this system for arbitrary mass, as
well as arbitrary dimension. Consider the metric

g=ey

conformal to the Minkowski metric 1, where ¢ is a function on R”*1, For this system, the mass shell is
defined by the equation

e2® Nap v*vP = —m?  which provides v° = \/mze_2¢ + nij viv/

We can introduce the coordinates

which consistently also provides

00 = Vm? + nijvi v/ = e,
Considering distributions of particles which are conserved along the geodesic flow of g, we can define
the associated transport operator as

0 ;0
= B
Tg: a(axa—v F‘lxﬂavl)’

where I‘é p are the Christoffel symbols of the metric g, which are given by
; 09 09 ¢
i _ ol i
b = Say g T 0w B G
so that 3 3
.o _ o i 2 —Z(f) i I
T, =v T 2u*Vgpv' +m<e V¢)avi.
In the (¢, x, 0)-system of coordinates, we compute

P . ;o0
Y O N N 2
T, =e (vaax_a_(va a®d' +m VZ¢)aﬁi)~

208ee [Calogero 2003] for an introduction to the system.
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To couple the Vlasov field and the scalar function ¢, we follow [Calogero 2003] and require that?!
Dd):mze(n-l-l)tﬁ/f%' (45)
Depending on the value of the mass m, we are thus fac::d with the following two systems:
e The massless Vlasov—Nordstrém system.
O¢ =0, (46)

ﬁ“i i _ 0. (47)

Ao Al
gy U VeV e =
In this case, the equations decouple. We can of course solve the first equation and then think of the
second equation as a linear transport equation for f.

e The massive Vlasov—Nordstrom system. In this case, we can perform yet another change of unknowns
by considering
f @, x,0)=e"tV? £z, x,9),

which has the advantage of removing the ¢-dependence in the right-hand side of equation (45).
We then obtain the usual expression of the (massive) Vlasov—Nordstrom system

oot [ 740 w
D v

0 3 R N i d i Foo O

v“—a;; — (0%Vapd' +m?V ¢)8_1{); = (n+ 1)fv“&€—¢;- (“49)

From now on, we will drop the ~ and ~ on all the variables to ease the notations.

4B. The massless Vlasov—Nordstrom system. We consider in this section, the system (46)—(47). We
will denote by Ty the transport operator defined by
N o i .
, To=v g~V Vab Vg
ie.,

Ty =To—To(p) v'dyi.

The massless Vlasov—Nordstrom system can then be rewritten as

O¢ =0, (50)
Ts(f) =0, (5D
which we complement by the initial conditions
¢(E=0)=¢o, 09:¢p(t=0)=¢1, (52)
f(t=0) = fo. (53)

211t should not be surprising that the right-hand side of this equation vanishes for massless distribution functions, as, up to an
overall factor, it corresponds to the trace of the energy-momentum tensor, the latter being of course proportional to m for Vlasov
fields.
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where (¢, ¢1) are sufficiently regular functions defined on R’ and fo is a sufficiently regular function
defined on R% x (R7 \ {0}).

By sufficiently regular, we mean that all the computations below make sense. We will eventually
require that Ex [Po, ¢1] < +00, where Ep is the energy norm defined by (57) and similarly, we will also
require below that || fo ||,y < o0 (with some additional weights in the case of dimension 3). Provided
N is large enough (depending only on n), these two regularity requirements are then enough so that all
the computations below are justified. In the remaining, we will therefore omit any further mention of
regularity issues.

4B1. Commutation formula for Ty. Recall the algebra of commutation fields Ko = KU {S}, where S is
the usual scaling vector field, defined in (17). Similar to Lemma 2.3, we have:

Lemma 4.1. For any Ze IKO,
[Ty, Z] = czTo + [~z To(p) + To(Z($)]v' 8y = cz Ty + To(Z($))v' 8,1,

where cz =0 if Z e Kand cz=1if Z = S, and where Z is the nonlifted field corresponding to Z if
ZeKandZ=Sif Z=S.

Proof. Note first that for all Z € Ko, we have [2 vl d,i] = 0. We then compute
[Ty. Z) = [To. Z] = [To(¢)v' 0, . Z]
= [To. Z1+ Z(To(@)v' i + To(@)[Z. v 8,1]
= [To, Z]+ ([Z. Tol$ + To(Z))v' 0,
To conclude the proof, replace all the instances of [T, Z ] by ¢z Ty according to Lemma 2.3. |
Iterating the above, one obtains:

Lemma 4.2. Let f be a solution to (51). For any multi-index o, we have the commutator estimate

ITe. 21 f|<C D" |To(Z79)|-12°1], (54)
IBl=lal,ly|<|el
1Bl+]yl<lel+1
where ZV € Ki)yl and ZP € [Ki)ﬂ "and C > 0 is some constant depending only on |«|.

4B2. Approximate conservation law. Similar to Lemma 2.17, we have:

Lemma 4.3. Let h be a regular distribution function for the massless case in the sense of Section 2FE.
Let g be a regular solution to Tg(g) = v°h, with v° = |v|, defined on [0, T] x R™ x (R \ {0}) for some
T > 0. Then, forallt € [0,T],

t
/E pollghie. v dx = /E PollgDO. v dx + /0 /Z ool (s, ) dx ds

t
+(n+1)/ / / |To(¢p) f|dvdxds. (55)
0 JE; JueRry\{0}
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Proof. As for the proof of Lemma 2.17, this follows, after regularization of the absolute value, from
integration by parts or an application of Stokes’ theorem. The term To(¢)v' d,: | f|, which appears in
the computation, gives rise, after integration by parts in v, to the last term in (55) since 3, (v’ To(¢)) =
(n+1)To(9). u

4B3. Massless case in dimension n > 4. In this section, we prove Theorem 3, found on page 1545. The

n = 3 case requires slightly more refined techniques (which of course would work also for n > 4), but the

estimates in the n > 4 case are slightly stronger and simpler; we therefore provide an independent proof.
If ¢ is a solution to the wave equation, let us consider the energy at time ¢ = 0,

ENplt=0)= Y [ Z*0¢)(t=0)| 2. (56)
le|<N
la|eKle!

Now if ¢ (1 =0) = ¢ and 9;¢(t =0) = ¢, for pairs of sufficiently regular functions (¢g, ¢1) defined on
R”, then the above quantity can be computed purely in terms of ¢o, ¢1, so we define??

ENlgo. d1] = En[P](z =0). (57)

Similarly, if f is a solution to (51) arising from initial data fy at ¢ = 0, then we define

ENL1=0) =l t=00(= 3 1oo(Z20H0=0) |11y (5%)
la|<N
Z% ek

and we remark that this quantity can be computed purely in terms of fy, so we will set
En[fo]l = En[f1(z=0).
We will prove:

Theorem 10. Let n > 4 and let N > %n + 1. Let (¢o, 1, fo) be an initial data set for the massless
Viasov—Nordstrom system such that En[¢o, 1] + En|[fo] < +00. Then, the unique solution ( f, ) to
(50)—(51) satisfying the initial conditions (52)—(53) also satisfies the following estimates:

(1) Global bounds. Forall t > 0,
Enlf)(0) < €N oty fo],

where C > 0 is a constant depending only on N, n.

(2) Pointwise estimates for velocity averages. For all (t,x) € [0, +00) x R% and all multi-indices o
satisfying |a| < N —n,

ecgil\’/2[¢0’¢‘]EN[f0]
(14 | =[xl (14 |e + x )"

22The alternative to the approach we use here is to assume that (¢, ¢1) are regular initial data with decay fast enough in x,
for instance by assuming compact support, so that the resulting £x [¢ (¢ =0)] is finite. What we want to emphasize here is that
the quantity £x [¢(r =0)] can in fact be computed purely in terms of the initial data (using the equation to rewrite second and
higher time derivatives of ¢ in terms of spatial derivatives), and that this is all that is needed in terms of decay in x.

po(|Z¥F)(t,x) <
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Proof. Let N, n, ¢g, ¢1, fo be as in the statement of the theorem. From the conservation of energy and
the commutation properties of the Z¢ with the wave operator, we have, for all ¢,

EN[ol(t) =ENIdo, P1] =EN.

Applying the standard decay estimates obtained via the vector field method to ¢, we have for all multi-
indices o satisfying || < N — %(n +2) and for all (7, x) € R; x RY,

EN[P]()

02t ) < _
(14| = xl)) (14 Je + x| )"

(59)

It follows from a standard existence theory for regular data that for all ¢, we have En|[f(¢)] < +o0.
Applying the Klainerman—Sobolev inequality (39), we obtain, for all multi-indices « satisfying |o| <
N —n and for all (z,x) € R x RY,

En[f]() '
(1| = el (1 [+ )]

|Po(Z* () x)|
From Lemma 4.3 and the commutator estimate (54), we have for all # > 0 and all multi-indices o,

~ ~ t
/ po(12%7 )(t.x) dx < [ po(1Z%1 (0. ) dx + [ [ po(h)(s.x)dxds,  (60)
Z[ ZO 0 ZS

where?3
1 A A~
S5 D IT@'eZP s Y0 102Vl 12PS).
|B1=lel,lyI<]a| [Bl=lel, |y =]l
1Bl+1yI<|al+1 [Bl+]y|<lal+1
so that

po((B*) s > 1027 P)lpo(1ZP f)),

1B|<lel,lyI<le|
[Bl+]yI<la|+1

since ¢ is independent of v. Integrating over x, we obtain, for all s € [0, ],

[ omenedxs S [ p@ alnaz? s o dx.

|Bl<lel,|yI=<l|el
1BI+ly|<lal+1

We now estimate each term in the above sum depending on the values of |y| and |B].
If |B| < N —n, we then apply the pointwise estimates on pg(f B(f)) to obtain

EN[f]1(s)
(14 [s = xl[) (1 + [s + 1xl)"

[ 1927 $)|00(1 28 £ ) (5. x) dx < [ 927 9)|
D N

23Note that the last term in the right-hand side of Lemma 4.3 is similar to the error terms arising from the commutator
estimate of Lemma 4.2 and is therefore accounted for in the A% error term in equation (60).
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Applying the Cauchy—Schwarz inequality and using that>*

” 1 N S 61)
(L+]s=IxI]) (1 + |s +|xI|) L2 (1+s) =2
we obtain 1 .
f 182 $)lpo(1 ZP ) (5. x) dx < ERg)(s) XIS 62)
3s (1 +S) 2

If now || > N —n, then |y| <|a|+1—|B| <N — %(n + 2) and thus, we also have (62), using this time
the pointwise estimates on d(Z7Y ¢) given by (59). Applying Gronwall’s inequality finishes the proof of
the theorem. O

4B4. Massless case in dimension n = 3. We now turn to the case of dimension 3, where the slower
pointwise decay of solutions to the wave equations leads to a slightly harder analysis. First, let us
strengthen our norms for the Vlasov field.

For this, recall the algebra of weights K¢ introduced in Section 2H and define a rescaled version ko by

Ko = (UO)_lko = {%

ZGKO},

where we recall that v° = |v| in the massless case. If « is a multi-index, we will write [3/v°]% € /c(|)a|

O]a

to
denote a product || elements of k¢ and [|3|/v"”]% in the case we take the product of the absolute values
of these elements.

Let us now define, for any regular distribution function f, the weighted norm

Ealfl= X % [ (|Z°‘f|["”'} Jeds

la]<N Zaeilal
1BI=q

S U o B L I DR

la|<N Zoelel
1Bl=q

(63)

where the weights 3/v° lie in k.

Theorem 11 (asymptotic behaviour in dimension n = 3). Consider the dimension n = 3. Let N > 7
and q > 1. Let (¢o, P1, fo) be an initial data set for the massless Vlasov—Nordstrom system such that
ENn[po. 1] + En[foln,g < +00. Then, the unique solution (f,¢) to (50)—(51) satisfying the initial
conditions (52)—(53) also satisfies the following estimates:

(1) Global bounds with growth for the top-order norms. For all t € Ry,

Englf1(0) < (1 + 0N 0 By 1 fo) (64)
where C > 0 is a constant depending only on N, n and q.

24For the convenience of the reader, we have added in Appendix B certain integral estimates which include (61).
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(2) Small data improvement for the low-order norms. There exists an &g (depending only on n, N, q)
such that if En[po, P1] < €0, then for all t € Ry,

1/2
Ey_ngs o [/1(0) <8000 EY g fo). (65)

(3) Under the above smallness assumption, we also have the optimal pointwise estimates for velocity
averages. For all (t,x) € Ry x R and all multi-indices a satisfying |a| < N — %(311 +4) and all

Bl=q—1,
Po (
Proof. First, let us note that for all 3 € kKo, we have

viavi (%f) =3 viav,»f,

00

B ceN?[go.01]
[ 5] Jens Englfol _
v (14|t = 1xl]) (1 + ]2+ 1x1])

from which it follows that for all regular distribution functions g, we have [Ty, 3/v°]g = 0. Thus, we
can upgrade Lemma 4.2 to

[ [5]7)

where ZV € [Kl)yl, ZP € [K(‘)‘B |, [3/v°]° e /< "and C > 0 is some constant depending only on |«|. Applying

¢ Y [Tzl ["”'} 28 11, (66)

|BI<lel,|y|<le]
[Bl+ly<lel+1

arguments similar to those used in the n > 4 case yields

Englf10) < Englfo] +c[ ) Z/ |a(zy¢)|po(['il] |z/’f|)(s x) dx ds

|BI=l|al.ly|<l|e| lo|<q
[BI+ly|<]el+1

Nq[f](s)
N (1+45)

< Enalil+C [ &)
’ (67)
Applying Gronwall’s inequality, we obtain (64).
Now assume that £ < g9 with g9 small enough that

Englf10) = (1+1)° En gL o,
1
with§ = CEZ < 1.
The key to the improved estimates is the following decomposition of the transport operator To:
i .
— voﬁax[ + vt axi

x! vOxi vit —xiv?
= v0(8, + maxi) | | (|X| Z)axi + faxi

) i
To = %9, + v/ 0, = v"(a, + lx—lax,-)
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i 0 i —xIQ: Qo —x: S
0 b vy X x84 +1820i — X; 0 3
=v [0+ —0,i )| —— — 40" ——0,.i,
(’ |x|") ! |x|( L ) vor
—_——— ~——

outgoing derivatives bounded <C(IQi;1+IR0i |+IS1)

where the weight 3 in the last term is v'# — x'v? € ko. Recall?® now the following improved decay
for outgoing derivatives of solutions to the wave equations: for all multi-indices « such that |¢| <

N—-I(n+2)-1, .

1

‘ (a, N xf)Z“(sb)‘ < v
r (1412

To estimate the second term, we need to obtain decay for Z ¢ as solution to the wave equation. This is done
by integrating the decay of dZ¢ coming from the Klainerman—Sobolev inequality along ingoing null rays.
We do not perform the proof of this fact here, but the reader can refer to the proof of Lemma 4.14, where
a similar result is proven (for a Cauchy problem with initial data on a hyperboloid). One then obtains:

(—ij,'j +thi—xiS)Za¢ < EN _
r+r (1+1)2

As a consequence, it follows that for all multi-indices || < N — %(n +2)—1,

1 3] 1
|T0(Za¢)|§5NvO(—+ LA )
(1+0)3  Sevtid+0

Repeating the previous ingredients then gives (65). The pointwise estimates then follow from the
Klainerman—Sobolev inequality (42). O

4C. The massive Vlasov—Nordstrom system. We now turn to the massive case, that is to say the system

dv f
20 =0 [ 155 =G

T (/) (Tn@) +m2Vig) 2L

=+ DTn($) /.
As in the massless case, we introduce the notation Ty = Ty, — (Tpy (P)v + m?Vip)(d/0v') for the
transport operator that appears on the left-hand side of the last equation. With this notation, we will seek
solutions of the massive Vlasov—Nordstrom system

0 =m? [ e (68)
vV
Te(f)=@m+1)f Tu(®) (69)
completed by the initial conditions
¢|H1 = ¢0’ al‘¢)|l‘11 = ¢19 (70)
i xwz = fo. (71)

25This can be obtained from the usual Klainerman—Sobolev inequality and the formula for 95 in (24) by integration along the
constant ¢ = |x| null lines. See, for instance, [Wang 2015b] for details.
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As for the massless case, the lower the dimension, the harder it is to close the estimates. We consider
here only the dimensions n > 4. As already explained, to treat the case n = 3, we need a refinement
of our method, for instance, the use of modified vector fields in the spirit of [Smulevici 2016], and we
postpone this to future work. The proof that we shall give below will be enough to close the estimates for
n = 4 with some g-growth in the norms, and without any growth if n > 4.

In the following, we will set the mass m equal to 1.

4D. The norms. In the context of the massive Vlasov—Nordstréom system, we define the following
energies, similar to the energies defined in (56) and (58):

e For the field ¢, satisfying a wave equation,

exlo = Y [ 7129100, dua, 72)

le] <N
Zoeplal

where, for any scalar function {» we denote by T[{] = dy¥ ® dy — %n(vw, V)7 its energy-
momentum tensor.
e For the field f, satisfying a transport equation,

Exlflo= Y a(@Z* O, + 2o 1alZ*ODa,)

l|<|N/2] LN/2]+1<|a|<N
Z%ep® 7o cpo

where for any regular distribution function g, the energy density y;(g) is defined as in Section 2K.

Remark 4.4. The weight on the lower-order derivatives contained in the norm of f ensures that pointwise
estimates can be performed on terms of the form

~ E
/}vozo‘f(t,x, v)|dv 5 W,

v
according to Theorem 8, given on page 1564, provided that || < L%J —n. It should furthermore be
noticed that the “unweighted” standard estimates coming from Theorem 8 are still true for || < N —n:

~ d E
/‘Zaf(t,x’ 0| %Y < NLf1G0)
v v0 tn

They will nonetheless not be used in the following.

4D1. The main result. Our main result for the massive Vlasov—Nordstrom system is contained in the
following theorem.

Theorem 12. Let n > 4 and N > 3n + 4. Let (fo, ¢o, ¢1) be an initial data set for the system (68)—(71).
Then, there exists an gy > 0 such that, for all 0 < & < g9, if

e Enlo, P1] < € (initial regularity of ¢),
o Eninlfo] < e (initial regularity of f),
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then, the unique classical solution ( f, ¢) of (68)—(71) exists in the whole of the future unit hyperboloid
and satisfies the following estimates:

(1) Energy bounds for ¢. Forall p > 1,

EN[P)(p) < 2e.

(2) Global bounds for f at order less than N. For all p > 1,

1/4
NIf1(p) < pC° " 2e,
where C = 1 whenn = 4, and C = 0 when n > 4.

(3) Pointwise decay for 0Z%¢. For all multi-indices |o| such that |o| < N — "+2 and all (¢, x) with

t > /14 |x|2, we have

&
(I+0" 7 (14— x])?>

.. .. N
(4) Pointwise decay for p(|0Z% f|). For all multi-indices o and B such that || < N —n and |B| < |_7J —n
and all (t,x) witht > /1 + |x|2, we have
e

O[ _<—
L1215 5 e

058 <_ &
[ o127 1w S e

where C =1 whenn =4 and C =0 whenn > 4.

0Z%¢| <

(5) Finally, the following L? estimates on f hold. For all multi-indices o with L%J —n+1=<|a| <N,
and all (t, x) witht > /1 + |x|?, we have

t ~ dv 1/4
- zer 2=\ 4 2 Ce -
Lﬂiﬁ|fu0 wr, < 6%

where C =2 whenn =4 and C = 0 when n > 4.

4E. Proof of Theorem 12.

4E1. Structure of the proof and the bootstrap assumptions. From now on, we consider a solution ( f, ¢)
to (68)—(71) arising from initial data satisfying the requirements of Theorem 12. Let P be the largest
(hyperboloidal) time so that the following bootstrap assumptions hold on [1, P]: assume that there exist
an ¢ small enough and § € [ , 2) such that, for all (p, 7, ) in [1, P] x R3, we have

e energy bounds for ¢,
ENP](p) = 2e: (73)

e global bounds for f,
ENLf1(p) < p°2e. (74)
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It follows from a continuity argument?®

that P > 1 and the remainder of the proof will be devoted to
the improvement of each of the above inequalities, establishing the validity of Theorem 12. The proof is

organized as follows:

» We first prove the necessary commutation formulae with the transport operator T in Section 4E2. The
fundamental commutator is given in Lemma 4.11.

e A second step consists in rewriting the well-known standard Klainerman—Sobolev estimates for scalar
fields using the hyperboloidal foliation (Proposition 4.12), in Section 4E3. These decay estimates for
derivatives of scalar fields also provide estimates on the fields themselves after integration along null
lines (Lemma 4.14).

e In Section 4ES, the bootstrap assumption (73) is improved, assuming weighted L2 decay estimates for
the higher-order derivatives of the solution to the transport equation (see Lemma 4.18). The proof is based
on energy estimates for which we need the source terms to have sufficient decay. When only low derivatives
are involved, our Klainerman—Sobolev inequalities for f are sufficient to close the energy estimates for
¢, so that the L2 decay estimates are only required to handle the high derivatives case (see Lemma 4.18).

e In Section 4E6, the bootstrap assumption (74) is improved. The proof relies on the conservation
law for the massive transport equation (Lemma 4.20). Unfortunately, some of the source terms arising
from the commutation relations are a priori not space-time integrable. To handle this lack of decay,
we use renormalized variables by incorporating part of the source term in the original variables; see
equation (98). Here we use pointwise estimates for dZ%¢ but also the pointwise estimates on Z%¢
provided by Lemma 4.14. The improvement of the bootstrap assumption is obtained after returning back
to the original variables, provided that the initial data are small enough (Proposition 4.24).

e One finally proves in Section 4E7 the L2-estimates for the transport equation, which are required in
Section 4E5 to improve the bootstrap assumption on the solution of the wave equation. To this end, the
equations for the renormalized variables introduced in equation (98) in Section 4E6 are rewritten as a
system (Lemma 4.28) of inhomogeneous transport equations. Using the fact that we have control on the
initial data for N + n derivatives, it is possible to prove strong pointwise estimates for the homogeneous
part of the solution to this system carrying the initial data (Lemma 4.29). The inhomogeneous part of the
solution to this system (with no initial data) can be decomposed into an L? integrable function and a
pointwise decaying function; see equations (114) and (115). This decomposition can then be exploited to
prove the decay of weighted L2-norms of higher-order derivatives of f (see Proposition 4.31). The later
decay estimate is then used to improve the bootstrap assumption for the wave equation (see Lemma 4.18).

Note that:
¢ An estimate for the size of § in (74) is obtained in Section 4E7 (Lemma 4.30).
¢ Finally, the maximal regularity is required in Lemma 4.22, when pointwise estimates have to be

performed on f.

26Note that the methods of this paper show in particular that the system is well-posed in the spaces corresponding to the

norms & 11\,/ 2[zf)] and E [ f] for N sufficiently large. See also [Calogero and Rein 2004] for another local existence statement.
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In the sequel, we will heavily use the following pointwise estimates, which hold under the bootstrap

assumptions (73) and (74):
* As a consequence of Proposition 4.12, if [y| < N — | 2 | — 1, then

Ve Ve

1 n=1 — n
(t—=IxD2(1+1) 2 p(1+1)2

e As a consequence of Lemma 4.14, if |[y| < N — | 5 | — 1, then

027 9| <

VEC—IXD? _ e
(1-{-0%l (1+1)2

e As a consequence of Theorem 8, given on page 1564, if | ,3| < N —n, then

ﬂ
/| R S T

e Finally, as a consequence of Theorem 8, if |8]| < L%J —n, then

/ W0 ZPf|dv <

1Z7¢| <

epb
(1 4—t)"

4E2. Commutators in the massive case. Let us start with the following commutation relations.

Lemma 4.5. [0¢,0,i] =0,
(B 8] = 0.
[t0,; +x70, +v°98,,,0,:] = —:—;ij,
[/ —x7 i + vy — v/ 0yi, Dk = —8L0y7 + 80,1,
[0, +x/ 3, +v°9,,,v'0,:] = vl—oavj,

[X'8; —x/8; +v'0,; —v/ 8, v*0,6] =0
We now evaluate the commutators [T, Z ] for Z € P. We have
[T5, Z)f =[T1, Z)f —[T1($)v 8,0, Z] f~[V' $-0,i, Z) f
N, e’
=0if ZeP

=Z[T1()]v' dyi f+T1(PZ, v Dy f~[VIp-dyi, Z) f

=([Z. T1]p+T1(Zp))v' 8y f—[Vpdyi, Z] f +

otherwise

=T (Zp)v'd,i f—[V'g- 8vz,Z]f+

Ti($) 550, f if Z=103,;+x70;+1°9,,.
otherwise.

(75)
(76)

(77)
(78)
(79)
(80)

{ T1($) 50, f if Z =10, +x/9;4+v°9,;,

81)
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We have used that Z (¢) = Z(¢) since ¢ is independent of v. To estimate the second term on the
right-hand side of the last equation, we need:

Lemma 4.6. For any Z € P:
e [If Z is a translation, then ~
[Vigp- 0y, 2] = —VI (Z$)d1.
o If Z = Qi is a rotation such that Z= Qjr + vk — vkav_/, then
[V'¢-0,i. Z] = =V'(Z)d,.

o If Z = Qqj is a Lorentz boost such that 7= Qoj + voavj, then

. ~ : v
[Vig- 0,i, 2] = -V (Zp)a,i + V,-quav,- +0:(¢) 0,5 f-
We now summarize these computations:

Lemma 4.7. Let Z € P. Then
A . . U
Ty 217 =200 00 f + X 9 () 002261 000

la|=<1
1<j<n
0<B=<n
where the p'B (v/v°) are polynomial of degree at most 1 in the variables v* /v°, 1 <k <n.
The terms containing derivatives of v in the above formulae are problematic, since the d,, are not part

of the algebra P. We use the following decomposition for all 1 <i <n:
1 ; 1 ; 1 ~ 1 ;
8,0,' = v—O(laxi + x! 8, + anvi) - U—O(fax[ —|—x’8,) = U_OQOi — U—O(laxi + x! 8[) (82)

Remark 4.8. Note that 1 ;
v—oltaxierX’ 8tf|§v_0(|atf|+|axif|) (83)

for (¢, x) in the future of the unit hyperboloid. Now 9; and d,; belong to P, but the price to pay is the
extra f-factor. It is precisely this extra #-growth which forbids us to close the estimate in dimension 3. A
similar obstacle was identified for the Vlasov—Poisson system in dimension 3 and solved by means of
modified vector fields in [Smulevici 2016]. We hope to treat the 3-dimensional massive Vlasov—Nordstrom
system in future work.

This leads to the commutation formula:

Lemma 4.9. Let Z € P. Then

; A Pag(®/v°,1,x) .
[T, Z1f =Ti(Z9) ) qa(lj)—o,z,x)Z“(f) + ) ”v—o 0xv Z%($)- ZP (1),
le[=1 lel<1,|B|=1
0<y=n

where the qo(v/v°, t, x) and pgﬂ (v/v% ¢, x) are polynomial of degree at most 1 in the variables

Uk v

U—O, U—Ot, —X , lfl,kfn
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Iterating the above formula, we obtain:

Lemma 4.10. Let « be a multi-index and Z% € P'*!. Then

[T5.2°1 /= Tl(zw)qﬂy(j—o,t,x)?ﬂ(fw > viopgﬂ(%,r,x)axozy(qs)-iﬂﬁ

lyl+8I<lal+1 ly|+I8|<|al+1
1<|y|<|e| 0<o<n
1<[Bl<l|e| 1<|B|<||
o<ly|<|a|

where

* the qg,(v/ v0, ¢, x) are linear combinations of the terms

k k k
v [V nf ¥ i .
— ), — |t, — |x', 1<i,k<n,

where q, q', q"" are polynomials of degree at most |a|,

e the p;/ﬁ (v/v°, ¢, x) are linear combinations with constant coefficient of the terms

k k k
v Y nfV i :
= | — |t — |* 1=Zik=<n,
where p, p', p” are polynomials of degree at most |a|.

Proof. This follows by an induction argument on the length of the multi-index o and we therefore only
provide some details here. Assume the lemma is true for |«|. Recall that, for any Z € Py,
[Ty ZZ*)(f) = (T. Z1Z*(f) + Z[Tp. Z°)(f) = 11 + I,
with
L =Ty, Z1Z%(f). 12=Z[Ty. Z*](f).

Using Lemma 4.9, we have for Iy,

A A 1 AR A
h=T«(Z¢) ) CIV(:—O,Z,X)Zy(Zaf)+ > Ep;’ﬂ(:—O,t,x)axozy(¢)-zﬂ(z“f), (84)

ly|=1 lyI<L,|B|=1
0<o<n

with ¢, and pJ‘/’B as in the statement of Lemma 4.9. Since all the terms in (84) clearly have the desired
form, we turn to /5. Applying the induction hypothesis, we have

n=z] ¥ 0@ (52 0r X g Gn)oe 262

lyl+I8I<lal+1 ly|+I8|<|al+1
1<|y|<|e| 0<o<n
1<|B|=|al 1<|B1<]a]
= ¥ 2n@ou (G Zols X 2]z 2]
U v U
lyl+1BI<le|+1 lyl+1Bl<|al+1
1<|y|<|c| 0<o<n
1<|B|<|a] 1<|B|=]al
=Ji1+J2,

where

A~ v a
n= ¥ 2@ 20)]
ly|+181<|a|+1
1<ly|<|c]
1<|B|<|al
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and

L= Y Z[U%p;ﬁ (5—0 1 x)avay(gb) : Zﬂf]
[y|+|B|=|el+1
0<o<n
1<|B|=]e]
To see that J; has the correct form, we distribute Z, which gives rise to three types of terms. The terms
arising when Z hits T, (Z VqS) or ZP (f) are easily seen to have the right form. It remains to look at the
case when Z hits qgy- It Z is a translation, Z = d,s and one easily sees that Z (gy) has the correct form.
If Z is the lift of a rotation or a Lorentz boost, then we write schematically Z=*Z+4+VZ, where*Z isa
homogeneous differential operator of order 1 in (¢, x) and Z is a homogeneous differential operator of
order 1 in v. It is then easy to check that *Z applied to a polynomial in the variables v’ /v? of degree < |«|,
possibly multiplied by the variables ¢, x’ will produce a polynomial, of the same degree < ||, in the
variables v’ /v?, possibly multiplied by the variables ¢, x’. Similarly, ¥ Z applied to a polynomial in the
variable v’ /v° of degree < || will produce a polynomial in the variables v’ /v? of degree < |a| + 1. As
a consequence, A (gy) is a linear combination of polynomials of degree || + 1, possibly multiplied
by ¢, x'. The term J, can be treated similarly. O

The full expression for T (Z*f) can now be computed using the transport equation (69) satisfied by f.

Lemma 4.11. Let Z% be in P1%l. Then the following equation holds:

T,2%(fH= 3 T1<zy¢>qﬂy(5—0,r,x)2ﬂ(f)

lyl+1Bl<|al+1
ly|=1,|8]>1
1 v ~ ~
Y W;ﬂ(m,r,x)aazy(mzﬁﬂ S T Z 2P (). (85)
|V|'|6|E|E<|O!|+1 ly|+181=la|
<o<n
1<|Bl=<|al

where the qg,, and p)‘jﬂ are as in Lemma 4.10 and the r,g are constants.

Proof. We have
Ts(Z°f) = [Tp. Z°1f + Z°Ty f = [Ty, Z°1f + Z*((n + DT1(9) /). (86)
The lemma thus follows from Lemma 4.10 and the fact that
Z°M@ = Y. rpTi(Z7$)ZP(f). (87)
lyI+181=lel
where the r), g are constants. O
4E3. The H , foliation and the wave equation. The aim of this section is to provide a Klainerman-Sobolev-

type inequality, applicable to solutions of the inhomogeneous wave equation if the inhomogeneities decay
sufficiently fast, using only energies on the H, foliation. This question was addressed by Klainerman
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[1993] for the Klein—Gordon operator and we show here how a similar proof can also be applied to the
wave operator. We thus consider a function v and its energy-momentum tensor

TIW]=dy ®dy — 3(n(Vy, Vy)n. (88)

If we want to perform energy estimates on H,, we need to multiply 7'[y] by d, and the normal to H),
Vp, and integrate on H,. Let us thus compute the quantity 7(9;, vp).
We find

TY1r. vp) = ;—p(wf Y2V + %wtwr. (89)

Recall also that the volume form on H,, is given by (o/¢)r"~! dr do. Since we are looking only at
the region p > 1, we have that ¢ > r and T'(9;, vp) is clearly positive definite, with some degeneration as
r — t. More precisely, fix (¢, x) in the future of the unit hyperboloid. Assume first that r = |x| < %t;

then (P/Z)T[W](at, vp) = |9y|2.
Let (Y° Y') be the coordinates of (¢, x) in the (y%)-system of coordinates adapted to the H,, foliation
as introduced in Section 2C. Let ®(y) = 0y (Y% Y/ +ty/). Then, a classical Sobolev inequality yields

oy Y HE =10 s Y / 050 (y) 2 dy

k l’l+2

< Z f {Zk(alﬂ)(YO,Yertyj)\zdy, (90)

k I’l+2

using that d,,; = (1/7)$2¢; and the fact that d,,; ® =1 9,,; { together with estimates on t/(t (YO, Y7 +1tyl))
similar to those of Section 3C. Applying the change of coordinates y/ — ty/ yields

YR s Z/ |25 @y (YO, ¥7 + 37| dy. 1)

k n+2 |y|<td

Finally, |Y/ 4+ y/| = |x/ 4+ y/| < (% + S)t so that, if § > 0, we are still away from the light cone. Thus,
the right-hand side of the previous equations can be controlled by the energies of Z*(3y) on H p- On the
other hand, if %t <r <t, we first remark that

P r
OT G v) = (11 ) o ©2)
Thus, we may repeat the previous arguments, losing the factor (1 —r/t) in the process, as follows:

O YR s Z/ |Z5 @y (Y0, Y7 + 37| dy

k n+2

1
sin Z/ ( ) (1—5)|zk(a¢)(Y°,Yf+yf)\2dy. (93)
ly|<t8 t

k<n+2
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Since )
L tt+r) _t
l—r/t  p2 ™ p2

and since again, we can replace #(Y°, Y/ 4 ¢y/) by ¢ in all the above computations, we have shown that

(Y2, Y% < .
|0V ( )< =y

Since p? = (¢t + r)(t —r) and since ¢ > r in the future of the unit hyperboloid, this is exactly the decay
estimate predicted by the usual Klainerman—Sobolev inequality using the ¥; foliation. We summarize
this in the following proposition.
Proposition 4.12 (Klainerman—Sobolev inequality for the wave equation using the hyperboloidal folia-
tion). For any sufficiently regular function \ of (t, x) defined on the future of the unit hyperboloid, let
& e +2)[Ip](p) denote the energy

EapWlp) = Y [ TIZUWvp) iy

a2 1

Then, for all (t, x) in the future of the unit hyperboloid,
1 1
0V (1, x) S 55— Ex[V](p(t. x)). %94)
2 (r—|x|)2
It is interesting to note that the above proof does not make use of the scaling vector field.

Remark 4.13. We will use in the following the inequality

2
LTI 0) =10 + (92 + 92+ Tyiwe) = 0t (1= 5 )02 4 0+ Fo+ y®

that is to say,
P t+r

0y 1? < TTy1(0:.vp) =

T[y1(9z. vp).

t —
The inequality (94) provides decay for dy but not for ¥. By integration along null lines, one can
obtain the following decay for .

Lemma 4.14. Let  be such that E% (n+2)[lﬁ](p) is uniformly bounded on [1, P] for some P > 1. Assume
moreover that Y| ,—1 vanishes at oQ.
Then  satisfies, for all (t, x) in the future of Hy,

1
1 (1+u)2
¥ (6. )] < sup [EFI]] =
[1,P] r2
where u =t — |x|.

Proof. The Klainerman—Sobolev estimates provide

1
supp1, p)[Ex]
a t, s#.
ovnls =k
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Let (t,x) = (t,r,w € S") be a point in the future of Hj, and consider the point on the hyperboloid lying
at the intersection of the past light cone from (z, x), the hyperboloid H1, and the direction w. Writing
u=t—|x|and v =t + |x|, we have

(tl,xl) = (l1=\/ 1 +r12,r1=%(v—%),w) € Hy.
Note that
! 2 < ! i >r>1
— = < — sincev>t>1.
(r) v+1/v 7 (v)
Integrating along the direction w along the past light cone from (¢, x) from (¢1, 71, w) to (¢, r,w), one
obtains
t—r
Ve =+ [ @ du,
11—ri
so that

1

1 1
Ex(p=1) = suppy pi[Ex]
(0| s NL= +/t PPN

ry) 2 1—T1 uz2v 2

1 1.9 1
Ex(p=1 su Ezluz 1_(1 2
< n(p )+ p.piEx] sup 2]( +u)

n—1 n—1 5 [gN n—1
(v) 2 v 2 [1,P] v 2
which concludes the proof since 1/v < 2/¢. Here we have used that
%
Exp=1)
[ (t1.x1)] S —+2,
r) z

which follows from usual weighted Sobolev inequalities on R” applied to dy and the assumption that
restricted to p = 1 vanishes at infinity. O

4E4. Commutation of the wave equation. The commutation of the wave equation with our set of vector
fields is straightforward and leads to:

Lemma 4.15. For any multi-index o,

~ d
02%() = f 2. 95)

vERY

Proof. First, recall that the vector fields in the algebra P commute exactly with [J. The lemma then
follows from Lemma 2.14 and Remark 2.15 in the case Z% contains some combinations of Lorentz
boosts. O

Remark 4.16. The following inequality will be used later on:

A dv
/ 20
veR? v

which is a direct consequence of Remark 2.12.

<(1Z%(f)l),
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4ES. Energy estimates for the wave equation on hyperboloids. Consider v defined in hyperboloidal time
for all p € [1, P] and assume that ¥ solves Yy = h. Recalling the expression for T'[y](d;, v,) given by
(89), we have:

Lemma 4.17. Let p € [1, P]. Then,

/ T[], vp) i, = /

0 H,

0
T o) s+ [ @) 16! dy

Proof. The proof of this fact is only sketched, since classical. The reader can refer to [Klainerman 1993].
Remember that the divergence of the stress-energy tensor 7' [v/] is given by

*Toplv]=hogy
when V satisfies the equation O0y = h. The lemma then follows by integration between the two

hyperboloids H1 and H, and an application of Stokes’ theorem. O

To close the energy estimates for Z%(¢), we need the right-hand side of (95) to decay. Since for
|| < N —n, the required decay follows from our Klainerman—Sobolev inequality (42) as well as the
bootstrap assumption (74), we have the following lemma:

Lemma 4.18. Assume that § < 1. Assume moreover that for all multi-indices o such that N —n +1 <
la| < N, the following L2 decay estimate holds:

t ~ dv\?
/H E(A'Zaf'u_()) dum, <ep5". (96)
0

Then, the following inequality holds for all p € [1, P]:
1
Enll(p) =e(1+Ce2),

where C is a constant depending solely on the dimension n and the regularity N. In particular, for e
small enough, forall p € [1, P],

Enl9l(p) < 3e.

Remark 4.19. ¢ The weighted L2-estimates (96) will in fact be proven in Section 4E7 for the wider
range of multi-indices o with L%J —n+1<|a|<N.

e Note that the L2-estimates are needed only for |«| > N — n: for lower order, the pointwise decay
estimates for the velocity averages are sufficient to conclude.

Proof. The proof of this lemma relies on Lemma 4.17. Applying first Lemmata 4.17 and 4.15 to Z%(¢)
for all multi-indices of length || < N, one obtains immediately, for p < P,

evidlo-eniains o X [T ozl [ afldv)d,u ., dp

5 3 UL o () [ e

le|<N zaeplal
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b5, 5 ([, (20 ) o

le|<N Zaeplel

We now apply, for the low derivatives of f, Theorem 8 on page 1564 (in conjunction with Remark 2.12):
for |a| < N —n,

/ ( )( |Z“f| ) dun, [mL.gzplzsrn_lﬂldr<szp’28 "/Oo " dy.
“Jo oo 2" t o (¥)?"

Since the last integral is convergent, we obtain

1, ()20 ] <o

which, assuming § < 1, is integrable in p. For the higher derivatives of f, i.e., for || > N —n, one uses

the assumption of the lemma to obtain

£ E (L ) <o

N—n<|a|<N Zoxeplal

n

_2'

NI

We obtain finally
P é—n 1
enielip) <o+ o [ bl dr)

where C is a constant depending only on the regularity and the dimension. We remark that

d—n _6 3
2 =272~}

for n > 3 and § < 1. The result then follows using the bootstrap assumptions (73) and integrating in p. [

4E6. L'-estimates for the transport equation. In the remainder of the article, we will use the notation

Elg](p) = / 11(&) diy

0

for any regular distribution function g.

Lemma 4.20. Let h be a regular distribution function for thelmassive case in the sense of Section 2E.
Let g be a regular solution to Tgg = v°h, with v° = (1 + |v|?)2, defined on Upe[l,P] Hp, xR?, for some
P > 1. Then, forall p € [1, P],

p 1
f xl(|g|)dqu—/ il dum, < [ f / (v°|h|+—0|axo¢g|+|T1(¢)g|)dvduH,;dpﬁ ©7)
H, H, 1 Hp/ v %

Proof. One proves first that

/prl(g)duﬂg / x1(8) dum, + //,/U(OH( 0,00 — (n+1)T1(¢)))dvd,LH5dpQ
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since by integration by parts

. . -
/(T1(¢)Ul+V’¢)av"gdvz_/g((n+1)T1(¢)_ );Od))dv,

This establishes the lemma in the case g > 0. As in the proof of Lemma 2.18, the conclusion in the

general case follows after regularization of the absolute value. O

For any multi-index «, let us now introduce the auxiliary function g%:

g =2N- D a4 Z"DZP(f). (98)

[yI+1BI<|al+1

1<|B]

1<|y|<N-"42
where the ¢g, are as in the statement of Lemma 4.11. One can view g% as a renormalization of Z “().
The extra terms in the definition of g% will allow us to absorb certain source terms in the equation satisfied
by T, ¢[Z %(f)] (see Lemma 4.11) which cannot be estimated adequately because they carry too much
O_weight, leading either to a z-loss (see Remark 4.16) or to a v°-loss.

To perform L!-estimates on Z “(f), we therefore proceed as follows:

v

o We derive the equations satisfied by the g* and then use them to obtain L!-estimates for the g

e We then prove the same L!-estimates for (v°)2g® with |a| < L%J to take into account that the
lower derivatives of f are weighted by (v°)? in the Ex[f] norm (see the definition of the norm in
Section 4D).

e Finally, the L! estimates on g% are then transformed into L !-estimates on VA (f) using pointwise
estimates on ZY (¢) for y sufficiently small.

We start by deriving the equations for the g%

Lemma 4.21. For any multi-index a, g% satisfies the equation

A~ 1 ~
Tog"= Y. ap 22PN+ Y Gp e 2V @2 f
ly|+1B1<|el+1 ly|+1Bl<|a|+1
ly|=1,[81=1 0<o=n,1<(B[<|c|
ly|>N-"42
+ Y g @Z9ZP - > Tylap)ZV(9)ZPf
lyl+|8|=l«| ly|+I8|=|al+1
1<|B|

1<|ly|l<N-"%2

- ¥ q/syZV(q»( S TZ e 2°(f)

ly|+B81<|al+1 k| +lo|<|B|+1
1<|B| 1<lk|, 1<|o|<|B]
1<|ly|<N-"%2 1 .
+ > 5 Peodx0 220 f
lk|+lo|<|B|+1

0O<w=n,1<|o|<|B]
+ Z rKUTl(ZK¢)ZUf)-

lic|+lol=IB]
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Proof. This formula is a direct consequence of the product rule and a double application of Lemma4.11. [
Based on Lemma 4.21, we now proceed to the estimates on g:

Lemma 4.22. Assume that § = 8%, and let o be a multi-index such that |o| > I_%J + 1. Then, g% satisfies,
forall p €1, P], 1
1/2 1/4
Ellg*[1(p) = (1+ Ced)eCe “ep ",
where C is a constant depending only on the regularity and the dimension. If, furthermore n > 4, then &
can be vanishing.

Proof. Applying Lemmata 4.20 and 4.21, we obtain L! estimates for g% provided we can control the
source terms. The worse terms that have to be estimated are integrals in p of quantities of the forms

fH/v"qﬂy|azy¢||2ﬂf|dvdqu for [yl > N-"F2 Bl < N1yl (©99)
PR
5 2
/[|T¢<qﬂy)||zy¢||zﬂf|dvd;mp for [yl < N-"F2 g < N1yl (100
//v|qﬁqu||zy¢||82“¢||zaf|dvduHﬂ for [y, Il < N="F2 o] < N+1Jc]. (101)
n+2

/ /v 148, dx0|1Z7B110Z50112° £| dv dpgy, for [yl Je|> N="F2 o] < N+1—[|. (102)
H,Jv

The other error terms are easier to handle, so, as an illustration, we will only give details below for the
extra error terms

1
[ [ ahstletdv dun, (103)

Hy,Jv U
| [ 1molie®) av i, (104)

H,Jv
We deal first with equation (99). To this end, recall that
|q/3y| St
Furthermore, since
18] < n—|—2 L%J —n since N >3n+4,

the Klainerman—Sobolev estimates of Theorem 8 on page 1564 can be applied, because the bootstrap
assumption (74) is satisfied. Note that the theorem is applied estimating by the low-order part of the
energy, which allows for the absorption of the additional v°, as pointed out in Remark 4.4:

/ [ W5, 1827 31128 f | dv dupr, < / f V011027 1128 f| dv dug,
H, Jv H,Jv

S 1 1
gp 1 \2 p 2
< Y (2) 19z7¢1a
”/Hp =l (p) (I) 0270l duer,

1
3 53 ( (% 322nn-1 .\ < .3 541-2
<Sez2p’T2 t r"tdr) <ezp 2,
0
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We now deal with (100). To this end, we notice that since |d¢| decays faster than 1/¢, we have
Ty (qpy)] < 0°.

Using Lemma 4.14 and the bootstrap assumption (73), we obtain

/ / To(ap 1273128 f | dv dupr, < / / 27110028 | dv dug,
Hp v Hp v

b

1
£2 [ n
sf L (2P f ) dum, S 30015,
H, t2 P

We have in the course of the estimate used Remark 2.12.
Consider now the term (101) and recall that

|QﬂVQKU|§t2-
Assume first that |k| < N — %(n 4+ 2). Using Lemma 4.14 and the bootstrap assumption (73), we obtain

~ ¢ ~
[ [ sl ol0ze o127 flavann, s [ 25— 202 £ du,
»Ju

H, (2 pt2

<.£ 4—n 20 d

< " x1(12° f) dug,
p JH,

2p8+3 n

We have in the course of the estimate used Remark 2.12. Now, if |x| > N — % (n+2), then |o| < %(n +2) <
L%J —n since N > 3n 4 4.
Thus,

1 8 1 1
~ ezpep’ [t \%2[(p\?
[ [asacalizroloz=o112° flavann, < [ 2L (L) (2) 2= @lan,
o J

H, t2 t"

2 5 P
(/Hp%azwwﬁdup) (/Hpt%dup)

The term (102) can be estimated similarly since

lo] < n;—Z < L%J —n since N > 3n + 4.

Finally, for the error terms (103) and (104), we apply Proposition 4.12 and Remark 2.12:

/ f—|a,¢||g v, <
&

/ Ty (#)g%] dv dur, < [
HyJv H, pt2~

5+

D=

3
Sep

™
m\: [N

Eflg*11(p).

1

—xl(lg D(p)dp < p—[E[Ig 1(0)-

D=
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After integration in p, we then obtain that g% satisfies the integral inequality

1
2

P4 14
[E[Ig"‘I](/O)—E[Ig"‘ll(l)5/1 62671 dp’+/1 Ellg*[1(0") dp’

n
p'2

3 1

&2 b g2

58+C(7p8 + / —rEllg*(1(e) dp/),
1 p'2

and thus,
P g

1
2
T Ellg*1(p") dp’

o

o < § é
tls ) <o (1405 ) [

for some constant C depending only on the dimension and the regularity. Gronwall’s lemma provides
1
€2 P dp
Ellg®[)(p) < ep” (1 + C—) -exp(Csi [ £ );
8 1 p/ 2

.. 1 . ~
that is, if § = ¢4, there exists a constant C such that

Ellg*](p) < (1 + 68%)6551/2&081/4. .

We then consider the lower-order derivatives of f, particularly since these low derivatives of f are

weighted in v in the energy:

Lemma 4.23. Assume § = 8%, and let o be a multi-index such that |a| < L%J Then, (vo)zg“ satisfies,
forall p €1, P],

E1 ()% [](p) = (1 + Ce)eC e,
where C is a constant depending only on the regularity and the dimension. If, furthermore n > 4, then §
can be vanishing.

Proof. Let us compute first T ((v°)?):
ITs((0°))] = 20°Tp(0%)] = [20° (V¢ + T1($)v") 3,0 v°| = [2((v°)* T1() = v°009) | £ | (v°)* 9.

Using Proposition 4.12, one consequently obtains
1

|Tp(v*)?)] < (%)

pra=t
with (v°)?g? satisfying the equation
Tp((v°)%g%) = (v°)*Ty(g%) + Ty ((v°)*)g*.

Furthermore, since || < %N , the source terms of the equation satisfied by g% (see Lemma 4.21) are
only of the forms 0ZY or Z7 ¢ with

vi<lel<| S| <N -"E2 since Nzn+2.

As a consequence, for low derivatives acting on f, all the terms containing ¢ can be estimated pointwise.
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The terms to be considered separately in this context are the same as in the proof of Lemma 4.22.
The only difference is the term of (99), which is absent, since only low derivatives of ¢ appear in the

expression of g% The estimates which one obtains are listed below. The arguments to perform the
estimates are the same as above:

D=

[ /|p§’3||aizy¢|(vo)2|2ﬂf|d”d“Hp5/ = 1Xl((vo)zliﬂfl)dﬂHps8%P8+1_%,
Hp v Hp ptj_

1
A g2p t 5 3 _zn
/I:I/|T¢(q3y)||Zy¢|(vo)2|Zﬂf|dvd/LHp§/H t—%-;xl((v")zlzﬂfl)dw,,s82p3+1 2,
bV

0

fH f Wlas, 4ol 127811925 6| 02 |2° fldvdus,

pY U 1 1

&2 e2

< / 220 2 -—xl((v") 2B ) dur, < 2053,
H, 12 pt2”

1
1 £2

[ [ L 1061002 1g% dvdpn, < S E[(0°2127]] (o).
H,JvV p2

/ [ T(v*)?)|¢®| dvdpn, < / e —xl((v") g |)dqu<—[E[(v°) 8%
H,Jv H, pt2~

Altogether (v°)2g? satisfies the integral inequality

0N\2 o 0\2 o p3/8+1—'l / p 0\2) -« / ’
E[] (0°)%¢%[](0) — E[| (°)2g |](1)s/1 630514 dp +/1 E[(v*)?15%]](¢") dp.

The conclusion is obtained in a similar fashion as in the end of the proof of Lemma 4.22. O

Proposition 4.24. Assume § = e1. For all o €[1, P], we have

e if n>4,
1 12 Gel/4
(1+Ce#)eCe " gp
NIf1p) = 1 :
1-Ce2
e andif n =4,
1 1/2 581/4
(14 Cex)eCe ' gp
~NIUflp) = :

l—Cs%

where C is a constant depending on the dimension and the regularity, and C=0whenn>4andC =1
when n = 4. In particular, for & small enough, in dimension n > 4, forall p € [1, P],

En[f1(p) =

89

[SI[W)

and, in dimension 4,

NIf1p) < 2ept



1592 DAVID FAJMAN, JEREMIE JOUDIOUX AND JACQUES SMULEVICI
Proof. Recall the definition of g*:

g =2%%— Y g0 1 1.x)27¢ ZPf.
lyI+IBl=|al+1
1<|B|
1<|y|<N-1%2

By the second triangular inequality, we immediately have

’

£10%)75°) = 1007 2% 1] - |

> q,sy(v"/v‘lt,x)ZV«;s(v")PZﬂfH
YI+1Bl<lerl+1

1<iB|
1<|ly|<N-242

so that, using Lemma 4.14,

~ C ~
HICHLVATIENE Y [EHr PP 2Py
yI+IBI<lal+1 r=
1<18|
1<|y|<N-"42

5> 1 5_n ~
E[|)PZof (|- Ce2p?™2 Y E[|0)?ZPf|] <E[|0*)Pg"]
ly|+1Bl<|ee|+1
1<|B|
1<|y|<N-1%2

] <E[| ")),

for some constants C.

We now split the sum above between |8| = || and |B| < |¢| and sum over the multi-indices || < N,
taking p =2 for |a| < L%J and p = 0 otherwise to build the energy E n[f]. One gets, using the bootstrap
assumptions (74), as well as Lemmata 4.22 and 4.23, for all p in [1, P],

(S

(1—CeHENLF1(p) < (1 + Ceb)eCo? epf 4 Ced pbt2-4,

where C is a constant (possibly different from the one above) depending only on the dimension and the
regularity. Note finally that the p-loss is present only in dimension 4.
As a consequence, for all p in [1, P], if n > 4,

=

ep®

b}

<1+ ési)eé‘?

En[f1(p) = =
—Ce2

and, if n = 4,
-1 =1
< (14 Ce#)eCe2gpd
En[f1(p) = 1 : O
1-Ceg2

4E7. L?-estimates for the transport equation. Consider here the vector X defined by

X=2%f... 2%f) with|ay|> L%J —n+1and jag| = N, (105)
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where the multi-index o goes over all the multi-indices of length larger than L%J —n + 1. Using the
same notation, we introduce the vector G”:

G = (g*,...,g%) with |a| > L%J —n+1and |ag| = N,

where g% has been defined by equation (98). Consider finally the vector H defined by

H =02 f,... 0%2% ) with Joa| = 0 and Jag| < | ¥ | .

In a similar fashion as above, let us now consider the vector G defined by
G =%, ... v%%) with |o;| = 0 and log| < L%J —n.

In the following, we will denote by | A|oo the supremum over all the components of a vector or matrix A.
Recall that, if A and B are two matrices, then,

|AB oo < |Aloo|Bloo-
Throughout this section, an inequality of the form

4] <

1—e2
appears often for some quantity A. Since we have assumed that

=

€2 =<

’

N|—=

|A| can be bounded by 2, and we can ignore the dependency on the upper bound when 1 — ez appears in
the denominator. We can then write
|A] < 1.

In the same spirit, ¢€ V¥ is treated as a constant.
The relation between the vectors X, H, Gh, G! is now stated in the following lemma:

Lemma 4.25. Assume that ¢ is sufficiently small. Then, the following relations between Gh G H,X
hold:

(1) There exists a square matrix Al such that
e G'=H-A'H,

o A satisfies
1
&g2p

4 oo S 57
t

NS

e if e is small enough, then 1 — Al is invertible, and
[(1-4D e < 1.

(2) There exist a square matrix A" and a rectangular matrix A" such that
e G"=X-AX—-A"H,
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o (A') and (A") satisfy
1 1
’ e2p e2p

and Ao < ,
| 1/|OO vot%_l

e if ¢ is small enough, then 1 — A’ is invertible, and
[(1-4) e S 1.

Proof. The proof of the algebraic relations between G!, G X, and H is a direct consequence of
the definition of g%, as stated in equation (98). The components of A are of the form gg, Z”¢ with
lyl < N —|5]—1 (see Lemma 4.11 for the definition of ¢g,). Since gg, < 1, the decay estimates
for Z¥¢ (see Lemma 4.14), as well as the bootstrap assumptions (73), provide the estimates on the
components of Al, A’ and A”. Standard algebraic manipulations ensure the invertibility of the square

matrices 1 — A’ and 1 — A’ and

|

1
Ao S ——. [Alo0 S —
1—¢2 1—¢e2

Lemma 4.26. The commutator relation of Lemma 4.21 can be rewritten as
T,G" + AX = BH,
where:

e A = (4; ) is square matrix, depending on (t, x, v), whose components can be bounded by

1l 9 1 1l 9 0
— £2v _ £2 - E2V7p - EV
|Aij| < e 4| S -5 T2 O |Aij| < T o 4| £ 5=
p vep

in particular, for any regular distribution function g,

1
- £2
/ /|Aijg|dvd/'LHpSn—_1/ xi(ghdum,.
Hy Jv p2" ! Ju,

e B is rectangular matrix, depending on (¢, x,v), whose components can be bounded by

— . 3
|Bij| Stl iyl with | fijlz2q,) S €.

Proof. The proof of this lemma consists essentially in rearranging the terms of the commutator formula
stated in Lemma 4.21 and in the relation

Ty(0°) = v*(T1($) — 0:9).
which can be bounded by means of Lemma 4.14 by

0y2 .1
vY)“e2
|Ts(0°)] < wres
ti_lp

Recall furthermore that, if Z# f can be estimated pointwise, then dZ" ¢ should be estimated in energy, as
explained in the proof of Lemma 4.22. The estimates which then follow from splitting are obtained much
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as in the proof of Lemma 4.22. To understand the components of the matrices A and B, and the related
estimates, we finally provide the following examples:

e The matrix A contains the terms (here in absolute value)

10
g2V n+2
gy TH(Z7 ) S s forly| <N - "E2,
pt2 2
1
L s €2 n+2
— 4 < <N —
’vopyﬂas(z ¢) ~v0pt%_2 fOI'|'}/|_N 2 s
e20%p +2
n
Ty (apy 27 )| < e for [y[. [k =N ===,
0
ev n+2
48yae0 27 $TI(Z )| S s forlyl el < N =52,

e The matrix B contains the terms (here in absolute value)

n+2
2 9

1 i
ECIﬁyTl(nyﬁ) with |y| > N —
where |gg,| S 1. and [|(0)) T TU(ZY )17 ) S & O

Consider now the case when the operator Ty acts on the vector G

Lemma 4.27. There exists a square matrix A such that
T,G' = AG.
The components (4; ) of the matrix A satisfy

1
51,0

N £2v ~ &

|A;j| < i O |A;j| < 20y 32

D=

D=

<
e

>

™

<

A~ &
or |A,'j| <

in particular, for any regular distribution function g,

(STl

&

[ [1Agetavann, <= [ s dun,
H, Jv P2 H,

Proof. This equation essentially relies on the commutator formula of Lemma 4.21. Note that for this

formula, since « is very low, the first term of the right-hand side of the commutator formula

DT AT VAL VAL €D
lyl+|8|<|al+1

ly|=1,]8]=1
lyI=N—[n/2]

does not appear in the formula. Following the arguments of Lemma 4.23, in the situation when the
number of derivatives is low (smaller than L%J — n), the derivatives of the wave equation can all be
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estimated pointwise. Proposition 4.12 and Lemma 4.14 provide a relation of the form
T,G' = A'H,

where A’ satisfies the same properties as A in Lemma 4.26. Finally, we use the relation between G!
and H stated in Lemma 4.25. O

Lemma 4.28. There exists a square matrix A and a rectangular matrix B satisfying

* A = (A;j) is square matrix, depending on (t, x,v) whose components can be bounded by

0 Lo 0
v 1 e2v°p
or |Aijj|<e2-——— or |Aii| < or |Aji|Ze

D=

1
|Al-j|§82. % .[11__3’

in particular, for any regular distribution function g,

1 1
[ [1aygiavdun, < et [ debann,
Hy Jv p2 H,

e B is a rectangular matrix, depending on (t, x, v) whose components can be bounded by

. 1
By Stlfij| - with || fijl 22,y S €2

such that the vector G" satisfies the equation
T,G"+ AG" = BG'.

Proof. The proof relies on the combination of Lemmata 4.25, 4.26, and 4.27. Assuming ¢ small enough
that the matrices 1 — A and 1 — A’ are invertible, and substituting the expressions of X and H into the
functions G’ and G' in the equation satisfied by G” stated in Lemma 4.26, one obtains the equation

T,Gh+4-1-4)1.Gh=B-1-4)"'.G'+4.-1-4)".4".G.

Since the components of the matrices (1 — A’)~! and (1 — A)~! are both bounded by 1/(1 — ¢), the
components of the matrices A - (1 — A’)~! and B - (1 — A)~! satisfy the same properties as the A and B,
up to constant 1/(1 —¢). We finally consider C = A -(1—A’)"!- A”, whose components can be bounded
by means of Lemma 4.14, as follows (we remind the reader that A” contains a (vO)_l):

1
e2p

=
D=
D=
(Sl
(Sl
(Sl
N
™
D=

e & e € e e €
Cil S —— —7 o o Gyl S——1 —55 T o |CylS——
J 1 n_1 n J 1 n_o n J 1 n—3 n
1—g2 pt2 t2 1—g2 pt2 t2 1—g2 ! t2
One now easily notices that they can all be bounded by terms of the form
1
. £2
ICijl Stl fij| with || fijllL2m,) < . O
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Decomposition of the solution. We consider now the set of equations of the form
T4G" + AG" = BG',  with initial data G*(p=1), (106)
where all matrices are as above. To obtain estimates on the solution G*, we split it into two parts
G" = G + Ghom, (107)
where Ghom and G are respective solutions to the Cauchy problems with initial data on the hyperboloid H;:
T Ghom + AGhom = 0 with Gpom = G, (108)
T4G +AG = BG' with G =0. (109)
We proceed by evaluating both components individually.
Homogeneous part. Commuting equation (108) n-times with the vector field Z yields
Ty(Z%Ghom) = —Z*(AGhom) + [Tg. Z*]Ghom (110)

for |a| <n. Applying estimate (97) directly to this equation would yield problematic terms in the estimate
for the same reason as discussed after (98). As before, we introduce an auxiliary function gf = analogous
to that defined in (97). Applying estimate (97) to the transport equation of gp  yields

Ellg® . 1(p) < &(1 + Ce)eCVe (111)

for |a| < n. In turn, for Gpom We obtain, for n > 4,

: 1
A~ e(1+ Ce2)e€e?
S E[12%Groml] < SLECEET

1—¢2

loe|<n
and, if n = 4,
. 1
~ e(1 4 Ce2)eCe? pb
> El1Z% Groml] < —r

1—e2

loe|<m

where the constant C does depend only on the dimension and the regularity M.
This yields
e(1+ Ce)eC?

1 n>4,
1—¢2
[Ghomllp,n(p) < (112)
e(1+ Ce)eCepl
; n==4.
1—e¢2

In combination with the Klainerman—Sobolev estimate (42) this implies the following lemma.
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Lemma 4.29. The following estimate holds:

1
(1 + Ce2)eCe?

n>4

dv 14+¢)» ’
[ (13)

veR” e(l+Ced)eCpp

(1+1)n ’

where the constant C does depend only on the dimension and the regularity N.

Inhomogeneous part. Before giving the full proof of the actual L?-decay estimates for the inhomogeneous
part of G" letus explain the main ideas on a simple model problem. Assume that 7 is a transport operator
such as the relativistic transport operator or even just the classical one and that f is a function of (¢, x, v)
satisfying
T(f)=nheg.

where h = h(t, x) is uniformly bounded in L)zc and such that g is itself a solution to the free transport
equation T (g) = 0 with g regular enough that L }C’v—bounds hold for g and decay estimates similar to
our Klainerman—Sobolev inequality can be applied for the velocity averages of g. The aim is to prove
L2-decay estimates on [, 1f1dv, the difficulty being that / has very little regularity so that we cannot

commute the equation. Instead, note that, by uniqueness, f = gH, where H is the solution to the
inhomogeneous transport equation T (H ) = h with zero data. Indeed,

T(gH)=T(g)H +gT(H)=gh,

since T (g) = 0. Now,

1 1 1
2 2 2
]ngdv (/ |g|dv) (/ |g|H2dv) < H (/ |g|dv) /|g|H2dv
v v v L2 v v

Since we have assumed g to solve the free transport equations and to be as regular as needed, we

2
S
L3 L}

L

know that we have some decay for H ( /, L lgld v)z H oo~ Thus, it remains only to prove boundedness for
H /, L gl H 2 dv H Ll This can be obtained using again the transport equation for gH and the associated
approximate conservation laws. Indeed, we have

T(gH?) =2ghH,

and thus, we need to estimate an integral of the form [, . , |ghH|dt dx dv. This is done as follows. First,

/ |th|dtdxdv=// 2|2 |h||g|2 H dx dv dt
t,x,v tJx,v

1 1
2 2
s/(/ |g||h|2dxdv) (/ Ingzdxdv) d.
t X,V X,V
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1
It follows that, if one can obtain enough decay for (/. o lel(x, v)|h|?(x)dx d v)?2, then the estimate can
close via a Gronwall-type inequality. For the decay estimate, simply note again that

/gdv
v

This concludes the discussion of the estimates for the model problem. To estimate the inhomogeneous

2
N 1A ¢, )72 -

/ g1t x. ) [Pt x) dx v
X,V

LY

part of G" we will essentially follow this strategy except that

e we need to work with systems;

* the operator T needs to be replaced by Ty (or rather Ty + A);

e the matrix B replacing / is not uniformly bounded in L2 (there is a ¢-loss);

e the vector replacing g does not quite satisfy a homogeneous transport equation;

e and finally, in all steps, we need to keep track of the exact decay rates in p to make sure the time
integrals converge.

To perform the estimates on G, we first notice the following useful decomposition. Let K be the
matrix solution to the equation

T,K+AK + KA =B, with K|g, =0. (114)
Then, an immediate calculation proves that the vector K G! satisfies the equation
Ts(KG')+ A(KG') = BG!, with (KG')|, =0.
By uniqueness of solutions to the Cauchy problem and (109), we obtain
G=KG (115)
Before performing the estimates on G, let us remind that

* using the bootstrap assumption (74) and Theorem 8 on page 1564, the elements of the vector G! can
be estimated pointwise, and, by Lemma 4.27,

/ G oo dv < 61577,
v
« the components of the source terms in the equation satisfied by K can be estimated in L?(H ) (see
Lemma 4.28).
Following the strategy described in the Introduction, we introduce the scalar function
|KKGlow= Y |KEKEGL),
o, B,k 1

where Kg , K, are the components of the matrix K and GL are the components of the vector G!, and
where the sum is taken over all possible combinations of two elements of K and G'. One furthermore
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easily checks that each element of this sum satisfies the equation
Ty(KEKEG!) = (AGKE + K§ AD)KS G, + KE(ATKE + K A%)G! + KEKSAS,GL (116)
— (B§ K} + K§ BS)G},. (117)
As a consequence, we have:
Lemma 4.30. Assume § = e4. The function | KKG |~ satisfies
e forn >4, forall pin|l, P],

I\)\w

E[|KKG|o](p) S &

e forn =4, forall pin |1, P],
1
E[[KKG|oo)(p) < ep®"

Proof. The right-hand side of (116) can easily be estimated, using the properties of the matrices A and A
stated in Lemmata 4.28 and 4.27, by

/H 01(|(AGKE + K A% KEG!, + KB (AT KS + KSA%)G!, + KEKSA%,GL ) dpn,
’ Ve
"

1(0).

Furthermore, by the Cauchy—Schwarz inequality, as well as the property of the matrix B stated in
Lemma 4.28, one gets, when estimating (117):

1 1
/(}(B;‘;‘Ki +KEBGL]) dv S [Bloox1 (1G') ) 11 (KKGoo)
v 1

£2 1
< |Bloo 11(|KKG )2,

n_3§g
1272

+2—n

/ /(|(B§‘K§+KB }dvdugpiel,o 2
H, Jv +2

s B||L2(Hp)([E[|KKG|ool<p))%

(ENKKG o) (0))*.
As a consequence | KKG | satisfies, for all p € [1, P], the integral inequality

[E[|KKG|OO](p)s1 f VEEKKG oo)(0) + o9/ 31 (E KK G loo) () dpf

S ep

n n 1
< ,nf HIKKGool(0) +¢3p+4% e o4~ (I KK G ool () dp
1 p'2
3
g2 _n P &
Su 5 8(1—03+2 2)+/ %E[IKKGIOO](p’)dp’-
32— 1 op'

Assume now n > 4. Then, Gronwall’s inequality implies immediately, for all p in [1, P],
EIKKGloo)(p) S €67 S 62

for some constant C, depending only on » and N.
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In the case n = 4, the integral inequality becomes

EIKKGlol(p) < 5 +/ VEHIKKG o0)(0') dp. (118)

To perform the estimates in this case, we make the bootstrap assumption: let P’ < P be the maximal P
such that, for all p in [1, P'],
E[KKGoo)(p) < Cep® ", (119)

where C depends only on the dimension 7 and the regularity N. Inserting the bootstrap assumption (119)
in (118), one gets, for § = ei,
EIKKGol(p) S &' Tap" "

for all p < P’. The bootstrap assumption (119) can then be improved for ¢ small enough. O
We can finally state the L?-estimates for f:

Proposition 4.31. Assume that ¢ is sufficiently small. Under the bootstrap assumptions (73) and (74), the
following estimate holds for all multi-indices o such that L%J —n+1<|a|<N:

2
/ ! / 29 £1 D0 dup, < o2,
H, P\Jv v ?

Proof. We first notice that, by Lemma 4.25, for & such that & > +1=]a| =N,

(o )dwfv)
1—82 (/Hp ([ "] ) dMH”) | 1
<O s o) )+ (], 51158 o)

where G and G are the components of Gnom and G respectively. The first term of this sum is

estimated by means of Lemma 4.29:

t dv\? 2 sen [ [ y"1 2
G d <ep' 2 / —d). (120)
(/am)(/' " lvo) MH”) P (0 (2

The second term of the sum is estimated as follows: Let us denote by G* the components of the vector G;
we have

t dv\? 3 t dv\? >
- G* =) d < - KkGL 1 =) a
(/pr(/v| |v°) MH”) N(/pr(/v| * "'v") MH")
t dv dv
< - GL| = KNGl 2 ) d 121
N§/pr(/v| ) ([ 108764155 ) dm,. 20
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where the last sum over k is taken of all the components of K and G’ and is consequently finite. In
combination with the pointwise decay for G'! and the estimate in Lemma 4.30, this implies

! dv\?
/H 5( / |G°‘|v—§) dpn, < p*" e (122)
0 v

In combination with the bound on the homogeneous part above, this yields the claim. O

Appendix A: Distribution functions for massive particles with compact support in x

Theorem 2, on page 1543, and Theorem 5, on page 1547, require that the initial data be given on the
initial hyperboloid H; instead of a more traditional ¢ = const hypersurface. In this appendix, we explain
how we can go from the ¢+ = 0 hypersurface to H;, provided the initial data on t = 0 has sufficient decay
in x. For simplicity, consider the homogeneous massive transport equation with initial data fy given at
t = 0. Assume that the support of fp is contained in the ball of radius R. Without loss of generality, we

may translate the problem in time, so that we now consider the problem with data at time t = ~/R% + 1:
Tn(f)=0, (123)
ft=+vVR2+1)= f. (124)

Now, by the finite speed of propagation, the solution to this problem vanishes outside of the cone
C(R) = {(t,r,w) ‘ f—r=vVR2+1—-R, weS" 1 t>+VR2+ 1}
u{(t,r.o) [t+r=vR2+1+R, 0eS" " 1 <VR2+1}

depicted in Figure 3.

A\
2\
N
N\

cR) /| TH| (R

Figure 3. The trace of a distribution function with compact support on Hj.
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Thus, the trace of f on H;p is compactly supported and as a consequence, the norm appearing on
the right-hand side of Theorem 2 is finite. Recall also that Theorem 2 gives pointwise estimates for
t > 4/1+|x|?2. On the other hand, the region ¢ < /1 + |x|? lies in the exterior of C(R) and hence
f(t,x) =0 for t < y/1+ |x|%2. Thus, for compactly supported initial data given on some ¢ = const
hypersurfaces, we can apply Theorem 2 and obtain a 1/¢" decay uniformly in x.

Finally, let us mention that the above arguments can be easily adapted to the nonlinear massive Vlasov—
Nordstrom system for small initial data. Thus, once again, the use of hyperboloids in Theorem 5 is merely
technical.

Appendix B: Integral estimate
Lemma B.1. Let n be a positive integer. Consider o, B such that
a+p>n.

There exists a constant Cy, g , such that the following estimate is true: for all't > 0, if B # 1, then

o (I+t4+r*(1+|t—r|)f ~ tethmn '

If B =1, then

*° rmldr Can
= — (1 +log(z +1)).
/0 (1+t+r)“(1+|t—r|)_t“+1_”( +log(t +1))

Proof. Let

o0 " ldr
4 :/0 (1 +re(1+]—r)f
First, let us make the change of variable
r=ty.
This gives

_ 1 /oo yn—l dy
tethon oo (1t + 141/t +[1-yDE
The first part of the denominator is bounded below by (1 + y)%, so that

0o n—1
- / &y .
tethon Jo (14 y)*(1/t +]1-y])P
We then cut the integral in two at the value r = 2. Let us thus introduce the constants Ky g , by

o0 yn—ldy
K, = .
@b /2 (1+y)2(y—1)B

A can then be bounded by

1 1 dy
A<——|K +2"/ —_— ).
—toz+ﬂ—n( o.p.n 0 (1/t+1_y)ﬂ)
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The remaining integral can be computed: for § # 1,

1 B—1
/ dy _ 1! (ﬂs—l 1 ) = ! (1 N ) <Cptf,
o (I/t+1—y)F p—1 1/t 4+ 1)1 1-8 1+ 1A-1

If B =1, we get

! d
Y
———  =log(l +1).
/0 (1/t+1-y)
We finally get the announced result: if 8 # 1, then
o] n—1
/ r"ldr - CoB.n (1+[/3_1).
o (I+t+r*(l+|t—r)f ~ rath-n

If B =1, then

*° r"ldr Cypon
< GBI (| L og(r +1)). 0
/0 U414t = arion (I Hlog+ 1)

Appendix C: Geometry of Vlasov fields
In this section we present the necessary elements to understand the underlying geometry of Vlasov fields
on an arbitrary curved manifold. In particular, we will present, with some amount of detail,

e the geometry of the tangent bundle;

» the notion of complete lift, which is an essential tool to understand the commutators with the Vlasov

field;

e how the ambient geometry of the tangent bundle can be reduced to the mass shell.

Most of the calculations will be left to the reader.

The reader who wishes to know more about the geometry of the tangent bundle can refer to the book
by Crampin and Pirani [1986]. This section has also been greatly inspired by the work of Sarbach et al.
[2014a; 2014b].

Throughout this section, let M be an (n+1)-dimensional smooth, oriented manifold, endowed with a
Lorentzian metric g, of signature (—, 4+, 4+, +). The Levi-Civita connection is denoted by V. The tangent
bundle of M is denoted by 7M. We furthermore assume that M is time oriented: there exists a uniformly
timelike vector field T chosen, by convention, to be future pointing.

Geometry of the tangent bundle. This section is a reminder of some elementary geometric facts.

Definition C.1. The tangent bundle of M is the disjoint union of the tangent plane to M :

™ = |_| T M.
xXeEM

TM is a vector bundle of dimension 21 + 2 over M, with fibre R?*1, and projection given by

m:V=kx,v)eTM—xeM.
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Consider a chart (U, x%). One defines on the open set T U the system of coordinates
(x% v* = dx%).
This system of coordinates provides a local trivialization of TM by
VeTM — (z(V),v*(V)) e U x R"t1,

In these coordinates, the metric reads

g= gaﬂv“ ® Uﬂ.

We now consider the tangent space to the tangent space of M, denoted by T TM. If V = (x, v) is a point
of TM, the tangent space to 7'M at the point (x, v), denoted by T(y )T M, is generated by the vectors

9 9
ax%’ Jue |’

Let (x,v) bein TM. If t — o () is a curve on M, with 6(0) = x, 6(0) = v, the natural lift of o is the
curve of TM defined by
o =t (o(t),6@1)).

As a consequence, any curve in M can be obtained by projection on M of a curve in 7M. We consequently
define:

Definition C.2 (vertical space). The push forward m, of the mapping = defines, for (x,v) € TM, a
surjective mapping T(x ,)TM into Tx M. The kernel of m, : T( ,)TM — M is the horizontal space
Vix,n)M at (x,v). This is a subspace of dimension n + 1 of T(, ,)TM. In a system of coordinates

[l

If t — o(¢) is a curve on M, with 6(0) = x and 6(0) = v, the horizontal lift of ¢ is the curve of TM
defined by

(x%, v%), it is generated by

o =t (0(1), V(2)),

where V' (¢) is the vector field along the curve o obtained by the parallel transport of v along the curve o.
In the coordinates (x*, v¥), V obeys the differential equation

VIV =V¥+Tg 6P V7 =0 with V(0) =0,

where the I‘g‘y are the Christoffel symbols of the connection. The tangent vector to the curve o is given,
in the coordinates (x%, v%), at t = 0, by

. . . d d
6(0)" 55 +VH0)5 5 =6(0)" (ax_a - rg?yuy—).

X dvh
0 0
0V —— 18 v
c(0) (ax"‘ Lyyv avﬂ)

is the horizontal lift of the vector 6 (0). This definition depends only on the vector v in T M.

The vector
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Definition C.3. The horizontal space H(y ,)M at (x, v) is the subspace of T ,,)TM generated by the
horizontal vectors
e g0
ox® “Y" 9guB
It is independent of the chosen system of coordinates, and has trivial intersection with the vertical subspace
of T,y TM.
Finally, the tangent space is endowed with a metric:

Definition C.4. The Sasaki metric on the tangent bundle M is the metric of signature (27n,2) defined,
in coordinates, by

0 0
gS(eOheﬂ) = gs(w’ m) = gaﬁ,

(55 =0
Cous ——F | = L.
gS Otavﬂ

Geodesic spray, and its commutators. We now turn our attention to the lift of geodesics to the tangent
bundle.

and

Definition C.5. Let y be a geodesic with y(0) = x and y(0) = v. The vector of H(, )M obtained by
performing the horizontal lift of v, denoted by 7, is given by

0 0
— X, 0 _TB
T =v%y = (3)6"‘ Fayv 31)’3)'

This defines globally a vector field on 7'M, called the geodesic spray.

Contrary to the geodesic flow, this vector field is defined globally on the manifold. Furthermore, since
its integral curves are the natural lift of geodesics, it naturally models the behaviour of freely falling
particles in the context of general relativity.

As we have seen earlier, one key aspect of the this work relies on the commutators with the transport
operator 7' (see Section 2G2). The right tool to understand this is the notion of complete lift (see
Section 2G1). It can be introduced as follows. Consider a vector field X on M. Assume that (locally)
this vector field arises from a flow ¢’:

d¢! _ /
a0 = X(¢").

The mapping ¢’ can naturally be lifted into a mapping of TM by the formula
¢, = (¢'.de").
This immediately defines a vector field XonTM by the formula

déy _ 5
dt _X(d)*)

It is also possible to have a definition relying on Lie transport along curves.
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Definition C.6. Let X be a vector field on M. The complete lift of the vector field X on M into a vector
field X on TM is done as follows: Let p € M and consider X(p). Let y be an integral curve of X with
initial data

y(0) = p,
) = x(r(s).
N

Let v € T, M, and consider the vector field Y defined on y by Lie transporting the vector v along y. It
obeys the equation
LxY =[X,Y]=0 withY(p)=v.

This defines a curve I' = (y, Y(y)) on TM. The mapping
X:TM - TTM,
dr
(x,v) > —(0),
ds

defines a vector field on 7'M, defined as being the complete lift of X on TM.

An expression of the complete lift of the vector W = W%*0d e« in adapted coordinates is given in
[Crampin and Pirani 1986, page 330] (and on page 288 of that work for affine transformations) by

- d awe 9
W=wr— P — 125
axe TV axB aue (125)
This expression can also be written as
~ 0
W= W4 +vPVgwe —. (126)

av®
One of the main interests of the complete lift is its relation with the commutators of the geodesic spray.
It is possible to give a precise characterization of the commutators with the geodesic spray which arise
from vector fields on the base manifold; see [Crampin and Pirani 1986, Chapter 13, Section 6].

Theorem 13. A complete lift X of a vector field is a symmetry of the geodesic spray ©, i.e., commutes
with the geodesic spray
[X,T]=0,

if, and only if, the vector field X is an infinitesimal affine transformation of the corresponding affine
connection, and satisfies the equation, for all vector fields V, W,

LxVyW = V[X’V]W + Vy LxW.

In the presence of a metric, the commutator of a complete lift X , of a vector field X, can be written
explicitly; see [Sarbach and Zannias 2014b, Formula (74)].

Lemma C.7. Let X be a vector field on M. The complete lift X of X commutes with the geodesic spray ©

if , and only if,
5 d
(7. X] = v"vP [Va Vp X! = R gy X V] 5 = 0.
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Remark C.8. The equation
VavngM — Ruﬁava =0

is the equation for Jacobi fields; see [Crampin and Pirani 1986, page 340].

Geometry of the mass shell. If one considers a set of freely falling particles of given mass m, the
4-velocity of such a particle satisfies
g(v,v) = —m>

It is consequently natural to consider the subset of the tangent bundle TM defined by
P ={(x,v) € TM | gx(v,v)= —m?> v is future oriented},

called the mass shell. This set is the phase space of the considered set of particles. When the mass m is
positive, Py, is a smooth submanifold of 7M. When the mass m is vanishing, P, is no longer a smooth
submanifold because of the singularity at the tip of the vertex. If we ignore this fact, Py, is a fibre bundle
over M. The projection over M is obtained by the restriction of the canonical projection of the bundle
TM over M. The fibre at a point x is the subset of the tangent plane Tx M given by

2

{veTxM|gx(v,v)=—m", v is future oriented}.

Consider now a local chart (U, x%) on M. We have seen that this local system of coordinates gives rise
to a local chart on TM given by (T'U, x%, v¥ =dx®). This system of coordinates gives rise to a system
of coordinates (x®x%, 9 =v') on the mass shell by eliminating v° in the equation

gapv®vP = —m?. (127)

After one has chosen this system of coordinates, it is necessary to derive the relations between the partial
derivatives in the variables (x% v?), and the partial derivatives in the variables (¥ =x%, o' =v’). This is
done by a simple application of the chain rule. Since v° does depend on the metric, it is first necessary to

derive the following relations first: differentiating (127) gives

0
gxia = —ﬁﬁ—ﬁjvﬂ v?, (128)
W _ v (129)
ool Vo
where we have used the notation
Vo = gaﬁvﬂ-

Consider now a smooth function f on the tangent bundle 7M. Its restriction to the mass shell is denoted
by f. An immediate application of the chain rule brings the following relations:

_ o 5
a_f _Of o of _9f 1 dgpy g, 8f, (130)
0x®  Ox®  Ix® 9v9  Ix® 2vg Ix® ov0

of _af o af _of _wif

vt vl | 9vt a0 dvi we a0’

(131)
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The relations (130), (131) can now be used to determine which vectors are tangent to the mass shell.
We notice first that the vector fields ey, when applied to a function f, satisfy

0
) = oL =P

8f B i af 1 dgpy v -\ of
—J B _ vBuY L uBT0 4 LB 2L
( 200 9x TV et 01) Be ) 5yy0

of

2vﬂvy B“)av .

8x°‘ v Ba 81}’
A quick calculation shows, using the expression of the Christoffel symbols, that

v Fﬂ -
~ oxe @ 9! 2v0
w8 ,T7 _1 B y(agﬂy+agay_agﬁa) lagﬂy WBuY

axe 8x°‘
Ba ox axB axv 2 0x“

The expression of e, is consequently

f  df
ea(f) =525~V Thyazr =ealf).
This proves in particular that e, is tangent to the mass shell, as well as the Liouville vector field

- df S Af
T(f) = v"ea(f) = v¥ea(f) = v 525 —v* 0P Tj, 22
In dimension n, the mass shell is of dimension 2n 4 1. We have as a consequence completely characterized

the generators of the tangent plane to the mass shell, which is generated by the vectors
d
€q, W .

9

av¥

is normal, for the Sasaki metric, to the mass shell (and also tangent in the massless case). The unit normal

From this, it is easy to deduce that the vector

o

is consequently given by, for m > 0,

-1 d -1 0 1 . 9
N=—0W—=——+4+—0v'—. 132
m?2 v vy 90 + m2 v (132)
We will now discuss the conditions ensuring that a complete lift is tangent to the mass shell. The same
procedure based on equations (130), (131) can be applied to the complete lift of a vector field X:

~ 0 1 0
X IXaea—i-vﬂVﬂXl%-F—Uﬂ yVﬂXyﬂ
— X“ By, xi_2_ J (X) B,y d 1
eq + 07 Vg P + mg, Vo 350" (133)

We immediately get the following lemma:
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Lemma C.9. o [fm >0, then X is Killing if, and only if, X is tangent to Pp,.
e [f m =0, then X is conformal Killing if, and only if, X is tangent to Py.
Proof. The proof of this fact consists in noticing that
gs(N, )/(\) =v"0"V(, X,).
Then, if X is Killing in the massive case, or conformal Killing in the massless case,
gs(N.X) =0,

and then X is tangent to Py, (x).
Assume now that
gs(N, X) = v "V, X,) =0.

Consider now the symmetric 2-form V(,, X ) on the vertical space, which is endowed with the metric g;;.
Then, in the massless case, the symmetric 2-form V(MX v) vanishes on the light cone of g;; and is, as a
consequence, proportional to it:

V(MXV) = ‘Pg,uvi

i.e., X is conformal Killing. The conclusion in the massive case follows in the same way. O

Acknowledgements

We would like to thank Martin Taylor for several interesting discussions on his work on the massless
Einstein—Vlasov system. We would also like to thank Olivier Sarbach for his geometric introduction
to Vlasov fields. J. Joudioux and J. Smulevici are partially funded by ANR-12-BS01-012-01 (AARG).
J. Smulevici is also partially funded by ANR SIMI-1-003-01. D. Fajman gratefully acknowledges the travel
support by ANR-12-BS01-012-01 (AARG). The comments of the referee are gratefully acknowledged.

References

[Bardos and Degond 1985] C. Bardos and P. Degond, “Global existence for the Vlasov—Poisson equation in 3 space variables
with small initial data”, Ann. Inst. H. Poincaré Anal. Non Linéaire 2:2 (1985), 101-118. MR Zbl

[Calogero 2003] S. Calogero, “Spherically symmetric steady states of galactic dynamics in scalar gravity”, Classical Quantum
Gravity 20:9 (2003), 1729-1741. MR Zbl

[Calogero 2006] S. Calogero, “Global classical solutions to the 3D Nordstrom—Vlasov system”, Comm. Math. Phys. 266:2
(2006), 343-353. MR Zbl

[Calogero and Rein 2004] S. Calogero and G. Rein, “Global weak solutions to the Nordstrom—Vlasov system”, J. Differential
Equations 204:2 (2004), 323-338. MR Zbl

[Christodoulou 2007] D. Christodoulou, The formation of shocks in 3-dimensional fluids, European Mathematical Society,
Ziirich, 2007. MR Zbl

[Christodoulou and Klainerman 1993] D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski
space, Princeton Mathematical Series 41, Princeton University Press, 1993. MR Zbl

[Crampin and Pirani 1986] M. Crampin and F. A. E. Pirani, Applicable differential geometry, London Mathematical Society
Lecture Note Series 59, Cambridge University Press, 1986. MR Zbl


http://dx.doi.org/10.1016/S0294-1449(16)30405-X
http://dx.doi.org/10.1016/S0294-1449(16)30405-X
http://msp.org/idx/mr/794002
http://msp.org/idx/zbl/0593.35076
http://dx.doi.org/10.1088/0264-9381/20/9/310
http://msp.org/idx/mr/1981446
http://msp.org/idx/zbl/1030.83018
http://dx.doi.org/10.1007/s00220-006-0029-x
http://msp.org/idx/mr/2238881
http://msp.org/idx/zbl/1123.35080
http://dx.doi.org/10.1016/j.jde.2004.02.011
http://msp.org/idx/mr/2085540
http://msp.org/idx/zbl/1060.35027
http://dx.doi.org/10.4171/031
http://msp.org/idx/mr/2284927
http://msp.org/idx/zbl/1117.35001
http://msp.org/idx/mr/1316662
http://msp.org/idx/zbl/0827.53055
http://msp.org/idx/mr/892315
http://msp.org/idx/zbl/0606.53001

A VECTOR FIELD METHOD FOR RELATIVISTIC TRANSPORT EQUATIONS WITH APPLICATIONS 1611

[Dafermos 2006] M. Dafermos, “A note on the collapse of small data self-gravitating massless collisionless matter”, J. Hyperbolic
Differ. Equ. 3:4 (2006), 589-598. MR Zbl

[Friedrich 2004] S. Friedrich, “Global Small Solutions of the Vlasov—Nordstrom System”, preprint, 2004. arXiv

[Georgiev 1992] V. Georgiev, “Decay estimates for the Klein—-Gordon equation”, Comm. Partial Differential Equations 17:7-8
(1992), 1111-1139. MR Zbl

[Hwang et al. 2011] H.J. Hwang, A. Rendall, and J. J. L. Velazquez, “Optimal gradient estimates and asymptotic behaviour for
the Vlasov—Poisson system with small initial data”, Arch. Ration. Mech. Anal. 200:1 (2011), 313-360. MR Zbl

[Klainerman 1985a] S. Klainerman, “Global existence of small amplitude solutions to nonlinear Klein—-Gordon equations in four
space-time dimensions”, Comm. Pure Appl. Math. 38:5 (1985), 631-641. MR Zbl

[Klainerman 1985b] S. Klainerman, “Uniform decay estimates and the Lorentz invariance of the classical wave equation”,
Comm. Pure Appl. Math. 38:3 (1985), 321-332. MR Zbl

[Klainerman 1993] S. Klainerman, “Remark on the asymptotic behavior of the Klein-Gordon equation in R® 1, Comm. Pure
Appl. Math. 46:2 (1993), 137-144. MR Zbl

[Klainerman and Nicolo 2003] S. Klainerman and F. Nicolo, The evolution problem in general relativity, Progress in Mathemati-
cal Physics 25, Birkhduser, Boston, 2003. MR Zbl

[LeFloch and Ma 2016] P. G. LeFloch and Y. Ma, “The global nonlinear stability of Minkowski space for self-gravitating
massive fields”, Comm. Math. Phys. 346:2 (2016), 603-665. MR Zbl

[Lieb and Loss 1997] E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, American Mathematical Society,
Providence, RI, 1997. MR

[Lindblad and Rodnianski 2010] H. Lindblad and I. Rodnianski, “The global stability of Minkowski space-time in harmonic
gauge”, Ann. of Math. (2) 171:3 (2010), 1401-1477. MR Zbl

[Morawetz 1962] C. S. Morawetz, “The limiting amplitude principle”, Comm. Pure Appl. Math. 15 (1962), 349-361. MR Zbl

[Morawetz 1968] C. S. Morawetz, “Time decay for the nonlinear Klein—-Gordon equations”, Proc. Roy. Soc. Ser. A 306 (1968),
291-296. MR Zbl

[Pallard 2006] C. Pallard, “On global smooth solutions to the 3D Vlasov—Nordstrom system”, Ann. Inst. H. Poincaré Anal. Non
Linéaire 23:1 (2006), 85-96. MR Zbl

[Rein and Rendall 1992] G. Rein and A. D. Rendall, “Global existence of solutions of the spherically symmetric Vlasov—Einstein
system with small initial data”, Comm. Math. Phys. 150:3 (1992), 561-583. Correction in 176:2 (1996), 475-478. MR Zbl

[Ringstrom 2013] H. Ringstrom, On the topology and future stability of the universe, Oxford University Press, 2013. MR Zbl

[Sarbach and Zannias 2014a] O. Sarbach and T. Zannias, “The geometry of the tangent bundle and the relativistic kinetic theory
of gases”, Classical Quantum Gravity 31:8 (2014), art. id. 085013. Zbl

[Sarbach and Zannias 2014b] O. Sarbach and T. Zannias, “Tangent bundle formulation of a charged gas”, pp. 192-207 in Recent
developments on physics in strong gravitational fields, V: Leopoldo Garcia-Colin Mexican Meeting on Mathematical and
Experimental Physics (México City, 2013), edited by A. Macias and M. Maceda, American Institute of Physics Conference
Series 1577, AIP Publishing, Melville, NY, 2014.

[Schaeffer 2004] J. Schaeffer, “A small data theorem for collisionless plasma that includes high velocity particles”, Indiana Univ.
Math. J. 53:1 (2004), 1-34. MR Zbl

[Smulevici 2016] J. Smulevici, “Small data solutions of the Vlasov—Poisson system and the vector field method”, Ann. PDE 2:2
(2016), art. id. 11. MR

[Taylor 2017] M. Taylor, “The global nonlinear stability of Minkowski space for the massless Einstein—Vlasov system”, Ann.
PDE 3:1 (2017), art. id. 9. MR

[Villani 2010] C. Villani, “Landau damping”, lecture notes for a course given in Cotonou, Benin and in CIRM, 2010, available
at http://cedricvillani.org/wp-content/uploads/2012/08/B13.Landau.pdf.

[Wang 2015a] Q. Wang, “Global stability of Minkowski space for massive scalar fields”, talk given at the conference
"General Relativity: A celebration of the 100th anniversary", Institut Henri Poincaré, November 2015, available at https://
philippelefloch.files.wordpress.com/2015/11/2015-ihp-qianwang.pdf. Video available at https://www.youtube.com/watch?v=-
TnTHUPzVLO&feature=youtu.be.

[Wang 2015b] Q. Wang, “Lectures on nonlinear wave equations”, lecture notes, University of Oxford, 2015, available at http:/
people.maths.ox.ac.uk/wangql/Lecture_notes/nonlinear_wave_9.pdf.


http://dx.doi.org/10.1142/S0219891606000926
http://msp.org/idx/mr/2289606
http://msp.org/idx/zbl/1115.35135
http://msp.org/idx/arx/math-ph/0407023
http://dx.doi.org/10.1080/03605309208820879
http://msp.org/idx/mr/1179280
http://msp.org/idx/zbl/0767.35068
http://dx.doi.org/10.1007/s00205-011-0405-3
http://dx.doi.org/10.1007/s00205-011-0405-3
http://msp.org/idx/mr/2781595
http://msp.org/idx/zbl/1228.35252
http://dx.doi.org/10.1002/cpa.3160380512
http://dx.doi.org/10.1002/cpa.3160380512
http://msp.org/idx/mr/803252
http://msp.org/idx/zbl/0597.35100
http://dx.doi.org/10.1002/cpa.3160380305
http://msp.org/idx/mr/784477
http://msp.org/idx/zbl/0635.35059
http://dx.doi.org/10.1002/cpa.3160460202
http://msp.org/idx/mr/1199196
http://msp.org/idx/zbl/0805.35104
http://dx.doi.org/10.1007/978-1-4612-2084-8
http://msp.org/idx/mr/1946854
http://msp.org/idx/zbl/1010.83004
http://dx.doi.org/10.1007/s00220-015-2549-8
http://dx.doi.org/10.1007/s00220-015-2549-8
http://msp.org/idx/mr/3535896
http://msp.org/idx/zbl/1359.83003
http://msp.org/idx/mr/1415616
http://dx.doi.org/10.4007/annals.2010.171.1401
http://dx.doi.org/10.4007/annals.2010.171.1401
http://msp.org/idx/mr/2680391
http://msp.org/idx/zbl/1192.53066
http://dx.doi.org/10.1002/cpa.3160150303
http://msp.org/idx/mr/0151712
http://msp.org/idx/zbl/0196.41202
http://dx.doi.org/10.1098/rspa.1968.0151
http://msp.org/idx/mr/0234136
http://msp.org/idx/zbl/0157.41502
http://dx.doi.org/10.1016/j.anihpc.2005.02.001
http://msp.org/idx/mr/2194582
http://msp.org/idx/zbl/1092.85001
http://dx.doi.org/10.1007/BF02096962
http://dx.doi.org/10.1007/BF02096962
http://msp.org/idx/mr/1204320
http://msp.org/idx/zbl/0774.53056
http://dx.doi.org/10.1093/acprof:oso/9780199680290.001.0001
http://msp.org/idx/mr/3186493
http://msp.org/idx/zbl/1270.83005
http://msp.org/idx/zbl/1295.83035
http://dx.doi.org/10.1063/1.4861955
http://dx.doi.org/10.1512/iumj.2004.53.2515
http://msp.org/idx/mr/2048181
http://msp.org/idx/zbl/1059.35152
http://dx.doi.org/10.1007/s40818-016-0016-2
http://msp.org/idx/mr/3595457
http://dx.doi.org/10.1007/s40818-017-0026-8
http://msp.org/idx/mr/3629140
http://cedricvillani.org/wp-content/uploads/2012/08/B13.Landau.pdf
https://philippelefloch.files.wordpress.com/2015/11/2015-ihp-qianwang.pdf
https://www.youtube.com/watch?v=-7nTHUPzVL0&feature=youtu.be
https://www.youtube.com/watch?v=-7nTHUPzVL0&feature=youtu.be
http://people.maths.ox.ac.uk/wangq1/Lecture_notes/nonlinear_wave_9.pdf

1612 DAVID FAJMAN, JEREMIE JOUDIOUX AND JACQUES SMULEVICI

Received 28 Apr 2016. Revised 13 Apr 2017. Accepted 9 May 2017.

DAVID FAJMAN: david.fajman@univie.ac.at
Gravitational Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

JEREMIE JOUDIOUX: jeremie.joudioux@univie.ac.at
Gravitational Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

JACQUES SMULEVICI: jacques.smulevici@math.u-psud.fr
Laboratoire de Mathématiques, Université Paris-Sud 11, Bat. 425, 91405 Orsay Cedex, France

mathematical sciences publishers

:'msp


mailto:david.fajman@univie.ac.at
mailto:jeremie.joudioux@univie.ac.at
mailto:jacques.smulevici@math.u-psud.fr
http://msp.org

Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard
patrick.gerard @math.u-psud.fr
Université Paris Sud XI
Orsay, France

BOARD OF EDITORS

Nicolas Burq  Université Paris-Sud 11, France Werner Miiller ~ Universitdt Bonn, Germany
nicolas.burq@math.u-psud.fr mueller@math.uni-bonn.de
Massimiliano Berti ~ Scuola Intern. Sup. di Studi Avanzati, Italy Gilles Pisier  Texas A&M University, and Paris 6
berti @sissa.it pisier@math.tamu.edu
Sun-Yung Alice Chang  Princeton University, USA Tristan Riviere ~ETH, Switzerland
chang @math.princeton.edu riviere @math.ethz.ch
Michael Christ ~ University of California, Berkeley, USA Igor Rodnianski  Princeton University, USA
mchrist@math.berkeley.edu irod @math.princeton.edu
Charles Fefferman  Princeton University, USA Wilhelm Schlag ~ University of Chicago, USA
cf@math.princeton.edu schlag@math.uchicago.edu
Ursula Hamenstaedt ~ Universitdt Bonn, Germany Sylvia Serfaty New York University, USA
ursula@math.uni-bonn.de serfaty @cims.nyu.edu
Vaughan Jones  U.C. Berkeley & Vanderbilt University Yum-Tong Siu  Harvard University, USA
vaughan.f.jones @vanderbilt.edu siu@math.harvard.edu
Vadim Kaloshin  University of Maryland, USA Terence Tao  University of California, Los Angeles, USA
vadim.kaloshin @ gmail.com tao@math.ucla.edu
Herbert Koch  Universitit Bonn, Germany Michael E. Taylor ~ Univ. of North Carolina, Chapel Hill, USA
koch@math.uni-bonn.de met@math.unc.edu
Izabella Laba  University of British Columbia, Canada Gunther Uhlmann  University of Washington, USA
ilaba@math.ubc.ca gunther @math.washington.edu
Gilles Lebeau  Université de Nice Sophia Antipolis, France Andrds Vasy  Stanford University, USA
lebeau@unice.fr andras @math.stanford.edu
Richard B. Melrose = Massachussets Inst. of Tech., USA Dan Virgil Voiculescu  University of California, Berkeley, USA
rbm@math.mit.edu dvv@math.berkeley.edu
Frank Merle  Université de Cergy-Pontoise, France Steven Zelditch ~ Northwestern University, USA
Frank Merle @u-cergy.fr zelditch@math.northwestern.edu
William Minicozzi I Johns Hopkins University, USA Maciej Zworski  University of California, Berkeley, USA
minicozz@math.jhu.edu zworski @math.berkeley.edu

Clément Mouhot ~ Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

PRODUCTION
production @msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2017 is US $265/year for the electronic version, and $470/year (+$55, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
:- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2017 Mathematical Sciences Publishers


http://msp.org/apde
mailto:patrick.gerard@math.u-psud.fr
mailto:nicolas.burq@math.u-psud.fr
mailto:berti@sissa.it
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:vadim.kaloshin@gmail.com
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:mueller@math.uni-bonn.de
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/

ANALYSIS & PDE

Volume 10 No.7 2017

A vector field method for relativistic transport equations with applications 1539
DAVID FAJMAN, JEREMIE JOUDIOUX and JACQUES SMULEVICI

Analytic hypoellipticity for sums of squares and the Treves conjecture, 11 1613
ANTONIO BOVE and MARCO MUGHETTI

Pliability, or the Whitney extension theorem for curves in Carnot groups 1637
NICOLAS JUILLET and MARIO SIGALOTTI

Trend to equilibrium for the Becker—Doring equations: an analogue of Cercignani’s conjecture 1663
JOSE A. CANIZO, AMIT EINAV and BERTRAND LODS

The A -property of the Kolmogorov measure 1709
KAJ NYSTROM

L?-Betti numbers of rigid C*-tensor categories and discrete quantum groups 1757
DAVID KYED, SVEN RAUM, STEFAAN VAES and MATTHIAS VALVEKENS

2157-5045(2017)10:7;1-R



	1. Introduction
	2. Preliminaries
	2A. Basic notations
	2B. The relativistic transport operators
	2C. The foliations
	2D. Geometry of the hyperboloids
	2E. Regular distribution functions
	2F. The linear equations
	2G. The commutation vector fields
	2G1. Complete lifts of isometries and conformal isometries
	2G2. Commutation properties of the complete lifts

	2H. Weights preserved by the flow
	2I. Multi-index notations
	2J. Vector field identities
	2K. The particle vector field and the stress energy tensor of Vlasov fields
	2L. Commutation vector fields and energy densities
	2M. (Approximate) conservation laws for Vlasov fields

	3. The vector field method for Vlasov fields
	3A. The norms
	3B. Klainerman–Sobolev inequalities and decay estimates: massless case
	3C. Klainerman–Sobolev inequalities and decay estimates: massive case

	4. Applications to the Vlasov–Nordström system
	4A. Generalities on the Vlasov–Nordström system
	4B. The massless Vlasov–Nordström system
	4B1. Commutation formula for T_phi
	4B2. Approximate conservation law
	4B3. Massless case in dimension n >= 4
	4B4. Massless case in dimension n=3

	4C. The massive Vlasov–Nordström system
	4D. The norms
	4D1. The main result

	4E. Proof of Theorem 12
	4E1. Structure of the proof and the bootstrap assumptions
	4E2. Commutators in the massive case
	4E3. The H_rho foliation and the wave equation
	4E4. Commutation of the wave equation
	4E5. Energy estimates for the wave equation on hyperboloids
	4E6. L^1-estimates for the transport equation
	4E7. L^2-estimates for the transport equation


	Appendix A. Distribution functions for massive particles with compact support in x
	Appendix B. Integral estimate
	Appendix C. Geometry of Vlasov fields
	Acknowledgements
	References
	
	

