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ANALYTIC HYPOELLIPTICITY FOR SUMS OF SQUARES
AND THE TREVES CONJECTURE, II

ANTONIO BOVE AND MARCO MUGHETTI

We are concerned with the problem of real analytic regularity of the solutions of sums of squares with
real analytic coefficients. The Treves conjecture defines a stratification and states that an operator of this
type is analytic hypoelliptic if and only if all the strata in the stratification are symplectic manifolds.

Albano, Bove, and Mughetti (2016) produced an example where the operator has a single symplectic
stratum, according to the conjecture, but is not analytic hypoelliptic.

If the characteristic manifold has codimension 2 and if it consists of a single symplectic stratum,
defined again according to the conjecture, it has been shown that the operator is analytic hypoelliptic.

We show here that the above assertion is true only if the stratum is single, by producing an example
with two symplectic strata which is not analytic hypoelliptic.

1. Introduction

The purpose of the paper is to discuss the real analytic regularity of the distribution solutions to sums of
squares equations

P.x;D/uD

NX
jD1

Xj .x;D/
2uD f; (1-1)

where Xj .x;D/ denote vector fields with real analytic coefficients defined in an open set �� Rn, u is a
distribution in � and f 2 C!.�/, the space of all real analytic functions in �.

We suppose that the vector fields verify Hörmander’s condition

(H) The Lie algebra generated by the vector fields and their commutators has dimension n, equal to the
dimension of the ambient space.

In 1996 F. Treves [1999], see also [Bove and Treves 2004] for a formulation closer to the following,
as well as [Treves 2006] for variants, stated a conjecture for the sums of squares of vector fields to be
analytic hypoelliptic. In this paper we give neither the motivations nor the details about its statement; for
both the motivations and a short introduction to the conjecture, as well as a brief review of the existing
literature, we refer to [Albano et al. 2016].

Let us first give a very sketchy idea of how the conjecture was formulated. The main concept it uses is a
stratification of the characteristic variety. This is a partition of the set f.x; �/ jXj .x; �/D0; j D1; : : : ; N g
into real analytic manifolds as follows.
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Let P be as in (1-1). Then the characteristic variety of P is

Char.P /D f.x; �/ jXj .x; �/D 0; j D 1; : : : ; N g;

where Xj .x; �/ denotes the symbol of the j -th vector field. This is a real analytic variety and, as such, it
can be stratified, locally, in real analytic manifolds†i for i in a finite family of indices I. This means that

Char.P /D
[
i2I

†i ;

and the†i have the property that for i 6D i 0, we have†i ¤†i 0 and either†i\†i 0D¿ or, if†i\†i 0 6D¿,
then †i � @†i 0 (the boundary of †i 0). We refer to [Treves � 2017] for more details.

Next we examine the rank of the restriction of the symplectic form, that is, of the form � DPn
jD1 d�j ^ dxj , to the strata †i , meaning that at any point � 2 †i in a certain fixed neighborhood

of �0 2 Char.P /, we restrict � to the tangent space to †i at �, denoted by T�†i . We want � to have
constant rank on each stratum †i .

If this is not the case, we may consider the analytic variety where there is a change of rank, since
the symplectic form restricted to †i has a matrix whose entries are the Poisson brackets of the defining
functions of †i . Hence the rank is not maximal on a closed analytic subvariety where the determinant of
a maximal minor vanishes. We may start over the procedure described above and further stratify this
subvariety. The procedure ends after a finite number of steps yielding a stratification of Char.P / with
real analytic manifolds where the restriction of the symplectic form has constant rank.

In the final step one considers the multiple Poisson brackets of the symbols of the vector fields. Let
I D .i1; i2; : : : ; ir/, where ij 2 f1; : : : ; N g. Write jI j D r and define

XI .x; �/D fXi1.x; �/; fXi2.x; �/; f� � � fXir�1.x; �/; Xir .x; �/g � � � ggg:

Here r is called the length of the multiple Poisson bracket XI .x; �/. We recall that the Poisson bracket is
defined as

fXi .x; �/; Xj .x; �/g D

nX
`D1

�
@Xi

@�`

@Xj

@x`
�
@Xi

@x`

@Xj

@�`

�
:

We recall that L. Hörmander[1967] solved the problem of the C1 hypoellipticity of sums of squares
formulating his well known condition using the algebra built with the Poisson brackets of the vector fields.

It is clear that since all the strata defined above are submanifolds of the characteristic variety, the
symbols of the vector fields vanish on each stratum.

Next we examine all the Poisson brackets of two (symbols of) vector fields on a stratum in a neigh-
borhood U of a fixed point �0. Denote again by †i the stratum. A few things may happen: there is at
least a nonzero Poisson bracket at �0 and hence, possibly shrinking U, on all of it, in which case we stop.
Otherwise all brackets may vanish identically on †i \U. Finally there may be Poisson brackets that
vanish on a subvariety of †i \U.
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At this point we repeat the stratification construction above using the equations defining this subvariety.
Then we pick a new stratum, say †j , and we have that either there is a nonzero Poisson bracket on
†j \U or every Poisson bracket identically vanishes in †j \U.

This procedure may be iterated by considering Poisson brackets of length 3 etc.
In the end, after a finite number of steps, we wind up with a stratification such that every stratum †

has the following properties:

(a) † is a real analytic submanifold of Char.P /.

(b) The symplectic form restricted to † has constant rank.

(c) Denoting again by U a neighborhood of the point �0 2 Char.P /, there is an index say mDm.†/
such that at least one bracket of length m is nonzero on U \† and all the brackets of length less
than m identically vanish on †\U.

Conjecture 1.1 [Treves 1999]. Consider the operator P in (1-1) and define the stratification as sketched
above. Then P is analytic hypoelliptic if and only if every stratum in the stratification is symplectic.

Remark 1.2. The above conjecture is subtle and depends essentially on two ingredients: first the way the
stratification is defined and, second, the fact that the strata must be symplectic manifolds. The condition
that the strata, whatever that might mean, should be symplectic seems quite reasonable, since there are
examples of operators with a nonsymplectic characteristic manifold which are known not to be analytic
hypoelliptic. A different problem is the definition of the strata. It seems that, because of [Albano et al.
2016] and the present result, the way of defining the strata has to be changed in the statement of the
conjecture. The authors have no solution to this problem right now.

The necessary part of the conjecture, i.e., the nonanalytic hypoellipticity in the presence of nonsym-
plectic strata, is, as far as we know, still an open problem, although it might be of limited interest if the
definition of the stratification is changed.

In [Albano et al. 2016] it was shown that the sufficient part of the above conjecture is false by exhibiting
an operator with a single symplectic stratum, defined according to Conjecture 1.1, of dimension 4 (and
codimension 4) and proving that the operator is not analytic hypoelliptic. Actually its Gevrey regularity
has been completely characterized.

It is not difficult to exhibit, based on [Albano et al. 2016], examples of sums of squares having a single
symplectic stratum † defined according to Conjecture 1.1, and such that codim†D 2�, 2� � � n� 2,
for which a proof analogous to that of the same paper implies the nonanalytic hypoellipticity of the
operator. Here is an example.

Let us define x0 D .x1; : : : ; x�/ and x00 D .x�C1; : : : ; xn/, so that x D .x0; x00/, x 2 Rn, where �
satisfies the above conditions. Define x0� D .x1; : : : ; x��1/, x

00
� D .x�C2; : : : ; xn/ and set

jDx0� j
2
C Œx0� �

2
r jDx00 j

2
CD2x� C x

2.p�1/
� D2x�C1 C x

2.q�1/
� jDx00� j

2;

where Œx0� �
2
r D

P��1
jD1 x

2.rj�1/

j , jDx00 j2 D
Pn
jD�C1D

2
xj

, and analogously for jDx0� j
2, jDx00� j

2, with the
condition that 1 <min rj �max rj < p < q.
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A number of papers have been written both in the case of a single stratum and of a more complex
stratification. The meaning of the word “stratum” is henceforth that defined in Conjecture 1.1. If we are
in the presence of a single symplectic stratum of codimension 2, then the conjecture has been proved true
by Métivier [1981], Ōkaji [1985], Cordaro and Hanges [2009], and Albano and Bove [2013]. The papers
by Métivier, Ōkaji and Albano and Bove include also a higher codimension single symplectic stratum,
provided additional assumptions are satisfied.

We say that an operator exhibits nested strata, always according to Conjecture 1.1, if the associated
stratification has at least two strata †1, †2 such that †1 ¤ †2 and †1 \†2 ¤ ¿. By definition this
implies that †1 � @†2 and, in particular, that the dimension of †1 is smaller than that of †2.

Theorem 2.1 proved below implies that the conjecture does not hold, in general, when there are several
symplectic nested Poisson–Treves strata.

The conjecture fails even if the characteristic manifold has codimension 2, as in the case we are going
to examine. This is actually proved in the remainder of the present paper.

Thus we can state:

Theorem 1.3. Let us consider the class of all sums of squares with analytic coefficients such that the
associated stratification near a point �0 2 Char.P / has not a single stratum. Then the sufficient part of
Conjecture 1.1 is false even in the case of a characteristic manifold of codimension 2.

We remark that if the characteristic variety is a real analytic manifold of dimension 2, and the Treves
strata are symplectic, then we may have only a single symplectic stratum of Treves type — obviously
coinciding with the characteristic manifold.

If the characteristic variety is a manifold of codimension 2 as well as of dimension 2, by the results
quoted above one deduces that the operator is analytic hypoelliptic. If, on the other hand, the codimension
of the characteristic manifold is larger than 2, we do not think that analytic hypoellipticity ensues and
thus Conjecture 1.1 would be contradicted.

To clarify the above sentence let us consider the operator

Q.x;D/DD21 CD
2
2 C x

2
1D

2
3 C x

4
2D

2
3 C x

2
2x
2
3D

2
3 :

It is easily seen that Char.Q/ D f.x; �/ j xi D �i D 0; i D 1; 2; �3 ¤ 0g, which has dimension 2 and
codimension 4. Char.Q/ is a single symplectic stratum for Q and it is not too difficult to prove, either by
using the subelliptic estimate (see Section 4 below and formula (4-2)) or the method described in [Bove and
Mughetti 2016], that Q is Gevrey 4

3
-hypoelliptic (see Definition 2.2 for a definition of the Gevrey classes).

We think that the Gevrey 4
3

-regularity is optimal for the operator Q, but the proof of optimality is
however an open problem. The difficulty of the proof is due to the following fact: in the examples of
[Albano et al. 2016] and (2-1) of this paper, as well as in Q, there are strata which do not appear in Treves
stratification. The Hamilton bicharacteristics associated to these phantom strata either project injectively
on the base space, like in the case of [Albano et al. 2016] and (2-1), or project injectively onto the fibers
of the cotangent bundle. The latter is the case for Q. In this sense the operator Q shares this difficulty
with the Métivier operator, [1981] where optimality is very hard to prove.
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We would also like to recall that due to [Bove et al. 2013] the conjecture does not hold for sums of
squares of complex vector fields.

Here is the structure of the paper. The result is stated in Section 2. Section 3 is devoted to the proof of
the optimality of the s` Gevrey regularity. We construct a solution to PuD g, where g is real analytic,
which is not better than Gevrey s`. In Section 4 we prove that every solution to PuD f is Gevrey s`, if
f 2Gs`. This is done using the subelliptic estimate for the operator.

2. Statement of the result

Let `, r , p, q 2N, 1 < r < p < q, and x D .x1; : : : ; x4/ 2 R4. The objective of this section is to state the
optimal Gevrey regularity for the operator

P.x;D/DD21 C x
2.`Cr�1/
1 .D23 CD

2
4/C x

2`
1 ŒD

2
2 C x

2.p�1/
2 D23 C x

2.q�1/
2 D24 �: (2-1)

Hörmander’s condition is satisfied by P and thus P is C1 hypoelliptic.
The characteristic manifold of P is the real analytic manifold

Char.P /D
˚
.x; �/ 2 T �R4 n f0g

ˇ̌
�1 D 0; x1 D 0; �

2
2 C �

2
3 C �

2
4 > 0

	
: (2-2)

According to Treves’ conjecture one has to look at the strata associated with P.
The stratification associated with P is made up of two symplectic strata †1 and †2:

†1 D
˚
.0; x2; x3; x4I 0; �2; �3; �4/

ˇ̌
�22 C x

2
2 > 0; �

2
2 C �

2
3 C �

2
4 > 0

	
(˛)

at depth `C 1.1 †1 is a symplectic stratum and the restriction of the symplectic form to it has rank 6.

†2 D
˚
.0; 0; x3; x4I 0; 0; �3; �4/

ˇ̌
�23 C �

2
4 > 0

	
(ˇ)

at depth `C r . This is also a symplectic stratum and the restriction of the symplectic form to it has rank 4.
We point out that the above stratification does not depend on the choice of the indices p and q.
According to the conjecture we would expect local real analyticity near the origin for the distribution

solutions u of PuD f , with a real analytic right-hand side.
We are ready to state the theorem that is proved in the next two sections of the paper.

Theorem 2.1. Let
1

s`
D
`C 1

`C r
C
r � 1

`C r

p� 1

q� 1
:

Then P is locally Gevrey s`-hypoelliptic and not better near the origin.

We recall here the definition of the Gevrey classes:

Definition 2.2. If � is an open subset of Rn and s � 1 we denote by Gs.�/ the class of all functions
u 2 C1.�/ such that for every compact set K b� there is a positive constant C D CK such that

j@˛xu.x/j � C
j˛jC1˛Šs for every x 2K:

1This means that all the Poisson brackets of the (symbols of) the vector fields of length less than `C 1 are identically zero on
the characteristic manifold and that there is at least one bracket of length `C 1 which is nonzero.
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We observe that G1.�/ coincides with the class of all real analytic functions in �.

As a consequence of Theorem 2.1 we have:

Corollary 2.3. The operator P is analytic hypoelliptic if and only if p D q.

The proof of the corollary is contained in Section 4.
Moreover from Theorem 2.1 we deduce that Theorem 1.3 holds since the operator P above has a

stratification made of two nested symplectic strata.

Remark 2.4. The geometric interpretation of the above result is not known. We believe that a different def-
inition of the associated stratification should be given, allowing the existence of an additional stratum for P.

More precisely the missing stratum seems to be

z†D f.0; 0; x3; x4I 0; 0; 0; �4/ j �4 ¤ 0g;

which can be seen as the set where �3 vanishes in †2.
z† is not symplectic; its Hamilton curves are the x3-lines and this fact gives us a lead as to why, in

the following proof of Theorem 2.1, we may conclude that the operator P is not analytic hypoelliptic.
We shall come back on this further on.

We would also like to observe that the point .0; e4/ is the only interesting characteristic point where
we have a lack of analytic hypoellipticity. In fact the operator P is microlocally analytic hypoelliptic at
all points in †1 n†2, as well as at points in †2 where �3¤ 0. This can be proved via L2 (microlocalized)
estimates of the type of (but easier than those) used in Section 4.

It is also worth noting that if we accept, without any proof or other justification, that the stratification
associated to P is made of (the connected components of) †1 n†2, †2 n z† and z†, where z† is given
above, then all points of the first two “strata” are points of analytic hypoellipticity and the strata are
symplectic, while the nonanalytic hypoellipticity comes in at points of the nonsymplectic stratum z†.2

3. Proof of Theorem 2.1

In this section we prove the optimality of the Gevrey regularity in Theorem 2.1.
We construct a solution to the equation PuD f , for a real analytic function f , which is not Gevrey s

for any s < s` and is defined in a neighborhood of the origin.
In fact we look for a function u.x; y; t/ defined in zU � Œ1;C1Œ � Rx � Ry � Œ1;C1Œ, where zU

denotes a neighborhood of the origin in R2x;y , and such that

P.x;D/A.u/D g; (3-1)

where

A.u/.x/D

Z C1
1

e�i�x4Cx3z.�/�
����u.�

1
`Cr x1; x2; �/ d�; (3-2)

and
� D

1

s`
:

2We are indebted to the referees for pointing out to us the need of such a remark.
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The function z.�/ is to be determined. Here we assume that x 2 U, a suitable neighborhood of the origin
in R4 whose size will ultimately depend on z.�/. Furthermore g 2 C!.U /.

We have

P.x;D/A.u/.x/D

Z C1
1

e�i�x4Cx3z.�/�
����

h
��

2
`Cr @2x1u�x

2.`Cr�1/
1 .z.�//2�2�uCx

2.`Cr�1/
1 �2u

Cx2`1
�
�@2x2u�x

2.p�1/
2 .z.�//2�2�uCx

2.q�1/
2 �2u

�i
d�:

Rewriting the right-hand side of the above relation in terms of the variable y1 D �
1
`Cr x1, we obtain

P.x;D/A.u/.x/D

Z C1
1

e�i�x4Cx3z.�/�
����

�

h
��

2
`Cr

�
@21�y

2.`Cr�1/
1 .1� .z.�//2�2.��1//

�
u

C��
2`
`Cry2`1

��
�@22� x

2.p�1/
2 .z.�//2�2�C x

2.q�1/
2 �2

��
u
i
y1D�

1=.`Cr/x1
d�:

We point out that
� � 1 < 0:

Choose
u.y1; x2; �/D u1.y1; �/u2.x2; �/; (3-3)

where uj , j D 1; 2, will be chosen later. Plugging this into the above formula yields

P.x;D/A.u/.x/

D

Z C1
1

e�i�x4Cx3z.�/�
����

�

h
��

2
`Cr u2.x2;�/

�
@21�y

2.`Cr�1/
1 .1�.z.�//2�2.��1//

�
u1.y1;�/

C��
2`
`Cr y2`1 u1.y1;�/

��
�@22�x

2.p�1/
2 .z.�//2�2�Cx

2.q�1/
2 �2

��
u2.x2;�/

i
y1D�

1=.`Cr/x1
d�:

(3-4)
We want to determine u1, u2 so that P.x;D/A.u/.x/D 0. In particular

��
2
`Cr u2.x2; �/

�
@21�y

2.`Cr�1/
1 .1� .z.�//2�2.��1//

�
u1.y1; �/

C��
2`
`Cr y2`1 u1.y1; �/

��
�@22� x

2.p�1/
2 .z.�//2�2� C x

2.q�1/
2 �2

��
u2.x2; �/D 0 (3-5)

for � large.
Let us start by considering the operator in the x2-variable:

�2
`C1
`CrL.x2; @x2/D�@

2
2� x

2.p�1/
2 .z.�//2�2� C x

2.q�1/
2 �2:

Performing the dilation
x2 D y2�

��;

where
�D

r � 1

`C r

1

q� 1
; (3-6)
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we obtain
L.y2; @y2/D��

2. r�1
`Cr

1
q�1
�
`C1
`Cr
/@2y2 � z.�/

2y
2.p�1/
2 Cy

2.q�1/
2 : (3-7)

Set
hD �

r�1
`Cr

1
q�1
�
`C1
`Cr D ��~: (3-8)

Observe that the exponent above is negative, since r � 1 < .`C 1/.q� 1/ if and only if r � q < `.q� 1/,
which is obviously true for any value of ` as r < q by assumption. Thus for large �, we know h tends to
zero and hence we have to study the semiclassical stationary Schrödinger operator

L.y2; @y2/D�h
2@2y2 � z.h/

2y
2.p�1/
2 Cy

2.q�1/
2 (3-9)

exhibiting a double-well potential. We point out that the dilation (3-6) has been chosen in such a way to
get rid of the parameter �, i.e., h, from the double-well potential.

Let us make the following ansatz: the quantity z.h/ above is positive and such that there is an h0 > 0
for which

0 < inf
0<h<h0

z.h/ <C1:

We shall return to this ansatz and show that it is actually compatible with our findings.
We may further dilate the operator in (3-9) in such a way that the quantity z.h/ appears as a coefficient

of the second derivative, modulo a multiplying factor. Set

y2 D .z.h//
1

q�p y:

Note that the above dilation is well defined because of our ansatz when p < q. If, on the other hand
p D q the whole construction is not needed, since s` D 1 then.

Thus (3-9) becomes

L.y; @y/D z
2 q�1
q�p

�
�.z�

q
q�p h/2@2y �y

2.p�1/
Cy2.q�1/

�
: (3-10)

Let

O
 D�
q�p

q� 1

�
p� 1

q� 1

�p�1
q�p

< 0

denote the minimum of the potential �y2.p�1/Cy2.q�1/. Then

�.z�
q
q�p h/2@2y �y

2.p�1/
Cy2.q�1/� O
 (3-11)

has a discrete spectrum made of simple positive eigenvalues accumulating at infinity; see, e.g., [Berezin
and Shubin 1991]. Hence the eigenvalues are real analytic functions of the parameter hz�

q
q�p > 0.

At this point we might choose to select the ground state of (3-11). This would allow us to treat only the
case of an even eigenfunction with well-known Agmon estimates. However, we would like to emphasize
the fact that the Gevrey regularity we find is a consequence of the nature of the spectrum of the operator
in (3-11) and that, in particular, any eigenvalue allows us to conclude the Gevrey regularity of the solution
to (3-1).
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There is a price to pay for this generality: we cannot a priori use the fact that the associated eigenfunction
is symmetric and positive — which is true for the fundamental eigenstate.

Denote by E D E.h.z.h//�
q
q�p / one of the energy levels of (3-11). Also let u2.y; h/ denote the

corresponding eigenfunction, i.e.,�
�.z�

q
q�p h/2@2y �y

2.p�1/
Cy2.q�1/� O


�
u2 DEu2; (3-12)

or, changing back the variables�
�@2x2 � z

2�2�x
2.p�1/
2 C x

2.q�1/
2 �2� O
z2

q�1
q�p �2

`C1
`Cr

�
u2 DEz

2 q�1
q�p �2

`C1
`Cr u2: (3-13)

The operator in (3-11) has a symmetric nonnegative double-well potential with two nondegenerate
minima and which is unbounded at infinity. Theorem 1.1 in [Simon 1983] asserts:

Theorem 3.1. For every eigenvalue E.�/ in the spectrum of

��2@2y �y
2.p�1/

Cy2.q�1/� O
;

we have

lim
�!0C

E.�/

�
D e� > 0: (3-14)

As a consequence we may continue the function E.�/ at zero by setting E.0/ D 0. Thus E.�/ is
differentiable for 0� �.

Furthermore we have the following.

Lemma 3.2. For every h0 > 0, we have that @hE.h/ exists and is bounded for 0� h� h0.

Proof. This is basically proved by deriving in this case the Feynman–Hellmann formula expressing the
derivative with respect to h of the eigenvalues in terms of the associated eigenfunctions and the derivative
of the Hamiltonian; see, e.g., the proof of Lemma 3.1 in [Albano et al. 2016]. �

Let us now go back to equation (3-5). Neglecting the factor �
2
`Cr and writing everything as a function

of h, we obtain�
@21�y

2.`Cr�1/
1 .1�.z.h//2h2

1��
~ /

�
u1.y1;h/�y

2`
1 z.h/

2 q�1
q�p .E.hz.h/�

q
q�p /CO
/u1.y1;h/D0; (3-15)

where, as specified above, E is an eigenvalue of the operator (3-9) and h is small.
We want to show that, for small h, we can find a bounded positive function z D z.h/ such that (3-15)

has a nontrivial kernel, which will be made of rapidly decreasing eigenfunctions corresponding to the
eigenvalue zero.

First set
�.h/D 1� .z.h//2h2

1��
~ :

Note that, due to our ansatz, � is a positive number if h is suitably small. We are thus entitled to perform
the dilation

t1 D y1�
1

2.`Cr/ ;
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so that the differential operator in (3-15) becomes

�
1
`Cr

�
�@2t1 C t

2.`Cr�1/
1 C t2`1 z.h/

2 q�1
q�p ��

`C1
`Cr .E.hz.h/�

q
q�p /C O
/

�
: (3-16)

Proposition 3.3. There exists a positive number � such that the operator

�@2t C t
2.`Cr�1/

� �t2` (3-17)

has a nontrivial kernel.

Proof. The proof is just an analysis of the behavior of the eigenvalues of the operator as functions of
the parameter � ; see, for instance, [Mughetti 2014; 2015]. First of all we remark that the function
t 7! t2.`Cr�1/� �t2` has a (negative) minimum

�
r � 1

`C r � 1

�
`

`C r � 1

� `
r�1

�
`Cr�1
r�1 D �

`Cr�1
r�1 O�:

Performing the dilation

t D t1�
1

2.r�1/ ;

the operator becomes

��
�1
r�1 @2t1 C �

`Cr�1
r�1 .t

2.`Cr�1/
1 � t2`1 /;

which can be written as

�
`Cr�1
r�1

�
.���

`Cr
r�1 @2t1 C t

2.`Cr�1/
1 � t2`1 � O�/C O�

�
:

Now the operator in parentheses is again a Schrödinger operator with a double-well positive potential and
hence it has a positive discrete spectrum accumulating at infinity, by [Berezin and Shubin 1991].

Denote by �.�/ one such eigenvalue, so that the eigenvalues of the operator above are

�
`Cr�1
r�1 .�.�/C O�/:

If � !C1, then, by Theorem 3.1, �.�/! 0C, so that the expression above is negative. On the other
hand it is obvious that for � D 0 the eigenvalues of the operator (3-17) are positive. Furthermore they are
simple, whatever the value of � is, and thus they are also continuously dependent on � . We conclude
hence that there is a value N� of � for which �. N�/D 0. This proves the nontriviality of the kernel. �

Going back to (3-16), we see that, in order to solve (3-15) it is enough to choose one such value �
given by Proposition 3.3 and then solve, with respect to z, the equation

�N� D z.h/2
q�1
q�p ��

`C1
`Cr .E.hz.h/�

q
q�p /C O
/: (3-18)

Set

Qz D

�
�N�

O


� q�p
2.q�1/

> 0:

Observe that the values hD 0, z.0/D Qz verify equation (3-18), since �.0/D 1.
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Proposition 3.4. There is an h0 > 0 such that (3-18) implicitly defines a function z 2 C.Œ0; h0Œ/ \
C!.�0; h0Œ/. Moreover limh!0C z.h/D Qz.

Proof. The proof is analogous to the proof of Proposition 3.1 in [Albano et al. 2016] and we just sketch it.
Consider the function

f .h; z/D z2
q�1
q�p ��

`C1
`Cr .E.hz�

q
q�p /C O
/C N�:

Let us compute the derivative with respect to z of the above function in the interval Œ0; h0Œ� � Qz� ı; QzC ıŒ,
where ı is a small positive number:

@zf .h; z/D 2
q�1

q�p
z2

q�1
q�p
�1��

`C1
`Cr .E.hz�

q
q�p /C O
/

C2
`C1

`Cr
z2

q�1
q�p
C1h2

1��
~ ��

`C1
`Cr
�1.E.hz�

q
q�p /C O
/�

q

q�p
z
q�2
q�p
�1h��

`C1
`CrE 0.hz�

q
q�p /:

In view of Lemma 3.2, the derivative above is strictly negative if .h; z/ 2 Œ0; h0Œ� � Qz � ı; QzC ıŒ for a
suitable choice of small h0, ı. Note that f .0; Qz/D 0.

Because of the definition of Qz and the definition of f , we have f .h; Qz�ı/> 0, f .h; QzCı/< 0 possibly
taking a smaller h0, ı for 0� h� h0. Since f is continuous and strictly decreasing on the h-lines, there
is a unique zero of the equation f .h; z.h//D 0 with z.h/ 2 Œ Qz� ı; QzC ı� for 0� h� h0.

For positive h, trivially z.h/ is real analytic. Let us show that z.h/ 2 C.Œ0; h0Œ/. Arguing by contradic-
tion, assume that z.h/ 6! Qz for h! 0C. Then there is a sequence hk! 0C such that z.hk/! Oz 6D Qz.
Then 0D f .hk; z.hk//! f .0; Oz/, which is false since Qz is the only zero of f .0; z/D 0.

The conclusion follows. �

We state also a couple of lemmas that will be needed in the sequel.
Write V.x/D x2.`Cr�1/� x2`� O� and Qh D�h2@2xCV . We have:

Lemma 3.5. For every h0 > 0 and every v 2S .R/ the following a priori inequality holds:

h2kv00kCkV vk � C.kQhvkChkvk/ (3-19)

for a positive constant C independent of h 2 �0; h0Œ.

Lemma 3.6. Let v.x; h/ denote the L2.R/ normalized eigenfunction of Qh corresponding to E.h/. Then
v is rapidly decreasing with respect to x and satisfies the estimates

jv.j /.x; h/j � Cjh
�.jC1/=2 (3-20)

for x 2 R, Cj > 0 independent of 0 < h < h0, j D 0; 1; 2, with h0 suitably small.

Lemmas 3.5 and 3.6 are rather standard and, for a proof, we refer for instance to the appendix of
[Albano et al. 2016].

We can now go back to (3-4). With the choice above of both u1, u2 and zD z.�/, we can satisfy (3-5),
provided � � �0, with �0 large enough. Furthermore we also remark that the formal operation of taking
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derivatives under the integral sign is completely legitimate, due to Lemma 3.6, since a power singularity
at infinity does not affect the convergence of the integral. We have then that

P.x;D/A.u/.x/

D

Z �0

1

e�i�x4Cx3z.�/�
����

�

h
��

2
`Cr u2.x2;�/

�
@21�y

2.`Cr�1/
1 .1�.z.�//2�2.��1//

�
u1.y1;�/

C��
2`
`Cr y2`1 u1.y1;�/

��
�@22�x

2.p�1/
2 .z.�//2�2�Cx

2.q�1/
2 �2

��
u2.x2;�/

i
y1D�

1=.`Cr/x1
d�:

(3-21)
Here we used that for � � �0, (3-5) vanishes and we are left with an integral over a finite interval whose
upper endpoint depends on the problem data. This defines a real analytic function, g.x/.

We need now to check that the growth rates of u1 and u2 do not affect the behavior of the integral
(3-2) where u has been replaced by the right-hand side of (3-3).

Both u1 and u2 are eigenfunctions of the same kind of Schrödinger-type operator with different
expressions of Planck’s constant: u2 is an eigenfunction of the operator in (3-11), while u1 is an
eigenfunction of the operator (3-15) where z.h/ has been determined according to Proposition 3.3. It is
not difficult to see that the two equations are similar, so that discussing one of them is enough.

Let us focus on (3-11). We have to discuss u2 in a classically forbidden region, i.e., where h is small,
which corresponds to large values of �, since x is in a neighborhood of the origin. More precisely we need
an estimate of the form (3-24), i.e., a bound from below of u2.0; ¯/. This type of tunneling estimate could
be deduced from the results of Helffer and Sjöstrand [1984]; see also [Helffer 1988, Section 2.3]. Another
way of deriving such an estimate as a consequence of [Helffer and Sjöstrand 1984] uses [Martinez 1987].

In the present particular case, we may easily reduce the problem of a pointwise estimate to the problem
of an L2 estimate and we actually use a bound, given by Zworski [2012], for the L2 norm of u2 in a
“forbidden region”:

Theorem 3.7 [Zworski 2012, Theorem 7.7]. Let U be a neighborhood of the origin in R. There exist
positive constants C , ¯0 such that, for 0 < ¯ � ¯0,

ku2kL2.U / � e
�C
¯ ku2kL2.R/: (3-22)

Here

¯ D
h

z.h/
q
q�p

; (3-23)

and we note that ¯ is small if and only if h is small, because z.h/ is bounded away from zero when h
tends to zero.

The Schrödinger operators we deal with have a symmetric potential, so that their eigenfunctions are
either even or odd functions with respect to the variable x. The argument is analogous to that in [Albano
et al. 2016] and we just sketch it for completeness.



ANALYTIC HYPOELLIPTICITY FOR SUMS OF SQUARES AND THE TREVES CONJECTURE, II 1625

Case of even eigenfunctions u1, u2. We may assume that

ku2kL2.R/ D 1; u2.0; ¯/ > 0;

since u02.0; ¯/D 0 because of its parity and u2.0; ¯/D 0 would imply that u2, being a solution of (3-12),
is identically zero. A similar conclusion holds for u1.

Moreover, by (3-12), @2yu2.0; ¯/ > 0.
Denote by x0 D x0.¯/ the first positive zero of V.x/�E.¯/D x2.q�1/� x2.p�1/� O
 �E.¯/. Note

that u2 is strictly positive in the interval 0� x � x0.
By (3-12), u2 is strictly convex for 0� x � x0 and has its minimum at the origin and its maximum

at x0.
Define ' D @xu2=u2. We have ' > 0 if 0 < y � x0. Then, writing '0 for @y',

'0 D
V �E

¯2
�'2:

The function ' has a maximum in the interval �0; x0Œ because '0.0/ > 0 and '0.x0/ D �'2.x0/ < 0.
Denote by Nx the point where the maximum is attained: it lies in the interior of the interval Œ0; x0�.
Moreover we get

'. Nx/D
.V . Nx/�E.¯//1=2

¯
:

From the definition of ' we obtain

u2.0; ¯/D e
�
R x0
0 '.s/ dsu2.x0; ¯/� e

�x0'. Nx/
1
p
2x0
ku2kL2.Œ�x0;x0�/ �

1
p
2x0

e�
.� O
/1=2

¯ e�
C
¯ : (3-24)

Here we used Theorem 3.7, as well as the facts that x0 < 1, E.¯/ > 0 and u2 is normalized. We remark
that lim inf x0.¯/ > 0 when ¯> 0.

We are now in a position to conclude the proof of Theorem 2.1 for an even function u2. We recall that

¯ D O.�
r�1
`Cr

1
q�1
�
`C1
`Cr /D O.��~/:

Note that

A.u/D A0.u/CA1.u/;

where A0 is defined as the integral in (3-2) over the interval Œ1; �0�, while A1.u/ is the integral in (3-2)
over the half-line Œ�0;C1Œ. It is very easy to show that A0.u/, as well as the right-hand side of (3-21),
are real analytic functions of x, so that PA1.u/D P ŒA.u/�A0.u/� 2 C!.

We now compute, assuming that both u1 and u2 are even,

.�Dx4/
kA1.u/.0/D

Z C1
�0

e��
�

�ku1.0/u2.0; �/ d� � u1.0/C

Z C1
�0

e��
��C1�

~

�k d� � C kC12 kŠs`:
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The last inequality above holds since, observing that ~ < � ,Z C1
�0

e��
��C1�

~

�k d� � C1

Z C1
�0

e�c�
�

�k d�D�C1

Z �0

0

e�c�
�

�k d�CC kC12 kŠs`

� C kC12 kŠs`
�
1�C1C

�.kC1/
2 �0e

�c��0
�k0
kŠs`

�
� C kC13 kŠs`;

if k is suitably large and C3 is suitable and positive.

Case when u1 is even and u2 is odd. We may assume that

ku2kL2.R/ D 1; u02.0; ¯/ > 0:

Moreover, due to the parity, u002.0; ¯/D 0. Arguing as above we obtain that u02 is positive in Œ0; x0�. Set

' D
u002
u02
:

Arguing as above we deduce

u02.0; ¯/� e
�
.� O
/1=2

¯ u02.x0; ¯/�
1
p
2x0

e�
.� O
/1=2

¯ ku02kL2.Œ�x0;x0�/:

Since

ku2kL2.Œ�x0;x0�/ � x0ku
0
2kL2.Œ�x0;x0�/;

we get

u02.0; ¯/�
1

x0
p
2x0

e�
.� O
/1=2

¯ ku2kL2.Œ�x0;x0�/:

Using Theorem 3.7 as before we can conclude exactly as in the case of an even eigenfunction.

To finish the proof of Theorem 2.1 we recall that Lemma 3.6 implies that the integral in the definition
of A.@x2u/ is absolutely convergent, so that, arguing as before, we have

.�Dx4/
kA1.@x2u/.0/D

Z C1
�0

e��
�

�ku1.0/ @x2u2.0; �/ d�

� u1.0/ C

Z C1
�0

e��
��C1�

~

�k d� � C kC12 kŠs`;

again provided k is suitably large.
The other cases, when u1 is odd and u2 is even or odd, are treated analogously and we skip them.
This concludes the proof of the optimality part of Theorem 2.1.

4. Proof of Theorem 2.1 (continued)

In this section we prove that the operator P is Gevrey s`-hypoelliptic. We also point out that the proof
given here works when p D q, yielding analytic hypoellipticity.
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It is useful to establish notation for the vector fields defining P :

P.x;D/DD21 C x
2`
1 D

2
2 C x

2.`Cr�1/
1 D23 C x

2.`Cr�1/
1 D24 C x

2`
1 x

2.p�1/
2 D23 C x

2`
1 x

2.q�1/
2 D24

D

6X
jD1

Xj .x;D/
2: (4-1)

We note that, using commutators of the fields up to the length `C r , we generate the ambient space.
The basic idea for the proof is to use the subelliptic estimate; see, e.g., [Jerison 1986] or [Bolley et al.

1982] for a proof of the inequality

kuk2 1
`Cr

C

6X
jD1

kXj .x;D/uk
2
� C

�
hP.x;D/u; uiC kuk2

�
; (4-2)

where C is a positive constant, k � k 1
`Cr

is the Sobolev norm of order 1
`Cr

and u 2 C10 .R
4/.

A further remark is that we may assume �4 � 1: in fact denoting by  a cutoff function such that
 � 0,  .�4/ D 1 if �4 � 2 and  .�4/ D 0 if �4 � 1, we may apply  .D4/ to the equation Pu D f ,
getting P uD  f , since  commutes with P. On the other hand,  f 2Gs if f 2Gs , for s � 1, and
we are interested in the microlocal Gevrey regularity of u at the point .0; e4/. We write u instead of  u.

The proof below uses the estimate (4-2) in the following way. Since P is C1 hypoelliptic, we may
assume the function u to be smooth. If we want to show that it belongs to a Gevrey class we have to
bound its derivatives, or, which is easier using (4-2), the L2 norm of its derivatives by suitable factorials
(see Definition 2.2).

To do that, we start with the quantity Xj'DN4 u, where Xj is one of the vector fields appearing in
the operator, ' is a cutoff — in general a microlocal cutoff — which is discussed below, and N is an
arbitrarily large natural number. If we succeed in bounding kXj'DN4 uk with CNC1NŠŠs, then we may
deduce that u belongs to the Gevrey class Gs on the domain of the cutoff '.

Thus, feeding the quantity 'DN4 u on the left-hand side of (4-2), we have to estimate the right-hand
side: there we have an error term that usually is easy to absorb on the left, but also a term where P appears.
In particular we have to treat the term hP'DN4 u; 'D

N
4 ui. Since we are assuming Pu is real analytic

or Gevrey s, it is evident that commuting P past the cutoff will lead us to a term h'DN4 Pu; 'D
N
4 ui.

This is good, since Pu has analytic estimates and the right factor of the scalar product can be absorbed
on the left-hand side of the inequality, like the error term. Unfortunately there is also the commutator
hŒP; 'DN4 �u; 'D

N
4 ui.

Now the commutator either gives vector fields applied to 'Dn4u, which are easily absorbed on the
left, or gives derivatives of the cutoff and of the coefficients of the vector fields. The derivatives of the
cutoff are fine, provided we use suitably chosen cutoffs, see below for this, but the derivatives of the
coefficients of the vector fields are more difficult to handle. Actually either one is able to extract another
vector field from them — which seldom occurs — or the best resource available is the subelliptic term: we
may lower the exponent N by the subellipticity and use the subelliptic part of the estimate to start over
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with a lower N and derivatives of ' replacing '. The process terminates when N is completely used and
the derivatives of the cutoff give us the final estimate.

Let us start by denoting by 'N D 'N .x3; x4/, �N D �N .�4/ cutoffs of Ehrenpreis type, i.e., 'N 2
C10 .R

2/, �N 2C1.R/, with 'N D 1 near the origin, �N D 0 for x < 3 and �N D 1 for x > 4, and 'N ,
�N nonnegative.

Ehrenpreis-type functions have the property that j@k'N .x/j � C kC1' N k for k �RN, R >R0, and
C' independent of N. See, e.g., [Hörmander 1971, Lemma 2.2] for the definition as well as a construction
of such type of functions.

As sketched above we want to estimate the quantity kXj'NDN4 uk, j D 1; : : : ; 6, so that getting an
estimate of the form kXj'NDN4 uk �C

NC1N s`N will be enough to conclude that u 2Gs` microlocally
at .0; e4/.

As a preliminary remark we point out that ifPuDf , f 2Gs`.�/, then we may assume that u2C1.�/
and u has compact support with respect to the variables x1, x2. In fact, if � D �.x1; x2/ 2Gs` \C10 and
is identically equal to 1 in a neighborhood of the origin, we obtain, multiplying the equation PuD f
by � , that P.�u/D �f � ŒP; ��u and the commutator term is identically zero in a neighborhood of the
origin in the .x1; x2/-plane; i.e., it is in Gs`, since u is in Gs` outside of the characteristic manifold. We
write u instead of �u.

Now

kXj'ND
N
4 uk � kXj'N .1��N .N

�1D4//D
N
4 ukCkXj'N�N .N

�1D4/D
N
4 uk: (4-3)

Consider the first summand above. Since .1��N / has support for 1� �4� 4N, we deduce immediately
a bound of the first summand:

kXj'N .1��N .N
�1D4//D

N
4 uk � C

NC1NN;

where C denotes a positive constant independent of N, but depending on u. This means a real analytic
growth rate for u. It is enough then to bound the second summand in (4-3).

To do this we plug the quantity 'N�NDN4 u into (4-2) and, as a consequence, we obtain

kXj'N�N .N
�1D4/D

N
4 uk

2

� C
�˝
P'N�N .N

�1D4/D
N
4 u; 'N�N .N

�1D4/D
N
4 u

˛
Ck'N�N .N

�1D4/D
N
4 uk

2
�

Our main concern is the estimate of the scalar product in the next-to-last line of the above formula. We have˝
P'N�N .N

�1D4/D
N
4 u; 'N�N .N

�1D4/D
N
4 u

˛
D
˝
'N�N .N

�1D4/D
N
4 Pu; 'N�N .N

�1D4/D
N
4 u

˛
C

6X
jD1

˝
ŒX2j ; 'N ��N .N

�1D4/D
N
4 u; 'N�N .N

�1D4/D
N
4 u

˛
:

The first term in the right-hand side of the above relation poses no problem: in fact PuDf 2Gs` and thus
the scalar product is easily estimated by CNC1NŠs`, while the right factor can be absorbed on the left.
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As for the summands containing a commutator,˝
ŒX2j ; 'N ��N .N

�1D4/D
N
4 u; 'N�N .N

�1D4/D
N
4 u

˛
D 2

˝
ŒXj ; 'N ��N .N

�1D4/D
N
4 u;Xj'N�N .N

�1D4/D
N
4 u

˛
�
˝
N�1ŒXj ; ŒXj ; 'N ���N .N

�1D4/D
N
4 u;N'N�N .N

�1D4/D
N
4 u

˛
: (4-4)

Here we multiplied and divided by N the factors of the second scalar product to compensate for the
second derivative landing on 'N because of the double commutator. The naïve idea behind this is that
one derivative of 'N is worth N, since 'N is an Ehrenpreis-type cutoff function.

We are going to examine the terms with a single commutator first. Both X1, X2 commute with 'N
at this moment, since 'N depends on x3 and x4, even though we shall see shortly that this is not going
to be true any longer, for both X1 and X2 will have a nonzero commutator with the coefficients of the
vector fields. Moreover

ŒXj ; 'N ��N .N
�1D4/D

N
4 uD x

`Cr�1
1 '0N�N .N

�1D4/D
N
4 u (4-5)

for j D 3; 4. Here we just denote by '0N a (self-adjoint) derivative with respect to x3 or x4, since a more
precise notation would only burden the exposition. Furthermore we have

ŒX5; 'N ��N .N
�1D4/D

N
4 uD x

`
1x
p�1
2 '0N�N .N

�1D4/D
N
4 u

and

ŒX6; 'N ��N .N
�1D4/D

N
4 uD x

`
1x
q�1
2 '0N�N .N

�1D4/D
N
4 u:

Let us consider the terms corresponding to j D 3; 4 first:

2
ˇ̌˝
x`Cr�11 '0N�N .N

�1D4/D
N
4 u;Xj'N�N .N

�1D4/D
N
4 u

˛ˇ̌
� ıkXj'N�N .N

�1D4/D
N
4 uk

2
C
1

ı
kx`Cr�11 '0N�N .N

�1D4/D
N
4 uk

2; (4-6)

where ı is a positive number so small to allow us to absorb the first summand in the right-hand side of
(4-6) on the left of the subelliptic estimate.

In order to be able to apply again the subelliptic estimate to the second summand above we need to
use the formula

'0ND
N
4 D

N�1X
jD0

.�1/jD4'
.jC1/
N D

N�j�1
4 C .�1/N'

.NC1/
N : (4-7)

Thus, since �N .N�1D4/ commutes with DN4 ,

kx`Cr�11 '0N�N .N
�1D4/D

N
4 uk

�

N�1X
jD0

kX4'
.jC1/
N �N .N

�1D4/D
N�j�1
4 ukCk'

.NC1/
N �N .N

�1D4/uk; (4-8)
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where we used the fact that the field X4 can be reconstructed using the factor x`Cr�11 and just “pulling
back” one x4-derivative. A completely analogous treatment leads to an analogous conclusion when j D 6:

kŒX6;'N ��N .N
�1D4/D

N
4 ukDkx

`
1x
q�1
2 '0N�N .N

�1D4/D
N
4 uk

�

N�1X
jD0

kX6'
.jC1/
N �N .N

�1D4/D
N�j�1
4 ukCk'

.NC1/
N �N .N

�1D4/uk:

(4-9)
Furthermore it is clear that the terms on the right of inequalities (4-8) and (4-9) yield a real analytic
growth estimate: in fact a typical term in the sum loses j C1 derivatives of u with respect to x4 while the
cutoff function 'N picks up j C1 derivatives. Using the properties of 'N we see that, arguing inductively,
this gives analytic growth with respect to N . Same argument for the last terms in (4-8) and (4-9).

We are thus left with the commutator term for j D 5 in (4-4):

2
ˇ̌˝
x`1x

p�1
2 '0N�N .N

�1D4/D
N
4 u;X5'N�N .N

�1D4/D
N
4 u

˛ˇ̌
� ıkX5'N�N .N

�1D4/D
N
4 uk

2
C
1

ı
kx`1x

p�1
2 '0N�N .N

�1D4/D
N
4 uk

2: (4-10)

Here, again, ı is chosen so that the first term in the right-hand side above can be absorbed on the left
of the subelliptic estimate, as before. We just need to be concerned with the second term. Contrary to
what has been done before, pulling back one derivative is of no help, since p < q and the derivative with
respect to x4 is the only derivative available here. Note that if p D q then we may act at this point as we
did for j D 3; 4; 6, obtaining analytic growth estimates. So let us go on assuming that p < q.

Hence we have to resort to the subelliptic part of the subelliptic estimate, i.e., the 1=.`C r/–Sobolev
norm. To do this we pull back D1=.`Cr/4 . This is well defined since �4 > 1, but is a pseudodifferential
operator, and its commutator with 'N needs some care.

We actually have the following lemmas. Let !N 2 C1.R/ be an Ehrenpreis-type cutoff such that
!N D 1 for x > 2 and !N D 0 for x < 1, !N nonnegative and such that !N�N D �N . Then we have:

Lemma 4.1. Let 0 < � < 1. Then

Œ!N .N
�1D/D�; 'N .x/��N .N

�1D/DN�� D

NX
kD1

aN;k.x;D/�N .N
�1D/DN; (4-11)

where aN;k is a pseudodifferential operator of order �k such that

j@˛� aN;k.x; �/j � C
kC1
a N kC˛��k�˛; 1� k �N; ˛ �N: (4-12)

Corollary 4.2. For 1� k �N � 1 in (4-11) we have that

aN;k.x;D/�N .N
�1D/DN D

�.� � 1/ � � � .� � kC 1/

kŠ
Dkx'N .x/�N .N

�1D/DN�k: (4-13)

For the proofs we refer to [Albano et al. 2016, Appendix B].
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Applying Corollary 4.2, we find that

kx`1x
p�1
2 '0N�N .N

�1D4/D
N
4 uk D kx

`
1x
p�1
2 '0N!N .N

�1D4/D
1
`Cr

4 �N .N
�1D4/D

N� 1
`Cr

4 uk

� c0kx
`
1x
p�1
2 '0N�N .N

�1D4/D
N� 1

`Cr

4 uk 1
`Cr

C

N�1X
kD1

ckkx
`
1x
p�1
2 '

.kC1/
N �N .N

�1D4/D
N�k
4 uk

C cN kx
`
1x
p�1
2 aN;N .x;D/�N .N

�1D4/D
N
4 uk: (4-14)

Here the constants cj , j D 0; 1; : : : ; N, are bounded independently of N by some absolute constant.
The last term in the right-hand side of (4-14) has analytic growth, because aN;N has order �N, so that

it balances the N -th derivative on u, and is bounded by CNC1a NN, according to (4-12). Thus we may
forget about it because it gives better estimates than those we are going to get.

The first term on the right-hand side of (4-14) can be resubjected to the subelliptic estimate — Sobolev
part — and treated as we just did. This means that again we have to consider the commutator of the vector
fields in the operator P with x`1x

p�1
2 '0N , since D4 commutes with P. Hence the quantity we have to

estimate is

kŒXj ; x
`
1x
p�1
2 '0N ��N .N

�1D4/D
N� 1

`Cr

4 ukI

see (4-4), (4-5). As we said before, the commutators with X1, X2 are no longer zero, because of the
monomials x`1x

p�1
2 . Note that commuting with X1 has just the effect of lowering the exponent ` by one

unit, while commuting with X2 lowers the exponent p� 1 by one unit and increases the exponent ` by
` units.

On the other hand commuting with X3, X4 and X6 ignores these types of monomials and allows
us to treat the above quantity exactly as we did before, yielding analytic-type growth estimates. Note
that the monomials can be estimated by a constant, since we are in a neighborhood of the origin in the
.x1; x2/-plane.

Finally commuting with X5 is done again as before, but its outcome is to double the exponents
of the monomial above, increase the number of derivatives of 'N and lower the x4-derivatives on u
by 1=.`Cr/-th of a unit. In other words, the first term on the right-hand side of (4-14) at the second
application of the subelliptic estimate would be

kx2`1 x
2.p�1/
2 '00N�N .N

�1D4/D
N� 2

`Cr

4 uk 1
`Cr

:

We use the same argument for every summand in the sum in (4-14), except that here we have to pull
back a D1=.`Cr/4 once more in order to use the subelliptic estimate employing Lemma 4.1 as well as
Corollary 4.2.

Hence applying the subelliptic estimate — Sobolev part — alters the exponents in the monomials
x`1x

p�1
2 , lowers the x4-derivatives on u, and increases the derivatives of 'N .
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When the exponent of x2 becomes greater than or equal to q�1 or the exponent of x1 becomes greater
than or equal to `C r �1, whichever comes first, we do not need to use the Sobolev part of the subelliptic
estimate anymore. At that point we are able to pull back a whole x4-derivative, reconstructing the field X6
in the first case or X4 in the second. The powers of x1 and x2 are decreased in the first case, but only the
power of x1 is decreased in the second case.

Before writing the product of such an iteration, we discuss also the terms from (4-4) containing a
double commutator. For j D 3; 4 we have thatˇ̌˝
N�1x`Cr�11 '00N�N .N

�1D4/D
N
4 u;Nx

`Cr�1
1 'N�N .N

�1D4/D
N
4 u

˛ˇ̌
�
1
2
kN�1x`Cr�11 '00N�N .N

�1D4/D
N
4 uk

2
C
1
2
kNx`Cr�11 'N�N .N

�1D4/D
N
4 uk

2:

Each of the summands in the right-hand side is then treated as we did before with the terms involving a
single commutator. Note that N�1'00N counts as a first derivative and so does N'N . The same argument
holds for j D 5; 6.

For j D 1; : : : ; 6, we iterate this procedure. The following notation is useful.
Let us denote by aj the number of times we take a commutator, according to the procedure outlined

above, with Xj . If, as we saw before, j D 3; 4; 6, the net result is a decrease by one unit of the derivatives
of u and a parallel increase by one unit of the derivatives of 'N . No Sobolev part of the subelliptic
estimate is used in this case.

If j D 1; 2; 5, the situation is more complicated. As we said, the vector field X5 contributes a monomial
x`1x

p�1
2 and the Sobolev part will decrease the derivatives on u by 1=.`C r/. However we do not always

need the Sobolev part of the estimate. Let us call ˛, ˇ the number of times we do not apply it, but are able
to reconstruct the vector field X4 — using x`Cr�11 — or X6 — using the monomial x`1x

p�1
2 . Of course this

has an effect also on the number of derivatives on u, which lose ˛Cˇ units instead of just .˛Cˇ/=.`Cr/.
Finally we must take into account all terms deriving from the application of Lemma 4.1 and Corollary 4.2.

Let us denote by h the number of times we apply them and by kj , j D 1; : : : ; h, the summation indices
in (4-11). As we saw, these also have an effect on the derivatives landing on u and 'N .

Hence we wind up with the estimate

kXj'N�N .N
�1D4/D

N
4 uk

.
X


xa5`�˛.`Cr�1/�ˇ`�a11 x

a5.p�1/�ˇ.q�1/�a2
2 '

.1Ca3Ca4Ca5Ca6Ck1C���Ckh/
N

��N .N
�1D4/D

N�k1�����kh�
a1Ca2Ca5

`Cr
�a3�a4�a6�.˛Cˇ/

`Cr�1
`Cr

4 u





C

X
N�.a3Ca4Ca5Ca6/




xa5`�˛.`Cr�1/�ˇ`�a11 x
a5.p�1/�ˇ.q�1/�a2
2 '

.1C2.a3Ca4Ca5Ca6/Ck1C���Ckh/
N

��N .N
�1D4/D

N�k1�����kh�
a2Ca5
r
�a3�a4�a6�b
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r

4 u





C

X
N a3Ca4Ca5Ca6




xa5`�˛.`Cr�1/�ˇ`�a11 x
a5.p�1/�b.q�1/�a2
2 '

.1Ck1C���Ckh/
N

��N .N
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a2Ca5
r
�a3�a4�a6�b

r�1
r

4 u



; (4-15)
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where each sum is taken on the indices a1; a2; : : : ; a6, k1; : : : ; kh such that

0�N � k1� � � � � kh�
a1C a2C a5

`C r
� a3� a4� a6� .˛Cˇ/

`C r � 1

`C r
< 1; (4-16)

and the indices satisfy the conditions

0� a5.p� 1/�ˇ.q� 1/� a2 < q� 1 (4-17)

and
0� a5`� a1�˛.`C r � 1/�ˇ` < `: (4-18)

A few explanations are in order. Note that (4-16) expresses the fact that the number of derivatives on
u is not negative, but is less than 1 at the end. Conditions (4-17) and (4-18) express the fact that the
exponent of x2 is less than q � 1 and that the exponent of x1 is less than `, i.e., when we cannot pull
back a derivative and need to apply the Sobolev part of the subelliptic estimate when doing the iteration.

Finally we observe that (4-15) has three sums on the right-hand side. The first is the sum coming from
the single commutator terms in (4-4), while the others come from the double commutator terms in (4-4).
Note that in the last one the power of N is positive, but 'N has less derivatives than in the second sum.
The balance though is the same in both terms.

We have to evaluate the supremum of the right-hand side in (4-15). From the second condition,

a5.p� 1/� a2

q� 1
� 1 < ˇ �

a5.p� 1/� a2

q� 1
;

while from the third we get

a5`� a1�
a5.p�1/�a2

q�1
`� `

`C r � 1
< ˛ <

a5`� a1�
a5.p�1/�a2

q�1
`C `

`C r � 1
;

so that from the first condition we deduce

N � 1�
`

`C r
<

hX
jD1

kj C a2
2C a3C a4C a5
1

s`
C a6 <N C 1C

`� 1

`C r
;

where


2 D
1

`C r
�

r � 1

.`C r/.q� 1/
> 0:

In order to estimate (4-15) we need to compute

max
� hX
jD1

kj C a3C a4C a5C a6

�
;

where the maximum is on all indices verifying conditions (4-16)–(4-18). More precisely, the three sums
in (4-15) give the same contribution, because when an index is missing among the derivatives of 'N it is
found at the exponent of the factor N and, vice versa, when it appears twice, it appears with a negative
sign at the exponent of N.
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It is then clear that the maximum is �NNs` so that we finally get

kXj'N�N .N
�1D4/D

N
4 uk � C

NC1NŠs`;

and this achieves the proof of the theorem, since the above inequality shows that the function u is in the
Gevrey class Gs` in the support of 'N , N 2 N.

Note that if p D q, a much simpler proof — which means without any use of the Sobolev part of the
subelliptic estimate — yields analytic regularity.

Acknowledgements

We would like to express our thanks to Bernard Helffer for some useful criticism and for suggesting a
number of important references. We also thank André Martinez for useful discussions on some results of
semiclassical analysis.

References

[Albano and Bove 2013] P. Albano and A. Bove, Wave front set of solutions to sums of squares of vector fields, Mem. Amer.
Math. Soc. 1039, Amer. Math. Soc., Providence, RI, 2013. MR Zbl

[Albano et al. 2016] P. Albano, A. Bove, and M. Mughetti, “Analytic hypoellipticity for sums of squares and the Treves
conjecture”, preprint, 2016. arXiv

[Berezin and Shubin 1991] F. A. Berezin and M. A. Shubin, The Schrödinger equation, Mathematics and its Applications (Soviet
Series) 66, Kluwer Academic Publishers Group, Dordrecht, 1991. MR Zbl

[Bolley et al. 1982] P. Bolley, J. Camus, and J. Nourrigat, “La condition de Hörmander–Kohn pour les opérateurs pseudo-
différentiels”, Comm. Partial Differential Equations 7:2 (1982), 197–221. MR Zbl

[Bove and Mughetti 2016] A. Bove and M. Mughetti, “On a new method of proving Gevrey hypoellipticity for certain sums of
squares”, Adv. Math. 293 (2016), 146–220. MR Zbl

[Bove and Treves 2004] A. Bove and F. Treves, “On the Gevrey hypo-ellipticity of sums of squares of vector fields”, Ann. Inst.
Fourier .Grenoble/ 54:5 (2004), 1443–1475. MR

[Bove et al. 2013] A. Bove, M. Mughetti, and D. S. Tartakoff, “Hypoellipticity and nonhypoellipticity for sums of squares of
complex vector fields”, Anal. PDE 6:2 (2013), 371–445. MR Zbl

[Cordaro and Hanges 2009] P. D. Cordaro and N. Hanges, “A new proof of Okaji’s theorem for a class of sum of squares
operators”, Ann. Inst. Fourier .Grenoble/ 59:2 (2009), 595–619. MR Zbl

[Helffer 1988] B. Helffer, Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics
1336, Springer, 1988. MR Zbl

[Helffer and Sjöstrand 1984] B. Helffer and J. Sjöstrand, “Multiple wells in the semiclassical limit, I”, Comm. Partial Differential
Equations 9:4 (1984), 337–408. MR Zbl

[Hörmander 1967] L. Hörmander, “Hypoelliptic second order differential equations”, Acta Math. 119 (1967), 147–171. MR
Zbl

[Hörmander 1971] L. Hörmander, “Uniqueness theorems and wave front sets for solutions of linear differential equations with
analytic coefficients”, Comm. Pure Appl. Math. 24 (1971), 671–704. MR Zbl

[Jerison 1986] D. Jerison, “The Poincaré inequality for vector fields satisfying Hörmander’s condition”, Duke Math. J. 53:2
(1986), 503–523. MR Zbl

[Martinez 1987] A. Martinez, “Estimations de l’effet tunnel pour le double puits, I”, J. Math. Pures Appl. .9/ 66:2 (1987),
195–215. MR Zbl

http://dx.doi.org/10.1090/S0065-9266-2012-00663-0
http://msp.org/idx/mr/3025126
http://msp.org/idx/zbl/1293.35005
http://msp.org/idx/arx/1605.03801
http://dx.doi.org/10.1007/978-94-011-3154-4
http://msp.org/idx/mr/1186643
http://msp.org/idx/zbl/0749.35001
http://dx.doi.org/10.1080/03605308208820222
http://dx.doi.org/10.1080/03605308208820222
http://msp.org/idx/mr/646136
http://msp.org/idx/zbl/0497.35086
http://dx.doi.org/10.1016/j.aim.2016.02.009
http://dx.doi.org/10.1016/j.aim.2016.02.009
http://msp.org/idx/mr/3474321
http://msp.org/idx/zbl/1338.35120
http://dx.doi.org/10.5802/aif.2055
http://msp.org/idx/mr/2127854
http://dx.doi.org/10.2140/apde.2013.6.371
http://dx.doi.org/10.2140/apde.2013.6.371
http://msp.org/idx/mr/3071394
http://msp.org/idx/zbl/1335.35024
http://dx.doi.org/10.5802/aif.2442
http://dx.doi.org/10.5802/aif.2442
http://msp.org/idx/mr/2521430
http://msp.org/idx/zbl/1178.35138
http://dx.doi.org/10.1007/BFb0078115
http://msp.org/idx/mr/960278
http://msp.org/idx/zbl/0647.35002
http://dx.doi.org/10.1080/03605308408820335
http://msp.org/idx/mr/740094
http://msp.org/idx/zbl/0546.35053
http://dx.doi.org/10.1007/BF02392081
http://msp.org/idx/mr/0222474
http://msp.org/idx/zbl/0156.10701
http://dx.doi.org/10.1002/cpa.3160240505
http://dx.doi.org/10.1002/cpa.3160240505
http://msp.org/idx/mr/0294849
http://msp.org/idx/zbl/0226.35019
http://dx.doi.org/10.1215/S0012-7094-86-05329-9
http://msp.org/idx/mr/850547
http://msp.org/idx/zbl/0614.35066
http://msp.org/idx/mr/896187
http://msp.org/idx/zbl/0564.35028


ANALYTIC HYPOELLIPTICITY FOR SUMS OF SQUARES AND THE TREVES CONJECTURE, II 1635

[Métivier 1981] G. Métivier, “Non-hypoellipticité analytique pour D2x C .x
2Cy2/D2y”, C. R. Acad. Sci. Paris Sér. I Math.

292:7 (1981), 401–404. MR Zbl

[Mughetti 2014] M. Mughetti, “Hypoellipticity and higher order Levi conditions”, J. Differential Equations 257:4 (2014),
1246–1287. MR Zbl

[Mughetti 2015] M. Mughetti, “On the spectrum of an anharmonic oscillator”, Trans. Amer. Math. Soc. 367:2 (2015), 835–865.
MR Zbl
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