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PLIABILITY, OR THE WHITNEY EXTENSION THEOREM
FOR CURVES IN CARNOT GROUPS

NICOLAS JUILLET AND MARIO SIGALOTTI

The Whitney extension theorem is a classical result in analysis giving a necessary and sufficient condition
for a function defined on a closed set to be extendable to the whole space with a given class of regularity.
It has been adapted to several settings, including the one of Carnot groups. However, the target space has
generally been assumed to be equal to Rd for some d ≥ 1.

We focus here on the extendability problem for general ordered pairs (G1,G2) (with G2 nonabelian).
We analyse in particular the case G1 =R and characterize the groups G2 for which the Whitney extension
property holds, in terms of a newly introduced notion that we call pliability. Pliability happens to be
related to rigidity as defined by Bryant and Hsu. We exploit this relation in order to provide examples
of nonpliable Carnot groups, that is, Carnot groups such that the Whitney extension property does not
hold. We use geometric control theory results on the accessibility of control affine systems in order to test
the pliability of a Carnot group. In particular, we recover some recent results by Le Donne, Speight and
Zimmerman about Lusin approximation in Carnot groups of step 2 and Whitney extension in Heisenberg
groups. We extend such results to all pliable Carnot groups, and we show that the latter may be of
arbitrarily large step.

1. Introduction

Extending functions is a basic but fundamental tool in analysis. In particular, in 1934 H. Whitney
established his celebrated extension theorem, which guarantees the existence of an extension of a function
defined on a closed set of a finite-dimensional vector space to a function of class Ck, provided that
the minimal obstruction imposed by Taylor series is satisfied. The Whitney extension theorem plays a
significant part in the study of ideals of differentiable functions, see [Malgrange 1967], and its variants
are still an active research topic of classical analysis; see, for instance, [Fefferman 2005].

Analysis on Carnot groups with a homogeneous distance like the Carnot–Carathéodory distance,
as presented in [Folland and Stein 1982], is nowadays a classical topic too. Carnot groups provide a
generalization of finite-dimensional vector spaces that is both close to the original model and radically
different. This is why Carnot groups provide a wonderful field of investigation in many branches of
mathematics. Not only is the setting elegant and rich but it is at the natural crossroads of different fields
of mathematics, for instance, of analysis of PDEs and geometric control theory; see [Barilari et al. 2016a;
2016b] for a contemporary account. It is therefore natural to recast the Whitney extension theorem
in the context of Carnot groups. As far as we know, the first generalization of a Whitney extension
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theorem to Carnot groups can be found in [Franchi et al. 2001; 2003], where De Giorgi’s result on sets of
finite perimeter is adapted first to the Heisenberg group and then to any Carnot group of step 2. This
generalization is used in [Kirchheim and Serra Cassano 2004], where the authors stress the difference
between intrinsic regular hypersurfaces and classical C1 hypersurfaces in the Heisenberg group. The recent
paper [Vodop’yanov and Pupyshev 2006a] gives a final statement for the Whitney extension theorem for
scalar-valued functions on Carnot groups: the most natural generalization that one can imagine holds in
its full strength (for more details, see Section 2).

The study of the Whitney extension property for Carnot groups is however not closed. Following
a suggestion by F. Serra Cassano [2016], one might consider maps between Carnot groups instead of
solely scalar-valued functions on Carnot groups. The new question presents richer geometrical features
and echoes classical topics of metric geometry. We think in particular of the classification of Lipschitz
embeddings for metric spaces and of the related question of the extension of Lipschitz maps between
metric spaces. We refer to [Balogh and Fässler 2009; Wenger and Young 2010; Rigot and Wenger 2010;
Balogh et al. 2016] for the corresponding results for the most usual Carnot groups: abelian groups Rm or
Heisenberg groups Hn (of topological dimension 2n+ 1). In view of the Pansu–Rademacher theorem on
Lipschitz maps (see Proposition 2.1), the most directly related Whitney extension problem is the one for
C1

H -maps, the so-called horizontal maps of class C1 defined on Carnot groups. This is the framework of
our paper.

Simple arguments show that the Whitney extension theorem does not generalize to every ordered pair
of Carnot groups. Basic facts in contact geometry suggest that the extension does not hold for (Rn+1,Hn),
i.e., for maps from Rn+1 to Hn . It is actually known that local algebraic constraints of first order make n
the maximal dimension for a Legendrian submanifold in a contact manifold of dimension 2n+ 1. In fact
if the derivative of a differentiable map has range in the kernel of the contact form, the range of the map
has dimension at most n. A map from Rn+1 to Hn is C1

H if it is C1 with horizontal derivatives, i.e., if its
derivatives take value in the kernel of the canonical contact form. In particular, a C1

H -map defined on
Rn+1 is nowhere of maximal rank. Moreover, it is a consequence of the Pansu–Rademacher theorem that
Lipschitz maps from Rn+1 to Hn are differentiable at almost every point with only horizontal derivatives.
Again n is their maximal rank. In order to contradict the extendability of Lipschitz maps, it is enough to
define a function on a subset whose topological constraints force any possible extension to have maximal
rank at some point. Let us sketch a concrete example that provides a constraint for the Lipschitz extension
problem: It is known that Rn can be isometrically embedded in Hn with the exponential map (for the
Euclidean and Carnot–Carathéodory distances). One can also consider two “parallel” copies of Rn in Rn+1

mapped to parallel images in Hn; the second is obtained from the first by a vertical translation. Aiming
for a contradiction, suppose that there exists an extending Lipschitz map F. It provides on Rn

×[0, 1] a
Lipschitz homotopy between F(Rn

×{0}) and F(Rn
×{1}). Using the definition of a Lipschitz map and

some topology, the topological dimension of the range is at least n+1 and its (n+1)-Hausdorff measure
is positive. This is not possible because of the dimensional constraints explained above. See [Balogh
and Fässler 2009] for a more rigorous proof using a different set as a domain for the function to be
extended. That proof is formulated in terms of index theory and the purely (n+1)-unrectifiability of Hn .
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The latter property means that the (n+1)-Hausdorff measure of the range of a Lipschitz map is zero.
This construction and some other ideas from the works on the Lipschitz extension problem [Balogh and
Fässler 2009; Wenger and Young 2010; Rigot and Wenger 2010; Balogh et al. 2016] can probably be
adapted to the Whitney extension problem. It is not really our concern in the present article to list the
similarities between the two problems, but rather to exhibit a class of ordered pairs of Carnot groups for
which the validity of the Whitney extension problem depends on the geometry of the groups. Note that a
different type of counterexample to the Whitney extension theorem, involving groups which are neither
Euclidean spaces nor Heisenberg groups, has been obtained by A. Kozhevnikov [2015]. It is described in
Example 2.6.

Our work is motivated by a suggestion of Serra Cassano [2016]. He proposed (i) to choose general
Carnot groups G as target space, and (ii) to look at C1

H curves only, i.e., C1 maps from R to G with
horizontal derivatives. As we will see, the problem is very different from the Lipschitz extension problem
for (R,G) and from the Whitney extension problem for (G,R). Indeed, both such problems can be solved
for every G, while the answer to the extendibility question asked by Serra Cassano depends on the choice
of G. More precisely, we provide a geometric characterization of those G for which the C1

H -Whitney
extension problem for (R,G) can always be solved. We say in this case that the pair (R,G) has the C1

H
extension property. Examples of target nonabelian Carnot groups for which C1

H extendibility is possible
have been identified by S. Zimmerman [2017], who proved that for every n ∈ N the pair (R,Hn) has the
C1

H extension property.
The main component of the characterization of Carnot groups G for which (R,G) has the C1

H extension
property is the notion of pliable horizontal vector. A horizontal vector X (identified with a left-invariant
vector field) is pliable if for every p ∈G and every neighborhood � of X in the horizontal layer of G, the
support of all C1

H curves with derivative in � starting from p in the direction X form a neighborhood of
the integral curve of X starting from p (for details, see Definition 3.4 and Proposition 3.7). This notion is
close but not equivalent to the property of the integral curves of X not being rigid in the sense introduced
by Bryant and Hsu [1993], as we illustrate in Example 3.5. We say that a Carnot group G is pliable if all
its horizontal vectors are pliable. Since any rigid integral curve of a horizontal vector X is not pliable, it
is not hard to show that there exist nonpliable Carnot groups of any dimension larger than 3 and of any
step larger than 2 (see Example 3.3). On the other hand, we give some criteria ensuring the pliability of a
Carnot group, notably the fact that it has step 2 (Theorem 6.5). We also prove the existence of pliable
groups of any positive step (Proposition 6.6).

Our main theorem is the following.

Theorem 1.1. The pair (R,G) has the C1
H extension property if and only if G is pliable.

The paper is organized as follows: in Section 2 we recall some basic facts about Carnot groups and
we present the C1

H -Whitney condition in the light of the Pansu–Rademacher theorem. In Section 3 we
introduce the notion of pliability, we discuss its relation with rigidity, and we show that pliability of G

is necessary for the C1
H extension property to hold for (R,G) (Theorem 3.8). The proof of this result

assumes that a nonpliable horizontal vector exists and uses it to provide an explicit construction of a
C1

H map defined on a closed subset of R which cannot be extended on R. Section 4 is devoted to proving
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that pliability is also a sufficient condition (Theorem 4.4). In Section 5 we use our result to extend a
Lusin-like theorem proved recently by G. Speight [2016] for Heisenberg groups; see also [Zimmerman
2017] for an alternative proof. More precisely, it is proved in [Le Donne and Speight 2016] that an
absolutely continuous curve in a group of step 2 coincides on a set of arbitrarily small complement with a
C1

H curve. We show that this is the case for pliable Carnot groups (Proposition 5.2). Finally, in Section 6
we give some criteria for testing the pliability of a Carnot group. We first show that the zero horizontal
vector is always pliable (Proposition 6.1). Then, by applying some results of control theory providing
criteria under which the endpoint mapping is open, we show that G is pliable if its step is equal to 2.

2. The Whitney condition in Carnot groups

A nilpotent Lie group G is said to be a Carnot group if it is stratified in the sense that its Lie algebra G

admits a direct sum decomposition
G1⊕ · · ·⊕Gs,

called stratification, such that [Gi ,Gj ] =Gi+ j for every i, j ∈ N∗ with i + j ≤ s and [Gi ,Gj ] = {0} if
i + j > s. We recall that [Gi ,Gj ] denotes the linear space spanned by {[X, Y ] ∈G | X ∈Gi , Y ∈Gj }.
The subspace G1 is called the horizontal layer and it is also denoted by GH . We say that s is the step
of G if Gs 6= {0}. The group product of two elements x1, x2 ∈ G is denoted by x1 · x2. Given X ∈G we
write adX :G→G for the operator defined by adX Y = [X, Y ].

The Lie algebra G can be identified with the family of left-invariant vector fields on G. The exponential
is the application that maps a vector X of G into the endpoint at time 1 of the integral curve of the vector
field X starting from the identity of G, denoted by 0G. That is, if

γ (0)= 0G and γ̇ (t)= X ◦ γ (t),

then γ (1)= exp(X). We also denote by et X
:G→G the flow of the left-invariant vector field X at time t .

Notice that et X (p) = p · exp(t X). Integral curves of left-invariant vector fields are said to be straight
curves.

The Lie group G is diffeomorphic to RN with N =
∑s

k=1 dim(Gk). A usual way to identify G and RN

through a global system of coordinates is to pull-back by exp the group structure from G to G, where it
can be expressed by the Baker–Campbell–Hausdorff formula. In this way exp becomes a mapping of
G= G onto itself that is simply the identity.

For any λ ∈ R we introduce the dilation 1λ :G→G uniquely characterized by{
1λ([X, Y ])= [1λ(X),1λ(Y )] for any X, Y ∈G,

1λ(X)= λX for any X ∈G1.

Using the decomposition X = X1+ · · ·+ Xs with Xk ∈Gk , it holds that 1λ(X)=
∑s

k=1 λ
k Xk . For any

λ ∈ R we also define on G the dilation δλ = exp ◦1λ ◦ exp−1.
Given an absolutely continuous curve γ : [a, b] → G, the velocity γ̇ (t), which exists from almost

every t ∈ [a, b], is identified with the element of G whose associated left-invariant vector field, evaluated
at γ (t), is equal to γ̇ (t). An absolutely continuous curve γ is said to be horizontal if γ̇ (t) ∈ GH for
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almost every t . For any interval I of R, we denote by C1
H (I,G) the space of all curves φ ∈ C1(I,G) such

that φ̇(t) ∈GH for every t ∈ I .
Assume that the horizontal layer GH of the algebra is endowed with a quadratic norm ‖ · ‖GH . The

Carnot–Carathéodory distance dG(p, q) between two points p, q ∈ G is then defined as the minimal
length of a horizontal curve connecting p and q; i.e.,

dG(p, q)= inf
{∫ b

a
‖γ̇ (t)‖GH dt

∣∣∣∣ γ : [a, b] → G horizontal, γ (a)= p, γ (b)= q
}
.

Note that dG is left-invariant. It is known that dG provides the same topology as the usual one on G.
Moreover, it is homogeneous; i.e., dG(δλ p, δλq)= |λ|dG(p, q) for any λ ∈ R.

Observe that the Carnot–Carathéodory distance depends on the norm ‖ · ‖GH considered on GH .
However, all Carnot–Carathéodory distances are in fact metrically equivalent. They are even equivalent
with any left-invariant homogeneous distance [Folland and Stein 1982], similar to the way all norms on a
finite-dimensional vector space are equivalent.

Notice that dG(p, · ) can be seen as the value function of the optimal control problem

γ̇ =

m∑
i=1

ui X i (γ ), (u1, . . . , um) ∈ Rm,

γ (a)= p,∫ b

a

√
u1(t)2+ · · ·+ um(t)2 dt→min,

where X1, . . . , Xm is a ‖ · ‖GH -orthonormal basis of GH .
Finally, the space C1

H ([a, b],G) of horizontal curves of class C1 can be endowed with a natural C1 metric
associated with (dG, ‖ · ‖GH ) as follows: the distance between two curves γ1 and γ2 in C1

H ([a, b],G) is

max
(

sup
t∈[a,b]

dG(γ1(t), γ2(t)), sup
t∈[a,b]

‖γ̇2(t)− γ̇1(t)‖GH

)
.

In the following, we will write ‖γ̇2− γ̇1‖∞,GH to denote the quantity supt∈[a,b] ‖γ̇2(t)− γ̇1(t)‖GH .

Whitney condition. A homogeneous homomorphism between two Carnot groups G1 and G2 is a group
morphism L :G1→G2 with L◦δG1

λ =δ
G2
λ ◦L for any λ∈R. Moreover, L is a homogeneous homomorphism

if and only if exp−1
G2
◦L ◦expG1

is a homogeneous Lie algebra morphism. It is in particular a linear map on
G1 identified with GG1 . The first layer is mapped on the first layer so that a homogeneous homomorphism
from R to G2 has the form L(t)= expG2

(t X), where X ∈GG2
H .

Proposition 2.1 (Pansu–Rademacher theorem). Let f be a locally Lipschitz map from an open subset U
of G1 into G2. Then for almost every p ∈U, there exists a homogeneous homomorphism L p such that

G1 3 q 7→ δ
G2
1/r

(
f (p)−1

· f (p · δG1
r (q))

)
(1)

tends to L p uniformly on every compact set K ⊂ G1 as r goes to zero.
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Note that in Proposition 2.1 the map L p is uniquely determined. It is called the Pansu derivative of f
at p and denoted by D f p.

We denote by C1
H (G1,G2) the space of functions f such that (1) holds at every point p ∈ G1 and

p 7→ D f p is continuous for the usual topology. For G1=R this coincides with the definition of C1
H (I,G2)

given earlier; see [Pansu 1989, Proposition 4.1]. We have the following.

Proposition 2.2 (Taylor expansion). Let f ∈ C1
H (G1,G2), where G1 and G2 are Carnot groups. Let

K ⊂G1 be compact. Then there exists a function ω from R+ to R+ with ω(t)= o(t) at 0+ such that for
any p, q ∈ K,

dG2

(
f (q), f (p) · D f p(p−1

· q)
)
≤ ω(dG1(p, q)),

where D f p is the Pansu derivative.

Proof. This is a direct consequence the mean value inequality by Magnani [2013, Theorem 1.2]. �

The above proposition hints at the suitable formulation of the C1-Whitney condition for Carnot groups.
This generalization already appeared in the literature in [Vodop’yanov and Pupyshev 2006a].

Definition 2.3 (C1
H -Whitney condition). • Let K be a compact subset of G1 and consider f : K →G2

and a map L which associates with any p ∈ K a homogeneous group homomorphism L(p). We say
that the C1

H -Whitney condition holds for ( f, L) on K if L is continuous and there exists a function ω
from R+ to R+ with ω(t)= o(t) at 0+ such that, for any p, q ∈ K,

dG2

(
f (q), f (p) · L(p)(p−1

· q)
)
≤ ω(dG1(p, q)). (2)

• Let K0 be a closed set of G1, f : K0→ G2, and L be such that K0 3 p 7→ L(p) is continuous. We
say that the C1

H -Whitney condition holds for ( f, L) on K0 if for any compact set K ⊂ K0 it holds for
the restriction of ( f, L) to K.

Of course, according to Proposition 2.2, if f ∈ C1
H (G1,G2), then the restriction of ( f, D f ) to any

closed K0 satisfies the C1
H -Whitney condition on K0.

In this paper we focus on the case G1=R. The condition on a compact set K is rK ,η→0 as η→0, where

rK ,η = sup
τ,t∈K

0<|τ−t |<η

dG2

(
f (t), f (τ ) · exp[(t − τ)X (τ )]

)
|τ − t |

, (3)

because for every τ ∈ R one has [L(τ )](h)= exp(h X (τ )) for some X (τ ) ∈GG2
H and every h ∈ R. With

a slight abuse of terminology, we say that the C1
H -Whitney condition holds for ( f, X) on K.

In the classical setting, the Whitney condition is equivalent to the existence of a C1 map f̄ :Rn1→Rn2

such that f̄ and D f̄ have respectively restrictions f and L on K. This property is usually known as
the C1-Whitney extension theorem or simply the Whitney extension theorem, as for instance in [Evans
and Gariepy 2015], even though the original theorem by Whitney [1934a; 1934b] is more general and
in particular includes higher-order extensions and considers the extension f → f̄ as a linear operator.
This theorem is of broad use in analysis and is still the subject of dedicated research. See, for instance,
[Brudnyi and Shvartsman 1994; Fefferman 2005; Fefferman et al. 2014].
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Definition 2.4. We say that the pair (G1,G2) has the C1
H extension property if for every ( f, L) satisfying

the C1
H -Whitney condition on some closed set K0 there exists f̄ ∈ C1

H (G1,G2) which extends f on G1

and such that D f̄ p = L(p) for every p ∈ K0.

We now state the C1
H -extension theorem that Franchi, Serapioni, and Serra Cassano proved in [Franchi

et al. 2003, Theorem 2.14]. It has been generalized by Vodop’yanov and Pupyshev [2006a; 2006b]
to a form closer to Whitney’s original result including higher-order extensions and the linearity of the
operator f 7→ f̄ .

Theorem 2.5 (Franchi, Serapioni, Serra Cassano). For any Carnot group G1 and any d ∈ N, the pair
(G1,Rd) has the C1

H extension property.

The proof proposed by Franchi, Serapioni, and Serra Cassano is established for Carnot groups of step 2
only, but is identical for general Carnot groups. It is inspired by the proof in [Evans and Gariepy 2015],
which corresponds to the special case G1 = Rn1 for n1 ≥ 1.

Let us mention an example from the literature of nonextension with G1 6= R. This remarkable fact was
explained to us by A. Kozhevnikov.

Example 2.6. If G1 and G2 are the ultrarigid Carnot groups of dimensions 17 and 16 respectively,
presented in [Le Donne et al. 2014] and analyzed in Lemma A.2.1 of [Kozhevnikov 2015], one can
construct an example ( f, L) satisfying the C1

H -Whitney condition on some compact K without any
possible extension ( f̄ , D f̄ ) on G1. For this, one exploits the rarity of C1

H maps of maximal rank in
ultrarigid Carnot groups. The definition of ultrarigid from [Le Donne et al. 2014, Definition 3.1] is that all
quasimorphisms are Carnot similitudes, i.e., compositions of dilations and left-translations. We do not use
here directly the definition of ultrarigid groups but just the result stated in Lemma A.2.1 of [Kozhevnikov
2015] for G1 and G2. Concretely, let us set

K =
{
(p1, . . . , p17) ∈ G1

∣∣ p2 = · · · = p16 = 0, p1 ∈ [−1, 1], p17 = p1
}
.

Let the map f be constantly equal to 0 on K and L be the constant projection

3 : G1→ G2, (q1, . . . , q17) 7→ (q1, . . . , q16).

Lemma A.2.1 in [Kozhevnikov 2015] applied at the point 0G1 implies that the only possible extension
of f is the projection L(0) =3. But this map vanishes only on {p ∈ G1 | p1 = · · · = p16 = 0}, which
does not contain K. It remains for us to prove that Whitney’s condition holds. In fact for two points
p = (x, 0R15, x) and q = (y, 0R15, y) in K, we look at the distance from f (x)= 0G2 to

f (p) · L(0)(p−1
· q)= L(0)

(
(x, 0R15, x)−1

· (y, 0R15, y)
)
= (y− x, 0R15)

on the one side and from p to q on the other side. The first one is |y− x |, up to a multiplicative constant,
and when |y− x | goes to zero, the second one is c|y− x |1/3 for some constant c > 0. This proves the
C1

H -Whitney condition for ( f, L) on K.

In the present paper we provide examples of ordered pairs (G1,G2) with G1 = R such that the
C1

H extension property does or does not hold, depending on the geometry of G2. We do not address the
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problem of Whitney extensions for orders larger than 1. A preliminary step for considering higher-order
extensions would be to provide a suitable Taylor expansion for Cm

H -functions from R to G2, in the spirit
of what was recalled for m = 1 in Proposition 2.2.

Let us conclude the section by assuming that the C1
H extension property holds for some ordered pair

(G1,G2) of Carnot groups and by showing how to deduce it for other pairs. We describe below three
such possible implications:

(1) Let S1 be a homogeneous subgroup of G1 that admits a complementary group K in the sense of
[Serra Cassano 2016, Section 4.1.2]: both S1 and K are homogeneous Lie groups and the intersection
is reduced to {0}. Assume moreover that S1 is a Carnot group and K is normal, so that one can define
canonically a projection π : G1→ S1 that is a homogeneous homomorphism. Moreover, π is Lipschitz
continuous; see [Serra Cassano 2016, Proposition 4.13]. For the rest of the section, we say that S1 is an
appropriate Carnot subgroup of G1. It can be easily proved that (S1,G2) has the C1

H extension property.

(2) Assume now that S2 is an appropriate Carnot subgroup of G2. Using the Lipschitz continuity of
the projection π : G2→ S2, one easily deduces from the definition of the C1

H -Whitney condition that
(G1,S2) has the C1

H extension property.

(3) Finally assume that (G1,G′2) has the C1
H extension property, where G′2 is a Carnot group. Then one

checks without difficulty that the same is true for (G1,G2×G′2).

As a consequence of Theorem 1.1, we can use these three implications to infer pliability statements.
Namely, a Carnot group G is pliable if (i) (G0,G) has the C1

H extension property for some Carnot group G0

of positive dimension, (ii) G is the appropriate Carnot subgroup of a pliable Carnot group, and (iii) G is
the product of two pliable Carnot groups.1

3. Rigidity, a necessary condition for the C1
H extension property

Let us first adapt to the case of horizontal curves on Carnot groups the notion of rigid curve introduced
by Bryant and Hsu [1993]. We will show in the following that the existence of rigid curves in a Carnot
group G can be used to identify obstructions to the validity of the C1

H extension property for (R,G).

Definition 3.1 (Bryant, Hsu). Let γ ∈ C1
H ([a, b],G). We say that γ is rigid if there exists a neighbor-

hood V of γ in the space C1
H ([a, b],G) such that if β ∈ V and γ (a) = β(a), γ (b) = β(b) then β is a

reparametrization of γ.
A vector X ∈GH is said to be rigid if the curve [0, 1] 3 t 7→ exp(t X) is rigid.

A celebrated existence result of rigid curves for general sub-Riemannian manifolds has been obtained
by Bryant and Hsu [1993] and further improved in [Liu and Sussman 1995; Agrachev and Sarychev
1996]. Examples of Carnot groups with rigid curves have been illustrated in [Golé and Karidi 1995] and
extended in [Huang and Yang 2012], where it is shown that, for any N ≥ 6, there exists a Carnot group of

1Added in print: both the notions of Carnot subgroup and Carnot quotient group can be defined, based on the definitions
of Lie subgroup and Lie quotient group. The additional structure to care about is the grading and the fact that the first layer
generates the Lie algebra. Appropriate Carnot subgroups are in fact those groups that are both Carnot subgroups and Carnot
quotient groups. As E. Le Donne pointed out to us, the only necessary setup for (2) and (ii) is the quotient structure.
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topological dimension N having rigid curves. Nevertheless, such curves need not be straight. Actually,
the construction proposed in [Huang and Yang 2012] produces curves which are necessarily not straight.

Following [Agrachev and Sarychev 1996], see also [Montgomery 1995], and focusing on rigid straight
curves in Carnot groups, we can formulate Theorem 3.2 below. In order to state it, let π : T ∗G→G be the
canonical projection and recall that a curve p : I → T ∗G is said to be an abnormal path if π ◦ p : I →G

is a horizontal curve, p(t) 6= 0 and p(t)X = 0 for every t ∈ I and X ∈ GH , and, moreover, for every
Y ∈G and almost every t ∈ I ,

d
dt

p(t)Y = p(t)[Z(t), Y ], (4)

where
Z(t)=

d
dt
π ◦ p(t) ∈GH .

Theorem 3.2. Let X ∈GH and assume that p : [0, 1]→T ∗G is an abnormal path with π◦ p(t)= exp(t X).
If t 7→ exp(t X) is rigid, then p(t)[V,W ] = 0 for every V,W ∈ GH and every t ∈ [0, 1]. Moreover,

denoting by Q p(t) the quadratic form Q p(t)(V )= p(t)[V, [X, V ]] defined on {V ∈GH | V ⊥ X}, we have
Q p(t) ≥ 0 for every t ∈ [0, 1].

Conversely, if p(t)[V,W ] = 0 for every V,W ∈ GH and every t ∈ [0, 1] and Q p(t) > 0 for every
t ∈ [0, 1] then t 7→ exp(t X) is rigid.

Example 3.3. An example of Carnot structure having rigid straight curves is the standard Engel structure.
In this case s = 3, dimG1 = 2, dimG2 = dimG3 = 1 and one can pick two generators X, Y of the
horizontal distribution whose only nontrivial bracket relations are [X, Y ] =W1 and [Y,W1] =W2, where
W1 and W2 span G2 and G3 respectively.

Let us illustrate how the existence of rigid straight curves can be deduced from Theorem 3.2 (one
could also prove rigidity by direct computations of the same type as those of Example 3.5 below).

One immediately checks that p with p(t)X = p(t)Y = p(t)W1 = 0 and p(t)W2 = 1 is an abnormal
path such that π ◦ p(t)= exp(t X). The rigidity of t 7→ exp(t X) then follows from Theorem 3.2, thanks
to the relation Q p(Y )= 1.

An extension of the previous construction can be used to exhibit, for every N ≥ 4, a Carnot group
of topological dimension N and step N−1 having straight rigid curves. It suffices to consider the
N -dimensional Carnot group with Goursat distribution, that is, the group such that dimG1=2, dimGi =1
for i = 2, . . . , N − 1, and there exist two generators X, Y of G1 whose only nontrivial bracket relations
are [X, Y ] =W1 and [Y,Wi ] =Wi+1 for i = 1, . . . , N −3, where Gi+1 = Span(Wi ) for i = 1, . . . , N −2.

The following definition introduces the notion of pliable horizontal curve, in contrast to a rigid one.

Definition 3.4. We say that a curve γ ∈ C1
H ([a, b],G) is pliable if for every neighborhood V of γ in

C1
H ([a, b],G) the set

{(β(b), β̇(b)) | β ∈ V, (β, β̇)(a)= (γ, γ̇ )(a)}

is a neighborhood of (γ (b), γ̇ (b)) in G×GH .
A vector X ∈GH is said to be pliable if the curve [0, 1] 3 t 7→ exp(t X) is pliable.
We say that G is pliable if every vector X ∈GH is pliable.
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By metric equivalence of all Carnot–Carathéodory distances, it follows that the pliability of a horizontal
vector does not depend on the norm ‖ · ‖GH considered on GH .

Notice that, by the definition of pliability, in every C1
H neighborhood of a pliable curve γ : [a, b] → G

there exists a curve β with β(a)= γ (a), (β, β̇)(b)= (γ (b),W ), and W 6= γ̇ (b). This shows that pliable
curves are not rigid. It should be noticed, however, that the converse is not true in general, as will be
discussed in Example 3.5. In this example we show that there exist horizontal straight curves that are
neither rigid nor pliable.

Example 3.5. We consider the 6-dimensional Carnot algebra G of step 3 that is spanned by X , Y , Z ,
[X, Z ], [Y, Z ], and [Y, [Y, Z ]], where X , Y , Z is a basis of G1 and, except for permutations, all brackets
different from the ones above are zero.

According to [Bonfiglioli et al. 2007, Chapter 4] there is a group structure on R6 with coordinates
(x, y, z, z1, z2, z3) isomorphic to the corresponding Carnot group G such that the vectors of G1 are the
left-invariant vector fields

X = ∂x , Y = ∂y, Z = ∂z + x ∂z1 + y ∂z2 + y2 ∂z3 .

Consider the straight curve [0, 1] 3 t 7→ γ (t)= exp(t Z) ∈ G. First notice that γ is not pliable, since
for all horizontal curves in a small enough C1 neighborhood of γ the component of the derivative along
Z is positive, which implies that the coordinate z3 is nondecreasing. No endpoint of a horizontal curve
starting from 0G and belonging to a small enough C1 neighborhood of γ can have negative z3-component.

Let us now show that γ is not rigid either. Consider the solution β of

β̇(t)= Z(β(t))+ u(t)X (β(t)), β(0)= 0G.

Notice that the y-component of β is identically equal to zero. As a consequence, the same is true for
the components z2 and z3, while the x-, z- and z1-components of β(t) are, respectively,

∫ t
0 u(τ ) dτ , t ,

and
∫ t

0

∫ τ
0 u(θ) dθ dτ . In order to disprove the rigidity, it is then sufficient to take a nontrivial continuous

u : [0, 1] → R such that
∫ 1

0 u(τ ) dτ = 0=
∫ 1

0

∫ τ
0 u(θ) dθ dτ .

Let us list some useful manipulations which transform horizontal curves into horizontal curves. Let γ
be a horizontal curve defined on [0, 1] and such that γ (0)= 0G.

(T1) For every λ > 0, the curve t ∈ [0, λ] 7→ δλ ◦ γ (λ
−1t) is horizontal and its velocity at time t is

γ̇ (λ−1t).

(T2) For every λ < 0, the curve t ∈ [0, |λ|] 7→ δλ ◦ γ (|λ|
−1t) is horizontal and its velocity at time t is

−γ̇ (|λ|−1t).

(T3) The curve γ̄ defined by γ̄ (t)= γ (1)−1
·γ (1− t) is horizontal. It starts in 0G and finishes in γ−1(1).

Its velocity at time t is −γ̇ (1− t).

(T4) If one composes the (commuting) transformations (T2) with λ=−1 and (T3), one obtains a curve
with derivative γ̇ (1− t) at time t .
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(T5) It is possible to define the concatenation of two curves γ1 : [0, t1] → G and γ2 : [0, t2] → G

both starting from 0G as follows: the concatenated curve γ̃ : [0, t1+ t2] → G satisfies γ̃ (0)= 0G,
has the same velocity as γ1 on [0, t1] and the velocity of γ2( · − t1) on [t1, t1 + t2]. We have
γ̃ (t1+ t2)= γ1(t1) · γ (t2) as a consequence of the invariance of Lie algebra for the left-translation.

A consequence of (T1) and (T2) is that X ∈ GH \ {0} is rigid if and only if λX is rigid for every
λ ∈ R \ {0}. Similarly, X ∈GH is pliable if and only if λX is pliable for every λ ∈ R \ {0}.

Proposition 3.7 below gives a characterization of pliable horizontal vectors in terms of a condition
which is a priori easier to check than the one appearing in Definition 3.4. Before proving the proposition,
let us give a technical lemma. From now on, we write BG(x, r) to denote the ball of center x and radius r
in G for the distance dG and, similarly, BGH (x, r) to denote the ball of center x and radius r in GH for
the norm ‖ · ‖GH .

Lemma 3.6. For any x ∈ G and 0 < r < R, there exists ε > 0 such that if y, z ∈ G and ρ ≥ 0 satisfy
dG(y, 0G), dG(z, 0G), ρ ≤ ε, then

BG(x, r)⊂ y · δ1−ρ(BG(x, R)) · z.

Proof. Assume, by contradiction, that for every n ∈ N there exist xn ∈ BG(x, r), yn, zn ∈ BG(0G, 1/n)
and ρn ∈ [0, 1/n] such that

xn 6∈ yn · δ1−ρn (BG(x, R)) · zn.

Equivalently,
δ(1−ρn)−1(y−1

n · xn · z−1
n ) 6∈ BG(x, R).

However, lim supn→∞ dG

(
x, δ(1−ρn)−1(y−1

n · xn · z−1
n )
)
≤ r , leading to a contradiction. �

Proposition 3.7. A vector V ∈ GH is pliable if and only if for every neighborhood V of the curve
[0, 1] 3 t 7→ exp(tV ) in the space C1

H ([0, 1],G), the set

{β(1) | β ∈ V, (β, β̇)(0)= (0G, V )}

is a neighborhood of exp(V ).

Proof. Let
F : C1

H ([0, 1],G)→ G×GH , β 7→ (β, β̇)(1),

and denote by π : G×GH → G the canonical projection.
One direction of the equivalence being trivial, let us take ε > 0 and assume that π ◦ F(Uε) is a

neighborhood of exp(V ) in G, where

Uε =
{
β ∈ C1

H ([0, 1],G)
∣∣ (β, β̇)(0)= (0G, V ), ‖β̇ − V ‖∞,GH < ε

}
.

We should prove that F(Uε) is a neighborhood of (exp(V ), V ) in G×GH .

Step 1: As an intermediate step, we first prove that there exists η > 0 such that BG(exp(V ), η)×{V } is
contained in F(Uε).
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Let ρ be a real parameter in (0, 1). Using the transformations among horizontal curves described
earlier in this section, let us define a map Tρ : Uε→ C1

H ([0, 1],G) associating with a curve γ ∈ Uε the
concatenation, i.e., transformation (T5), of γ1 : t 7→ δρ ◦γ (ρ

−1t) on [0, ρ] obtained by transformation (T1)
and a curve γ2 defined as follows. Consider γ2,1 : [0, 1−ρ] 3 t 7→ δ1−ρ ◦γ ((1−ρ)−1t), again using (T1).
The curve γ2 is defined from γ2,1 by

γ2(t)= γ1(ρ) ·
(
γ2,1(1− ρ)−1

· δ−1 ◦ γ2,1((1− ρ)− t)
)
;

see transformation (T4). The derivative of Tρ(γ ) at time t ∈ [0, ρ) is γ̇ (ρ−1t). Its derivative at time ρ+ t
is γ̇ (1− (1− ρ)−1t) for t ∈ (0, 1− ρ]. Hence Tρ(γ ) is continuous and has derivative γ̇ (1) at limit times
ρ− and ρ+; i.e., it is a well-defined map from Uε into C1

H ([0, 1],G). Moreover, Tρ(γ ) has the same
derivative V = γ̇ (0) at times 0 and 1 and its derivative at any time in [0, 1] is in the set of the derivatives
of γ. In particular, Tρ(Uε)⊂ Uε.

Notice now that, by construction, the endpoint Tρ(γ )(1) of the curve Tρ(γ ) is a function of γ (1) and ρ
only. It is actually equal to

Fρ(x)= δρ(x) · δρ−1(x)−1,

where x = γ (1); see (T1) and (T4). Let x0 = exp(V ) and γ0 : t 7→ exp(tV ). We have Fρ(x0) = x0

because Tρ(γ0)= γ0, both curves having derivative constantly equal to V. We prove now that for ρ close
enough to 1, the differential of Fρ at x0 is invertible. Let us use the coordinate identification of G with
RN. For every y ∈ G, the limits of δρ(y) and δ1−ρ(y) as ρ tends to 1 are y and 0G respectively, while
Dδρ(y) and Dδρ−1(y) converge to Id and 0 respectively. One can check — see, e.g., [Bonfiglioli et al.
2007, Proposition 2.2.22] — that the inverse function has derivative −Id at 0G. Finally the left and right
translations are global diffeomorphisms. Collecting this information and applying the chain rule, we get
that DFρ(x0) tends to an invertible operator as ρ goes to 1. Hence for ρ great enough, Fρ(x0) is a local
diffeomorphism.

We know by assumption on V that, for any ε> 0, the endpoints of the curves of Uε form a neighborhood
of x0. We have shown that this is also the case if we replace Uε by Tρ(Uε) for ρ close to 1. The curves of
Tρ(Uε) are in Uε and have, moreover, derivative V at time 1. We have thus proved that for every ε > 0
there exists η > 0 such that BG(x0, η)×{V } is contained in F(Uε).

Step 2: Let us now prove that F(Uε) is a neighborhood of (x0, V ) in G×GH .
Let β be a curve in Uε with β̇(1) = V and consider for every W ∈ BGH (V, ε) and every ρ ∈ (0, 1)

the curve αρ,W defined as follows: αρ,W = δ1−ρ ◦β((1− ρ)−1t) on [0, 1− ρ] (transformation (T1)) and
α̇ρ,W is the linear interpolation between V and W on [1− ρ, 1]. Notice that αρ,W is in Uε.

Let u ∈ G be the endpoint at time ρ of the curve in G starting at 0G whose derivative is the linear
interpolation between V and W on [0, ρ]. Then (αρ,W , α̇ρ,W )(1)= (δ1−ρ(β(1)) · u,W ) and u depends
only on V, ρ and W, and not on the curve β. Moreover, u tends to 0G as ρ goes to 1, uniformly with respect
to W ∈BGH (V, ε). Lemma 3.6 implies that for ρ sufficiently close to 1, for every W ∈BGH (V, ε), it holds
that δ1−ρ(BG(x0, η)) ·u ⊃ BG

(
x0,

1
2η
)
. We proved that BG

(
x0,

1
2η
)
×BGH (V, ε)⊂F(Uε), concluding the

proof of the proposition. �
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The main result of this section is the following theorem, which constitutes the necessary part of the
characterization of C1

H extendability stated in Theorem 1.1.

Theorem 3.8. Let G be a Carnot group. If (R,G) has the C1
H extension property, then G is pliable.

Proof. Suppose, by contradiction, that there exists V ∈GH which is not pliable. We are going to prove
that (R,G) does not have the C1

H extension property.
Let γ (t)= exp(tV ) for t ∈ [0, 1]. Since V is not pliable, it follows from Proposition 3.7 that there exist

a neighborhood V of γ in the space C1
H ([0, 1],G) and a sequence (xn)n≥1 converging to 0G such that for

every n≥ 1 no curve β in V satisfies (β(0), β̇(0))= (0G, V ) and β(1)= γ (1)·xn . In particular, there exists
a neighborhood � of V in GH such that for every β ∈ C1

H ([0, 1],G) with (β(0), β̇(0))= (0G, V ) and

β̇(t) ∈� ∀t ∈ [0, 1],

we have (β(1), β̇(1)) 6= (γ (1) · xn, V ) for every n ∈ N. Since limn→∞ xn = 0G, we can assume without
loss of generality that, for every n ≥ 1,

max
{
d
(
δρ(xn) · exp(tV ), exp(tV )

) ∣∣ ρ ∈ [0, 1], t ∈ [−1, 1]
}
≤ 2−n. (5)

By homogeneity and left-invariance, we deduce that for every y ∈ G and every ρ > 0, for every
β ∈ C1([0, ρ],G) with (β(0), β̇(0))= (y, V ) and

β̇(t) ∈� ∀t ∈ [0, ρ],

we have (β(ρ), β̇(ρ)) 6= (y · γ (ρ) · δρ(xn), V ) for every n ∈ N.
Define

ρn =
1
n
−

1
n+ 1

=
1

n(n+ 1)

and x̃n = δρn (xn) for every n ∈ N. It follows from (5) that

max
{
d(x̃n · exp(tV ), exp(tV ))

∣∣ t ∈ [−1, 1]
}
≤ 2−n

∀n ≥ 1. (6)

We introduce the sequence defined recursively by y0 = 0G and

yn+1 = yn · γ (ρn) · x̃n. (7)

Notice that (yn)n≥1 is a Cauchy sequence and denote by y∞ its limit as n→∞.
By construction, for every n∈N and every β ∈C1

H ([0, ρn],G)with (β(0), β̇(0))= (yn, V ) and β̇(t)∈�
for all t ∈ [0, ρn], we have (β(ρn), β̇(ρn)) 6= (yn+1, V ). The proof that (R,G) does not have the C1

H exten-
sion property is then concluded if we show that the C1

H -Whitney condition holds for ( f, X) on K, where

K =
( ∞⋃

n=1

{
1− 1

n

})
∪ {1},

and f : K → G and X : K →GH are defined by

f (1− n−1)= yn, X (1− n−1)= V, n ∈ N∗ ∪ {∞}.
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For i, j ∈ N∗ ∪ {∞}, let

D(i, j)= dG

(
f (1− i−1), f (1− j−1) · exp[( j−1

− i−1)X (1− j−1)]
)

= dG

(
yi , yj · exp[( j−1

− i−1)V ]
)
.

We have to prove that
D(i, j)= o( j−1

− i−1)

as i, j→∞; that is, for every ε>0, there exists iε ∈N∗ such that D(i, j)<ε| j−1
−i−1
| for i, j ∈N∗∪{∞}

with i, j > iε.
By the triangle inequality we have

D(i, j)≤
max(i, j)−1∑
k=min(i, j)

dG

(
yk+1 · exp[((k+ 1)−1

− i−1)V ], yk · exp[(k−1
− i−1)V ]

)
.

Notice that

dG

(
yk+1 · exp[((k+ 1)−1

− i−1)V ], yk · exp[(k−1
− i−1)V ]

)
= dG

(
yk+1 · exp[((k+ 1)−1

− i−1)V ], [yk · γ (ρk)] · exp[((k+ 1)−1
− i−1)V ]

)
= dG

(
x̃k · exp[((k+ 1)−1

− i−1)V ], exp[((k+ 1)−1
− i−1)V ]

)
,

where the last equality follows from (7) and the invariance of dG by left-multiplication. Thanks to (6),
one then concludes that

dG

(
yk+1 · exp[((k+ 1)−1

− i−1)V ], yk · exp[(k−1
− i−1)V ]

)
≤ 2−k.

Hence,

D(i, j)≤
max(i, j)−1∑
k=min(i, j)

2−k
= o( j−1

− i−1). �

4. Sufficient condition for the C1
H extension property

We have seen in the previous section that, differently from the classical case, for a general Carnot group G

the suitable Whitney condition for ( f, X) on K is not sufficient for the existence of an extension ( f, ḟ )
of ( f, X) on R. More precisely, it follows from Theorem 3.8 that if G has horizontal vectors which are
not pliable, then there exist triples (K , f, X) such that the C1

H -Whitney condition holds for ( f, X) on K
but there is not a C1

H -extension of ( f, X). In this next section we prove the converse to the result above,
showing that the C1

H extension property holds when all horizontal vectors are pliable, i.e., when G is pliable.
We start by introducing the notion of a locally uniformly pliable horizontal vector.

Definition 4.1. A horizontal vector X is called locally uniformly pliable if there exists a neighborhood U
of X in GH such that for every ε > 0, there exists η > 0 so that for every W ∈ U{
(γ, γ̇ )(1)

∣∣γ ∈C1
H ([0, 1],G), (γ, γ̇ )(0)= (0G,W ), ‖γ̇−W‖∞,GH ≤ ε

}
⊃BG(exp(W ), η)×BGH (W, η).
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Remark 4.2. As it happens for pliability, if X is locally uniformly pliable then, for every λ ∈ R \ {0},
λX is locally uniformly pliable.

We are going to see in Remark 6.2 that pliability and local uniform pliability are not equivalent
properties. The following proposition, however, establishes the equivalence between pliability and local
uniform pliability of all horizontal vectors.

Proposition 4.3. If G is pliable, then all horizontal vectors are locally uniformly pliable.

Proof. Assume that G is pliable. For every V ∈ GH and ε > 0 denote by η(V, ε) a positive constant
such that{
(γ, γ̇ )(1)

∣∣ γ ∈ C1
H ([0, 1],G), (γ, γ̇ )(0)= (0G, V ), ‖γ̇ − V ‖∞,GH ≤ ε

}
⊃ BG(exp(V ), η(V, ε))×BGH (V, η(V, ε)).

We are going to show that there exists ν(V, ε) > 0 such that for every W ∈ BGH (V, ν(V, ε)){
(γ, γ̇ )(1)

∣∣ γ ∈ C1
H ([0, 1],G), (γ, γ̇ )(0)= (0G,W ), ‖γ̇ −W‖∞,GH ≤ ε

}
⊃ BG

(
exp(W ), 1

4η
(
V, 1

2ε
))
×BGH

(
W, 1

4η
(
V, 1

2ε
))
. (8)

The proof of the local uniform pliability of any horizontal vector X is then concluded by simple
compactness arguments (taking any compact neighborhood U of X , using the notation of Definition 4.1).

First fix ν̄(V, ε) > 0 in such a way that

exp(W ) ∈ BG

(
exp(V ), 1

4η
(
V, 1

2ε
))

for every W ∈ BGH (V, ν̄(V, ε)).
For every W ∈GH , every ρ ∈ (0, 1), and every curve γ ∈ C1

H ([0, 1],G) such that (γ, γ̇ )(0)= (0G, V ),
define γW,ρ ∈ C1

H ([0, 1],G) as follows: γW,ρ(0)= 0G, γ̇W,ρ(t)= (t/ρ)V + ((ρ− t)/ρ)W for t ∈ [0, ρ],
and γ̇W,ρ(ρ+ (1− ρ)t)= γ̇ (t) for t ∈ [0, 1]. In particular,

γW,ρ(1)= γW,ρ(ρ) · δ1−ρ(γ (1)), γ̇W,ρ(1)= γ̇ (1),

and
‖γ̇W,ρ −W‖∞,GH ≤ ‖γ̇ − V ‖∞,GH +‖W − V ‖GH .

If ‖V −W‖GH ≤
1
2ε, we then have

‖γ̇W,ρ −W‖∞,GH ≤ ε ∀γ such that ‖γ̇ − V ‖∞,GH ≤
1
2ε.

Since γW,ρ(ρ) depends on V, W, and ρ, but not on γ , we conclude that, for every W ∈ BGH

(
V, 1

2ε
)
,{

(β, β̇)(1)
∣∣ β ∈ C1

H ([0, 1],G), (β, β̇)(0)= (0G,W ), ‖β̇ −W‖∞,GH ≤ ε
}

⊃
(
γW,ρ(ρ) · δ1−ρ

(
BG

(
exp(V ), η

(
V, 1

2ε
))))
×BGH

(
V, η

(
V, 1

2ε
))
.

Notice that dG(0G, γW,ρ(ρ))≤ρmax(‖V ‖GH , ‖W‖GH ). Thanks to Lemma 3.6, for ρ sufficiently small,

γW,ρ(ρ) · δ1−ρ
(
BG

(
exp(V ), η

(
V, 1

2ε
)))
⊃ BG

(
exp(V ), 1

2η
(
V, 1

2ε
))
.
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Now,

BG

(
exp(V ), 1

2η
(
V, 1

2ε
))
⊃ BG

(
exp(W ), 1

4η
(
V, 1

2ε
))

whenever W ∈ BGH (V, ν̄(V, ε)).
Similarly,

BGH

(
V, η

(
V, 1

2ε
))
⊃ BGH

(
W, 1

4η
(
V, 1

2ε
))
,

provided that

‖V −W‖GH ≤
3
4η
(
V, 1

2ε
)
.

The proof of (8) is concluded by taking

ν(V, ε)=min
(
ν̄(V, ε), 1

2ε,
3
4η
(
V, 1

2ε
))
. �

We are now ready to prove the converse of Theorem 3.8, concluding the proof of Theorem 1.1.

Theorem 4.4. Let G be a pliable Carnot group. Then (R,G) has the C1
H extension property.

Proof. By Proposition 4.3, we can assume that all vectors in GH are locally uniformly pliable. Note,
moreover, that it is enough to prove the extension for maps defined on compact sets K. The generalization
to closed sets K0 is immediate because the source Carnot group is R. Let ( f, X) satisfy the C1

H -Whitney
condition on K, where K is compact. We have to define f̄ on the complementary (open) set R\ K, which
is the countable and disjoint union of open intervals. For the unbounded components of R \ K, we simply
define f̄ as the curve with constant speed X (i) or X ( j), where i = min(K ) and j = max(K ). For the
finite components (a, b) we proceed as follows. We consider y = δ1/(b−a)( f (a)−1

· f (b)). We let ε be
the smallest number such that{

(γ, γ̇ )(1)
∣∣ γ ∈ C1

H ([0, 1],G), (γ, γ̇ )(0)= (0G, X (a)), ‖γ̇ − X (a)‖∞,GH ≤ ε
′
}

contains (y, X (b)) for every ε′>ε. We consider an extension f̄ ∈C1
H of f on [a, b] such that ˙̄f (a)= X (a),

˙̄f (b)= X (b), and ‖ ˙̄f − X (a)‖∞,GH ≤ 2ε.
By construction, f̄ extends f (but we do not know whether the extension is continuous) and ˙̄f = X on

the interior of K. We prove now that f̄ is C1
H and that ˙̄f = X on the boundary ∂K of K. It is clear that

f̄ is C1
H on R \ ∂K. In order to conclude the proof, we pick x ∈ ∂K and we are left to prove that ˙̄f (x)

exists, is equal to X (x), and ˙̄f |R\∂K has the correct limit at x . Because of the C1
H -Whitney condition, we

know that for every sequence xn in K converging to x , the vector ( f̄ (xn)− f̄ (x))/(xn− x) (written in any
coordinate system) converges to the coordinate representation of X (x). Let us then pick a sequence xn in
R \ K tending to x , and we are left to show that both ( f̄ (xn)− f̄ (x))/(xn − x) and ˙̄f (xn) tend to X (x).
Assume for now that xn > x for every n. The connected component (an, bn) of R \ K containing xn is
either constant for n large (in this case x = an) or its length goes to zero as n→∞. In the first case we
simply notice that f̄ |[an,bn] is C1 by construction and that the right derivative of f̄ at an = x is equal to
X (x). In the second case we can assume that an < xn < bn and bn − an goes to zero. The local uniform
pliability of X (x) implies that ‖ ˙̄f |[an,bn]− X (an)‖∞,GH goes to zero as n→∞. It follows that ˙̄f (xn)
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converges to X (x) as n→∞. Hence, still in some coordinate system,

f̄ (xn)− f̄ (x)
xn − x

=
f̄ (an)+ X (an)(xn − an)− f̄ (x)

xn − x
+

o(xn − an)

xn − x

=
f̄ (an)− f̄ (x)

an − x
an − x
xn − x

+ X (an)

(
1−

an − x
xn − x

)
+

o(xn − an)

xn − x
→ X (x)

as n→∞. The situation where xn < x for infinitely many n can be handled similarly. �

5. Application to the Lusin approximation of an absolutely continuous curve

In a recent paper, E. Le Donne and G. Speight [2016, Theorem 1.2] prove the following result.

Proposition 5.1 (Le Donne–Speight). Let G be a Carnot group of step 2 and consider a horizontal
curve γ : [a, b] → G. For any ε > 0, there exist K ⊂ [a, b] and a C1

H -curve γ1 : [a, b] → G such that
L([a, b] \ K ) < ε and γ = γ1 on K.

In the case in which G is equal to the n-th Heisenberg group Hn , such a result had already been proved
in [Speight 2016, Theorem 2.2]; see also [Zimmerman 2017, Corollary 3.8]. In Theorem 3.2 of the
same paper, Speight also identified a horizontal curve on the Engel group such that the statement of
Proposition 5.1 is not satisfied.

The name “Lusin approximation” for the property stated in Proposition 5.1 comes from the use of the
classical theorem of Lusin [1912] in the proof. Let us sketch a proof when G is replaced by a vector
space Rn. The derivative γ̇ of an absolutely continuous curve γ is an integrable function. Lusin’s theorem
states that γ̇ coincides with a continuous vector-valued function X : K → Rn on a set K of measure
arbitrarily close to b− a. Thanks to the inner continuity of the Lebesgue measure, one can assume that
K is compact. Moreover, K can be chosen so that the Whitney condition is satisfied by (γ |K , X) on K.
This is a consequence of the mean value inequality

‖γ (x + h)− γ (x)− hγ̇ (x)‖ ≤ o(h), (9)

where o(h) depends on x ∈ K. By usual arguments of measure theory, inequality (9) can be made uniform
with respect to x if one slightly reduces the measure of K. The (classical) Whitney extension theorem
provides a C1-curve γ1 defined on [a, b] with γ1 = γ and γ̇1 = X on K.

The proof in [Le Donne and Speight 2016], and also in [Speight 2016], follows the same scheme as
the one sketched above. We show here below how the same scheme can be adapted to any pliable Carnot
group. The fact that all Carnot groups of step 2 are pliable and that not all pliable Carnot groups are of
step 1 or 2 is proved in the next section (Theorem 6.5 and Proposition 6.6), so that our paper actually
provides a nontrivial generalization of Proposition 5.1. The novelty of our approach with respect to those
in [Le Donne and Speight 2016; Speight 2016; Zimmerman 2017] is to replace the classical Rademacher
differentiability theorem for Lipschitz or absolutely continuous curves from R to Rn by the more adapted
Pansu–Rademacher theorem.
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Proposition 5.2 (Lusin approximation of a horizontal curve). Let G be a pliable Carnot group and
γ : [a, b] → G be a horizontal curve. Then for any ε > 0 there exist K ⊂ [a, b] with L([a, b] \ K ) < ε
and a curve γ1 : [a, b] → G of class C1

H such that the curves γ and γ1 coincide on K.

Proof. We are going to prove that for any ε > 0 there exists a compact set K ⊂[a, b] with L([a, b]\K )< ε
such the three following conditions are satisfied:

(1) γ̇ (t) exists and it is a horizontal vector at every t ∈ K .

(2) γ̇ |K is uniformly continuous.

(3) For every ε > 0 there exists η > 0 such that, for every t ∈ K and |h| ≤ η with t + h ∈ [a, b], it holds
that dG

(
γ (t + h), γ (t) · exp(hγ̇ (t))

)
≤ ηε.

With these conditions the C1
H -Whitney condition holds for (γ, γ̇ |K ) on K. Since G is pliable, according to

Theorem 4.4 the C1
H extension property holds for (R,G), yielding γ1 as in the statement of Proposition 5.2.

Case 1: γ is Lipschitz continuous. Let γ be a Lipschitz curve from [a, b] to G. The Pansu–Rademacher
theorem (Proposition 2.1) states that there exists A ⊂ [a, b] of full measure such that, for any t ∈ A, the
curve γ admits a derivative at t and it holds that

dG

(
γ (t + h), γ (t) · exp(hγ̇ (t))

)
= o(h)

as h goes to zero. Let ε be positive. By Lusin’s theorem, one can restrict A to a compact set K1 ⊂ A such
that t 7→ γ̇ (t) is uniformly continuous on K1 and L(A \ K1) <

1
2ε. Moreover, by classical arguments of

measure theory, the functions h 7→ |h|−1dG

(
γ (t + h), γ (t) · exp(hγ̇ (t))

)
can be bounded by a function

that is o(1) as h goes to zero, uniformly in t on some compact set K2 with L(A \ K2) <
1
2ε. In other

words, for every ε > 0 there exists η such that for t ∈ K2 and h ∈ [t − η, t + η] it holds that

dG

(
γ (t + h), γ (t) · exp(hγ̇ (t))

)
≤ ε|h|.

With K = K1 ∩ K2, the three conditions (1), (2), (3) listed above hold true.

Case 2: γ is a general horizontal curve. Let γ be absolutely continuous on [a, b]. It admits a path-
length parametrization i.e., there exists a Lipschitz continuous curve φ : [0, T ] → G and a function
F : [a, b] → [0, T ], absolutely continuous and nondecreasing, such that γ = φ ◦ F. Moreover, φ̇ has
norm 1 at almost every time. As F is absolutely continuous, for every ε > 0 there exists η such that, for
any measurable K, the inequality L([0, T ] \ K ) < η implies L([a, b] \ F−1(K )) < ε.

Let ε be positive and let η be a number corresponding to 1
2ε in the previous sentence. Applying to

F the scheme of proof sketched after Proposition 5.1 for n = 1, there exists a compact set KF ⊂ [a, b]
with L([a, b] \ KF ) <

1
2ε such that F is differentiable with a continuous derivative on K F and the bound

in the mean value inequality is uniform on KF. For the Lipschitz curve φ and for every η > 0, Case 1
provides a compact set Kφ ⊂ [0, T ] with the listed properties with 1

2ε in place of ε.
Let K be the compact KF ∩ F−1(Kφ) and note that L([a, b] \ K ) < ε. For t ∈ K it holds that

|F(t + h)− F(t)− hF ′(t)| = o(h)
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and
dG

(
φ(F(t)+ H), φ(F(t)) · exp(H φ̇(F(t)))

)
= o(H)

as h and H go to zero, uniformly with respect to t ∈K. We also know that t 7→ F ′(t) and t 7→ φ̇(F(t))∈GH

exist and are continuous on K. It is a simple exercise to compose the two Taylor expansions and obtain the
wanted conditions for γ = φ ◦ F. Note that the derivative of γ on K is F ′(t)φ̇(F(t)), which is continuous
on K. �

Remark 5.3. A set E ⊂ Rn is said to be 1-countably rectifiable if there exists a countable family of
Lipschitz curves fk : R→ Rn such that

H1
(

E \
⋃

k

fk(R)

)
= 0.

The usual Lusin approximation of curves in Rn permits one to replace Lipschitz by C1 in this classical
definition of rectifiability. When Rn is replaced by a pliable Carnot group, the two definitions still make
sense and, according to Proposition 5.2, are still equivalent. Rectifiability in metric spaces and Carnot
groups is a very active research topic in geometric measure theory; see [Le Donne and Speight 2016] for
references.

6. Conditions ensuring pliability

The goal of this section is to identify conditions ensuring that G is pliable. Let us first focus on the
pliability of the zero vector.

Proposition 6.1. For every Carnot group G, the vector 0 ∈G is pliable.

Proof. According to Proposition 3.7, we should prove that for every ε > 0 the set{
β(1) ∈ G

∣∣ β ∈ C1
H ([0, 1],G), ‖β̇‖∞,GH < ε, (β, β̇)(0)= (0G, 0)

}
is a neighborhood of 0G in G.

Recall that there exist k ∈ N, V1, . . . , Vk ∈GH and t1, . . . , tk > 0 such that the map

φ : (τ1, . . . , τk) 7→ eτk Vk ◦ · · · ◦ eτ1V1(0G)

has rank equal to dim(G) at (τ1, . . . , τk)= (t1, . . . , tk) and satisfies φ(t1, . . . , tk)= 0G; see [Sussmann
1976]. Notice that for every ν > 0, the function

φν : (τ1, . . . , τk) 7→ eντk Vk ◦ · · · ◦ eντ1V1(0G)= e(ν
2τk/ν)Vk ◦ · · · ◦ eν

2(τ1/ν)V1(0G)= δν2

(
φ

(
τ1

ν
, . . . ,

τk

ν

))
has also rank equal to dim(G) at (τ1, . . . , τk)= (νt1, . . . , νtk) and satisfies φν(νt1, . . . , νtk)= 0G. Hence,
up to replacing tj by νtj and Vj by ν2Vj for j = 1, . . . , k and ν small enough, we can assume that
t1+ · · ·+ tk < 1 and ‖Vj‖GH < ε for j = 1, . . . , k.

Let O be a neighborhood of (t1, . . . , tk) such that for every (τ1, . . . , τk) ∈ O we have τ1, . . . , τk > 0
and τ1+ · · ·+ τk < 1. Notice that {φ(τ1, . . . , τk) | (τ1, . . . , τk) ∈ O} is a neighborhood of 0G in G.



1656 NICOLAS JUILLET AND MARIO SIGALOTTI

We complete the proof of the proposition by constructing, for every τ = (τ1, . . . , τk) ∈ O , a curve
βτ ∈ C1

H ([0, 1],G) such that

‖β̇τ‖∞,GH < ε, (βτ , β̇τ )(0)= (0G, 0), βτ (1)= φ(τ). (10)

For every X ∈GH , p ∈G and r > 0 let us exhibit a curve γ ∈ C1
H ([0, r ],G) such that γ (0)= γ (r)= p,

γ̇ (0)= 0, γ̇ (r)= X , and ‖γ̇ ‖∞,GH =‖X‖GH . The curve γ can be constructed by imposing γ̇
( 1

2r
)
=−

1
2 X

and by extending γ̇ on
[
0, 1

2r
]

and
[1

2r, r
]

by convex interpolation. It is also possible to reverse such
a curve by transformation (T4) and connect on any segment [0, r ] the point-with-velocity (p, X) with
the point-with-velocity (p, 0) by a C1

H curve γ respecting, moreover, ‖γ̇ ‖∞,GH = ‖X‖GH . Finally just
concatenating (transformation (T5)) curves of this type it is possible, for every r > 0, to connect (p, X)
and (p, Y ) on [0, r ] with a curve γr,X,Y ∈ C1

H ([0, r ],G) with ‖γ̇r,X,Y‖∞,GH =max(‖X‖GH , ‖Y‖GH ).
We then construct βτ as follows: we fix r =

(
1−

∑k
j=1 τj

)
/k, we impose βτ (0)= 0G and we define β̇τ

to be the concatenation of the following 2k continuous curves in GH : first take γ̇r,0,V1 , then the constant
equal to V1 for a time τ1, then γ̇r,V1,V2 , then the constant equal to V2 for a time τ2, and so on up to γ̇r,Vk−1,Vk

and finally the constant equal to Vk for a time τk . By construction, βτ ∈ C1
H ([0, 1],G) and satisfies (10). �

Remark 6.2. Let us show that, as a consequence of the previous proposition, pliability and local uniform
pliability are not equivalent properties (albeit we know from Proposition 4.3 that pliability of all horizontal
vectors is equivalent to local uniform pliability of all horizontal vectors).

Recall that local uniform pliability of a horizontal vector X implies pliability of all horizontal vectors
in a neighborhood of X (see Definition 4.1). Therefore, if 0 is locally uniformly pliable for a Carnot
group G then every horizontal vector of G is pliable (Remark 4.2). Hence 0 cannot be locally uniformly
pliable if G is not pliable. The remark is concluded by recalling that nonpliable Carnot groups exist (see
Examples 3.3 and 3.5).

Let G be a Carnot group and let X1, . . . , Xm be an orthonormal basis of GH . Let us consider the
control system in G×Rm given by γ̇ =

m∑
i=1

ui X i (γ ),

u̇ = v,

(11)

where both u = (u1, . . . , um) and the control v = (v1, . . . , vm) vary in Rm.
Let us rewrite x = (γ, u),

F0(x)=
(∑m

i=1 ui X i (γ )

0

)
, Fi (x)=

(
0
ei

)
for i = 1, . . . ,m,

where e1, . . . , em denotes the canonical basis of Rm. System (11) can then be rewritten as

ẋ = F0(x)+
m∑

i=1

vi Fi (x). (12)
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For every ū∈Rm , let Fū : L1([0, 1],Rm)→G×Rm be the endpoint map at time 1 for system (12) with ini-
tial condition (0G, ū). Notice that if x( · )= (γ ( · ), u( · )) is a solution of (12) with initial condition (0G, ū)
corresponding to a control v ∈ L1([0, 1],Rm), then γ ∈ C1

H ([0, 1],G) and ‖γ̇ −
∑m

i=1 ūi X i‖∞,GH ≤ ‖v‖1.
We can then state the following criterion for pliability.

Proposition 6.3. If the map Fū : L1([0, 1],Rm) → G × Rm is open at 0, then the horizontal vector∑m
i=1 ūi X i is pliable.

As a consequence, if the restriction of Fū to L∞([0, 1],Rm) is open at 0, when the L∞ topology is
considered on L∞([0, 1],Rm), then

∑m
i=1 ūi X i is pliable. We deduce the following property: if a straight

curve is not pliable, then it admits an abnormal lift in T ∗G. Indeed, if a horizontal vector
∑m

i=1 ūi X i is not
pliable, then the differential of Fū|L∞([0,1],Rm) at 0 must be singular. Hence — see, for instance, [Agrachev
and Sachkov 2004, Section 20.3] or [Trélat 2005, Proposition 5.3.3] — there exist pγ : [0, 1] → T ∗G and
pu : [0, 1] → (Rm)∗ with (pγ , pu) 6= 0 such that

ṗγ (t)=−
∂

∂γ
H
(
γ (t), ū, pγ (t), pu(t), 0

)
, (13)

ṗu(t)=−
∂

∂u
H
(
γ (t), ū, pγ (t), pu(t), 0

)
, (14)

0=
∂

∂v
H
(
γ (t), ū, pγ (t), pu(t), 0

)
(15)

for t ∈ [0, 1], where γ (t)= exp
(
t
∑m

i=1 ūi X i
)

and

H(γ, u, pγ , pu, v)= pγ
m∑

i=1

ui X i (γ )+ puv.

From (15) it follows that pu(t)= 0 for all t ∈ [0, 1]. Equation (14) then implies that pγ (t)X i (γ (t))= 0
for every i = 1, . . . ,m and every t ∈ [0, 1]. Moreover, pγ must be different from zero. Comparing (4)
and (13), it follows that pγ is an abnormal path.

The control literature proposes several criteria for testing the openness at 0 of an endpoint map of the
type Fū|L∞([0,1],Rm). The test presented here below, taken from [Bianchini and Stefani 1990], generalizes
previous criteria obtained in [Hermes 1982; Sussmann 1987].

Theorem 6.4 [Bianchini and Stefani 1990, Corollary 1.2]. Let M be a C∞ manifold and V0, V1, . . . , Vm

be C∞ vector fields on M. Assume that the family of vector fields J = {adk
V0

Vj | k ≥ 0, j = 1, . . . ,m}
is Lie-bracket generating. Denote by H the iterated brackets of elements in J and recall that the length
of an element of H is the sum of the number of times that each of the elements V0, . . . , Vm appears in
its expression. Assume that every element of H in whose expression each of the vector fields V1, . . . , Vm

appears an even number of times is equal, at every q ∈ M , to the linear combination of elements of H of
smaller length, evaluated at q. Fix q0 ∈ M and a neighborhood � of 0 in Rm. Let U ⊂ L∞([0, 1], �) be
the set of those controls v such that the solution of q̇ = V0(q)+

∑m
i=1 vi Vi (q), q(0)= q0, is defined up to

time 1 and denote by 8(v) the endpoint q(1) of such a solution. Then 8(U) is a neighborhood of eV0(q0).
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The following two results show how to apply Theorem 6.4 to guarantee that a Carnot group G is pliable
and, hence, that (R,G) has the C1

H extension property.

Theorem 6.5. Let G be a Carnot group of step 2. Then G is pliable and (R,G) has the C1
H extension

property.

Proof. We are going to apply Theorem 6.4 in order to prove that for every horizontal vector
∑m

i=1 ui X i

the endpoint map Fu : L∞([0, 1],Rm)→ G×Rm is open at zero.
Notice that

[F0, Fi ](γ,w)=−

(
X i (γ )

0

)
, i = 1, . . . ,m,

and

[F0, [F0, Fi ]](γ,w)=

(∑m
j=1wj [X i , X j ](γ )

0

)
, i = 1, . . . ,m.

Moreover, for every i, j = 1, . . . ,m,

[[F0, Fi ], Fj ] = 0, [[F0, Fi ], [F0, Fj ]](γ,w)=

(
[X i , X j ](γ )

0

)
,

and all other Lie brackets in and between elements of J = {adk
F0

Fi | k ≥ 0, i = 1, . . . ,m} are zero since
G is of step 2.

In particular all Lie brackets between elements of J in which each of the vector fields F1, . . . , Fm

appears an even number of times is zero.
According to Theorem 6.4, we are left to prove that J is Lie-bracket generating. This is clearly true,

since

Span
{

Fi (γ,w), [F0, Fi ](γ,w), [[F0, Fi ], [F0, Fj ]](γ,w)
∣∣ i, j = 1, . . . ,m

}
is equal to T(γ,w)(G×Rm) for every (γ,w) ∈ G×Rm. �

We conclude the paper by showing how to construct pliable Carnot groups of arbitrarily large step.

Proposition 6.6. For every s ≥ 1 there exists a pliable Carnot group of step s.

Proof. Fix s ≥ 1 and consider the free nilpotent stratified Lie algebra A of step s generated by s elements
Z1, . . . , Zs .

For every i = 1, . . . , s, denote by Ii the ideal of A generated by Zi and by Ji the ideal [Ii , Ii ]. Then
J =

⊕s
i=1 Ji is also an ideal of A.

Then the factor algebra G = A/J is nilpotent and inherits the stratification of A. Denote by G the
Carnot group generated by G. Let X1, . . . , Xs be the elements of GH obtained by projecting Z1, . . . , Zs .
By construction, every bracket of X1, . . . , Xs in G in which at least one of the X i appears more than
once is zero. Moreover, G has step s, since [X1, [X2, [ · · · , Xs], · · · ]] is different from zero.

Let us now apply Theorem 6.4 to prove that for every X ∈GH the endpoint map Fu : L∞([0, 1],Rs)→

G×Rs is open at zero, where u ∈ Rs is such that X =
∑s

i=1 ui X i .
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Following the same computations as in the proof of Theorem 6.5,

adk+1
F0

Fi (γ, u)=
(

adk
X X i (γ )

0

)
, k ≥ 0, i = 1, . . . , s.

In particular the family J = {adk
F0

Fi | k ≥ 0, i = 1, . . . , s} is Lie-bracket generating.
Moreover, every Lie bracket of elements of Ĵ = {adk+1

F0
Fi | k ≥ 0, i = 1, . . . , s} in which at least one

of the elements F1, . . . , Fs appears more than once is zero.
Consider now a Lie bracket W between h ≥ 2 elements of J. Let k1, . . . , ks be the number of times in

which each of the elements F1, . . . , Fs appears in W. Let us prove by induction on h that W is the linear
combination of brackets between elements of Ĵ in which each Fi appears ki times, i = 1, . . . , s. Consider
the case h = 2. Any bracket of the type [adk

F0
Fi , Fj ], k ≥ 0, i, j = 1, . . . , s, is the linear combination of

brackets between elements of Ĵ in which Fi and Fj appear once, as it can easily be proved by induction
on k, thanks to the Jacobi identity. The induction step on h also follows directly from the Jacobi identity.

We can therefore conclude that every Lie bracket of elements of J in which at least one of the elements
F1, . . . , Fs appears more than once is zero. This implies in particular that the hypotheses of Theorem 6.4
are satisfied, concluding the proof that G is pliable. �
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