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INCOMPRESSIBLE IMMISCIBLE MULTIPHASE FLOWS IN POROUS MEDIA
A VARIATIONAL APPROACH

CLÉMENT CANCÈS, THOMAS O. GALLOUËT AND LÉONARD MONSAINGEON

We describe the competitive motion of N+1 incompressible immiscible phases within a porous medium
as the gradient flow of a singular energy in the space of nonnegative measures with prescribed masses,
endowed with some tensorial Wasserstein distance. We show the convergence of the approximation
obtained by a minimization scheme á la R. Jordan, D. Kinderlehrer and F. Otto (SIAM J. Math. Anal.
29:1 (1998) 1–17). This allows us to obtain a new existence result for a physically well-established
system of PDEs consisting of the Darcy–Muskat law for each phase, N capillary pressure relations, and a
constraint on the volume occupied by the fluid. Our study does not require the introduction of any global
or complementary pressure.

1. Introduction

Equations for multiphase flows in porous media. We consider a convex open bounded set � ⊂ Rd

representing a porous medium; N+1 incompressible and immiscible phases, labeled by subscripts
i ∈ {0, . . . , N } are supposed to flow within the pores. Let us present now some classical equations that
describe the motion of such a mixture. The physical justification of these equations can be found, for
instance, in [Bear and Bachmat 1990, Chapter 5]. Let T > 0 be an arbitrary finite time horizon. We
denote by si :�× (0, T )=: Q→ [0, 1] the content of the phase i , i.e., the volume ratio of the phase i
compared to all the phases and the solid matrix, and by vi the filtration speed of the phase i . Then the
conservation of the volume of each phase can be written as

∂t si +∇ · (sivi )= 0 in Q, ∀i ∈ {0, . . . , N }. (1)

The filtration speed of each phase is assumed to be given by Darcy’s law

vi =−
1
µi

K(∇ pi − ρi g) in Q, ∀i ∈ {0, . . . , N }. (2)

In the above relation, g is the gravity vector, µi denotes the constant viscosity of the phase i , pi its
pressure, and ρi its density. The intrinsic permeability tensor K :�→ Rd×d is supposed to be smooth,
symmetric, that is, K = KT, and uniformly positive definite: there exist κ?, κ? > 0 such that

κ?|ξ |
2
≤ K(x)ξ · ξ ≤ κ?|ξ |2 ∀ξ ∈ Rd, ∀x ∈�. (3)
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The pore volume is supposed to be saturated by the fluid mixture

σ :=

N∑
i=0

si = ω(x) a.e. in Q, (4)

where the porosity ω :�→ (0, 1) of the surrounding porous matrix is assumed to be smooth. In particular,
there exists 0<ω?≤ω? such that ω?≤ω(x)≤ω? for all x ∈�. In what follows, we set s= (s0, . . . , sN ),

1(x)=
{

s ∈ (R+)N+1 ∣∣ ∑N
i=0 si = ω(x)

}
,

and

X = {s ∈ L1(�;RN+1
+

) | s(x) ∈1(x) a.e. in �}.

There is an obvious one-to-one mapping between the sets 1(x) and

1∗(x)=
{

s∗=(s1, . . . , sN ) ∈ (R+)
N
∣∣ ∑N

i=1 si ≤ ω(x)
}
,

and consequently also between X and

X ∗ = {s∗ ∈ L1(�;RN
+
) | s∗(x) ∈1∗(x) a.e. in �}.

In what follows, we set ϒ =
⋃

x∈�1
∗(x)×{x}.

In order to close the system, we impose N capillary pressure relations

pi − p0 = πi (s∗, x) a.e. in Q, ∀i ∈ {1, . . . , N }, (5)

where the capillary pressure functions πi :ϒ→ R are assumed to be continuously differentiable and to
derive from a strictly convex potential 5 :ϒ→ R+; that is,

πi (s∗, x)=
∂5

∂si
(s∗, x) ∀i ∈ {1, . . . , N }.

We assume that 5 is uniformly convex with respect to its first variable. More precisely, we assume that
there exist two positive constants $? and $ ? such that, for all x ∈� and all s∗, ŝ∗ ∈1∗(x), one has

1
2$

?
|ŝ∗− s∗|2 ≥5(ŝ∗, x)−5(s∗, x)−π(s∗, x) · (ŝ∗− s∗)≥ 1

2$?|ŝ∗− s∗|2, (6)

where we introduced the notation

π :ϒ→ RN, (s∗, x) 7→ π(s∗, x)= (π1(s∗, x), . . . , πN (s∗, x)).

The relation (6) implies that π is monotone and injective with respect to its first variable. Denoting by

z 7→ φ(z, x)= (φ1(z, x), . . . , φN (z, x)) ∈1∗(x)

the inverse of π( · , x), it follows from (6) that

0< 1
$ ?
≤ Jzφ(z, x)≤ 1

$?
∀x ∈�, ∀z ∈ π(1∗(x), x), (7)
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where Jz stands for the Jacobian with respect to z and the above inequality should be understood in the
sense of positive definite matrices. Moreover, due to the regularity of π with respect to the space variable,
there exists Mφ > 0 such that

|∇xφ(z, x)| ≤ Mφ ∀x ∈�, ∀z ∈ π(1∗(x), x), (8)

where ∇x denotes the gradient with respect to the second variable only.

The problem is complemented with no-flux boundary conditions

vi · n= 0 on ∂�× (0, T ), ∀i ∈ {0, . . . , N }, (9)

and by the initial content profile s0
= (s0

0 , . . . , s0
N ) ∈X :

si ( · , 0)= s0
i ∀i ∈ {0, . . . , N }, with

N∑
i=0

s0
i = ω a.e. in �. (10)

Since we did not consider sources, and since we imposed no-flux boundary conditions, the volume of
each phase is conserved along time:∫

�

si (x, t) dx =
∫
�

s0
i (x) dx =: mi > 0 ∀i ∈ {0, . . . , N }. (11)

We can now give a proper definition of what we call a weak solution to the problem (1)–(2), (4)–(5),
and (9)–(10).

Definition 1.1 (weak solution). A measurable function s : Q→ (R+)
N+1 is said to be a weak solution

if s ∈1 a.e. in Q, if there exists p= (p0, . . . , pN ) ∈ L2((0, T ); H 1(�))N+1 such that the relations (5)
hold, and such that, for all φ ∈ C∞c (�×[0, T )) and all i ∈ {0, . . . , N }, one has∫∫

Q
si ∂tφ dx dt +

∫
�

s0
i φ( · , 0) dx−

∫∫
Q

si

µi
K(∇ pi − ρi g) ·∇φ dx dt = 0. (12)

Wasserstein gradient flow of the energy.

Energy of a configuration. First, we extend the convex function 5 : ϒ → [0,+∞], called capillary
energy density, to a convex function (still denoted by) 5 : RN+1

×�→ [0,+∞] by setting

5(s, x)=

5
(
ω

s∗

σ
, x
)
=5

(
ω

s1

σ
, . . . , ω

sN

σ
, x
)

if s ∈ RN+1
+ and σ ≤ ω(x),

+∞ otherwise,

σ being defined by (4). The extension of5 by+∞where σ >ω is natural because of the incompressibility
of the fluid mixture. The extension to {σ <ω}∪RN+1

+ is designed so that the energy density only depends
on the relative composition of the fluid mixture. However, this extension is somehow arbitrary, and,
as it will appear in the sequel, it has no influence on the flow since the solution s remains in X ; i.e.,∑N

i=0 si = ω. In our previous note [Cancès et al. 2015] the appearance of void σ < ω was directly
prohibited by a penalization in the energy.
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The second part in the energy comes from the gravity. In order to lighten the notation, we introduce
the functions

9i :�→ R+, x 7→ −ρi g · x, ∀i ∈ {0, . . . , N },

and

9 :�→ RN+1
+

, x 7→ (90(x), . . . , 9N (x)).

The fact that 9i can be assumed to be positive comes from the fact that � is bounded. Even though the
physically relevant potentials are indeed the gravitationals 9i (x) = −ρi g · x, the subsequent analysis
allows for a broader class of external potentials and for the sake of generality we shall therefore consider
arbitrary 9i ∈ C1(�) in the sequel.

We can now define the convex energy functional E : L1(�,RN+1)→R∪{+∞} by adding the capillary
energy to the gravitational one:

E(s)=
∫
�

(5(s, x)+ s ·9) dx ≥ 0 ∀s ∈ L1(�;RN+1). (13)

Note moreover that E(s) < ∞ if and only if s ≥ 0 and σ ≤ ω a.e. in �. It follows from the mass
conservation (11) that ∫

�

σ(x) dx =
N∑

i=0

mi =

∫
�

ω(x) dx.

Assume that there exists a nonnegligible subset A of � such that σ < ω on A; then necessarily, there
must be a nonnegligible subset B of � such that σ > ω so that the above equation holds, and hence
E(s)=+∞. Therefore,

E(s) <∞ ⇐⇒ s ∈X . (14)

Let p = (p0, . . . , pN ) : � → RN+1 be such that p ∈ ∂s5(s, x) for a.e. x in �. Then, defining
hi = pi+9i (x) for all i ∈ {0, . . . , N } and h= (hi )0≤i≤N , we have h belongs to the subdifferential ∂sE(s)
of E at s; i.e.,

E(ŝ)≥ E(s)+
N∑

i=0

∫
�

hi (ŝi − si ) dx ∀ŝ ∈ L1(�;RN+1).

The reverse inclusion also holds; hence

∂sE(s)= {h :�→ RN+1
| hi −9i (x) ∈ ∂s5(s, x) for a.e. x ∈�}. (15)

Thanks to (14), we know that a configuration s has finite energy if and only if s ∈X . Since we are
interested in finite energy configurations, it is relevant to consider the restriction of E to X . Then using
the one-to-one mapping between X and X ∗, we define the energy of a configuration s∗ ∈X ∗, which we
denote by E(s∗), by setting E(s∗)= E(s), where s is the unique element of X corresponding to s∗ ∈X ∗.
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Geometry of � and Wasserstein distance. Inspired by [Lisini 2009], where heterogeneous anisotropic
degenerate parabolic equations are studied from a variational point of view, we introduce N+1 distances
on � that take into account the permeability of the porous medium and the phase viscosities. Given two
points x, y in �, we denote by

P(x, y)= {γ ∈ C1([0, 1];�) | γ (0)=x and γ (1)= y}

the set of the smooth paths joining x to y, and we introduce distances di , i ∈ {0, . . . , N }, between elements
on � by setting

di (x, y)= inf
γ∈P(x, y)

(∫ 1

0
µi K

−1(γ (τ ))γ ′(τ ) · γ ′(τ ) dτ
)1/2

∀(x, y) ∈�. (16)

It follows from (3) that √
µi

κ?
|x− y| ≤ di (x, y)≤

√
µi

κ?
|x− y| ∀(x, y) ∈�2. (17)

For i ∈ {0, . . . , N } we define

Ai =
{
si ∈ L1(�;R+)

∣∣ ∫
�

si dx=mi
}
.

Given si , ŝi ∈Ai , the set of admissible transport plans between si and ŝi is given by

0i (si , ŝi )=
{
θi ∈M+(�×�)

∣∣ θi (�×�)=mi , θ
(1)
i =si and θ (2)i = ŝi

}
,

where M+(�×�) stands for the set of Borel measures on �×� and θ (k)i is the k-th marginal of the
measure θi . We define the quadratic Wasserstein distance Wi on Ai by setting

Wi (si , ŝi )=

(
inf

θi∈0(si ,ŝi )

∫∫
�×�

di (x, y)2 dθi (x, y)
)1/2

. (18)

Due to the permeability tensor K(x), the porous medium � might be heterogeneous and anisotropic.
Therefore, some directions and areas might be privileged by the fluid motions. This is encoded in the
distances di we put on �. Moreover, the more viscous the phase is, the more costly are its displacements,
hence the µi in the definition (16) of di . But it follows from (17) that√

µi

κ?
Wref(si , ŝi )≤Wi (si , ŝi )≤

√
µi

κ?
Wref(si , ŝi ) ∀si , ŝi ∈Ai , (19)

where Wref denotes the classical quadratic Wasserstein distance defined by

Wref(si , ŝi )=

(
inf

θi∈0(si ,ŝi )

∫∫
�×�

|x− y|2 dθi (x, y)
)1/2

. (20)

With the phase Wasserstein distances (Wi )0≤i≤N at hand, we can define the global Wasserstein
distance W on A :=A0× · · ·×AN by setting

W(s, ŝ)=
( N∑

i=0

Wi (si , ŝi )
2
)1/2

∀s, ŝ ∈A.
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Finally for technical reasons we also assume that there exists a smooth extension K̃ to Rd of the
permeability tensor such that (3) holds on Rd. This allows us to define distances d̃i on the whole Rd by

d̃i (x, y)= inf
γ∈P̃(x, y)

(∫ 1

0
µi K̃

−1(γ (τ ))γ ′(τ ) · γ ′(τ ) dτ
)1/2

∀x, y ∈ Rd, (21)

where P̃(x, y) = {γ ∈ C1([0, 1];Rd) | γ (0)=x and γ (1)= y}. In the sequel, we assume that the
extension K̃ of K is such that

� is geodesically convex in Mi = (R
d , d̃i ) for all i. (22)

In particular d̃i = di on � × �. Since K̃−1 is smooth, at least C2
b(R

d), the Ricci curvature of the
smooth complete Riemannian manifold Mi is uniformly bounded; i.e., there exists C depending only on
(µi )0≤i≤N and K̃ such that

|RicMi ,x(v)| ≤ Cµi K
−1v · v ∀x ∈ Rd, ∀v ∈ Rd. (23)

We deduce from the lower bound on the Ricci curvature and on the geodesic convexity of � that the
Boltzmann relative entropy Hω with respect to ωi , defined by

Hω(s)=
∫

Rd
s log

(
s
ω

)
dx for all measurable s :�→ R+, (24)

is λi -displacement convex on Pac(�) for some λi ∈ R. Here, Pac(�) denotes the set of probability
measures on � that are absolutely continuous with respect to the Lebesgue measure. Then mass scaling
implies that Hω is also λi -displacement convex on (Ai ,Wi ). We refer to [Villani 2009, Chapters 14
and 17] for further details on the Ricci curvature and its links with optimal transportation.

In the homogeneous and isotropic case K(x)= Id, condition (22) simply amounts to assuming that
� is convex. A simple sufficient condition implying (22) is given in Appendix A in the isotropic but
heterogeneous case K(x)= κ(x)Id .

Gradient flow of the energy. The content of this section is formal. Our aim is to write the problem as a
gradient flow, i.e.,

ds
dt
∈ − gradW E(s)=−

(
gradW0

E(s), . . . , gradWN
E(s)

)
, (25)

where gradW E(s) denotes the full Wasserstein gradient of E(s), and gradWi
E(s) stands for the partial

gradient of si 7→ E(s) with respect to the Wasserstein distance Wi . The Wasserstein distance Wi was built
so that ṡ = (ṡi )i ∈ gradW E(s) if and only if there exists h ∈ ∂sE(s) such that

∂t si =−∇ ·

(
si

K

µi
∇hi

)
∀i ∈ {0, . . . , N }.

Such a construction was already performed by Lisini in the case of a single equation. Owing to the defini-
tions (13) and (15) of the energy E(s) and its subdifferential ∂sE(s), the partial differential equations can
be (at least formally) recovered. This was, roughly speaking, the purpose of our note [Cancès et al. 2015].
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In order to define rigorously the gradient gradW E in (25), A has to be a Riemannian manifold. The
so-called Otto’s calculus [2001], see also [Villani 2009, Chapter 15], allows to put a formal Riemannian
structure on A . But as far as we know, this structure cannot be made rigorous and A is a mere metric
space. This leads us to consider generalized gradient flows in metric spaces; see [Ambrosio et al. 2008].
We won’t go deep into details in this direction, but we will prove that weak solutions can be obtained as
limits of a minimizing movement scheme presented in the next section. This characterizes the gradient
flow structure of the problem.

Minimizing movement scheme and main result.

The scheme and existence of a solution. For a fixed time-step τ > 0, the so-called minimizing movement
scheme [De Giorgi 1993; Ambrosio et al. 2008] or JKO scheme [Jordan et al. 1998] consists in computing
recursively (sn)n≥1 as the solution to the minimization problem

sn
= Argmin

s∈A

(
W(s, sn−1)2

2τ
+ E(s)

)
, (26)

the initial data s0 being given in (10).

Approximate solution and main result. Anticipating that the JKO scheme (26) is well-posed (this is
the purpose of Proposition 2.1 below), we can now define the piecewise constant interpolation sτ ∈
L∞((0, T );X ∩A) by

sτ (0, ·)= s0 and sτ (t, ·)= sn
∀t ∈ ((n− 1)τ, nτ ], ∀n ≥ 1. (27)

The main result of our paper is the following.

Theorem 1.2. Let (τk)k≥1 be a sequence of time steps tending to 0. Then there exists one weak solution s
in the sense of Definition 1.1 such that, up to an unlabeled subsequence, (sτk )k≥1 converges a.e. in Q
towards s as k tends to∞.

As a direct by-product of Theorem 1.2, the continuous problem admits (at least) one solution in the
sense of Definition 1.1. As far as we know, this existence result is new.

Remark 1.3. It is worth stressing that our final solution will satisfy a posteriori ∂t si ∈ L2((0, T ); H 1(�)′),
si ∈ L2((0, T ); H 1(�)), and thus si ∈ C([0, T ]; L2(�)). This regularity is enough to retrieve the so-called
energy-dissipation equality

d
dt

E(s(t))=−
N∑

i=0

∫
�

K
si (t)
µi
∇(pi (t)+9i ) · ∇(pi (t)+9i ) dx ≤ 0 for a.e. t ∈ (0, T ),

which is another admissible formulation of gradient flows in metric spaces [Ambrosio et al. 2008].

Goal and positioning of the paper. The aims of the paper are twofold. First, we aim to provide a
rigorous foundation to the formal variational approach introduced in the authors’ recent note [Cancès et al.
2015]. This gives new insights into the modeling of complex porous media flows and their numerical
approximation. Our approach appears to be very natural since only physically motivated quantities appear
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in the study. Indeed, we manage to avoid the introduction of the so-called Kirchhoff transform and global
pressure, which classically appear in the mathematical study of multiphase flows in porous media; see,
for instance, [Chavent 1976; 2009; Antoncev and Monahov 1978; Chavent and Jaffré 1986; Fabrie and
Saad 1993; Gagneux and Madaune-Tort 1996; Chen 2001; Amaziane et al. 2012; 2014].

Second, the existence result that we deduce from the convergence of the variational scheme is new as
soon as there are at least three phases (N ≥ 2). Indeed, since our study does not require the introduction of
any global pressure, we get rid of many structural assumptions on the data, among which is the so-called
total differentiability condition; see, for instance, Assumption (H3) in [Fabrie and Saad 1993]. This
structural condition is not naturally satisfied by the models, and suitable algorithms have to be employed
in order to adapt the data to this constraint [Chavent and Salzano 1985]. However, our approach suffers
from another technical difficulty: we are limited to the case of linear relative permeabilities. The extension
to the case of nonlinear concave relative permeabilities, i.e., where (1) is replaced by

∂t si +∇ · (ki (si )vi )= 0,

may be reachable thanks to the contributions of Dolbeault, Nazaret, and Savaré [Dolbeault et al. 2009], see
also [Zinsl and Matthes 2015b], but we did not push in this direction since the relative permeabilities ki

are in general supposed to be convex in models coming from engineering.

Since the seminal paper of Jordan, Kinderlehrer, and Otto [Jordan et al. 1998], gradient flows in metric
spaces (and particularly in the space of probability measures endowed with the quadratic Wasserstein
distance) were the object of many studies. Let us for instance refer to the monograph of Ambrosio,
Gigli, and Savaré [Ambrosio et al. 2008] and to Villani’s book [2009, Part II] for a complete overview.
Applications are numerous. We refer for instance to [Otto 1998] for an application to magnetic fluids,
to [Sandier and Serfaty 2004; Ambrosio and Serfaty 2008; Ambrosio et al. 2011] for applications to
superconductivity to [Blanchet et al. 2008; Blanchet 2013; Zinsl and Matthes 2015a] for applications to
chemotaxis, to [Lisini et al. 2012] for phase field models, to [Maury et al. 2010] for a macroscopic model
of crowd motion, to [Bolley et al. 2013] for an application to granular media, to [Carrillo et al. 2011]
for aggregation equations, and to [Kinderlehrer et al. 2017] for a model of ionic transport that applies
in semiconductors. In the context of porous media flows, this framework has been used by Otto [2001]
to study the asymptotic behavior of the porous medium equation, which is a simplified model for the
filtration of a gas in a porous medium. The gradient flow approach in Wasserstein metric spaces was used
more recently by Laurençot and Matioc [2013] on a thin film approximation model for two-phase flows
in porous media. Finally, let us mention that similar ideas were successfully applied for multicomponent
systems; see, e.g., [Carlier and Laborde 2015; Laborde 2016; Zinsl and Matthes 2015b; Zinsl 2014].

The variational structure of the system governing incompressible immiscible two-phase flows in porous
media was recently depicted by the authors in their note [Cancès et al. 2015]. Whereas the purpose of
that paper is formal, our goal is here to give a rigorous foundation to the variational approach for complex
flows in porous media. Finally, let us mention the work of Gigli and Otto [2013], where it was noticed
that multiphase linear transportation with saturation constraint, as we have here thanks to (1) and (4),
yields nonlinear transport with mobilities that appear naturally in the two-phase flow context.
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The paper is organized as follows. In Section 2, we derive estimates on the solution sτ for a fixed τ .
Beyond the classical energy and distance estimates detailed in the first subsection, in the second subsection
we obtain enhanced regularity estimates thanks to an adaptation of the so-called flow interchange technique
of Matthes, McCann, and Savaré [Matthes et al. 2009] to our inhomogeneous context. Because of the
constraint on the pore volume (4), the auxiliary flow we use is no longer the heat flow, and a drift term
has to be added. An important effort is then done in Section 3 to derive the Euler–Lagrange equations
that follow from the optimality of sn. Our proof is inspired by the work of Maury, Roudneff-Chupin, and
Santambrogio [Maury et al. 2010]. It relies on an intensive use of the dual characterization of the optimal
transportation problem and the corresponding Kantorovich potentials. However, additional difficulties
arise from the multiphase aspect of our problem, in particular when there are at least three phases (i.e.,
N ≥ 2). These are bypassed using a generalized multicomponent bathtub principle (Theorem B.1 in
Appendix B) and computing the associated Lagrange multipliers in the first subsection. This key step
then allows to define the notion of discrete phase and capillary pressures in the second subsection. Then
Section 4 is devoted to the convergence of the approximate solutions (sτk )k towards a weak solution s
as τk tends to 0. The estimates we obtained in Section 2 are integrated with respect to time in the first
subsection. In the second subsection, we show that these estimates are sufficient to enforce the relative
compactness of (sτk )k in the strong L1(Q)N+1 topology. Finally, it is shown in the third subsection that
any limit s of (sτk )k is a weak solution in the sense of Definition 1.1.

2. One-step regularity estimates

The first thing to do is to show that the JKO scheme (26) is well-posed. This is the purpose of the
following proposition.

Proposition 2.1. Let n ≥ 1 and sn−1
∈X ∩A . Then there exists a unique solution sn to the scheme (26).

Moreover, one has sn
∈X ∩A .

Proof. Any sn−1
∈X ∩A has finite energy thanks to (14). Let (sn,k)k ⊂A be a minimizing sequence in

(26). Plugging sn−1 into (26), it is easy to see that E(sn,k)≤E(sn−1)<∞ for large k; thus (sn,k)k ⊂X ∩A
thanks to (14). Hence, one has 0 ≤ sn,k

i (x) ≤ ω(x) for all k. By the Dunford–Pettis theorem, we can
therefore assume that sn,k

i ⇀ sn
i weakly in L1(�). It is then easy to check that the limit sn of sn,k belongs

to X ∩A . The lower semicontinuity of the Wasserstein distance with respect to weak L1 convergence is
well known, see, e.g., [Santambrogio 2015, Proposition 7.4], and since the energy functional is convex
and thus lower semicontinuous, we conclude that sn is indeed a minimizer. Uniqueness follows from the
strict convexity of the energy as well as from the convexity of the Wasserstein distances (with respect to
linear interpolation sθ = (1− θ)s0+ θ s1). �

The rest of this section is devoted to improving the regularity of the successive minimizers.

Energy and distance estimates. Plugging s = sn−1 into (26) we obtain

W(sn, sn−1)2

2τ
+ E(sn)≤ E(sn−1). (28)
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As a consequence we have the monotonicity

· · · ≤ E(sn)≤ E(sn−1)≤ · · · ≤ E(s0) <∞

at the discrete level; thus sn
∈X for all n ≥ 0 thanks to (14). Summing (28) over n we also obtain the

classical total square distance estimate

1
τ

∑
n≥0

W2(sn+1, sn)≤ 2E(s0)≤ C(�,5,9), (29)

where the last inequality comes from the fact that s0 is uniformly bounded since it belongs to X , and
thus so is E(s0). This readily gives the approximate 1

2 -Hölder estimate

W(sn1, sn2)≤ C
√
|n2− n1|τ . (30)

Flow interchange, entropy estimate and enhanced regularity. The goal of this section is to obtain some
additional Sobolev regularity on the capillary pressure field π(sn∗, x), where sn∗

= (sn
1 , . . . , sn

N ) is the
unique element of X ∗ corresponding to the minimizer sn of (26). In what follows, we set

πn
i :�→ R, x 7→ πi (sn∗(x), x), ∀i ∈ {1, . . . , N }

and πn
= (πn

1 , . . . , π
n
N ). Bearing in mind that ω(x)≥ ω? > 0 in �, we can define the relative Boltzmann

entropy Hω with respect to ω by (24).

Lemma 2.2. There exists C depending only on �,5,ω,K, (µi )i , and 9 such that, for all n ≥ 1 and all
τ > 0, one has

N∑
i=0

‖∇πn
i ‖

2
L2(�)
≤ C

(
1+

W2(sn, sn−1)

τ
+

N∑
i=0

Hω(sn−1
i )−Hω(sn

i )

τ

)
. (31)

Proof. The argument relies on the flow interchange technique introduced by Matthes, McCann, and
Savaré [Matthes et al. 2009]. Throughout the proof, C denotes a fluctuating constant that depends on the
prescribed data �,5,ω,K, (µi )i , and 9, but neither on t , τ , nor on n. For i = 0, . . . , N consider the
auxiliary flows 

∂t ši = div(K∇ ši − ši K∇ logω), t > 0, x ∈�,
K(∇ ši − ši∇ logω) · ν = 0, t > 0, x ∈ ∂�,
ši |t=0 = sn

i , x ∈�
(32)

for each i ∈ {0, . . . , N }. By standard parabolic theory, see for instance [Ladyženskaja et al. 1968,
Chapter III, Theorem 12.2], these initial-boundary value problems are well-posed, and their solutions ši (x)
belong to C1,2((0, 1]×�)∩C([0, 1]; L p(�)) for all p ∈ (1,∞) if ω ∈ C2,α(�) and K ∈ C1,α(�) for some
α > 0. Therefore, t 7→ ši ( · , t) is absolutely continuous in L1(�), and thus in Ai endowed with the usual
quadratic distance Wref (20) thanks to [Santambrogio 2015, Proposition 7.4]. Because of (19), the curve
t 7→ ši ( · , t) is also absolutely continuous in Ai endowed with Wi .
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From Lisini’s results [2009], we know that the evolution t 7→ ši ( · , t) can be interpreted as the gradient
flow of the relative Boltzmann functional (1/µi )Hω with respect to the metric Wi , the scaling factor 1/µi

appearing due to the definition (18) of the distance Wi . As a consequence of (23), The Ricci curvature
of (�, di ) is bounded, and hence bounded from below. Since ω ∈ C2(�), and with our assumption (22),
we also have that (1/µi )Hω is λi -displacement convex with respect to Wi for some λi ∈ R depending
on ω and the geometry of (�, di ); see [Villani 2009, Chapter 14]. Therefore, we can use the so-called
evolution variational inequality characterization of gradient flows, see for instance [Ambrosio and Gigli
2013, Definition 4.5], centered at sn−1

i , namely

1
2

d
dt

W 2
i (ši (t), sn−1

i )+
λi

2
W 2

i (ši (t), sn−1
i )≤

1
µi

Hω(sn−1
i )−

1
µi

Hω(ši (t)).

Define š = (š0, . . . , šN ) and š∗ = (š1, . . . , šN ). Summing the previous inequality over i ∈ {0, . . . , N }
leads to

d
dt

(
1

2τ
W2(š(t), sn−1)

)
≤ C

(
W2(š(t), sn−1)

τ
+

N∑
i=0

Hω(sn−1
i )−Hω(ši (t))

τ

)
. (33)

In order to estimate the internal energy contribution in (26), we first note that
∑

sn
i (x) = ω(x) for

all x ∈�; thus by the linearity of (32) and since ω is a stationary solution we have
∑

ši (x, t)= ω(x)
as well. Moreover, the problem (32) is monotone, thus order preserving, and admits 0 as a subsolution.
Hence ši (x, t)≥ 0, so that š(t)∈A∩X is an admissible competitor in (26) for all t > 0. The smoothness
of š for t > 0 allows us to write

d
dt

(∫
�

5(š∗(x, t), x) dx
)
=

N∑
i=1

∫
�

π̌i (x, t) ∂t ši (x, t) dx = I1(t)+ I2(t), (34)

where π̌i := πi (š∗, · ), and where, for all t > 0, we have set

I1(t)=−
N∑

i=1

∫
�

∇π̌i (t) ·K∇ši (t) dx, I2(t)=−
N∑

i=1

∫
�

ši (t)
ω

∇π̌i (t) ·K∇ω dx.

To estimate I1, we first use the invertibility of π to write

š(x, t)= φ(π̌(x, t), x)=: φ̌(x, t),

yielding
∇ š(x, t)= Jzφ(π̌(x, t), x)∇π̌(x, t)+∇xφ(π̌(x, t), x). (35)

Combining (3), (7), (8) and the elementary inequality

ab ≤ δ
a2

2
+

b2

2δ
with δ > 0 arbitrary, (36)

we get that for all t > 0,

I1(t)≤−
κ?

$ ?

∫
�

|∇π̌(t)|2 dx+ κ?
(
δ

∫
�

|∇π̌(t)|2 dx+
1
δ

∫
�

|∇xφ(π̌(t))|2 dx
)
.
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Choosing δ = κ?/(4κ?$ ?), we get that

I1(t)≤−
3κ?
4$ ?

∫
�

|∇π̌(t)|2 dx+C ∀t > 0. (37)

In order to estimate I2, we use that š(t)∈X for all t > 0, so that 0≤ ši (x, t)≤ω(x); hence we deduce
that

∑N
i=1(ši/ω)

2
≤ 1. Therefore, using (36) again, we get

I2(t)≤ δκ?
∫
�

|∇π̌(t)|2 dx+
κ?

δ

∫
�

|∇ω|2 dx.

Choosing again δ = κ?/(4κ?$ ?) yields

I2(t)≤
κ?

4$ ?

∫
�

|∇π̌(t)|2 dx+C. (38)

Taking (37)–(38) into account in (34) provides

d
dt

(∫
�

5(š∗(x, t), x) dx
)
≤−

κ?

2$ ?

∫
�

|∇π̌(t)|2 dx+C ∀t > 0. (39)

Let us now focus on the potential (gravitational) energy. Since š(t) belongs to X ∩A for all t > 0, we
can make use of the relation

š0(x, t)= ω(x)−
N∑

i=1

ši (x, t) ∀(x, t) ∈�×R+,

to write: for all t > 0,

N∑
i=0

∫
�

ši (x, t)9i (x) dx =
N∑

i=1

∫
�

ši (x, t)(9i −90)(x) dx+
∫
�

ω(x)90(x) dx.

This leads to

d
dt

( N∑
i=0

∫
�

ši (t)9i dx
)
=

N∑
i=1

∫
�

(9i (x)−90(x)) ∂t si (x, t) dx = J1(t)+ J2(t), (40)

where, using the equations (32), we have set

J1(t)= −
N∑

i=1

∫
�

∇(9i −90) ·K∇ši (t) dx, J2(t)=
N∑

i=1

∫
�

ši (t)
ω

∇(9i −90) ·K∇ω dx.

The term J1 can be estimated using (36). More precisely, for all δ > 0, we have

J1(t)≤ κ?
(
δ‖∇ š∗(t)‖2L2 +

1
δ

N∑
i=1

‖∇(9i −90)‖
2
L2

)
. (41)

Using (35) together with (7)–(8), we get that

‖∇ š∗‖2L2 ≤

( 1
$?
‖∇π̌‖L2 + |�|Mφ

)2
≤

2
($?)2

‖∇π̌‖2L2 + 2(|�|Mφ)
2.
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Therefore, choosing δ = ($?)
2κ?/(8κ?$ ?) in (41), we infer from the regularity of 9 that

J1(t)≤
κ?

4$ ?

∫
�

|∇π̌(t)|2 dx+C ∀t > 0. (42)

Finally, it follows from the fact that
∑N

i=1 ši ≤ ω, from the Cauchy–Schwarz inequality, and from the
regularity of 9, ω that

J2(t)≥−κ?
N∑

i=1

‖∇9i −∇90‖L2 ‖∇ω‖L2 = C. (43)

Combining (40), (42), and (43) with (39), we get that

d
dt

E(š(t))≤−
κ?

4$ ?

∫
�

|∇π̌(t)|2 dx+C ∀t > 0. (44)

Denote by

Fn
τ (s) :=

1
2τ

W2(s, sn−1)+ E(s) (45)

the functional to be minimized in (26); then combining (33) and (44) provides

d
dt

F n
τ (š(t))+

κ?

4$ ?
‖∇π̌‖2L2 ≤ C

(
1+

W2(š(t), sn−1)

τ
+

N∑
i=0

Hω(sn−1
i )−Hω(ši (t))

τ

)
∀t > 0.

Since š(0)= sn is a minimizer of (26), we must have

0≤ lim sup
t→0+

(
d
dt

Fn
τ (š(t))

)
,

otherwise š(t) would be a strictly better competitor than sn for small t > 0. As a consequence, we get

lim inf
t→0+

‖∇π̌(t)‖2L2 ≤ C lim sup
t→0+

(
1+

W2(š(t), sn−1)

τ
+

N∑
i=0

Hω(sn−1
i )−Hω(ši (t))

τ

)
.

Since ši belongs to C([0, 1]; L p(�)) for all p ∈ [1,∞), see for instance [Cancès and Gallouët 2011], the
continuity of the Wasserstein distance and of the Boltzmann entropy with respect to strong L p-convergence
imply that

W2(š(t), sn−1) t→0+
−−→W2(sn, sn−1) and Hω(ši (t)) t→0+

−−→Hω(sn
i ).

Therefore, we obtain that

lim inf
t→0+

‖∇π̌(t)‖2L2 ≤ C
(

1+
W2(sn, sn−1)

τ
+

N∑
i=0

Hω(sn−1
i )−Hω(sn

i )

τ

)
. (46)

It follows from the regularity of π that

π(š∗(t), x)= π̌(t) t→0+
−−→πn

= π(sn∗, x) in L p(�).
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Finally, let (t`)`≥1 be a decreasing sequence tending to 0 realizing the lim inf in (46); then the sequence
(∇π̌(t`))`≥1 converges weakly in L2(�)N×d towards ∇πn. The lower semicontinuity of the norm with
respect to the weak convergence leads to

N∑
i=1

‖∇πn
i ‖

2
L2 ≤ lim

`→∞
‖∇π̌(t`)‖2L2

= lim inf
t→0+

‖∇π̌(t)‖2L2 ≤ C
(

1+
W2(sn, sn−1)

τ
+

N∑
i=0

Hω(sn−1
i )−Hω(sn

i )

τ

)
. �

3. The Euler–Lagrange equations and pressure bounds

The goal of this section is to extract information coming from the optimality of sn in the JKO mini-
mization (26). The main difficulty consists in constructing the phase and capillary pressures from this
optimality condition. Our proof is inspired by [Maury et al. 2010] and makes extensive use of the
Kantorovich potentials. Therefore, we first recall their definition and some useful properties. We refer to
[Santambrogio 2015, §1.2; Villani 2009, Chapter 5] for details.

Let (ν1, ν2) ∈M+(�)
2 be two nonnegative measures with same total mass. A pair of Kantorovich

potentials (ϕi , ψi ) ∈ L1(ν1)× L1(ν2) associated to the measures ν1 and ν2 and to the cost function 1
2 d2

i
defined by (16), i ∈ {0, . . . , N }, is a solution of the Kantorovich dual problem

DPi (ν1, ν2)= max
(ϕi ,ψi )∈L1(ν1)×L1(ν2)

ϕi (x)+ψi ( y)≤ 1
2 d2

i (x, y)

∫
�

ϕi (x)ν1(x) dx+
∫
�

ψi ( y)ν2( y) d y.

We will use the three following important properties of the Kantorovich potentials:

(a) There is always duality; that is,

DPi (ν1, ν2)=
1
2 W 2

i (ν1, ν2) ∀i ∈ {0, . . . , N }.

(b) A pair of Kantorovich potentials (ϕi , ψi ) is dν1⊗ dν2 unique, up to additive constants.

(c) The Kantorovich potentials ϕi and ψi are 1
2 d2

i -conjugate; that is,

ϕi (x)= inf
y∈�

1
2 d2

i (x, y)−ψi ( y) ∀ x ∈�,

ψi ( y)= inf
x∈�

1
2 d2

i (x, y)−ϕi (x) ∀ y ∈�.

Remark 3.1. Since � is bounded, the cost functions (x, y) 7→ 1
2 d2

i (x, y), i ∈ {1, . . . , N }, are globally
Lipschitz continuous; see (17). Thus item (c) shows that ϕi and ψi are also Lipschitz continuous.

A decomposition result. The next lemma is an adaptation of [Maury et al. 2010, Lemma 3.1] to our
framework. It essentially states that, since sn is a minimizer of (26), it is also a minimizer of the linearized
problem.



INCOMPRESSIBLE IMMISCIBLE MULTIPHASE FLOWS IN POROUS MEDIA: A VARIATIONAL APPROACH 1859

Lemma 3.2. For n ≥ 1 and i = 0, . . . , N there exist some (backward, optimal) Kantorovich potentials ϕn
i

from sn
i to sn−1

i such that, using the convention πn
0 = (∂5/∂s0)(sn

1 , . . . , sn
N , x)= 0, setting

Fn
i :=

ϕn
i

τ
+πn

i +9i , ∀i ∈ {0, . . . , N }, (47)

and defining Fn
= (Fn

i )0≤i≤N , we have

sn
∈ Argmin

s∈X∩A

∫
�

Fn(x) · s(x) dx. (48)

Moreover, Fn
i ∈ L∞ ∩ H 1(�) for all i ∈ {0, . . . , N }.

Proof. We assume first that sn−1
i (x) > 0 everywhere in � for all i ∈ {1, . . . , N }, so that the Kantorovich

potentials (ϕn
i , ψ

n
i ) from sn

i to sn−1
i are uniquely determined after normalizing ϕn

i (xref) = 0 for some
arbitrary point xref ∈�; see [Santambrogio 2015, Proposition 7.18]. Given any s = (si )1≤0≤N ∈X ∩A
and ε ∈ (0, 1) we define the perturbation

sε := (1− ε)sn
+ εs.

Note that X∩A is convex; thus sε is an admissible competitor for all ε∈ (0, 1). Let (ϕεi , ψ
ε
i ) be the unique

Kantorovich potentials from sεi to sn−1
i , similarly normalized as ϕεi (xref)= 0. Then by characterization of

the squared Wasserstein distance in terms of the dual Kantorovich problem we have
1
2 W 2

i (s
ε
i , sn−1

i )=

∫
�

ϕεi (x)s
ε
i (x) dx+

∫
�

ψεi ( y)sn−1
i ( y) d y,

1
2 W 2

i (s
n
i , sn−1

i )≥

∫
�

ϕεi (x)s
n
i (x) dx+

∫
�

ψεi ( y)sn−1
i ( y) d y.

By definition of the perturbation sε it is easy to check that sεi − sn
i = ε(si − sn

i ). Subtracting the previous
inequalities we get

W 2
i (s

ε
i , sn−1

i )−W 2
i (s

n
i , sn−1

i )

2τ
≤
ε

τ

∫
�

ϕεi (si − sn
i ) dx. (49)

Define sε∗ = (sε1, . . . , sεN ), π
ε
= π(sε∗, · ), and extend to the zeroth component π̄ ε = (0,π ε). The

convexity of 5 as a function of s1, . . . , sN implies∫
�

(
5(sn∗, x)−5(sε∗, x)

)
dx≥

∫
�

π ε ·(sn∗
−sε∗) dx=

∫
�

π̄ ε ·(sn
−sε) dx=−ε

∫
�

π̄ ε ·(s−sn) dx. (50)

For the potential energy, we obtain by linearity that∫
�

(sε − sn) ·9 dx = ε
∫
�

(s− sn) ·9 dx. (51)

Summing (49)–(51), dividing by ε, and recalling that sn minimizes the functional Fn
τ defined by (45), we

obtain

0≤
Fn
τ (sε)−Fn

τ (sn)

ε
≤

N∑
i=0

∫
�

(
ϕεi

τ
+ π̄ εi +9i

)
(si − sn

i ) dx (52)
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for all s ∈X ∩A and all ε ∈ (0, 1). Because� is bounded, any Kantorovich potential is globally Lipschitz
with bounds uniform in ε; see, for instance, the proof of [Santambrogio 2015, Theorem 1.17]. Since sε

converges uniformly towards sn when ε tends to 0, we infer from Theorem 1.52 of the same paper that
ϕεi converges uniformly towards ϕn

i as ε tends to 0, where ϕn
i is a Kantorovich potential from sn

i to sn−1
i .

Moreover, since π is uniformly continuous in s, we also know that π ε converges uniformly towards πn

and thus π̄ ε→ π̄n
= (0,πn) as well. Then we can pass to the limit in (52) and infer that

0≤
∫
�

Fn
· (s− sn) dx ∀s ∈X ∩A (53)

and (48) holds.
If sn−1

i > 0 does not hold everywhere, we argue by approximation. Running the flow (32) for a short
time δ > 0 starting from sn−1, we construct an approximation sn−1,δ

= (sn−1,δ
0 , . . . , sn−1,δ

N ) converging to
sn−1
= (sn−1

0 , . . . , sn−1
N ) in L1(�) as δ tends to 0. By construction sn−1,δ

∈X ∩A , and it follows from
the strong maximum principle that sn−1,δ

i > 0 in � for all δ > 0. By Proposition 2.1 there exists a unique
minimizer sn,δ to the functional

F n,δ
τ :X ∩A→ R+, s 7→ 1

2τ
W2(s, sn−1,δ)+ E(s).

Since sn−1,δ > 0, there exist unique Kantorovich potentials (ϕn,δ
i , ψ

n,δ
i ) from sn,δ

i to sn−1,δ
i . This allows

us to construct Fn,δ using (47), where ϕn
i and πn

i have been replaced by ϕn,δ
i and πn,δ

i . Thanks to the
above discussion,

0≤
∫
�

Fn,δ∗
· (s∗− sn,δ∗) dx ∀s∗ ∈X ∗ ∩A∗. (54)

We can now let δ tend to 0. Because of the time continuity of the solutions to (32), we know that sn−1,δ

converges towards sn−1 in L1(�). On the other hand, from the definition of sn,δ and Lemma 2.2 (in
particular (31) with sn−1,δ, sn,δ, πn,δ instead of sn−1, sn, πn) we see that πn,δ is bounded in H 1(�)N+1

uniformly in δ > 0. Using next the Lipschitz continuity (8) of φ, one deduces that sn,δ is uniformly
bounded in H 1(�)N+1. Then, thanks to Rellich’s compactness theorem, we can assume that sn,δ converges
strongly in L2(�)N+1 as δ tends to 0. By the strong convergence sn−1,δ

→ sn−1 and standard properties
of the squared Wasserstein distance, one readily checks that F n,δ

τ 0-converges towards Fn
τ , and we can

therefore identify the limit of sn,δ as the unique minimizer sn of Fn
τ . Thanks to Lebesgue’s dominated

convergence theorem, we also infer that πn,δ
i converges in L2(�) towards πn

i . Using once again the
stability of the Kantorovich potentials [Santambrogio 2015, Theorem 1.52], we know that ϕn,δ

i converges
uniformly towards some Kantorovich potential ϕn

i . Then we can pass to the limit in (54) and claim
that (53) is satisfied even when some coordinates of sn−1 vanish on some parts of �.

Finally, note that since the Kantorovich potentials ϕn
i are Lipschitz continuous and because πn

i ∈ H 1

(see Lemma 2.2) and 9 is smooth, we have Fn
i ∈ H 1. Since the phases are bounded 0≤ sn

i (x)≤ ω(x)
and π is continuous we have πn

∈ L∞; thus Fn
i ∈ L∞ as well and the proof is complete. �

We can now suitably decompose the vector field Fn
= (Fn

i )0≤i≤N defined by (47).
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Corollary 3.3. Let Fn
= (Fn

0 , . . . , Fn
N ) be as in Lemma 3.2. There exists αn

∈ RN+1 such that, setting
λn(x) :=min j (Fn

j (x)+α
n
j ), we have λn

∈ H 1(�) and

Fn
i +α

n
i = λ

n dsn
i -a.e. in �, ∀i ∈ {0, . . . , N }, (55)

∇Fn
i =∇λn dsn

i -a.e. in �, ∀i ∈ {0, . . . , N }. (56)

Proof. By Lemma 3.2 we know that sn minimizes s 7→
∫

Fn
· s among all admissible s ∈ X ∩A .

Applying the multicomponent bathtub principle, Theorem B.1 in Appendix B, we infer that there exists
αn
= (αn

0 , . . . , α
n
N ) ∈RN+1 such that Fn

i +α
n
i = λ

n for dsn
i -a.e. x ∈� and λn

=min j (Fn
j +α

n
j ) as in our

statement. Note first that λn
∈ H 1(�) as the minimum of finitely many H 1 functions F0, . . . , FN ∈ H 1(�).

From the usual Serrin’s chain rule we have moreover that

∇λn
=∇ min

j
(Fn

j +α
n
j )=∇Fi .χ[Fn

i +α
n
i =λ

n],

and since sn
i = 0 inside [Fn

i +α
n
i 6= λ

n
], the proof is complete. �

The discrete capillary pressure law and pressure estimates. In this section, some calculations in the
Riemannian settings (�, di ) will be carried out. In order to make them as readable as possible, we have
to introduce a few basics. We refer to [Villani 2009, Chapter 14] for a more detailed presentation.

Let i ∈ {0, . . . , N }; then consider the Riemannian geometry (�, di ), and let x ∈ �. We denote by
gi,x : R

d
×Rd

→ R the local metric tensor defined by

gi,x(v, v)= µi K
−1(x)v · v = Gi (x)v · v ∀v ∈ Rd.

In this framework, the gradient ∇giϕ of a function ϕ ∈ C1(�) is defined by

ϕ(x+ hv)= ϕ(x)+ hgi,x(∇gi,xϕ(x), v)+ o(h) ∀v ∈ Sd−1, ∀x ∈�.

It is easy to check that this leads to the formula

∇giϕ =
1
µi

K∇ϕ, (57)

where ∇ϕ stands for the usual (euclidean) gradient. The formula (57) can be extended to Lipschitz
continuous functions ϕ thanks to Rademacher’s theorem.

For ϕ belonging to C2, we can also define the Hessian D2
gi
ϕ of ϕ in the Riemannian setting by

gi,x(D2
gi
ϕ(x) · v, v)=

d2

dt2ϕ(γt)

∣∣∣∣
t=0

for any geodesic γt = expi,x(tv) starting from x with initial speed v ∈ Ti,x�.

Denote by ϕn
i the backward Kantorovich potential sending sn

i to sn−1
i associated to the cost 1

2 d2
i . By

the usual definition of the Wasserstein distance through the Monge problem, one has

W 2
i (s

n
i , sn−1

i )=

∫
�

d2
i (x, tn

i (x))s
n
i (x) dx,
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where tn
i denotes the optimal map sending sn

i to sn−1
i . It follows from [Villani 2009, Theorem 10.41] that

tn
i (x)= expi,x(−∇giϕ

n
i (x)) ∀x ∈�. (58)

Moreover, using the definition of the exponential and the relation (57), one gets that

d2
i
(
x, expi,x(−∇giϕ

n
i (x))= gi,x

(
∇giϕ

n
i (x),∇giϕ

n
i (x)

)
=

1
µi

K(x)∇ϕn
i (x) ·∇ϕ

n
i (x).

This yields the formula

W 2
i (s

n
i , sn−1

i )=

∫
�

sn
i

µi
K∇ϕn

i ·∇ϕ
n
i dx ∀i ∈ {0, . . . , N }. (59)

We have now introduced the necessary material in order to reconstruct the phase and capillary pressures.
This is the purpose of the following Proposition 3.4 and then of Corollary 3.5.

Proposition 3.4. For n ≥ 1 let ϕn
i : s

n
i → sn−1

i be the (backward) Kantorovich potentials from Lemma 3.2.
There exists h = (hn

0, . . . , hn
N ) ∈ H 1(�)N+1 such that

(i) ∇hn
i =−∇ϕn

i /τ for dsn
i -a.e. x ∈�,

(ii) hn
i (x)− hn

0(x)= π
n
i (x)+9i (x)−90(x) for dx-a.e. x ∈�, i ∈ {1, . . . , N },

(iii) there exists C depending only on �,5,ω,K, (µi )i , and 9 such that, for all n ≥ 1 and all τ > 0,
one has

‖hn
‖

2
H1(�)N+1 ≤ C

(
1+

W2(sn, sn−1)

τ 2 +

N∑
i=0

Hω(sn−1
i )−Hω(sn

i )

τ

)
.

Proof. Let ϕn
i be the Kantorovich potentials from Lemma 3.2 and Fn

i ∈ L∞ ∩ H 1(�) as in (47), as well
as αn

∈ RN+1 and λn
=min j (Fn

j +α
n
j ) ∈ L∞ ∩ H 1(�) as in Corollary 3.3. Setting

hn
i := −

ϕn
i

τ
+ Fn

i − λ
n
∀i ∈ {0, . . . , N },

we have hn
i ∈ H 1(�) as the sum of Lipschitz functions (the Kantorovich potentials ϕn

i ) and H 1 functions
Fn

i , λ
n . Recalling that we use the notation π0 = ∂5/∂s0 = 0, we see from the definition (47) of Fn

i that

hn
i − hn

0 =

(
Fn

i −
ϕn

i

τ

)
−

(
Fn

0 −
ϕn

0

τ

)
= (πn

i +9i )− (π
n
0 +90)= π

n
i +9i −90 (60)

for all i ∈ {1, . . . , N } and dx-a.e. x , which is exactly our statement (ii).
For (i), we simply use (56) to compute

∇hn
i =−

∇ϕn
i

τ
+∇(Fn

i − λ
n
i )=−

∇ϕn
i

τ
for dsn

i -a.e. x ∈�, ∀i ∈ {0, . . . , N }. (61)

In order to establish now the H 1 estimate (iii), let us define

Ui = {x ∈� | sn
i (x)≥ ω?/(N + 1)}.
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Then since
∑

sn
i (x)= ω(x)≥ ω? > 0, one gets that, up to a negligible set,

N⋃
i=0

Ui =�, hence (Ui )
c
⊂

⋃
j 6=i

U j . (62)

We first estimate ∇hn
0 . To this end, we write

‖∇hn
0‖

2
L2 ≤

1
κ?

∫
�

K∇hn
0 ·∇hn

0 dx ≤ A+ B, (63)

where we have set

A = 1
κ?

∫
U0

K∇hn
0 ·∇hn

0 dx, B = 1
κ?

∫
(U0)c

K∇hn
0 ·∇hn

0 dx.

Owing to (61) one has ∇hn
0 =−∇ϕ0/τ on U0 ⊂�, where sn

0 ≥ ω?/(N + 1). Therefore,

A ≤
(N + 1)µ0

ω?κ?

∫
U0

sn
0

µ0
K∇hn

0 ·∇hn
0 dx ≤

(N + 1)µ0

τ 2ω?κ?

∫
�

sn
0

µ0
K∇ϕn

0 ·∇ϕ
n
0 dx.

Then it results from formula (59) that

A ≤
C
τ 2 W 2

0 (s
n
0 , sn−1

0 ), (64)

where C depends neither on n nor on τ . Combining (62) and (60), we infer

B ≤ 1
κ?

N∑
i=1

∫
Ui

K∇[hn
i − (π

n
i +9i −90)] ·∇[hn

i − (π
n
i +9i −90)] dx.

Using (a+ b+ c)2 ≤ 3(a2
+ b2
+ c2) and (3), we get that

B ≤
3
κ?

N∑
i=1

∫
Ui

K∇hi ·∇hi dx+
3κ?

κ?

N∑
i=1

(
‖∇πn

i ‖
2
L2 +‖∇(9i −90)‖

2
L2

)
. (65)

Similar calculations to those carried out to estimate A yield∫
Ui

K∇hi ·∇hi dx ≤
C
τ 2 W 2

i (s
n
i , sn−1

i )

for some C depending neither on n, i nor on τ . Combining this inequality with Lemma 2.2 and the
regularity of 9, we get from (65) that

B ≤ C
(

1+
W2(sn, sn−1)

τ 2 +

N∑
i=0

Hω(sn−1
i )−Hω(sn

i )

τ

)
(66)

for some C not depending on n and τ (here we also used 1/τ ≤ 1/τ 2 for small τ in the W 2 terms).
Gathering (64) and (66) in (63) provides

‖∇hn
0‖

2
L2 ≤ C

(
1+

W2(sn, sn−1)

τ 2 +

N∑
i=0

Hω(sn−1
i )−Hω(sn

i )

τ

)
.
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Note that (i) and (ii) remain invariant under subtraction of the same constant, that is, hn
0, hn

i  
hn

0 −C, hn
i −C , as the gradients remain unchanged in (i) and only the differences hn

i − hn
0 appear in (ii)

for i ∈ {1, . . . , N }. We can therefore assume without loss of generality that
∫
�

hn
0 dx = 0. Hence by the

Poincaré–Wirtinger inequality, we get that

‖hn
0‖

2
H1 ≤ C‖∇hn

0‖
2
L2 ≤ C

(
1+

W2(sn, sn−1)

τ 2 +

N∑
i=0

Hω(sn−1
i )−Hω(sn

i )

τ

)
.

Finally, from (ii) hn
i = hn

0 +π
n
i +9i −90, the smoothness of 9, and using again the estimate (31) for

‖∇πn
‖

2
L2 we finally get that for all i ∈ {1, . . . , N }, one has

‖hn
i ‖

2
H1 ≤C

(
‖hn

0‖
2
H1+‖π

n
i ‖

2
H1+‖9i‖

2
H1+‖90‖

2
H1

)
≤C

(
1+

W2(sn, sn−1)

τ 2 +

N∑
i=0

Hω(sn−1
i )−Hω(sn

i )

τ

)
.

and the proof of Proposition 3.4 is complete. �

We can now define the phase pressures (pn
i )i=0,...,N by setting

pn
i := hn

i −9i ∀i ∈ {0, . . . , N }. (67)

The following corollary is a straightforward consequence of Proposition 3.4 and of the regularity of 9i .

Corollary 3.5. The phase pressures pn
= (pn

i )0≤i≤N ∈ H 1(�)N+1 satisfy

‖ pn
‖

2
H1(�)

≤ C
(

1+
W2(sn, sn−1)

τ 2 +

N∑
i=0

Hω(sn−1
i )−Hω(sn

i )

τ

)
(68)

for some C depending only on �,5,ω,K, (µi )i , and 9 (but neither on n nor on τ ), and the capillary
pressure relations are fulfilled:

pn
i − pn

0 = π
n
i ∀i ∈ {1, . . . , N }. (69)

Our next result is a first step towards the recovery of the PDEs.

Lemma 3.6. There exists C depending only on�,5,ω,K, (µi )i , and9 (but neither on n nor on τ ) such
that, for all i ∈ {0, . . . , N } and all ξ ∈ C2(�), one has∣∣∣∣∫

�

(sn
i − sn−1

i )ξ dx+ τ
∫
�

sn
i

K

µi
∇(pn

i +9i ) ·∇ξ dx
∣∣∣∣≤ CW 2

i (s
n
i , sn−1

i )‖D2
gi
ξ‖∞. (70)

This is of course a discrete approximation to the continuity equation ∂t si =∇ · (si (K/µi )∇(pi +9i )).

Proof. Let ϕn
i denote the (backward) optimal Kantorovich potential from Lemma 3.2 sending sn

i to sn−1
i ,

and let tn
i be the corresponding optimal map as in (58). For fixed ξ ∈ C2(�) let us first Taylor expand (in

the gi Riemannian framework)∣∣∣ξ(tn
i (x))− ξ(x)+

1
µi

K(x)∇ξ(x) ·∇ϕn
i (x)

∣∣∣≤ 1
2‖D

2
gi
ξ‖∞d2

i (x, tn
i (x)).
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Using the definition of the pushforward sn−1
i = tn

i #sn
i , we then compute∣∣∣∣∫

�

(sn
i (x)− sn−1

i (x))ξ(x) dx−
∫
�

K(x)
µi

∇ξ(x) ·∇ϕn
i (x)s

n
i (x) dx

∣∣∣∣
=

∣∣∣∣∫
�

(ξ(x)− ξ(tn
i (x))s

n
i (x) dx−

∫
�

K(x)
µi

∇ξ(x) ·∇ϕn
i (x)s

n
i (x) dx

∣∣∣∣
≤

∫
�

1
2‖D

2
gi
ξ‖∞d2

i (x, tn
i (x))s

n
i (x) dx = 1

2‖D
2
gi
ξ‖∞W 2

i (s
n
i , sn−1

i ).

From Proposition 3.4(i) we have ∇ϕn
i =−τ∇hn

i for dsn
i -a.e. x ∈�; thus by the definition (67) of pn

i , we
get ∇ϕn

=−τ∇(pn
i +9i ). Substituting in the second integral of the left-hand side gives exactly (70). �

4. Convergence towards a weak solution

The goal is now to prove the convergence of the piecewise constant interpolated solutions sτ, defined
by (27), towards a weak solution s as τ → 0. Similarly, the τ superscript denotes the piecewise
constant interpolation of any previous discrete quantity (e.g., pτi (t) stands for the piecewise constant
time interpolation of the discrete pressures pn

i ). In what follows, we will also use the notation sτ∗ =
(sτ1 , . . . , sτN ) ∈ L∞((0, T );X ∗) and π τ = π(sτ∗, x).

Time integrated estimates. We immediately deduce from (30) that

W(sτ (t2), sτ (t1))≤ C |t2− t1+ τ |1/2 ∀ 0≤ t1 ≤ t2 ≤ T. (71)

From the total saturation
∑N

i=0 sn
i (x)= ω(x)≤ ω

? and sτi ≥ 0, we have the L∞-estimates

0≤ sτi (x, t)≤ ω? a.e. in Q for all i ∈ {0, . . . , N }. (72)

Lemma 4.1. There exists C depending only on �, T , 5, ω, K, (µi )i , and 9 such that

‖ pτ‖2L2((0,T );H1(�)N+1)
+‖π τ‖2L2((0,T );H1(�)N )

≤ C. (73)

Proof. Summing (68) from n = 1 to n = Nτ := dT/τe, we get

‖ pτ‖2L2(H1)
=

Nτ∑
n=1

τ‖ pn
‖

2
H1 ≤ C

Nτ∑
n=1

τ

(
1+

W2(sn, sn−1)

τ 2 +

Nτ∑
i=0

Hω(sn−1
i )−Hω(sn

i )

τ

)

≤ C
(
(T + 1)+

Nτ∑
n=1

W2(sn, sn−1)

τ
+

N∑
i=0

(
Hω(s0

i )−Hω(s
Nτ
i )
))
.

We use that

0≥Hω(s)≥−
1
e
‖ω‖L1 ≥−

|�|

e
∀s ∈ L∞(�) with 0≤ s ≤ ω

together with the total square distance estimate (29) to infer that ‖ p‖2L2(H1)
≤ C. The proof is identical

for the capillary pressure π τ (simply summing the one-step estimate from Lemma 2.2). �
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Compactness of approximate solutions. We define H ′ = H 1(�)′.

Lemma 4.2. For each i ∈ {0, . . . , N }, there exists C depending only on �, 5, 9, K, and µi (but not
on τ ) such that

‖sτi (t2)− sτi (t1)‖H ′ ≤ C |t2− t1+ τ |1/2 ∀ 0≤ t1 ≤ t2 ≤ T.

Proof. Thanks to (72), we can apply [Maury et al. 2010, Lemma 3.4] to get∣∣∣∣∫
�

f {sτi (t2)− sτi (t1)} dx
∣∣∣∣≤ ‖∇ f ‖L2(�)Wref(sτi (t1), sτi (t2)) ∀ f ∈ H 1(�).

Thus by duality and thanks to the distance estimate (71) and to the lower bound in (19), we obtain that

‖sτi (t2)− sτi (t1)‖H ′ ≤Wref(sτi (t1), sτi (t2))≤ CWi (sτi (t1), sτi (t2))≤ C |t2− t1+ τ |1/2

for some C depending only on �, 5, (ρi )i , g, (µi )i , K. �

From the previous equicontinuity in time, we deduce full compactness of the capillary pressure:

Lemma 4.3. The family (πτ )τ>0 is sequentially relatively compact in L2(Q)N.

Proof. We use Alt and Luckhaus’ trick [1983] (an alternate solution would consist in slightly adapting the
nonlinear time compactness results [Moussa 2016; Andreianov et al. 2015] to our context). Let h > 0 be a
small time shift; then by monotonicity and Lipschitz continuity of the capillary pressure function π( · , x),

‖πτ ( ·+h)−πτ ( ·)‖2L2((0,T−h);L2(�)N )
≤

1
κ?

∫ T−h

0

∫
�

(
πτ (t+h, x)−πτ (t, x)

)
·
(
sτ∗(t+h, x)−sτ∗(t, x)

)
dx dt

≤
2
√

T
κ?
‖πτ‖L2((0,T );H1(�)N )‖sτ∗( ·+h, ·)−sτ∗‖L∞((0,T−h);H ′)N .

Then it follows from Lemmas 4.1 and 4.2 that there exists C > 0, depending neither on h nor on τ ,
such that

‖π τ ( · + h, · )−π τ‖L2((0,T−h);L2(�)N ) ≤ C |h+ τ |1/2.

On the other hand, the (uniform with respect to τ ) L2((0, T ); H 1(�)N )- and L∞(Q)N -estimates on π τ

ensure that

‖π τ ( · , · + y))−π τ‖L2(0,T ;L2) ≤ C
√
| y|(1+

√
| y|) ∀ y ∈ Rd,

where π τ is extended by 0 outside �. This allows us to apply Kolmogorov’s compactness theorem, see,
for instance, [Hanche-Olsen and Holden 2010], and gives the desired relative compactness. �

Identification of the limit. In this section we prove our main result, Theorem 1.2, and the proof goes in
two steps: we first retrieve strong convergence of the phase contents sτ → s and weak convergence of
the pressures pτ ⇀ p, and then use the strong-weak limit of products to show that the limit is a weak
solution. Throughout this section, (τk)k≥1 denotes a sequence of times steps tending to 0 as k→∞.
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Lemma 4.4. There exist p ∈ L2((0, T ); H 1(�)N+1) and s ∈ L∞(Q)N+1 with s( · , t) ∈ X ∩A for
a.e. t ∈ (0, T ) such that, up to an unlabeled subsequence, the following convergence properties hold:

sτk k→∞
−−−→ s a.e. in Q, (74)

π τk k→∞
−−−⇀π(s∗, · ) weakly in L2((0, T ); H 1(�)N ), (75)

pτk k→∞
−−−⇀ p weakly in L2((0, T ); H 1(�)N+1). (76)

Moreover, the capillary pressure relations (5) hold.

Proof. From Lemma 4.3, we can assume that π τk → z strongly in L2(Q)N for some limit z, thus a.e. up
to the extraction of an additional subsequence. Since z 7→ φ(z, x)= π−1(z, x) is continuous, we have

sτk∗ = φ(π τk , x) k→∞
−−−→φ(π , x)=: s∗ a.e. in Q.

In particular, this yields π τk k→∞
−−−→π(s∗, · ) a.e. in Q. Since we have the total saturation

∑N
i=0 sτk

i (t, x)=
ω(x), we conclude that the first component i = 0 converges pointwise as well. Therefore, (74) holds.
Thanks to Lebesgue’s dominated convergence theorem, it is easy to check that s( · , t) ∈ X ∩A for
a.e. t ∈ (0, T ). The convergences (75) and (76) are straightforward consequences of Lemma 4.1. Lastly,
it follows from (69) that

pτk
i − pτk

0 = πi (sτk∗, · ) ∀i ∈ {1, . . . , N }, ∀k ≥ 1.

We can finally pass to the limit k→∞ in the above relation thanks to (75)–(76) and infer

pi − p0 = πi (s∗, x) in L2((0, T ); H 1(�)), ∀i ∈ {1, . . . , N },

which immediately implies (5) as claimed. �

Lemma 4.5. Up to the extraction of an additional subsequence, the limit s of (sτk )k≥1 belongs to
C([0, T ];A), where A is equipped with the metric W. Moreover, W(sτk (t), s(t)) k→∞

−−−→ 0 for all
t ∈ [0, T ].

Proof. It follows from the bounds (72) on si that for all t ∈ [0, T ], the sequence (sτk
i )k is weakly compact in

L1(�). It is also compact in Ai equipped with the metric Wi due to the continuity of Wi with respect to the
weak convergence in L1(�); this is, for instance, a consequence of [Santambrogio 2015, Theorem 5.10]
together with the equivalence of Wi with Wref stated in (19). Thanks to (71), one has

lim sup
k→∞

Wi (s
τk
i (t2), sτk

i (t1))≤ |t2− t1|1/2 ∀t1, t2 ∈ [0, T ].

Applying a refined version of the Arzelà–Ascoli theorem [Ambrosio et al. 2008, Proposition 3.3.1] then
provides the desired result. �

In order to conclude the proof of Theorem 1.2, it only remains to show that s= lim sτk and p= lim pτk

satisfy the weak formulation (12):
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Proposition 4.6. Let (τk)k≥1 be a sequence such that the convergences in Lemmas 4.4 and 4.5 hold. Then
the limit s of (sτk )k≥1 is a weak solution in the sense of Definition 1.1 (with −ρi g replaced by +∇9i in
the general case).

Proof. Let 0 ≤ t1 ≤ t2 ≤ T, and define n j,k = dt j/τke and t̃ j = n j,kτk for j ∈ {1, 2}. Fixing an arbitrary
ξ ∈ C2(�) and summing (70) from n = n1,k + 1 to n = n2,k yields∫

�

(sτk
i (t2)− sτk

i (t1))ξ dx =
n2,k∑

n=n1,k+1

∫
�

(sn
i − sn−1

i )ξ dx

=−

∫ t̃2

t̃1

∫
�

sτk
i

µi
K∇(pτk

i +9i ) ·∇ξ dx dt +O
( n2,k∑

n=n1,k+1

W 2
i (s

n
i , sn−1

i )

)
. (77)

Since 0≤ t̃ j − t j ≤ τk and (sτk
i /µi )K∇(pτk

i +9i ) ·∇ξ is uniformly bounded in L2(Q), one has∫ t̃2

t̃1

∫
�

sτk
i

µi
K∇(pτk

i +9i ) ·∇ξ dx dt =
∫ t2

t1

∫
�

sτk
i

µi
K∇(pτk

i +9i ) ·∇ξ dx dt +O(
√
τk).

Combining the above estimate with the total square distance estimate (29) in (77), we obtain∫
�

(sτk
i (t2)− sτk

i (t1))ξ dx+
∫ t2

t1

∫
�

sτk
i

µi
K∇(pτk

i +9i ) ·∇ξ dx dt =O(
√
τk). (78)

Thanks to Lemma 4.5, and since the convergence in (Ai ,Wi ) is equivalent to the narrow convergence of
measures (i.e., the convergence in C(�)′, see for instance [Santambrogio 2015, Theorem 5.10]), we get∫

�

(sτk
i (t2)− sτk

i (t1))ξ dx k→∞
−−−→

∫
�

(si (t2)− si (t1))ξ dx. (79)

Moreover, thanks to Lemma 4.4, one has∫ t2

t1

∫
�

sτk
i

µi
K∇(pτk

i +9i ) ·∇ξ dx dt k→∞
−−−→

∫ t2

t1

∫
�

si

µi
K∇(pi +9i ) ·∇ξ dx dt. (80)

Combining (78)–(80) yields, for all ξ ∈ C2(�) and all 0≤ t1 ≤ t2 ≤ T,∫
�

(si (t2)− si (t1))ξ dx+
∫ t2

t1

∫
�

si

µi
K∇(pi +9i ) ·∇ξ dx dt = 0. (81)

In order to conclude the proof, it remains to check that the formulation (81) is stronger the formula-
tion (12). Let ε > 0 be a time step, unrelated to that appearing in the minimization scheme (26), and set
Lε = bT/εc. Let φ ∈ C∞c (�× [0, T )), and set φ` = φ( · , `ε) for ` ∈ {0, . . . , Lε}. Since t 7→ φ( · , t) is
compactly supported in [0, T ), there exists ε? > 0 such that φLε ≡ 0 for all ε ∈ (0, ε?]. Then define

φε :�×[0, T ] → R, (x, t) 7→ φ`(x) if t ∈ [`ε, (`+ 1)ε).

Choose t1 = `ε, t2 = (`+ 1)ε, ξ = φ` in (81) and sum over ` ∈ {0, . . . , Lε − 1}. This provides

A(ε)+ B(ε)= 0 ∀ε > 0, (82)
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where

A(ε)=
Lε−1∑
`=0

∫
�

(
si ((`+ 1)ε)− si (`ε)

)
φ` dx, B(ε)=

∫∫
Q

si

µi
K∇(pi +9i ) ·∇φ

ε dx dt.

Due to the regularity of φ, we know ∇φε converges uniformly towards φ as ε tends to 0, so that

B(ε) ε→0
−−→

∫∫
Q

si

µi
K∇(pi +9i ) ·∇φ dx dt. (83)

Reorganizing the first term and using that φLε ≡ 0, we get

A(ε)=−
Lε∑
`=1

ε

∫
�

si (`ε)
φ`−φ`−1

ε
dx−

∫
�

s0
i φ( · , 0) dx.

It follows from the continuity of t 7→ si ( · , t) in Ai equipped with Wi and from the uniform convergence of

(x, t) 7→
φ`(x)−φ`−1(x)

ε
if t ∈ [(`− 1)ε, `ε)

towards ∂tφ that

A(ε) ε→0
−−→−

∫∫
Q

si ∂tφ dx dt −
∫
�

s0
i φ( · , 0) dx. (84)

Combining (82)–(84) shows that the weak formulation (12) is fulfilled. �

Appendix A: A simple condition for the geodesic convexity of (�, di )

The goal of this appendix is to provide a simple condition on the permeability tensor in order to ensure
that condition (22) is fulfilled. For the sake of simplicity, we only consider here the case of isotropic
permeability tensors

K(x)= κ(x)Id ∀x ∈� (85)

with κ? ≤ κ(x)≤ κ? for all x ∈�. Let us stress that the condition we provide is not optimal.
As in the core of the paper, � denotes a convex open subset of Rd with C2 boundary ∂�. For x̄ ∈ ∂�,

we denote by n(x̄) the outward-pointing normal. Since ∂� is smooth, there exists `0 > 0 such that,
for all x ∈ � such that dist(x, ∂�) < `0, there exists a unique x̄ ∈ ∂� such that dist(x, ∂�) = |x− x̄|
(here dist denotes the usual euclidean distance between sets in Rd). As a consequence, one can rewrite
x = x̄− `n(x̄) for some ` ∈ (0, `0).

In what follows, a function f :�→ R is said to be normally nondecreasing (resp. nonincreasing) on
a neighborhood of ∂� if there exists `1 ∈ (0, `0] such that ` 7→ f (x̄ − `n(x̄)) is nonincreasing (resp.
nondecreasing) on [0, `1].

Proposition A.1. Assume that

(i) the permeability field x 7→ κ(x) is normally nonincreasing in a neighborhood of ∂�;

(ii) for all x̄ ∈ ∂�, either ∇κ(x̄) · n(x̄) < 0, or ∇κ(x̄) · n(x̄)= 0 and D2κ(x̄)n(x) · n(x)= 0.
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Then there exists a C2 extension κ̃ : Rd
→
[ 1

2κ?, κ
?
]

of κ and a Riemannian metric

δ̃(x, y)= inf
γ∈P̃(x, y)

(∫ 1

0

1
κ̃(γ (τ ))

|γ ′(τ )|2 dτ
)1/2

∀x, y ∈ Rd (86)

with P̃(x, y)= {γ ∈ C1([0, 1];Rd) | γ (0)=x and γ (1)= y}, such that (�, δ̃) is geodesically convex.

Proof. Since � is convex, for all x ∈ Rd
\� there exists a unique x̄ ∈ ∂� such that dist(x, �)= |x− x̄|.

Then one can extend κ in a C2 way into the whole Rd by defining

κ(x)= κ(x̄)+ |x− x̄|∇κ(x̄) · n(x̄)+ 1
2 |x− x̄|2 D2κ(x̄)n(x̄) · n(x̄), ∀x ∈ Rd

\�.

Thanks to assumptions (i) and (ii), the function ` 7→ κ(x̄− `n(x̄)) is nondecreasing on (−∞, `1] for all
x̄ ∈ ∂�. Since ∂� is compact, there exists `2 > 0 such that

κ(x̄− `n(x̄))≥ 1
2κ? ∀` ∈ (−`2, 0].

Let ρ : R+→ R be a nondecreasing C2 function such that ρ(0)= 1, ρ ′(0)= ρ ′′(0)= 0 and ρ(`)= 0 for
all `≥ `2. Then define

κ̃(x)= ρ(dist(x, �))κ(x)+ (1− ρ(dist(x, �)))1
2κ? ∀x ∈ Rd,

so that the function ` 7→ κ̃(x̄− `n(x̄)) is nonincreasing on (−∞, `1) and bounded from below by 1
2κ?.

Let x, y ∈ �; then there exists ε > 0 such that dist(x, ∂�) ≥ ε, dist( y, ∂�) ≥ ε, and κ is normally
nonincreasing on ∂�ε := {x ∈� | dist(x, ∂�) < ε}. A sufficient condition for (�, δ̃) to be geodesic is
that the geodesic γ opt

x, y from x to y is such that

dist(γ opt
x, y(t), ∂�)≥ ε, ∀t ∈ [0, 1]. (87)

In order to ease the reading, we denote by γ = γ opt
x, y any geodesic such that

δ̃2(x, y)=
∫ 1

0

1
κ̃(γ (τ ))

|γ ′(τ )|2 dτ. (88)

We define the continuous and piecewise C1 path γε from x to y by setting

γε(t)= proj�ε(γ (t)) ∀t ∈ [0, 1], (89)

where �ε := {x ∈ � | dist(x, ∂�) ≥ ε} is convex, and the orthogonal (with respect to the euclidean
distance dist) projection proj�ε onto �ε is therefore uniquely defined.

Assume that condition (87) is violated. Then by continuity there exists a nonempty interval [a, b]⊂[0, 1]
such that

dist(γ (t), ∂�) < ε ∀t ∈ (a, b);

that is, the geodesic between γ (a) and γ (b) coincides with the part of the geodesic between x and y.
Then, changing x into γ (a) and y into γ (b), we can assume without loss of generality that

dist(γ (t), ∂�) < ε ∀t ∈ (0, 1).
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It is easy to verify that

|γ ′ε(t)| ≤ |γ
′(t)| ∀t ∈ [0, 1] and |γ ′ε(t)|< |γ

′(t)| on (a, b) (90)

for some nonempty interval (a, b)⊂ [0, 1]. It follows from (86) that

δ̃2(x, y)≤
∫ 1

0

1
κ̃(γε(τ ))

|γ ′ε(τ )|
2 dτ.

Since κ is normally nonincreasing, one has

δ̃2(x, y)≤
∫ 1

0

1
κ̃(γ (τ ))

|γ ′ε(τ )|
2 dτ.

Thanks to (90), one obtains that

δ̃2(x, y) <
∫ 1

0

1
κ̃(γ (τ ))

|γ ′(τ )|2 dτ,

providing a contradiction with the optimality (88) of γ . Thus condition (87) holds; hence (�, δ) is a
geodesic space. �

Appendix B: A multicomponent bathtub principle

The following theorem can be seen as a generalization of the classical scalar bathtub principle; see, for
instance, [Lieb and Loss 2001, Theorem 1.14]. In what follows, N is a positive integer and � denotes an
arbitrary measurable subset of Rd.

Theorem B.1. Let ω ∈ L1
+
(�), and let m = (m0, . . . ,m N ) ∈ (R

∗
+
)N+1 be such that

∑N
i=0 mi =

∫
�
ω dx.

We define

X ∩A=
{

s=(s0, . . . , sN ) ∈ L1
+
(�)N+1 ∣∣ ∫

�
si dx = mi and

∑N
i=0 si = ω a.e. in �

}
.

Then for any F = (F0, . . . , FN ) ∈ (L∞(�))N+1, the functional

F : s 7→
∫
�

F · s dx

has a minimizer in X ∩A . Moreover, there exists α = (α0, . . . , αN ) ∈ RN+1 such that, defining

λ(x) := min
0≤ j≤N

{F j (x)+α j }, x ∈�,

any minimizer s = (s0, . . . , s N ) satisfies

Fi +αi = λ dsi -a.e. in �, ∀i ∈ {0, . . . , N }.

One can think of this as: si = 0 in {Fi + αi > λ} and Fi + αi ≥ λ everywhere; i.e., si > 0 can only
occur in the “contact set” {x | Fi (x)+αi =min j (F j (x)+α j )}.
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Proof. For the existence part, note that F is continuous for the weak L1 convergence, and that X ∩A is
weakly closed. Since

∑
si = ω and si ≥ 0, we have in particular 0≤ si ≤ ω ∈ L1 for all i and s ∈X ∩A .

This implies that X ∩A is uniformly integrable, and since the mass ‖si‖L1 =
∫

si =mi is prescribed, the
Dunford–Pettis theorem shows that X ∩A is L1-weakly relatively compact. Hence from any minimizing
sequence we can extract a weakly-L1 converging subsequence, and by weak L1 continuity the weak limit
is a minimizer.

Let us now introduce a dual problem: for fixed α = (α0, . . . , αN ) ∈ RN+1 we set

λα(x) :=min
i
{Fi (x)+αi } (91)

and define

J (α) :=
∫
�

λα(x)ω(x) dx−
N∑

i=0

αi mi .

We shall prove below that

(i) supα∈RN+1 J (α)=maxα∈RN+1 J (α) is achieved,

(ii) mins∈X∩A F(s)=maxα∈RN+1 J (α).

The desired decomposition will then follow from equality conditions in (ii), and λ(x)= λᾱ(x) will be
retrieved from any maximizer ᾱ ∈ Argmax J.

Remark B.2. The above dual problem can be guessed by introducing suitable Lagrange multipliers
λ(x),α for the total saturation and mass constraints, respectively, and writing the convex indicator of the
constraints as a supremum over these multipliers. Formally exchanging inf sup and sup inf and computing
the optimality conditions in the rightmost infimum relates λ to α as in (91), which in turn yields exactly
the duality infs F =maxα J.

Let us first establish property (i). For all α ∈ RN+1 and all s ∈X ∩A , we first observe that

J (α)=
∫
�

min
j
{F j (x)+α j }ω(x) dx−

N∑
i=0

αi mi

=

∫
�

min
j
{F j (x)+α j }

N∑
i=0

si (x) dx−
N∑

i=0

αi

∫
�

si (x) dx

=

N∑
i=0

∫
�

(
min

j
{F j (x)+α j }−αi

)
si (x) dx ≤

∫
�

F · s dx = F(s).

In particular J is bounded from above and

sup
α∈RN+1

J (α)≤ min
s∈X∩A

F(s). (92)

Since
∫
ω dx =

∑
mi , the function J is invariant under diagonal shifts, i.e., J (α+ c1)= J (α) for any

constant c ∈ R. As a consequence we can choose a maximizing sequence {αk
}k≥1 such that min j α

k
j = 0
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for all k ≥ 0. Let j (k) be an index such that αk
j (k) = min j α

k
j = 0. Then, since αk is maximizing and

ω(x)≥ 0, we get, for k large enough,

sup J − 1≤ J (αk)=

∫
�

min
j
{F j (x)+αk

j }ω(x) dx−
∑

αk
i mi

≤

∫
�

(
F j (k)(x)+αk

j (k)︸︷︷︸
=0

)
ω(x) dx−

∑
αk

i mi ≤ ‖F‖L∞‖ω‖L1 −

∑
αk

i mi .

Thus
∑
αk

i mi ≤C , and since αk
i ≥ 0 and mi > 0 we deduce that (αk)k is bounded. Hence, up to extraction

of a nonrelabeled subsequence, we can assume that αk converges towards some ᾱ ∈ RN+1
+ . The map J is

continuous; hence ᾱ is a maximizer.

Let us now focus on property (ii). Note from (92) and (i) it suffices to prove the reverse inequality

max
α∈RN+1

J (α)≥ min
s∈X∩A

F(s).

We show below that, for any maximizer ᾱ of J, we can always construct a suitable s ∈X ∩A such that
F(s) = J (ᾱ). This will immediately imply the reverse inequality and thus our claim (ii). In order to
do so, we first observe that J is concave; thus the optimality condition at ᾱ can be written in terms of
superdifferentials as 0RN+1 ∈ ∂ J (ᾱ). Denoting by

3(α)=

∫
�

λαω dx =
∫
�

min
j
{F j (x)+α j }ω(x) dx

the first contribution in J, this optimality can be recast as

m ∈ ∂3(ᾱ). (93)

For fixed x ∈� and by usual properties of the min function, the superdifferential ∂λα(x) of the concave
map α 7→ λα(x) at α ∈ RN+1 is characterized by

∂λα(x)=
{
θ ∈ RN+1

+

∣∣ ∑N
i=0 θi=1 and θi=0 if Fi (x)+αi > λα(x)

}
.

Therefore, it follows from the extension of the formula of differentiation under the integral to the
nonsmooth case, see [Clarke 1990, Theorem 2.7.2], that

∂3(α)=
{
w ∈ RN+1

+

∣∣ w= ∫
�
θ(x)ω(x) dx for some θ(x) ∈ ∂λα(x) a.e. in �

}
. (94)

The optimality criterion (93) at any maximizer ᾱ gives the existence of some function θ as in (94) such that

mi =

∫
�

θi (x)ω(x) dx ∀i ∈ {0, . . . , N }.

Defining
si (x) := θi (x)ω(x) ∀i ∈ {0, . . . , N }, (95)

we have by construction that si ≥ 0,
∫

si =mi , and
∑

si =
(∑

i θi
)
ω=ω a.e.; thus s∈X ∩A . Exploiting

again
∑

si = ω as well as the crucial property that θi = 0 a.e. in {x | Fi + ᾱi > λᾱ}, or in other words
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that Fi + ᾱi = λᾱ for dsi -a.e x ∈�, we get

J (ᾱ)=
∫
�

λᾱω dx−
N∑

i=0

ᾱi mi =

N∑
i=0

∫
�

λᾱsi dx−
N∑

i=0

ᾱi mi =

N∑
i=0

∫
�

(Fi + ᾱi )si dx−
N∑

i=0

ᾱi mi = F(s)

as claimed. Therefore s constructed by (95) is a minimizer of F and

J (ᾱ)= F(s). (96)

In order to finally retrieve the desired decomposition, choose any minimizer s ∈X ∩A of F and any
maximizer ᾱ ∈ RN+1 of J. Then it follows from (96) that

0= F(s)− J (ᾱ)=
N∑

i=0

∫
�

Fi si dx−
∫
�

λᾱω dx+
N∑

i=0

ᾱi mi .

Using once again that
∫

si = mi and
∑

i si = ω, we get that

N∑
i=0

∫
�

(Fi + ᾱi − λᾱ)si dx = 0.

By the definition of λᾱ, the above integrand is nonnegative; hence Fi + ᾱi = λᾱ a.e. in {si > 0}. �
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