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Let X be an asymptotically hyperbolic manifold and M its conformal infinity. This paper is devoted
to deducing several existence results of the fractional Yamabe problem on M under various geometric
assumptions onX andM. Firstly, we handle when the boundaryM has a point at which the mean curvature
is negative. Secondly, we re-encounter the case when M has zero mean curvature and satisfies one of
the following conditions: nonumbilic, umbilic and a component of the covariant derivative of the Ricci
tensor on X is negative, or umbilic and nonlocally conformally flat. As a result, we replace the geometric
restrictions given by González and Qing (2013) and González and Wang (2017) with simpler ones. Also,
inspired by Marques (2007) and Almaraz (2010), we study lower-dimensional manifolds. Finally, the
situation when X is Poincaré–Einstein and M is either locally conformally flat or 2-dimensional is
covered under a certain condition on a Green’s function of the fractional conformal Laplacian.

1. Introduction and the main results

Given n 2 N, let XnC1 be an .nC1/-dimensional smooth manifold with smooth boundary M n. A
function � in X is called a defining function of the boundary M in X if � > 0 in X and �D 0, d�¤ 0
on M. A metric gC in X is conformally compact if there exists a boundary-defining function � such that
the conformal metric Ng WD �2gC extends to M and the closure .X; Ng/ of X is compact. This induces the
conformal class Œ Oh� of the metric Oh WD NgjM, which is referred to as the conformal infinity of .X; gC/. A
manifold .X; gC/ is called asymptotically hyperbolic if gC is conformally compact and jd�j Ng!1 as �!0.
Also if .X; gC/ is conformally compact and Einstein, then it is said to be Poincaré–Einstein or conformally
compact Einstein. All Poincaré–Einstein manifolds can be shown to be asymptotically hyperbolic.

Suppose an asymptotically hyperbolic manifold .X; gC/ with the conformal infinity .M n; Œ Oh�/ is
given. Also, for any 
 2 .0; 1/, let P 


Oh
D P 
 ŒgC; Oh� be the fractional conformal Laplacian whose

principle symbol is equal to that of .�� Oh/

 ; see [Mazzeo and Melrose 1987; Joshi and Sá Barreto 2000;

Graham and Zworski 2003; Chang and González 2011; González and Qing 2013] for its precise definition.
In this article, we are interested in finding a conformal metric Oh on M with constant fractional scalar
curvature Q


Oh
WDP




Oh
.1/. This problem is called the fractional Yamabe problem or the 
 -Yamabe problem,

and it was introduced and investigated by González and Qing [2013] and González and Wang [2017]. By
imposing some restrictions on the dimension and geometric behavior of the manifold, the authors obtained
existence results when M is nonumbilic or M is umbilic but not locally conformally flat. Here we relieve
the hypotheses made in [González and Qing 2013; González and Wang 2017] and examine when the
bubble (see (1-13) below for its precise definition) cannot be used as an appropriate test function.
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As its name alludes, the fractional conformal Laplacian P 

Oh

has the conformal covariance property: it
holds that

P



Ohw
.u/D w�

nC2

n�2
 P




Oh
.wu/ (1-1)

for a conformal change of the metric Ohw D w4=.n�2
/ Oh. Hence the fractional Yamabe problem can be
formulated as looking for a positive solution of the nonlocal equation

P



Oh
uD cu

nC2

n�2
 on M (1-2)

for some c 2 R provided n > 2
 . On the other hand, if .X; gC/ is Poincaré–Einstein, then P 

Oh

and
Q



Oh
with 
 D 1 precisely match with the classical conformal Laplacian L Oh and a constant multiple of the

scalar curvature RŒ Oh� on .M; Oh/:

P 1
Oh
D L Oh WD �� OhC

n� 2

4.n� 1/
RŒ Oh� and Q1

Oh
D

n� 2

4.n� 1/
RŒ Oh�: (1-3)

If 
 D 2, they coincide with the Paneitz operator [2008] and Branson’s Q-curvature [1985] (see [Graham
and Zworski 2003, Proposition 4.3] for its proof). Hence, in this case, the 1- and 2-Yamabe problems are
reduced to the classical Yamabe problem and the Q-curvature problem, respectively.

Thanks to the efforts of various mathematicians, a complete solution of the Yamabe problem is known.
After Yamabe [1960] raised the problem and suggested an outline of the proof, Trudinger [1968] first
obtained a least energy solution to (1-2) under the setting that the scalar curvature of .M; Oh/ is nonpositive.
Successively, Aubin [1976] examined the case when n � 6 and M is nonlocally conformally flat, and
Schoen [1984] gave an affirmative answer when nD 3; 4; 5 or M is locally conformally flat by using the
positive mass theorem [Schoen and Yau 1979a; 1979b; 1988]. Lee and Parker [1987] provided a new
proof which unified the local proof of Aubin and the global proof of Schoen, introducing the notion of
the conformal normal coordinates.

There also have been lots of results on the Q-curvature problem .
 D 2/ for 4-dimensional manifolds
.M 4; Œ Oh�/. By the Chern–Gauss–Bonnet formula, the total Q-curvature

kP WD

Z
M4

Q2
Oh
dv Oh;

where dv Oh is the volume form of .M; Oh/, is a conformal invariant. Gursky [1999] proved that if a manifold
M 4 has the positive Yamabe constant ƒ1.M; Œ Oh�/ > 0, see (1-10), and satisfies kP � 0, then its Paneitz
operator P 2

Oh
has the properties

kerP 2
Oh
D R and P 2

Oh
� 0: (1-4)

Also Chang and Yang [1995] proved that any compact 4-manifold such that (1-4) and kP < 8�2 hold has
a solution to

P 2
Oh
uC 2Q2

Oh
uD 2ce4u on M; c 2 R;

where Q2
Oh

is the Q-curvature. This result was generalized by Djadli and Malchiodi [2008] where only
kerP 2

Oh
D R and kP ¤ 8m�2 for all m 2 N are demanded. For other dimensions than 4, Gursky and
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Malchiodi [2015] recently discovered the strong maximum principle of P 2
Oh

for manifolds M n (n� 5)
with nonnegative scalar curvature and semipositive Q-curvature. Motivated by this result, Hang and Yang
developed the existence theory of (1-2) for a general class of manifolds M n, including ones such that
ƒ1.M; Œ Oh�/ > 0 and there exists Oh0 2 Œ Oh� with Q2

Oh0
> 0, provided n � 5 [Hang and Yang 2015; 2016b]

or nD 3 [Hang and Yang 2004; 2015; 2016a]. In [Hang and Yang 2016b], the positive mass theorem for
the Paneitz operator [Humbert and Raulot 2009; Gursky and Malchiodi 2015] was used to construct a test
function. We also point out that a solution to (1-2) was obtained in [Qing and Raske 2006] for a locally
conformally flat manifold .n�5/with positive Yamabe constant and Poincaré exponent less than .n�4/=2.

In addition, when 
 D 1
2

, the fractional Yamabe problem has a deep relationship with the boundary
Yamabe problem proposed by Cherrier [1984] and Escobar [1992a], which can be regarded as a general-
ization of the Riemann mapping theorem: It asks if a compact manifold X with boundary is conformally
equivalent to one of zero scalar curvature whose boundary M has constant mean curvature. It was solved
by the series of works by Escobar [1992a; 1996], Marques [2005; 2007] and Almaraz [2010] who used a
minimization argument. See also [Chen 2009; Mayer and Ndiaye 2015a], in which different approaches are
pursued. It is worthwhile to mention that there is another type of boundary Yamabe problem also suggested
by Escobar [1992b]: find a conformal metric such that the scalar curvature of X is constant and the
boundaryM is minimal. It was further studied by Brendle and Chen [2014] and Mayer and Ndiaye [2015b].

Chang and González [2011] observed that the fractional conformal Laplacian, defined through scattering
theory (see, e.g., [Mazzeo and Melrose 1987; Joshi and Sá Barreto 2000; Graham and Zworski 2003]),
can be described in terms of Dirichlet–Neumann operators; see also [Case and Chang 2016]. Specifically,
(1-2) has an equivalent extension problem, which is degenerate elliptic but local.

Theorem A. Suppose that n> 2
 , 
 2 .0; 1/, and .X; gC/ is an asymptotically hyperbolic manifold with
conformal infinity .M; Œ Oh�/. Assume also that � is a defining function associated to M such that jd�j Ng D 1
near M (such � is called geodesic), and NgD �2gC is a metric of the compact manifold X. In addition, we
let the mean curvature H on .M; Oh/� .X; Ng/ be 0 if 
 2

�
1
2
; 1
�
, and set

E.�/D ��1�s.��gC � s.n� s//�
n�s in X; (1-5)

where s WD n=2C 
 . It can be shown that (1-5) is reduced to

E.�/D
n� 2


4n

�
RŒ Ng�� .n.nC 1/CRŒgC�/��2

�
�1�2
 near M; (1-6)

where RŒ Ng� and RŒgC� are the scalar curvature of .X; Ng/ and .X; gC/, respectively.

(1) If a positive function U satisfies�
� div Ng.�1�2
rU/CE.�/U D 0 in .X; Ng/;
U D u on M

(1-7)

and

@
�U WD ��


�
lim
�!0C

�1�2

@U

@�

�
D

(
cu

nC2

n�2
 for 
 2 .0; 1/ n

˚
1
2

	
;

cu
nC2

n�2
 �

�
1
2
.n� 1/

�
Hu for 
 D

˚
1
2

	 (1-8)
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on M, then u solves (1-2). Here �
 > 0 is the constant whose explicit value is given in (1-23) below and �
stands for the outward unit normal vector with respect to the boundary M.

(2) Assume further that the first L2-eigenvalue �1.��gC/ of the Laplace-Beltrami operator ��gC
satisfies

�1.��gC/ >
1
4
n2� 
2: (1-9)

Then there is a special defining function �� such that E.��/ D 0 in X and ��.�/ D � .1CO.�2
 //

near M. Furthermore the function zU WD .�=��/.n�2
/=2U solves a degenerate elliptic equation of pure
divergent form8<:

� div Ng�..��/1�2
r zU/D 0 in .X; Ng�/;

@


�
zU D��


�
lim

��!0C
.��/1�2


@ zU

@��

�
D P




Oh
u�Q




Oh
uD cu

nC2

n�2
 �Q




Oh
u on M;

where Ng� WD .��/2gC and Q

Oh

is the fractional scalar curvature.

Notice that in order to seek a solution of (1-2), it is natural to introduce the 
 -Yamabe functional

I



Oh
Œu�D

R
M uP




Oh
udv Oh�R

M juj
2n
n�2
 dv Oh

�n�2

n

for u 2H 
 .M/ n f0g; (1-10)

where H 
 .M/ denotes the standard fractional Sobolev space, and its infimum ƒ
 .M; Œ Oh�/, called the

 -Yamabe constant. By the previous theorem and the energy inequality due to Case [2017, Theorem 1.1],
it follows under the assumption (1-9) that if one defines the functionals

NI



Oh
ŒU �D

�

R
X .�

1�2
 jrU j2
NgCE.�/U

2/dv Ng�R
M jU j

2n
n�2
 dv Oh

�n�2

n

; QI



Oh
ŒU �D

�

R
X .�
�/1�2
 jrU j2

Ng dv NgC
R
MQ




Oh
U 2dv Oh�R

M jU j
2n
n�2
 dv Oh

�n�2

n

(1-11)
for each element U of the weighted Sobolev space W 1;2.X; �1�2
 / such that U ¤ 0 on M

�
in view of

(1-8), a suitable modification is necessary if 
 D 1
2

�
, and values

Nƒ
 .X; Œ Oh�/D inf
˚
NI



Oh
ŒU � W U 2W 1;2.X; �1�2
 /; U ¤ 0 on M

	
;

Qƒ
 .X; Œ Oh�/D inf
˚
QI



Oh
ŒU � W U 2W 1;2.X; �1�2
 /; U ¤ 0 on M

	
;

then

ƒ
 .M; Œ Oh�/D Nƒ
 .X; Œ Oh�/D Qƒ
 .X; Œ Oh�/ > �1:

Besides it was shown in [González and Qing 2013] that the sign of c in (1-2) is the same as that of
ƒ
 .M; Œ Oh�/, as in the local case 
 D 1.

On the other hand, the Sobolev trace inequality�Z
Rn
jU. Nx; 0/j

2n
n�2
 d Nx

�n�2

n

� Sn;


Z 1
0

Z
Rn
x
1�2

nC1 jrU. Nx; xn/j

2 d Nx dxnC1 (1-12)
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is true for all functions U which belong to the homogeneous weighted Sobolev space D1;2.RnC1
C

; x
1�2

nC1 /.

In addition, the equality is attained by U D cW�;� for any c 2 R, � > 0 and � 2 Rn D @RnC1
C

, where
W�;� are the bubbles defined as

W�;� . Nx; xnC1/D pn;


Z
Rn

x
2

nC1

.j Nx� Nyj2C x2nC1/
nC2

2

w�;� . Ny/ d Ny

D gn;


Z
Rn

1

.j Nx� Nyj2C x2nC1/
n�2

2

w
nC2

n�2


�;�
. Ny/ d Ny (1-13)

with

w�;� . Nx/ WD ˛n;


�
�

�2Cj Nx� � j2

�n�2

2

DW�;� . Nx; 0/: (1-14)

The values of the positive numbers pn;
 , gn;
 and ˛n;
 can be found in (1-23). Particularly, it holds that8̂<̂
:
� div.x1�2
nC1 rW�;� /D 0 in RnC1

C
;

@


�W�;� D��


�
lim

xnC1!0C
x
1�2

nC1

@W�;�

@xnC1

�
D .��/
w�;� D w

nC2

n�2


�;�
on Rn:

(1-15)

(In light of the equation that W�;� solves, we say that W�;� is 
-harmonic. Refer to [Caffarelli and
Silvestre 2007]. For future use, let W� DW�;0 and w� D w�;0.) Moreover, if Sn;
 > 0 denotes the best
constant one can achieve in (1-12) and .Sn; Œgc�/ is the standard unit n-dimensional sphere, then

ƒ
 .Sn; Œgc�/D S
�1
n;
 �
 D

�Z
Rn
w

2n
n�2


�;�
d Nx

�2

n

: (1-16)

Related to this fact, we have the following compactness result.

Proposition B. Let n > 2
 , 
 2 .0; 1/ and .XnC1; gC/ be an asymptotically hyperbolic manifold with
the conformal infinity .M n; Œ Oh�/. Also, assume that (1-9) is true. Then

�1<ƒ
 .M; Œ Oh�/�ƒ
 .Sn; Œgc�/; (1-17)

and the fractional Yamabe problem (1-7)–(1-8) has a positive solution if the strict inequality holds.

Refer to [González and Qing 2013, Sections 5 and 6] for its proof. Moreover since (1-17) automatically
holds if the 
 -Yamabe constant ƒ
 .M; Œ Oh�/ is negative or 0, we assume that ƒ
 .M; Œ Oh�/ > 0 from now on.

The purpose of this paper is to construct a proper nonzero test function ˆ 2W 1;2.X; �1�2
 / such that
0 < NI




Oh
Œˆ� < ƒ
 .Sn; Œgc�/ when 
 2 .0; 1/, .XnC1; gC/ is an asymptotically hyperbolic manifold, (1-9)

holds and

� M n has a point where the mean curvature H is negative, n� 2 and 
 2
�
0; 1
2

�
; or

� M n is the nonumbilic boundary of XnC1, n� 4 and assumption (1-18) holds; or

� M n is the umbilic boundary of XnC1, the covariant derivative R��I�Œ Ng� of the Ricci tensor R��Œ Ng�
on .X; Ng/ is negative at a certain point of M, n > 3C 2
 and hypothesis (1-18) holds (where � is
the geodesic defining function associated to .M; Oh/ and Ng D �2gC); or



80 SEUNGHYEOK KIM, MONICA MUSSO AND JUNCHENG WEI

� M n is the umbilic but nonlocally conformally flat boundary of XnC1, n > 4C 2
 and condition
(1-19) is satisfied; or

� XnC1 is Poincaré–Einstein, either M n is n� 3 and locally conformally flat or nD 2, the expansion
(1-21) of the Green’s function G. � ; y/ holds in a neighborhood of an arbitrarily chosen point y 2M
and the constant-order term A of G. � ; y/ is positive.

Once it is achieved, Proposition B will imply the existence of a positive solution to (1-2) automatically.
The natural candidate for a positive test function is certainly the standard bubble, possibly truncated.
Indeed, this is a good choice for the first and third cases mentioned above. Nevertheless, to cover lower-
dimensional manifolds or locally conformally flat boundaries, it is necessary to find more accurate test
functions than the truncated bubbles; cf. [González and Qing 2013; González and Wang 2017]. To take into
account the second and fourth situations, we shall add a correction term on the bubble by adapting the idea
of Marques [2007] and Almaraz [2010]. For the fifth case, we will construct an appropriate test function
by utilizing the Green’s function G. � ; y/. In the local situation 
 D 1, such an approach was successfully
applied by Schoen [1984]. His idea was later extended by Escobar [1992a] in the work on the boundary
Yamabe problem, which has close relationship to the fractional Yamabe problem with 
 D 1

2
, as discussed.

Let � be the second fundamental form of .M; Oh/� .X; Ng/. The boundary M is called umbilic if the
tensor T WD � �H Ng vanishes on M. Also M is nonumbilic if it possesses a point at which T ¤ 0. Our
first main result reads as follows:

Theorem 1.1. Suppose that .XnC1; gC/ is an asymptotically hyperbolic manifold, .M; Œ Oh�/ is its con-
formal infinity and (1-9) holds. Assume also that � is a geodesic defining function of .M; Oh/ and
Ng D �2gC D d�2˚ h� near M D f�D 0g. If either

� n� 2, 
 2
�
0; 1
2

�
and M n has a point at which the mean curvature H is negative; or

� n� 4, 
 2 .0; 1/, M n is the nonumbilic boundary of XnC1 and

RŒgC�Cn.nC 1/D o.�2/ as �! 0 uniformly on M; (1-18)

then the 
 -Yamabe problem is solvable — namely, (1-2) has a positive solution.

Remark 1.2. (1) As pointed out in [González and Qing 2013], we are only permitted to change the
metric on the conformal infinity M. Once the boundary metric Oh is fixed, the geodesic boundary-defining
function � and a compact metric Ng on X are automatically determined by the relations jd�j�2gC D 1 and
Ng D �2gC. This is a huge difference between the fractional Yamabe problem

�
especially, with 
 D 1

2

�
and the boundary Yamabe problem, in that one has a freedom of conformal change of the metric in the
whole manifold X when he/she is concerned with the boundary Yamabe problem.

Due to this reason, while it is possible to make the “extrinsic” metricH vanish at a point by a conformal
change in the boundary Yamabe problem, one cannot do the same thing in the setting of the fractional
Yamabe problem. This forced us to separate the cases in the statement of Theorem 1.1.
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(2) As a particular consequence of the previous discussion, the Ricci tensor R��Œ Ng�.y/ of .X; Ng/ evaluated
at a point y on M is governed by Oh and (1-18) (see Lemma 2.4). In the boundary Yamabe problem,
Escobar [1992a] could choose a metric in X such that Rij Œ Oh�.y/D 0 and R��Œ Ng�.y/D 0 simultaneously.

Moreover, by putting (1-6) and (1-18) together, we get

E.�/D
n� 2


4n
RŒ Ng� �1�2
 C o.�1�2
 / near M:

Hence, on account of the energy expansion, (1-18) is the very condition that makes the boundary Yamabe
problem and the 1

2
-Yamabe problem identical modulo the remainder. Refer to Subsections 2C and 2D.

(3) The sign of the mean curvature at a fixed point on M and (1-18) are “intrinsic” curvature conditions
of an asymptotically hyperbolic manifold in the sense that these properties are independent of the choice
of a representative of the class Œ Oh�. Refer to Lemma 2.1 below for its proof. Also Lemma 2.3 claims that
(1-18) implies H D 0 on M.

(4) Note also that 2C 2
 2 N and 
 2 .0; 1/ if and only if 
 D 1
2

, and the boundary Yamabe problem on
nonumbilic manifolds in dimension nD 2C 2
 D 3 was covered in [Marques 2007]. We expect that the
strategy suggested in that paper can be applied for 1

2
-Yamabe problem in the same setting.

We next consider the case when the boundary M is umbilic but either R��I�Œ Ng� < 0 at some point
on M or it is nonlocally conformally flat.

Theorem 1.3. Suppose that .XnC1; gC/ is an asymptotic hyperbolic manifold such that (1-9) holds and
the boundary .M n; Œ Oh�/ is umbilic. If either

� n > 3C 2
 , 
 2 .0; 1/, that is, either n � 5 and 
 2 .0; 1/ or n D 4 and 
 2
�
0; 1
2

�
, the tensor

R��I�Œ Ng� is negative at a certain point of M and (1-18) is valid; or

� n > 4C 2
 , 
 2 .0; 1/, that is, either n� 6 and 
 2 .0; 1/ or nD 5 and 
 2
�
0; 1
2

�
, there is a point

y 2M such that the Weyl tensor W Œ Oh� on M is nonzero at y and8̂<̂
:
RŒgC�Cn.nC 1/D o.�4/;

@m
Nx .RŒg

C�Cn.nC 1//D o.�2/ .mD 1; 2/;

@m� .RŒg
C�Cn.nC 1//D o.�2/ .mD 1; 2/

(1-19)

as �! 0 uniformly on M,

then the 
 -Yamabe problem is solvable. Here Nx is a coordinate on M.

Remark 1.4. (1) As we will see later, the main order of the energy for the fractional Yamabe problem (1-2)
is �4 on an umbilic but nonlocally conformal flat boundary M, while it is �2 on a nonumbilic boundary;
see (2-11), (2-14), (3-14) and (3-16). This explains why the necessary decay rate of RŒgC�Cn.nC 1/
to 0 as �! 0 in Theorem 1.3 should be �2-times as fast as that in Theorem 1.1.

On the other hand, (1-19) is responsible for determining all the values of quantities which emerge in
the coefficient of �4 in the energy (such as R;i i Œ Ng�.y/ and RNN;ii Œ Ng�.y/— see Lemma 3.2) and making
the term .n.nC 1/CRŒgC�/��2 in E.�/ to be ignorable.
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(2) Owing to Lemmas 2.1 and 2.3, condition (1-19) is again intrinsic and sufficient to deduce that H D 0
on M. Moreover every Poincaré–Einstein manifold satisfies (1-19).

In [González and Wang 2017, Lemma 2.3], it is proved that the sign of the tensor R��I�Œ Ng� at a fixed
point on M is intrinsic.

(3) It is notable that 4C 2
 2 N and 
 2 .0; 1/ if and only if 
 D 1
2

, and the boundary Yamabe problem
for nD 4C 2
 D 5 was studied in [Almaraz 2010]. We believe that Theorem 1.3 can be extended to the
case 
 D 1

2
, nD 5, W Œ Oh�¤ 0 on M and (1-19) is valid.

In order to describe the last result, we first have to take into account of the existence of a Green’s
function under our setting.

Proposition 1.5. Suppose that all the hypotheses of Theorem A hold true, including (1-9), and H D 0
on M. In addition, assume further that ƒ
 .M; Œ Oh�/ > 0. Then for each y 2M, there exists a Green’s
function G.x; y/ on X n fyg which satisfies�

� div Ng.�1�2
rG. � ; y//CE.�/G. � ; y/D 0 in .X; Ng/;

@


�G. � ; y/D ıy on .M; Oh/

(1-20)

in the distribution sense, where ıy is the Dirac measure at y. The function G is unique and positive on X.

The proof is postponed until Section 4A. The readers may compare the above result with [Guillarmou
and Qing 2010]. Based on standard elliptic regularity and the facts that if .X; Ng/ is the Poincaré half-plane
.RnC1
C

; x�2nC1 dx/, then

G.x; Ny/D
gn;


j. Nx� Ny; xnC1/jn�2

for all . Nx; xnC1/ 2 RnC1

C
and Ny 2 Rn;

and that the compactified metric Ng on X of a Poincaré–Einstein manifold .X; gC/ can be assumed to
be Euclidean up to order jxjn in its coordinate x 2 RnC1

C
(refer to Lemma 4.3 below), we expect the

following.

Conjecture 1.6 (expansion of the Green’s function). Assume that 
 2 .0; 1/, n > 2
 and .XnC1; gC/
is Poincaré–Einstein. Also, suppose that ƒ
 .M; Œ Oh�/ > 0 and that either .M n; Œ Oh�/ has n � 3 and is
locally conformally flat or nD 2. Fix any y 2M. Then there exists a local coordinate x of the compact
manifold .X; Ng/ around y (identified with 0 2 Rn) defined in a small closed neighborhood N � RnC1

C

of 0 such that

G.x; 0/D gn;
 jxj
�.n�2
/

CAC‰.x/ for x 2N: (1-21)

Here gn;
 > 0 is a number that appeared in (1-13), A 2 R and ‰ is a function in N satisfying

j‰.x/j � C jxjminf1;2
g and jr‰.x/j � C jxjminf0;2
�1g for x 2N (1-22)

for some constant C > 0.

Now we can state our third main theorem.
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Theorem 1.7. Suppose that 
 2 .0; 1/, n > 2
 and .XnC1; gC/ is a Poincaré–Einstein manifold with
conformal infinity .M n; Œ Oh�/. Let � be a geodesic defining function for .M; Oh/ and Ng D �2gC. If (1-9)
holds, Conjecture 1.6 is valid, A> 0, and either M n has n� 3 and is locally conformally flat or nD 2,
then the fractional Yamabe problem is solvable.

Remark 1.8. (1) Let us set a 2-tensor

F D �.RicŒgC�CngC/ in X;

which is identically 0 if .X; gC/ is Poincaré–Einstein. As a matter of fact, if M is locally conformally flat,
the only property of the tensor F necessary to derive Theorem 1.7 is that @m� F j�D0D0 formD0; : : : ; n�1
(refer to Lemma 4.3). We guess that (1-21) and (1-22) are still valid under this assumption. Similarly, for
the case nD 2, the assumption @m� F j�D0 D 0 for mD 0; 1 would suffice.

(2) Since .XnC1; gC/ is Poincaré–Einstein, the second fundamental form on M is trivial. Particularly,
the mean curvature H on M vanishes and M is umbilic.

(3) Suppose that we are in the local case 
 D 1, and either n� 7 or M is locally conformally flat. Then,
as shown in [Lee and Parker 1987, Lemma 6.4], the expansion (1-21) is valid. Furthermore, the classical
positive mass theorem of Schoen and Yau [1979a; 1979b; 1988] states that A � 0, and the positivity
condition A > 0 holds if and only if .M; Oh/ is not conformally diffeomorphic to the standard sphere Sn.
Determining the sign of A at each point y 2M is a still natural problem for 
 2 .0; 1/. However, it is
difficult to perform, because A may be a nonlocal quantity, namely, one depending on the whole geometry
of .X; gC/ and .M; Œ Oh�/.

This paper is organized as follows: In Section 2, we establish Theorem 1.1 by intensifying the ideas of
Marques [2007] and González and Qing [2013]. Section 3 provides the proof of Theorem 1.3, which further
develops the approach of Almaraz [2010] and González and Wang [2017]. In Section 4, Theorem 1.7
is achieved, which can be understood as a sort of generalization of the results of Schoen [1984] and
Escobar [1992a]. In particular, Section 4A is devoted to investigating the existence and some qualitative
properties of a Green’s function (i.e., Proposition 1.5). Then we are concerned with the case that M
is locally conformally flat (in Section 4B) and 2-dimensional (in Section 4C). Finally, we examine the
asymptotic behavior of the bubble W1;0 near infinity in Appendix A, and compute some integrations
regarding W1;0, which are needed in the energy expansions in Appendix B.

Notation. � The Einstein convention is used throughout the paper. The indices i , j , k and l always take
values from 1 to n, and a and b range over values from 1 to nC 1.

� For a tensor T, notations TIa and T;a indicate covariant differentiation and partial differentiation of T,
respectively.

� For a tensor T and a number q 2 N, we use

Symi1���iq Ti1���iq D
1

qŠ

X
�2Sq

Ti�.1/���i�.q/ ;

where Sq is the group of all permutations of q elements.
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� We letN DnC1. Also, for x2RN
C
WDf.x1; : : : ; xn; xN /2RN WxN >0g, we write NxD .x1; : : : ; xn; 0/2

@RN
C
' Rn and r D j Nxj.

� For n > 2
 , we set p D .nC 2
/=.n� 2
/.

� For any % > 0, let Bn.0; %/ and BN
C
.0; %/ be the n-dimensional ball and the N -dimensional upper

half-ball centered at 0 whose radius is %, respectively.

� jSn�1j is the surface area of the .n�1/-dimensional unit sphere Sn�1.

� For any t 2 R, let tC Dmaxf0; tg � 0 and t� Dmaxf0;�tg � 0 so that t D tC� t�.

� For 
 2 .0; 1/, the space H 
 .M/ is the completion of C1.M/ with respect to the norm which one
obtains by pulling back

u 2 C1c .R
n/ 7!

�Z
Rn
u2 d NxC

Z
Rn

Z
Rn

ju. Nx/�u. Ny/j2

j Nx� NyjnC2

d Nx d Ny

�1
2

to M through coordinate charts.

� The space D1;2.RN
C
; x
1�2

N / denotes the completion of C1c .R

N
C
/ with respect to the norm

U 7!

�Z
RN
C

x
1�2

N jrU j2 dx

�1
2

;

and the space W 1;2.X; �1�2
 / denotes the completion of C1c .X/ with respect to the norm

U 7!

�Z
X

�1�2
 .jrU j2Ng CU
2/ dv Ng

�1
2

:

In light of Theorem A, W 1;2.X; �1�2
 / is the natural functional space for the fractional Yamabe problem.

� The following positive constants are given in (1-8), (1-13) and (1-14):

�
 D
�.
/

21�2
�.1� 
/
; pn;
 D

�
�nC2


2

�
�
n
2�.
/

;

gn;
 D
�
�n�2


2

�
�
n
2 22
�.
/

; ˛n;
 D 2
n�2

2

 
�
�nC2


2

�
� 1
2
.n� 2
/

!n�2

4


:

(1-23)

� C > 0 is a generic constant which may vary from line to line.

2. Nonminimal and nonumbilic conformal infinities

2A. Geometric background. We begin this section by proving that the sign of the mean curvature, (1-18)
and nonumbilicity of a point on M are intrinsic conditions.

Lemma 2.1. Suppose that .X; gC/ is an asymptotically hyperbolic manifold with conformal infinity
.M; Œ Oh�/. Moreover, let � and Q� be the geodesic boundary-defining functions associated to two repre-
sentatives Oh and Qh of the class Œ Oh�, respectively. We also define Ng D �2gC and Qg WD Q�2gC, denote by
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� D� Ng;N =2 and Q� the second fundamental forms of .M; Oh/� .X; Ng/ and .M; Qh/� .X; Qg/, respectively,
and set H D Ngij�ij =n and QH D Qgij Q�ij =n. Then we have

C�1 �
Q�

�
� C in X and H D

Q�

�

ˇ̌̌̌
�D0

QH on M (2-1)

for some C > 1. Furthermore if H D 0 on M, then

� D
�

Q�

ˇ̌̌̌
�D0

Q� on M: (2-2)

Proof. The assertion on H in (2-1) is proved in [González and Qing 2013, Lemma 2.3]. For the first
inequality in (2-1), it suffices to observe that Q�=� is bounded above and bounded away from 0 near M.
Indeed, this follows from the fact that

QhD QgjM D Q�
2gCjM D

�
Q�

�

�2
NgjM D

�
Q�

�

�2
Oh on M:

Let us define tensors T D � �H Ng and zT D Q� � QH Qg on M. Then we see from [Escobar 1992b,
Proposition 1.2] that

Q� D zT D
Q�

�
T D

Q�

�
� on M

provided H D 0 on M, which confirms (2-2). �

Given any fixed point y 2M, let NxD .x1; : : : ; xn/ be normal coordinates on M at y (identified with 0)
and xN D �. In other words, let x D . Nx; xN / be Fermi coordinates. The following lemma provides the
expansion of the metric Ng near y D 0. See [Escobar 1992a, Lemma 3.1] for its proof.

Lemma 2.2. Let .X; Ng/ be a compact manifold with boundary .M; Oh/ and y 2M. Then, in terms of Fermi
coordinates around y, it holds thatp

j Ngj.x/D 1�nHxN C
1
2

�
n2H 2

�k�k2�RNN Œ Ng�
�
x2N �H;ixixN �

1
6
Rij Œ Oh�xixj CO.jxj

3/

and

Ngij .x/D ıij C 2�ijxN C
1
3
Rikjl Œ Oh�xkxl C Ng

ij

;Nk
xNxkC

�
3�ik�kj CRiNjN Œ Ng�

�
x2N CO.jxj

3/

near y (identified with a small half-ball BN
C
.0; 2�0/ near 0 in RN

C
). Here k�k2 D Ohik Ohjl�ij�kl is the

square of the norm of the second fundamental form � on .M; Oh/ � .X; Ng/, Rikjl Œ Oh� is a component
of the Riemannian curvature tensor on M, RiNjN Œ Ng� is that of the Riemannian curvature tensor in X,
Rij Œ Oh�DRikjkŒ Oh� and RNN Œ Ng�DRiN iN Œ Ng�. Every tensor in the expansions is computed at y D 0.

Now notice that the transformation law of the scalar curvature [Escobar 1992a, (1.1)] implies

RŒgC�Cn.nC 1/D 2n
@�
p
j Ngjp
j Ngj

�CRŒ Ng��2: (2-3)

It readily shows that (1-18) and (1-19) indicate H D 0 on M.
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Lemma 2.3. Suppose that .X; gC/ is an asymptotically hyperbolic manifold with conformal infinity
.M; Œ Oh�/. If RŒgC�Cn.nC 1/D o.�/ as �! 0, then H D 0 on M.

Proof. Fix any y 2M. By (2-3), we have

o.1/D 2n
@�
p
j Ngj.y/p
j Ngj.y/

CRŒ Ng�.y/�C o.1/D�2n2H.y/C o.1/

as a point tends to y. This implies H.y/D 0, and therefore the assertion follows. �

We next select a good background metric on X under the validity of hypothesis (1-18).

Lemma 2.4. Let .X; gC/ be an asymptotically hyperbolic manifold such that condition (1-18) holds.
Then the conformal infinity .M; Œ Oh�/ admits a representative Oh 2 Œ Oh�, the geodesic boundary-defining
function � and the metric Ng D �2gC satisfying

H D 0 on M; Rij Œ Oh�.y/D 0 and R��Œ Ng�.y/D
1� 2n

2.n� 1/
k�.y/k2 (2-4)

for a fixed point y 2M.

Proof. According to [Lee and Parker 1987, Theorem 5.2], one may choose a representative Oh of the
conformal class Œ Oh� such that Rij Œ Oh�.y/D 0. Additionally Lemmas 2.3 and 2.1 ensure that H D 0 on M
for any Oh 2 Œ Oh�. Hence assumption (1-18) can be interpreted as

o.1/D 2n
@�
p
j Ngj

�
p
j Ngj
CRŒ Ng�D

n

�
Ngab Ngab;�CRŒ Ng�D n. Ng

ab
;� Ngab;�C Ng

ab
Ngab;��/CRŒ Ng�C o.1/

D�2n.R��Œ Ng�Ck�k
2/C

�
2R��Œ Ng�Ck�k

2
CRŒ Oh��H 2

�
C o.1/

as �! 0, where we usedH D 0 onM for the third equality and the Gauss–Codazzi equation for the fourth
equality; see the proof of Lemmas 3.1 and 3.2 of [Escobar 1992a]. Taking the limit to y 2M, we get

0D 2.1�n/R��Œ Ng�.y/C .1� 2n/k�.y/k
2:

The third equality of (2-4) is its direct consequence. �

Lastly, we recall the function E in (1-5) and (1-6). In a collar neighborhood of M where �D xN , it
can be seen that

E.xN /D
n� 2


4n

�
RŒ Ng�� .n.nC 1/CRŒgC�/x�2N

�
x
1�2

N D�

1
2
.n� 2
/

@N
p
j Ngjp
j Ngj

x
�2

N ; (2-5)

where the second equality holds because of (2-3).

2B. Nonminimal conformal infinity. Let y 2M be a point identified with 02Rn such thatH.y/<0 and
BN
C
.0; 2�0/� RN

C
be its neighborhood which appeared in Lemma 2.2. Also, we select any smooth radial

cut-off function  2C1c .R
N
C
/ such that  D 1 in BN

C
.0; �0/ and 0 in RN

C
nBN
C
.0; 2�0/. In this subsection,

we shall show that NI 

Oh
Œ W�� < ƒ


 .Sn; Œgc�/ for any n� 2 and 
 2
�
0; 1
2

�
, where W� DW�;0 as before.
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Before starting the computation, let us make one useful observation: Assume that n > mC 2
 for a
certain m 2 N. Then we get from (A-3) and (A-4) thatZ
BN
C
.0;�0/

x
1�2

N jxjmC1jrW�j

2dxD�
1��
0

Z
BN
C
.0;�0/

x
1�2

N jxjmC� jrW�j

2dxDO.�mC� /Do.�m/ (2-6)

by choosing a small number � > 0 such that n > mC 2
 C �.

Proposition 2.5. Suppose that .XnC1; gC/ is an asymptotically hyperbolic manifold with conformal
infinity .M; Œ Oh�/ and y 2M is a point such thatH.y/ < 0. Then for any � > 0 small, n� 2 and 
 2

�
0; 1
2

�
,

we have

NI



Oh
Œ W���ƒ


 .Sn; Œgc�/C�
2n2�2nC1�4
2

2.1�2
/

�

R

RN
C
x
2�2

N jrW1j

2dx�R
Rn
w
pC1
1 dx

�n�2

n„ ƒ‚ …

>0

H.y/Co.�/<ƒ
 .Sn; Œgc�/;

(2-7)
where NI 


Oh
is the 
-Yamabe functional given in (1-11), and ƒ
 .Sn; Œgc�/ and �
 are positive constants

introduced in (1-16) and (1-23).

Proof. Since the proof is essentially the same as that of [Choi and Kim 2017, Proposition 6.1], we briefly
sketch it. By Lemma 2.2 and (2-6), we discoverZ
BN
C
.0;�0/

x
1�2

N jrW�j

2
Ng dv Ng

D

Z
BN
C
.0;�0/

x
1�2

N jrW1j

2 dxC �H

�
2

Z
RN
C

x
2�2

N jr NxW1j

2 dx�n

Z
RN
C

x
2�2

N jrW1j

2 dx

�
C o.�/

and Z
M

. W�/
pC1 dv Oh D

Z
Bn.0;�0/

wpC1� .1CO.j Nxj2// d NxCO.�n/D

Z
Rn
w
pC1
1 dxC o.�/:

Moreover, according to Lemma 2.2 and (2-5), we haveZ
BN
C
.0;�0/

E.xN /W
2
� dv Ng D

1
2
n.n� 2
/�H

Z
RN
C

x
�2

N W 2

1 dxC o.�/:

Thus the above estimates and Lemma B.3 confirm (2-7). �

Unlike the other existence results to be discussed later, we need to assume that 
 2
�
0; 1
2

�
for

Proposition 2.5. Such a restriction is necessary in two reasons: First of all, 
 2
�
0; 1
2

�
is necessary

for the function x�2
N W 2
1 to be integrable in RN

C
. Secondly the mean curvature H should vanish for


 2
�
1
2
; 1
�

to guarantee the validity of the extension theorem (Theorem A).

2C. Nonumbilic conformal infinity: higher-dimensional cases. We fix a nonumbilic point y D 0 2M.
Let also BN

C
.0; 2�0/� RN

C
be a small neighborhood of 0 and  2 C1c .B

N
C
.0; 2�0// a cut-off function

chosen in the previous subsection.
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Lemma 2.6. Let J 

Oh

be the energy functional defined as

J



Oh
ŒU IX�D

Z
X

.�1�2
 jrU j2Ng CE.�/U
2/ dv Ng for any U 2W 1;2.X; �1�2
 /: (2-8)

Assume also that (2-4) holds. Then for any � > 0 small, n > 2C 2
 and 
 2 .0; 1/, it is valid that

J



Oh
Œ W�IB

N
C.0; �0/�D

Z
BN
C
.0;�0/

x
1�2

N jrW1j

2 dx

C �2k�k2
�
�
1
2
.1C b/F2C 1

n
.3C b/F3C 1

2
.n� 2
/.1C b/F1

�
C o.�2/; (2-9)

where b WD .1� 2n/=.2n� 2/, k�k is the norm of the second fundamental form at y D 0 2M, and the
values F1; F2 and F3 are given in Lemma B.4.

Proof. We borrow the argument presented in [González and Qing 2013, Theorem 1.5]. According to
Lemma 2.2 and (2-4), it holds thatp

j Ngj. Nx; xN /D 1�
1
2
.1C b/k�k2x2N CO.j. Nx; xN /j

3/ in BNC.0; �0/: (2-10)

Hence we obtain from (2-6) thatZ
BN
C
.0;�0/

x
1�2

N jrW�j

2
Ng dv Ng

D

Z
RN
C

x
1�2

N jrW�j

2 dxC �2
�
.3�ik�kj CRiNjN Œ Ng�/

Z
RN
C

x
3�2

N @iW1@jW1 dx

�
1
2
.1C b/k�k2

Z
RN
C

x
3�2

N jrW1j

2 dx

�
C o.�2/:

Also, by means of (2-5) and (2-10),

E.xN /D
1
2
.n� 2
/.1C b/k�k2x

1�2

N CO.jxj2x

�2

N /

for xN � 0 small, soZ
BN
C
.0;�0/

E.xN /W
2
� dv Ng D �

2 1
2
.n� 2
/.1C b/k�k2

Z
RN
C

x
1�2

N W 2

1 dxC o.�
2/:

Collecting every calculation, we discover (2-9). �

The previous lemma ensures the existence of a positive solution to (1-2) for nonumbilic conformal
infinity M n with n 2 N sufficiently high.

Corollary 2.7. Assume that .XnC1; gC/ is an asymptotically hyperbolic manifold and Oh is the represen-
tative of the conformal infinity M found in Lemma 2.2. If n > 2C 2
 and 
 2 .0; 1/, we have

NI



Oh
Œ W���ƒ


 .Sn; Œgc�/� �
2C0.n; 
/ƒ
 .Sn; Œgc�/�

n�2

2
 �
 jS

n�1
jA3B2k�k

2
C o.�2/; (2-11)
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where the positive constants ƒ
 .Sn; Œgc�/, �
 , A3 and B2 are introduced in (1-16), (1-23) and (B-3),
respectively, and C0.n; 
/ is the number given by

C0.n; 
/D
3n2Cn.16
2� 22/C 20.1� 
2/

8n.n� 1/.1� 
2/
: (2-12)

Proof. Estimate (2-11) comes from Lemmas 2.6 and B.4 and the computations made in the proof of
[González and Qing 2013, Theorem 1.5]. The details are left to the reader. �

By (2-2), we still have that � ¤ 0 at y 2M , even after picking a new representative of the conformal
infinity. Furthermore, the number C0.n; 
/ is positive when n� 4 for 
 >

p
5
11
' 0:674, n� 5 for 
 > 1

2
,

n � 6 for 
 >
p

1
19
' 0:229 and n � 7 for any 
 > 0. Hence, in this regime, one is able to deduce

the existence of a positive solution of (1-2) by testing the truncated standard bubble into the 
-Yamabe
functional.

2D. Nonumbilic conformal infinity: lower-dimensional cases. We recall the nonumbilic point y 2M
identified with the origin of RN

C
, the small number �0 > 0 and the cut-off function  2 C1c .R

N
C
/.

Furthermore, we introduce

‰�. Nx; xN /DM1�ijxixjxN r
�1@rW� D � � �

�
n�2

2 ‰1.�

�1
Nx; ��1xN / (2-13)

for each � > 0, where M1 2 R is a number to be determined later, the �ij are the coefficients of the
second fundamental form at y and r D j Nxj. Our ansatz to deal with lower-dimensional cases is defined by

ˆ� WD  .W�C‰�/ in X:

The definition of ˆ� is inspired by [Marques 2007].

The main objective of this subsection is to prove:

Proposition 2.8. Suppose that .XnC1; gC/ is an asymptotically hyperbolic manifold and Oh is the repre-
sentative of the conformal infinity M satisfying (2-4). If n > 2C 2
 and 
 2 .0; 1/, we have

NI



Oh
Œˆ���ƒ


 .Sn; Œgc�/� �
2C.n; 
/ƒ
 .Sn; Œgc�/�

n�2

2
 �
 jS

n�1
jA3B2k�k

2
C o.�2/; (2-14)

where C.n; 
/ is the number defined by

C.n; 
/D
3n2Cn.16
2� 22/C 20.1� 
2/

8n.n� 1/.1� 
2/
C

16.n� 1/.1� 
2/

n.3n2Cn.2� 8
2/C 4
2� 4/
:

It can be checked that C.n; 
/ > 0 whenever n� 4 and 
 2 .0; 1/. Thus the above proposition, along
with Proposition 2.5, justifies the statement of Theorem 1.1. We have C.3; 
/ > 0 for 
 > 1

2
, but it also

holds that n > 2C 2
 > 3. Therefore we get no result for nD 3.

Proof of Proposition 2.8. The proof consists of three steps.

Step 1: energy in the half-ball BN
C
.0; �0/. Since  D 1 in BN

C
.0; �0/, we discover

J



Oh
Œ .W�C‰�/IB

N
C .0;�0/�

DJ



Oh
Œ W�IB

N
C.0;�0/�C2

Z
BN
C
.0;�0/

x
1�2

N hrW�;r‰�i Ng dv NgC

Z
RN
C

x
1�2

N jr‰�j

2dxCo.�2/; (2-15)
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where the functional J 

Oh

is defined in (2-8). Moreover, we note from Lemma 2.2 that the mean curvature
H D �i i=n vanishes at the origin, which yieldsZ

BN
C
.0;�0/

x
1�2

N rW� �r‰� dx

D �M1

Z
BN
C
.0;�0=�/

x
2�2

N �ijxixj

�
2r�2.@rW1/

2
Cr@r.r

�1@rW1/
�
dx

C�M1

Z
BN
C
.0;�0=�/

x
1�2

N �ijxixj r

�1.@NW1/
�
.@rW1/CxN .@NrW1/

�
dxD 0: (2-16)

Hence we obtain from the definition (2-13) of ‰� and (2-16) that

2

Z
BN
C
.0;�0/

x
1�2

N hrW�;r‰�i Ng dv Ng

D 2

Z
BN
C
.0;�0/

x
1�2

N rW� � r‰� dxC 4�ij

Z
RN
C

x
2�2

N @iW� @j‰� dxC o.�

2/

D �24M1�ij

Z
RN
C

x
3�2

N xi

�
2�jkxkr

�2.@rW1/
2
C�klxkxlxj r

�2.@rW1/ @r.r
�1@rW1/

�
dxC o.�2/

D �24M1

�
2

n
F3C

2

n.nC 2/
.�F3CF4/

�
k�k2C o.�2/

D �2
�
4

n

�
M1jS

n�1
jA3B2k�k

2
C o.�2/; (2-17)

where the constants F3;F4 as well as F1;F2;F5; : : : ;F8, are defined in Lemma B.4. In a similar fashion,
it can be found thatZ

RN
C

x
1�2

N jr‰�j

2 dx D �2
2M 2

1

n.nC 2/
.F3� 2F4CF5CF6C 2F7CF8/k�k2C o.�2/

D �2
3n2C 2n.1� 4
2/� 4.1� 
2/

4n.n� 1/.1� 
2/
M 2
1 jS

n�1
jA3B2k�k

2
C o.�2/: (2-18)

Step 2: energy in the half-annulus BN
C
.0; 2�0/ nB

N
C
.0; �0/. According to (A-1), (A-3) and (A-4), see

(2-6), it holds that
J



Oh
Œ .W�C‰�/IX nB

N
C .0; �0/�D o.�

2/: (2-19)

Consequently, one deduces from (2-15), (2-17)–(2-19) and Lemma B.4 that

J



Oh
Œ .W�C‰�/IX��

Z
RN
C

x
1�2

N jrW1j

2 dx� �2C.n; 
/jSn�1jA3B2k�k2C o.�2/ (2-20)

by choosing the optimal M1 2 R.

Step 3: completion of the proof. Lemma 2.2 and the fact that ‰� D 0 on M tell us thatZ
M

j .W�C‰�/j
pC1 dv Oh D

Z
Bn.0;2�0/

. w�/
pC1.1CO.j Nxj3// d Nx �

Z
Rn
w
pC1
1 d NxC o.�2/: (2-21)

Combining (2-20) and (2-21) gives estimate (2-14). �
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3. Umbilic conformal infinities

3A. Geometric background. For a fixed point y 2M identified with 0 2 Rn, let Nx D .x1; : : : ; xn/ be
the normal coordinate on M at y and xN D �. The following expansion of the metric is borrowed from
[Marques 2005].

Lemma 3.1. Let .X; Ng/ be a compact manifold with boundary .M; Oh/ and y 2M such that � D �Ii D
�Iij D �Iijk D 0, Rij Œ Oh�D 0 and RNN Œ Ng�D 0 at y. Then, in terms of Fermi coordinates around y, it
holds thatp

j Ngj. Nx;xN /D 1�
1
12
Rij IkŒ Oh�xixjxk�

1
2
RNNIi Œ Ng�x

2
Nxi�

1
6
RNNIN Œ Ng�x

3
N

�
1
20

�
1
2
Rij Ikl Œ Oh�C

1
9
Rmiqj Œ Oh�Rmkql Œ Oh�

�
xixjxkxl�

1
4
RNNIij Œ Ng�x

2
Nxixj

�
1
6
RNNINi Œ Ng�x

3
Nxi�

1
24

�
RNNINN Œ Ng�C2.RiNjN Œ Ng�/

2
�
x4NCO.j. Nx;xN /j

5/ (3-1)

and
Ngij . Nx;xN /D ıijC

1
3
Rikjl Œ Oh�xkxlCRiNjN Œ Ng�x

2
NC

1
6
RikjlImŒ Oh�xkxlxmCRiNjNIkŒ Ng�x

2
Nxk

C
1
3
RiNjNIN Œ Ng�x

3
NC

�
1
20
RikjlImqŒ Oh�C

1
15
Riksl Œ Oh�RjmsqŒ Oh�

�
xkxlxmxq

C
�
1
2
RiNjNIkl Œ Ng�C

1
3

Symij .Riksl Œ Oh�RsNjN Œ Ng�/
�
x2NxkxlC

1
3
RiNjNIkN Œ Ng�x

3
Nxk

C
1
12
.RiNjNINN Œ Ng�C8RiNsN Œ Ng�RsNjN Œ Ng�/x

4
NCO.j. Nx;xN /j

5/ (3-2)

near y (identified with a small half-ball BN
C
.0; 2�0/ near 0 in RN

C
). Here all tensors are computed at y

and the indices m, q and s run from 1 to n as well.

To treat umbilic but nonlocally conformally flat boundaries, we also need the following extension of
Lemma 2.4.

Lemma 3.2. For n� 3, let .XnC1; gC/ be an asymptotically hyperbolic manifold such that the conformal
infinity .M n; Œ Oh�/ is umbilic and (1-19) holds. For a fixed point y 2M, there exist a representative Oh of the
class Œ Oh�, the geodesic boundary-defining function � (D xN near M ) and the metric Ng D �2gC such that

(1) Rij IkŒ Oh�.y/CRjkIi Œ Oh�.y/CRki Ij Œ Oh�.y/D 0,

(2) Symijkl
�
Rij Ikl Œ Oh�C

2
9
Rmiqj Œ Oh�Rmkql Œ Oh�

�
.y/D 0,

(3) � D 0 on M, RNNIN Œ Ng�.y/DRaN Œ Ng�.y/D 0,

(4) RIi i Œ Ng�.y/D�
nkW k2

6.n� 1/
, RNNIi i Œ Ng�.y/D�

kW k2

12.n� 1/
, RiNjN Œ Ng�.y/DRij Œ Ng�.y/,

(5) RNNINN Œ Ng�.y/D
3

2n
RINN Œ Ng�.y/� 2.Rij Œ Ng�.y//

2,

(6) RiNjNIij Œ Ng�.y/D
3�n

2n
RINN Œ Ng�.y/� .Rij Œ Ng�.y//

2�
kW k2

12.n� 1/

if normal coordinates around y 2 .M; Oh/ are assumed. Here kW k is the norm of the Weyl tensor of
.M; Oh/ at y.
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Note that the first partial derivatives of Oh and the Christoffel symbols �kij Œ Oh�D �
k
ij Œ Ng� at y vanish. Also

a simple computation utilizing � D 0 on M shows that �baaŒ Ng�D �
a
bN
Œ Ng�D 0 on M.

Proof of Lemma 3.2. Theorem 5.2 of [Lee and Parker 1987] guarantees the existence of a representative
Oh 2 Œ Oh� on M such that (1), (2) and Rij Œ Oh�.y/D 0 hold. Furthermore, [Escobar 1992b, Proposition 1.2]
shows that umbilicity is preserved under the conformal transformation, and so � D 0 on M. The proof of
the remaining identities in (3)–(6) is presented in two steps.

Step 1: By differentiating (2-3) in xN and using the assumption that @N .RŒgC�Cn.nC1//D o.x2N / as
xN ! 0, see (1-19), we obtain

o.1/D n

�
@N j Ngj

j Ngjx2N
C
@NN j Ngj

j NgjxN
�
.@N j Ngj/

2

j Ngj2xN

�
C
2RŒ Ng�

xN
CR;N Œ Ng� as xN ! 0: (3-3)

Also, since we supposed that the mean curvatureH vanishes on the umbilic boundaryM, we get from (2-4)
thatRNN Œ Ng�.y/D�.y/D0. This in turn gives that j Ngj.y/D1 and @N j Ngj.y/D@NN j Ngj.y/DRŒ Ng�.y/D0.
Consequently, by taking the limit to y in (3-3), we find that

0D n
�
1
2
@NNN j Ngj.y/C @NNN j Ngj.y/� 0

�
C 2R;N Œ Ng�.y/CR;N Œ Ng�.y/

D n@NNN j Ngj.y/C 2R;N Œ Ng�.y/: (3-4)

Now we observe from Lemma 3.1 that @NNN j Ngj.y/ D �2RNNIN Œ Ng�.y/. In addition, by the second
Bianchi identity, the Codazzi equation and the fact that � D 0 on M, one can achieve

R;N Œ Ng�DRIN Œ Ng�D 2RNNIN Œ Ng�CRij ij IN Œ Ng�D 2RNNIN Œ Ng�C .Rij iNIj Œ Ng��RijjNIi Œ Ng�/

D 2RNNIN Œ Ng�C 2.�i i Ijj ��ij Iij /D 2RNNIN Œ Ng� (3-5)
and

RiN Œ Ng�D �jj Ii ��ij Ij D 0

at y 2M. Combining (3-4) and (3-5), we get

0D .2�n/RNNIN Œ Ng�.y/:

Since n� 3, it follows that RNNIN Œ Ng�.y/D 0, as we wanted.

Step 2: It is well known that R;i i Œ Oh�.y/DRIi i Œ Oh�.y/D�16kW.y/k
2 in the normal coordinate around

y 2M. Therefore the Gauss–Codazzi equation and the fact that H D � D 0 on M imply

R;i i Œ Ng�.y/D 2RNN;ii Œ Ng�.y/�
1
6
kW.y/k2 and RiNjN Œ Ng�.y/DRij Œ Ng�.y/: (3-6)

Moreover, since � Nx.RŒgC�Cn.nC 1//D o.x2N / near y 2X , refer to (1-19), by differentiating (2-3) in
xi twice, dividing the result by x2N and then taking the limit to y, one obtains

R;i i Œ Ng�.y/D 2nRNN;ii Œ Ng�.y/: (3-7)

As a result, putting (3-7) into (3-6) and applying the relations at y

RIi i Œ Ng�DR;i i Œ Ng� and RNNIi i Œ Ng�DRNN;ii Œ Ng�� 2.@i�
a
iN Œ Ng�/RaN Œ Ng� Dby .3/

RNN;ii Œ Ng�

allow one to find (4).
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On the other hand, arguing as before but using the hypothesis that @NN .RŒgC�Cn.nC 1//D o.x2N /
near y 2X at this time, one derives equalities

3R;NN Œ Ng�.y/D�n @NNNN j Ngj.y/D 2n
�
RNNINN Œ Ng�.y/C 2.RiNjN Œ Ng�.y//

2
�
:

Because RINN Œ Ng�.y/DR;NN Œ Ng�.y/, it is identical to (5). Hence the contracted second Bianchi identity,
the Ricci identity and (3)–(5) give

RINN Œ Ng�D 2RiNIiN Œ Ng�C 2RNNINN Œ Ng�D 2
�
RiNINi Œ Ng�C .Rij Œ Ng�/

2
� .RaN Œ Ng�/

2
�
C 2RNNINN Œ Ng�

D 2.RiNINi Œ Ng�C .Rij Œ Ng�/
2/C

�
3
n
RINN Œ Ng�� 4.Rij Œ Ng�/

2
�

at y. Now assertion (6) directly follows from the above equality and

RiNINi Œ Ng�.y/DRNjij INi Œ Ng�.y/

D�RiNjNIij Œ Ng�.y/CRNNIi i Œ Ng�.y/D�RiNjNIij Œ Ng�.y/�
kW.y/k2

12.n� 1/
: �

3B. Umbilic conformal infinity having the property R��I�Œ Ng� < 0. Like the previous section, we fix a
smooth radial cut-off function  2 C1c .R

N
C
/ such that  D 1 in BN

C
.0; �0/ and 0 in RN

C
nBN
C
.0; 2�0/.

Also, assume thatW�DW�;0 denotes the bubble defined in (1-13). Let y 2M be any fixed point identified
with 0 2 Rn.

Lemma 3.3. Suppose J 

Oh

is the functional given in (2-8). If (2-4) is valid and � D 0 on M, then

J



Oh
Œ W�IB

N
C .0; �0/�

D

Z
BN
C
.0;�0/

x
1�2

N jrW1j

2 dxC �3RNNIN Œ Ng�.y/
�
1
4
.n� 2
/F 01�

1
6
F 02C

1
3n

F 03
�
C o.�3/ (3-8)

for any � > 0 small, n > 3C 2
 and 
 2 .0; 1/. Here the values F 01, F 02 and F 03 are given in Lemma B.5.

Proof. SinceH DRNN Œ Ng�D 0 at y and the bubblesW� depend only on the variables j Nxj and xN , we haveZ
BN
C
.0;�0/

x
1�2

N jrW�j

2
Ng dv Ng

D

Z
BN
C
.0;�0/

x
1�2

N jrW1j

2 dx

C �3RNNIN Œ Ng�.y/

�
1

3n

Z
RN
C

x
4�2

N jr NxW1j

2 dx�
1

6

Z
RN
C

x
4�2

N jrW1j

2 dx

�
C o.�3/: (3-9)

In addition, utilizing (2-5) and (3-1), we obtain

E.xN /D
1
2
.n� 2
/

�
RNNIi Œ Ng�.y/xi C

1
2
RNNIN Œ Ng�.y/xN

�
x
1�2

N CO.jxj2x

1�2

N /

for xN � 0 small enough. ThereforeZ
BN
C
.0;�0/

E.xN /W
2
� dv Ng D �

3RNNIN Œ Ng�.y/
�n� 2


4

�Z
RN
C

x
2�2

N W 2

1 dxC o.�
3/: (3-10)

Combining (3-9) and (3-10), we deduce (3-8). �
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As a consequence of the previous lemma, we obtain the following result.

Proposition 3.4. Suppose that .XnC1; gC/ is an asymptotically hyperbolic manifold with umbilic confor-
mal infinity .M; Œ Oh�/. If (2-4) is valid and y 2M is a point such that RNNIN .y/ < 0, then for any � > 0
small and n > 3C 2
 , we have

NI



Oh
Œ W���ƒ


.Sn;Œgc�/C�
3 4n

2�12nC9�4
2

24n.3�2
/

�

R

RN
C
x
4�2

N jrW1j

2dx�R
Rn
w
pC1
1 dx

�n�2

n„ ƒ‚ …

>0

RNNIN.y/Co.�
3/<ƒ
.Sn;Œgc�/;

where NI 

Oh

is the 
 -Yamabe functional given in (1-11), and ƒ
 .Sn; Œgc�/ and �
 are the positive constants
introduced in (1-16) and (1-23), respectively.

Proof. By (A-1), (A-3) and (A-4), see (2-6), it is true that

J



Oh
Œ W�IX nB

N
C .0; �0/�D o.�

3/:

Moreover, we infer from (3-1) and radial symmetry of the function  w� in Rn thatZ
M

. W�/
pC1 dv Oh D

Z
Rn
w
pC1
1 d NxC o.�3/:

Hence Lemmas 3.3 and B.5 give the desired estimate. �

3C. Umbilic nonlocally conformally flat conformal infinity. We now study the case when the boundary
M is umbilic, nonlocally conformally flat and (1-19) holds. In view of Lemma 3.2(3), the tensorRNNIN Œ Ng�
has no role and one needs to expand the energy up to one higher order in �.

Lemma 3.5. Let y D 0 2 M be any fixed point and J 

Oh

the functional given in (2-8). If (2-4) and
Lemma 3.2(1)–(6) are valid, then

J



Oh
Œ W�IB

N
C .0;�0/�

D

Z
BN
C
.0;�0/

x
1�2

N jrW1j

2dxC�4
�
kW k2

4n

�
F 005

12.n�1/
�

F 006
2.n�1/.nC2/

�
.n�2
/F 004
12.n�1/

�
C
RINN Œ Ng�

2

�
�
F 002
8n
C

F 003
4n2
�
.n�3/F 006
n2.nC2/

C
.n�2
/F 001

4n

�
C
.Rij Œ Ng�/

2

n

�
F 003
2
�

F 006
nC2

��
Co.�4/ (3-11)

for any � > 0 small, n > 4C 2
 and 
 2 .0; 1/. Here the tensors are computed at y and the values
F 001 ; : : : ;F

00
6 are given in Lemma B.6.

Proof. Step 1: estimate on the second- and third-order terms. To begin with, we ascertain that

J



Oh
Œ W�IB

N
C .0; �0/�D

Z
BN
C
.0;�0/

x
1�2

N jrW1j

2 dxCO.�4/: (3-12)
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In fact, thanks to (1-19), (2-5) and RŒ Ng�.y/DR;N Œ Ng�.y/D 0, it holds thatZ
BN
C
.0;�0/

E.xN /W
2
� dv Ng

D

Z
BN
C
.0;�0/

E.xN /W
2
� dxCO

�
�4C�

Z
BN
C
.0;�0/

x
1�2

N W 2

1 jxj
4C� dx

�
D �2

�n� 2

4n

�Z
BN
C
.0;�0=�/

x
1�2

N

�
RŒ Ng�.y/C �R;aŒ Ng�.y/xaC

1
2
�2R;abŒ Ng�.y/xaxb

�
W 2
1 dxC o.�

4/

D �4
�n� 2


4n

�
�

h
1

2n
RIi i Œ Ng�.y/F 004 C

1

2
RINN Œ Ng�.y/F 001

i
C o.�4/; (3-13)

where � > 0 is a sufficiently small number. Because RNNIN Œ Ng�.y/D 0 by Lemma 3.2(3), we see from
(3-9) and (3-13) that estimate (3-12) is true.

Step 2: estimate on the fourth-order terms. Let
p
j Ngj

.4/
and . Ngij /.4/ be the fourth-order terms in

the expansions (3-1) and (3-2) of
p
j Ngj and Ngij. In view of (2-6), Lemma 3.2(2) and [Brendle 2008,

Corollary 29], one can show thatZ
BN
C
.0;�0/

x
1�2

N jrW�j

2
p
j Ngj

.4/
dx

D��4
�
1
4n
RNNIi i Œ Ng�.y/F 005 C

1
24
.RNNINN Œ Ng�.y/C 2.RiNjN Œ Ng�.y//

2/F 002
�
C o.�4/

andZ
BN
C
.0;�0/

x
1�2

N . Ngij /.4/@iW�@jW� dxD �

4

�
1

2n.nC2/
.RNNIi i Œ Ng�.y/C2RiNjNIij Œ Ng�.y//F 006

C
1

12n
.RNNINN Œ Ng�.y/C8.RiNjN Œ Ng�.y//

2/F 003

�
Co.�4/I

see [González and Wang 2017, Section 4]. Therefore (2-4), (3-9) and Lemma 3.2(4)–(6) yieldZ
BN
C
.0;�0/

x
1�2

N jrW�j

2
Ng dv Ng

D

Z
BN
C
.0;�0/

x
1�2

N jrW1j

2dxC�4
�
kW k2

8n.n�1/

�
F 005
6
�

F 006
nC2

�
C
RINN Œ Ng�

2n

�
�
F 002
8
C
F 003
4n
�
.n�3/F 006
n.nC2/

�
C
.Rij Œ Ng�/

2

n

�
F 003
2
�

F 006
nC2

��
Co.�4/:

Now (3-13) and the previous estimate lead us to (3-11). �

Corollary 3.6. Assume that .XnC1; gC/ is an asymptotically hyperbolic manifold, Oh is the representative
of the conformal infinity M in Lemma 3.1 and NI 


Oh
is the 
-Yamabe functional in (1-11). If n > 4C 2
 ,


 2 .0; 1/ and Lemma 3.2(1)–(6) hold, we have
NI



Oh
Œ W���ƒ


 .Sn; Œgc�/C �
4ƒ
 .Sn; Œgc�/

�
n�2

2
 �
 jS

n�1
jA3B2

�
�
�kW k2D01.n; 
/ CRINN Œ Ng�D

0
2.n; 
/� .Rij Œ Ng�/

2D03.n; 
/
�
C o.�4/; (3-14)
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where ƒ
 .Sn; Œgc�/, �
 , A3 and B2 are the positive constants introduced in (1-16), (1-23) and (B-3),
respectively. Furthermore

D01.n; 
/D
15n4� 120n3C 20n2.17� 2
2/� 80n.5� 2
2/C 48.4� 5
2C 
4/

480n.n� 1/.n� 4/.n� 4� 2
/.n� 4C 2
/.1� 
2/
> 0;

D02.n; 
/D 0 and D03.n; 
/D
5n2� 4n.13� 2
2/C 28.4� 
2/

5n.n� 4/.n� 4� 2
/.n� 4C 2
/
:

(3-15)

Proof. By Lemmas 3.1 and 3.2(1)–(2), it holds thatZ
M

. W�/
pC1 dv Oh

D

Z
Bn.0;�0/

wpC1�

�
1� 1

40

�
Rij;kl Œ Oh�C

2
9
Rmiqj Œ Oh�Rmkql Œ Oh�

�
xixjxkxl CO.j Nxj

5/
�
d NxCO.�n/

D

Z
Rn
w
pC1
1 d NxC o.�4/:

Thus the conclusion follows from an easy estimate,

J



Oh
Œ W�IX nB

N
C .0; �0/�D o.�

4/

with Lemmas 3.5 and B.6 at once. �

It is interesting to see that the quantity RINN Œ Ng�.y/ does not contribute to the existence of a least
energy solution, since the coefficient of RINN Œ Ng�.y/, denoted by D02.n; 
/, is always zero for any n and 
 .
Such a phenomenon has been already observed in the boundary Yamabe problem [Marques 2005]. We
also note that the number D03.n; 
/ has a nonnegative sign in some situations: when nD 7 and 
 2

�
1
2
; 1
�
,

or n� 8 and 
 2 .0; 1/. In order to cover lower-dimensional cases, we need a more refined test function.

Let y 2M be a point such that W Œ Oh�.y/¤ 0. Motivated by [Almaraz 2010], we define functions

z‰� D‰�. Nx; xN /DM2RiNjN Œ Ng�xixjx
2
N r
�1@rW� D �

2
� ��

n�2

2 z‰1.�

�1
Nx; ��1xN /

for some M2 2 R and
ẑ
� WD  .W�C z‰�/ in X:

Proposition 3.7. Suppose that .XnC1; gC/ is an asymptotically hyperbolic manifold. Moreover Oh is the
representative of the conformal infinity M satisfying (2-4) and Lemma 3.2(1)–(6). If n > 4C 2
 and

 2 .0; 1/, we have

NI



Oh
Œ ẑ ���ƒ


 .Sn; Œgc�/C �
4ƒ
 .Sn; Œgc�/

�
n�2

2
 �
 jS

n�1
jA3B2

�
�
�kW k2D1.n; 
/ CRINN Œ Ng�D2.n; 
/� .Rij Œ Ng�/2D3.n; 
/

�
C o.�4/; (3-16)

where
D1.n; 
/D D01.n; 
/; D2.n; 
/D 0;

see (3-15) for the definition of the positive constant D01.n; 
/, and

D3.n; 
/D
25n3� 20n2.9� 
2/C 100n.4� 
2/� 16.4� 
2/2

5n.n� 4� 2
/.n� 4C 2
/
�
5n2� 4n.1C 
2/� 8.4� 
2/

� :
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Proof. Since RNN Œ Ng�.y/D 0, we obtain

J



Oh
Œ ẑ �IB

N
C .0;�0/�

DJ



Oh
Œ W�IB

N
C.0;�0/�C2

Z
RN
C

x
1�2

N . Ngij �ıij /@iW�@j z‰� dxC

Z
RN
C

x
1�2

N jr z‰�j

2dxCo.�4/: (3-17)

Also a tedious computation with Lemmas 3.1 and 3.2(4) reveals that the second term of the right-hand
side of (3-17) is equal to

2
3
Rikjl Œ Oh�

Z
RN
C

x
1�2

N xkxl @iW�@j z‰� dxC 2RiNjN Œ Ng�

Z
RN
C

x
3�2

N @iW�@j z‰� dxC o.�

4/

D 0C �44M2

�
1

n
F 003 C

1

n.nC 2/
.�F 003 CF 007 /

�
.Rij Œ Ng�/

2
C o.�4/;

and it holds thatZ
RN
C

x
1�2

N jr z‰�j

2 dx D �4
2M 2

2

n.nC 2/

�
F 003 � 2F

00
7 CF 008 C 4F

00
6 C 4F

00
9 CF 0010

�
.Rij Œ Ng�/

2
C o.�4/I

see (2-17) and (2-18). Here the constants F 001 ; : : : ;F
00
10 are defined in Lemma B.6.

On the other hand, we have

J



Oh
Œ ẑ �IX nB

N
C .0; �0/�D o.�

4/;

and since z‰� D 0 on M, the integral of j ẑ �jpC1 over the boundary M does not contribute to the fourth-
order term in the right-hand side of (3-16). By combining all information, employing Lemma B.6 and
selecting the optimal M2 2 R, we complete the proof. �

One can verify that D3.n; 
/ > 0 whenever n > 4C 2
 and 
 2 .0; 1/. Consequently we deduce
Theorem 1.3 from Propositions 3.7 and 3.4.

4. Locally conformally flat or 2-dimensional conformal infinities

4A. Analysis of the Green’s function. In this subsection, we prove Proposition 1.5. By Theorem A,
solvability of problem (1-20) for each y 2M is equivalent to the existence of a solutionG� to the equation(

� div Ng�
�
.��/1�2
rG�. � ; y/

�
D 0 in .X; Ng�/;

@


�G
�. � ; y/D ıy �Q




Oh
G�. � ; y/ on .M; Oh/;

and we have j Ng�iN j C j Ng
�
NN � 1j D O.�

2
 /. We also recall [González and Qing 2013, Corollary 4.3]
which states that if ƒ
 .M; Œ Oh�/ > 0, then M admits a metric Oh0 2 Œ Oh� such that Q


Oh0
> 0 on M. Thanks to

the following lemma, it suffices to show Proposition 1.5 for Oh0 2 Œ Oh�.

Lemma 4.1. Let .X; gC/ be any conformally compact Einstein manifold with conformal infinity .M; Œ Oh�/,
� the geodesic defining function of M in X and Ng D �2gC. For any positive smooth function w on M,
define a new metric Ohw D w4=.n�2
/ Oh, denote the corresponding geodesic boundary-defining function
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by �w and set Ngw D �2wg
C. Suppose that G DG.x; y/ solves (1-20). Then the function

Gw.x; y/ WD

�
�.x/

�w.x/

�n�2

2

w
nC2

n�2
 .y/G.x; y/ for .x; y/ 2X �M; x ¤ y

again satisfies (1-20) with . Ngw ; Ohw/ and �w substituted for . Ng; Oh/ and �, respectively.

Proof. By (1-5), the first equality in (1-20) is re-expressed as

L Ng.�
1�2

2 G. � ; y//C

�

2� 1

4

�
��.

3C2

2
/G. � ; y/D 0 in .X; Ng/; (4-1)

whereL Ng is the conformal Laplacian in .X; Ng/ defined in (1-3). Therefore one observes from (1-1) thatGw
is a solution of (4-1) if Ng and � are replaced with Ngw and �w , respectively. Also, sincewD .�w=�/.n�2
/=2

on M, we see

@
�Gw. � ; y/D P



Ohw
Gw. � ; y/D w

nC2

n�2
 .y/ P




w
4

n�2
 Oh

..�=�w/
n�2

2 G. � ; y//

D w
nC2

n�2
 .y/ P




w
4

n�2
 Oh

.w�1G. � ; y//D w
nC2

n�2
 .y/w�

nC2

n�2
 P




Oh
.G. � ; y//

D w
nC2

n�2
 .y/w�

nC2

n�2
 @
� .G. � ; y//D w

nC2

n�2
 .y/w�

nC2

n�2
 ıy D ıy on M;

where we have applied Theorem A and (1-1) for the first, fourth and fifth equalities. �

For brevity, we write OhD Oh0, Ng D Ng�, �D �� and G D G� here and henceforth. Further, recalling
that Q


Oh
> 0 on M, let us define a norm

kU kW1;q.X;�1�2
 / D

�Z
X

�1�2
 jrU j
q
Ng dv Ng C

Z
M

Q



Oh
U q dv Oh

�1
q

for any q � 1 and set a space W1;q.X; �1�2
 / as the completion of C1c .X/ with respect to the above
norm.

Given any bounded Radon measure f (such as the Dirac measures), a function U 2W1;q.X; �1�2
 /

is said to be a weak solution of (
� div Ng.�1�2
rU/D 0 in .X; Ng/;
@


�U CQ




Oh
U D f on .M; Oh/

(4-2)

if it satisfies that Z
X

�1�2
 hrU;r‰i Ng dv Ng C

Z
M

Q



Oh
U‰ dv Oh D

Z
M

f ‰ (4-3)

for any ‰ 2 C 1.X/.
The W1;2.X; �1�2
 /-norm is equivalent to the standard weighted Sobolev norm kU kW 1;2.X;�1�2
 /;

see [Choi and Kim 2017, Lemma 3.1]. Thus for any fixed f 2 .H 
 .M//�, the existence and uniqueness
of a solution U 2W 1;2.X; �1�2
 / to (4-2) are guaranteed by the Riesz representation theorem.
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Lemma 4.2. Assume that n > 2
 , f 2 .H 
 .M//� and 1� ˛ <min
˚

n
n�2


; 2nC2
2nC1

	
. Then there exists a

constant C D C.X; gC; �; n; 
; ˛/ such that

kU kW1;˛.X;�1�2
 / � Ckf kL1.M/ (4-4)

for a weak solution U 2 W 1;2.X; �1�2
 / to (4-2). As a result, if f is the Dirac measure ıy at y 2M,
then (4-2) has a unique nonnegative weak solution G. � ; y/ 2W1;˛.X; �1�2
 /.

Proof. Step 1: We are going to verify estimate (4-4) by suitably modifying the argument in [Brézis and
Strauss 1973, Section 5]. To this aim, we consider the formal adjoint of (4-2): Given any h0 2 Lq.M/

and H1; : : : ;HN 2 Lq.X; �1�2
 / for some q >max
˚
n
2

; 2.nC 1/

	
, we study a function V such thatZ

X

�1�2
 hrV;r‰i Ng dv Ng C

Z
M

Q



Oh
V ‰ dv Oh D

Z
M

h0‰ dv OhC

NX
aD1

Z
X

�1�2
Ha@a‰ dv Ng (4-5)

for any‰2C 1.X/. Indeed, by the Lax–Milgram theorem, (4-5) has a unique solution V 2W 1;2.X; �1�2
 /.
Moreover, employing Moser’s iteration technique, we observe that V satisfies

kV kL1.M/CkV kL1.X/ � C

�
kh0kLq.M/C

NX
aD1

kHakLq.X;�1�2
 /

�
: (4-6)

Therefore taking ‰ D V in (4-3) and U in (4-5) respectively (which is allowed thanks to the density
argument) and then employing (4-6), we findZ

M

Uh0 dv OhC

NX
aD1

Z
X

�1�2
@aUHa dv Ng D

Z
M

f V dv Oh � kf kL1.M/kV kL1.M/

� Ckf kL1.M/

�
kh0kLq.M/C

NX
aD1

kHakLq.X;�1�2
 /

�
:

This implies the validity of (4-4) with ˛ D q0, where q0 designates the Hölder conjugate of q.

Step 2: Assume now that f D ıy for some y 2M. Then one is capable of constructing a sequence
ffmgm2N � C

1.M/ with an approximation to the identity or a mollifier so that fm � 0 on M,

sup
m2N

kfmkL1.M/ � C; fm! 0 in C 1loc.M n fyg/ and fm* ıy in the distributional sense.

Denote by fUmgm2N�W
1;2.X; �1�2
 / a sequence of the corresponding weak solutions to (4-2). By (4-4)

and elliptic regularity, there exist a function G. � ; y/ and a number "0 2 .0; 1/ such that Um*G. � ; y/

weakly in W1;˛.X; �1�2
 / and Um!G. � ; y/ in C "0loc.X nfyg/. It is a simple task to confirm thatG. � ; y/
satisfies (4-3).

Also, putting .Um/� 2W 1;2.X; �1�2
 / into (4-3) yields Um � 0 in X, which in turn gives G. � ; y/� 0
in X. Finally, the uniqueness of G. � ; y/ comes as a consequence of (4-4). �

Completion of the proof of Proposition 1.5. The existence and nonnegativity of the Green’s function G is
deduced in the previous lemma. Owing to Hopf’s lemma, see [González and Qing 2013, Theorem 3.5], G
is positive on the compact manifold X. Recall that the coercivity of (4-3) implies the uniqueness of G. �
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4B. Locally conformally flat case. This subsection is devoted to provide the proof of Theorem 1.7,
which treats locally conformally flat conformal infinities M.

Pick any point y 2M. Since it is supposed to be locally conformally flat, we can assume that y is the
origin in Rn and identify a neighborhood U of y in M with a Euclidean ball Bn.0; %1/ for some %1 > 0
small, namely, Ohij D ıij in U D Bn.0; %1/. Write xN to denote the geodesic defining function � for the
boundary M near y. Then we have smooth symmetric n-tensors h.1/; : : : ; h.n�1/ on Bn.0; %1/ such that

Ng D hxN ˚ dx
2
N; where .hxN /ij . Nx; xN /D ıij C

n�1X
mD1

h
.m/
ij . Nx/xmN CO.x

n
N /; (4-7)

for . Nx; xN / 2 RN .%1; %2/ WD Bn.0; %1/ � Œ0; %2/ � X, where %2 > 0 is a number small enough. In
fact, as the next lemma indicates, the local conformal flatness on M and the assumption that X is
Poincaré–Einstein together imply that all low-order tensors h.m/ should vanish. In particular, the second
fundamental form h.1/ on M (up to a constant factor) is 0, which implies Remark 1.8(2).

Lemma 4.3. If .X; gC/ is Poincaré–Einstein, we have h.m/ D 0 in (4-7) for each mD 1; : : : ; n� 1.

Proof. Follow the argument of [Graham 2000], which starts from the paragraph after (2.4). Due to the condi-
tion Ohij Dıij , the right-hand side of (2.6) in that paper becomes 0, from which one can deduce the result. �

Therefore (4-7) is reduced to

Ngij . Nx; xN /D ıij CO.x
n
N / and j Ngj D 1CO.xnN / for . Nx; xN / 2RN .%1; %2/�X: (4-8)

Choose any smooth function � W Œ0;1/! Œ0; 1� such that �.t/ D 1 for 0 � t � 1 and �.t/ D 0 for
t � 2. Recall the bubble W� defined in (1-13) and (1-14), the Green’s function G. � ; 0/, its regular part
‰ given in (1-21), and the numbers ˛n;
 and gn;
 given in (1-23). Then we construct a nonnegative,
continuous and piecewise smooth function ˆ�;%0 on X by

ˆ�;%0.x/D

8<:
W�.x/ if x 2X \BN .0; %0/;
V�;%0.x/

�
G.x; 0/��%0.x/‰.x/

�
if x 2X \ .BN .0; 2%0/ nBN .0; %0//;

V�;%0.x/G.x; 0/ if x 2X nBN .0; 2%0/;
(4-9)

where 0 < �� %0 �minf%1; %2g=5 sufficiently small, �%0.x/ WD �.jxj=%0/ and

V�;%0.x/ WD

�
˛n;


�
�
n�2

2

%
n�2

0

�
C�%0.x/

�
W�.x/�˛n;


�
n�2

2

jxjn�2


��
� .gn;
 %

�.n�2
/
0 CA/�1: (4-10)

We remark that the main block V�;%0 of the test function ˆ�;%0 is different from the function W in (4.2)
of [Escobar 1992a], but they share common characteristics such as decay properties, as proved in the next
lemma.

Lemma 4.4. There are constants C; �1; �2 > 0 depending only on n and 
 such that

jV�;%0.x/j � C�
n�2

2 for any x 2X nBN .0; %0/ (4-11)
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and

jr NxV�;%0.x/j � C%
��1
0 �

n�2
C2�2
2 and j@NV�;%0.x/j � C�

��1
0 .�

n�2
C2�2
2 C x

2
�1
N �

nC2

2 / (4-12)

for x D . Nx; xN / 2X \ .BN .0; 2%0/ nBN .0; %0//. Also we have rV�;%0 D 0 in X nBN .0; 2%0/.

Proof. We observe from (A-1) and (4-10) that

jV�;%0.x/j � C%
n�2

0

��
�
n�2

2

%
n�2

0

�
C

ˇ̌̌̌
W�.x/�˛n;


�
n�2

2

jxjn�2


ˇ̌̌̌�
� C

�
�
n�2

2 C

�
n�2
C2#1

2

%
#1
0

�
� C�

n�2

2

for all %0 � jxj � 2%0 and some #1 2 .0; 1/, so (4-11) follows. One can derive (4-12) by making the use
of (A-1), (A-3) and (A-4). We leave the details to the reader. �

Now we assert the following proposition, which suffices to conclude that the fractional Yamabe problem
is solvable in this case.

Proposition 4.5. For n > 2
 and 
 2 .0; 1/, let .XnC1; gC/ be a Poincaré–Einstein manifold with
conformal infinity .M n; Œ Oh�/ such that (1-9) has the validity. Assume also that M is locally conformally
flat. If Conjecture 1.6 holds and A > 0, then

0 < NI



Oh
Œˆ�;%0 � < ƒ


 .Sn; Œgc�/;

where NI 

Oh

is the 
-Yamabe functional defined in (1-11), and ƒ
 .Sn; Œgc�/ > 0 is the constant defined in
(1-16).

Proof. The proof is divided into three steps.

Step 1: estimation in X \BN .0; %0/. Applying (1-15), (1-16), (4-8), (A-3), (A-4), Lemma A.2 and
integrating by parts, we obtain

�


Z
X\BN .0;%0/

x
1�2

N jrW�j

2
Ng dv Ng

�ƒ
 .Sn; Œgc�/

�Z
Bn.0;%0/

wpC1� d Nx

�n�2

n

C �


Z
X\@BN .0;%0/

x
1�2

N W�

@W�

@�
dS CO

�Z
Bn.0;%0/

x
nC1�2

N jrW�j

2 d Nx

�
„ ƒ‚ …

DO.%
2

0 �

n�2
 /

; (4-13)

where � is the outward unit normal vector and dS is the Euclidean surface measure. On the other hand, if
we write gC D x�2N .dx2N C hxN /, then

E.xN /D�
1
4
.n� 2
/x

�2

N tr.h�1xN @NhxN /DO.x

n�1�2

N / (4-14)

in X \BN .0; 2%0/; see (2-5). Therefore

�


Z
X\BN .0;%0/

E.xN /W
2
� dv Ng DO.%

2

0 �

n�2
 /: (4-15)
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Step 2: estimation in X nBN .0; %0/. By its own definition (4-9) of the test function ˆ�;%0 , its energy on
X can be evaluated asZ
XnBN .0;%0/

.�1�2
 jrˆ�;%0 j
2
Ng CE.�/ˆ

2
�;%0

/ dv Ng

D

Z
XnBN .0;%0/

�
�1�2
 hr.V 2�;%0G/;rGi Ng CE.�/V

2
�;%0

G2C �1�2
 jrV�;%0 j
2.G ��%0‰/

2
�
dv Ng

C

Z
X\.BN .0;2%0/nBN .0;%0//

�1�2

�
1
2

˝
rV 2�;%0 ;r.�2G�%0‰C�

2
%0
‰2/

˛
Ng

�
dv Ng

C

Z
X\.BN .0;2%0/nBN .0;%0//

�1�2
V 2�;%0.jr.�%0‰/j
2
� 2hrG;r.�%0‰/i Ng/ dv Ng

C

Z
X\.BN .0;2%0/nBN .0;%0//

E.�/V 2�;%0.�
2
%0
‰2� 2G�%0‰/dv Ng ;

where G DG. � ; 0/. From (1-20), (1-22), (4-14) and Lemma 4.4, we see that

�


Z
XnBN .0;%0/

.�1�2
 jrˆ�;%0 j
2
Ng CE.�/ˆ

2
�;%0

/ dv Ng

� ��


Z
X\@BN .0;%0/

x
1�2

N V 2�;%0G

@G

@�
.1CO.xnN // dS CC�

n�2
C2�2%
�.n�2
�2C2�1/
0

CC�n�2
C�2%
minf1;2
gC1��1
0 CC�n%

minf1;2
gC2
��1
0 CC�n�2
%

minf1;2
g
0 ; (4-16)

where C > 0 depends only on n; 
; %1 and %2. For instance, we haveZ
XnBN .0;%0/

�1�2
 jrV�;%0 j
2.G ��%0‰/

2 dv Ng

� C%
�2�1
0

Z
BN .0;2%0/nBN .0;%0/

x
1�2

N .�n�2
C2�2 C x

2.2
�1/
N �nC2
 / �

�
1

jxj2.n�2
/
C 1

�
dx

� C
�
�n�2
C2�2%

�.n�2
�2C2�1/
0 C �nC2
%

�nC6

0 j log %0j

�
� C�n�2
C2�2%

�.n�2
�2C2�1/
0

for 0 < �� %0 small. The other terms can be managed in a similar manner.

Step 3: conclusion. By combining (4-13), (4-15) and (4-16), we deduce

�


Z
X

.�1�2
 jrˆ�;%0 j
2
Ng CE.�/ˆ

2
�;%0

/ dv Ng

�ƒ
 .Sn; Œgc�/

�Z
Bn.0;%0/

wpC1� d Nx

�n�2

n

C �


Z
X\@BN .0;%0/

x
1�2

N

�
W�
@W�

@�
�V 2�;%0G

@G

@�

�
„ ƒ‚ …

DWI

dS

CC�n�2
%
minf1;2
g
0 : (4-17)
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Let us compute the integral of I over the boundary X \ @BN .0; %0/ in the right-hand side of (4-17).
Because of Lemma A.1 and (1-22), one has

@W�

@�
�V�;%0

@G

@�
� �

˛n;
 .n� 2
/�
n�2

2

%
n�2
C1
0

C .gn;
 %
�.n�2
/
0 CA/�1

˛n;
 gn;
 .n� 2
/�
n�2

2

%
2.n�2
/C1
0

CC�
n�2

2
C#1%

�.n�2
C1C#1/
0 CC�

n�2

2 %

minf0;2
�1g
0

� �˛n;
 g
�1
n;
 .n� 2
/A

�
n�2

2

%0
CC�

n�2

2 %

minf0;2
�1g
0 CC�

n�2

2
C#1%

�.n�2
C1C#1/
0

on fjxj D %0g for some #1 2 .0; 1/. Therefore using the fact that W1.x/ � 1
2
˛n;
�

n�2

2 %

�.n�2
/
0 on

fjxj D %0g, we discoverZ
X\@BN .0;%0/

I dS D

Z
X\@BN .0;%0/

x
1�2

N

�
W�

�
@W�

@�
�V�;%0

@G

@�

�
�V 2�;%0

@G

@�
‰

�
dS

� �
˛2n;


gn;


�
n� 2


4

��Z
@BN .0;1/

x
1�2

N dS

�
A�n�2
 CC�n�2
%

minf1;2
g
0

CC�n�2
C#1%
�.n�2
C#1/
0 :

Now the previous estimate, (4-17), (1-16) and the assumption A > 0 yield that

NI



Oh
Œˆ�;%0 ��ƒ


 .Sn; Œgc�/�
˛2n;


gn;


�
Sn;


�


�n�2

2
 �

1
8
.n� 2
/

�
�
jSn�1j

2
B
�
1� 
; 1

2
n
�
�A�n�2


CC�n�2
%
minf1;2
g
0 CC�n�2
C#1%

�.n�2
C#1/
0

<ƒ
 .Sn; Œgc�/;

where B is the beta function. Additionally the last strict inequality holds for 0< �� %0 small enough. �

4C. 2-dimensional case. We are now led to treat the case when .M; Œ Oh�/ is a 2-dimensional closed
manifold.

Fix an arbitrary point p 2M and let Nx D .x1; x2/ be normal coordinates at p. Since X is Poincaré–
Einstein, it holds that h.1/ D 0 in (4-7), whence we have

Ngij . Nx; xN /D ıij CO.jxj
2/ and j Ngj D 1CO.jxj2/ for . Nx; xN / 2RN .%1; %2/�X; (4-18)

where the rectangle RN .%1; %2/ is defined in the line following (4-7).

With Proposition B in the Introduction, the next result will give the validity of Theorem 1.7 if nD 2.

Proposition 4.6. For 
 2 .0; 1/, let .X3; gC/ be a Poincaré–Einstein manifold with conformal infinity
.M 2; Œ Oh�/ such that (1-9) holds. If Conjecture 1.6 holds and A > 0, then

0 < NI



Oh
Œˆ�;%0 � < ƒ


 .S2; Œgc�/

for the test function ˆ�;%0 introduced in (4-9).
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Proof. We compute the error in X \BN
C
.0; %0/ due to the metric. As in (4-13) and (4-15), one hasZ

X\BN.0;%0/

x
1�2

N jrW�j

2
Ng dv NgD

Z
X\BN.0;%0/

x
1�2

N jrW�j

2dxCO

�Z
X\BN.0;%0/

x
1�2

N jxj2jrW�j

2dx

�
„ ƒ‚ …

DO.%
2

0 �

2�2
 /

and Z
X\BN .0;%0/

E.xN /W
2
� dv Ng DO

�Z
X\BN .0;%0/

x
1�2

N W 2

� dx

�
DO.%

2

0 �

2�2
 /

from (4-18). Therefore the error arising from the metric is ignorable, and the same argument in proof of
Proposition 4.5 works. �

Appendix A: Expansion of the standard bubble W1;0 near infinity

This appendix is devoted to finding expansions of the function W1 D W1;0, defined in (1-13), and its
derivatives near infinity. Specifically we improve [Choi and Kim 2017, Lemma A.2] by pursuing a new
approach based on conformal properties of W1.

For the functions W1 and x � rW1, we have:

Lemma A.1. Suppose that n > 2
 and 
 2 .0; 1/. For any fixed large number R0 > 0, we haveˇ̌̌̌
W1.x/�

˛n;


jxjn�2


ˇ̌̌̌
C

ˇ̌̌̌
x � rW1.x/C

˛n;
 .n� 2
/

jxjn�2


ˇ̌̌̌
�

C

jxjn�2
C#1
(A-1)

for jxj �R0, where numbers #1 2 .0; 1/ and C > 0 rely only on n; 
 and R0.

Proof. Given any function F in RN
C

, let F � be its fractional Kelvin transform defined as

F �.x/D
1

jxjn�2

F

�
x

jxj2

�
for x 2 RNC :

Then it is known that W �1 DW1. Let us claim that .x � rW1/�.0/D �˛n;
 .n� 2
/ and .x � rW1/� is
C1 in the Nx-variable and Hölder continuous in the xN -variable. Since

x
2�2

N @NNW1 D�.1� 2
/x

1�2

N @NW1� x

2�2

N � NxW1 in RNC ;

we have 8̂<̂
:
� div

�
x
1�2

N r.x � rW1/

�
D 0 in RN

C
;

@


� .x � rW1/D

Pn
iD1 xi@xi@



�W1C @



�W1� limxN!0 x

2�2

N @NNW1

D p
Pn
iD1 xi@xi .w

p
1 /C 2
w

p
1 on Rn:

Employing [Fall and Weth 2012, Proposition 2.6; Caffarelli and Silvestre 2007] and doing some computa-
tions, we obtain that8̂<̂

:
� div.x1�2
N r.x � rW1/

�/D 0 in RN
C
;

@


� .x � rW1/

� D .��/
 .x � rW1/
� D ˛

p
n;


 
2
 j Nxj2�n

.1Cj Nxj2/
nC2
C2

2

!
on Rn:
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Therefore .x � rW1/� has regularity stated above, and according to Green’s representation formula,

.x � rW1/
�.0/D ˛pn;
gn;


Z
Rn

1

j Nyjn�2


 
2
 j Nyj2�n

.1Cj Nyj2/
nC2
C2

2

!
d Ny D�˛n;
 .n� 2
/:

This proves the assertion.
Now we can check (A-1) with the above observations. By standard elliptic theory, there exist constants

c1; : : : ; cN > 0 such thatˇ̌
W �1 .x/�˛n;


ˇ̌
C
ˇ̌
.x � rW1/

�.x/C˛n;
 .n� 2
/
ˇ̌
�

nX
iD1

ci jxi jC cNx
#1
N (A-2)

for any jxj �R�10 and some #1 2 .0; 1/. Hence, by taking the Kelvin transform in (A-2), we see that the
desired inequality (A-1) is valid for all jxj �R0. �

Additionally we have the following decay estimate of the derivatives of W1.

Lemma A.2. Assume that n> 2
 and 
 2 .0; 1/. For any fixed large number R0>0, there exist constants
C > 0 and #2 2 .0;minf1; 2
g/ depending only on n; 
 and R0 such thatˇ̌̌̌

r NxW1.x/C
˛n;
 .n� 2
/ Nx

jxjn�2
C2

ˇ̌̌̌
�

C

jxjn�2
C1C#2
(A-3)

and ˇ̌̌̌
@NW1.x/C

˛n;
 .n� 2
/xN

jxjn�2
C2

ˇ̌̌̌
� C

�
1

jxjn�2
C2
C

x
2
�1
N

jxjnC2


�
(A-4)

for jxj �R0.

Proof. The precise values of the constants pn;
 , ˛n;
 and �
 , which will appear during the proof, are
found in (1-23).

Step 1: By (1-13), (1-14) and Taylor’s theorem, it holds that

@iW1.x/D pn;


Z
Rn

1

.j Nyj2C 1/
nC2

2

@iw1. Nx� xN Ny/ d Ny

D pn;


Z
Rn

1

.j Nyj2C 1/
nC2

2

�
@iw1.�xN Ny/C @ijw1.�xN Ny/xj CO.j Nxj

2/
�
d Ny

D pn;


Z
Rn

1

.j Nyj2C 1/
nC2

2

�
@i iw1.0/xi CO..xN j Nyj/

#2 j Nxj/CO.j Nxj2/
�
d Ny

D�˛n;
 .n� 2
/xi CO.jxj
1C#2/

for jxj � R�10 . Here we also used the facts that the C 2.Rn/-norm of w1 and the C #2.Rn/-norm of
@ijw1 are bounded for some #2 2 .0;minf1; 2
g/. On the other hand, the uniqueness of the 
 -harmonic
extension yields that .@iW1/� D @iW1 for i D 1; : : : ; n. Thereforeˇ̌̌̌
@iW1.x/C

˛n;
 .n� 2
/xi

jxjn�2
C2

ˇ̌̌̌
D
ˇ̌
.@iW1/

�.x/C˛n;
 .n� 2
/x
�
i

ˇ̌
� C.jxj1C#2/� �

C

jxjnC2
C1C#2

for jxj �R0, which is the desired inequality (A-3).
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Step 2: If 
 D 1
2

, it is known that

W1. Nx; xN /D ˛n; 1
2

�
1

j Nxj2C .xnC 1/2

�n�1
2

for all . Nx; xN / 2 RNC ;

from which (A-4) follows. Therefore it is sufficient to consider when 
 2 .0; 1/ n
˚
1
2

	
. In light of duality

[Caffarelli and Silvestre 2007, Section 2.3], we have(
� div.x1�2.1�
/N r.x

1�2

N @NW1//D 0 in RN

C
;

x
1�2

N @NW1 D��

�1

 w

p
1 on Rn:

Hence if we define

F ��.x/D
1

jxjn�2.1�
/
F

�
x

jxj2

�
for x 2 RNC

for an arbitrary function F in RN
C

, then8̂<̂
:
� div

�
x
1�2.1�
/
N r.x

1�2

N @NW1/

��
�
D 0 in RN

C
;

.x
1�2

N @NW1/

�� D�˛
p
n;
�

�1



j Nxj2

.1Cj Nxj2/
nC2

2

on Rn:

This implies

.x
1�2

N @NW1/

��. Nx;xN /D�˛
p
n;
�

�1

 pn;1�
 x

2�2

N

Z
Rn

1

j Nyjn�2

1

.1Cj Nyj2/
nC2

2

d NyCO.x
2�2

N jxjCjxj2/

D�˛n;
 .n�2
/x
2�2

N CO.x

2�2

N jxjCjxj2/ (A-5)

for all jxj �R�10 . Accordingly, we haveˇ̌̌̌
x
1�2

N @NW1.x/C

˛n;
 .n� 2
/x
2�2

N

jxjn�2
C2

ˇ̌̌̌
� C

�
x
2�2

N

jxjn�2
C3
C

1

jxjnC2


�
for jxj �R0. Dividing the both sides by x1�2
N finishes the proof of (A-4). �

Appendix B: Some integrations regarding the standard bubble W1;0 on RN
C

The following lemmas are due to González and Qing [2013, Section 7] and the authors [Kim et al. 2015,
Section 4.3].

Lemma B.1. Suppose that n > 4
 � 1. For each xN > 0 fixed, let yW1.�; xN / be the Fourier transform
of W1. Nx; xN / with respect to the variable Nx 2 Rn. In addition, we use K
 to signify the modified Bessel
function of the second kind of order 
 . Then we have

yW1.�; xN /D Ow1.�/ '.j�jxN / for all � 2 Rn and xN > 0;

where '.t/D d1t
K
 .t/ is the solution to

�00.t/C
1� 2


t
�0.t/��.t/D 0; �.0/D 1 and �.1/D 0; (B-1)



EXISTENCE THEOREMS OF THE FRACTIONAL YAMABE PROBLEM 107

and Ow1.t/ WD Ow1.j�j/D d2j�j�
K
 .j�j/ solves

�00.t/C
1C 2


t
�0.t/��.t/D 0 and lim

t!0
t2
�.t/C lim

t!1
t
C

1
2 et�.t/� C (B-2)

for some C > 0. The numbers d1; d2 > 0 depend only on n and 
 .

Lemma B.2. Let

A˛ D

Z 1
0

t˛�2
'2.t/ dt; B˛ D

Z 1
0

t�˛C2
 Ow21.t/t
n�1 dt;

A0˛ D

Z 1
0

t˛�2
'.t/ '0.t/ dt; B 0˛ D

Z 1
0

t�˛C2
 Ow1.t/ Ow
0
1.t/t

n�1 dt;

A00˛ D

Z 1
0

t˛�2
 .'0.t//2 dt; B 00˛ D

Z 1
0

t�˛C2
 . Ow01.t//
2tn�1 dt

(B-3)

for ˛ 2 N[f0g. Then

A˛D

�
˛C 2

˛C 1

�
�

��
˛C 1

2

�2
�
2

��1
A˛C2D�

�
˛C 1

2
�


��1
A0˛C1D

�
˛C 1

2
�


��
˛� 1

2
C


��1
A00˛

for ˛ odd, ˛ � 1 and

B˛ D
4.n�˛C 1/B˛�2

.n�˛/.nC 2
 �˛/.n� 2
 �˛/
D�

2B 0˛�1
nC 2
 �˛

;

B˛�2 D
.n� 2
 �˛/B 00˛�2
nC 2
 �˛C 2

for ˛ even, ˛ � 2.

Proof. Apply (B-1), (B-2) and the identityZ 1
0

t˛�1u.t/ u0.t/ dt D�
˛� 1

2

Z 1
0

t˛�2u.t/2 dt;

which holds for any ˛ > 1 and u 2 C 1.R/ decaying sufficiently fast. �

Utilizing the above lemmas, we compute some integrals regarding the standard bubble W1 and its
derivatives. The next identities are necessary in the energy expansion when nonminimal conformal
infinities are considered. See Section 2B.

Lemma B.3. Suppose that n� 2 and 
 2
�
0; 1
2

�
. ThenZ

RN
C

x
2�2

N jrW1j

2 dx D
4

1C 2


Z
RN
C

x
2�2

N .@rW1/

2 dx D
1� 2


2

Z
RN
C

x
�2

N W 2

1 dx <1:

Proof. Refer to [Choi and Kim 2017, Lemma 6.3]. �

The following is used in the energy expansion for the nonumbilic case. Refer to Sections 2C and 2D.
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Lemma B.4. For n > 2C 2
 , it holds that

F1W D
Z

RN
C

x
1�2

N W 2

1 dx D
3

2.1� 
2/
jSn�1jA3B2;

F2W D
Z

RN
C

x
3�2

N jrW1j

2 dx D
3

1C 

jSn�1jA3B2;

F3W D
Z

RN
C

x
3�2

N .@rW1/

2 dx D jSn�1jA3B2;

F4W D
Z

RN
C

x
3�2

N r.@rW1/.@rrW1/ dx D�

1
2
njSn�1jA3B2;

F5W D
Z

RN
C

x
3�2

N r2.@rrW1/

2 dx D
5n3� 4n.1C 
2/C 4.1� 4
2/

20.n� 1/
jSn�1jA3B2;

F6W D
Z

RN
C

x
1�2

N r2.@rW1/

2 dx D
.nC 2/.3n2� 6nC 4� 4
2/

8.n� 1/.1� 
2/
jSn�1jA3B2;

F7W D
Z

RN
C

x
2�2

N r2.@rW1/.@rxNW1/ dx D�

.nC 2/.3n2� 6nC 4� 4
2/

8.n� 1/.1C 
/
jSn�1jA3B2;

F8W D
Z

RN
C

x
3�2

N r2.@rxNW1/

2 dx D
.2� 
/.5n3� 4n.2� 2
 C 
2/C 8.1� 
 � 2
2//

20.n� 1/.1C 
/
jSn�1jA3B2:

Here r D j Nxj, and the positive constants A3 and B2 are defined by (B-3).

Proof. The values F1, F2, F3 and F6 were computed in [González and Qing 2013; Kim et al. 2015], so
it suffices to consider the others.

Step 1: calculation of F4. Integration by parts gives

F4 D
Z

RN
C

x
3�2

N r.@rW1/.@rrW1/ dx D jS

n�1
j

Z 1
0

x
3�2

N

�
1

2

Z 1
0

rn@r.@rW1/
2 dr

�
dxN

D jSn�1j

Z 1
0

x
3�2

N

�
�
n

2

Z 1
0

rn�1.@rW1/
2 dr

�
dxN D�

n

2
F3 D�

n

2
jSn�1jA3B2:

Step 2: calculation of F5. Since � NxW1 DW 001 C .n� 1/r
�1W 01 (where 0 stands for the differentiation

in r), it holds that Z
RN
C

x
3�2

N r2.� NxW1/

2 dx D F5C 2.n� 1/F4C .n� 1/2F3: (B-4)

By the Plancherel theorem, Lemma B.1 and the relation

��.j�j
2
Ow1.j�j/'.j�jxN //

D 2n Ow1'C .nC 2� 2
/j�j Ow
0
1'C .nC 2C 2
/j�j Ow1'

0xN Cj�j
2
Ow1'C 2j�j

2
Ow01'
0xN Cj�j

2
Ow1'x

2
N ;
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where the variable of Ow1 and Ow01 is j�j, that of ' and '0 is j�jxN , and 0 represents the differentiation with
respect to the radial variable j�j, we seeZ

RN
C

x
3�2

N r2.� NxW1/

2 dx

D

Z 1
0

x
3�2

N

Z
Rn
.���/

�
j�j2 Ow1.j�j/'.j�jxN /

�
�
�
j�j2 Ow1.j�j/'.j�jxN /

�
d� dxN

D jSn�1j
�
2nA3B2C .nC 2� 2
/A3B

0
1C .nC 2C 2
/A

0
4B2CA3B0C 2A

0
4B
0
1CA5B2

�
:

Therefore Lemma B.2 impliesZ
RN
C

x
3�2

N r2.� NxW1/

2 dx D
5n3� 20n2C 4n.9� 
2/� 16.1C 
2/

20.n� 1/
jSn�1jA3B2:

Now (B-4) and the information on F3 and F4 yield the desired estimate for F5.

Step 3: calculation of F7 and F8. Since the basic strategy is similar to Step 2, we will just sketch the
proof. We observe

F7 D
1

2

Z 1
0

x
2�2

N @N

�Z
Rn
r2.@rW1/

2 d Nx

�
dxN D

1

2

Z 1
0

x
2�2

N @N

� nX
iD1

Z
Rn
j Nxj2.@xiW1/

2 d Nx

�
dxN

D
1

2

Z 1
0

x
2�2

N @N

� nX
iD1

Z
Rn
.���/

�
�i Ow1.j�j/'.j�jxN /

�
�
�
�i Ow1.j�j/'.j�jxN /

�
d�

�
„ ƒ‚ …

D.I /

dxN :

Owing to Lemmas B.1, B.2 and the expansion

.I /D�.nC 1/

Z
Rn
@N
�
j�j. Ow1 Ow

0
1/.j�j/ '

2.j�jxN /Cj�j Ow
2
1.j�j/ .''

0/.j�jxN /xN
�
d�

�

Z
Rn
@N
�
j�j2. Ow1 Ow

00
1/.j�j/ '

2.j�jxN /C 2j�j
2. Ow1 Ow

0
1/.j�j/ .''

0/.j�jxN /xN
�
d�

�

Z
Rn
@N
�
j�j2 Ow21.j�j/ .''

00/.j�jxN /x
2
N

�
d�;

one can compute the integral F7 D 1
2

R1
0 x

2�2

N .I / dxN to get its value given in the statement of the

lemma. Moreover,

F8 D
Z 1
0

x
3�2

N

�Z
Rn
j Nxj2jr Nx.@NW1/j

2 d Nx

�
dxN

D

Z 1
0

x
3�2

N

� nX
iD1

Z
Rn
.���/.�i@N yW1/ � .�i@N yW1/ d�

�
dxN :

The rightmost term is computable with Lemmas B.1 and B.2. �

The next lemmas list the values of several integrals which are needed in the energy expansion for the
umbilic case (see Sections 3B and 3C).
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Lemma B.5. For n > 3C 2
 , let

F 01 WD
Z

RN
C

x
2�2

N W 2

1 dx; F 02 WD
Z

RN
C

x
4�2

N jrW1j

2 dx and F 03 WD
Z

RN
C

x
4�2

N .@rW1/

2 dx;

where r D j Nxj. Then

F 02 D
3.3� 2
/

2
F 01 D

8

3C 2

F 03:

Proof. One can argue as in [González and Qing 2013, Lemma 7.2] or [Choi and Kim 2017, Lemma 6.3]. �

Lemma B.6. For n > 4C 2
 , we have

F 001 W D
Z

RN
C

x
3�2

N W 2

1 dx D
4.n� 3/

.n� 4/.n� 4� 2
/.n� 4C 2
/
jSn�1jA3B2;

F 002 W D
Z

RN
C

x
5�2

N jrW1j

2 dx D
16.n� 3/.2� 
/

.n� 4/.n� 4� 2
/.n� 4C 2
/
jSn�1jA3B2;

F 003 W D
Z

RN
C

x
5�2

N .@rW1/

2 dx D
16.n� 3/.4� 
2/

5.n� 4/.n� 4� 2
/.n� 4C 2
/
jSn�1jA3B2;

F 004 W D
Z

RN
C

x
1�2

N r2W 2

1 dx D
n.3n2� 18nC 28� 4
2/

2.n� 4/.n� 4� 2
/.n� 4C 2
/.1� 
2/
jSn�1jA3B2;

F 005 W D
Z

RN
C

x
3�2

N r2jrW1j

2 dx D
n.3n2C 2n.�7C 2
/� 4.�4C 3
 C 
2//

.n� 4/.n� 4� 2
/.n� 4C 2
/.1C 
/
jSn�1jA3B2;

F 006 W D
Z

RN
C

x
3�2

N r2.@rW1/

2 dx D
.nC 2/.5n2� 20nC 16� 4
2/

5.n� 4/.n� 4� 2
/.n� 4C 2
/
jSn�1jA3B2;

F 007 W D
Z

RN
C

x
5�2

N r.@rW1/.@rrW1/ dx D�

8n.n� 3/.4� 
2/

5.n� 4/.n� 4� 2
/.n� 4C 2
/
jSn�1jA3B2;

F 008 W D
Z

RN
C

x
5�2

N r2.@rrW1/

2 dx D
4.4� 
2/.7n3� 14n2� 4n.5C 
2/C 4� 16
2/

35.n� 4/.n� 4� 2
/.n� 4C 2
/
jSn�1jA3B2;

F 009 W D
Z

RN
C

x
4�2

N r2.@rW1/.@rxNW1/ dx D�

.nC 2/.2� 
/.5n2� 20nC 16� 4
2/

5.n� 4/.n� 4� 2
/.n� 4C 2
/
jSn�1jA3B2;

and

F 0010W D
Z

RN
C

x
5�2

N r2.@rxNW1/

2 dx

D
4.2� 
/.3� 
/.7n3� 14n2� 4n.6� 2
 C 
2/C 8.2� 3
 � 2
2//

35.n� 4/.n� 4� 2
/.n� 4C 2
/
jSn�1jA3B2;

where r D j Nxj, and the positive constants A3 and B2 are defined by (B-3).

Proof. The proof is analogous to those of Lemma B.4 and [Kim et al. 2015, Lemma 4.4], so we skip it. �
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Note added in the proof

(1) During the submission process, [Mayer and Ndiaye 2017] was posted on the arXiv. It proposes a
proof of Theorem 1.7 without the positivity assumption on the constant A. In particular, they computed
the expansion of a Green’s function (compare our Conjecture 1.6 and their Corollary 6.1) and applied the
Bahri–Coron-type topological argument in order to bypass the issue on A.

(2) Recently, Remarks 1.2(4) and 1.4(3) were confirmed affirmatively by the first author of this paper
[Kim 2017].

(3) Suppose that n2N and 
 2 .0; 1/ satisfy C0.n; 
/ > 0, where C0.n; 
/ is the quantity defined in (2-12).
Moreover assume that .M n; Œ Oh�/ is the conformal infinity of an asymptotic hyperbolic manifold .X; gC/
such that (1-9) and (1-18) hold, and the second fundamental form � never vanishes on M. Then the
solution set of (1-2) (with c > 0) is compact in C 2.M/, as shown in [Kim et al. � 2018].

References

[Almaraz 2010] S. d. M. Almaraz, “An existence theorem of conformal scalar-flat metrics on manifolds with boundary”, Pacific
J. Math. 248:1 (2010), 1–22. MR Zbl

[Aubin 1976] T. Aubin, “Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire”, J.
Math. Pures Appl. .9/ 55:3 (1976), 269–296. MR Zbl

[Branson 1985] T. P. Branson, “Differential operators canonically associated to a conformal structure”, Math. Scand. 57:2
(1985), 293–345. MR Zbl

[Brendle 2008] S. Brendle, “Blow-up phenomena for the Yamabe equation”, J. Amer. Math. Soc. 21:4 (2008), 951–979. MR
Zbl

[Brendle and Chen 2014] S. Brendle and S.-Y. S. Chen, “An existence theorem for the Yamabe problem on manifolds with
boundary”, J. Eur. Math. Soc. .JEMS/ 16:5 (2014), 991–1016. MR Zbl

[Brézis and Strauss 1973] H. Brézis and W. A. Strauss, “Semi-linear second-order elliptic equations in L1”, J. Math. Soc. Japan
25 (1973), 565–590. MR Zbl

[Caffarelli and Silvestre 2007] L. Caffarelli and L. Silvestre, “An extension problem related to the fractional Laplacian”, Comm.
Partial Differential Equations 32:7-9 (2007), 1245–1260. MR Zbl

[Case 2017] J. S. Case, “Some energy inequalities involving fractional GJMS operators”, Anal. PDE 10:2 (2017), 253–280. MR
Zbl

[Case and Chang 2016] J. S. Case and S.-Y. A. Chang, “On fractional GJMS operators”, Comm. Pure Appl. Math. 69:6 (2016),
1017–1061. MR Zbl

[Chang and González 2011] S.-Y. A. Chang and M. d. M. González, “Fractional Laplacian in conformal geometry”, Adv. Math.
226:2 (2011), 1410–1432. MR Zbl

http://dx.doi.org/10.2140/pjm.2010.248.1
http://msp.org/idx/mr/2734161
http://msp.org/idx/zbl/1205.53043
http://msp.org/idx/mr/0431287
http://msp.org/idx/zbl/0336.53033
http://dx.doi.org/10.7146/math.scand.a-12120
http://msp.org/idx/mr/832360
http://msp.org/idx/zbl/0596.53009
http://dx.doi.org/10.1090/S0894-0347-07-00575-9
http://msp.org/idx/mr/2425176
http://msp.org/idx/zbl/1206.53041
http://dx.doi.org/10.4171/JEMS/453
http://dx.doi.org/10.4171/JEMS/453
http://msp.org/idx/mr/3210959
http://msp.org/idx/zbl/1293.53047
http://dx.doi.org/10.2969/jmsj/02540565
http://msp.org/idx/mr/0336050
http://msp.org/idx/zbl/0278.35041
http://dx.doi.org/10.1080/03605300600987306
http://msp.org/idx/mr/2354493
http://msp.org/idx/zbl/1143.26002
http://dx.doi.org/10.2140/apde.2017.10.253
http://msp.org/idx/mr/3619870
http://msp.org/idx/zbl/1365.35202
http://dx.doi.org/10.1002/cpa.21564
http://msp.org/idx/mr/3493624
http://msp.org/idx/zbl/1348.35292
http://dx.doi.org/10.1016/j.aim.2010.07.016
http://msp.org/idx/mr/2737789
http://msp.org/idx/zbl/1214.26005


112 SEUNGHYEOK KIM, MONICA MUSSO AND JUNCHENG WEI

[Chang and Yang 1995] S.-Y. A. Chang and P. C. Yang, “Extremal metrics of zeta function determinants on 4-manifolds”, Ann.
of Math. .2/ 142:1 (1995), 171–212. MR Zbl

[Chen 2009] S.-y. S. Chen, “Conformal deformation to scalar flat metrics with constant mean curvature on the boundary in
higher dimensions”, preprint, 2009. arXiv

[Cherrier 1984] P. Cherrier, “Problèmes de Neumann non linéaires sur les variétés riemanniennes”, J. Funct. Anal. 57:2 (1984),
154–206. MR Zbl

[Choi and Kim 2017] W. Choi and S. Kim, “On perturbations of the fractional Yamabe problem”, Calc. Var. Partial Differential
Equations 56:1 (2017), art. id. 14. MR Zbl

[Djadli and Malchiodi 2008] Z. Djadli and A. Malchiodi, “Existence of conformal metrics with constant Q-curvature”, Ann. of
Math. .2/ 168:3 (2008), 813–858. MR Zbl

[Escobar 1992a] J. F. Escobar, “Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean
curvature on the boundary”, Ann. of Math. .2/ 136:1 (1992), 1–50. MR Zbl

[Escobar 1992b] J. F. Escobar, “The Yamabe problem on manifolds with boundary”, J. Differential Geom. 35:1 (1992), 21–84.
MR Zbl

[Escobar 1996] J. F. Escobar, “Conformal metrics with prescribed mean curvature on the boundary”, Calc. Var. Partial Differential
Equations 4:6 (1996), 559–592. MR Zbl

[Fall and Weth 2012] M. M. Fall and T. Weth, “Nonexistence results for a class of fractional elliptic boundary value problems”,
J. Funct. Anal. 263:8 (2012), 2205–2227. MR Zbl

[González and Qing 2013] M. d. M. González and J. Qing, “Fractional conformal Laplacians and fractional Yamabe problems”,
Anal. PDE 6:7 (2013), 1535–1576. MR Zbl

[González and Wang 2017] M. d. M. González and M. Wang, “Further results on the fractional Yamabe problem: the umbilic
case”, J. Geom. Anal. (online publication March 2017).

[Graham 2000] C. R. Graham, “Volume and area renormalizations for conformally compact Einstein metrics”, pp. 31–42 in The
Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), edited by J. Slovák and M. Cadek, Rend. Circ.
Mat. Palermo .2/ Suppl. 63, Circolo Matematico di Palermo, Palermo, 2000. MR Zbl

[Graham and Zworski 2003] C. R. Graham and M. Zworski, “Scattering matrix in conformal geometry”, Invent. Math. 152:1
(2003), 89–118. MR Zbl

[Guillarmou and Qing 2010] C. Guillarmou and J. Qing, “Spectral characterization of Poincaré–Einstein manifolds with infinity
of positive Yamabe type”, Int. Math. Res. Not. 2010:9 (2010), 1720–1740. MR Zbl

[Gursky 1999] M. J. Gursky, “The principal eigenvalue of a conformally invariant differential operator, with an application to
semilinear elliptic PDE”, Comm. Math. Phys. 207:1 (1999), 131–143. MR Zbl

[Gursky and Malchiodi 2015] M. J. Gursky and A. Malchiodi, “A strong maximum principle for the Paneitz operator and a
non-local flow for the Q-curvature”, J. Eur. Math. Soc. .JEMS/ 17:9 (2015), 2137–2173. MR Zbl

[Hang and Yang 2004] F. Hang and P. C. Yang, “The Sobolev inequality for Paneitz operator on three manifolds”, Calc. Var.
Partial Differential Equations 21:1 (2004), 57–83. MR Zbl

[Hang and Yang 2015] F. Hang and P. C. Yang, “Sign of Green’s function of Paneitz operators and the Q curvature”, Int. Math.
Res. Not. 2015:19 (2015), 9775–9791. MR Zbl

[Hang and Yang 2016a] F. Hang and P. C. Yang, “Q curvature on a class of 3-manifolds”, Comm. Pure Appl. Math. 69:4 (2016),
734–744. MR Zbl

[Hang and Yang 2016b] F. Hang and P. C. Yang, “Q-curvature on a class of manifolds with dimension at least 5”, Comm. Pure
Appl. Math. 69:8 (2016), 1452–1491. MR Zbl

[Humbert and Raulot 2009] E. Humbert and S. Raulot, “Positive mass theorem for the Paneitz–Branson operator”, Calc. Var.
Partial Differential Equations 36:4 (2009), 525–531. MR Zbl

[Joshi and Sá Barreto 2000] M. S. Joshi and A. Sá Barreto, “Inverse scattering on asymptotically hyperbolic manifolds”, Acta
Math. 184:1 (2000), 41–86. MR Zbl

[Kim 2017] S. Kim, “Conformal metrics with prescribed fractional scalar curvature on conformal infinities with positive
fractional Yamabe constants”, preprint, 2017. arXiv

http://dx.doi.org/10.2307/2118613
http://msp.org/idx/mr/1338677
http://msp.org/idx/zbl/0842.58011
http://msp.org/idx/arx/0912.1302
http://dx.doi.org/10.1016/0022-1236(84)90094-6
http://msp.org/idx/mr/749522
http://msp.org/idx/zbl/0552.58032
http://dx.doi.org/10.1007/s00526-016-1095-3
http://msp.org/idx/mr/3596797
http://msp.org/idx/zbl/06705797
http://dx.doi.org/10.4007/annals.2008.168.813
http://msp.org/idx/mr/2456884
http://msp.org/idx/zbl/1186.53050
http://dx.doi.org/10.2307/2946545
http://dx.doi.org/10.2307/2946545
http://msp.org/idx/mr/1173925
http://msp.org/idx/zbl/0766.53033
http://dx.doi.org/10.4310/jdg/1214447805
http://msp.org/idx/mr/1152225
http://msp.org/idx/zbl/0771.53017
http://dx.doi.org/10.1007/BF01261763
http://msp.org/idx/mr/1416000
http://msp.org/idx/zbl/0867.53034
http://dx.doi.org/10.1016/j.jfa.2012.06.018
http://msp.org/idx/mr/2964681
http://msp.org/idx/zbl/1260.35050
http://dx.doi.org/10.2140/apde.2013.6.1535
http://msp.org/idx/mr/3148060
http://msp.org/idx/zbl/1287.35039
http://dx.doi.org/10.1007/s12220-017-9794-3
http://dx.doi.org/10.1007/s12220-017-9794-3
http://msp.org/idx/mr/2002c:53073
http://msp.org/idx/zbl/0984.53020
http://dx.doi.org/10.1007/s00222-002-0268-1
http://msp.org/idx/mr/1965361
http://msp.org/idx/zbl/1030.58022
http://dx.doi.org/10.1093/imrn/rnp188
http://dx.doi.org/10.1093/imrn/rnp188
http://msp.org/idx/mr/2643579
http://msp.org/idx/zbl/1191.53030
http://dx.doi.org/10.1007/s002200050721
http://dx.doi.org/10.1007/s002200050721
http://msp.org/idx/mr/1724863
http://msp.org/idx/zbl/0988.58013
http://dx.doi.org/10.4171/JEMS/553
http://dx.doi.org/10.4171/JEMS/553
http://msp.org/idx/mr/3420504
http://msp.org/idx/zbl/1330.35053
http://dx.doi.org/10.1007/s00526-003-0247-4
http://msp.org/idx/mr/2078747
http://msp.org/idx/zbl/1066.53082
http://dx.doi.org/10.1093/imrn/rnu247
http://msp.org/idx/mr/3431611
http://msp.org/idx/zbl/1327.53042
http://dx.doi.org/10.1002/cpa.21559
http://msp.org/idx/mr/3465087
http://msp.org/idx/zbl/1337.53043
http://dx.doi.org/10.1002/cpa.21623
http://msp.org/idx/mr/3518237
http://msp.org/idx/zbl/1346.53037
http://dx.doi.org/10.1007/s00526-009-0241-6
http://msp.org/idx/mr/2558328
http://msp.org/idx/zbl/1180.53040
http://dx.doi.org/10.1007/BF02392781
http://msp.org/idx/mr/1756569
http://msp.org/idx/zbl/1142.58309
http://msp.org/idx/arx/1707.01929


EXISTENCE THEOREMS OF THE FRACTIONAL YAMABE PROBLEM 113

[Kim et al. 2015] S. Kim, M. Musso, and J. Wei, “A non-compactness result on the fractional Yamabe problem in large
dimensions”, preprint, 2015. arXiv

[Kim et al. � 2018] S. Kim, M. Musso, and J. Wei, “A compactness theorem of the fractional Yamabe problem, I: The
non-umbilic conformal infinity”, preprint.

[Lee and Parker 1987] J. M. Lee and T. H. Parker, “The Yamabe problem”, Bull. Amer. Math. Soc. .N.S./ 17:1 (1987), 37–91.
MR Zbl

[Marques 2005] F. C. Marques, “Existence results for the Yamabe problem on manifolds with boundary”, Indiana Univ. Math. J.
54:6 (2005), 1599–1620. MR Zbl

[Marques 2007] F. C. Marques, “Conformal deformations to scalar-flat metrics with constant mean curvature on the boundary”,
Comm. Anal. Geom. 15:2 (2007), 381–405. MR Zbl

[Mayer and Ndiaye 2015a] M. Mayer and C. B. Ndiaye, “Barycenter technique and the Riemann mapping problem of Escobar”,
preprint, 2015. arXiv

[Mayer and Ndiaye 2015b] M. Mayer and C. B. Ndiaye, “Proof of the remaining cases of the Yamabe boundary problem”,
preprint, 2015. arXiv

[Mayer and Ndiaye 2017] M. Mayer and C. B. Ndiaye, “Fractional Yamabe problem on locally flat conformal infinities of
Poincaré–Einstein manifolds”, preprint, 2017. arXiv

[Mazzeo and Melrose 1987] R. R. Mazzeo and R. B. Melrose, “Meromorphic extension of the resolvent on complete spaces
with asymptotically constant negative curvature”, J. Funct. Anal. 75:2 (1987), 260–310. MR Zbl

[Paneitz 2008] S. M. Paneitz, “A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds
(summary)”, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), art. id. 036. MR Zbl

[Qing and Raske 2006] J. Qing and D. Raske, “On positive solutions to semilinear conformally invariant equations on locally
conformally flat manifolds”, Int. Math. Res. Not. 2006 (2006), art. id. 94172. MR Zbl

[Schoen 1984] R. Schoen, “Conformal deformation of a Riemannian metric to constant scalar curvature”, J. Differential Geom.
20:2 (1984), 479–495. MR Zbl

[Schoen and Yau 1979a] R. Schoen and S. T. Yau, “On the proof of the positive mass conjecture in general relativity”, Comm.
Math. Phys. 65:1 (1979), 45–76. MR Zbl

[Schoen and Yau 1979b] R. Schoen and S.-T. Yau, “Proof of the positive action conjecture in quantum relativity”, Phys. Rev.
Lett. 42:9 (1979), 547–548.

[Schoen and Yau 1988] R. Schoen and S.-T. Yau, “Conformally flat manifolds, Kleinian groups and scalar curvature”, Invent.
Math. 92:1 (1988), 47–71. MR Zbl

[Trudinger 1968] N. S. Trudinger, “Remarks concerning the conformal deformation of Riemannian structures on compact
manifolds”, Ann. Scuola Norm. Sup. Pisa .3/ 22 (1968), 265–274. MR Zbl

[Yamabe 1960] H. Yamabe, “On a deformation of Riemannian structures on compact manifolds”, Osaka Math. J. 12:1 (1960),
21–37. MR Zbl

Received 22 Mar 2016. Revised 10 May 2017. Accepted 10 Aug 2017.

SEUNGHYEOK KIM: shkim0401@gmail.com
Department of Mathematics, College of Natural Sciences, Hanyang University, Seoul, South Korea

MONICA MUSSO: mmusso@mat.puc.cl
Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile

JUNCHENG WEI: jcwei@math.ubc.ca
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

mathematical sciences publishers msp

http://msp.org/idx/arx/1505.06183
http://dx.doi.org/10.1090/S0273-0979-1987-15514-5
http://msp.org/idx/mr/888880
http://msp.org/idx/zbl/0633.53062
http://dx.doi.org/10.1512/iumj.2005.54.2590
http://msp.org/idx/mr/2189679
http://msp.org/idx/zbl/1090.53043
http://projecteuclid.org/euclid.cag/1186755300
http://msp.org/idx/mr/2344328
http://msp.org/idx/zbl/1132.53021
http://msp.org/idx/arx/1505.06198
http://msp.org/idx/arx/1505.06114
http://msp.org/idx/arx/1701.05919
http://dx.doi.org/10.1016/0022-1236(87)90097-8
http://dx.doi.org/10.1016/0022-1236(87)90097-8
http://msp.org/idx/mr/916753
http://msp.org/idx/zbl/0636.58034
http://dx.doi.org/10.3842/SIGMA.2008.036
http://dx.doi.org/10.3842/SIGMA.2008.036
http://msp.org/idx/mr/2393291
http://msp.org/idx/zbl/1145.53053
http://dx.doi.org/10.1155/IMRN/2006/94172
http://dx.doi.org/10.1155/IMRN/2006/94172
http://msp.org/idx/mr/2219215
http://msp.org/idx/zbl/1115.53028
http://dx.doi.org/10.4310/jdg/1214439291
http://msp.org/idx/mr/788292
http://msp.org/idx/zbl/0576.53028
http://dx.doi.org/10.1007/BF01940959
http://msp.org/idx/mr/526976
http://msp.org/idx/zbl/0405.53045
http://dx.doi.org/10.1103/PhysRevLett.42.547
http://dx.doi.org/10.1007/BF01393992
http://msp.org/idx/mr/931204
http://msp.org/idx/zbl/0658.53038
http://dx.doi.org/10.2422/2036-2145.2009.1.07
http://dx.doi.org/10.2422/2036-2145.2009.1.07
http://msp.org/idx/mr/0240748
http://msp.org/idx/zbl/0159.23801
http://projecteuclid.org/euclid.ojm/1200689814
http://msp.org/idx/mr/0125546
http://msp.org/idx/zbl/0096.37201
mailto:shkim0401@gmail.com
mailto:mmusso@mat.puc.cl
mailto:jcwei@math.ubc.ca
http://msp.org




Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard
patrick.gerard@math.u-psud.fr

Université Paris Sud XI
Orsay, France

BOARD OF EDITORS

Nicolas Burq Université Paris-Sud 11, France
nicolas.burq@math.u-psud.fr

Massimiliano Berti Scuola Intern. Sup. di Studi Avanzati, Italy
berti@sissa.it

Sun-Yung Alice Chang Princeton University, USA
chang@math.princeton.edu

Michael Christ University of California, Berkeley, USA
mchrist@math.berkeley.edu

Charles Fefferman Princeton University, USA
cf@math.princeton.edu

Ursula Hamenstaedt Universität Bonn, Germany
ursula@math.uni-bonn.de

Vaughan Jones U.C. Berkeley & Vanderbilt University
vaughan.f.jones@vanderbilt.edu

Vadim Kaloshin University of Maryland, USA
vadim.kaloshin@gmail.com

Herbert Koch Universität Bonn, Germany
koch@math.uni-bonn.de

Izabella Laba University of British Columbia, Canada
ilaba@math.ubc.ca

Gilles Lebeau Université de Nice Sophia Antipolis, France
lebeau@unice.fr

Richard B. Melrose Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Frank Merle Université de Cergy-Pontoise, France
Frank.Merle@u-cergy.fr

William Minicozzi II Johns Hopkins University, USA
minicozz@math.jhu.edu

Clément Mouhot Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk

Werner Müller Universität Bonn, Germany
mueller@math.uni-bonn.de

Gilles Pisier Texas A&M University, and Paris 6
pisier@math.tamu.edu

Tristan Rivière ETH, Switzerland
riviere@math.ethz.ch

Igor Rodnianski Princeton University, USA
irod@math.princeton.edu

Wilhelm Schlag University of Chicago, USA
schlag@math.uchicago.edu

Sylvia Serfaty New York University, USA
serfaty@cims.nyu.edu

Yum-Tong Siu Harvard University, USA
siu@math.harvard.edu

Terence Tao University of California, Los Angeles, USA
tao@math.ucla.edu

Michael E. Taylor Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

Gunther Uhlmann University of Washington, USA
gunther@math.washington.edu

András Vasy Stanford University, USA
andras@math.stanford.edu

Dan Virgil Voiculescu University of California, Berkeley, USA
dvv@math.berkeley.edu

Steven Zelditch Northwestern University, USA
zelditch@math.northwestern.edu

Maciej Zworski University of California, Berkeley, USA
zworski@math.berkeley.edu

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2018 is US $275/year for the electronic version, and $480/year (+$55, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2018 Mathematical Sciences Publishers

http://msp.org/apde
mailto:patrick.gerard@math.u-psud.fr
mailto:nicolas.burq@math.u-psud.fr
mailto:berti@sissa.it
mailto:chang@math.princeton.edu
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vaughan.f.jones@vanderbilt.edu
mailto:vadim.kaloshin@gmail.com
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:lebeau@unice.fr
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:mueller@math.uni-bonn.de
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:schlag@math.uchicago.edu
mailto:serfaty@cims.nyu.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/


ANALYSIS & PDE
Volume 11 No. 1 2018

1Analytic torsion, dynamical zeta functions, and the Fried conjecture
SHU SHEN

75Existence theorems of the fractional Yamabe problem
SEUNGHYEOK KIM, MONICA MUSSO and JUNCHENG WEI

115On the Fourier analytic structure of the Brownian graph
JONATHAN M. FRASER and TUOMAS SAHLSTEN

133Nodal geometry, heat diffusion and Brownian motion
BOGDAN GEORGIEV and MAYUKH MUKHERJEE

149A normal form à la Moser for diffeomorphisms and a generalization of Rüssmann’s translated
curve theorem to higher dimensions

JESSICA ELISA MASSETTI

171Global results for eikonal Hamilton–Jacobi equations on networks
ANTONIO SICONOLFI and ALFONSO SORRENTINO

213High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to
the transmission eigenvalues

GEORGI VODEV

237Hardy–Littlewood inequalities on compact quantum groups of Kac type
SANG-GYUN YOUN

2157-5045(2018)11:1;1-T

A
N

A
LY

SIS
&

PD
E

Vol.11,
N

o.1
2018


	1. Introduction and the main results
	2. Nonminimal and nonumbilic conformal infinities
	2A. Geometric background
	2B. Nonminimal conformal infinity
	2C. Nonumbilic conformal infinity: higher-dimensional cases
	2D. Nonumbilic conformal infinity: lower-dimensional cases

	3. Umbilic conformal infinities
	3A. Geometric background
	3B. Umbilic conformal infinity having the property R_{rho rho; rho}[gbar]
	3C. Umbilic nonlocally conformally flat conformal infinity

	4. Locally conformally flat or 2-dimensional conformal infinities
	4A. Analysis of the Green's function
	4B. Locally conformally flat case
	4C. 2-dimensional case

	Appendix A. Expansion of the standard bubble W_{1,0} near infinity
	Appendix B. Some integrations regarding the standard bubble W_{1,0} on R^N_+
	Acknowledgements
	Note added in the proof
	References
	
	

