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ON THE FOURIER ANALYTIC STRUCTURE OF THE BROWNIAN GRAPH

JONATHAN M. FRASER AND TUOMAS SAHLSTEN

In a previous article (Int. Math. Res. Not. 2014:10 (2014), 2730–2745) T. Orponen and the authors proved
that the Fourier dimension of the graph of any real-valued function on R is bounded above by 1. This
partially answered a question of Kahane (1993) by showing that the graph of the Wiener process Wt

(Brownian motion) is almost surely not a Salem set. In this article we complement this result by showing
that the Fourier dimension of the graph of Wt is almost surely 1. In the proof we introduce a method
based on Itô calculus to estimate Fourier transforms by reformulating the question in the language of Itô
drift-diffusion processes and combine it with the classical work of Kahane on Brownian images.

1. Introduction and results

1A. Geometric properties of Brownian motion. Gaussian processes are standard models in modern
probability theory and perhaps the most well-studied example is the Wiener process (or standard Brownian
motion) W = Wt : R

>0
→ R characterised by the properties W0 = 0, the map t 7→ Wt is almost surely

continuous, and Wt has independent increments such that Wt −Ws for t > s is normally distributed:

Wt −Ws ∼ N (0, t − s).

The Wiener process has far-reaching importance throughout mathematics and it is a topic of particular
interest to understand its geometric structure. This can be achieved by studying several random fractals
associated to the process such as images W (K ) := {Wt : t ∈ K } of compact sets K ⊂ [0,∞), level sets
Lc(W ) := {t ∈ R : Wt = c} for c ∈ R, graphs G(W ) := {(t,Wt) : t ∈ R} (see Figure 1) and other more
delicate constructions such as SLEκ -curves.

The basic properties of Brownian motion mean that these random fractals enjoy a certain “statistical
self-similarity”, which facilitates computation of their Hausdorff dimensions dimH. Classical results
include McKean’s proof [1955] that dimH W (K ) = min{1, 2 dimH K } almost surely for each compact
K ⊂ [0,∞). Moreover, for the level sets, dimH Lc(W )= 1

2 almost surely for c = 0 by [Taylor 1955] and
for all c ∈ R by [Perkins 1981] conditioned on Lc(W ) being nonempty. For the Brownian graph G(W ),
Taylor [1953] proved that dimH G(W ) = 3

2 almost surely and Beffara [2008] computed the Hausdorff
dimensions of SLEκ -curves. Moreover, Hausdorff dimensions for similar sets given by many other
Gaussian processes, such as fractional Brownian motion, have been also considered; see, for example,
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Figure 1. Three realisations of the graph G(W ) for the Brownian motion Wt .

Adler’s classical results [1977] for fractional Brownian graphs and the recent work [Peres and Sousi
2016] concerning variable drift.

1B. Fourier analytic properties of Brownian motion. The Hausdorff dimension is the most commonly
used tool for measuring the size of a set A but there is also another fundamental notion based on Fourier
analysis which reveals more arithmetic and geometric features of A, including curvature, which are not
seen by the Hausdorff dimension. This is based on studying the Fourier coefficients of a probability
measure µ on A ⊂ Rd, which are defined by

µ̂(ξ) :=

∫
e−2π iξ ·x dµ(x), ξ ∈ Rd.

Now the size of A can be linked to the existence of probability measures µ on A with decay of Fourier
coefficients µ̂(ξ) when |ξ | →∞. The following connection between Hausdorff dimension and decay of
Fourier coefficients is well known and goes back to Salem and Kaufman, but we refer the reader to [Mattila
2015] for the details. If dimH A > s, then A supports a probability measure µ with |µ̂(ξ)| = O(|ξ |−s/2)

“on average”, that is,
∫

Rd |µ̂(ξ)|
2
|ξ |s−d dξ <∞, and vice versa the Hausdorff dimension can be bounded

from below if such a measure µ can be found. It is possible, however, that dimH A = s > 0 but no
measure µ on A has Fourier decay at infinity; this happens for example when A is the middle-third Cantor
set in R. Therefore, one defines the notion of Fourier dimension dimF A of a set A⊂Rd as the supremum
of s ∈ [0, d] for which there exists a probability measure µ supported on A such that

|µ̂(ξ)| = O(|ξ |−s/2) as |ξ | →∞. (1-1)

Then by this definition we always have dimF A 6 dimH A and if the two dimensions coincide then A
is called a Salem set or a round set after [Kahane 1993]. In general Fourier dimension and Hausdorff
dimension have no relationship other than this; in fact, Körner [2011] established that for any 06 s< t 6 1
it is possible to construct examples A⊂R with dimF A= s and dimH A= t . Further properties of Fourier
dimension were recently developed by Ekström, Persson and Schmeling [Ekström et al. 2015]. For a
more in depth account of Fourier dimension, the reader is referred to [Mattila 1995; 2015].



ON THE FOURIER ANALYTIC STRUCTURE OF THE BROWNIAN GRAPH 117

Finding measures µ on A with polynomially decaying Fourier transform (i.e., (1-1) for some s > 0)
has deep links to absolute continuity, arithmetic and geometric structure, and curvature. If A supports a
measure µ such that (1-1) holds with s > 1, then Parseval’s identity yields that µ is absolutely continuous
to Lebesgue measure and A must contain an interval. An application of Weyl’s criterion known as the
Davenport–Erdős–LeVeque criterion [Davenport et al. 1963] yields that in R polynomial decay of µ̂
guarantees that µ almost every number is normal in every base and an interesting result of Łaba and
Pramanik [2009] shows that if the s in (1-1) is sufficiently close to 1 for a Frostman measure µ on A⊂ R

and there is a suitable control over the constants, see the recent work [Shmerkin 2017], then A contains
nontrivial 3-term arithmetic progressions. Moreover, an analogous result also holds for higher dimensions
with arithmetic patches [Chan et al. 2016].

On the curvature side, if A is a line-segment in R2, then A cannot contain any measure with Fourier
decay at infinity so A cannot be a Salem set. However, if A is an arc of a circle or more generally a
1-dimensional smooth manifold with nonvanishing curvature then the 1-dimensional Hausdorff measure µ
on A satisfies (1-1) with s = 1; see [Mattila 2015]. In particular, A is a Salem set. In these examples
of A one can observe that the important arithmetic or curvature features present are not seen from the
Hausdorff dimension.

Constructing explicit Salem sets (which are not manifolds), or just sets A supporting a measure µ
satisfying (1-1) for some s > 0, can be achieved through, for example, Diophantine approximation by
[Kaufman 1980; 1981; Bluhm 1998; Queffélec and Ramaré 2003] or via thermodynamical tools by [Jordan
and Sahlsten 2016]. However, for random sets it has been observed in many instances that A is either almost
surely Salem or at least supports a measure µ with (1-1) for some s > 0. This was first done for random
Cantor sets by Salem [1951], where Salem sets were also introduced. Later in his classical papers, Kahane
[1966a; 1966b] found out that the Wiener process and other Gaussian processes provide natural examples.

Since Kahane and Salem, the study of Fourier analytic properties of natural sets derived from Gaussian
processes and more general random fields has been an active topic. For the Brownian images, Kahane
[1985b] proved that for any compact K ⊂ R the image W (K ) is almost surely a Salem set of Hausdorff
dimension min{1, 2 dim K }. Kahane also established a similar result for fractional Brownian motion.
Łaba and Pramanik [2009] then applied these to the additive structure of Brownian images. Later Shieh
and Xiao [2006] extended Kahane’s work to very general classes of Gaussian random fields. However,
understanding the Fourier analytic properties of the level sets and graphs remained an important problem
for some time. Kahane [1993] outlined the problem explicitly.

Problem 1.1 (Kahane). Are the graph and level sets of a stochastic process, such as fractional Brownian
motion, Salem sets?

This precise formulation of the problem was given by Shieh and Xiao [2006, Question 2.15], but they
attribute the problem to Kahane. For the Wiener process Kahane [1985a] had already established that the
level sets Lc(W ) are Salem almost surely for any fixed c ∈R conditioned on Lc(W ) being nonempty. The
fractional Brownian motion case has recently been considered for c = 0 by Fouché and Mukeru [2013].

Kahane’s problem for graphs, even in the case of the standard Brownian motion Wt , however, remained
open for quite a while until, together with T. Orponen, we established that the Brownian graph G(W ) is
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almost surely not a Salem set [Fraser et al. 2014]. It turned out that the reason for this is purely geometric:
the proof was based on the following application of a Fourier-analytic version of Marstrand’s slicing lemma.

Theorem 1.2 [Fraser et al. 2014, Theorem 1.2]. For any function f : [0, 1] → R the Fourier dimension
of the graph G( f ) cannot exceed 1.

Indeed, since dimH G(W ) = 3
2 > 1 almost surely [Taylor 1953], this answers Kahane’s problem in

the negative for the Wiener process. Note that this also gives a negative answer for fractional Brownian
motion since the Hausdorff dimension in that case is also strictly larger than 1 almost surely.

The methods in [Fraser et al. 2014] are purely geometric and involve no stochastic properties of
Brownian motion. They also do not shed any light on the precise value for the Fourier dimension of G(W ).
Note that even though dimH G( f ) > 1 for any continuous f : [0, 1] → R, the Fourier dimension of a
graph may take any value in the interval [0, 1]; see [loc. cit.]. For example, dimF G( f )= 0 if f is affine
and, moreover, dimF G( f )= 0 for the Baire generic f ∈ C[0, 1]; see [loc. cit., Theorem 1.3].

The main result of this paper is to complete the work initiated by Kahane’s problem in the case of
Brownian motion by establishing the precise almost sure value of the Fourier dimension of G(W ).

Theorem 1.3. The graph G(W ) has Fourier dimension 1 almost surely.

Moreover, the random measure µ we use to realise the Fourier dimension is Lebesgue measure dt on
[0, 1] lifted onto the graph G(W ) via the mapping t 7→ (t,Wt). The precise estimate we obtain is that
almost surely

|µ̂(ξ)| = O(|ξ |−1/2
√

log |ξ |) as |ξ | →∞, (1-2)

which combined with Theorem 1.2 yields Theorem 1.3.
A natural direction in which to continue this line of research would be to study other Gaussian processes

with different covariance structure, such as the fractional Brownian motion.

1C. Methods: Itô calculus and reduction to Brownian images. The key method we introduce to esti-
mate the Fourier transform of the graph measure µ is based on Itô calculus, which has previously been a
natural framework in the theory of stochastic differential equations. As far as we know, Itô calculus has
not been previously considered in this Fourier analytic context. Here we discuss this method and give a
brief summary of the main steps in the proof. When written in polar coordinates, (1-2) asks about the rate
of decay for the integral

µ̂(ξ)=

∫ 1

0
exp(−2π iu(t cos θ +Wt sin θ)) dt

for ξ = u(cos θ, sin θ) ∈R2, u > 0, θ ∈ [0, 2π), as u→∞. There are two distinct cases we will consider
depending on the direction of ξ , which we give a heuristic description of here.

If we ignore the random component Wt sin θ , that is, set θ = 0 or π , then standard integration using the
chain rule shows that µ̂(ξ) equals the Fourier transform of Lebesgue measure dt at u, which decays to 0
with the polynomial rate u−1

= |ξ |−1, so we are done for these directions. However, if θ is not equal to 0
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or π , we still have a small random (nonsmooth) term Wt sin θ , so a classical change of variable formula
or other tools from classical analysis cannot be used.

The key observation is that we can write µ̂(ξ)=
∫

exp(i X t) dt , where the stochastic process X t satisfies
the stochastic differential equation

d X t := b dt + σ dWt ,

identifying it as a so-called Itô drift-diffusion process, where b := −2πu cos θ is the drift coefficient
of X t and σ := −2πu sin θ is the diffusion coefficient of X t . Such processes have many useful analytic
tools from Itô calculus (see Section 2) associated to them, in particular Itô’s lemma, which works as an
analogue for the chain rule. The price we pay is that Itô’s lemma introduces some multiplicative error
terms involving stochastic integrals, but they can be estimated with other tools from Itô calculus using
moment analysis.

The estimates we obtain from Itô calculus allow us to obtain the correct Fourier decay (1-2) for µ
when θ is close to 0 or π with respect to u−1 (more precisely, |sin θ |< u−1/2), in other words, when ξ
is close to pointing in the horizontal directions. Thus another estimate is needed for θ bounded away
from 0 and π . This is where the classical work [Kahane 1985b] on Brownian images comes into play.
If we completely ignore the deterministic component t cos θ , by setting θ = π

2 or 3π
2 , then µ̂(ξ) is the

Fourier transform of the Brownian image measure ν, that is, the t 7→Wt push-forward of the Lebesgue
measure dt on [0, 1] at u. Kahane [1985b] in fact already established that the decay of |ν̂(u)| is almost
surely of the order u−1

√
log u = |ξ |−1

√
log |ξ | so (1-2) holds for these directions. A modification of

Kahane’s argument reveals that whenever θ 6= 0 or π , then almost surely

|µ̂(ξ)| = O(|sin θ |−1
|ξ |−1

√
log |ξ |);

see the discussion in Section 3C. Now one notices that when θ approaches 0 or π , this estimate blows
up, and so one cannot obtain a uniform estimate over all directions from this. However, this gives (1-2)
if |sin θ |> u−1/2, so combining with the estimates we obtained through Itô calculus, we are done. See
Section 3 for more details on the main steps of the proof.

1D. Other measures on the Brownian graph. Theorem 1.3 and (1-2) give Fourier decay for the push-
forward of the Lebesgue measure on [0, 1] onto the graph G(W ). It would be an interesting problem to see
if one can have similar results for other, possibly fractal, measures on [0, 1]. A possible problem could be:

Problem 1.4. Classify measures τ on [0, 1] such that for some 0< s 6 1 we have

|τ̂ (ξ)| = O(|ξ |−s/2), |ξ | →∞,

and their lift µτ onto the graph of G(W ) under t 7→ (t,Wt) satisfies

|µ̂τ (ξ)| = O(|ξ |−s′/2), |ξ | →∞

for any s ′ < s.

This is motivated by the fact that in [Kahane 1985b] it is possible to transfer information on the Fourier
decay (or Frostman properties) of τ onto the image measure. Thus for directions θ bounded away from 0
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and π we could still bound µ̂τ (ξ) using Kahane’s work. The main problem in generalising our approach
to fractal measures τ on [0, 1] comes from the lack of an appropriate analogue of Itō calculus.

1E. Organisation of the paper. In Section 2 we give the necessary background from Itô calculus. In
Section 3 we will give the proof of our main result Theorem 1.3. The key estimates are obtained in
Section 3B and Section 3C, corresponding to the two cases discussed above.

2. Itō calculus

2A. Stochastic integration. In the proof of the main result Theorem 1.3, we end up studying integrals
of the form

∫
f (X t) dt for some stochastic processes X t and smooth scalar functions f . As standard

analysis methods cannot be applied to these integrals, we need theory from stochastic analysis. Stochastic
analysis provides a pleasant framework to deal with nonsmooth processes, such as the Wiener process Wt ,
and still preserves many of the classical features present in the smooth setting. In this section we discuss
the specific tools from Itô calculus which we will rely on. The main references for this section are given
in the book [Karatzas and Shreve 1991].

Let (�,F, (Ft)t>0,P) be a filtered probability space; that is, Ft ⊂F is an increasing filtration in t . Let
W =Wt be the Wiener process adapted to this filtered probability space; that is, Wt is Ft measurable and
for each t, s > 0 the increment Wt+s−Wt is independent of Ft . We say that an R- or C-valued stochastic
process Z t is adapted if it is Ft measurable for all t > 0. We will say that a real- or complex-valued
adapted process Z t is Wt -integrable if the quadratic variation

∫ T
0 |Z t |

2 dt is finite for any time T > 0.
Given a real-valued adapted Wt -integrable stochastic process X t , we have P almost surely for any time
T > 0 it is possible to construct a stochastic integral∫ T

0
X t dWt

of X t with respect to Wt in the sense of Itô; see [Karatzas and Shreve 1991, Chapter 3.2]. We use the
differential notation dUt = X t dWt to mean that P almost surely UT −U0 is the stochastic integral of X t

with respect to Wt at time T > 0.
We mainly deal with complex-valued stochastic processes, so for the sake of convenience we will also

introduce the complex-valued stochastic integral for a C-valued Wt -integrable adapted process Z t , defined
coordinatewise using real integrals:∫ T

0
Z t dWt :=

∫ T

0
Re Z t dWt + i

∫ T

0
Im Z t dWt ,

where the real integrals are standard R-valued stochastic integrals with respect to the Wiener process Wt .
We write d Z t := d X t + idYt for a complex-valued process Z t = X t + iYt with R-valued X t and Yt .

2B. Itō drift-diffusion processes. The main class of adapted processes to which we apply Itô calculus is
given by Wiener processes with drift and diffusion coefficients. These are called Itô drift-diffusions:

Definition 2.1 (Itô drift-diffusion process). A real- or complex-valued adapted stochastic process X t is
called an Itô drift-diffusion process if there exists a Lebesgue integrable adapted bt and Wt -integrable
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adapted σt such that X t satisfies the stochastic differential equation

d X t = bt dt + σt dWt .

For Itô drift-diffusion processes there exists the following important analogue of the change of variable
formula, which follows from robustness of Taylor expansions for stochastic differentials:

Lemma 2.2 (Itō’s lemma). Let X t be an Itô drift-diffusion process and f : R→ R twice differentiable.
Then f (X t) is an Itô drift-diffusion process such that P almost surely for any T > 0 we have

f (XT )− f (X0)=

∫ T

0

(
bt f ′(X t)+

1
2σ

2
t f ′′(X t)

)
dt +

∫ T

0
σt f ′(X t) dWt .

Itō’s lemma was given in this pathwise form in [Karatzas and Shreve 1991, Theorem 3.3]. By using the
definition of the complex-valued stochastic integral, we can also obtain a complex-valued Itô’s lemma:

Lemma 2.3 (complex Itō’s lemma). Let X t be an Itô drift-diffusion process and f : R → C twice
differentiable. Then f (X t) is an Itô drift-diffusion process such that for P almost surely for any T > 0
we have

f (XT )− f (X0)=

∫ T

0

(
bt f ′(X t)+

1
2σ

2
t f ′′(X t)

)
dt +

∫ T

0
σt f ′(X t) dWt .

Proof. We can write f = f1+ i f2 for real-valued twice differentiable f1, f2 :R→R. Then the derivatives
satisfy f ′ = f ′1+ i f ′2 and f ′′ = f ′′1 + i f ′′2 . Moreover, by Itô’s lemma (Lemma 2.2) we obtain for each
j = 1, 2 that

d f j (X t)=
(
bt f ′j (X t)+

1
2σ

2
t f ′j (X t)

)
dt + σt f ′j (X t) dWt .

Then by the convention d f (X t)= d f1(X t)+ id f2(X t) this gives

d f (X t)=
(
bt f ′(X t)+

1
2σ

2
t f ′′(X t)

)
dt + σt f ′(X t) dWt

as required. �

2C. Moment estimation. Itô’s lemma allows us to pass from integrals of the form
∫ T

0 f (X t) dt to∫ T
0 g(X t) dWt for functions g obtained from derivatives of f . In our case we will end up trying to

understand the higher moments of the stochastic integrals
∫ T

0 g(X t) dWt , which will tell us about the
distribution of these integrals. A very standard tool to compute the moments in Itô calculus are the Itô
isometry and more general Burkholder–Davis–Gundy inequalities [Burkholder et al. 1972], which allow
us to pass from stochastic integrals to their quadratic variations (that just involve Lebesgue integral).

Lemma 2.4 (Burkholder–Davis–Gundy inequality). Let X t be a real-valued Wt -integrable adapted
process. Then for all 16 p <∞ we have

E

[(
sup

06s61

∣∣∣∣∫ s

0
X t dWt

∣∣∣∣)2p ]
6 2

√
10p E

[(∫ 1

0
X2

t dt
)p ]

.

This version with the constant 2
√

10p was given by Peškir [1996].
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3. Proof of the main result

3A. Preliminaries and overview of the proof. Let us now review how we will prove (1-2) and thus
Theorem 1.3. Fix ξ = u(cos θ, sin θ) ∈ R2 with modulus u > 0 and argument θ ∈ [0, 2π). Notice that by
the definition of the graph measure µ, the Fourier transform has the form

µ̂(ξ)=

∫ 1

0
exp(i X t) dt,

where X t is the real-valued stochastic process

X t := −2πu(t cos θ +Wt sin θ). (3-1)

The first observation is that X t is an adapted Wt -integrable process and in fact an Itô drift-diffusion
process (recall Definition 2.1) satisfying

d X t = b dt + σ dWt

for deterministic and time independent coefficients b =−2πu cos θ and σ =−2πu sin θ . The proof of
bounding µ̂(ξ) will heavily depend on the value of the angle θ we have for ξ and in particular how close
the determining angle θ is to 0, π or 2π with respect to u−1/2. For this purpose, we define the notions of
horizontal and vertical angles:

Definition 3.1 (horizontal and vertical angles). Define the threshold angle

θu :=min
{
u−1/2, π4

}
.

Partition the angles [0, 2π) using θu into the horizontal angles

Hu := [0, θu] ∪ [π − θu, π + θu] ∪ [2π − θu, 2π)
and the vertical angles

Vu := [0, 2π) \ Hu .

In other words Hu contains the θu neighborhoods of 0 and π on the circle mod 2π and Vu the π
2 − θu

neighborhoods of π
2 and 3π

2 respectively; see Figure 2.

The proof will split into two cases in Sections 3B and 3C for bounding the Fourier transform µ̂(ξ)

depending on whether θ ∈ Hu or θ ∈ Vu :

(1) Section 3B concerns angles θ ∈ Hu , that is, close to horizontal directions 0 or π , and as mentioned
in the Introduction our main hope here is that the smallness (with respect to u−1/2) of the diffusion
component bWt will help us in transferring the decay of Lebesgue measure to the decay of µ̂. This
is where Itô’s lemma (see Lemma 2.3) becomes crucial as it can be applied to the process f (X t)

with the function f (x)= exp(i x).

(2) Section 3C handles the angles θ ∈ Vu and here the plan is to use the fact that we are u−1/2-bounded
away from horizontal angles to ignore the drift component bt of the drift-diffusion process X t and
apply Kahane’s bound for these directions. This turns out to be possible due to a representation of
the higher moments Kahane obtained in his result on Brownian images.
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π
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π
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u−1/2

0

7π
4

3π
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5π
4

π

3π
4

Vu Vu

Vu Vu

Hu Hu

Figure 2. Splitting of [0, 2π) to horizontal angles Hu and the vertical angles Vu .

It turns out that in both Sections 3B and 3C we only obtain decay of the Fourier transform µ̂(k) for k
in an ε-grid εZ2 for all small ε > 0. Here the randomness will depend on ε > 0 but thanks to an argument
also used by Kahane [1985b], one can pass from this information to the full decay almost surely. See
Section 3D for the details.

Let us now proceed to bound |µ̂(ξ)|. In both Sections 3B and 3C below we will end up bounding
trigonometric functions with respect to θu and for this purpose we will need the following standard bounds,
which we record here for convenience:

Lemma 3.2 (trigonometric bounds). We have the following bounds:

(1) If θ ∈ Hu , then

|sin θ |6 u−1/2 and |cos θ |> 1
√

2
.

(2) If θ ∈ Vu , then

|sin θ |>min
{

2
π

u−1/2, 1
√

2

}
.

Proof. For α ∈
[
0, π2

]
we have that both cosine and sine are nonnegative. Moreover, here 2

π
α 6 sinα 6 α.

Thus for θ ∈ [0, θu] we have

sin θ 6 θ 6 θu 6 u−1/2 and cos θ > cos θu > cos π4 =
1
√

2
.

and for θ ∈
(
θu,

π
2
]

as sin π
4 =

1
√

2
we obtain

sin θ >min
{

2
π

u−1/2, 1
√

2

}
.

This gives the claim as we may reduce the estimates back to the estimates for θ ∈
[
0, π2

]
by using standard

invariance identities for sine and cosine. �
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3B. Horizontal angles. When θ ∈ Hu we will first obtain the following estimate on ε-grids:

Lemma 3.3. Fix ε > 0. Almost surely there exists a random constant Cω > 0 such that for any k =
u(cos θ, sin θ) ∈ εZ2

\ {0} with θ ∈ Hu we have

|µ̂(k)|6 Cω|k|−1/2.

Given ξ = u(cos θ, sin θ)∈R2
\{0} and a realisation (Wt), define a random variable T = Tω(ξ)∈ [0, 1],

to be the minimum value of t ∈ [0, 1] such that

X t =

{
−2πdu(cos θ +W1 sin θ)e if X1 > 0,
−2πbu(cos θ +W1 sin θ)c if X1 < 0.

Such a time T exists almost surely since X0 = 0 and X t is almost surely continuous (since Wt is almost
surely continuous). Splitting the integral of Z t up into “complete rotations” and “what is left over”, one
obtains ∫ 1

0
Z t dt =

∫ T

0
Z t dt +

∫ 1

T
Z t dt.

For the integral over [T, 1] we get the following estimate.

Lemma 3.4. Almost surely there exists a random constant Cω > 0 such that for any ξ = u(cos θ, sin θ) ∈
R2
\ {0} with θ ∈ Hu we have ∣∣∣∣∫ 1

T
Z t dt

∣∣∣∣6 Cω|ξ |−1/2.

Proof. Since Wt is almost surely continuous, there almost surely exists a random constant Mω > 1 such
that Wt ∈ [−Mω,Mω] for all t ∈ [0, 1]. Define the real-valued process

Yt := u(t cos θ +Wt sin θ),

so X t =−2πYt . Suppose X1 > 0. In this case YT = dY1e6 0 and so Y1+ 1> YT > Y1. Moreover, when
X1 < 0 we have YT = bY1c> 0 and Y1 > YT > Y1− 1. Thus no matter what the sign of X1 is, we always
have almost surely

u(cos θ +W1 sin θ)+ 1> u(T cos θ +WT sin θ)> u(cos θ +W1 sin θ)− 1.

Therefore, in the case cos θ > 0 we obtain

T > 1+W1
sin θ
cos θ

−WT
sin θ
cos θ

−
1

u cos θ
,

and when cos θ < 0 we have

T > 1+W1
sin θ
cos θ

−WT
sin θ
cos θ

+
1

u cos θ
.

Since u ∈ Hu , Lemma 3.2 together with Wt ∈ [−Mω,Mω] yields

T > 1− 2
√

2Mωu−1/2
−

√
2

u
.
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Recalling Mω > 1 this gives ∣∣∣∣∫ 1

T
Z t dt

∣∣∣∣6 ∫ 1

T
|Z t | dt = 1− T 6 4Mωu−1/2

as required. �

We now estimate the integral over [0, T ], which is where Itô calculus comes into play.

Lemma 3.5. Fix ε > 0. Almost surely there exists a random constant Cω > 0 such that for any k =
u(cos θ, sin θ) ∈ εZ2

\ {0} with θ ∈ Hu we have∣∣∣∣∫ T

0
Z t dt

∣∣∣∣6 Cω|k|−1/2.

To prove Lemma 3.5, we first need to compute the higher-order moments of the random variable∫ T
0 Z t dt .

Lemma 3.6. For any p ∈ N and ξ = u(cos θ, sin θ) ∈ R2
\ {0} with θ ∈ Hu , the (2p)-th moment satisfies

E

∣∣∣∣∫ T

0
Z t dt

∣∣∣∣2p

6 13p1/2 4p
|ξ |−p.

Proof. Recall that
X t =−2πu(t cos θ +Wt sin θ)

is an Itô drift-diffusion process satisfying the stochastic differential equation

d X t = b dt + σ dWt

for deterministic and time-independent coefficients b =−2πu cos θ and σ =−2πu sin θ . Writing

f (x) := exp(i x), x ∈ R,

we have Z t = f (X t), f ′(x) = i exp(i x) and f ′′(x) = − exp(i x). Thus by complex Itô’s lemma (see
Lemma 2.3) we have P almost surely

f (XT )− f (X0)= (bi − σ 2/2)
∫ T

0
f (X t) dt + σ i

∫ T

0
f (X t) dWt . (3-2)

Note that Tω6 1 is random and only F1 measurable; thus it is not a stopping time. However, as Lemma 2.3
is given pathwise, that is, P almost surely Itô’s lemma holds for any time T > 0, then as Tω is P almost
surely well-defined, we have (3-2) almost surely. Since X0 and XT are 2π multiples of integers by
definition, we have f (XT )= f (X0)= 1. Thus (3-2) gives∫ T

0
f (X t) dt =−

σ i
bi − σ 2/2

∫ T

0
f (X t) dWt

Since b and σ are deterministic, this yields that the (2p)-th moment satisfies

E

∣∣∣∣∫ T

0
f (X t) dt

∣∣∣∣2p

=

∣∣∣∣ σ i
bi − σ 2/2

∣∣∣∣2p

E

∣∣∣∣∫ T

0
f (X t) dWt

∣∣∣∣2p

.
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Applying the Burkholder–Davis–Gundy inequality (see Lemma 2.4) for the process cos X t gives

E

[∣∣∣∣∫ T

0
cos X t dWt

∣∣∣∣2p ]
6 E

[(
sup

06s61

∣∣∣∣ ∫ s

0
cos X t dWt

∣∣∣∣)2p ]
6 2

√
10p E

(∫ 1

0
cos2 X t dt

)p

6 2
√

10p

since cos2 6 1. Similar application for the process sin X t gives

E

[∣∣∣∣∫ T

0
sin X t dWt

∣∣∣∣2p ]
6 2

√
10p.

By Euler’s formula, we can write f (X t)= cos X t + i sin X t and so∫ T

0
f (X t) dWt =

∫ T

0
cos X t dWt + i

∫ T

0
sin X t dWt .

Hence

E

∣∣∣∣∫ T

0
f (X t) dWt

∣∣∣∣2p

= E

[(∣∣∣∣∫ T

0
cos X t dWt

∣∣∣∣2+ ∣∣∣∣∫ T

0
sin X t dWt

∣∣∣∣2)p ]
6 E

[
2p
∣∣∣∣∫ T

0
cos X t dWt

∣∣∣∣2p

+ 2p
∣∣∣∣∫ T

0
sin X t dWt

∣∣∣∣2p ]
= 2p

(
E

[∣∣∣∣∫ T

0
cos X t dWt

∣∣∣∣2p ]
+ E

[∣∣∣∣∫ T

0
sin X t dWt

∣∣∣∣2p ])
6 2p4

√
10p.

Moreover, as θ ∈ Hu we have by Lemma 3.2 that cos2 θ > 1
2 and sin2 θ 6 u−1. Hence∣∣∣∣ σ i

bi − σ 2/2

∣∣∣∣2 = σ 2

b2+ σ 4/4
6
σ 2

b2 =
4π2u2 sin2 θ

4π2u2 cos2 θ
=

sin2 θ

cos2 θ
6 2u−1.

Therefore,

E

∣∣∣∣∫ T

0
f (X t) dt

∣∣∣∣2p

6 4
√

10p 4pθ2p 6 13p1/2 4pu−p.

as required. �

Proof of Lemma 3.5. Fix ε > 0. Then for all k ∈ εZ2
\ {0} define the random variable

I (k) :=
(∫ T

0
Z t dt

)
·χA(k),

where χA is the indicator function on the set

A :=
{
ξ=u(cos θ, sin θ) ∈ R2

\ {0} : θ ∈ Hu
}
.

Note that I (k) is well-defined and finite since
∣∣∫ T

0 Z t dt
∣∣6 1 by |exp(i x)| = 1. Lemma 3.6 now yields

for any k ∈ εZ2
\ {0} and p ∈ N that

E|I (k)|2p 6 13p1/2 4p
|k|−p
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as when k /∈ A we have I (k)≡ 0. Write pk = blog |k|c. Then

E
∑

k∈εZ2\{0}

|k|−3 |I (k)|2pk

13p1/2
k 4pk |k|−pk

6
∑

k∈εZ2\{0}

|k|−3 <∞.

This means that the summands tend to 0 almost surely as |k| →∞ and so we can find a random constant
Cω > 0 such that for all k ∈ εZ2

\ {0} we have

|k|−3 |I (k)|2pk

13p1/2
k 4pk |k|−pk

6 Cω.

Therefore, by possibly making Cω bigger we obtain

|I (k)|6 Cω|k|−1/2.

This holds for each k ∈ εZ2
\ {0}, so by the definition of I (k) we have whenever k = u(cos θ, sin θ) ∈

εZ2
\ {0} with θ ∈ Hu that ∣∣∣∣∫ T

0
Z t dt

∣∣∣∣6 Cωu−1/2

as claimed. �

We are now in position to complete the proof of Lemma 3.3.

Proof of Lemma 3.3. Fix ε > 0. By the splitting

µ̂(ξ)=

∫ 1

0
Z t dt =

∫ T

0
Z t dt +

∫ 1

T
Z t dt

and Lemmas 3.4 and 3.5, we have that almost surely there exists a constant Cω > 0 such that for all
k = u(cos θ, sin θ) ∈ εZ2

\ {0} with θ ∈ Hu we have

|µ̂(k)|6
∣∣∣∣∫ T

0
Z t dt

∣∣∣∣ + ∣∣∣∣∫ 1

T
Z t dt

∣∣∣∣6 Cω|k|−1/2

as required. �

3C. Vertical angles. In this section we apply Kahane’s work to obtain Fourier decay estimates when
θ ∈ Vu .

Lemma 3.7. Fix ε > 0. Almost surely there exists a random constant Cω > 0 such that for any k =
u(cos θ, sin θ) ∈ εZ2

\ {0} with θ ∈ Vu we have

|µ̂(k)|6 Cω|k|−1/2
√

log |k|.

Let us discuss a few estimates obtained in [Kahane 1985b]. Let ν be the push-forward of Lebesgue
measure on [0, 1] under the map t 7→Wt ; that is, ν is the Brownian image of Lebesgue measure. Kahane
established the following:

Theorem 3.8 [Kahane 1985b, page 255]. Almost surely

|ν̂(v)|6 O(|v|−1
√

log |v|) as |v| →∞.



128 JONATHAN M. FRASER AND TUOMAS SAHLSTEN

The key ingredient for the proof of Theorem 3.8 was based on establishing the following bound for the
higher moments:

Lemma 3.9 [Kahane 1985b, page 254, estimate (2)]. There exists a constant C > 0 such that for any
v ∈ R \ {0} and any p ∈ N we have

E|ν̂(v)|2p 6 C p p p
|v|−2p.

We can use Lemma 3.9 to give a bound on the higher moments in our setting, but with the price that
the exponent will increase from −2p to −p.

Lemma 3.10. There exists a constant C > 0 such that for any p ∈ N and ξ = u(cos θ, sin θ) ∈ R2
\ {0}

with θ ∈ Vu the (2p)-th moment satisfies

E|µ̂(ξ)|2p 6 C p p p
|ξ |−p.

Proof. Write t = (t1, . . . , tp) ∈ [0, 1]p and d t as the Lebesgue measure on [0, 1]p. Given t, s ∈ [0, 1]p,
we define

ϕ(t, s) :=
p∑

k=1

(tk − sk), ψ(t, s) :=
p∑

k=1

(Wtk −Wsk ), and 9(t, s) := E|ϕ(t, s)|2.

By the definition of µθ , µ and the Fourier transform, and using the fact that the multivariate process

X (t, s) := −2π cos(θ)ϕ(t, s)− 2π sin(θ)ψ(t, s)

is Gaussian with mean −2π cos(θ)ϕ(t, s) and variance 4π2 sin2(θ)9(t, s), we have through Fubini’s
theorem and the formula for the characteristic function that

E|µ̂(ξ)|2p
= E

∫
[0,1]p

∫
[0,1]p

exp
(
−2π iu

(
cos(θ)ϕ(t, s)+ sin(θ)ψ(t, s)

))
d t ds

=

∫
[0,1]p

∫
[0,1]p

E exp(iu X (t, s)) d t ds

=

∫
[0,1]p

∫
[0,1]p

exp
(
−2π i cos(θ)uϕ(t, s)− 2π2

|u sin(θ)|29(t, s)
)

d t ds.

Thus by taking absolute values inside the integrals, and observing that |exp(i x)| = 1 for any x ∈ R, we
obtain

E|µ̂(ξ)|2p 6
∫
[0,1]p

∫
[0,1]p

exp(−2π2
|u sin(θ)|29(t, s)) d t ds. (3-3)

On the other hand, by doing the expansion again for the Fourier transform ν̂ of the image measure ν at
v := u sin(θ) ∈ R \ {0} we see that

E|ν̂(v)|2p
= E

∫
[0,1]p

∫
[0,1]p

exp(−2π ivψ(t, s)) d t ds =
∫
[0,1]p

∫
[0,1]p

exp(−2π2v29(t, s)) d t ds,

which is equal to (3-3). Thus by Lemma 3.9 we have

E|µ̂(ξ)|2p 6 C p p p
|v|−2p.
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Since θ ∈ Vu we have |sin θ |>min
{

2
π

u−1/2, 1
√

2

}
. When |sin θ |> 1

√
2

we obtain

C p p p
|v|−2p 6 (2C)p p pu−2p 6 (2C)p p pu−p.

On the other hand, if |sin θ |> 2
π

u−1/2 we have

C p p p
|v|−2p 6 C p p p(2u−1/2/π)−2pu−2p 6 (Cπ2/4)p p pu−p. �

Now we can complete the proof of Lemma 3.7 for vertical directions:

Proof of Lemma 3.7. Fix ε > 0. Then for all k = u(cos θ, sin θ) ∈ εZ2
\ {0} define the random variable

F(k) := µ̂(k)χB(k),
where

B :=
{
ξ=u(cos θ, sin θ) ∈ R2

\ {0} : θ ∈ Vu
}
.

Now F(k) is a well-defined finite random variable as |µ̂(k)|6 1 for any k. From Lemma 3.10 we obtain
for any k ∈ εZ2

\ {0} and p ∈ N that

E|F(k)|2p 6 C p p p
|k|−p.

Write pk = blog |k|c. Then

E
∑

k∈εZ2\{0}

|k|−3 |F(k)|2pk

C pk pk pk |k|−pk
6

∑
k∈εZ2\{0}

|k|−3 <∞.

This means that the summands tend to 0 almost surely as |k| →∞ and so we can find a random constant
Cω > 0 such that for all k ∈ εZ2

\ {0} we have

|k|−3 |F(k)|2pk

C pk pk pk |k|−pk
6 Cω.

Thus possibly making Cω bigger, this yields

|F(k)|6 Cω|k|−1/2
√

log |k|.

Now this holds for each k∈ εZ2
\{0}, so by the definition of F(k) we have, whenever k= u(cos θ, sin θ)∈

εZ2
\ {0} with θ ∈ Vu , that

|µ̂(k)|6 Cω|k|−1/2
√

log |k|
as claimed. �

3D. From lattices to R2. We can now complete the proof of the main theorem. For this purpose, we
need the following comparison lemma used by Kahane that allows us to pass from convergence on lattices
for Fourier transforms to the whole space:

Lemma 3.11 [Kahane 1985b, Lemma 1, page 252]. Suppose τ is a measure on R2 with support in
(−1, 1)2. Suppose ϕ,ψ : (0,∞)→ (0,∞) are decreasing as t→∞ with the doubling properties

ϕ(t/2)= O(ϕ(t)) and ψ(t/2)= O(ψ(t)) as t→∞.
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If the Fourier transform of τ along the integer lattice Z2 satisfies

|τ̂ (n)| = O
(
ϕ(|n|)
ψ(|n|)

)
as |n| →∞,

then

|τ̂ (ξ)| = O
(
ϕ(|ξ |)

ψ(|ξ |)

)
as |ξ | →∞.

Proof of Theorem 1.3. Combining Lemmas 3.7 and 3.3 we have that for any ε > 0, almost surely, there
exists some random constant Cω > 0 such that for any k = u(cos θ, sin θ) ∈ εZ2

\ {0} we have

|µ̂(k)|6 Cω|k|−1/2
√

log |k|. (3-4)

Define a measure τε on R2 such that

τ̂ε(ξ) := µ̂(εξ), ξ ∈ R2.

By the almost sure continuity of Wt , we have that there exists a random constant Mω > 0 such that the
diameter of the support of µ is at most Mω almost surely. Taking an intersection of the events that (3-4)
holds for ε = 1/n over all n ∈ N allows us to find a random ε = εω > 0 such that µ is supported on a
set of diameter strictly less than 1/ε and (3-4) holds almost surely with this ε. This guarantees that the
measure τε is supported on (−1, 1)2 and so applying Lemma 3.11 with the measure τ = τε and the maps
ϕ(t) :=

√
log t and ψ(t) := t1/2 gives the claim. �
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