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NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION

BOGDAN GEORGIEV AND MAYUKH MUKHERJEE

We use tools from n-dimensional Brownian motion in conjunction with the Feynman–Kac formulation of
heat diffusion to study nodal geometry on a compact Riemannian manifold M. On one hand we extend
a theorem of Lieb (1983) and prove that any Laplace nodal domain �� �M almost fully contains a
ball of radius � 1=

p
�1.��/, and such a ball can be centred at any point of maximum of the Dirichlet

ground state '�1.��/. This also gives a slight refinement of a result by Mangoubi (2008) concerning the
inradius of nodal domains. On the other hand, we also prove that no nodal domain can be contained in a
reasonably narrow tubular neighbourhood of unions of finitely many submanifolds inside M.

1. Introduction

We consider a compact n-dimensional smooth Riemannian manifoldM, and the Laplacian (or the Laplace–
Beltrami operator) �� on M. We use the analyst’s sign convention; namely, �� is positive semidefinite.
For an eigenvalue � of �� and a corresponding eigenfunction '�, recall that a nodal domain �� is a
connected component of the complement of the nodal set N'� WD fx 2M W '�.x/D 0g. In this paper, we
are interested in the asymptotic geometry of a nodal domain �� as �!1.

In this note we address the following two questions.
First, we start by discussing the problem of whether a nodal domain can be squeezed in a tubular

neighbourhood around a certain subset †�M. A result of Steinerberger [2014, Theorem 2] states that
for some constant r0 > 0, a nodal domain �� cannot be contained in an .r0=

p
�/-tubular neighbourhood

of the hypersurface †, provided that † is sufficiently flat in the following sense: † must admit a unique
metric projection in a wavelength (i.e., � 1=

p
�) tubular neighbourhood. The proof involves the study of

a heat process associated to the nodal domain, where one also uses estimates for Brownian motion and
the Feynman–Kac formula.

We relax the conditions imposed on †. Our first result is a direct extension of [Steinerberger 2014,
Theorem 2]. Before stating the result, we begin with the following definition:

Definition 1.1 (admissible collections). For each fixed eigenvalue �, we consider a natural number
m� 2 N and a collection †� WD

Sm�
iD1†

i
�

, where †i
�

is an embedded smooth submanifold (without
boundary) of dimension k (1� k � n� 1).

We call †� admissible up to a distance r if the following property is satisfied: for any x 2 M
with dist.x;†�/ � r there exists a unique index 1 � ix.�/ � m� and a unique point y 2 †ix.�/

�

realizing dist.x;†�/, that is, dist.x; y/D dist.x;†�/.
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We note that if†� consists of one submanifold which is admissible up to distance r , then Definition 1.1
means that r is smaller than the normal injectivity radius of †�. Moreover, if †� consists of more
submanifolds, then these submanifolds must be disjoint and the distance between every two of them must
be greater than r .

Let us also remark that, [Steinerberger 2014, Theorem 2] holds true when the hypersurface † is
allowed to vary with respect to � in a controlled way, which is made precise by Definition 1.1. With that
clarification in place, our Theorem 1.2 is an extension of that result.

Theorem 1.2. There is a constant r0 depending only on .M; g/ such that if a submanifold †� �M is
admissible up to distance 1=

p
�, then no nodal domain �� can be contained in an .r0=

p
�/-tubular

neighbourhood of †�.

Further, it turns out that we can select †� to be a union of submanifolds of varying dimensions, having
relaxed admissibility conditions.

Elaborating on this, we observe that getting entirely rid of the admissibility condition, as in Definition 1.1,
allows situations where †i

�
is dense in M, for example, M D T2 and †1

�
being a generic geodesic. By

assuming †i
�

is compact, we avoid such situations. Also, since we are considering unions of surfaces, the
restriction of “unique projection” of nearby points, as in Definition 1.1, makes no sense anymore, and
one can see that the approach of the proof of Theorem 1.2 does not work.

First, for ease of presentation, we adopt the following notation.

Definition 1.3. Given a compact subset K of M, let  K.t; x/ denote the probability that a particle
undergoing a Brownian motion starting at the point x will reach K within time t .

We now introduce the following relaxed notion of admissibility.

Definition 1.4 (˛-admissible collections). Let 0 < ˛ < 1 be a constant. For each fixed eigenvalue �, we
consider a natural number m� 2 N and a collection †� WD

Sm�
iD1†

i
�

, where †i
�

is a compact embedded
smooth submanifold (without boundary) of dimension ki , (1� ki � n� 1). Denote the respective tubular
neighbourhoods by N".†i�/ WD fx 2M W dist.x;†i

�
/ < "g, and let N".†�/D

Sm�
iD1N".†

i
�
/.

We say that the collection †� is ˛-admissible if for each sufficiently small " > 0 and each x 2N".†�/

 @B.x;2"/nN".†�/.4"
2; x/� ˛ @B.x;2"/.4"

2; x/: (1)

Intuitively, using the above implicit formulation via Brownian motion hitting probabilities, we wish to
ensure that N".†�/ does not occupy too large a proportion of each B.x; 2"/ for x 2N".†�/; see Figure 2.

In other words, we allow the family †� to intersect, but the intersections should not be “too dense”.
To illustrate the idea, let us for simplicity assume that M D Rn and let us suppose that each member †i

�

of the collection †� is a line passing through the origin. If the collection of these lines gets sufficiently
close together or in other words “dense”, then no matter how small an " > 0 we take, the tubular
neighbourhood N".†�/ will contain the ball B.0; 2"/. In particular, the left-hand side of (1) is vanishing
and so, there is no ˛ > 0 for which the collection †� is ˛-admissible. Clearly, in the above example,
replacing the lines †i

�
by linear subspaces of varying dimensions will deliver a similar example of a

collection, which is not ˛-admissible.
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Having this intuition in mind, we have the following result.

Theorem 1.5. Given an ˛-admissible collection †�, there exists a constant C, independent of �, such
that N

C=
p
�
.†�/ cannot fully contain a nodal domain ��.

Theorem 1.5 gives a strong indication as to the “thickness” or general shape of a nodal domain in
many situations of practical interest. For example, in dimension 2, numerics show nodal domains to look
like a tubular neighbourhood of a tree. We also note that our proof of Theorem 1.5 reveals a bit more
information, but for aesthetic reasons, we prefer to state the theorem this way. Heuristically, the proof
reveals that the nodal domain �� is thicker at the points where the eigenfunction '� attains its maximum,
or at points where

'�.x/� ˇ max
y2��

j'�.y/j

for a fixed constant ˇ > 0.
Second, we study the problem of how large a ball one may inscribe in a nodal domain �� at a point

where the eigenfunction achieves extremal values on ��. We show:

Theorem 1.6. Let dimM � 3, "0 > 0 be fixed and x0 2�� be such that j'�.x0/j Dmax�� j'�j. There
exists r0 D r0."0/ such that

Vol.B.x0; r0��1=2/\��/
Vol.B.x0; r0��1=2//

� 1� "0: (2)

A celebrated theorem of Lieb [1983] considers the case of a domain � � Rn and states that there
exists a point x0 2 � where a ball of radius C=

p
�1.�/ can almost be inscribed (in the sense of our

Theorem 1.6). A further generalization was obtained in [Maz’ya and Shubin 2005] (see, in particular,
Theorem 1.1 and Section 5.1 of that paper). However, the point x0 was not specified. Physically, one
expects that x0 is close to the point where the first Dirichlet eigenfunction of � attains extremal values.
This is in fact the essential statement of Theorem 1.6 above. Also, in this context, it is illuminating to
compare the main theorem from [Croke and Derdziński 1987].

We reiterate that the proof of Theorem 1.6 uses estimates from [Grigor’yan and Saloff-Coste 2002],
see (31), and a certain isocapacitary estimate, see (32), that work only in dimensions n � 3. As far as
dimension nD2 is concerned, it is known due to [Mangoubi 2008b, Theorem 1.2], see also [Hayman 1978],
that any nodal domain has wavelength inradius; see further discussion on this at the beginning of Section 4.

As a corollary of Theorem 1.6, we derive the following:

Corollary 1.7. Let M be a closed manifold of dimension n� 3, and �� �M be a nodal domain upon
which the corresponding eigenfunction '� is positive. Let x0 be a point of maximum of '� on ��. Then
there exists a ball B.x0; C=�˛.n//��� with ˛.n/D 1

4
.n� 1/C 1

2n
and a constant C D C.M; g/.

This recovers Theorem 1.5 of [Mangoubi 2008a], with the additional information that the ball of
radius C=�˛.n/ is centred around the max point of the eigenfunction '� (for more discussion on this, see
Section 4). We also point out that using Theorem 1.6, the first author has established in [Georgiev 2016]
using results from [Jakobson and Mangoubi 2009], the following inner radius bounds for real analytic
manifolds:
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Theorem 1.8 [Georgiev 2016]. Let .M; g/ be a real-analytic closed manifold of dimension at least 3. Let
'� be a Laplacian eigenfunction and �� be a nodal domain of '�. Then, there exist constants c1; c2
depending only on .M; g/ such that

c1

�
� inrad.��/�

c2
p
�
:

Moreover, if '� is positive (resp. negative) on ��, then a ball of this radius can be inscribed within a
wavelength distance to a point where '� achieves its maximum (resp. minimum) on ��.

For another improvement of inner radius estimates in the smooth setting under certain conditional
bounds on k'�kL1.��/, see Theorem 1.7 of [Georgiev and Mukherjee 2016].

A few assorted remarks: as advertised, in Section 3 we address the problem of inscribing a nodal
domain �� in a tubular neighbourhood around †. In this context, an interesting subcase one might also
consider is † having conical singularities: at its singular points † looks locally like Rn�1�k � @C k for
some k D 1; : : : ; n� 1, where @C k denotes the boundary of a generalized cone, i.e., the cone generated
by some open set D � Sn�1.

In this situation a useful tool is an explicit heat kernel formula for generalized conesC �Rn. One denotes
the associated Dirichlet eigenfunctions and eigenvalues of the generating set D by mj ; lj respectively.
Using polar coordinates x D ��; y D r�, one has that the heat kernel of PC .t; x; y/ of the generalized
cone C is given by

PC .t; x; y/D
e�

�2Cr2

2t

t .�r/
n
2
C1

1X
jD1

Iq
ljC.n2�1/

2

�
�r

t

�
mj .�/mj .�/; (3)

where I�.z/ denotes the modified Bessel function of order �. For more on the formula (3) we refer to
[Bañuelos and Smits 1997]. An even more general formula can be found in [Cheeger 1983].

The expression for PC .t; x; y/ provides means for estimating pt .x/ from below, as in Section 3.
However, some features of the conical singularity (i.e., the eigenvalues and eigenfunctions lj ; mj of the gen-
erating setD) enter explicitly in the estimate. Such considerations appear promising in discussing theorems
of the following type, for example, and their higher-dimensional analogues; see also [Steinerberger 2014]:

Theorem 1.9 (Bers, Cheng). Let n D 2. If ��u D �u, then any nodal set satisfies an interior cone
condition with opening angle ˛ & ��1=2.

1A. Basic heuristics. We outline the main idea behind Theorems 1.2, 1.5 and 1.6.
First, one considers a point x0 2�� where the eigenfunction achieves a maximum on the nodal domain

(without loss of generality we assume that the eigenfunction is positive on ��). One then considers the
quantity p.t; x0/, i.e., the probability that a Brownian motion started at x0 escapes the nodal domain
within time t .

The main strategy is to obtain two-sided bounds for p.t; x0/.
On one hand, we have the Feynman–Kac formula (see Section 2A), which provides a straightforward

upper bound only in terms of t (see (13) below).
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On the other hand, depending on the context of the theorems above, we provide a lower bound for
p.t; x0/ in terms of some geometric data. To this end, we take advantage of various tools, some of which
are: formulas for hitting probabilities of spheres and the parabolic scaling between the space and time
variables, comparability of Brownian motions on manifolds with similar geometry (see Section 2B),
bounds for hitting probabilities in terms of 2-capacity (see [Grigor’yan and Saloff-Coste 2002]), etc.

1B. Outline of the paper. In Section 2, we recall tools from n-dimensional Brownian motion and the
Feynman–Kac formulation of heat diffusion, and discuss the parabolic scaling technique we referred to
above. We include some background material on stochastic analysis on Riemannian manifolds, some of
which (to our knowledge) is not widely known, but is important to our investigation. We also believe such
results to be of independent interest to the community. Worthy of particular mention is Theorem 2.2, which
roughly says that if the metric is perturbed slightly, hitting probabilities of compact sets by Brownian
particles are also perturbed slightly. This allows us to apply Brownian motion formulae from Rn to
compact manifolds, on small distance and time scales.

In Section 3, we begin by proving Theorem 1.2. As mentioned before, we then take the generalization
one step further, by considering intersecting surfaces of different dimensions. Our main result in this
direction is Theorem 1.5, which gives a quantitative lower bound on how “thin” or “narrow” a nodal
domain can be.

In Section 4, we take up the investigation of inradius estimates of ��. As mentioned before, our main
result in this direction is Theorem 1.6. We also establish Corollary 1.7.

2. Preliminaries: heat equation, Feynman–Kac and Bessel processes

2A. Feynman–Kac formula. We begin by stating a Feynman–Kac formula for open connected domains
in compact manifolds for the heat equation with Dirichlet boundary conditions. Such formulas seem to
be widely known in the community, but since we were unable to find out an explicit reference, we also
indicate a line of proof.

Theorem 2.1. Let M be a compact Riemannian manifold. For any open connected ��M, f 2 L2.�/,
we have

et�f .x/D Ex
�
f .!.t//��.!; t/

�
; t > 0; x 2�; (4)

where !.t/ denotes an element of the probability space of Brownian motions starting at x, Ex is the
expectation with regard to the measure on that probability space, and

��.!; t/D

�
1 if !.Œ0; t �/��;
0 otherwise.

A proof of Theorem 2.1 can be constructed in three steps. First, one proves the corresponding statement
when �DM. This can be found, for example, in [Bär and Pfäffle 2011, Theorem 6.2]. One can then com-
bine this with a barrier potential method to prove a corresponding statement for domains � with Lipschitz
boundary. Lastly, the extension to domains with no regularity requirements on the boundary is achieved by
a standard limiting argument. For details on the last two steps, see [Taylor 1996, Chapter 11, Section 3].
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2B. Euclidean comparability of hitting probabilities. Implicit in many of our calculations is the fol-
lowing heuristic: if the metric is perturbed slightly, hitting probabilities of compact sets by Brownian
particles are also perturbed slightly, provided one is looking at small distances r and at small time scales
t DO.r2/.

To describe the set up, let .M; g/ be a compact Riemannian manifold and cover M by charts .Uk; �k/
such that in these charts g is bi-Lipschitz to the Euclidean metric. Consider an open ball B.p; r/�M,
where r is considered small, and in particular, smaller than the injectivity radius of M. Let B.p; r/ sit
inside a chart .U; �/ and let �.p/D q and �.B.p; r//D B.q; s/� Rn. Let K be a compact set inside
B.p; r/ and let K 0 WD �.K/� B.q; s/.

Now, let  MK .T; p/ denote the probability that a Brownian motion on .M; g/ started at p and killed
at a fixed time T hits K within time T. The probability  eK0.t; q/ is defined similarly for the standard
Brownian motion in Rn started at q and killed at the same fixed time T. Now, we fix the time T D cr2,
where c is a constant. The following is the comparability result:

Theorem 2.2. There exist constants c1; c2 depending only on c and M such that

c1 
e
K0.T; q/�  

M
K .T; p/� c2 

e
K0.T; q/: (5)

The proof uses the concept of Martin capacity; see [Benjamini et al. 1995, Definition 2.1]:

Definition 2.3. Let ƒ be a set and B a � -field of subsets of ƒ. Given a measurable function F Wƒ�ƒ!
Œ0;1� and a finite measure � on .ƒ;B/, the F -energy of � is

IF .�/D

Z
ƒ

Z
ƒ

F.x; y/ d�.x/ d�.y/:

The capacity of ƒ in the kernel F is

CapF .ƒ/D
�
inf
�
IF .�/

��1
; (6)

where the infimum is over probability measures � on .ƒ;B/, and by convention,1�1 D 0.

Now we quote the following general result, which is Theorem 2.2 in [Benjamini et al. 1995].

Theorem 2.4. Let fXng be a transient Markov chain on the countable state space Y with initial state �
and transition probabilities p.x; y/. For any subset ƒ of Y , we have

1
2

CapM .ƒ/� P�f9n� 0 WXn 2ƒg � CapM .ƒ/; (7)

where M is the Martin kernel M.x; y/DG.x; y/=G.�; y/, and G.x; y/ denotes the Green’s function.

For the special case of Brownian motions, this reduces to (see Proposition 1.1 of [Benjamini et al.
1995] and Theorem 8.24 of [Mörters and Peres 2010]):

Theorem 2.5. Let fB.t/ W 0� t � T g be a transient Brownian motion in Rn starting from the point �, and
A�D be closed, where D is a bounded domain. Then,

1
2

CapM .A/� P�fB.t/ 2 A for some 0 < t � T g � CapM .A/: (8)
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An inspection of the proofs reveals that they go through with basically no changes on a compact
Riemannian manifold M, when the Brownian motion is killed at a fixed time T D cr2, and the Martin
kernel M.x; y/ is defined as G.x; y/=G.�; y/, with G.x; y/ being the “cut-off” Green’s function defined
as follows: if hM .t; x; y/ is the heat kernel of M,

G.x; y/ WD

Z T

0

hM .t; x; y/ dt:

Now, to state it formally, in our setting, we have

Theorem 2.6. 1
2

CapM .K/�  
M
K .T; p/� CapM .K/: (9)

Now, let hRn.t; x; y/ denote the heat kernel on Rn. To prove Theorem 2.2, it suffices to show that for
y 2K, and y0 D �.y/ 2K 0, we have constants C1; C2 (depending on c and M ) such that

C1

Z T

0

hRn.t; q; y
0/ dt �

Z T

0

hM .t; p; y/ dt � C2

Z T

0

hRn.t; q; y
0/ dt: (10)

In other words, we need to demonstrate comparability of Green’s functions “cut off” at time T D cr2.
Recall that we have the following Gaussian two-sided heat kernel bounds on a compact manifold (see, for
example, Theorem 5.3.4 of [Hsu 2002] for the lower bound and Theorem 4 of [Cheng et al. 1981] for the
upper bound, also (4.27) of [Grigor’yan and Saloff-Coste 2002]): for all .t; p; y/ 2 .0; 1/�M �M, and
positive constants c1; c2; c3; c4 depending only on the geometry of M,

c3

t
n
2

e
�c1d.p;y/

2

4t � hM .t; p; y/�
c4

t
n
2

e
�c2d.p;y/

2

4t ;

where d denotes the distance function on M. Then, using the comparability of the distance function
on M with the Euclidean distance function (which comes via metric comparability in local charts), for
establishing (10), it suffices to observe that for any positive constant c5, we haveZ cr2

0

t�
n
2 e�

c5r
2

4t dt D
2n�2

c
n
2
�1

5

1

rn�2
�

�
n

2
� 1;

c5

4c

�
;

where �.s; x/ is the (upper) incomplete Gamma function. Since r is a small constant chosen independently
of �, we observe that C1, C2 are constants in (10) depending only on c, c1, c2, c3, c4, c5, r and M, which
finally proves (5).

Remark 2.7. Theorem 2.2 is implicit in [Steinerberger 2014], but it was not precisely stated or proved
there. Since we are unable to find an explicit reference, here we have given a formal statement and
indicated a proof. We believe that the statement of Theorem 2.2 will also be of independent interest for
people interested in stochastic analysis on manifolds.

2C. Brownian motion on a manifold and Euclidean Bessel processes. Using the probabilistic formu-
lation of the heat equation for the study of nodal geometry, we are largely inspired by the methods in
[Steinerberger 2014]. Of course, such ideas have appeared in the literature before; for example, they are
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implicit in [Grieser and Jerison 1998]. Here we extend some ideas of Steinerberger with the help of tools
from n-dimensional Brownian motion.

Given an open subset V �M, consider the solution pt .x/ to the following diffusion process:

.@t ��/pt .x/D 0; x 2 V;

pt .x/D 1; x 2 @V;

p0.x/D 0; x 2 V:

By the Feynman–Kac formula (see Section 2A), this diffusion process can be understood as the
probability that a Brownian motion particle started in x will hit the boundary within time t . Now, fix an
eigenfunction ' (corresponding to the eigenvalue �) and a nodal domain�, so that ' >0 on�without loss
of generality. Calling� the Dirichlet Laplacian on� and settingˆ.t; x/ WD et�'.x/, we see thatˆ solves

.@t ��/ˆ.t; x/D 0; x 2�;

ˆ.t; x/D 0; on f' D 0g;

ˆ.0; x/D '.x/; x 2�:

(11)

Using the Feynman–Kac formula given by Theorem 2.1, we have,

et�f .x/D Ex.f .!.t//��.!; t//; t > 0; (12)

where !.t/ denotes an element of the probability space of Brownian motions starting at x, Ex is the
expectation with regard to the measure on that probability space, and

��.!; t/D

�
1 if !.Œ0; t �/��;
0 otherwise.

Now, consider a nodal domain � corresponding to the eigenfunction ', and consider the heat flow (11).
Let x0 2� such that '.x0/D k'kL1.�/. We use the following upper bound derived in [Steinerberger
2014]:

ˆ.t; x/D e��t'.x/D Ex
�
'.!.t//��.!; t/

�
� k'kL1.�/Ex.��.!; t//D k'kL1.�/.1�pt .x//: (13)

Setting t D ��1 and x D x0, we see that the probability of the Brownian motion starting at an extremal
point x0 leaving � within time ��1 is � 1� e�1. A rough interpretation is that maximal points x are
situated deeply into the nodal domain. Using the notation introduced in the Introduction, the last derived
upper estimate translates to  Mn�.��1; x/� 1� e�1.

Now, we consider an m-dimensional Brownian motion of a particle starting at the origin in Rm, and
calculate the probability of the particle hitting a sphere fx 2 Rm W kxk � rg of radius r within time t . By
a well-known formula first derived in [Kent 1980], we see that such a probability is given as

P
�

sup
0�s�t

kB.s/k � r
�
D 1�

1

2��1�.�C 1/

1X
kD1

j ��1
�;k

J�C1.j�;k/
e
�
j2
�;k

t

2r2 ; � > �1; (14)
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where � D .m� 2/=2 is the “order” of the Bessel process, J� is the Bessel function of the first kind of
order �, and 0 < j�;1 < j�;2 < � � � is the sequence of positive zeros of J� .

Choose x D x0, t D ��1, as before, and let r D C 1=2��1=2, where C is a constant to be chosen later,
independently of �. Plugging this in (14) then reads as

P
�

sup
0�s���1

kB.s/k � C��1=2
�
D 1�

1

2��1�.�C 1/

1X
kD1

j ��1
�;k

J�C1.j�;k/
e�

j2
�;k
2C ; � > �1: (15)

We need to make a few comments about the asymptotic behaviour of j�;k here. For notational
convenience, we write ˛k � ˇk as k!1 if we have ˛k=ˇk! 1 as k!1. The asymptotic expansion

j�;k D
�
kC 1

2
�C 1

4

�
� C o.1/ as k!1; (16)

given in [Watson 1944, p. 506], tells us that j�;k � k� . Also, from p. 505 of the same paper, we have

J�C1.j�;k/� .�1/
k�1

p
2

�

1
p
k
: (17)

These asymptotic estimates, in conjunction with (15), tell us that keeping � bounded, and given a small
� > 0, one can choose the constant C small enough (depending on �) such that

P
�

sup
0�s���1

kB.s/k � C��1=2
�
> 1� �: (18)

This estimate plays a role in Section 3. In this context, see also Proposition 5.1.4 of [Hsu 2002].

3. Admissibility conditions and intersecting surfaces

Proof of Theorem 1.2. If '� attains its maximum within �� at x0, we already know from (13) that

 Mn��

�
t0

�
; x0

�
� 1� e�t0: (19)

By the admissibility condition on †� we know that x0 has a unique metric projection on one and only
one †

ix0
�

from the collection †�.
Now, suppose the result is not true. Choose R, t0 small such that Theorem 2.2 applies. Choos-

ing r0 sufficiently smaller than R, we can find a � such that �� is contained in an .r0=
p
�/-tubular

neighbourhood of †�, denoted by Nr0��1=2.†�/. From the remarks after Definition 1.1, it follows that
�� �Nr0��1=2.†

ix0
�
/.

We start a Brownian motion at x0 and, roughly speaking, we see that locally the particle has freedom
to wander in n�k “bad directions”, namely the directions normal to †

ix0
�

, before it hits @��. That means,
we may consider a .n�k/-dimensional Brownian motion B.t/ starting at x0; see Figure 1.

More formally, we choose a normal coordinate chart .U; �/ around x0 adapted to †
ix0
�

, where the
metric is comparable to the Euclidean metric. We have �.†

ix0
�
/D �.U /\fRk � f0gn�kg and

�.Nr0��1=2.†
ix0
�
//D �.U /\

�
Rk �

�
�
r0
p
�
;
r0
p
�

�n�k�
:
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Sn�k�1

x0

��

†�

Brownian motion
in n� k “bad directions”

Figure 1. A Brownian motion at x0.

We take a geodesic ball B � U �M at x0 of radius R=
p
�. Using the hitting probability notation from

Section 2 and monotonicity with respect to set inclusion we have

 Mn��

�
t0

�
; x0

�
�  Bn��

�
t0

�
; x0

�
�  

BnN
r0�
�1=2 .†

ix0
�
/

�
t0

�
; x0

�
; (20)

and the comparability lemma implies that, if c D t0=R2, then there exists a constant C, depending on c
and M, such that

 
BnN

r0�
�1=2 .†

ix0
�
/

�
t0

�
; x0

�
� C e

�.BnN
r0�
�1=2 .†

ix0
�
//

�
t0

�
; �.x0/

�
; (21)

where  e denotes the hitting probability in Euclidean space. We define N e
r0��1=2

WD �.Nr0��1=2.†
ix0
�
//.

Let us consider the “solid cylinder” S D B
R=
p
�
�B

r0=
p
�

, a product of k and .n�k/-dimensional
Euclidean balls centred at �.x0/. S is clearly the largest cylinder contained in N e

r0��1=2
\B . We set

S D B1 �B2 for convenience. By monotonicity,

 e
�.BnN

r0�
�1=2 .†

ix0
�
//

�
t0

�
; �.x0/

�
�  eB1�@B2

�
t0

�
; �.x0/

�
: (22)

If B.t/D .B1.t/; : : : ; Bn.t// is an n-dimensional Brownian motion, the components Bi .t/ are inde-
pendent Brownian motions; see, for example, Chapter 2 of [Mörters and Peres 2010]. Denoting by Bk.t/
and Bn�k.t/ the projections of B.t/ onto the first k and last n�k components respectively, it follows that

 eB1�@B2

�
t0

�
; �.x0/

�
� P

�
sup

0�s�t0��1
kBk.t/k �

R
p
�

�
:P

�
sup

0�s�t0��1
kBn�k.t/k �

r0
p
�

�
� ckP

�
sup

0�s�t0��1
kBn�k.t/k �

r0
p
�

�
;

where ck is a constant depending on k and the ratio t0=R2, and can be calculated explicitly from (15).
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Using the estimate in Section 2, we may take r0 �R sufficiently small so that

P

�
sup

0�s�t0��1
kBn�k.t/k �

r0
p
�

�
> 1� "; (23)

where " is sufficiently small. Keeping c D t0=R2 and (hence) C fixed, we take t0 small enough and
r0 �R appropriately, so that (23) contradicts (20) and the fact that

 Mn��.t0�
�1; x/� 1� e�t0: �

Remark 3.1. Note that the constant r0 above is independent of †�; in other words, the same constant r0
will work for Theorem 1.2 as long as the surface is admissible up to a wavelength distance. Indeed, this
results from the fact that r0 depends only on the diffusion process associated to the Brownian motion,
and is an inherent property of the manifold itself.

Now we address the generalizations of Theorem 1.2 for collections †� which are more complicated;
namely, we assume †� is an ˛-admissible collection in the sense of Definition 1.4.

Proof of Theorem 1.5. By assumption, we have an ˛-admissible collection †� WD
Sm�
iD1†

i
�

.
Let us assume the contrary — if the statement is not true, we may select an arbitrarily small r0 > 0 and

find a corresponding inscribed nodal domain �� �Nr0��1=2.†�/.
As before, we choose a point x0 2�� such that

'�.x0/D max
x2��

j'�j:

Monotonicity of the hitting probability function  K. � ; � / with respect to set inclusion in K, as well as
the ˛-admissibility, imply that (see Figure 2)

 Mn��.t; x0/�  B.x0;2r0��1=2/n��.t; x0/

�  B.x0;2r0��1=2/nNr0��1=2 .†�/
.t; x0/

D  
@.B.x0;2r0��1=2/nNr0��1=2 .†�//

.t; x0/

�  @B.x0;2r0��1=2/nNr0��1=2 .†�/
.t; x0/

� ˛ @B.x0;2r0��1=2/.t; x0/; (24)

where we introduce the constant ˛ > 0 coming from the ˛-admissibility condition. Moreover, following
Definition 1.4 of ˛-admissibility, in (24) we also assume that the radius r0=

p
� is sufficiently small and

that t WD t0=� with t0 WD 4r20 .
The latter estimate (24) implies, in particular, that

 Mn��.t; x0/

 MnB.x0;2r0��1=2/.t; x0/
D

 Mn��.t; x0/

 @B.x0;2r0��1=2/.t; x0/
� ˛: (25)

We now observe that by setting t D t0=� we still have the freedom to choose t0. We show that we can
select t0 such that (25) is violated. To this end we observe that the upper bound (19) along with (15) and
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�
x0

B.x0; r0=
p
�/

��

†1
�

N".†/

†2
�

Figure 2. Nodal domain within a tubular neighbourhood of an admissible collection.

Theorem 2.2 give

 Mn��.t0=�; x/

 MnB.x0;2r0��1=2/.t0=�; x/
. .1� e�t0/

�
1�

1

2��1�.�C 1/

1X
kD1

j ��1
�;k

J�C1.j�;k/
e
�
j2
�;k

t0

2r2
0

��1

D .1� e�t0/

�
1�

1

2��1�.�C 1/

1X
kD1

j ��1
�;k

J�C1.j�;k/
e�2j

2
�;k

��1
D .1� e�t0/ zC�1: (26)

Now, we choose t0 D 4r20 small enough, so the last estimate yields a contradiction with (25). This
proves the theorem. �

Remark 3.2. We wish to comment that in the above proof, it is not essential to look at the nodal domain
only around the maximum point x0. Given a predetermined positive constant ˇ, choose a point y 2��
such that '�.y/�ˇ'�.x0/. Arguing similarly as in (13), we see that  Mn��.t; y/� 1�ˇe

�t0. Following
the computations in (26), we get a constant r0 (depending on ˇ) such that .1�ˇe�t0/= zC < ˛, giving a
contradiction. Also, it is clear that in Definitions 1.1 and 1.4, we do not actually need the submanifolds in
the family †� to be smooth, and the proofs of Theorems 1.2 and 1.5 work with submanifolds of much
lower regularity (for example, C 1 submanifolds).

4. Large ball at a max point

In this section we discuss the asymptotic thickness of nodal domains around extremal points of eigenfunc-
tions. More precisely, let us consider a fixed nodal domain �� corresponding to the eigenfunction '�.
Let x0 2�� be such that

'�.x0/D max
x2��

j'�j: (27)



NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION 145

In the case dimM D 2, it was shown in Section 3 of [Mangoubi 2008b] that at such maximal points x0
one can fully inscribe a large ball of wavelength radius (i.e � 1=

p
�) into the nodal domain. In other

words for Riemannian surfaces, one has that

C1
p
�
� inrad.��/�

C2
p
�
; (28)

where Ci are constants depending only on M. Note that the proof for this case, as carried out in
[Mangoubi 2008b] by following ideas in [Nazarov et al. 2005], makes use of essentially 2-dimensional
tools (conformal coordinates and quasiconformality), which are not available in higher dimensions.

To our knowledge, in higher dimensions the sharpest known bounds on the inner radius of a nodal
domain appear in [Mangoubi 2008a, Theorem 1.5] and state that

C1

�˛.n/
� inrad.��/�

C2
p
�
; (29)

where ˛.n/ WD 1
4
.n� 1/C 1

2n
. A question of current investigation is whether the last lower bound on

inrad.��/ in higher dimensions is optimal.
Here we exploit heat equation and Brownian motion techniques to show that at least, one can expect

to “almost” inscribe a large ball having radius to the order of 1=
p
�, in all dimensions. Now we prove

Theorem 1.6:

Proof. We define t 0 WD t0=�, and thus  Mn��.t
0; x/� 1� e�t0, where t0 is a small constant to be chosen

suitably later.
Now, choosing t0 small enough, and using monotonicity, we have

 B.x0;r0��1=2/n��.t; x0/ <  Mn��.t; x0/ < ": (30)

For convenience, let us define Er0 WD B.x0; r0�
�1=2/n��, a relatively compact set. Observe that

Theorem 2.2 applies to open balls and compact subsets contained in open balls. To adapt to the setting of
Theorem 2.2, choose a number r 00 < r0 such that B.x0; r 00�

�1=2/ satisfies

Vol
�
B.x0; r0�

�1=2/ nB.x0; r
0
0�
�1=2/

�
Vol.B.x0; r0��1=2//

< ":

Call Er 00 WDEr0 \B.x0; r
0
0�
�1=2/. Observe that proving

Vol.Er 00/

Vol.B.x0; r0��1=2//
< "

will imply
Vol.Er0/

Vol.B.x0; r0��1=2//
< 2";

which is what we want.
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Now, we would like to compare the volumes of the two sets Er 00 and B.x0; r0��1=2/. Let r D r0=
p
�.

Recall from [Grigor’yan and Saloff-Coste 2002, Remark 4.1] the following inequality:

c
cap.Er 00/r

2

Vol.B.x0; r0��1=2//
e�C

r2

t0 �  Er0 .t
0; x0/ < "; (31)

where cap.K/ denotes the 2-capacity of the set K �M, and 0 < t 0 < 2r2; see also equation (3.20) of
[Grigor’yan and Saloff-Coste 2002]. Recall that the 2-capacity of a set K �M is defined as

cap.K/D inf
�jK�1

�2C1.M/

Z
M

jr�j2 dM:

Formally, (31) holds on complete noncompact nonparabolic manifolds, which includes Rn, n� 3. For
bringing in our comparability result Theorem 2.2, we fix the ratio t 0=r2 D 1

3
, say, and then choose t0

small enough that (30) still works. Now (31) applies, albeit with a new constant c as determined by the
ratio t=r2 and Theorem 2.2.

Now, to rewrite the capacity term in (31) in terms of volume, we bring in the following “isocapacitary
inequality” [Maz’ya 2011, Section 2.2.3]:

cap.Er0/� C
0Vol.Er0/

n�2
n ; n� 3; (32)

where C 0 is a constant depending only on the dimension n. We note that the isocapacitary inequality
(in combination with a suitable Poincaré inequality) lies at the heart of the currently optimal inradius
estimates, as derived in [Mangoubi 2008a].

Clearly, (31) and (32) together give�
Vol.Er0/

Vol.B.x0; r0��1=2//

�n�2
n

.
cap.Er0/r

2

Vol.B.x0; r0��1=2//
.  Er0 .t; x/ < ": (33)

The last inequalities contain constants depending only on M , so by taking " even smaller we can arrange

Vol.Er0/
Vol.B.x0; r0��1=2//

< "0

for any initially given "0. �

Remark 4.1. We note that the heat equation method does not distinguish between a general domain and a
nodal domain. This means that we cannot rule out the situation whereB.x0; r0=

p
�/n�� is a collection of

“sharp spikes” entering into B.x0; r0=
p
�/. Indeed the probability of a Brownian particle hitting a spike,

no matter how “thin” it is, or how far from x0 it is, is always nonzero, a fact related to the infinite speed of
propagation of heat diffusion. This is consistent with the heuristic discussed in [Hayman 1978; Lieb 1983].

Now we establish Corollary 1.7. First, we recall the following result, which gives a bound on the
asymmetry between the volumes of positivity and negativity sets:
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Theorem 4.2 [Mangoubi 2008a]. Let B be a geodesic ball, so that
�
1
2
B \ f'� D 0g

�
¤ ∅ with 1

2
B

denoting the concentric ball of half radius. Then

Vol.f'� > 0g\B/
Vol.B/

�
C

�
n�1
2

: (34)

Proof of Corollary 1.7. It suffices to combine the estimate (33) with (34).
Let r WD r0=

p
� be the radius of the largest inscribed ball in the nodal domain at x0. Noting that

f'� < 0g �Er0 and combining Theorem 4.2 for Bx0.2r/ with (33), we get�
C

�
n�1
2

�n�2
n

�

�
Vol.Er0/

Vol.B.x0; r0��1=2//

�n�2
n

� 1� e�
p
1=3r20: (35)

Expanding the right-hand side in Taylor series and rearranging finishes the proof. �

Remark 4.3. An inspection of the proof of Theorem 1.6 reveals that one can take "D r2n=.n�2/0 . In other
words, the relative volume of the error set Er0 decays as r2n=.n�2/0 as r0! 0. This is slightly better than
the scaling prescribed by Corollary 2 of [Lieb 1983].

Remark 4.4. There is a sizable literature around optimizing the fundamental frequency of the complement
of an obstacle inside a domain; for example, see [Harrell et al. 2001]. As an explicit special case, consider
a convex domain ��Rn and a small ball B ��. The question is to find possible placements of translate
xCB inside � such that �1.�n .xCB// is maximized. For certain applications of Theorem 1.6 towards
such questions, we refer to [Georgiev and Mukherjee 2017].
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