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We prove a discrete time analogue of Moser’s normal form (1967) of real analytic perturbations of
vector fields possessing an invariant, reducible, Diophantine torus; in the case of diffeomorphisms too,
the persistence of such an invariant torus is a phenomenon of finite codimension. Under convenient
nondegeneracy assumptions on the diffeomorphisms under study (a torsion property for example), this
codimension can be reduced. As a by-product we obtain generalizations of Rüssmann’s translated curve
theorem in any dimension, by a technique of elimination of parameters.
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1. Introduction and results

Let T = R/2πZ, a, b ∈ R, a < b, and consider the twist map

P : T×[a, b] → T×R, (θ, r) 7→ (θ +α(r), r),

where α′(r) > 0; this map preserves circles r = r0, r0 ∈ [a, b], and rotates them by an angle which
increases as r does (this is the twist property).

Moser [1962] proved that for any r0 ∈ (a, b) such that α(r0) is Diophantine, if Q is an exact-area-
preserving diffeomorphism sufficiently close to P, it has an invariant curve near r = r0 on which the
dynamics is conjugated to the rotation θ 7→ θ +α(r0).

Rüssmann [1970] generalized this fundamental result to nonconservative twist diffeomorphisms of the
annulus; see also [Bost 1986; Yoccoz 1992]. He showed that the persistence of a Diophantine invariant
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circle is a phenomenon of codimension 1; in general the invariant curve does not persist but it is translated
in the normal direction. It is the “theorem of the translated curve” (see below for a precise statement).

As in Kolmogorov’s theorem [1954], see also [Herman and Sergeraert 1971], the dynamics on the
translated curve can be conjugated to the same initial Diophantine rotation because of the nondegeneracy
(twist) of the map. Herman [1983] gave a proof of the translated curve theorem for diffeomorphisms
with rotation number of constant type, then generalized Rüssmann’s result in higher dimensions to
diffeomorphisms of Tn

×R (Tn
=Rn/2πZn) close enough to the rotation (θ, r) 7→ (θ+α, r), where α is a

Diophantine vector, without assuming any twist hypothesis but introducing an external parameter in order
to tune the frequency on the translated torus, yet breaking the dynamical conjugacy to the Diophantine
rotation; see [Yoccoz 1992].

To our knowledge no further generalization in Tn
×Rm of Rüssmann’s theorem has been given so far.

The first purpose of this work is to prove a discrete-time analogue of Moser’s normal form [1967] of
real analytic perturbations of vector fields on Tn

×Rm possessing a quasiperiodic Diophantine, reducible,
invariant torus. The normal form will then be used to deduce “translated torus theorems” under convenient
nondegeneracy assumptions. As a by-product, Rüssmann’s classical theorem will be a particular case of
small dimension. While Rüssmann and Herman consider smooth or finite differentiable diffeomorphisms,
we focus here on the analytic category. Let us state the main results.

A normal form for diffeomorphisms. Let Tn
= Rn/2πZn be the n-dimensional torus. Let V be the

space of germs along Tn
×{0} in Tn

×Rm
= {(θ, r)} of real analytic diffeomorphisms. Fix α ∈ Rn and

A ∈ GLm(R), assuming that A is diagonalizable with (possibly complex) eigenvalues a1, . . . , am ∈ C.
Let U (α, A) be the affine subspace of V of diffeomorphisms of the form

P(θ, r)= (θ +α+ O(r), A · r + O(r2)), (1-1)

where O(r k) are terms of order≥ k in r which may depend on θ . For these diffeomorphisms, Tn
0 =Tn

×{0}
is an invariant, reducible, α-quasiperiodic torus whose normal dynamics at the first order is characterized
by a1, . . . , am . We will collectively refer to α1, . . . , αn and a1, . . . , am as the characteristic frequencies
or characteristic numbers of Tn

0 .
Let now a1, . . . , aq ∈ C be the pairwise distinct eigenvalues of A. We will impose the following

Diophantine conditions for some γ > 0 and τ ≥ 1:

∀i = 1, . . . ,q, |ai | = 1, |k·α+argai−2πl| ≥
γ

|k|τ
∀(k, l)∈Zn

\{0}×Z,

∀i, j = 1, . . . ,q, |ai | = |aj |, |k·α+argai−argaj−2πl| ≥
γ

|k|τ
∀(k, l)∈Zn

\{0}×Z,
(1-2)

where arg ai ∈ [0, 2π [ denotes the argument of the i-th eigenvalue ai = |ai |ei arg ai.

Remark 1.1. Since A is in GLm(R), the possible complex eigenvalues come in couples, and conditions
(1-2) imply the classical Diophantine condition on α when i = j.

Let G be the space of germs of real analytic isomorphisms of Tn
×Rm of the form

G(θ, r)= (ϕ(θ), R0(θ)+ R1(θ) · r), (1-3)
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where ϕ is a diffeomorphism of the torus fixing the origin and R0, R1 are functions defined on the torus Tn

with values in Rm and GLm(R) respectively and such that5Ker(A−I )R0(0)=0 and5Ker[A,· ](R1(0)−I )=0,
where I is the identity matrix in Matm(R) and 5 is the projection on the indicated subspace.

Let us define the “correction map”

Tλ : Tn
×Rm

→ Tn
×Rm, (θ, r) 7→ (β + θ, b+ (I + B) · r),

where β ∈ Rn, b ∈ Rm and B ∈Matm(R) are such that

(A− I ) · b = 0, [A, B] = 0. (1-4)

We will refer to translating parameters λ= (β, b+ B · r) as corrections or counter terms, and denote by
3 the space of such λ’s:

3=
{
λ=(β, b+ B · r) : (A− I ) · b= 0, [A, B]= 0

}
.

Theorem A (normal form). Let (α, A) satisfy the Diophantine condition (1-2). If Q is sufficiently close
to P0

∈U (α, A), there exists a unique triplet (G, P, λ) ∈ G×U (α, A)×3 close to (id, P0, 0), such that

Q = Tλ ◦G ◦ P ◦G−1.

In the neighborhood of (id, P0, 0), the G-orbit of all P ∈U (α, A) has finite codimension. The proof is
based on a relatively general inverse function theorem in analytic class (Theorem A.1 of the Appendix).

The idea of proving the finite codimension of a set of conjugacy classes of a diffeomorphism or of a
vector field has been successfully exploited by many authors. Arnol’d [1961] first proved a normal form
for diffeomorphisms of Tn; this was followed by Moser’s normal forms for vector fields [Moser 1966;
1967; Wagener 2010; Massetti 2015a; 2015b]. Among others, we recall the work of Calleja, Celletti and
de la Llave [Calleja et al. 2013] on conformally symplectic systems, Chenciner’s study [1985a; 1985b;
1988] on the bifurcation of elliptic fixed points, Herman’s twisted conjugacy for Hamiltonians [Féjoz
2004; 2010] (a generalization of [Arnol’d 1961]) and the work of Eliasson, Fayad and Krikorian [Eliasson
et al. 2015] around the stability of KAM tori.

This technique allows us to study the persistence of an invariant torus in two steps: first, prove a
normal form that does not depend on any nondegeneracy hypothesis (but that contains the hard analysis);
second, reduce or eliminate the (finite-dimensional) corrections by the usual implicit function theorem,
using convenient nondegeneracy assumptions on the system under consideration. This second step was
probably not deeply understood before the 80s [Sevryuk 1999].

A generalization of Rüssmann’s theorem. From the normal form of Theorem A, we see that when λ= 0,
Q=G ◦P ◦G−1; the torus G(Tn

0 ) is invariant for Q and the first-order dynamics is given by P ∈U (α, A).
Conversely, whenever λ= (β, b), the torus is translated and the α-quasiperiodic tangential dynamics is
twisted by the correction β:

Q(ϕ(θ), R0(θ))= (β +ϕ(θ +α), b+ R0(θ +α)).

We will loosely say that the torus Tn
0

− persists up to twist-translation when λ= (β, b),

− persists up to translation when λ= (0, b).
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We stress the fact that Theorem A not only gives the tangential dynamics to the torus, but also the
normal one, of which Rüssmann’s original statement is regardless:

Theorem (Rüssmann). Let α ∈ R be Diophantine and P0
: T×[−r0, r0] → T×R be of the form

P0(θ, r)=
(
θ +α+ t (r)+ O(r2), A0r + O(r2)

)
,

where A0
∈ R \ {0}, t (0)= 0 and t ′(r) > 0.

If Q is close enough to P0, there exists a unique analytic curve γ : T→ R close to r = 0, an analytic
diffeomorphism ϕ of T fixing the origin close to the identity, and b ∈ R close to 0, such that

Q(θ, γ (θ))=
(
ϕ ◦ Rα ◦ϕ−1(θ), b+ γ (ϕ ◦ Rα ◦ϕ−1(θ))

)
.

Note that t (r) may depend on the angles as well. In the original statement, A0
= 1; to consider this

case with general A0 does not add any difficulty to the proof.
We will generalize Rüssmann’s theorem on Tn

×Rn. At the expense of losing control on the final
normal dynamics and conjugating T−1

λ ◦ Q to a diffeomorphism P whose invariant torus has a normal
dynamics given by a different A, under convenient nondegeneracy conditions we can prove the existence
of a twisted-translated or translated α-quasiperiodic Diophantine torus by application of the classical
implicit function theorem in finite dimension. The following results will be proved in Section 5, where a
more functional statement will be given (Theorems 5.1 and 5.4).

On Tn
×Rn, let P ∈U (α, A), defined in expression (1-1), be such that A is invertible and has simple,

real eigenvalues a1, . . . , an . This hypothesis clearly implies that the only frequencies that can cause small
divisors are the tangential ones α1, . . . , αn , so that we only need to require the standard Diophantine
hypothesis on α.

Theorem B. Let α be Diophantine and let A ∈ GLn(R) have simple, real eigenvalues. If Q is sufficiently
close to P0

∈U (α, A), there exists A′ close to A such that the torus Tn
0 persists up to twist-translation

and its final normal dynamics is given by A′.

If, in addition, Q has a torsion property, we can prove the following theorem.

Theorem C. Let α be Diophantine and let A be invertible with simple, real eigenvalues. Let also

P0(θ, r)=
(
θ +α+ p1(θ) · r + O(r2), A · r + O(r2)

)
be such that

det
(∫

Tn
p1(θ) dθ

)
6= 0.

If Q is sufficiently close to P0, there exists A′ close to A such that the torus Tn
0 persists up to translation

and the final normal dynamics is given by A′.

The paper is organized as follows: in Sections 2–3 we introduce the normal form operator, define
conjugacy spaces and present the difference equations that will be solved to linearize the dynamics on the
perturbed torus; in Section 4 we will prove Theorem A, while in Section 5 we will prove Theorems B and C.
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2. The normal form operator

We will show that the operator

φ : G×U (α, A)×3→ V, (G, P, λ) 7→ Tλ ◦G ◦ P ◦G−1,

is a local diffeomorphism (in the sense of scales of Banach spaces) in a neighborhood of (id, P0, 0). Note
that φ is formally defined on the whole space but φ(G, P, λ) is analytic in the neighborhood of Tn

0 only
if G is close enough to the identity with respect to the width of analyticity of P. See the subsection on
page 155.

Although the difficulty to overcome in the proof is rather standard for conjugacy problems of this
kind (proving the fast convergence of a Newton-like scheme), the procedure relies on a relatively general
inverse function theorem (Theorem A.1 of the Appendix), following a strategy different from Zehnder’s
[1975]. Both Zehnder’s approach and ours rely on the fact that the fast convergence of the Newton scheme
is somewhat independent of the internal structure of the variables.

Complex extensions. Let us extend the tori

Tn
= Rn/2πZn and Tn

0 = Tn
×{0} ⊂ Tn

×Rm,

as
Tn

C = Cn/2πZn and Tn
C = Tn

C×Cm

respectively, and consider the corresponding s-neighborhoods defined using `∞-balls (in the real normal
bundle of the torus):

Tn
s =

{
θ ∈ Tn

C : max
1≤ j≤n

|Im θj | ≤ s
}

and Tn
s =

{
(θ, r) ∈ Tn

C : |(Im θ, r)| ≤ s
}
,

where |(Im θ, r)| :=max (max1≤ j≤n|Im θj |,max1≤ j≤m |rj |).
Let now f : Tn

s → C be holomorphic on the interior of Tn
s , continuous on Tn

s , and consider its Fourier
expansion f (θ, r)=

∑
k∈Zn fk(r) ei k·θ, where k · θ = k1θ1+ · · ·+ knθn . In this context we introduce the

so-called weighted norm:

| f |s :=
∑
k∈Zn

| fk | e|k|s, |k| = |k1| + · · · + |kn|,

where | fk | = sup|r |<s | fk(r)|. Whenever f : Tn
s → Cn, we have | f |s =max1≤ j≤n(| f j |s), where f j is the

j-th component of f (θ, r).
It is a trivial fact that the classical sup-norm is bounded from above by the weighted norm:

sup
z∈Tn

s

| f (z)| ≤ | f |s

and that | f |s < +∞ whenever f is analytic on its domain, which necessarily contains some Tn
s′ with

s ′ > s. In addition, the following useful inequalities hold if f, g are analytic on Tn
s′ :

| f |s ≤ | f |s′ for 0< s < s ′,
and

| f g|s′ ≤ | f |s′ |g|s′ .
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Moreover, one can show that if f is analytic on Tn
s+σ and G is a diffeomorphism of the form (1-3)

sufficiently close to the identity, then | f ◦G|s ≤ CG | f |s+σ , where CG is a positive constant depending
on |G− id|s (see Appendix C). For more details about the weighted norm, see for example [Meyer 1975;
Chierchia 2003].

In general for complex extensions Us and Vs′ , we will denote by A(Us, Vs′) the set of holomorphic
functions from Us to Vs′ and by A(Us), endowed with the s-weighted norm, the Banach space A(Us,C).

Finally, let E and F be two Banach spaces:

− We indicate contractions with a dot “ · ”, with the convention that if l1, . . . , lk+p∈E∗ and x1, . . . , x p∈E ,

(l1⊗ · · ·⊗ lk+p) · (x1⊗ · · ·⊗ x p)= l1⊗ · · ·⊗ lk〈lk+1, x1〉 · · · 〈lk+p, x p〉.

In particular, if l ∈ E∗, we simply write ln
= l⊗ · · ·⊗ l.

− If f is a differentiable map between two open sets of E and F, then f ′(x) is considered as a linear
map belonging to F ⊗ E∗, f ′(x) : ζ 7→ f ′(x) · ζ ; the corresponding norm will be the standard
operator norm

| f ′(x)| = sup
ζ∈E, |ζ |E=1

| f ′(x) · ζ |F .

Spaces of conjugacies. – We consider the neighborhood of the identity Gσs in the space of germs of real
holomorphic diffeomorphisms on Tn

s , defined by

|ϕ− id|s ≤ σ

and
|R0+ (R1− I ) · r |s ≤ σ,

where ϕ(0)= 0, and R0 and R1 satisfy 5ker(A−I )R0(0)= 0 and 5ker([A,· ])(R1(0)− I )= 0.
The tangent space at the identity TidGσs consists of maps Ġ ∈A(Tn

s ,Cn+m),

Ġ(θ, r)= (ϕ̇(θ), Ṙ0(θ)+ Ṙ1(θ) · r),

where ϕ̇ ∈A(Tn
s ,Cn), Ṙ0 ∈A(Tn

s ,Cm) and Ṙ1 ∈A(Tn
s ,Matm(C)). We endow it with the norm

|Ġ|s = max
1≤ j≤n+m

(|Ġ j |s).

– Let Vs be the subspace of A(Tn
s ,Tn

C
×Cm) of diffeomorphisms

Q : (θ, r) 7→ ( f (θ, r), g(θ, r)),

where f ∈A(Tn
s ,Cn), g ∈A(Tn

s ,Cm), endowed with the norm

|Q|s =max (| f |s, |g|s).

– Let Us(α, A) be the affine subspace of Vs of those diffeomorphisms P of the form

P(θ, r)= (θ +α+ O(r), A · r + O(r2)).

We will indicate by pi and Pi the coefficients of the order-i term in r , in the θ - and r -directions respectively.
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T n
s+σ

T n
s

T n
0

G
G(T n

s )

G(T n
0 )

Figure 1. Deformed complex domain.

– If G ∈ Gσs and P is a diffeomorphism over G(Tn
s ) we define the deformed norm

|P|G,s := |P ◦G|s,

depending on G; this is in order not to shrink artificially the domains of analyticity. See Figure 1. The
problem, in a smooth context, may be solved without changing the domain, by using plateau functions.

The normal form operator. By Theorem B.1 and Corollary B.2 the operator

φ : Gσ/n
s+σ ×Us+σ (α, A)×3→ Vs,

(G, P, λ) 7→ Tλ ◦G ◦ P ◦G−1,
(2-1)

is now well defined. It would be more appropriate to write φs,σ but, since these operators commute with
source and target spaces, we will refer to them simply as φ. We will always assume that 0< s < s+σ < 1
and σ < s.

3. Difference equations

We present here three lemmata that we will use in the following in order to linearize the tangent and the
normal dynamics of the torus (see Section 4).

Let α ∈ Rn and let M ∈ GLm(R) have pairwise distinct eigenvalues µ1, . . . , µm . We assume the
following Diophantine conditions on α and M :

|k ·α− 2πl| ≥
γ

|k|τ
∀k ∈ Zn

\ {0}, ∀l ∈ Z, (3-1)

|k ·α− argµj − 2πl| ≥
γ

|k|τ
∀(k, l) ∈ Zn

\ {0}×Z, ∀ j = 1, . . . ,m : |µj | = 1, (3-2)

|k ·α+ argµi − argµj − 2πl| ≥
γ

|k|τ
∀(k, l) ∈ Zn

\ {0}×Z, ∀i, j = 1, . . . ,m : |µi | = |µj |, (3-3)

{∣∣|µi | − |µj |
∣∣≥ γ ∀i, j = 1, . . . ,m, i 6= j : |µi | 6= |µj |,∣∣1− |µj |
∣∣≥ γ if |µj | 6= 1,

(3-4)

{
|µi −µj | ≥ γ ∀i, j = 1, . . . ,m, i 6= j : |µi | = |µj |,

|1−µj | ≥ γ if |µj | = 1 and µj 6= 1,
(3-5)

min
1≤ j≤m

(|µj |)≥ γ. (3-6)
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We first prove the following fundamental lemma, which is the heart of the proof of Theorem A and,
more generally, of many stability results related to Diophantine rotations on the torus.

Lemma 3.1. Let α ∈ Rn be Diophantine in the sense of (3-1) and let a, b ∈ C \ {0}.

(1) If a = b and |a| ≥ γ , for any g ∈A(Tn
s+σ ), there exists a unique f of zero average which is complex

analytic on Tn
s and a unique λ ∈ R such that

λ+ a f (θ +α)− a f (θ)= g(θ), λ=
1

(2π)n

∫
Tn

g dθ,

satisfying

| f |s ≤
C

γ 2σ τ+n |g|s+σ ,

where C is a constant depending only on n and τ .

(2) Let a 6= b.

(i) If |a| = |b| and
|a− b| ≥ γ,
|a| ≥ γ,
|k ·α+ arg a− arg b− 2πl| ≥ γ /|k|τ ∀(k, l) ∈ Zn

\ {0}×Z,

(3-7)

for any g ∈A(Tn
s+σ ), there exists a unique f which is complex analytic on Tn

s such that

a f (θ +α)− b f (θ)= g(θ), (3-8)
satisfying

| f |s ≤
C

γ 2σ τ+n |g|s+σ ,

where C is a constant depending only on n, τ .

(ii) If |a| 6= |b| and
∣∣|a| − |b|∣∣ ≥ γ , for any g ∈ A(Tn

s+σ ), there exists a unique f which is complex
analytic on Tn

s+σ such that
a f (θ +α)− b f (θ)= g(θ),

satisfying
| f |s+σ ≤ γ−1

|g|s+σ .

Proof. (1) Developing in Fourier series the equation yields

λ+ a
∑

k

(ei k·α
− 1) fkei k·θ

=

∑
k

gkei kθ
;

letting λ= g0 we formally have

f (θ)= 1
a

∑
k 6=0

gk

ei k α − 1
ei kθ.

First note that the coefficients gk decay exponentially, that is,

|gk | =

∣∣∣∣∫
Tn

g(θ)e−i k·θ dθ
2π

∣∣∣∣≤ |g|s+σ e−|k|(s+σ),

by deforming the path of integration to Im θj =− sgn(kj )(s+ σ).
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Second, remark that for any x, y ∈ R+, ϕ ∈ [0, 2π [,

|x eiϕ
− y|2 = (x − y)2 cos2 ϕ

2
+ (x + y)2 sin2 ϕ

2

≥ (x + y)2 sin2 ϕ

2
= (x + y)2 sin2 ϕ− 2πl

2
,

(3-9)

with l ∈ Z. By choosing l ∈ Z such that −π2 ≤
1
2(ϕ− 2πl)≤ π

2 , we get

|x eiϕ
− y| ≥ 2

π
(x + y)

|ϕ− 2πl|
2

, (3-10)

by the classical inequality |sin δ| ≥ 2
π
|δ|, whenever −π2 ≤ δ ≤

π
2 .

In our case x= y=1, ϕ= k ·α and for all k, by choosing l ∈Z such that−π2 ≤
1
2(k ·α−2πl)≤ π

2 , we get

|ei k·α
− 1| ≥ 4

π

|k ·α− 2πl|
2

≥
2
π

γ

|k|τ
,

by inequality (3-10) and the Diophantine condition (3-1).
We thus have

| f |s ≤
π |g|s+σ
|a|γ

∑
k

|k|τ e−|k|σ ≤
π 2n
|g|s+σ
|a|γ

∑
`≥1

(
`+n+1

`

)
e−`σ `τ

≤
π 4n
|g|s+σ

|a|γ (n− 1)!

∑
`≥1

(n+ `− 1)n−1+τ e−`σ

≤
π 4n
|g|s+σ

|a|γ (n− 1)!

∫
∞

1
(`+ n− 1)n+τ−1e−(`−1)σ d`.

The integral is equal to

σ−τ−nenσ
∫
∞

nσ
`τ+n−1e−` d` < σ−τ−nenσ

∫
∞

0
`τ+n−1e−` d`= σ−τ−nenσ0(τ + n).

Hence f , of zero average, is complex analytic on Tn
s and, since |a| ≥ γ , it satisfies the claimed estimate.

(2i) Let a= |a|ei arg a and b= |b|ei arg b with the convention that arg z=π (arg z= 0) if z ∈R− (if z ∈R+).
The Fourier expansion gives

f0 =
g0

a− b
and for all k 6= 0

fk =
gk

ei arg b
(
|a|ei( k α+arg a−arg b)− |b|

)ei k·θ.

In order to bound the divisors we apply the same inequalities as in (3-9)–(3-10), with ϕ=k ·α+arg a−arg b.
Since |a| = |b|, by conditions (3-7) we proceed as in the proof of point (1) to get the stated estimate. In
the case where a (or b) is real and arg a (or arg b) is equal to π , we shall choose l̂ = 2l−1 (or l̂ = 2l+1)
such that −π2 ≤

1
2(k ·α+ arg a−π l̂)≤ π

2 to conclude the estimate as in (3-10).

(2ii) This follows directly from the triangular inequality.

We direct the reader interested to optimal estimates (with σ τ instead of σ τ+n) to [Rüssmann 1976]. �
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Let now α ∈ Rn and M ∈GLm(R) have simple eigenvalues such that1 µi 6= 1 for all i = 1, . . . ,m, and
consider the operator

L1,M :A(Tn
s+σ ,Cm)→A(Tn

s ,Cm), f 7→ f (θ +α)−M · f (θ).

Lemma 3.2 (relocating the torus). Let α ∈ Rn and M ∈ GLm(R), a diagonalizable matrix with simple
eigenvalues distinct from 1, satisfy the Diophantine conditions (3-1)–(3-2) and (3-4)–(3-6). For every
g ∈ A(Tn

s+σ ,Cm), there exists a unique preimage f ∈ A(Tn
s ,Cm) by L1,A. Moreover, the following

estimate holds:
| f |s ≤

C2

γ 2

1
σ n+τ |g|s+σ ,

where C2 is a constant depending only on the dimension n and the exponent τ .

Proof. In the scalar case, m = 1 and M = µ ∈ R. By expanding both sides of L1,M f = g, the formal
preimage is given by

fk =
gk

ei k α −µ

and the proof is recovered from Lemma 3.1(2ii). The diagonal case follows readily by working compo-
nentwise and taking into account condition (3-4).

Finally, if M is diagonalizable, let P ∈ GLm(C) be the diagonalizing matrix such that P M P−1
=

diag(µ1, . . . , µm), µi ∈ C. By left multiplying both sides of f (θ +α)−M · f (θ)= g by P, we get

f̃ (θ +α)− P M P−1 f̃ (θ)= g̃,

where we have set g̃ = Pg and f̃ = P f . By Lemma 3.1(2) and the Diophantine conditions (3-1)–(3-2)
and (3-5)–(3-6), f̃ satisfies the wanted estimates, and f = P−1 f̃ . �

Finally, consider a holomorphic function F on Tn
s+σ with values in Matm(C) and define the operator

L2,M :A(Tn
s+σ ,Matm(C))→A(Tn

s ,Matm(C)),

F 7→ F(θ +α) ·M −M · F(θ).

Lemma 3.3 (straighten the first order dynamics). Let α ∈ Rn and M ∈ GLm(R), a diagonalizable matrix
with simple eigenvalues distinct from 1, satisfy the Diophantine conditions (3-1) and (3-3)–(3-6). For
every G ∈A(Tn

s+σ ,Matm(C)) such that
∫

Tn Gi
i/(2π)

n dθ = 0 there exists a unique F ∈A(Tn
s ,Matm(C)),

having zero-average diagonal elements, such that the matrix equation

F(θ +α) ·M −M · F(θ)= G(θ)

is satisfied; moreover, the following estimate holds:

|F |s ≤
C3

γ 2

1
σ n+τ |G|s+σ ,

where C3 is a constant depending only on the dimension n and the exponent τ .
1In order not to burden the following statements, we suppose that M has simple spectrum and 1 does not belong to it. Just note

that in the general case, one should introduce the correction λ meant to absorb the average of the given term in the homological
equations when it is the case, as in Lemma 3.1(1); cf. conditions (1-4).
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Proof. Let M = diag(µ1, . . . , µm) ∈ Rm and F ∈ Matm(C) be given; expanding L2,M F = G we get
m equations of the form

µj (F
j
j (θ +α)− F j

j (θ))= G j
j , j = 1, . . . ,m,

and m2
−m equations of the form

µj F i
j (θ +α)−µi F i

j (θ)= Gi
j (θ), ∀i 6= j, i, j = 1, . . . ,m,

where we denoted by F i
j the element corresponding to the i-th line and j-th column of the matrix F(θ).

Taking into account the Diophantine conditions (3-1)–(3-4), the thesis follows from the same computations
as Lemma 3.1(1) for the m-diagonal equations and point (2ii) for the (m2

−m)-out diagonal ones.
Finally, to recover the general case, we consider the transition matrix P ∈GLm(C) such that P M P−1

=

diag(µ1, . . . , µm), µi ∈ C, and the equation

(P F(θ +α)P−1 P M P−1)− P M P−1 P F(θ)P−1
= PG P−1

;

letting F̃ = P F P−1 and G̃ = PG P−1, the equation is of the previous kind and by the Diophantine
conditions (3-1) and (3-3)–(3-6), F̃ satisfies the wanted estimates, and F = P−1 F̃ P. �

Remark 3.4. The real analytic character of the solutions in Lemmata 3.2 and 3.3 follows from their
uniqueness and the fact that the matrix M has real entries.

4. Inversion of the operator φ

The following theorem represents the main result of this first part, from which the normal form theorem,
Theorem A, follows.

Let us fix P0
∈Us(α, A) and note V σ

s = {Q ∈ Vs : |Q− P0
|s < σ }, the ball of radius σ centered at P0.

Theorem 4.1. The operator φ is a local diffeomorphism in the sense that for any 0< η < s < s+ σ < 1
there exists ε > 0 and a unique C∞-map ψ ,

ψ : V ε
s+σ → Gηs ×Us(α, A)×3,

such that φ ◦ψ = id. Moreover, ψ is Whitney-smooth with respect to (α, A).

This result will follow from the inverse function theorem, Theorem A.1, and regularity propositions,
Propositions A.2–A.4.

In order to solve locally φ(x)= y, we use the remarkable idea of Kolmogorov and find the solution by
composing infinitely many times the operator

x = (g, u, λ) 7→ x +φ′−1(x) · (y−φ(x))

on extensions Tn
s+σ of shrinking width.

At each step of the induction, it is necessary that φ′−1(x) exists at an unknown x (not only at x0)
in a whole neighborhood of x0 and that φ′−1 and φ′′ satisfy a suitable estimate, in order to control the
convergence of the iterates.
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The main step is to check the existence of a right inverse for

φ′(G, P, λ) : TGG
σ/n
s+σ ×

EUs+σ ×3→ VG,s

if G is close to the identity. We denote by EU the vector space directing U (α, A).

Proposition 4.2. If (G, P, λ) is close enough to (id, P0, 0) for all δQ ∈ VG,s+σ = G∗A(Tn
s+σ ,Cn+m),

there exists a unique triplet (δG, δP, δλ) ∈ TGGs × EUs ×3 such that

φ′(G, P, λ) · (δG, δP, δλ)= δQ. (4-1)

Moreover, we have the estimate

max(|δG|s, |δP|s, |δλ|)≤
C ′

σ τ
′
|δQ|G,s+σ , (4-2)

where C ′ is a constant possibly depending on |((G− id), P − (θ +α, A · r))|s+σ .

Proof. Let a vector field δQ ∈ VG,s+σ be given. Differentiating with respect to x = (G, P, λ), we have

δ(Tλ ◦G ◦ P ◦G−1)= Tδλ ◦ (G ◦ P ◦G−1)+ T ′λ ◦ (G ◦ P ◦G−1) · δ(G ◦ P ◦G−1);

hence

M · (δG ◦ P +G ′ ◦ P · δP −G ′ ◦ P · P ′ ·G ′−1
· δG) ◦G−1

= δQ− Tδλ ◦ (G ◦ P ◦G−1),

where M =
( I

0
0

I+B

)
.

The data is δQ, while the unknowns are the “tangent vectors” δP ∈ O(r)×O(r2), δG (geometrically,
a vector field along G) and δλ ∈3.

Precomposing by G, we get the equivalent equation between germs along the standard torus Tn
0 (as

opposed to G(Tn
0 )):

M · (δG ◦ P +G ′ ◦ P · δP −G ′ ◦ P · P ′ ·G ′−1
· δG)= δQ ◦G− Tδλ ◦G ◦ P;

multiplying both sides by (G ′−1
◦ P)M−1, we finally obtain

Ġ ◦ P − P ′ · Ġ+ δP = G ′−1
◦ P ·M−1δQ ◦G+G ′−1

◦ P ·M−1Tδλ ◦G ◦ P, (4-3)

where Ġ = G ′−1
· δG.

Note that the term containing Tδλ is not constant; expanding along r = 0, it reads as

Tλ̇ = G ′−1
◦ P ·M−1

· Tδλ ◦G ◦ P = (β̇ + O(r), ḃ+ Ḃ · r + O(r2)).

The vector field Ġ (geometrically, a germ along Tn
0 of tangent vector fields) reads as

Ġ(θ, r)= (ϕ̇(θ), Ṙ0(θ)+ Ṙ1(θ) · r).

The problem is now: G, λ, P, Q being given, find Ġ, δP and λ̇, and hence δλ and δG.
We are interested in solving the equation up to the 0-order in r in the θ-direction, and up to the first

order in r in the action direction; hence we consider the Taylor expansions along Tn
0 up to the needed order.
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We remark that since δP = (O(r), O(r2)), it will not intervene in the cohomological equations given
out by (4-3), but will be uniquely determined by identification of the reminders.

Let us proceed to solve (4-3); taking its jet at the wanted order, it splits into the following three
equations:

ϕ̇(θ +α)− ϕ̇(θ)+ p1 · Ṙ0 = q̇0+ β̇,

Ṙ0(θ +α)− A · Ṙ0(θ)= Q̇0+ ḃ,

Ṙ1(θ +α) · A− A · Ṙ1(θ)= Q̇1− (2P2 · Ṙ0+ Ṙ′0(θ +α) · p1)+ Ḃ.

(4-4)

The first equation is the one straightening the tangential dynamics, while the second and the third ones
are meant to relocate the torus and straighten the normal dynamics.

For the moment we solve the equations “modulo λ̇”; eventually δλ will be uniquely chosen to kill the
average of the equation determining ϕ̇ and the constant component of the given terms in the second and third
equation that belong to the kernels of A− I and [A, · ] respectively, and solve the cohomological equations.

In the following we will repeatedly apply Lemmata 3.1–3.3 and Cauchy’s inequality. Furthermore, we
do not keep track of constants — just note that they may only depend on n and τ (from the Diophantine
condition) and on |G− id|s+σ and |P − ((θ +α), A · r)|s+σ , and refer to them as C .

– First, the second equation has a solution

Ṙ0 = L−1
1,A(Q̇0+ ḃ− b̄),

where b̄ =
∏

Ker (A−I )

∫
Tn Q̇0+ ḃ/(2π)n dθ , and

|Ṙ0|s ≤
C

γ 2σ τ+n |Q̇0+ ḃ|s+σ .

– Second, we have
ϕ̇(θ +α)− ϕ̇(θ)+ p1 · Ṙ0 = q̇0+ β̇ − β̄,

where β̄ =
∫

Tn q̇0− p1 · R0+ β̇/(2π)n dθ ; hence

ϕ̇ = L−1
α (q̇0+ β̇ − β̄),

satisfying

|ϕ̇|s−σ ≤
C

γ 3σ 2(τ+n) |q̇0+ β̇|s+σ .

– Third, the solution of the equation in Ṙ1 is

Ṙ1 = L−1
2,A(Q̃1+ Ḃ− B),

where Q̃1 = Q̇1− (2P2 · Ṙ0+ Ṙ′0(θ +α) · p1), and B =
∏

Ker[A,· ]
∫

Tn Q̃1+ Ḃ/(2π)n dθ . It satisfies

|Ṙ1|s−2σ ≤
C

γ 2σ n+τ |Q̃1+ Ḃ|s+σ .

We now handle the unique choice of the correction δλ = (δβ, δb + δB · r) given by Tδλ. Letting
λ̄ = (β̄, b̄ + B · r), the map f : 3→ 3, δλ 7→ −λ̄, is well defined in the neighborhood of δλ = 0.
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In particular f ′ = − id when G = id, and it will remain bounded away from 0 if G stays sufficiently
close to the identity. In particular, δλ 7→ −λ̄ is affine: the system in 3 to solve λ = 0 is linear of the
form

∫
Tn a(G, Q̇)+ A(G) · δλ= 0, with diagonal close to 1 when G is close to the identity; hence f is

invertible. Thus, there exists a unique δλ such that f (δλ)= 0, satisfying

|δλ| ≤
C

γ 2σ τ+n+1 |δQ|G,s+σ .

We finally have

|Ġ|s−2σ ≤
C
γ 3

1
σ 2(τ+n)+1 |δQ|G,s+σ .

Now, from the definition of Ġ = G ′−1
· δG, we get δG = G ′ · Ġ. The unique solutions such that

δϕ(0)= 0, δR0(0)= 0 and δR1(0)= 0 are easily determined, since G is close to the identity and similar
estimates hold for δG:

|δG|s−2σ ≤ σ
−1(1+ |G− id|s)

C
σ 2(τ+n)+1 |δQ|G,s+σ .

Finally, (4-3) uniquely determines δP.
Letting τ ′ = 2(τ + n)+ 2, up to redefining σ ′ = σ/3 and s ′ = s+ σ , we have the stated estimates for

all s ′, σ ′, where s ′ < s ′+ σ ′. �

Proposition 4.3 (boundedness of φ′′). The bilinear map φ′′(x),

φ′′(x) : (TGG
σ/n
s+σ ×

EUs+σ ×3)
⊗2
→A(Tn

s ,Tn
C),

satisfies the estimates

|φ′′(x) · δx⊗2
|G,s ≤

C ′′

σ τ
′′
|δx |2s+σ ,

where τ ′′ ≥ 1 and C ′′ is a constant depending on |x |s+σ .

Proof. Differentiating φ(x) twice yields

−M
{[
δG ′ ◦ P · δP + δG ′ ◦ P · δP +G ′′ ◦ P · δP2

− (δG ′ ◦ P +G ′′ ◦ P · δP) · P ′ ·G ′−1
· δG

−G ′ ◦ P ·
(
δP ′ · (−G ′−1

· δG ′ ·G ′−1) · δG
)]
◦G−1

+
[
δG ′ ◦ P · δP + δG ′ ◦ P · δP +G ′′ ◦ P · δP2

−(δG ′ ◦ P +G ′′ ◦ P · δP) · P ′ ·G ′−1
· δG

−G ′ ◦ P ·
(
δP ′ · (−G ′−1

· δG ′ ·G ′−1) · δG
)]′
◦G−1

· (−G ′−1
· δG) ◦G−1

}
.

Once we precompose with G, the estimate follows. �

The hypotheses of Theorem A.1 are satisfied; hence the existence of (G, P, λ)with Q=Tλ◦G◦P◦G−1

is proved. Uniqueness and smoothness of the normal form follows from Propositions A.2–A.4. Theorem 4.1
follows, and hence Theorem A.
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5. A generalization of Rüssmann’s theorem

Theorem A provides a normal form that does not rely on any nondegeneracy assumption; thus, the
existence of a translated Diophantine, reducible torus will be subordinated to eliminating the “parameters
in excess” (β, B) using a nondegeneracy hypothesis. We will implicitly solve B = 0 and β = 0 by using
the normal frequencies as free parameters and a torsion hypothesis respectively. Rüssmann’s classical
result will be the immediate small-dimensional case.

Elimination of B. Let 1s
m(R)⊂ GLm(R) be the open set of invertible matrices with simple, real eigen-

values. On Tn
×Rm, let us define

Û =
⋃

A∈1s
m(R)

U (α, A).

We recall that those P ∈U (α, A) are diffeomorphisms of the form

P(θ, r)= (θ +α+ O(r), A · r + O(r2)),

on a neighborhood of Tn
×{0}.

The following theorem is an intermediate, yet fundamental result to prove the translated torus theorem,
Theorem C, and holds without requiring any torsion assumption on the class of diffeomorphisms.

Theorem 5.1 (twisted torus of codimension 1). For every P0
∈ Us+σ (α, A0) with α Diophantine and

A0
∈1s

m(R), there is a germ of C∞-maps

ψ : Vs+σ → Gs × Ûs ×3(β, b), Q 7→ (G, P, λ),

at P0
7→ (id, P0, 0) such that Q = Tλ ◦G ◦ P ◦G−1, where λ= (β, b) ∈ Rn+1.

Corollary 5.2 (twisted torus). If 1 does not belong to the spectrum of A0, the translation correction b is 0.

Proof. Denote by φA the operator φ, as now we want A to vary. Let us define the map

ψ̂ :1s
m(R)× Vs+σ → Gs × Ûs ×3, (A, Q) 7→ ψ̂A(Q) := φ−1

A (Q)= (G, P, λ),

in the neighborhood of (A0, P0) such that Q = Tλ ◦G ◦ P ◦G−1, where λ= (β, b, B ·r), β ∈Rn , b ∈Rm,
such that (A − I ) · b = 0 and B ∈ Matm(R) satisfies [B, A] = 0. Equivalently, B is simultaneously
diagonalizable with A, since A has simple spectrum; we can thus restrict our analysis to a neighborhood
of A0 in the subspace of those matrices commuting with A0. Note that we can choose such a neighborhood
so that it is contained in 1s

m(R). Then we study the dependence of B on A in their diagonal forms.
Without loss of generality, let A0 be in its canonical form, and let 1A0 be the subspace of diagonal

matrices, namely the matrices which commute with A0. Consider the restriction of ψ̂ to1A0 . Let A ∈1A0

be close to A0, let δA := A0
− A and write P0 as

P0(θ, r)=
(
θ +α+ O(r), (A0

− δA) · r + δA · r + O(r2)
)
;

we remark that P0
= Tλ ◦ PA, where

λ=
(
0, B(A)=(A0

− A) · A−1), [B(A), A] = 0,
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and PA = (θ +α+ O(r), A · r + O(r2)), A = A0
− δA.2 Note that, since A ∈1A0 has simple spectrum,

B is indeed in 1A0 .
According to Theorem A, φA(id, PA, λ)= P0; thus locally for all A ∈1A0 close to A0 we have

ψ̂(A, P0)= (id, PA, B · r), B(A, P0)= (A0
− A) · A−1

= δA · (A0
− δA)−1,

and, in particular B(A0, P0)= 0 and

∂B
∂A

∣∣∣∣
A=A0
=−(A0)

−1
,

which is invertible, since A0 is so. Hence A 7→ B(A) is a local diffeomorphism on 1A0 and by the
implicit function theorem (in finite dimension) locally for all Q close to P0 there exists a unique Ā such
that B( Ā, Q)= 0. It remains to define ψ(Q)= ψ̂( Ā, Q). �

The proof of Corollary 5.2 is immediate, by conditions (1-4).

Remark 5.3. This twisted-torus theorem relies on the peculiarity of the normal dynamics of the torus Tn
0 .

The direct applicability of the implicit function theorem is subordinated to the fact that no arithmetic
condition is required on the characteristic (normal) frequencies so that the correction A0

+ δA is well
defined; beyond that, since having simple, real eigenvalues is an open property, the needed counter
term B is indeed a diagonal matrix, so that the number of free frequencies (parameters) is enough to solve,
implicitly, B(A)= 0. The generic case of complex eigenvalues is more delicate since one should guarantee
that corrections A0

+ δA at each step satisfy the Diophantine condition (1-2). It seems reasonable to think
that one would need more parameters to control this issue, using the Whitney smoothness of φ on A, and
verify that the measure of such stay positive; see [Féjoz 2004].

Elimination of β. If Q satisfies a torsion hypothesis, the existence of a translated Diophantine torus can
be proved.

Theorem 5.4 (translated Diophantine torus). Let α be Diophantine. On a neighborhood of Tn
×{0} ⊂

Tn
×Rn, let P0

∈U (α, A0) be a diffeomorphism of the form

P0(θ, r)=
(
θ +α+ p1(θ) · r + O(r2), A0

· r + O(r2)
)
,

where A0 is invertible and has simple, real eigenvalues and such that

det
(∫

Tn
p1(θ) dθ

)
6= 0.

If Q is close enough to P0, there exists a unique A′, close to A0, and a unique (G, P, b)∈G×U (α, A′)×Rn

such that Q = Tb ◦G ◦ P ◦G−1.

Phrasing the thesis, the graph of γ = R0◦ϕ
−1 is a translated torus on which the dynamics is conjugated

to Rα by ϕ (remember the form of G ∈G given in (1-3)). Before proceeding with the proof of Theorem 5.4,
let us consider a parameter c ∈ Bn

1 (0) (the unit ball in Rn) and the family of maps defined by Qc(θ, r) :=

2The terms O(r2) contain a factor (I + δA · A−1)−1.
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Q(θ, c+ r) obtained by translating the action coordinates. Considering the corresponding normal form
operators φc, the parametrized version of Theorem A follows readily.

Now, if Qc is close enough to P0
c , Theorem 5.1 asserts the existence of (Gc, Pc, λc) ∈ G×U (α, A)×

3(β, b) such that
Qc = Tλ ◦Gc ◦ Pc ◦G−1

c .

Hence we have a family of tori parametrized by c̃ = c+
∫

Tn γ /(2π)n dθ ,

Q(θ, c̃+ γ̃ (θ))=
(
β(c)+ϕ ◦ Rα ◦ϕ−1(θ), b(c)+ c̃+ γ̃ (ϕ ◦ Rα ◦ϕ−1(θ))

)
,

where γ := R0 ◦ϕ
−1 and γ̃ = γ −

∫
T
γ /(2π) dθ .

Proof. Let ϕ̂ be the function defined on Tn taking values in Matn(R) that solves the (matrix of) difference
equation

ϕ̂(θ +α)− ϕ̂(θ)+ p1(θ)=

∫
Tn

p1(θ)
dθ
(2π)n

,

and let F : (θ, r) 7→ (θ+ ϕ̂(θ) ·r, r). The diffeomorphism F restricts to the identity at Tn
0 . At the expense

of substituting P0 and Q with F ◦ P0
◦ F−1 and F ◦ Q ◦ F−1 respectively, we can assume that

P0(θ, r)=
(
θ +α+ p1 · r + O(r2), A0

· r + O(r2)
)
, p1 =

∫
Tn

p1(θ)
dθ
(2π)n

.

The germs so obtained from the initial P0 and Q are close to one another.
The proof will follow from Theorem 5.1 and the elimination of the parameter β ∈ Rn obstructing the

rotation conjugacy.
In line with the previous reasoning, we want to show that the map c 7→ β(c) is a local diffeomorphism.

It suffices to show this for the trivial perturbation P0
c . The Taylor expansion of P0

c directly gives the
normal form. In particular b(c)= A0

· c+ O(c2), while the map c 7→ β(c)= p1 · c+ O(c2) is such that
β(0)= 0 and β ′(0)= p1, which is invertible by twist hypothesis, and thus a local diffeomorphism. Hence,
the analogous map for Qc, which is a small C1-perturbation, is a local diffeomorphism too and, together
with Theorem 5.1, there exists unique c ∈ Rn and A ∈Matn(R) such that (β, B)= (0, 0). �

Remark 5.5. The theorem holds also on Tn
×Rm , with m ≥ n, requiring that

rank
(∫

Tn
p1(θ) dθ

)
= n.

This guarantees that c 7→ β(c) is submersive, but c solving β(c) = 0 would no more be uniquely
determined.

Remark 5.6. Theorem 5.4 generalizes the classical translated curve theorem of Rüssmann in higher
dimension, in the case of normally hyperbolic systems such that A has simple, real, nonzero eigenvalues,
for general perturbations.

We stress the fact that if P0 was of the form

P0(θ, r)= (θ +α+ O(r), I · r + O(r2)),
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like in the original frame studied by Rüssmann, we would need a whole matrix B ∈Matn(R) in order to
solve the homological equations, and, having just n characteristic frequencies at our disposal, it is hopeless
to completely solve B = 0 and eliminate the whole obstruction. The torus would not be just translated.

Appendix A: The inverse function theorem and regularity of φ

We state here the implicit function theorem we use to prove Theorem A as well as the regularity statements
needed to guarantee uniqueness and smoothness of the normal form. These results follow from [Féjoz
2010; 2017]. Note that we endowed functional spaces with weighted norms, and bounds appearing in
Propositions 4.2–4.3 may depend on |x |s (as opposed to the analogous statements in [Féjoz 2010; 2017]);
for the corresponding proofs taking into account these (slight) differences, we send the reader to [Massetti
2015a; 2015b] and the proof or Moser’s theorem therein.

Let E = (Es)0<s<1 and F = (Fs)0<s<1 be two decreasing families of Banach spaces with increasing
norms | · |s and let B E

s (σ )= {x ∈ E : |x |s < σ } be the ball of radius σ centered at 0 in Es .
On account of composition operators, we additionally endow F with some deformed norms which

depend on x ∈ B E
s (s) such that

|y|0,s = |y|s and |y|x̂,s ≤ |y|x,s+|x−x̂ |s .

Consider then operators commuting with inclusions φ : B E
s+σ (σ )→ Fs , with 0< s < s+σ < 1, such that

φ(0)= 0.
We then suppose that if x ∈ B E

s+σ (σ ) then φ′(x) : Es+σ → Fs has a right inverse φ′−1(x) : Fs+σ → Es

(for the particular operators φ of this work, φ′ is both left- and right-invertible).
Suppose φ is at least twice differentiable.
Let τ := τ ′+ τ ′′ and C := C ′C ′′.

Theorem A.1 (inverse function theorem). Assume

|φ′−1(x) · δy|s ≤
C ′

σ τ
′
|δy|x,s+σ , (A-1)

|φ′′(x) · δx⊗2
|x,s ≤

C ′′

σ τ
′′
|δx |2s+σ ∀s, σ : 0< s < s+ σ < 1, (A-2)

where C ′ and C ′′ depend on |x |s+σ , and τ ′, τ ′′ ≥ 1.
For any s, σ, η with η< s and ε≤ησ 2τ/(28τC2) (C ≥ 1, σ < 3C), φ has a right inverse ψ : B F

s+σ (ε)→

B E
s (η). In other words, φ is locally surjective:

B F
s+σ (ε)⊂ φ(B

E
s (η)).

Proposition A.2 (Lipschitz continuity of ψ). Let σ < s. If y, ŷ ∈ B F
s+σ (ε) with ε= 3−4τ2−16τσ 6τ/(4C3),

the following inequality holds:

|ψ(y)−ψ(ŷ)|s ≤ L|y− ŷ|x,s+σ ,

with L = 2C ′/σ τ
′

. In particular, ψ being the unique local right inverse of φ, it is also its unique left
inverse.
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Proposition A.3 (smooth differentiation of ψ). Let σ < s < s+ σ and ε be as in Proposition A.2. There
exists a constant K such that for every y, ŷ ∈ B F

s+σ (ε) we have

|ψ(ŷ)−ψ(y)−φ′−1(ψ(y))(ŷ− y)|s ≤ K (σ )|ŷ− y|2x,s+σ ,

and the map ψ ′ : B F
s+σ (ε)→ L(Fs+σ , Es) defined locally by ψ ′(y) = φ′−1(ψ(y)) is continuous. In

particular ψ has the same degree of smoothness as φ.

It is sometimes convenient to extend ψ to non-Diophantine characteristic frequencies (α, A). Whitney
smoothness guarantees that such an extension exists. Let suppose that φ(x)= φν(x) depends on some
parameter ν ∈ Bk (the unit ball of Rk) and that it is C1 with respect to ν and that estimates on φ′−1

ν and
φ′′ν are uniform with respect to ν over some closed subset D of Rk.

Proposition A.4 (Whitney differentiability). Let us fix ε, σ, s as in Proposition A.2. The map ψ :
D× B F

s+σ (ε)→ B E
s (η) is C1-Whitney differentiable and extends to a map ψ : R2n

× B F
s+σ (ε)→ B E

s (η)

of class C1. If φ is Ck, 1≤ k ≤∞, with respect to ν, this extension is Ck.

Appendix B: Inversion of a holomorphism of Tn
s

We present here a classical result and a lemma that justify the well-definedness of the normal form
operator φ defined in Section 1.

Complex extensions of manifolds are defined with the help of the `∞-norm.
Let

Tn
C = Cn/2πZn and Tn

C = Tn
C×Cm,

Tn
s =

{
θ ∈ Tn

C : |θ | := max
1≤ j≤n

|Im θj | ≤ s
}
, Tn

s =
{
(θ, r) ∈ Tn

C : |(Im θ, r)| ≤ s
}
,

where |(Im θ, r)| :=max1≤ j≤n max(|Im θj |, |rj |).
Let also define Rn

s := Rn
× (−s, s) and consider the universal covering of Tn

s , p : Rn
s → Tn

s .

Theorem B.1. Let v : Tn
s → Cn be a vector field such that |v|s < σ/n. The map id+v : Tn

s−σ → Rn
s

induces a map ϕ = id+v : Tn
s−σ → Tn

s which is a biholomorphism and there is a unique biholomorphism
ψ : Tn

s−2σ → Tn
s−σ such that ϕ ◦ψ = idTn

s−2σ
.

In particular the following hold:
|ψ − id|s−2σ ≤ |v|s−σ

and, if |v|s < σ/(2n),

|ψ ′− id|s−2σ ≤
2
σ
|v|s .

For the proof we again direct readers to [Massetti 2015a; 2015b].

Corollary B.2 (well-definedness of the normal form operator φ). For all s, σ if G ∈ Gσ/n
s+σ , then G−1

∈

A(Tn
s ,Tn

s+σ ).

Proof. We recall the form of G ∈ Gσ/n
s+σ :

G(θ, r)= (ϕ(θ), R0(θ)+ R1(θ) · r).
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G−1 reads as
G−1(θ, r)=

(
ϕ−1(θ), R−1

1 ◦ϕ
−1(θ) · (r − R0 ◦ϕ

−1(θ))
)
.

Up to rescaling norms by a factor of 1
2 , like ‖x‖s :=

1
2 |x |, the statement is straightforward and follows

from Theorem B.1. By abuse of notations, we keep on denoting ‖x‖s by |x |s . �

Appendix C: Fourier norms

Let A(Tn
s ,C) be the space of holomorphic functions on Tn

s with values in C, endowed with the norm

‖ f ‖s =
∑

k

sup
|r |<s
| fk(r)| e|k|s, |k| = |k1| + · · · + |kn|.

If f ∈A(Tn
s ,Matm(C)), the definition of the norm is adapted in the obvious way and the expression | fk(r)|

denotes the standard operator norm sup|ξ |=1| fk(r)ξ |. If f : Tn
s → Cn , then ‖ f ‖s =max1≤ j≤n(‖ f j

‖s).

Lemma C.1. Let f ∈A(Tn
s+σ ,C) and let h ∈A(Tn

s ,Cn) be such that ‖h‖s < σ/e, then

‖ f (θ, r + h(θ, r))‖s ≤
1

1− e‖h‖s/σ
‖ f ‖s+σ .

Proof. Let f (θ, r + h(θ, r))=
∑

n Dn f (θ, r)hn(θ, r)/n! be the Taylor expansion of f . Then

‖ f (θ, r + h(θ, r))‖s ≤
∑

k

sup
|r |<s

(∑
n

1
n!

∑
`+k1+···+kn=k

|Dn f`(r)||hk1(r)| · · · |hkn (r)|
)

e|k|s,

where ki
∈ Zn , i = 1, . . . , n, are the Fourier indexes. Since |k| ≤ |`| + |k1

| + · · · + |kn
|,

‖ f (θ, r + h(θ, r))‖s ≤
∑

k

sup
|r |<s

(∑
n

1
n!

∑
`+k1+···+kn=k

|Dn f`(r)|e|`|s |hk1(r)|e|k
1
|s
· · · |hkn (r)|e|k

n
|s
)

≤

∑
k

(∑
n

1
n!

∑
`+k1+···+kn=k

sup
|r |<s
|Dn f`(r)|e|`|s |hk1(r)|e|k

1
|s
· · · |hkn (r)|e|k

n
|s
)

≤

∑
k

(∑
n

1
n!

∑
`+k1+···+kn=k

sup
|r |<s
|Dn f`(r)|e|`|s |hk1(r)|e|k

1
|s
· · · |hkn (r)|e|k

n
|s
)

≤

∑
n

1
n!

∑
`

sup
|r |<s
|Dn f`(r)|e|`|s

∑
k1

sup
|r |<s
|hk1(r)|e|k

1
|s
· · ·

∑
kn

sup
|r |<s
|hkn (r)|e|k

n
|s

≤

∑
`

(∑
n

nn

n!
sup
|r |<s+σ

| f`(r)|
‖h‖ns
σ n

)
e|`|(s+σ),

where the last estimate follows from the fact that (Dn f )`= Dn( f`) and the classical Cauchy’s estimate by
observing that for all |r |< s letting Rn

s+σ 3 ξ 6= 0, the analytic function ϕ(t)= f (r + tξ) on the complex
disc |t |< σ/|ξ | satisfies dnϕ/dtn

|t=0 = Dn f (r)ξ n. The factor nn comes from the classical bound on the
norm of a symmetric multilinear mapping by the associated homogeneous polynomial; see for example
[Harris 1975].
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It thus follows that

‖ f (θ, r + h(θ, r))‖s ≤ 2
∑
`

sup
|r |<s+σ

| f`(r)|s+σ
∑
n≥1

en
√

2πn

(
‖h‖s
σ

)n

e|`|(s+σ)

≤ 2‖ f ‖s+σ
1

2(1− e‖h‖s/σ)
;

hence the stated bound. �

Lemma C.2. Let f ∈A(Tn
s+σ ,C) and h ∈A(Tn

s ,C) be such that ‖h‖s < σ ; then

‖ f (θ + h(θ), r)‖s ≤ ‖ f ‖s+σ .

For the proof, see [Chierchia 2003, Appendix B] for example.
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